
Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Approximate Information Filtering in
Structured Peer-to-Peer Networks

Christian Zimmer
Max-Planck Institute for Informatics

Saarbrücken
2008





Promotionskolloquium

Promotionskolloquium

Tag des Promotionskolloquiums 30. Oktober 2008
Ort des Promotionskolloquiums Saarbrücken

Dekan der Naturwissenschaftlich-Technischen Prof. Dr. Joachim Weickert
Fakultät I Universität des Saarlandes

Prüfungsausschuss

Vorsitzender Prof. Dr. Jens Dittrich
Universität
des Saarlandes

Gutachter Prof. Dr.-Ing. Gerhard Weikum
Max-Planck Institute
for Informatics

Gutachter Prof. Dr. Manolis Koubarakis
National and Kapodistrian
University of Athens

Gutachter Dr. Christos Tryfonopoulos
Max-Planck Institute
for Informatics

Akademischer Beisitzer Dr.-Ing Ralf Schenkel
Universität
des Saarlandes

- iii -



Promotionskolloquium

- iv -



Eidesstattliche Versicherung

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle
gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder
ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den 14. Juli 2008

Christian Zimmer
(Unterschrift)

- v -



Eidesstattliche Versicherung

- vi -



Contents

Contents

Promotionskolloquium iii

Eidesstattliche Versicherung v

List of Figures xiii

List of Tables xv

Abstract 1

Kurzfassung 3

Summary 5

Zusammenfassung 7

1 Introduction 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Approximate Information Filtering . . . . . . . . . . . . . . . . . . . 10
1.2.2 Correlation Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Prototype System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Digital Library Use Case . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background and Technical Basics 15
2.1 Peer-to-Peer Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 The Lookup Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 P2P Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2.1 Centralized P2P Architectures . . . . . . . . . . . . . . . . 17
2.1.2.2 Unstructured P2P Architectures . . . . . . . . . . . . . . . 18
2.1.2.3 Structured P2P Architectures . . . . . . . . . . . . . . . . 19
2.1.2.4 Super-Peer Architectures . . . . . . . . . . . . . . . . . . . 20

2.1.3 Example: The Chord Protocol . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Example: The Pastry Protocol . . . . . . . . . . . . . . . . . . . . . 23

2.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Effectiveness Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Document and Query Representation . . . . . . . . . . . . . . . . . 25
2.2.3 Top-k Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Information Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

- vii -



Contents

2.3.1 IF in Databases and Distributed Systems . . . . . . . . . . . . . . . 27
2.3.2 IF in Peer-to-Peer Systems . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Objections of Time Series Analysis . . . . . . . . . . . . . . . . . . . 30
2.4.3 Types of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Prediction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.4.1 Moving Average Techniques . . . . . . . . . . . . . . . . . . 31
2.4.4.2 Exponential Smoothing Techniques . . . . . . . . . . . . . 32

2.5 Distinct-Value Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Hash Sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1.1 Creation and DV Estimation . . . . . . . . . . . . . . . . . 33
2.5.1.2 Multiset Operations . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 KMV Synopses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.2.1 Creation and DV Estimator . . . . . . . . . . . . . . . . . . 35
2.5.2.2 Multiset Operations . . . . . . . . . . . . . . . . . . . . . . 36

3 System Architecture and Protocols 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Previous Work on Information Filtering . . . . . . . . . . . . . . . . 39

3.1.2.1 IF in Databases . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2.2 IF in Information Retrieval . . . . . . . . . . . . . . . . . . 39
3.1.2.3 Exact IF in P2P Networks . . . . . . . . . . . . . . . . . . 40

3.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Directory Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Subscription Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Publication Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 One-Time Search Service . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Directory Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Subscription Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Publication and Notification Protocol . . . . . . . . . . . . . . . . . 45
3.3.4 One-Time Search Protocol . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Comparison to Exact Information Filtering . . . . . . . . . . . . . . . . . . 47
3.4.1 Routing Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Query Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Statistical Information . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.4 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Publisher Peer Selection 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Peer Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Resource Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1.1 The CORI Approach . . . . . . . . . . . . . . . . . . . . . 53
4.2.1.2 The MRS Approach . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Behavior Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Why Both Strategies Are Needed . . . . . . . . . . . . . . . . . . . . 56

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

- viii -



Contents

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.3 Different Publishing Scenarios . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3.1 The Consistent Publishing Scenario . . . . . . . . . . . . . 60
4.3.3.2 The Half Publishing Scenario . . . . . . . . . . . . . . . . . 61
4.3.3.3 The Category Change Scenario . . . . . . . . . . . . . . . . 61
4.3.3.4 The Publishing Breaks Scenario . . . . . . . . . . . . . . . 64
4.3.3.5 The Temporary Changes Scenario . . . . . . . . . . . . . . 65

4.3.4 Comparison Across Scenarios . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4.1 Average Recall Analysis . . . . . . . . . . . . . . . . . . . . 68
4.3.4.2 Message Costs Analysis . . . . . . . . . . . . . . . . . . . . 68

4.3.5 Comparison to Exact Information Filtering . . . . . . . . . . . . . . 70
4.3.6 Summing Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Improving Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Analyzing Different Behaviors . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 The MAPS Selective Method . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 An Alternative Approach . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.2 Experimental Measures . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.3 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.4.1 The Mixed Publishing Scenario . . . . . . . . . . . . . . . . 79
4.5.4.2 The ExpInc Publishing Scenario . . . . . . . . . . . . . . . 79
4.5.4.3 The QuadDec Publishing Scenario . . . . . . . . . . . . . . 83

4.5.5 Summing Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Correlated Key Sets 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2 Previous Research on Correlated Key Sets . . . . . . . . . . . . . . . 87

5.2 The Baseline Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Correlation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Exploiting Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 The USS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 The CSS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2.1 Assessing Key Sets . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2.2 Disseminating Multi-Key Statistics . . . . . . . . . . . . . . 91
5.4.2.3 Exploiting Multi-Key Statistics . . . . . . . . . . . . . . . . 92
5.4.2.4 Combining Multi-Key Statistics . . . . . . . . . . . . . . . 92

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.2 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.3.1 Results Using Web Data . . . . . . . . . . . . . . . . . . . 94
5.5.3.2 Results Using Blog Data . . . . . . . . . . . . . . . . . . . 99

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

- ix -



Contents

6 Prototype Implementation 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 The Minerva Search System . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 System Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2.1 Query Routing . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.2.2 Result Merging . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 The MAPS Filtering Extension . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.2 Example Use of MAPS . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.2.1 Minerva Initialization . . . . . . . . . . . . . . . . . . . . . 111
6.3.2.2 Publishing Metadata . . . . . . . . . . . . . . . . . . . . . 112
6.3.2.3 One-Time Query Execution . . . . . . . . . . . . . . . . . . 112
6.3.2.4 Continuous Query Execution . . . . . . . . . . . . . . . . . 113
6.3.2.5 Document Publication . . . . . . . . . . . . . . . . . . . . . 115
6.3.2.6 Receiving Notifications . . . . . . . . . . . . . . . . . . . . 116
6.3.2.7 Resubmitting Continuous Queries . . . . . . . . . . . . . . 116

6.4 Other Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.1 P2P Retrieval Prototypes . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.2 P2P Filtering Prototypes . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Digital Library Use Case 121
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1.2 The Evolution of Digital Libraries . . . . . . . . . . . . . . . . . . . 123
7.1.3 Previous Research on P2P Digital Library Architectures . . . . . . . 124

7.2 The MinervaDL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.1 Super-Peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 Consumer Peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2.3 Provider Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 The MinervaDL Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3.1 Provider & Consumer Join/Leave . . . . . . . . . . . . . . . . . . . . 127
7.3.2 Provider & Consumer Connect/Disconnect . . . . . . . . . . . . . . 127
7.3.3 Super-Peer Join/Leave . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.4 Directory Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3.5 Submitting an One-Time Query . . . . . . . . . . . . . . . . . . . . 128
7.3.6 Subscribing with a Continuous Query . . . . . . . . . . . . . . . . . 129
7.3.7 Publishing a new Document . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.8 Notification Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.4 Scoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.1 Resource Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4.2 Behavior Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5.1 Search Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5.2 Filtering Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5.3 Message Costs Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

- x -



Contents

8 Conclusion and Open Questions 137
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2.1 Approximate Information Filtering . . . . . . . . . . . . . . . . . . . 138
8.2.2 Correlation Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2.3 Prototype System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2.4 Digital Library Use Case . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3.1 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3.3 Replication & Caching . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.4 Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A Abbreviations 147

B Zeitgeist Queries 149

C Acknowledgements 151

Bibliography 153

Index 173

- xi -



Contents

- xii -



List of Figures

List of Figures

2.1 Client-Server Network Architecture. . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Peer-to-Peer Network Architecture. . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Unstructured P2P Network with Message Flooding. . . . . . . . . . . . . . 18
2.4 Example Chord Ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Chord Lookup using Finger Table Entries. . . . . . . . . . . . . . . . . . . . 22
2.6 Pastry Routing Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 B+-Tree with Inverted Index Lists. . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 High-Level View of MAPS Service Architecture. . . . . . . . . . . . . . . . . 40
3.2 The MAPS Directory Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 The MAPS Subscription Protocol. . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 The MAPS Publication & Notification Protocol. . . . . . . . . . . . . . . . 45
3.5 The MAPS One-Time Search Protocol. . . . . . . . . . . . . . . . . . . . . . 46

4.1 Average Recall in the Consist Scenario. . . . . . . . . . . . . . . . . . . . . 60
4.2 Benefit/Cost Ratio in the Consist Scenario. . . . . . . . . . . . . . . . . . . 61
4.3 Average Recall in the Half Scenario. . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Benefit/Cost Ratio in the Half Scenario. . . . . . . . . . . . . . . . . . . . . 62
4.5 Average Recall in the CatChg Scenario. . . . . . . . . . . . . . . . . . . . . 63
4.6 Benefit/Cost Ratio in the CatChg Scenario. . . . . . . . . . . . . . . . . . . 63
4.7 Recall per Publishing Round for ρ = 5% in the CatChg Scenario. . . . . . . 64
4.8 Recall per Publishing Round for ρ = 10% in the CatChg Scenario. . . . . . 65
4.9 Average Recall in the Break Scenario. . . . . . . . . . . . . . . . . . . . . . 66
4.10 Benefit/Cost Ratio in the Break Scenario. . . . . . . . . . . . . . . . . . . . 66
4.11 Average Recall in the TmpChg Scenario. . . . . . . . . . . . . . . . . . . . . 67
4.12 Benefit/Cost Ratio in the TmpChg Scenario. . . . . . . . . . . . . . . . . . 67
4.13 Average Recall for α = 0.5 in Different Scenarios. . . . . . . . . . . . . . . . 68
4.14 Average Recall for ρ = 10% in Different Scenarios. . . . . . . . . . . . . . . 69
4.15 Benefit/Cost Ratio for α = 0.5 in Different Scenarios. . . . . . . . . . . . . 69
4.16 Benefit/Cost Ratio for ρ = 10% in Different Scenarios. . . . . . . . . . . . . 70
4.17 Number of Messages and Average Recall Level. . . . . . . . . . . . . . . . . 71
4.18 Comparison Exact vs. Approximate Information Filtering. . . . . . . . . . . 72
4.19 Prediction Errors with DES for Different Behaviors. . . . . . . . . . . . . . 74
4.20 Comparing MSM For Different Publishing Scenarios. . . . . . . . . . . . . . 77
4.21 Average Recall in Mixed Publishing Scenario. . . . . . . . . . . . . . . . . . 80
4.22 Average Prediction Error in Mixed Publishing Scenario. . . . . . . . . . . . 80
4.23 Average Recall in ExpInc Publishing Scenario. . . . . . . . . . . . . . . . . . 81
4.24 Average Prediction Error in ExpInc Publishing Scenario. . . . . . . . . . . . 81
4.25 Average Recall in the QuadDec Publishing Scenario. . . . . . . . . . . . . . 82

- xiii -



List of Figures

4.26 Average Prediction Error in the QuadDec Publishing Scenario. . . . . . . . 82

5.1 Average Recall for Two-Key Zeitgeist Queries. . . . . . . . . . . . . . . . . . 94
5.2 Average Recall for Three-Key Zeitgeist Queries. . . . . . . . . . . . . . . . . 95
5.3 Average Recall for Four-Key Zeitgeist Queries. . . . . . . . . . . . . . . . . 96
5.4 Average Recall for Different Multi-Key Statistics. . . . . . . . . . . . . . . . 96
5.5 Average Recall Improvements for Two-Key Queries. . . . . . . . . . . . . . . 97
5.6 Average Recall Improvements for Three-Key Queries. . . . . . . . . . . . . . 98
5.7 Average Recall for Two- and Three-Key Queries. . . . . . . . . . . . . . . . 100
5.8 Average Recall Improvements for Two-Key Queries. . . . . . . . . . . . . . . 100
5.9 Average Recall Improvements for Three-Key Queries. . . . . . . . . . . . . . 101
5.10 Average Recall Improvements for Four-Key Queries. . . . . . . . . . . . . . 101
5.11 Average Recall for High-Correlated Four-Key Queries. . . . . . . . . . . . . 102

6.1 Minerva Search Architecture and Query Execution. . . . . . . . . . . . . . . 107
6.2 Minerva Search Engine Implementation. . . . . . . . . . . . . . . . . . . . . 109
6.3 Extended MAPS Implementation with IF Components. . . . . . . . . . . . 111
6.4 Initiating the Minerva Client GUI. . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Updating and Disseminating Metadata. . . . . . . . . . . . . . . . . . . . . 113
6.6 One-Time Query Execution with Minerva. . . . . . . . . . . . . . . . . . . . 114
6.7 Continuous Query Execution with Minerva. . . . . . . . . . . . . . . . . . . 114
6.8 Publishing Documents with Notifying Subscriber Peers. . . . . . . . . . . . 115
6.9 Receiving Notifications for Subscribed Continuous Queries. . . . . . . . . . 116
6.10 Resubmitting a Continuous Query. . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 DHT-based Distributed Directory to Perform IR and IF. . . . . . . . . . . . 122
7.2 High-Level View of the MinervaDL Architecture. . . . . . . . . . . . . . . . 125
7.3 Search Performance of MinervaDL. . . . . . . . . . . . . . . . . . . . . . . . 133
7.4 Filtering Performance of MinervaDL. . . . . . . . . . . . . . . . . . . . . . . 133
7.5 Approximate vs. Exact Information Filtering. . . . . . . . . . . . . . . . . . 134
7.6 Message Costs in MinervaDL. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

- xiv -



List of Tables

List of Tables

3.1 Comparison Between DHTrie and MAPS. . . . . . . . . . . . . . . . . . . . 47

4.1 Different Publisher Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Web Collection Statistics Grouped by Categories. . . . . . . . . . . . . . . . 59
4.3 Collection of 30 Continuous Queries with Two, Three, or Four Keys. . . . . 59
4.4 Data Series Simulating Different Publishing Behaviors. . . . . . . . . . . . . 74

5.1 Summary of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Relatedness of Example Two-Key Queries. . . . . . . . . . . . . . . . . . . . 98
5.3 Relatedness of Example Three-Key Queries. . . . . . . . . . . . . . . . . . . 98
5.4 Examples of Relatedness among Four-Key Queries. . . . . . . . . . . . . . . 102

6.1 US Search Engine Rankings November 2007. . . . . . . . . . . . . . . . . . 106

A.1 List of Abbreviations used in the Thesis. . . . . . . . . . . . . . . . . . . . . 147

B.1 55 One-Key Queries from Zeitgeist Query-Log. . . . . . . . . . . . . . . . . 149
B.2 41 Two-Key Queries from Zeitgeist Query-Log. . . . . . . . . . . . . . . . . 149
B.3 3 Three-Key Queries from Zeitgeist Query-Log. . . . . . . . . . . . . . . . . 149

- xv -



List of Tables

- xvi -



Abstract

Abstract

Today’s content providers are naturally distributed and produce large amounts of infor-
mation every day, making peer-to-peer data management a promising approach offering
scalability, adaptivity to dynamics, and failure resilience. In such systems, subscribing
with a continuous query is of equal importance as one-time querying since it allows the
user to cope with the high rate of information production and avoid the cognitive overload
of repeated searches. In the information filtering setting users specify continuous queries,
thus subscribing to newly appearing documents satisfying the query conditions.

Contrary to existing approaches providing exact information filtering functionality, this
doctoral thesis introduces the concept of approximate information filtering, where users
subscribe to only a few selected sources most likely to satisfy their information demand.
This way, efficiency and scalability are enhanced by trading a small reduction in recall for
lower message traffic.

This thesis contains the following contributions: (i) the first architecture to support ap-
proximate information filtering in structured peer-to-peer networks, (ii) novel strategies to
select the most appropriate publishers by taking into account correlations among keywords,
(iii) a prototype implementation for approximate information retrieval and filtering, and
(iv) a digital library use case to demonstrate the integration of retrieval and filtering in a
unified system.

- 1 -



Abstract

- 2 -



Kurzfassung

Kurzfassung

Heutige Content-Anbieter sind verteilt und produzieren riesige Mengen an Daten jeden
Tag. Daher wird die Datenhaltung in Peer-to-Peer Netzen zu einem vielversprechenden
Ansatz, der Skalierbarkeit, Anpassbarkeit an Dynamik und Ausfallsicherheit bietet. Für
solche Systeme besitzt das Abonnieren mit Daueranfragen die gleiche Wichtigkeit wie ein-
malige Anfragen, da dies dem Nutzer erlaubt, mit der hohen Datenrate umzugehen und
gleichzeitig die Überlastung durch erneutes Suchen verhindert. Im Information Filtering
Szenario legen Nutzer Daueranfragen fest und abonnieren dadurch neue Dokumente, die
die Anfrage erfüllen.

Im Gegensatz zu vorhandenen Ansätzen für exaktes Information Filtering führt diese
Doktorarbeit das Konzept von approximativem Information Filtering ein. Ein Nutzer abon-
niert nur wenige ausgewählte Quellen, die am ehesten die Anfrage erfüllen werden. Effizienz
und Skalierbarkeit werden verbessert, indem Recall gegen einen geringeren Nachrichten-
verkehr eingetauscht wird.

Diese Arbeit beinhaltet folgende Beiträge: (i) die erste Architektur für approximatives
Information Filtering in strukturierten Peer-to-Peer Netzen, (ii) Strategien zur Wahl der
besten Anbieter unter Berücksichtigung von Schlüsselwörter-Korrelationen, (iii) ein Proto-
typ, der approximatives Information Retrieval und Filtering realisiert und (iv) ein Anwen-
dungsfall für Digitale Bibliotheken, der beide Funktionalitäten in einem vereinten System
aufzeigt.

- 3 -



Kurzfassung

- 4 -



Summary

Summary

The present doctoral thesis with the title Approximate Information Filtering in Structured
Peer-to-Peer Networks introduces a novel approach to manage continuous queries in an
information filtering environment over a network of autonomous publishers and subscribers.
This thesis combines research from two active research areas in computer science: peer-to-
peer networks, and information retrieval and filtering. The work presented here is the first
approach to study information filtering in a dynamic environment by relying on the novel
concept of approximate information filtering.

Information filtering, also referred to as publish/subscribe or continuous querying or
information push, is equally important to information retrieval (or one-time querying),
since users are able to subscribe to information sources and be notified when new events
matching their information demand occur. Information filtering and information retrieval
are often referred as two sides of the same coin, since many of the underlying issues and goals
are similar; in both cases a document needs to be matched against an information demand.
Despite this duality between retrieval and filtering, the design issues, the techniques and
algorithms devised to increase filtering efficiency differ significantly from those utilized by
retrieval.

In the last years, a lot of research efforts have been concentrated on providing distributed
information management. With the proliferation of peer-to-peer systems, mainly due to file-
sharing applications such as Gnutella or BitTorrent, peer-to-peer information management
has gained increasing attention. The main advantage of such systems is the ability to handle
huge amounts of data in a decentralized and self-organizing manner offering high potential
benefit for information systems powerful regarding scalability, efficiency, and resilience to
failures and dynamics. Contrary to server-oriented architectures, peer-to-peer systems avoid
single-points-of-failure, and such an information system can potentially benefit from the
intellectual input (e.g., click streams or query logs) of a large user community participating
in the data-sharing network.

This doctoral thesis builds upon research in peer-to-peer and information filtering to in-
troduce a novel architecture and the first approach for approximate information filtering in
distributed networks. Most approaches on information filtering taken so far have the under-
lying hypothesis of potentially delivering notifications from every information producer to
subscribers. This exact information filtering model imposes a cognitive overload on the user
in the case of applications like blog or news filtering, and creates an efficiency and scalability
bottleneck. Contrary to this, the novel approximate information filtering approach ranks
sources, and delivers matches only from the best ones, by utilizing novel publisher selection
strategies. Thus, the continuous query is replicated to the best information sources and
only published documents from these sources are forwarded to the subscriber. This approx-
imate information filtering relaxes the assumption, which holds in most filtering systems,
of potentially delivering notifications from every producer and amplifies scalability.

The architecture presented in this thesis provides the tools and protocols to identify the
most appropriate publishers for a given continuous query by exploiting metadata stored in

- 5 -



Summary

a conceptually global, but physically distributed directory. To select the most appropriate
publishers to subscribe to, a subscriber computes scores that reflect the past publishing be-
havior of information sources and utilizes them to predict their future publishing behavior.
These scores are based on a combination of resource selection and behavior prediction to
deal with the dynamics of publishing. Behavior prediction uses time-series analysis with
double exponential smoothing techniques to predict future publishing behavior, and adapt
faster to changes in it. In addition, correlations among keywords in multi-keyword continu-
ous queries can be exploited to further improve publisher selection. For scalability reasons,
the metadata stored in the directory has publisher and not document granularity, thus
capturing the best publishers for certain keywords. Building on the main architecture, the
thesis introduces two new algorithms to exploit correlations among keywords to improve
publisher selection. The first algorithm uses single-keyword synopses stored in the direc-
tory to estimate the publishing behavior of information sources for sets of keywords, while
the second algorithm enhances the distributed directory to explicitly maintain statistical
metadata about selectively chosen sets. Existing, self-limited approaches for two-keyword
queries are extended to the case of multi-keyword continuous queries for an arbitrary num-
ber of keywords. Beyond that, the thesis presents algorithms to approximate multi-keyword
statistics by combining the metadata statistics of arbitrary subsets. By utilizing the pro-
posed techniques approximate filtering achieves higher scalability than exact filtering by
trading faster response times and lower message traffic for a moderate loss in recall.

Finally, the thesis presents a digital library use case that unifies approximate retrieval
and filtering functionality under a common architecture, and a prototype implementation
that showcases the applicability of the proposals. Comparative experiments conducted on
several real-world data sets quantify the efficiency and effectiveness of the methods proposed
in this thesis.

- 6 -



Zusammenfassung

Zusammenfassung

Die vorliegende Doktorarbeit mit dem Titel Approximate Information Filtering in Struc-
tured Peer-to-Peer Networks stellt einen neuen Ansatz zur Verarbeitung von Daueranfragen
in einer Information Filtering Umgebung mit einem Netzwerk aus unabhängigen Anbietern
und Beziehern vor. Die Arbeit verknüpft aktuelle Forschung aus zwei aktiven Forschungs-
bereichen der Informatik: Peer-to-Peer Netzwerke und Information Retrieval und Filtering.
Die vorgestellte Arbeit ist der erste Ansatz für Information Filtering in einer dynamischen
Umgebung und beruht auf dem neuen Konzept von approximativem Information Filtering.

Information Filtering – auch bezeichnet als Publish/Subscribe, dauerhaftes Anfragen
oder Information Push – ist genauso wichtig wie Information Retrieval (oder einmaliges
Anfragen). Der Grund liegt darin, dass Benutzer in der Lage sind, Informationsquellen
zu abonnieren, so dass sie über neue Ereignisse benachrichtigt werden, die ihrem Informa-
tionsbedürfnis entsprechen. Information Filtering und Information Retrieval werden oft als
zwei Seiten einer Medaille bezeichnet. Obwohl viele der Probleme und Ziele von Retrieval
und Filtering ähnlich sind – schließlich werden in beiden Fällen Dokumente mit einem In-
formationsbedürfnis verglichen –, so unterschieden sich Designfragen, sowie Techniken und
Algorithmen zur Verbesserung der Effizienz beim Filtering doch deutlich.

In den letzten Jahren konzentrierte sich viel Forschungsarbeit auf die verteilte Datenhal-
tung. Mit dem Aufstieg von Peer-to-Peer Systemen, hauptsächlich durch File-Sharing An-
wendungen wie Gnutella oder BitTorrent, erfuhr auch die Peer-to-Peer Datenhaltung eine
verstärkte Aufmerksamkeit. Der wichtigste Vorteil solcher Systeme liegt in der Fähigkeit,
große Datenmengen auf eine verteilte und selbstorganisierende Art und Weise zu hand-
haben. Die Charakteristiken von Peer-to-Peer bieten großes Potential für Informationssys-
teme in Bezug auf Skalierbarkeit, Effizienz und Widerstandsfähigkeit gegenüber Fehlern
und Dynamik. Im Gegensatz zu Server-orientierten Architekturen vermeiden Peer-to-Peer
Systeme einen einzelnen Fehlerpunkt. Darüber hinaus kann ein solches Informationssystem
möglicherweise vom intellektuellen Input (in Form von Click-Streams oder Anfrage-Logs)
einer großen Benutzergemeinschaft profitieren.

Diese Doktorarbeit basiert auf Forschung in den Bereichen Peer-to-Peer Netzwerke und
Information Filtering, um eine neuartige Architektur und den ersten Ansatz für approxi-
matives Information Filtering in verteilten Netzwerken einzuführen. Die meisten bisherigen
Ansätze besitzen die zugrunde liegende Annahme, Benachrichtigungen aller Informations-
quellen zu liefern. Dieses exakte Information Filtering Model führt zu einer erkennbaren
Überlastung des Nutzers für Anwendungen wie Filtering von Blog- oder Nachrichtenbeiträ-
gen. Außerdem wird ein Effizienz- und Skalierbarkeitsproblem erzeugt. Der ganz neue
Ansatz des approximativen Information Filtering hingegen ordnet Informationsquellen mit
neuen Strategien zur Auswahl von Anbietern. Nur Treffer der besten Anbieter werden
geliefert, indem eine Daueranfrage auch nur an die besten Informationsquellen geschickt
wird, welche dann neue Dokumente an den Abonnenten weiterleiten. Approximatives Infor-
mation Filtering schwächt die Annahme der meisten Filtering Systeme, Benachrichtigungen
von allen möglichen Anbietern zu liefern, und verstärkt dadurch Skalierbarkeit.

- 7 -



Zusammenfassung

Die in dieser Arbeit präsentierte Architektur bietet die Werkzeuge und Protokolle, um
die am meisten geeigneten Anbieter für eine Daueranfrage zu ermitteln, indem Metadaten
genutzt werden, die in einem konzeptionell globalen, aber physisch verteilten Verzeich-
nis gespeichert werden. Ein Abonnent berechnet zur Wahl der besten Anbieter Bewer-
tungszahlen, die das bisherige Verhalten beinhalten und dieses nutzen, um zukünftiges
Verhalten vorauszusagen. Diese Bewertungszahlen basieren auf einer Kombination aus
Resource Selection und Behavior Prediction, um die gegebene Dynamik zu berücksichti-
gen. Behavior Prediction benutzt Zeitreihenanalyse mit Double Exponential Smoothing
Techniken zur Vorhersage zukünftigen Verhaltens mit schnellen Veränderungen. Zusät-
zlich können Korrelationen innerhalb der Schlüsselwörter einer Anfrage ausgenutzt werden,
um die Auswahl der Anbieter weiter zu verbessern. Aus Skalierbarkeitsgründen besitzen
die Metadaten, die im Verzeichnis gespeichert werden, Anbieter-Granularität und keine
Dokumenten-Granularität. Dadurch werden die besten Anbieter für einzelne Schlüssel-
wörter festgestellt. Auf der Hauptarchitektur aufbauend bietet diese Arbeit zwei Algorith-
men, um Korrelationen unter Schlüsselwörter zur Verbesserung der Auswahl der Anbieter
auszunutzen. Der erste Algorithmus benutzt individuelle Schlüsselwörter Synopsen aus dem
Verzeichnis, um die Auswahl zu verbessern. Der zweite Algorithmus erweitert das verteilte
Verzeichnis um Metadaten von explizit ausgewählte Mengen aus mehreren Schlüsselwörtern.
Bereits existierende Ansätze, die sich auf Mengen aus zwei Schlüsselwörtern beschränken,
werden auf beliebig viele Schlüsselwörter erweitert. Darüber hinaus zeigt diese Arbeit einen
Algorithmus auf, welcher Statistiken für Mengen aus mehreren Schlüsselwörtern durch die
Kombination von beliebigen Teilmengenstatistiken approximiert. Durch Anwendung der
vorgeschlagenen Techniken erhält approximatives Information Filtering eine höhere Skalier-
barkeit. Für einen akzeptablen Verlust an Recall erhält man schnellere Antwortzeiten und
einen geringeren Nachrichtenverkehr.

Schließlich präsentiert diese Doktorarbeit einen Anwendungsfall für Digitale Bibliotheken,
welcher approximative Retrieval und Filtering Funktionalität in einer vereinten Architek-
tur unterstützt, und eine prototypische Implementierung, die die Anwendbarkeit von ap-
proximativem Information Filtering herausstellt. Vergleichende Experimente auf unter-
schiedlichen echten Datenmengen messen die Effizienz und Effektivität der Methoden dieser
Arbeit.

- 8 -



Chapter 1 Introduction

Chapter 1

Introduction
This introductory chapter motivates the doctoral thesis in Section 1.1 by introducing the
problem of P2P IF. Section 1.2 highlights the main solution and presents the major contri-
butions that will be investigated in the following chapters, while Section 1.3 presents the
thesis outline.

1.1 Motivation

The peer-to-peer (P2P) paradigm has been receiving increasing attention in recent years,
mainly in the context of file-sharing applications (Gnutella, BitTorrent) or other Internet
applications such as IP telephony (e.g., Skype). In the meantime, the P2P paradigm is
moving towards distributed data management systems such as information retrieval (IR)
or information filtering (IF). The main advantage of P2P is its ability to handle huge
amounts of data in a decentralized and self-organizing manner. The characteristics of P2P
offer high potential benefit for information systems powerful regarding scalability, efficiency,
and resilience to failures and dynamics. Beyond that, such an information system can po-
tentially benefit from the intellectual input of a large user community participating in the
data sharing network. Finally, P2P information systems can also bring forward plural-
ism in informing users about Internet content, which is crucial in order to guard against
information-resource monopolies and the biased visibility of content from economically
powerful sources. Information censorship is often mentioned in this context.

Information filtering, also referred to as publish/subscribe or continuous querying or in-
formation push, can be seen as equally important to information retrieval (or one-time
querying), since users are able to subscribe to information sources and be notified when
new events of interest happen. The need for content-based push technologies is also stressed
by the deployment of new applications (e.g., Google Alerts) where a user posts a subscrip-
tion (or continuous query) to the system to receive notifications whenever matching events
of interest take place. Information filtering and information retrieval are often referred
as two sides of the same coin [BC92]. Although many of the underlying issues and goals
are similar in retrieval and filtering, since in both cases a document needs to be matched
against an information demand, the design issues, the techniques and algorithms devised to
increase filtering efficiency differ significantly. This concept will be one of the main drivers
of this thesis.

The main challenge addressed in this thesis is to exploit P2P technology for efficient
and approximate information filtering. While there exist several approaches to perform
exact information filtering in P2P environments, the work in this thesis emphasizes a novel
architecture to support content-based approximate information filtering. Most information
filtering approaches taken so far have the underlying hypothesis of potentially delivering
notifications from all information producers.

- 9 -



Chapter 1 Introduction

An approximate approach relaxes this assumption by monitoring only selected sources
that are likely to publish documents relevant to the user interests in the future. Since in an
IF scenario the data is originally highly distributed residing on millions of sites (e.g., with
people contributing to blogs), a P2P approach seems an ideal candidate for such a setting.
However, exact publish/subscribe functionality has proven expensive for such distributed
environments. Contrary, approximate IF offers a natural solution to this problem, by
avoiding document granularity dissemination as this presents the main scalability bottleneck
for the exact IF approaches.

The targeted P2P system consists of a number n of publisher and/or subscriber peers
(or nodes1) dj with j = 1, . . . , n, forming a network. In general, peers are assumed to be
autonomous publishing and requesting data. All publisher peers dj construct and store
a local index structure consisting of index lists, Ij(k) over each key k (also referred to as
keyword or term). A continuous query in such a filtering system is a set of multiple distinct
keywords q = k1, k2, . . . , tm. The subscriber wants to be notified regarding new documents
containing these keywords published by other peers in the network. Therefore, all peers have
precomputed statistical summaries (metadata) on their local index contents organized on a
per-key basis and typically including measures such as the number of documents that the
peers’s local index contains for a given key, the average term frequency in these documents,
and so on. Additionally, these summaries may contain compact synopses representing the
documents each peer maintains. These summaries are then posted to a conceptually global,
but physically distributed directory conveniently accessible by every peer, with O(log n)
communication costs per key where n is the size of the network. Assuming the existence of
a such a directory, the approximate information filtering system has to provide the ability
to identify the top-k most appropriate publisher peers p1, p2, . . . , pk for a given continuous
query q, i.e., those publishers that are expected to provide the best documents matching q
in the future. In this thesis, this task is referred to as publisher peer selection. To select this
set of peers, this thesis introduces new strategies based on already known resource selection
techniques in combination with new behavior prediction techniques. These new techniques
utilize the distributed directory to predict future publishing behavior of peers by applying
prediction techniques based on time series of IR statistics.

1.2 Main Contributions

This section summarizes the major contributions of this doctoral thesis. Section 1.2.1
discusses the general framework for supporting approximate information filtering whereas
Section 1.2.2 extends the framework to consider correlations among keywords. Section 1.2.3
introduces a prototype system, and Section 1.2.4 presents a digital library (DL) use case.

1.2.1 Approximate Information Filtering

This thesis presents a novel architecture, coined MAPS (Minerva Approximate Publish Sub-
scribe) [ZTB+08, ZTB+07], to support content-based approximate information filtering in
P2P environments. Most IF approaches so far have the underlying hypothesis of poten-
tially delivering notifications from every information producer. Contrary, MAPS relaxes
this assumption and monitors only selected sources that are likely to publish documents
relevant to the user interests in the future. In MAPS, a user subscribes with a continuous
query and only published documents from these monitored sources are forwarded to him.

1The thesis uses the terminology peer rather than node.

- 10 -



Chapter 1 Introduction

MAPS provides a network-agnostic P2P architecture with different services and its re-
lated protocols (directory, subscription, publication, and notification protocol) for support-
ing approximate IF functionality in a distributed P2P environment. It is the first approach
that looks into the problem of approximate IF in such a setting. The architecture exploits
metadata stored in a conceptually global, but physically distributed directory. The most
critical task in approximate IF is the selection of appropriate publisher peers to meet the
information demand in the future. Therefore, MAPS combines existing resource selection
techniques with new behavior prediction strategies. It is shown, that existing resource se-
lection approaches (also referred to as collection or database selection) are not sufficient in
a dynamic filtering setting since resource selection can only select appropriate authorities
that have already published matching documents in the past.

The novel method of behavior prediction of publisher peers completes the peer selection
strategy by applying prediction techniques to time series of IR statistics. So, MAPS in-
troduces research of time series analysis to P2P information filtering environments. The
experimental evaluation of MAPS approves the effectiveness and efficiency in several set-
tings using real Web data. Various publishing behaviors are investigated to conclude that
only the combination of resource selection and behavior prediction allows to improve recall
while monitoring only a small number of publishers.

MAPS also conducts an approach to improve the proposed prediction method of time
series analysis with double exponential smoothing (DES). The MAPS Selective Method
(MSM) does not need any additional communication to adjust prediction parameters.
There, the key concept allows to recognize individual publishing behaviors of peers for
various continuous queries. In addition, MAPS is compared to an existing exact informa-
tion filtering approach in the P2P setting with regard to several major characteristics (e.g.,
load balancing issues, query placement, or routing infrastructure) [TZWK07].

1.2.2 Correlation Awareness

In MAPS, publisher peer selection for a given continuous query with multiple keywords is
driven by statistical summaries (metadata) that are stored by the system. These summaries
are provided to the directory by the publishers and can be managed in different ways ranging
from centralized solutions like servers or server farms, to super-peer or pure peer-to-peer
solutions in the form of a distributed P2P directory built on top of a distributed hash
table (DHT) or other kinds of overlay networks. For scalability of MAPS, the summaries
have publisher granularity, not document granularity, thus capturing the best publisher for
certain keywords or keys.

This, together with per-key organization of the directory that disregards keyword cor-
relations2 or correlated key sets are two of the basic reasons that may possibly lead to
insufficient recall. Obviously, considering statistics for all possible key sets is clearly not
possible due to the explosion in the feature space. The baseline approach would decompose
a continuous query into the individual keys and use the statistics from the directory to com-
pute a combined score (e.g., intersection or some other kind of aggregation of individual
key scores) for each key and publisher. This score would represent the probability of each
source to publish documents matching the information demand in the near future. This
approach may lead to poor filtering quality as the top-ranked publishers for the complete
query may not be among the top selected publishers. In the worst case, a selected publisher
may deliver many documents for each single keyword, but no single document matching all
keywords, since this information is not present in the directory.
2In general statistical usage, correlation or co-relation refers to the departure of two variables from inde-

pendence.

- 11 -



Chapter 1 Introduction

Thus, the thesis introduces two approaches as suggested in [ZTW08] that use correlations
among keys to improve filtering quality in the scenario described above:

• The USS (Unique Synopses Storage) algorithm uses existing single-key synopses
stored in the directory to estimate the publishing behavior of information sources
for key sets.

• The CSS (Combined Synopses Storage) algorithm enhances the directory to explicitly
maintain statistical metadata about selectively chosen key sets.

Contrary to distributed IR settings for one-time searching where sources are ranked
according to their document collections (i.e., using resource selection strategies), in ap-
proximate IF the publishers are ranked according to their probability to publish relevant
documents in the near future, which poses different requirements for maintaining metadata.

This thesis presents the first work to develop algorithms for exploiting keyword correla-
tions in such a dynamic IF setting. Existing and self-limited approaches for two-key queries
are extended to the case of multi-key continuous queries for an arbitrary number of keys.
Beyond that, new algorithms to approximate multi-key statistics by combining the statistics
of arbitrary subsets are provided. Whereas hash sketches, used for compactly represent-
ing the documents, yield inaccurate results when considering continuous queries with more
than two keys, the usage of very recent state-of-the-art techniques (KMV synopses) for
compact representation of multisets is proposed and applied. These new structures allow
the system to compute accurate synopses for multi-key queries, and improve the filtering
effectiveness.

The experimental evaluation of both algorithms (USS and CSS) illustrates the filtering
performance improvements in comparison to the basic MAPS approach. All experimental
series use two different real-world collections for Web and blog data, and apply real-world
queries from Google Zeitgeist . The evaluation also investigates filtering performance gains
depending on the introduced correlation measure (conditional probability) representing a
way to compute the relatedness among keys.

1.2.3 Prototype System

Within this thesis, a prototype implementation [ZHTW08] has been developed. This pro-
totype was initially meant to serve as a testing environment for the conducted experiments,
in order to evaluate the novel methods for approximate filtering, but also aimed at demon-
strating the feasibility of the combination of retrieval and filtering functionality in a single
unifying system.

Thus, the approximate information filtering approach MAPS introduced in this thesis has
been integrated into the Minerva search prototype [BMT+05b] such that Minerva also pro-
vides an approximate publish/subscribe functionality. In this regard, the implementation
aspects concerning the extension of Minerva are investigated and some new components (to
subscribe with continuous query, and to publish new documents) upgrade the existent pro-
totype. An extensive use case describes the appliance of the extended Minerva prototype
by executing sample one-time and continuous queries in detail. There, the various parts
of the graphical user interface are illustrated. In this context, a short overview of existing
retrieval and filtering prototypes is given.

1.2.4 Digital Library Use Case

The thesis presents a digital library use case (called MinervaDL) as an application sce-
nario to support approximate information retrieval and filtering functionality in a single

- 12 -



Chapter 1 Introduction

unifying framework. MinervaDL, as introduced in [ZTW07], is hierarchical and utilizes a
distributed hash table to achieve scalability, fault-tolerance, and robustness in its routing
layer. The MinervaDL architecture allows handling huge amounts of data provided by DLs
in a distributed and self-organizing way, and provides an infrastructure for creating large
networks of digital libraries with minimal administration costs. There are two kinds of
basic functionality that are offered in the DL architecture of MinervaDL:

• In an information retrieval scenario (or one-time querying), a user poses an one-time
query and the system returns all resources matching the query (e.g., all currently
available documents relevant to the requested query).

• In an information filtering scenario (or publish/subscribe or continuous querying), a
user submits a continuous query (or subscription) and will later be notified from the
DL system about certain events of interest that take place (i.e., about newly published
documents relevant to the continuous query).

The proposed DL architecture is built upon a distributed directory storing metadata.
The thesis presents routing protocols for information filtering and retrieval that use this
directory information to perform the two functionalities. MinervaDL distinguishes three
main components:

• Super-peers run the DHT protocol and form a distributed directory that maintains
metadata about providers’ local knowledge in compact form. In MinervaDL, super-
peers are responsible for serving information consumers and providers and act as their
access point to the network. Super-peers can be deployed by large institutions like
universities, research centers or content providers to provide access points for their
users or digital libraries.

• Consumers are utilized by users (e.g., students, faculty or employees) to connect to
the MinervaDL network, using a single super-peer as their access point. Utilizing
a consumer peer allows users to pose one-time queries, receive relevant resources,
subscribe to resource publications with continuous queries and receive notifications
about published resources (e.g., documents) that match their interests.

• Providers are implemented by information sources that want to expose their content
to the MinervaDL network. Typical examples are digital libraries deployed by larger
institutions, like research centers or content providers (e.g., CiteSeer, ACM, Springer,
or Elsevier). Provider peer use a directory peer (super-peer) as their access point and
utilize it to distribute statistics about their local resources to the network. Providers
answer one-time queries and store continuous queries submitted by consumers to
match them against new documents they publish.

This thesis presents different scoring functions to select appropriate provider peers an-
swering a one-time query or storing a continuous query for future matching publications.
The experimental evaluation investigates the influence of the individual scoring functions
used to perform the two functionalities of MinervaDL. Furthermore, MinervaDL is com-
pared to another DL architecture for P2P networks (LibraRing) providing retrieval and
filtering at the same time. Unlike MinervaDL, this architecture provides exact retrieval
and filtering functionality.

- 13 -



Chapter 1 Introduction

1.3 Thesis Outline

This thesis is comprised of eight chapters, the first being the current introductory chap-
ter. The remainder of this thesis is organized as follows. Chapter 2 gives an background
overview about existing work in the areas of P2P, information retrieval, information fil-
tering, time series analysis, and distinct-value estimation. Chapter 3 introduces the main
architecture that is used for approximate information retrieval and information filtering in
structured P2P networks. This architecture extends the Minerva search architecture with
the MAPS approach for approximate information filtering. This chapter also presents the
services and protocols of the complete architecture but with focus on approximate filtering.
Chapter 4 focuses on publisher peer selection in the approximate information filtering ap-
proach MAPS and includes an extensive evaluation. Chapter 5 extends the MAPS approach
and considers correlated keys. Two different algorithms that improve filtering quality are
presented and compared to the baseline approach. Chapter 6 presents the implemented
prototype system for approximate information filtering. This prototype extends the Min-
erva P2P search prototype allowing one-time searching. In Chapter 7, a DL use case for
searching and filtering in a distributed digital library environment is put forward. The
proposed DL architecture combines two functionality using the same infrastructure. This
thesis is concluded in Chapter 8 by summarizing the main results and pointing out some
open questions and directions for future work in this area.

- 14 -



Chapter 2 Background and Technical Basics

Chapter 2

Background and Technical Basics
This chapter introduces some background and state-of-the-art work used to develop this
doctoral thesis. First, a short overview of existing P2P architectures and protocols is
described in Section 2.1 including the basic underlying infrastructure. Sections 2.2 and
2.3 present necessary background knowledge about information retrieval and information
filtering .

The main techniques in the area of time series analysis are explained in Section 2.4,
providing the background for the publication prediction methods. Finally, Section 2.5
presents two data structures (or synopses) for distinct-value estimation on large data sets
that are used to count the number of distinct data items within a multi-set.

2.1 Peer-to-Peer Systems

In recent years, the peer-to-peer approach has been receiving increasing attention and has
become a true hype paradigm for communication on the Internet and the World Wide
Web. Although becoming popular mainly in the context of file sharing applications (e.g.,
Napster , Gnutella, or BitTorrent), the P2P paradigm can be applied to access any kind
of distributed data. Currently, P2P is making its way into distributed data management
systems and is offering possibilities for new Web applications.

In contrast, the traditional client-server approach (shown in Figure 2.1) requires a huge
amount of effort and resources to meet the increasing challenges of the continuously grow-
ing resources shared over the Internet. This centralized client-server network model re-
sults in increased load for the server component, and creates scalability bottlenecks and
single-points-of-failure, where a failure of one entity results in terminating the function-
ality of the whole system. As a consequence, such systems can easily be attacked, e.g.,
by denial-of-service attacks. In addition, dedicated servers are often difficult and expen-
sive to administrate and to relocate due to their strategic placement within the Internet
infrastructure.

Contrary to the client-server model, P2P computing promises to offer enormous potential
benefits to important issues including scalability, security, reliability, efficiency, flexibility,
and resilience to failures and dynamics. [SW05] discusses in detail the issues addressed by
this fundamental paradigm shift.

An exact answer to the question What exactly is P2P? is not obvious. Especially the
early P2P applications that have not even been true P2P in a strict sense, make it difficult
to give a precise definition. The Internet encyclopedia Wikipedia currently defines the
following aspects of a P2P network:

• A peer-to-peer (or "P2P", or, rarely, "PtP") computer network exploits diverse con-
nectivity between participants in a network and the cumulative bandwidth of network

- 15 -



Chapter 2 Background and Technical Basics

Client

Server

Client

Client

ClientClient

Client

Client Client

Figure 2.1: Client-Server Network Architecture.

participants rather than conventional centralized resources where a relatively low num-
ber of servers provide the core value to a service or application.

• Peer-to-peer networks are typically used for connecting nodes via largely ad hoc con-
nections.

• A pure peer-to-peer network does not have the notion of clients or servers, but only
equal peer nodes that simultaneously function as both "clients" and "servers" to the
other nodes on the network. This model of network arrangement differs from the
client-server model where communication is usually to and from a central server.

A more technical definition of P2P systems (shown in Figure 2.2) can be found in [Ora01,
SW05]: A peer-to-peer system is a self-organizing system of equal, autonomous entities
(peers) which aims for the shared usage of distributed resources in a networked environment
avoiding central services. Both definitions share the idea of decentralization and point at
decentralized resource usage and decentralized self-organization as potential benefits.

2.1.1 The Lookup Problem

How to find a certain data item in a large P2P system in a scalable manner without any
centralized service? This problem is at the heart of any P2P system [BKK+03] and is often
referred to as the lookup problem. The main reason of this challenge is caused by decen-
tralization such that the main system strength also yields to the main system challenge.

In contrast to centralized client-server systems, where data is provided by dedicated
physical entities that are explicitly referenced, P2P systems store data in multiple, distant,
transient, and unreliable locations within the network. Thus, the efficient location of data
stored in the network is one of the predominant challenges of a P2P system.

- 16 -



Chapter 2 Background and Technical Basics

Peer
Peer

Peer

PeerPeer

Peer

Peer Peer

Figure 2.2: Peer-to-Peer Network Architecture.

2.1.2 P2P Architectures

There are several ways to classify P2P networks. One approach considers the application
a P2P network is used for (e.g., file sharing, telephony, media streaming etc.). Another
approach includes the degree of centralization and distinguishes between pure P2P without
central server (peers act as equals) and networks with central server keeping information on
peers. In this context, the following terminology can be found: centralized, or decentralized
P2P networks, structured, unstructured, or hybrid (so-called super-peer architectures) P2P
networks.

The research literature commonly tries to classify the existing approaches to deal with
the lookup problem. The following sections present the respective approaches in more detail.
Subsequent, two example protocols of P2P architectures are presented: Chord (2.1.3) and
Pastry (2.1.4).

2.1.2.1 Centralized P2P Architectures

The first occurrence of the P2P paradigm in a broader public cognition was probably
Napster1. This famous file-sharing system elegantly solved the lookup problem by utilizing
an architecture in which a centralized entity provides a directory service to all participating
peers (or users), effectively forming a star network . All peers joining the system have to
register their data (mostly music files in the early days) with this centralized server thus
allowing a comfortable way for other peers in the system to locate any data in the network by
presence of a physically centralized directory. The fact that only pointers to decentralized
available peers are stored at the centralized server (instead of the actual data) conceptually
decreases the load at the central entity; the fact that (after relevant data has been located
by means of the directory) each peer could directly communicate with other peers that
store the data in a decentralized manner, completely bypassing the centralized directory
entity, drives the perception of Napster as a P2P system.

1Napster’s brand and logo continue to be used by a pay service, having been acquired by Roxio.

- 17 -



Chapter 2 Background and Technical Basics

P3

P17

P8

P6

P21

P29

P13 P2

P9

P24 P26

3

2

3

3

1

2

1

1

2

2

1

P16

Figure 2.3: Unstructured P2P Network with Message Flooding.

However, in a pure P2P system, it should be possible to remove any entity from the
network without loss of functionality. Instead, a peer should conceptually fulfill both roles
as server and client, such that the functionality of the system is spread equally over all the
participating peers in the network. Thus, by this definition, Napster can not be denoted as
a P2P system. The shutdown of the the centralized server of Napster by legal authorities
allowed the easy shutdown of the complete system.

2.1.2.2 Unstructured P2P Architectures

In contrast to centralized approaches, non-centralized or decentralized P2P architectures
do not rely on any centralized or coordinating entity to locate data items within the net-
work. More specifically, in unstructured P2P approaches which are a specialization of the
decentralized architectures, peers recursively forward received requests to neighboring peers
(also referred to as neighbors), in an attempt to find all relevant items in the network. In
order to avoid missing peers in the network, each peer broadcasts messages to all known
other peers, regardless of whether these neighbors store relevant data or not. This message
forwarding approach leads to a breadth-first search strategy and is also known as message
flooding . To prevent infinite loops and to control the number of messages generated by one
single request, each message gets assigned a time-to-live (TTL) value. Each peer forwarding
such a message decreases this value by one, and only messages with positive TTL values
get forwarded.

Figure 2.3 illustrates message flooding in an unstructured P2P network architecture.
The peer on the left issues a query and forwards this request message to its three known
neighbors, as indicated by the arrows. As shown, the initial TTL value of the query message
is three. After decreasing the TTL value, these peers forward the message to their own
neighbors. If the TTL value is not positive after decreasing it, the peer will not forward
the message further, thus terminating the forwarding procedure. Note that some messages
unnecessarily address peers that have already received the query before (e.g., from different
peers), but peers do not forward the same message to its neighbors more than once.

- 18 -



Chapter 2 Background and Technical Basics

There are several studies of real-world networks showing that the peers of such a network
form graphs with small diameters, typically in a range from five to seven, supporting the
so-called small-world-phenomenon [Kle00], a property that has also been observed in social
networks2. One important property of such networks is that messages with a relatively
small TTL value can locate any requested data with high probability. But, this technique
still represents a lossy protocol as it has no guarantees to successfully locate the data of
interest, e.g., due to higher graph diameters or disconnected graph partitions. Additionally,
the number of messages created by a single request is significant; it depends on the degree
of the peers in the network (i.e., the number of neighbors of a peer) and the chosen TTL
value.

The main advantage of unstructured P2P networks is the fact that there is no need
to proactively maintain a network structure. Peers maintain only pointers to an upper-
bounded number of direct neighbors. Also note that there is no enforcement of a specific
storage location for data items, as they can be located anywhere in the network. In other
words, the data stored at a peer is unrelated to the peer’s position in the network. Freenet
[CMH+02] and early versions of the Gnutella protocol3 are popular representatives of this
paradigm. In unreliable networks (e.g., mobile ad-hoc networks), flooding is also a fun-
damental message dissemination strategy. While brute-force flooding algorithms cause a
high number of unnecessary messages, network contention, packet collisions, and wasting
energy, several probabilistic and epidemic approaches have been studied to optimize plain
flooding.

2.1.2.3 Structured P2P Architectures

Centralized P2P architectures suffer from scalability bottlenecks which prevent an a-priori
unlimited number of participating peers. In a centralized architecture, the linear storage
complexity of the central directory entity is prohibitive. In an unstructured architecture,
the communication overhead caused by message flooding is a significant deficit. Thus,
an efficient and scalable approach requires a sub-linear increase in the storage and search
complexity as more and more peers join the network.

Structured P2P architectures utilize particular overlay structures to map peers and data
items into a common address space, enabling a unique mapping from data items to peers
given the current state of the network. Therefore, each peer manages a small number
(typically O(log N), where N is the number of peers in the whole network) of pointers
to carefully selected other peers. If these structured overlays are used for routing, then
reaching the peer currently responsible for a given data item requires O(log N) messages.
To guarantee balanced storage and retrieval loads among the peers, the responsibilities for
data items have to be distributed as uniformly as possible.

To realize this routing functionality, a distributed data structure based on a hash table
is used to allow the insertion and retrieval of key/value pairs. Thus, to insert or retrieve a
key/value pair, the peer responsible for a key in the network as defined by the structured
P2P network is utilized. This peer stores and maintains all appropriate key/value pairs for
a key from across the directory. Note that, in contrast to unstructured P2P architectures,
the data placement is no longer arbitrary; the placement is accurately determined by the
underlying overlay architecture, and this provides a guarantee to find data items indexed
by the network.

2A social network is a social structure made of nodes (which are generally individuals or organizations)
that are tied by one or more specific types of interdependency.

3Gnutella is a file sharing network. In December 2005, it was the third-most-popular file sharing network
on the Internet.

- 19 -



Chapter 2 Background and Technical Basics

The expression distributed hash table stands for such a functionality in a P2P network
and DHT is commonly used as a synonym for structured P2P architectures in general.
But, there is also the strict distinction between structured P2P routing primitives on one
side and the DHT interfaces of inserting and retrieving data as upper layer of functionality
on the other side. Throughout this thesis, DHT is used to refer to the class of structured
P2P architectures.

There are several proposals for structured overlay topologies including geometries as
hypercubes (e.g., CAN [RFH+01]), rings (Chord [SMK+01], or Pastry [RD01a]), tree-like
structures (P-Grid [Abe01], or PRR [PRR97]), and butterfly networks (Viceroy [MNR02]).
Special cases are random graphs [MS05]. [GGG+03] presents a study concerning the general
resilience and proximity properties of these different geometries.

2.1.2.4 Super-Peer Architectures

Super-peer architectures exploit the fact that the performance characteristics of the peers
(processing power, bandwidth, availability, etc.) is not evenly distributed over all peers in
the network. Thus, the benefits of a perfect decentralization are decreasing.

In super-peer architecture, a small subset of peers takes over specific responsibilities in
the network, e.g., aggregation or routing tasks. Thus, the super-peers can be viewed as the
distributed extensions of the centralized entity in the Napster architecture. Conceptually,
only the super-peers build-up the P2P network; all other peers connect to this backbone by
communicating to one super-peer, which acts in the spirit of database mediators aggregating
the content of downstream peers.

Routing in super-peer architectures is conducted in a two-phase mode. A request is routed
within the super-peer backbone at first, and is then distributed to the peers connected via
the super-peers. While dedicating specific peers potentially limits the self-organizing ca-
pabilities of a P2P network, super-peer architectures have been proven a way to alleviate
the performance issues of pure unstructured topologies. [YGM03] examines super-peer
networks in detail to gain an understanding of their fundamental characteristics and per-
formance tradeoffs. In Chapter 7, this thesis uses a super-peer architecture to build-up a
distributed digital library environment.

2.1.3 Example: The Chord Protocol

The Chord protocol [SMK+01] is definitively one of the most prominent DHT implementa-
tions and one of the most important representatives of structured P2P architectures. The
main advantage of Chord when compared to other DHT approaches is its elegance and
simplicity of concepts and implementation, and its still growing popularity.

In Chord, all data items and peers are mapped to a unique one-dimensional identifier
space such that identifiers are l-bit numbers, i.e., integer values in the range [0, 2l − 1],
forming a cyclic identifier space modulo 2l. In the following, the identifier of a data item is
referred to as a key, while the identifier of a peer as an id. The responsibility of maintaining
the data items (key, value) associated with key lies at the nearest peer on the identifier
circle (ID circle or Chord ring) whose id is greater or equal to key. This peer p is called the
successor of key. Thus, a peer p is responsible for all key identifiers between its predecessor ’s
identifier (exclusive) and its own identifier (inclusive), and each key/value pair is located
and managed on a single, well-defined peer.

Figure 2.4 illustrates an identifier circle with l = 6, i.e., identifiers in the range [0, 63].
For example, key K54 is maintained by peer P56 as its next successor on the ID circle,
whereas both keys K24 and K30 are maintained by peer P32.

- 20 -



Chapter 2 Background and Technical Basics

Chord Ring

P1

P8

P14

P38

P32

P21

P48

P42

P51

P56

K10

K24K30

K38

K54
Lookup(54)

Figure 2.4: Example Chord Ring.

The solution to efficient lookup and modification operations on the stored data is to
efficiently solve the lookup problem introduced in 2.1.1, i.e., to quickly locate the peer
responsible for a particular key. As a naive approach, every peer could store a direct
pointer to its successor peer on the identifier circle. When a key is being requested, each
peer forwards the request to its successor, until one peer determines that the key lies between
its own id and the id of its successor. Thus, the key must be hosted by its successor. As
a consequence, contact information about the successor is communicated as the result of
the query back to the originator. When maintaining only a minimum amount of state at
each peer (O(1)), this form of key location leads to an expected number of messages linear
in the number of peers in the network, which is not considered scalable and acceptable.
Figure 2.4 also shows this naive approach where peer P8 issues a lookup request for key
K54. The request is forwarded along the ID circle linearly until the responsible peer P56

can be identified.
To improve scalability and efficient lookups, Chord keeps additional state at each peer.

A peer maintains a routing table (also referred to as finger table), pointing to other peers
on the identifier circle. The m-th entry in the finger table of peer Pi contains a pointer
to the first peer Pj that succeeds Pi by at least 2m−1 on the identifier circle, leading to a
finger table with at most l distinct entries (independent of the actual number of keys or
peers).

There are two important characteristics of this schema. First, each peer only maintains
state about a logarithmic number of other peers, and knows more about peers closely fol-
lowing it on the identifier circle than about peers farther away. Second, a peer’s finger table
does not necessarily contain enough information to directly determine the peer responsible
for an arbitrary key. However, since each peer has finger entries at power of two inter-
vals around the identifier circle, each peer can forward a query at least halfway along the
remaining distance between itself and the requested peer. This property is illustrated in
Figure 2.5 for peers P8, P42, and P51. It follows that the number of peers to be contacted
(and, thus, the number of messages to be sent) to find a target peer in an N -peer system
is O(log N).

- 21 -



Chapter 2 Background and Technical Basics

Chord Ring

P1

P8

P14

P38

P32

P21

P48

P42

P51

P56

K54 Lookup(54)

P14

P21

P32

P14

P42

P14

Fingertable P8

P8 + 1

P8

P8

P8

P8

P8

+ 2

+ 4

+ 8

+ 16

+ 32

P56

P1

P8

P56

P21

P56

Fingertable P51

P51 + 1

P51

P51

P51

P51

P51

+ 2

+ 4

+ 8

+ 16

+ 32

P48

P51

P1

P48

P14

P48

Fingertable P42

P42 + 1

P42

P42

P42

P42

P42

+ 2

+ 4

+ 8

+ 16

+ 32

Figure 2.5: Chord Lookup using Finger Table Entries.

To handle churn4 in a network, Chord implements a stabilization protocol that each
peer runs periodically in the background and which updates the finger tables and successor
pointers in order to ensure that lookups execute correctly. The stabilization requires an
additional predecessor pointer, as each peer requests its successor, Succ(Pi), to return its
predecessor Pred(Succ(Pi)). If Pi equals Pred(Succ(Pi)), Pi and Succ(Pi) agree on being
each other’s respective predecessor and successor. In contrast, the fact that Pred(Succ(Pi))
lies between Pi and Succ(Pi) indicates that Pred(Succ(Pi)) recently joined the identifier
circle as Pi’s successor. Thus, Pi updates its successor pointer to Pred(Succ(Pi)) and
notifies Pred(Succ(Pi)) of being its predecessor. At this stage, all successor pointers are up
to date and requests can be routed correctly. As the impact of outdated finger table entries
on lookup performance is small, Chord updates finger tables only lazily by periodically
picking a finger table entry j randomly and performing a lookup to find the true peer that
currently succeeds peer Pi by 2j−1.

Chord addresses peer failures by checking all communication with remote peers for time-
outs. To further ensure routing stability in the presence of multiple simultaneous peer
failures, each peer maintains not only a pointer to its immediate successor, but a list of
the first r successors. When a peer detects a failure of its successor, it reverts to the next
peer in its successor list . The successor list is also maintained by the stabilization protocol.
[LNBK02] gives a theoretical analysis of Chord’s stability in the face of concurrent joins
and multiple simultaneous peer failures. The failure of a peer not only puts the routing
stability at risk, but also makes the data managed by this peer unavailable. Such data loss
can be prevented by replicating the data items to other peers. In Chord, the successor of a
failed peer becomes responsible for the keys and data of the failed peer. Thus, an obvious
replication strategy to prevent data loss is to replicate data to immediate successors, using
the successor list.

4The churn rate refers to the number of peers joining and leaving the system during a given period as a
significant problem for large-scale systems.

- 22 -



Chapter 2 Background and Technical Basics

_0_2212102 1 _2_2301203

0

_3_1203203

10_0_31203

102_0_0230

1023_0_322

10233_0_01

0

0

1

2

3

4

5

7

6

1_1_301233

10_1_32102

102_1_1302

1023_1_000

1

1_2_230203

2

102_2_2302

1023_2_121

10233_2_32

102331_2_0

2

1_3_0201022

10_3_23302

3

3

Node Identifier 10233102

Figure 2.6: Pastry Routing Table.

2.1.4 Example: The Pastry Protocol

Pastry5 [RD01a] is another self-organizing structured overlay network. The protocol uses
a routing schema based on prefix matching . Each Pastry node is assigned a globally unique
128-bit identifier from the domain [0, 2128 − 1], in form of sequences of digits with base 2b

where b is a configuration parameter. A typical value for b is 4. Similar to Chord, Pastry
offers a simple routing method that efficiently determines the node that is numerically
closest to a given key, i.e., which is currently responsible for maintaining this key. To enable
efficient routing within a network of N nodes, each peer maintains a routing table that
consists of dlog2bNe rows with 2b−1 entries each. Each entry consists of a Pastry identifier
and the corresponding contact information (i.e., IP address, port) of the numerically closest
node currently responsible for that key. All 2b − 1 entries in row n represent nodes with
a Pastry identifier that shares the first n digits with the current node, but each with a
different n + 1-st digit (2b − 1 possible values). Figure 2.6 shows an example routing table
with 8 rows for a Pastry node with identifier 10233102 and b = 2.

The prefix routing now works as follows: For a given key, the current node forwards the
request to that node from its routing table that has the longest common prefix with the
key. Intuitively, each routing hop can fix one additional digit toward the desired key. Thus,
in a network of N nodes, Pastry can route a message to a currently responsible node with
less than dlog2bNe message hops.

Pastry is intended as general substrate for the construction of a variety of P2P appli-
cations like global file sharing, file storage, group communication and naming systems.
Several application have been built on top of Pastry to date, including a global, persistent
storage utility called PAST [RD01b] and a scalable publish/subscribe system called Scribe
[RKCD01].

5http://freepastry.org/

- 23 -



Chapter 2 Background and Technical Basics

2.2 Information Retrieval

Information retrieval is the science of searching for information in documents, searching
for documents themselves, searching for metadata which describe documents, or searching
within databases. IR systems keep collections of unstructured or semi-structured data (e.g.,
text documents or HTML pages) and offer search functionalities for delivering documents
relevant to a query. Typical examples of IR systems include Web search engines such as
Google, Yahoo or Live Search (formerly MSN Search), or digital libraries. Lately, relational
database systems are integrating IR functionality as well (see [MYL02, Cha02] for more
details about database systems that support IR functionalities).

2.2.1 Effectiveness Measures

Precision and recall are the two most widely used measures for evaluating the quality of
results in the area of IR. Precision can be seen as a measure of exactness or fidelity , whereas
recall is a measure of completeness. Both measures are defined as follows:

precision =
|R ∩ S|
|R|

(2.1)

recall =
|R ∩ S|
|S|

(2.2)

In Equations 2.1 and 2.2, S is the set of retrieved documents (e.g., the list of documents
produced by a Web search engine), and R is the set of all relevant documents (e.g., all Web
documents relevant for a certain topic).

In an IR scenario, precision is defined as the number of relevant documents retrieved
by a search divided by the total number of documents retrieved by this action, and recall
is defined as the number of relevant documents retrieved by a search divided by the total
number of existing relevant documents (which should have been retrieved). A perfect
precision score of 1.0 means that every result retrieved by a search was relevant (but says
nothing about whether all relevant documents were retrieved) whereas a perfect recall score
of 1.0 means that all relevant documents were retrieved by the search (but says nothing
about how many irrelevant documents were also retrieved).

Depending on the selected application, precision or recall have a dominating importance.
Applications not accepting irrelevant documents will tend to reduce the number of retrieved
documents at the cost of sacrificing recall. Other applications focus on getting all relevant
documents, and will tend to increase the number of retrieved documents at the expense of
lower precision.

A popular measure that combines precision and recall is the weighted harmonic mean of
both, the traditional F-measure or balanced F-score:

F = 2 · precision · recall

precision + recall
(2.3)

This measure is also called F1-measure because it equally weights both precision and
recall in one single parameter. The Fα-measure generalizes the F-measure and gives one of
the two measure a higher weight:

Fα = (1 + α) · precision · recall

α · precision + recall
(2.4)

- 24 -



Chapter 2 Background and Technical Basics

The F1-measure is a good candidate for optimization. Given the fact that one can get a
perfect precision score by not returning any documents, or a perfect recall score by returning
all documents. A powerful document retrieval system will yield all truly relevant documents
and only truly relevant documents, maximizing precision and recall at the same time, and
therefore maximizing the F1-score which falls in the range from 0 to 1 (with 1 being the
best possible score). Two other commonly used F-measures are the F2-measure, which
weights recall twice as much as precision, and the F0.5-measure, which weights precision
twice as much as recall. More about IR measures can be found in [BY99].

2.2.2 Document and Query Representation

Usually, documents are represented by the words (or terms, keywords, or keys) that are
contained in them. Typically, a small set of so-called stop words are not considered and are
ignored because these words do not contain any semantic information (e.g., a, the, of, etc.).
Stemming describes the reduction of words to their common prefix stem thus combining
combining words with a common root (e.g., walk, walking, walker). A very widely used
stemmer that became the de-facto standard algorithm used for English words is the Porter
Stemmer [RvRP80].

After the removal of all stop words and after stemming, a document in a collection can
be represented by a vector of n key occurrences, where n is the total number of distinct
keys in the set of all documents in a collection. In this vector space model , a document is
represented by a vector (w1, w2, . . . , wn), where each wi is the weight (or score) indicating
the importance of key i in a document. Due to the high number of distinct keys in the
whole collection and due to the absent of most keys in a typical document, most of the
vector entries will be zero. A weight assigned to a key is usually based on the following two
factors:

• The number of occurrences of key t in document d is called term frequency and
typically denoted as tft,d. Intuitively, the weight of a key within a document increases
with the number of occurrences.

• The number of documents in a collection that contain a key t is called document
frequency and denoted as dft; the inverse document frequency idft is defined as the
inverse of dft. Intuitively, the relative importance of a key decreases as the number
of documents that contain this key increases, i.e., the key offers less differentiation
between the documents.

In practice, these two measures may be normalized (e.g., to values between 0 and 1) and
dampened using logarithms. Eventually, multiplying these two values yields the weight of
a key in a document. This whole family of approaches is often referred to as tf − idf ; a
typical representative calculates the weight wi,j of key ti in document dj of a collection
with a total number of N documents as follows:

wi,j =
tfi,j

maxt{tft,j}
· log

N

dfi
(2.5)

Recently, other relevance measures based on statistical language models [PC98, SJCO02]
and probabilistic IR have been investigated [Fuh99]. [Cha02, MS99] give a good overview
over various relevance measures.

A query consists of a set of (possibly weighted) keys that can again be represented by the
appropriate n-vector. The scalar product can be applied to compare the similarity between
a query q and a document d as follows:

- 25 -



Chapter 2 Background and Technical Basics

scalar(q, d) =
n∑

k=1

qi · di (2.6)

In Equation 2.6, q and d are the query and document vectors, respectively. For a partic-
ular query, the scalar product intuitively sums up the importance scores for those keys of
the document that are contained in the query vector, weighted by their respective weights
within the query. The cosine measure can be used to overcome the tendency of the scalar
product function to favor longer documents having many keys, capturing the angle between
the two vectors by using the vector lengths:

cosine(q, d) =
scalar(q, d)
|q| · |d|

(2.7)

An interesting side effect is that, for non-negative weights, the cosine function returns
values between 0 and 1, making an additional score normalization unnecessary. Okapi BM25
is another ranking function used by search engines to rank matching documents according to
their relevance to a given search query. It is based on the probabilistic retrieval framework.
BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query
keys appearing in each document, regardless of the inter-relationship between the query
keys within a document. It is not a single function, but actually a whole family of scoring
functions, with slightly different components and parameters. [RWHB+92] describes the
most prominent instantiations.

2.2.3 Top-k Query Processing

Computing the scalar product, the cosine measure, or the BM25 score for all documents
concerning a query is a computationally expensive task. Thus, there are several strategies
to efficiently identify only the top-k documents (i.e., the k documents with the highest score
for the given query) without evaluating the full scalar product for all possible documents.
In order to efficiently support this process, the concept of inverted index lists has been
developed [ZM06]. All keys that appear in the whole collection form a tree-based index
structure (often a B+-tree or a trie) where the leaves contain a list of unique document
identifiers for exactly those documents that contain this key (see Figure 2.7). Depending
on the exact query execution strategy, the lists of document identifiers may be ordered
according to the document identifiers or according to their key scores to allow for efficient
pruning.

An efficient algorithm should avoid reading inverted index lists completely, but would
ideally limit the effort to O(k) steps where k is the number of desired results. In the
IR and multimedia-search literature, there are various algorithms to accomplish this task.
The threshold algorithm (TA) by Fagin [FLN01] (independently proposed also by Nepal
et al. [NR99] and Güntzer et al. [GBK00]) is the best known method for top-k queries.
It uses index lists that are sorted in descending order of key weights under the additional
assumption that the final score for a document is calculated using a monotone aggregation
function (such as a simple sum function). TA traverses all inverted index lists in a round-
robin manner, i.e., lists are mainly traversed using sorted accesses. For every new document
d encountered, TA uses random accesses in the remaining index lists to calculate the final
score for d and keeps this information in a document candidate set of size k. Since TA
additionally keeps track of an upper score bound for documents not yet encountered, the
algorithm terminates as soon as this bound assures that no previously unseen document
can enter the candidate set.

- 26 -



Chapter 2 Background and Technical Basics

B+ - tree on terms 

D45 : 0.9
D35 : 0.8
D12 : 0.7
D05 : 0.5
D76 : 0.4
D77 : 0.4
D14 : 0.3
D12 : 0.3

.

.

.

architecture

D12 : 0.8
D19 : 0.8
D16 : 0.6
D77 : 0.4
D35 : 0.3
D61 : 0.2

.

.

.

digital

D05 : 0.9
D19 : 0.8
D12 : 0.6
D77 : 0.5
D77 : 0.4
D16 : 0.2
D61 : 0.1

.

.

.

library

index lists with (DocID : tf-idf-Score)
sorted by tf-idf-Score

...... ... ...

Figure 2.7: B+-Tree with Inverted Index Lists.

There are extensions of this algorithm that further reduce the number of index list ac-
cesses (especially expensive random accesses) by a more sophisticated scheduling. Also,
probabilistic methods have been studied that can further improve the efficiency of index
processing [TSW05, BMS+06].

2.3 Information Filtering

Information retrieval and information filtering (or selective dissemination of information
or publish/subscribe) are often referred as two sides of the same coin [BC92]. Although
many of the underlying issues and goals are similar in retrieval and filtering, since in both
cases a document needs to be matched against an information demand, the design issues,
the techniques and algorithms devised to increase filtering efficiency differ significantly.
Information filtering can also be seen as an general application of information retrieval
because most of the issues which appear at first to be unique to IF, are really specializations
of IR problems.

2.3.1 IF in Databases and Distributed Systems

Selective dissemination of information has its origin in a 1958 article about Business Intelli-
gence System [Luh58] where a selection module (selective dissemination of new information)
is used to produce lists of new documents matching interests of users described by profiles.
The concept of information filtering was introduced in [Den82], where the need to filter
incoming mail messages to sort them in order of urgency is described6. In the following,
only work most relevant to this thesis and mainly referred as content-based filtering will be
discussed. Early approaches to information filtering by IR researchers focused mainly on
appropriate representations of user interests [MS94] and on improving filtering effectiveness
[HPS96].
6At that time, spam filters were not needed since spam was not such a big issue than today.

- 27 -



Chapter 2 Background and Technical Basics

[BM96] is one of the first approaches to address performance, where an information fil-
tering system capable of scaling up to large tasks is described. Here, a server receives
documents at a high rate, and proposed algorithms support vector space queries by im-
proving the algorithm SQI of [YGM94a]. InRoute [Cal96] creates documents and query
networks and uses belief propagation techniques to filter incoming documents based on
inference networks. [ZC01, Cal98] mainly focus on adaptive filtering and how vector space
queries and their dissemination thresholds are adapted based on documents processed in
the past. Filtering news articles [CGR05, GDH04] is also an important research area related
to IF but stresses the focus on personalized duplicate elimination (or information novelty)
and freshness of the results shown to the user.

In the database literature, the term selective dissemination of information is used [FZ98].
The term publish/subscribe system (or pub/sub system) comes from distributed systems,
and has also been used in this context by database researchers. SIFT [YGM99, YGM94b]
constitutes another influential system where publications are documents in free text form
and queries are conjunctions of keywords. This system was the first approach to emphasize
query indexing as a means to achieve scalability in pub/sub systems [YGM94b]. Later, other
work focused on pub/sub systems with data models based on attribute-value pairs and query
languages based on attributes with arithmetic and string comparison operators [FJL+01,
NACP01]. [CCC+01] considers a data model based on attribute-value pairs but goes beyond
conjunctive queries (the standard class of queries). Subscription summarization to support
pub/sub functionality was also a prominent example [TE04].

Recent work on XML data management [KP05] has focused on publications that are XML
documents and queries that are subsets of XPath or XQuery (e.g., XFilter [AF00], YFilter
[DAF+03], or Xtrie [CFGR02]). All these papers discuss sophisticated filtering algorithms
that base on indexing queries. There are several publish/subscribe systems that have been
developed over the years in the area of distributed systems and networks. Data models
are based on channels, topics, and attribute-value pairs [CRW01]. The latter systems are
called content-based as in the IR literature, because attribute-value data models are flexible
enough to express the content of messages in various applications. The query language of
content-based systems is based on Boolean expressions of arithmetic and string operations.
The SIENA system [CRW01] uses a data model and language based on attribute-value
pairs and demonstrates how to express notifications, subscriptions and advertisements in
this language.

2.3.2 IF in Peer-to-Peer Systems

The two pub/sub systems DIAS [KKTR02] and P2P-DIET [KTID03] use some prominent
ideas from the database and distributed systems in a single unifying framework. The P2P-
DIET [IKT04b, IKT04a] approach demonstrates how to provide the traditional one-time
query scenario of typical super-peer systems and the pub/sub features of the SIENA system
[CRW01]. An extension of P2P-DIET considers a similar problem for distributing RDF
meta-data in an Edutella [NWQ+02] fashion. The development of structured P2P systems
mainly based on distributed hash tables such as CAN [RFH+01], Chord [SMK+01], Pastry
[RD01a]), P-Grid [Abe01], or Tapestry [ZZJ+01] introduced a wide-area of new pub/sub
systems. Scribe [RKCD01] is a topic-based publish/subscribe system based on Pastry.
Hermes [PB02] is similar to Scribe because it uses with Pastry the same underlying DHT
but it allows more expressive subscriptions by supporting the notion of an event type with
attributes. Every event type in Hermes is managed by an event broker which is a rendezvous
node for subscriptions and publications related to this event. Related ideas and approaches
appear in [TAJ04, TBF+03].

- 28 -



Chapter 2 Background and Technical Basics

The PeerCQ system [GL03] is another important pub/sub approach using a DHT in-
frastructure. PeerCQ takes into account peer heterogeneity and extends consistent hashing
[KLL+97] with simple load balancing techniques based on appropriate assignment of peer
identifiers to network peers. The Meghdoot system [GSAA04] is a content-based pub/sub
approach implemented on top of a CAN-like DHT, and supports an attribute-value data
model and new ideas for the processing of subscriptions with range predicates (e.g., the
price is between 50 and 100 Euros) and load balancing. Mercury [BAS04] also uses an
attribute-value data model similar to Meghdoot and is utilized in the implementation of a
pub/sub system for network games. PastryStrings [AT06] also supports a rich set of queries
in the context of a pub/sub system. The system utilizes prefix-based routing to facilitate
both numerical and string queries.

The pFilter system [TX03] uses a hierarchical extension of CAN DHT to filter unstruc-
tured documents. This approach relies on multi-cast trees to notify subscribers. VSM and
LSI can be used to match documents to user queries. The multi-cast trees of pFilter take
into account network distance. Supporting prefix and suffix queries in string attributes is
the focus of the DHTStrings system [AT05]. This system utilizes a DHT-agnostic archi-
tecture to develop algorithms for efficient multi-dimensional event processing. LibraRing
[TIK05a] was the first approach to provide protocols for the support of both IR and IF func-
tionality in digital libraries (DLs) using DHTs. In LibraRing, super-peers are organized in
a Chord DHT and both (continuous) queries and documents are indexed by hashing words
contained in them. This hashing scheme depends heavily on the data model and query lan-
guage adopted, and the protocols have to be modified when the data model changes. The
DHT is used to make sure that queries meet the matching documents (in the IR scenario)
or that published documents meet the indexed continuous queries (in the IF scenario).
In this way the retrieval effectiveness of a centralized system is achieved (in contrary to
the work in this thesis), while a number of routing optimizations (such as value proxying,
content based-multicasting, etc.) are used to enhance scalability. The filtering approach of
LibraRing is presented in detail in [TIK05b, TKD04, TKD08].

2.4 Time Series Analysis

In the literature (e.g., [Cha04],or [Ham94]), a time series is declined as a collection of
observations made sequentially through time. Time series play an important role in a huge
variety of fields ranging from economics to engineering. The different methods to analyze
and explain time series constitute an notable area of statistics and this area is called time
series analysis.

Many time series arise in practice, for instance by recording values for a period of time.
Prominent examples of time series in economics and finance are export totals in successive
years, or average incomes in successive months. [Cha04] mentions the classic Beveridge
wheat price index series consisting of the average wheat price in nearly 50 places in many
countries in successive years from 1500 to 1869. Besides economic and financial time series,
there are a lot of other important areas: physical time series7, marketing time series, and
demographic time series8. Time series analysis also occurs in process control to ensure a
certain quality level. Binary processes are a special type of time series where observations
can take only one of two values (usually denoted by 0 and 1). Communication theory
represents a situation of this type of time series.

7Including meteorology, marine science and geophysics (e.g., rainfall on successive days).
8Time series study the population development of countries considering among other things birth and

death rates.

- 29 -



Chapter 2 Background and Technical Basics

The literature also considers events occurring randomly through time9. A series of events
of this type is called point process. There is a big difference between analyzing point
processes and analyzing standard time series data as the interested quantities differ (e.g.,
the distribution of the number of events occurring in a given time period).

2.4.1 Terminology

A time series is called continuous time series when the observations are made continuously
through time even when the measured variable can only take a discrete set of values (e.g.,
in binary processes). A time series is said to be a discrete time series when observations
are taken only at specific times, usually equally spaced (e.g., every day at the same time).

A discrete time series can even measure continuous variables. The analyzing methods
presented in the following, consider only discrete time series. Recall that every continuous
time series can be transformed into a discrete one by just recording the values at equal
intervals of time. This type of time series is also called a sampled series. Discrete time
series also arise by aggregation of values over equal intervals of time10.

Statistical theory is concerned with random samples of independent observations. In
contrast, time series analysis considers successive observations that are not independent and
that have an important time ordering. The fact that successive observations are dependent,
future values may be predicted from past values. A deterministic time series assumes that
a time series can be predicted exactly whereas a stochastic time series determines the future
only partly by past observations such that exact predictions are not possible; stochastic time
series use the idea the future values have a probability distribution which is conditioned by
a knowledge of past values.

2.4.2 Objections of Time Series Analysis

The literature enumerates several objectives in analyzing a time series. The description of
time series mainly includes plotting the observations against time to get a so-called time
plot . These time plots are used to obtain simple descriptive measures of the main series
properties (e.g., regular seasonal effects). Linear systems are used to convert an input series
to an output series by a linear operation. This technique is important in the explanation
of time series especially when observations are taken on two or more variables. Then, the
variation in one time series can be used to explain the variation in another series. Control is
another objective of time series analysis and mainly consider physical or economic systems
(e.g., measure the quality of a manufacturing process).

The most important objective for this thesis is prediction. Given an observed time
series, prediction is used to get the future values of the series. Predictions appear in sales
forecasting, or in the analysis of economic and industrial time series. In general, the terms
prediction and forecasting are used interchangeably. In the time series literature, there is
also the differentiation between prediction to describe subjective methods and forecasting
to describe objective methods. This thesis uses the term prediction in the following chapters
to specify future observations.

9A typical example is the observation of airplane accidents.
10Examples of aggregated time series are monthly exports where the all exports during the whole month

are accumulated.

- 30 -



Chapter 2 Background and Technical Basics

2.4.3 Types of Variation

The literature decomposes the variation in a time series into trend, seasonal variation (or
seasonality, or periodicity), and other cyclic changes. All other remaining types of variation
are called irregular fluctuations.

• Trend: This variation is loosely defined as long-term change in the mean level. A
main issue with this definition is the meaning of long-term. A time series of increasing
or decreasing observations shows a trend.

• Seasonality or Periodicity: Time series with periodic variations show seasonal
changes. Typical examples are sales figures and temperature reading where time
series exhibit variation that is annual in period.

• Cyclic Changes: Time series with variations that do not have a fixed period but
which are predictable to some extent belong to this category of cyclic changes. For
example, business cycles vary from 3 or 4 years to more than 10 years.

• Irregular Fluctuations: Other types of variations that do not show trends, seasonal
or other cyclic changes form this group of irregular fluctuations.

Trend and seasonality (or periodicity) will be in the main focus of this thesis such that
prediction techniques have to consider these types of variation in the observations.

2.4.4 Prediction Techniques

Prediction or forecasting11 of future values of an observed time series occurs in many
areas including economics or stock control. There is a wide variety of prediction techniques
available that can be grouped into three categories: subjective, univariate, and multivariate
methods. This thesis only considers univariate methods12 where predictions are based on
present and past observations and ignores other factors (e.g., external economic influences).

Assume, there is an observed time series x1, x2, . . . , xn of n values. The basic issues is
to estimate future values xn+h where the integer h is called the lead time or horizon. The
predicted value of xn+h made at time n for h time steps ahead is denoted as x̂(n, h) or
x̂n(h). Both notations emphasize the time a prediction is made and the prediction horizon.

In the following, two groups of prediction techniques will be presented in detail: moving
average and exponential smoothing techniques.

2.4.4.1 Moving Average Techniques

Averaging all past observations represents the simplest prediction technique. The following
equation describes simple averaging to predict x̂n(1):

x̂n(1) =
1
n

n∑
i=1

xi =
x1 + x2 + · · ·+ xn

n
(2.8)

Obviously, all past observed values have the same weight. An alternative way to sum-
marize the past observations is to compute the mean of successive smaller sets of observed
values. Single moving average is the simplest technique that uses the mean of the k most
recent observations to predict x̂n(1):
11Forecasting is the art of saying what will happen, and then explaining why it didn’t – Anonymous
12Methods of this type are also called naive or projection methods

- 31 -



Chapter 2 Background and Technical Basics

x̂n(1) =
1
k

n∑
i=n−k+1

xi =
xn−k+1 + xn−k+2 + · · ·+ xn

n
(2.9)

The smoothing process is continued by advancing one period and calculating the next
average of k observations, dropping the first. Two general objections about moving average
techniques in general are that they cannot cope well with trends observed in the time series
and assign equal weights to past observations. There exists a variation on the moving
average procedure that performs better in terms of handling trend. It is called double
moving average for a linear trend process. It calculates a second moving average from the
original moving average, using the same value for k.

2.4.4.2 Exponential Smoothing Techniques

This group of techniques is very popular to produce a smoothed time series. Whereas in
single moving average, the past observations are weighted equally, exponential smoothing
assigns exponentially decreasing weights. In other words, recent observations are given
relatively more weight in the prediction than older observations. In the case of moving
average techniques, the weights assigned to the observations are the same and are equal to
1/n or 1/k. In exponential smoothing, however, there are one or more smoothing parame-
ters to be determined (or estimated) and these choices determine the weights assigned to
the observations. Here, the focus is on the three most important exponential smoothing
techniques: single, double and triple exponential smoothing. Single exponential smoothing
(SES) is similar to the moving average technique and takes into account all past observa-
tions with exponentially decaying weights. The predicted value x̂n(1) uses the recursive
Equation 2.10.

x̂n(1) = η · xn + (1− η) · x̂n−1(1) (2.10)

In the beginning, single exponential smoothing uses x̂1(1) = x1 such that Equation 2.10
can be used to compute predictions in a recursive manner. The parameter η is used to
control the speed at which the older observations are dampened. When η is close to 1,
dampening is quick and when η is close to 0, dampening is slow. The adjective exponential
arises from the fact that the techniques uses geometric weights that lie on an exponential
curve:

wi = η · (1− η)i (2.11)

Similar to the moving average techniques, single exponential smoothing cannot cope with
trends in the observed data. Double exponential smoothing (DES) eliminates this weakness
by taking into account trends in the observed data. This technique maintains two smoothed
values Ln and Tn representing the level and the trend respectively. A predictor for the next
time series value is obtained as follows:

x̂n(1) = Ln + Tn (2.12)

Ln = η · xn + (1− η) · (Ln−1 + Tn−1) (2.13)

Tn = γ · (Ln − Ln−1) + (1− γ) · Tn−1 (2.14)

At bootstrapping, DES sets L1 = x1 and T1 = 0. The parameter γ is introduced
to dampen the effect of trend over time, similar to η. To cope with seasonality, triple
exponential smoothing (TES) introduces the seasonal index In besides level and trend.

- 32 -



Chapter 2 Background and Technical Basics

Thus, three updating equations with three parameters η, γ and δ are needed. As before,
the smoothing parameters are usually chosen in the range (0, 1). Level, trend, and seasonal
index are computed as follows where a complete season’s data consists of l periods:

Ln = η · (xn/In−l) + (1− η) · (Ln−1 + Tn−1) (2.15)

Tn = γ · (Ln − Ln−1) + (1− γ) · Tn−1 (2.16)

In = δ · (xn/Ln) + (1− δ) · In−l (2.17)

To initialize the triple exponential smoothing method, at least one complete season’s data
is needed to determine initial estimates of the seasonal indices In−l. More details can be
found in the literature [Cha04]. Using the Equations 2.15, 2.16, and 2.17, triple exponential
smoothing predicts the next observation x̂n using the following equation:

x̂n(1) = (Ln + Tn) · It−l (2.18)

2.5 Distinct-Value Estimation

The task of determining the number of distinct values (distinct-value estimation or DV
estimation) in a large dataset is an important question in a variety of fields in computer
science, including data integration, query optimization, or network monitoring.

The exact number of distinct values can be computed by sorting the dataset and then ex-
ecuting a straightforward scan-and-count pass over the data; alternatively, a hash table can
be constructed and used to compute the number of distinct values. Both naive approaches
do not scale. Most research efforts have therefore focused on approximate methods that
scale to very large datasets. These approaches either draw a random sample of the data
items and use the observed frequencies of the values in the sample as a basis for estimation
(e.g., [CCMN00]) or take a single pass through the data and use hashing techniques to
compute an estimate using a bounded amount of memory (e.g., [Gib01]).

Here, two recent methods (hash sketches and KMV synopses) are introduced in Sections
2.5.1 and 2.5.2. Both methods support an efficient DV estimation and allow multi-set
operations such as union, or intersection.

2.5.1 Hash Sketches

Hash sketches denote a statistical tool for probabilistically estimating the cardinality of
a multiset S. This distinct-value estimation techniques was proposed by Flajolet and
Martin in [FM85]. Hash sketches rely on the existence of a pseudo-uniform hash function
h() : S → [0, 1, . . . , 2L), which spreads input values pseudo-uniformly over its output values.
In [DF03], Durand and Flajolet further improved hash sketches (super-LogLog counting) by
reducing the space complexity for maintaining Hash Sketches and relaxing the requirements
on the statistical properties of the hash function.

2.5.1.1 Creation and DV Estimation

In their essence, the synopsis13 works as follows. The function ρ(y) : [0, 2L) → [0, L) is
used to designate the position of the least significant 1-bit in the binary representation of
y as follows:
13Synopsis refers to a summary or abstract. In this thesis, data structures to represent sets and multisets

in a compact manner (e.g., hash sketches) are called synopses.

- 33 -



Chapter 2 Background and Technical Basics

ρ(y) = min
k≥0

bit(y, k) 6= 0, y > 0 (2.19)

In Equation 2.19, ρ(0) = L, and bit(y, k) denotes the k-th bit in the binary representation
of y (bit-position 0 corresponds to the least significant bit). Estimating n, the number of
distinct elements in a multiset S, proceeds as follows. For all d ∈ S, apply ρ(h(d)) and
record the least-significant 1-bits in a bitmap vector B[0 . . . L]. Since h() distributes values
uniformly over [0, 2L), it follows that

P (ρ(h(d)) = k) = 2−k−1 (2.20)

With the above process, note that in the bit vector B hosting the hash sketch, B[0] is
expected to be set to 1 n/2 times, B[1] n/4 times, etc. From this follows that the quantity
R(S) = maxd∈Sρ(d) constitutes an estimation of the value of log n. The statistical error can
be reduced to very small quantities by utilizing multiple bit vectors Bi, recording ρ(h(d))
for some item d ∈ S to only one of the vectors Bi, producing an Ri estimate for each vector
Bi, and averaging over the Ri estimates; the standard deviation of this estimation is 1.05√

m
,

for m bitmap vectors [DF03].

2.5.1.2 Multiset Operations

A key property of hash sketches with great implications to the efficiency of large-scale
network applications (including distributed IR) lies in the ability to combine them.

Union Operation The hash sketch of the union of an arbitrary number of multisets is
derived from the hash sketches of each multiset by taking their bit-wise OR. Thus, given
the compact synopses of a set of multisets, one can instantly estimate the number of distinct
items in the union of these multisets.

More formally, if β(S) is the set of bit positions ρ(h(d)) for all d ∈ S, then β(S1 ∪ S2) =
β(S1) ∪ β(S2). Notice that, if both original collections carry a random document, the
document will conceptually be counted only once, effectively providing duplicate-insensitive
(i.e. distinct item) counting for the union of the original multisets.

Intersection Operation Furthermore, hash sketches can be used to estimate the cardinality
of the intersection (or overlap) of two sets. First, recall that

|SA ∩ SB | = |SA|+ |SB | − |SA ∪ SB | (2.21)

Second, by utilizing the union method outlined above, one can derive the hash sketch
for SA ∪ SB , and thus compute the cardinality of |SA ∩ SB |. However, it is not possible to
create the hash sketch synopsis of the intersection for future use.

The above can be generalized to more than two sets, using the inclusion-exclusion prin-
ciple and the sieve formula by Poincaré and Sylvester:

|
n⋃

i=1

Si| =
n∑

k=1

(−1)k+1
∑

I⊆{1,...,n},
|I|=k

|
⋂
i∈I

Si| (2.22)

Obviously, to compute the intersection of a huge number of hash sketches, the relative
error is propagated and the distinct-value estimation is getting inaccurate. Even regarding
the overlap of four multisets, the sieve formula needs a high computation complexity.

- 34 -



Chapter 2 Background and Technical Basics

2.5.2 KMV Synopses

In [BHR+07], the KMV synopses and appropriate DV estimators are introduced. The
main focus of KMVs is on arbitrary multiset operations including union, intersection, and
differences. Their major differences when compared to hash sketches are the lower compu-
tational costs and the more accurate DV estimation. In this section, the main motivation
behind the DV estimators is explained, and subsequently the KMV data structure and the
basic DV estimator for them are introduced. Finally, by using the KMV synopsis and the
basic estimator, the multiset operations union, intersection, and difference can be applied.

Assume that D points are placed randomly and uniformly on the unit interval. The
expected distance between two neighboring points is 1/(D + 1) ≈ 1/D, such that the
expected value of Uk, the k-th smallest point, is E[Uk] ≈ k/D. Thus D ≈ k/E[Uk]. If Uk

itself is known, a basic estimator for the number of points as proposed in [BYJK+02] is
given in Equation 2.23:

D̂b
k = k/Uk (2.23)

In the DV estimation problem, an enumeration of distinct values v1, v2, . . . , vD in dataset
A with domain Θ(A) is given. Using a hash function h : Θ(A) 7→ 0, 1, . . . ,M such that
the sequence h(v1), h(v2), . . . , h(vD) reminds a sequence of independent and identically
distributed samples from the discrete uniform distribution on 0, 1, . . . ,M . Assuming that
M is sufficiently greater than D, the sequence U1 = h(v1)/M,U2 = h(v2)/M, . . . , UD =
h(vD)/M will approximate the realization of a sequence of samples from the continuous
uniform distribution on [0, 1]. The requirement that M is much larger than D avoids
collisions and ensures that h(vi) 6= h(vj) for all i 6= j, with high probability.

2.5.2.1 Creation and DV Estimator

Using the idea of the basic estimator introduced in [BYJK+02], a KMV synopsis for a
multiset S is created as described in [BHR+07]: by applying the hash function h to each
value of Θ(S), the k smallest of the hashed values are recorded. This simple synopsis (e.g.,
set LS of hashed values) is called KMV synopsis (stands for k minimum values).

As discussed previously, M = O(D2) is needed to avoid collisions such that each of the
k hashed values requires O(log M) = O(log D) bits. Thus, the size of the KMV synopsis is
O(k·log D) bits. To compute the KMV synopsis, one single scan of the dataset S is done and
only a sorted list of k hashed values is necessary. KMV synopses can deal with a variety of
multiset operations (union, intersection, difference). To handle multiset differences, KMVs
need to be augmented with counters. These AKMV synopses [BHR+07] also provide the
deletion of single values.

In [BHR+07], the DV estimator for KMV synopses extends the basic estimator 2.23 and
uses the following computation:

D̂k = (k − 1)/Uk (2.24)

It is shown that this estimator is unbiased (in contrast to 2.23) and D̂k is used for the
multiset operations described in the following. One assumptions is that D > k. But, if
D ≤ k, then it is easily possible to detect this situation and return the exact value of D
from the synopsis.

- 35 -



Chapter 2 Background and Technical Basics

2.5.2.2 Multiset Operations

So far, there is an estimator for KMV synopses. Now, the focus is on multiset operations
using two or more KMV synopses in combination with estimating the compound set. Here,
the operations union and intersection are explained in details. To perform other multiset
operations, including difference or deletion, extended KMV synopses (AKMV synopses)
are needed. AKMV synopses involve adding counters to the basic synopses, in the spirit of
[CG05].

In the description, it is assumed that all synopses are created using the same hash function
h : Θ 7→ 0, 1, . . . ,M where Θ denotes the data value domain appearing in the synopsis and
M = O(|Θ|2). Ordinary set operations are denoted by ∪,∩ and multiset operations by
∪m,∩m.

Union Operation Two multisets A and B with their KMV synopses LA and LB of size kA

and kB , respectively, are given. The goal is to estimate the number of distinct values in
the union of A and B as D∪ = |Θ(A ∪m B)|. Here, Θ(S) denotes the set of distinct values
in multiset S. Thus, D∪ can also be interpreted as D∪ = |Θ(A) ∪Θ(B)|.

Let L = LA⊕LB be defined as the set including the k smallest values in LA∪LB , where
k = min(kA, kB) and L is the KMV synopsis of size k describing LA ∪m LB . Thus, by
applying the DV estimator for KMV synopses, D∪ is estimated by following equation:

D̂∪ = (k − 1)/Uk (2.25)

Using the symmetric and associative operator ⊕, this result can be extended to multiple
sets: L = LA1 ⊕ LA2 ⊕ · · · ⊕ LAn

estimates the number of distinct values in A1 ∪m A2 ∪m

· · · ∪m An.

Intersection Operation As before, two multisets A and B with corresponding KMV syn-
opses LA and LB of sizes kA and kB , respectively, are considered. The goal is to estimate
D∩ = |Θ(A ∩m B)| = |Θ(A) ∩ Θ(B)|. Set L = LA ⊕ LB with L = h(v1), h(v2), . . . , h(vk),
where k = min(kA, kB). Each value vi is an element of Θ(A) ∪ Θ(B). Also set VL =
v1, v2, . . . , vk and K∩ = |v ∈ VL : v ∈ Θ(A) ∩Θ(B)|. Obviously, v ∈ Θ(A) ∩ Θ(B) if and
only if h(v) ∈ LA ∩ LB such that K∩ can be computed from LA and LB alone. K∩ is
utilized to estimate D∩ using the Jaccard Distance ρ = D∩/D∪ estimated by ρ̂ = K∩/k,
the fraction of sampling elements in VL ⊆ Θ(A ∪ B) that belong to Θ(A ∩ B). This leads
to the proposed estimator:

D̂∩ = (K∩/k) · (k − 1)/Uk (2.26)

- 36 -



Chapter 3 System Architecture and Protocols

Chapter 3

System Architecture and Protocols

This chapter introduces the main architecture and presents the related protocols for ap-
proximate information filtering in structured P2P networks. The architecture is named
MAPS standing for Minerva Approximate Publish Subscribe, and builds upon the Minerva
P2P Web search system to enrich one-time search with novel approximate publish/subscribe
functionality. With MAPS the concept of approximate IF is introduced and the and the the
first architecture to support such functionality for P2P networks is provided. Although ap-
proximate information retrieval as realized in Minerva is not the main focus of this doctoral
thesis, the appropriate protocols are presented below for completeness reasons.

Section 3.1 gives an introduction to approximate information filtering, discusses the main
contributions, and refers to related work in the research area of IF. Sections 3.2 and 3.3
introduce the types of services implemented in MAPS and the main protocols regulating
the interactions between peers in the network. Here, the thesis also presents the appro-
priate retrieval protocols for one-time searching. In Section 3.4, the MAPS approach is
compared to an existing exact information filtering approach for P2P networks. Section
3.5 summarizes and concludes this chapter.

3.1 Introduction

Much information of interest to humans is available today on the Web, making it extremely
difficult to stay informed without sifting through enormous amounts of information. One
of the most important issues is how to dig out from the information avalanche. In such a
dynamic setting, information filtering , also referred to as publish/subscribe or continuous
querying or information push, is equally important to one-time querying , since users are
able to subscribe to information sources and be notified when documents of interest are
published. This need for content-based push technologies is also stressed by the deployment
of new tools such as Google Alerts1 or the QSR system [YJ06]. In an IF scenario, a user
posts a subscription (or continuous query) or profile representing his information demand
(e.g., the fact that the user is interested in some sports) to the system to receive notifications
whenever certain events of interest take place (e.g., when a paper on distributed systems
becomes available). Information filtering and information retrieval are often referred as two
sides of the same coin [BC92]. Although many of the underlying issues and goals are similar
in retrieval and filtering, since in both cases a document needs to be matched against an
information demand, the design issues, the techniques and algorithms devised to increase
filtering efficiency differ significantly.

1Google Alerts (http://www.google.com/alerts) is a service offered by search engine company Google which
notifies its users (i.e., by sending a notification email) about the latest Web and news pages of their
choice.

- 37 -



Chapter 3 System Architecture and Protocols

This doctoral thesis presents how to combine approximate search and filtering functional-
ity in a single unifying framework. Therefore, the existing Minerva system providing search
capability is extended with novel approximate publish/subscribe functionality. The present
thesis mainly focuses on information filtering rather than information retrieval. However,
the full set of services and protocols is presented for completeness reasons. Since the focus
is on IF, issues related to query routing for P2P search are only briefly discussed and the
interested reader is referred to [BMWZ05, BMT+05a, MBN+06] for more details.

MAPS (Minerva Approximate Publish Subscribe) is a novel architecture based on the ar-
chitecture of the Minerva search system to support content-based approximate information
filtering in P2P environments. While most information filtering approaches taken so far
have the underlying hypothesis of potentially delivering notifications from every informa-
tion producer, MAPS relaxes this assumption by monitoring only selected sources that are
likely to publish documents relevant to the user interests in the future. In MAPS, a user
subscribes with a continuous query and monitors only the most interesting sources in the
network. The user query is replicated to these sources and only published documents from
these sources are forwarded to him. The system itself is responsible for managing the user
query, discovering new potential sources and moving queries to better or more promising
information sources. Since in an IF scenario the data is originally highly distributed re-
siding on millions of sites (e.g., with people contributing to blogs), a P2P approach seems
an ideal candidate for such a setting. However, exact pub/sub functionality has proven
expensive for such distributed environments [TX03, TIK05b, AT06]. By contrast, MAPS
offers a natural solution to this problem, by avoiding document granularity dissemination
as the main scalability bottleneck for other approaches.

As possible application scenarios for MAPS consider the case of news filtering (but with
the emphasis on information quality rather than timeliness of delivery) or blog filtering
where users subscribe to new posts. Not only do these settings pose scalability challenges,
but they would also incur information avalanche and cognitive overload to the subscribed
users, if these were alerted for each and every new document published at any source when-
ever this matched a submitted continuous query. The proposed approximate IF approach
ranks sources, and delivers matches only from the top-ranked providers, by utilizing novel
publisher selection strategies based on a combination of resource selection and behavior
prediction. Despite that the presented approach focuses on a P2P setting, notice that the
MAPS architecture can also be realized in other settings, like a single server monitoring a
number of distributed sources, or a farm of servers in a data center providing an alerting
service. The publisher peer selection strategies will be presented in Chapter 4. In the
following, the main architecture including the services and protocols is introduced.

3.1.1 Main Contributions

In the light of the above, the main contributions provided by the approximation IF approach
MAPS are the following:

• A novel, network-agnostic P2P architecture, with different services and its related
protocols for supporting approximate IF functionality in a distributed P2P environ-
ment. This is the first approach that looks into the problem of approximate IF in
such a setting.

• Since, as it will be shown later, traditional resource selection strategies are not suf-
ficient in this setting, this thesis devises a novel method to predict peer publishing
behavior based on time series analysis of IR metrics. This technique allows to improve
recall, while monitoring only a small number of publishers.

- 38 -



Chapter 3 System Architecture and Protocols

This chapter presents the services and the protocols to provide approximate information
filtering. Since, the MAPS approach extends the Minerva search system, the service and
protocol for one-time search are also explained for completeness reasons. Chapter 4 covers
the selection strategy coming along with MAPS because publisher selection denotes the
most critical task in MAPS. In Section 3.4 of this chapter, the main characteristics of
MAPS are compared to an existing exact information filtering approach.

3.1.2 Previous Work on Information Filtering

Before presenting the MAPS architecture including the services and protocols in detail, pre-
vious work on information filtering is presented. The following areas are covered: pub/sub
in databases (Section 3.1.2.1), pub/sub in information retrieval (Section 3.1.2.2), and exact
pub/sub in P2P networks (Section 3.1.2.3). Since MAPS denotes the first approach for
approximate IF in P2P systems, no previous work can be listed.

3.1.2.1 IF in Databases

Database research on continuous queries has its origins in the paper [TGNO92] and systems
OpenCQ [LPT00] and NiagaraCQ [CDTW00]. All these papers offered centralized solutions
to the problem of continuous query processing. More recently, continuous queries have been
studied in depth in the context of monitoring and stream processing with various centralized
[MSHR02, CF03] and distributed proposals [GL03, Ac04, JHR+04]. The efforts to improve
network efficiency and reduce delivery delays in content-based pub/sub systems lead to
approaches like HYPER [ZH05], where a hybrid architecture that exploits properties of
subject-based pub/sub approaches is presented.

Hermes [PB02] was one of the first proposals to use a distributed hash table for building a
topic-based pub/sub system, while PeerCQ [GL03] utilized a DHT to build a content-based
system for processing continuous queries. It was also one of the first approaches to assume
that data is not stored in the DHT but are kept locally at external data sources. Finally,
Meghdoot [GSAA04] utilized the CAN DHT [RFH+01] to support an attribute-value data
model and offered new ideas for the processing of subscriptions with range predicates and
load balancing.

3.1.2.2 IF in Information Retrieval

Recently, several systems that employed an IR-based query language to support information
filtering on top of structured overlay networks have been deployed. DHTrie [TIK05b]
extended the Chord protocol to achieve exact information filtering functionality and applied
document-granularity dissemination to achieve the recall of a centralized system at low
message costs. Section 3.4 compares the DHTrie approach with MAPS to explain the
architectural distinguishing features between exact and approximate information filtering
in (structured) P2P networks.

In the same spirit, LibraRing [TIK05a] presented a framework to provide information
retrieval and filtering services in two-tier digital library environments. Similarly, pFilter
[TX03] used a hierarchical extension of the CAN DHT [RFH+01] to store user queries and
relied on multi-cast trees to notify subscribers. Again, the DHT served as a distributed
index, and documents were multi-casted to reach stored subscriptions. Finally, [AT06]
shows how to implement a DHT-agnostic solution to support prefix and suffix operations
over string attributes in a pub/sub environment.

- 39 -



Chapter 3 System Architecture and Protocols

Directory

P2P Ne

Directory

Publication Service

Information Producers

y Service

etwork

MAPS Peer

y Service

Subscription Service

MAPS Peer

Information Consumers

Figure 3.1: High-Level View of MAPS Service Architecture.

3.1.2.3 Exact IF in P2P Networks

All the distributed pub/sub systems described above involve some sort of resource selection
technique to decide where to index a user query. This selection is critical, since future
publications that may match this query should also be able to reach the peer storing it
to trigger a notification in case of a match. Query placement, as implemented in exact
information filtering approaches such as [TX03, TIK05b], is deterministic, and depends
upon the keys contained in the query and the hash function provided by the DHT. These
query placement protocols lead to filtering effectiveness that is exactly the same as that
of a centralized system. Compared to a centralized approach, [TX03, TIK05b] exhibit
scalability, fault-tolerance, and load balancing at the expense of high message traffic at
publication time.

In MAPS, only the most promising peer store a user continuous query and are thus
monitored by the requestor. Publications produced by each peer are matched against its
local query database only since, for scalability reasons, no publication forwarding is used.
Thus, in the case of approximate filtering, the recall achieved is lower than that of exact
filtering, but document-granularity dissemination to the network is avoided. This improves
scalability and system efficiency since, in a typical publish/subscribe setting, the rate of
publications is expected to be high. In the case of exact matching, the network cost (and
thus system performance) is directly dependent on this rate, whereas in MAPS approach
it only triggers more local peer computations.

3.2 Services

The architecture of MAPS distinguishes the following three types of services: directory
service, publication service, and subscription service. Peers in the MAPS network can
implement any (or all) types of these services. Figure 3.1 shows an high-level overview of
the service architecture including information producers, information consumers, and the
P2P network.

- 40 -



Chapter 3 System Architecture and Protocols

Peers implementing the publication service are utilized by users to publish content to the
network. This content may be locally created, e.g., from a Web server or an underlying
content management system (CMS), or it may be gathered from the Web with a (possibly
thematically focused) crawler, e.g., the BINGO! system [STSW02]. Additionally, other
content providers such as digital libraries (DLs) or publishing houses (e.g., ACM, Elsevier,
etc.) may also utilize publisher peers to make metadata about their resources available to
the system. This setting also expects to see observer modules (as in [FFS+01]) for infor-
mation sources that do not provide their own alerting service. These modules will query
the sources for new material in a scheduled manner and inform subscribers accordingly. All
this information flow will be filtered and redirected to users according to their submitted
queries, by making use of different types of network peers. In this setting, information
production, consumption, and flow are highly decentralized and asynchronous, making a
P2P architecture a natural approach. In the following, the three service types are pre-
sented. The corresponding protocols implementing the services are shown in Section 3.3.
In addition, the one-time search service not included in Figure 3.1 completes the whole set
of services. This service is implemented by all peers in the network to perform one-time
searching as in the Minerva system.

3.2.1 Directory Service

All peers participating in the MAPS network implement the directory service. This service
provides the DHT-based routing infrastructure and is responsible for the maintenance of
a distributed index storing statistics for both document and query keys. This index forms
a conceptually global, but physically distributed directory, which is layered on top of a
Chord-style DHT [RFH+01], and manages aggregated information about each peer’s local
knowledge in compact form, similarly to the directory utilized in [BMT+05a].

The DHT partitions the key space, such that every peer is responsible for the statistics of
a randomized subset of keys within the global directory. To keep IR statistics up-to-date,
each peer distributes per-key summaries of its local index along with contact information
to the global directory. For efficiency reasons, these messages are piggy-backed to DHT
maintenance messages and batching strategies are used. A balanced key distribution among
the peers forming the directory is ensured by the DHT hash function. Additionally, to
reduce the key space and also improve recall, MAPS exploits correlations among query
keys and considers multi-key statistics. Chapter 5 presents two algorithms that cope with
correlation awareness in MAPS, and are suited for approximate IF environments. The DHT
determines which peer is responsible for collecting statistics for a specific key set. This peer
maintains statistics and pointers to other peers that publish documents containing this key.
The appropriate protocols are described in Section 3.3.1.

3.2.2 Subscription Service

The subscription service is implemented by peers that want to monitor specific information
producers to get notifications for new published documents. The subscription service is
critical to the recall that will be achieved at filtering time, since it is responsible for selecting
the appropriate peers that will index the query. This peer selection procedure utilizes the
directory service to discover and retrieve peer statistics that will guide query indexing.
Once these statistics are retrieved, a ranking of the potential sources is performed and the
user query is sent to the top-k ranked publishers. Only these publishers will be monitored
for new publications, and since their publication behavior may not be consistent over time,
query repositioning is necessary to achieve higher recall.

- 41 -



Chapter 3 System Architecture and Protocols

In the MAPS architecture, publications and subscriptions could be expressed using any
appropriate IR model (e.g., Boolean, VSM , or LSI ). Because, the focus is not on the data
model itself, it is assumed, for simplicity, that published documents and subscriptions are
sets of words, and the Boolean model is used to decide when a document matches an active
subscription. The protocols that define the behavior of subscriber peers are explained in
detail in Section 3.3.2.

3.2.3 Publication Service

The publication service can be used by users that want to expose their content to the MAPS
network (e.g., by using a thematically focused Web crawler that locates and publishes
documents on their behalf). A publisher peer utilizes the directory service to update
statistics about the keys contained in the documents it publishes. Publisher peers are
also responsible for storing continuous queries submitted by the users and matching them
against their own publications. All queries that match a publication produce appropriate
notifications to interested subscribers. Details of the publication and notification protocols
are presented in Section 3.3.3.

3.2.4 One-Time Search Service

Finally, the one-time search service can be used by users that want to start a one-time query
to receive the best matching results currently available in the P2P system. As specified in
Minerva, this service utilizes the directory service to select the most promising information
providers for the requested one-time query. Having selected the top-k content providers,
the multi-key query is send to these peers that locally compute the matching query results.
So, this service also covers the local search engine functionality of peers that return the
best query results to the requestor. The last step merges all retrieved query results to one
combined global result presented to the user. Details of the one-time search protocol are
explained in Section 3.3.4.

3.3 Protocols

Having introduced the service architecture of MAPS, next, the main protocols – including
the directory protocol (Section 3.3.1), the subscription protocol (Section 3.3.2), and the
publication and notification protocol (Section 3.3.3) – are presented. Here, the thesis also
presents the IR relevant one-time search protocol (Section 3.3.4).

3.3.1 Directory Protocol

The directory service provides the DHT-based routing infrastructure and is responsible for
the maintenance of a distributed index storing statistics about document keys. This index
forms a conceptually global, but physically distributed directory, which is layered on top of
a Chord-style DHT [SMK+01], and manages aggregated information about each peer’s local
knowledge in compact form, similarly to [BMT+05a]. The DHT partitions the key space,
such that every peer is responsible for the statistics of a randomized subset of keys within
the directory. To keep IR statistics up-to-date, each peer distributes per-key summaries
of its local index along with contact information to the directory. For efficiency reasons,
these messages are piggy-backed to DHT maintenance messages and batching strategies are
applied.

- 42 -



Chapter 3 System Architecture and Protocols

S

D5

D4

D2

D3

S

S

Di

subscriber peer

directory peer

k t ti ti

D1

key statistics

1

message sent 
using DHT

Figure 3.2: The MAPS Directory Protocol.

To facilitate message sending between peers, MAPS will use the function send(msg, I)
to send the message msg to the peer responsible for identifier I. Function send() is similar
to the Chord function lookup(I) [SMK+01], and costs O(log n) overlay hops for a network
of n peers (see lookup problem in Section 2.1.1). In MAPS, every publisher peer uses Post
messages to distribute per-key statistics. This information is periodically updated (e.g.,
every k time units or every k publications) by the peer, in order to keep the directory
information as up-to-date as possible.

Publisher peer P updates the global directory as follows: Let K = {k1, k2, . . . , kl} denote
the set of all keys contained in all document publications of P occurring after the last
directory update. For each key ki, where 1 ≤ i ≤ l, P computes the maximum frequency of
occurrence of key ti within the documents contained in P ’s collection (tfmax

ki
), the number

of documents in the document collection of P that ki is contained in (dfki
), and the size

of the document collection cs. Having collected the statistics for key ti, P creates message
Post(id(P ), ip(P ), tfmax

ki
, dfki , cs, ki), where id(P ) is the identifier of peer P and ip(P ) is

the IP address of P . P then uses function send() to forward the message to the directory
peer responsible for identifier H(ki) (i.e., the peer responsible for maintaining statistics for
key ki). Once a peer D receives a Post message, it stores the statistics for P in its local
statistics database to keep them available on request for any peer.

Figure 3.2 illustrates the directory protocol where a peer distributes statistics (Post
messages) to directory peers. Notice that the directory service does not have to use Chord
or any other DHT; the MAPS architecture allows for the usage of any type of P2P network
(structured or unstructured), given that the necessary information (i.e., the per-peer IR
statistics) is made available through appropriate protocols to the rest of the services.

3.3.2 Subscription Protocol

The subscription protocol of MAPS is used by subscriber peers to monitor specific infor-
mation producers (publisher peers) for future matching publications. It is assumed that a
subscriber peer S wants to subscribe with a multi-key or multi-keyword query q of the form
k1k2 . . . kk with t distinct keys.

- 43 -



Chapter 3 System Architecture and Protocols

SP3

2

D4 1

2

2

P1

P2

S

S

Di

subscriber peer

directory peer

Pi publisher peer

D1

key statistics

continuous query

1

1

message sent 
using DHT

message sent 
peer-to-peer

i protocol step

Figure 3.3: The MAPS Subscription Protocol.

To do so, S needs to determine which publisher peers in the network are promising
candidates to satisfy the continuous query with appropriate documents published in the
future. This source ranking can be decided once appropriate statistics about data sources
are collected from the directory, and a ranking of these sources is calculated based on the
peer selection strategy described in the following Chapter 4 based on resource selection and
behavior prediction.

To collect statistics about data sources, S needs to contact all directory peers respon-
sible for the query keys. Thus, for each query key ki, S computes H(ki), which is the
identifier of the peer responsible for storing statistics about other peers that publish doc-
uments containing the key ki. Similar to the directory protocol, function H() denotes the
Chord hash function assigning keys to peer identifiers. Subsequently, S creates message
CollectStats(id(S), ip(S), ki), and uses the function send() to forward the message in
O(log n) hops to the peer responsible for identifier H(ki). Notice that the message contains
ip(S), so its recipient can directly contact S without using the DHT routing facility.

When a peer D receives a CollectStats message asking for the statistics of key ki, it
searches its local store of Post messages to retrieve the peer list Li of all posts of the key.
Subsequently, a message RetStats(Li, ki) is created by D and sent to S using its IP found
in the CollectStats message. This collection of statistics is shown in step 1 of Figure 3.3,
where S contacts directory peers D1 and D4. Once S has collected all the peer lists Li for
the keys contained in q, it utilizes an appropriate scoring function score(P, q) to compute a
peer score with respect to q, for each one of the peers P contained in Li. Based on the score
calculated for each peer, a ranking of peers is determined and the highest ranked peers are
candidates for storing q.

Once the peers have been ranked, S selects the highest ranked peers that will index
q. Thus, only publications occurring in those peers will be matched against q and create
appropriate notifications. Peers publishing documents relevant to q, but not indexing q,
will not produce any notification, simply because they are not aware of q. Since only
selected peers are monitored for publications, the peer ranking function becomes a critical
component, which will determine the final recall achieved.

- 44 -



Chapter 3 System Architecture and Protocols

SP3

P4

P1

P2

S

S

Pi

subscriber peer

publisher peer

tifi ti

new document

continuous query

notification

message sent 
peer-to-peer

Figure 3.4: The MAPS Publication & Notification Protocol.

This scoring function can be based on standard resource selection approaches [LCC00]
from the IR literature (e.g., CORI). However, as it will be shown in Chapter 4, these
approaches alone are not sufficient in an IF setting, since they were designed for retrieval
scenarios, in contrast to the IF scenario considered here, and are aimed at identifying
specialized authorities. Once the peers that will store q have been determined, S uses
the IP addresses associated with them to construct a message IndexQ(id(S), ip(S), q).
The message is forwarded to the peer that will store q. When a publisher P receives a
message IndexQ containing q, it stores q using a local query indexing mechanism such
as [TKD04, YGM99, TKD08]. This procedure is shown in step 2 of Figure 3.3, where S
contacts publishers P1, P2 and P3. Filtering and peer selection are dynamic processes,
therefore periodic query repositioning, based on user-set preferences, is necessary to adapt
to changes in publisher’s behavior. To reposition an already indexed query q, a subscriber
would re-execute the subscription protocol, to acquire new peer statistics, compute a new
ranking, and appropriately modify the set of peers indexing q.

3.3.3 Publication and Notification Protocol

The publication service is employed by users that want to expose their content to the net-
work. A publisher P utilizes the directory to update statistics about the keys contained in
the documents it publishes. All queries that match a published document produce appro-
priate notifications to interested subscribers. According to this, the procedure followed by
P at publication time is as follows.

When a document d is published by P , it is matched against P ’s local query database to
determine which subscribers should be notified. Then, for each subscriber S, P constructs
a notification message Notify(id(P ), ip(P ), d) and sends it to S using the IP address
associated with the stored query (shown in Figure 3.4). If S is not online at notification
arrival, then P utilizes function send() to send the message through the DHT, by using
the id(S) also associated with q. In this way, S will receive the message from its successor
upon reconnection. Notice that peers publishing documents relevant to a query q, but not
storing it, will produce no notification (peer P4 in Figure 3.4).

- 45 -



Chapter 3 System Architecture and Protocols

QC3

2

D4 1

2

2

C1

C2

Q

Q

Di

querying peer

directory peer

Ci content provider peer

3

D1

key statistics

one-time query

1

result document1

message sent 
using DHT

message sent 
peer-to-peer

i protocol step

Figure 3.5: The MAPS One-Time Search Protocol.

3.3.4 One-Time Search Protocol

The one-time search protocol is similar to the subscription protocol, and is used by peers
to request one-time queries to the network. It is assumed that a querying peer Q requests
a multi-key or multi-keyword query q of the form k1k2 . . . kk with t distinct keys. Q needs
to determine which content providers in the network are currently the most promising
candidates to satisfy the query. To do resource selection, metadata about data sources
is collected from the directory using the directory service and protocol. Thus, a ranking
of these information sources is calculated based on resource selection techniques. In this
theses, a full discussion of query routing in Minerva is not possible for space reasons (see
[BMT+05a, MBN+06].

To collect statistics about data sources, Q needs to contact all directory peers responsible
for the query keys. Similar to the subscription protocol, for each query key ki, Q computes
H(ki), which is the identifier of the peer responsible for storing statistics about other peers
that publish documents containing the key ki. The same CollectStats(id(S), ip(S), ki),
is created and the function send() is used to forward the message in O(log n) hops to the
peer responsible for identifier H(ki). A peer D receiving the message searches its local store
of Post messages to retrieve the peer list Li of all posts of the key. Subsequently, a message
RetStats(Li, ki) is created by D and sent to Q using its IP found in the CollectStats
message. Figure 3.5 illustrates this first step where Q contacts directory peers D1 and
D4. Once Q has collected all the peer lists Li for the keys contained in q, it utilizes an
appropriate scoring function score(P, q) to compute a peer score with respect to q, for each
one of the peers P contained in Li. Based on the score calculated for each peer, a ranking
of peers is determined and the top-k ranked peers are candidates for answering the request
q. In contrast to the subscription protocol, Q sends the query q to all selected content
providers contained in a message RequestQ(id(S), ip(S), q). When a content provider
Ci receives a message RequestQ containing q, it locally executes q on its own current
document collection and creates a list Ri of result documents matching the query. This
result list is returned to the query initiator Q using a RetResults(Ri, q) message. This
is illustrated in step 2 of Figure 3.5.

- 46 -



Chapter 3 System Architecture and Protocols

In the third and last step of the protocol (also illustrated in Figure 3.5, the query initiator
Q merges all received local result lists Ri (e.g., using appropriate merging algorithms) to
provide one combined global result list to the user. Section 6.2.2 gives some more details.

3.4 Comparison to Exact Information Filtering

This Section compares the MAPS architecture for approximate information filtering pre-
sented in this chapter with an exact IF approach named DHTrie as introduced in [TIK05b].
This comparison considers different characteristics of both approaches [TZWK07]. Table
3.1 gives an general overview concerning them. The following sections will investigate four
major characteristics concerning DHTrie and MAPS in more detail: routing infrastructure,
query placement, statistical information, and load balancing. Additional experimental issues
(e.g., message traffic costs) are included in Chapter 4.

DHTrie MAPS
Objective exact pub/sub approximate pub/sub

functionality functionality
(queries are indexed, all (only selected publishers
publishers are monitored) are monitored)

Advantages retrieval effectiveness low network traffic,
(recall of a centralized scalability, independent
system) of publication rate

Disadvantages dependent on publication lower recall
rate, relatively high (missing potentially
message traffic interesting publications)

Routing Chord DHT Chord, Pastry DHT
(to index queries) (to maintain statistics)

DHT Optimizations message grouping, batch messaging,
extra routing table piggy-backing to DHT

messages, key-space
reduction

Query Placement deterministic indexing on selected peers
(depends on query keys) (depends on predicted

publishing behavior)
Keys Statistics implicit key statistics explicit key statistics

(due to indexing), (peers post and collect
needed for matching statistics), needed for

peer ranking and match-
ing

Load Balancing explicit load balancing implicit load balancing
(to address imbalances), (due to query placement),
more sensitive to less sensitive to
load imbalances load imbalances

Table 3.1: Comparison Between DHTrie and MAPS.

- 47 -



Chapter 3 System Architecture and Protocols

3.4.1 Routing Infrastructure

A crucial design decision in both approaches is the use of the distributed hash table (DHT)
as the underlying routing infrastructure. Content-based filtering requires an efficient object
location mechanism to support expressive query languages that capture the user’s specific
interests. This renders Gnutella-style networks an inefficient solution and simple keyword
functionality of standard DHTs an insufficient one.

To overcome this limitation of exact lookup, both approaches extend the DHT function-
ality to support richer data models and more expressive queries. However, to be able to
efficiently support this functionality, changes and extensions in DHT protocols and data
structures are necessary. DHTrie uses message grouping and extra routing tables to over-
come inefficiencies, whereas MAPS uses batch posting of key summaries, piggy-backing of
post messages to directory maintenance messages and decrease in the key space by using
correlated multi-key sets to reduce network traffic (see Chapter 5).

3.4.2 Query Placement

Distributed publish/subscribe systems involve some sort of peer selection techniques to
decide where to place a user query. This selection is critical, since future publications that
may match this query should also be able to reach the peer storing it to trigger a notification
in case of a match. Query placement in DHTrie is deterministic and it depends upon the
keys contained in the query and the hash function provided by the DHT. To decide where
a keyword query should be placed, all query keys are hashed and the query is forwarded to
the peers responsible for these identifiers to ensure correctness at publication time. These
query placement protocols lead to filtering performance that is exactly the same with that
of a centralized system.

On the other hand, in MAPS only the most specialized and promising peers store a user
query and are thus monitored. Publications produced by each peer are matched against its
local query database only, since for scalability reasons no publication forwarding is used.
In this case recall is lower than that of DHTrie, but document-granularity dissemination to
the network is avoided.

3.4.3 Statistical Information

Matching incoming documents with stored subscriptions involves maintenance and estima-
tion of important global statistics such as the document frequency of a certain key, i.e., the
number of distinct documents seen in the last interval that contain a specific keyword. In
DHTrie this functionality is implicit; every time a new document is published by some peer,
it reaches the peers responsible for the distinct keywords contained in the document, since
these are the candidate peers that may store continuous queries that will potentially match
the document. These peers do all the necessary bookkeeping of the statistical information,
and can be queried for this when other peers need to compute a similarity score.

On the other hand, MAPS explicitly addresses this issue with the maintenance of a
directory. Notice that in the case of DHTrie the statistics maintenance is a byproduct of
the filtering process and it is only necessary for computing similarity scores, whereas in the
MAPS case it is the cornerstone of the filtering process, since both peer selection (and thus
query routing) and also similarity computation utilize it.

- 48 -



Chapter 3 System Architecture and Protocols

3.4.4 Load Balancing

The effect of load imbalances between peers in the two approaches is different. DHTrie
peers are more susceptible to load imbalances due to the nature of the subscription and
publication protocol. Through the mapping of the DHT hash function, an overloaded peer
or a peer with small processing capabilities may get responsible for a popular key, and thus
be forced to store high volumes of user queries and process high numbers of publications.
DHTrie load balancing mechanisms are based on load-shedding and prove efficient even for
highly skewed distributions.

On the other hand, MAPS has an intrinsic load balancing mechanism to cope with imbal-
ances. Assuming that peers are willing to offer some of their resources to the community,
a peer with resources to share soon becomes a hub peer for some topic and receives more
subscriptions, whereas a peer with few resources will be forced to specialize more, and thus
reduce the number of users that are interested in its publications. MAPS is more sensi-
tive to filtering load balancing (i.e., load imposed by the filtering requests that need to be
processed), since a directory peer responsible for a popular key will get high numbers of
statistics retrieval requests. Finally, routing load (i.e., load imposed by the messages a peer
has to forward due to the overlay maintenance protocols) is similar in both systems, and
it mainly depends on the DHT usage.

3.5 Discussion

This chapter presented the architecture with services and protocols of the MAPS approach
for approximate publish/subscribe functionality in a structured P2P environment. While
most information filtering approaches taken so far have the underlying hypothesis of po-
tentially delivering notifications from every information producer, MAPS relaxes this as-
sumption by monitoring only selected sources that are likely to publish documents relevant
to the user interests in the future. A subscriber requesting a continuous query uses a dis-
tributed directory to collect metadata concerning publishers. Next chapter will focus on
publisher peers selection approximate information filtering where a combination of resource
selection and behavior prediction techniques is applied to the collected metadata such that
the most promising publishers can be selected. The directory, subscription, publication and
notification protocols regulate the interactions of peers in the P2P network.

For completeness, this chapter also provided the retrieval protocols for approximate one-
time searching as presented in the Minerva P2P search architecture. The MAPS approach
extends the Minerva system such that two functionalities (one-time and continuous search-
ing) are available. In addition, this chapter compared the main characteristics of MAPS
with an existing information filtering system called DHTrie realizing exact filtering func-
tionality over P2P networks. This comparison highlighted the differences, advantages, and
disadvantages of both architectural approaches. The next chapter will discuss the strategies
to select the publisher peers that a subscriber should monitor.

- 49 -



Chapter 3 System Architecture and Protocols

- 50 -



Chapter 4 Publisher Peer Selection

Chapter 4

Publisher Peer Selection

This chapter discusses appropriate strategies to select the publisher peers that a subscriber
should monitor. Notice that in MAPS peer selection is a critical task since it may lead to
poor filtering effectiveness [ZTB+08].

In Section 4.1, the peer selection problem in an IF setting is introduced. Then, Section
4.2 presents the main peer selection algorithm that combines resource selection and behavior
prediction to improve filtering effectiveness. The proposed prediction function of MAPS
uses time series analysis with double exponential smoothing (as described in Section 2.4.4.2)
to predict the future behavior of publisher peers. An extensive experimental evaluation in
Section 4.3 shows the effectiveness and efficiency of the proposed algorithm. Section 4.4
develops an algorithm called MAPS Selective Method (MSM) to improve the prediction
results without additional communication overhead, while Section 4.5 presents the benefits
of the prediction improvement method MSM by analyzing several publishing scenarios.
Finally, Section 4.6 discusses and summarizes the results of this chapter.

4.1 Introduction

The previous chapter introduced the architecture for approximate information retrieval and
information filtering including the appropriate services and protocols. This doctoral thesis
does not focus on one-time search in structured P2P networks since there is a well-known
understanding concerning query routing in the Minerva search architecture. More details
about Minerva query routing can be found in Chapter 6 where the prototype implemen-
tation is explained. Here, approximate publish/subscribe will be presented in detail using
the MAPS approach. The most critical task in MAPS is the selection of most promising
publisher peers for a requested continuous query.

The main contribution of this chapter is the presentation of the peer selection approach
for MAPS by utilizing novel publisher selection strategies based on a combination of resource
selection and behavior prediction. The evaluation of this approach shows that traditional
resource selection strategies alone are not sufficient in this setting, and devise a novel
method to predict peer publishing behavior based on time series analysis of IR metrics.
This technique allows to improve recall, while monitoring only a small number of publishers.
In addition, this chapter investigates an improvement algorithm called MAPS Selective
Method to improve the prediction techniques without additional communication overhead.
An extended experimental evaluation of both methods investigates the usefulness of the
proposed approaches in several publishing behaviors and scenarios.

- 51 -



Chapter 4 Publisher Peer Selection

4.2 Peer Selection Strategy

The protocols presented in the previous chapter have shown that the selection of peers is the
most critical part of the approximate information filtering approach MAPS. The subscriber
only receives notifications about published documents from peers that store the continuous
query. In other words: a subscriber monitors a publisher with a continuous query.

To decide which publisher peers should be monitored, the subscription protocol of Section
3.3.2 uses a scoring function to rank peers. In the MAPS approach, the subscriber computes
a publisher peer score based on a combination of resource selection1 and behavior prediction
formulas as shown below:

score(P, q) = α · sel(P, q) + (1− α) · pred(P, q) (4.1)

In this equation, q is a continuous query, P is a certain publisher peer, and sel(P, q)
and pred(P, q) are scoring functions based on resource selection and behavior prediction
respectively that assign a score to a peer P with respect to query q. Function score(P, q) is
used to combine the selection and prediction scores, and decides the final score of a peer P
with respect to q. The tunable parameter α affects the balance between authorities (high
sel(P, q) scores) and peers with potential to publish matching documents in the future
(high pred(P, q) scores). The value of α is from 0 to 1 where α = 1 means that the peer
score is only based on resource selection, and α = 0 only considers behavior prediction.
Based on these scores, a ranking of peers is determined and q is forwarded to the highest
ranked peers. In this way, the subscriber can monitor the top-k publisher peers concerning
its information demand.

Notice that this peer selection strategy is general and can also be used in centralized set-
tings, where a server (instead of the distributed directory) maintains the necessary statistics,
and mediates the interaction between publishers and subscribers.

The main contribution of this peer selection approach respect to predicting peer behavior,
is to view the IR statistics provided by the (centralized or distributed) directory as time
series and use statistical analysis tools to model publisher peer behavior. Time series
analysis accounts for the fact that the time series observations have some sort of internal
structure (e.g., trend , or seasonality etc.), and uses this observation to analyze older values
and predict future ones (see Section 2.4). In the next sections, both resource selection
(Section 4.2.1) and novel behavior prediction (Section 4.2.2) are presented and investigated
in detail. Section 4.2.3 explains the main reasons why both components of the scoring
function are needed to get a satisfying system effectiveness. An extensive discussion of
resource selection for one-time search in structured P2P networks is not in the focus of this
thesis. Chapter 6 includes some aspects of the Minerva one-time search approach where
resource selection is adopted to overlapping P2P collections.

4.2.1 Resource Selection

In the literature, resource selection (or database selection or collection selection) is the task
to decide to which information source a one-time query should be routed. Obviously, in
a distributed system, it is too expensive to query all available information sources such
that the decision is critical and strongly influences the retrieval quality (e.g., recall and
precision).

1The term resource selection is also known as database selection or collection selection. Resource selection
is throughout this thesis.

- 52 -



Chapter 4 Publisher Peer Selection

Given the large-scale data distribution of a P2P network, one of the key technical chal-
lenges is query routing , which is the process of efficiently selecting the most promising
peers (from a potentially very large set of peers storing relevant data) for a particular in-
formation need. Query routing is very similar to resource selection that has been studied
extensively in the literature in the context of metasearch engines2. There, approaches are
typically designed for a small and rather static set of search engines and did not consider
the challenges present in a P2P network, such as peer autonomy, network dynamics and
high inter-peer latencies. The interested reader is referred to [MYL02, NF06, BMWZ05]
for existing approaches to query routing.

In MAPS, the sel(P, q) function returns a score for a peer P and a query q, and is
calculated using standard resource selection algorithms such as tf − idf -based methods,
CORI [CLC95, SJCO02], GlOSS [GGM95, GGMT99], the decision-theoretic framework
(DTF) [Fuh99, NF03], or Statistical Language Models [SC99, PC98, XC99, ZL01, MLS99].

A P2P setting poses some new requirements to route a one-time query to an appropriate
set of selected information sources. Here, the assumption of non-overlapping collections
does not hold. In [BMT+05a], an overlap-aware query routing approach is presented that
considers the novelty of single information sources. The idea behind this approach is that
a query initiator should not ask sources that provide similar content concerning a query.
Bloom filters [Blo70] and/or min-wise independent permutations [BCFM00] are used to
enrich the distributed directory and to compute a novelty score to combine quality and
novelty measures. In addition, correlated key sets as described in [MBN+06] are recognized
and exploited to further improve peer selection.

Using the scoring function sel(P, q), the MAPS approach identifies authorities specialized
in a topic, which, as argued above, is not sufficient for the IF setting. Next, two resource
selection strategies are presented in more detail including the well-known CORI approach
and a simple approach based on IR statistics.

4.2.1.1 The CORI Approach

The Collection Retrieval Inference Network (CORI) [CLC95, SJCO02] reduces the task
of resource selection to a document retrieval task by relying on inference networks. In
CORI, a super-document is selected as the representative of a collection of documents, and
represents the concatenation of all documents with all distinct keys of this collection. If a
key appears in t distinct documents in the collection, the key appears t times in the super-
document. The set of all super-documents forms a special-purpose collection that is used to
identify the most promising collections for a given query. In principle, standard approaches
(e.g., tf − idf and cosine measure) could now be applied. From the viewpoint of regular
document scoring and retrieval, term frequencies are replaced by document frequencies, and
document frequencies by collection frequencies, i.e., the number of collections that contain
a specific key.

The approach taken by CORI is implemented in the context of the INQUERY [CCH92]
retrieval system based on inference networks [TC91] to compute the ranking score of a
collection with respect to query q as the estimated belief that the database or information
source contains useful documents. The belief is essentially the combined probability that
the database contains useful documents for each query key. More specifically, the belief
that the information need expressed by a query key k is satisfied by searching the collection
of P is determined by the following equations:

2A metasearch engine is a search engine that sends user requests to several other search engines and/or
databases and aggregates the results into a single list or displays them according to their source.

- 53 -



Chapter 4 Publisher Peer Selection

TP,k =
cdfP,k

cdfi,k + 50 + 150 · cl
clavg

(4.2)

IP,k =
log(n+0.5)

cfk

log(n + 1)
(4.3)

sel(P, k) = 0.4 + 0.6 · TP,k · IP,k (4.4)

Here, n denotes the total number of collections, cfk the collection frequency, cl the
number of keys in the collection P , and clavg the average number of keys in a collection.
The values of some constants inserted into the formulae have been determined by empirical
experiments [CLC95, SJCO02]. Note that, essentially, sel(P, k) resembles the tf− idf score
of key k in the super-document of P . Finally, the belief that P contains useful documents
with respect to query q can be computed as a sum over all query keys as in the following
equation:

sel(P, q) =
∑
k∈q

sel(P, k)
|q|

(4.5)

Compared to the original application of inference networks to document scoring, docu-
ment peers are replaced by the super-documents, yielding a moderate-sized network. The
frequency values are typically higher, but that does not affect the computational complex-
ity. However, in a highly dynamic network of (cooperating) peers, the proper estimation of
n, clavg, and cf is a non-trivial problem.

4.2.1.2 The MRS Approach

The MAPS Resource Selection approach is based on tf − idf statistics directly available
by the distributed directory. This simple strategy (compared to more sophisticated ones
as CORI or DTF ) uses the peer document frequency (df), and the maximum peer term
frequency (tfmax) as defined before. The scoring functions sel(P, q) aggregates over all
query keys k as follows:

sel(P, q) =
∑
k∈q

β · log (dfP,k) + (1− β) · log
(
tfmax

P,k

)
(4.6)

In Equation 4.6, the value of the system parameter β can be chosen between 0 and 1
and is used to emphasize the importance of df versus tfmax. Experiments with various
resource selection techniques in [BMWZ05] have determined that choosing β = 0.5 leads
to satisfying recall results.

4.2.2 Behavior Prediction

To predict peer behavior MAPS considers time series analysis of IR statistics, thus making
a rich repository of techniques from time series analysis [Cha04] applicable to this problem.
These techniques predict future time series values based on past observations and differ in
(i) their assumptions about the internal structure of the time series (e.g., whether trends
and seasonality can be observed) and (ii) their flexibility to put emphasis on more recent
observations. Details about time series analysis including different prediction techniques
are presented in this thesis in Section 2.4.

- 54 -



Chapter 4 Publisher Peer Selection

Since the considered IR statistics exhibit trends, for instance, when peers successively
crawl sites that belong to similar topics, or, gradually change their thematic focus, the em-
ployed time series prediction technique must be able to deal with trends properly. Further,
in this scenario it is obvious to put emphasis on a peer’s recent behavior and thus assign
higher weight to recent observations when making predictions about its future behavior.
Moving average techniques do not support a higher weight for more recent observations,
and single exponential smoothing (SES) is not able to recognize trends.

For this reason, MAPS uses double exponential smoothing (DES) as a prediction tech-
nique, since it can both deal with trends and put emphasis on more recent observations.
Section 2.4.4.2 explains double exponential smoothing and also other techniques. For com-
pleteness, notice that there is also triple exponential smoothing (TES) that, in addition,
handles seasonality in the observed data. The MAPS setting assumes that many queries are
expected to be short-lived so that no seasonality will be observed in the IR statistics time
series. For an application with many long-lasting queries, one could use triple exponential
smoothing, so that seasonality is taken into account. An example for seasonality could be
the continuous query for Christmas gifts. In this case, every year before Christmas, the
publication of matching documents would be recognizable.

The function pred(P, q) returns a prediction score for a publisher peer P that represents
the likelihood of publishing documents relevant to query q in the future. Using the dou-
ble exponential smoothing (DES) prediction technique as described before, two values are
predicted.

• First, for all keys k in continuous query q, MAPS predicts the value for dfP,k (denoted
as d̂fP,k), and uses the difference (denoted as δ(d̂fP,t)3) between the predicted and
the last value obtained from the directory to calculate the score for P . Value δ(d̂fP,k)
reflects the number of relevant documents that peer P will publish in the next time-
unit.

• Second, MAPS predicts δ(ĉsP ) as the expected difference in the collection size of
peer P . This value reflects the peer’s overall expected future publishing activity. If a
publisher peer P does not publish any document, δ(ĉsP ) will be 0.

Thus, two aspects of the peer’s behavior are modeled: (i) its potential to publish rel-
evant documents in the future (reflected by δ(d̂fP,k)), and (ii) its overall expected future
publishing activity (reflected by δ(ĉs)). The time series of IR statistics that are needed as
an input to the prediction mechanism are obtained using the distributed directory. The
predicted behavior for peer P is quantified as follows in Equation 4.7:

pred(P, q) =
∑
k∈q

log
(
δ(d̂fP,k) + log (δ(ĉsP ) + 1) + 1

)
(4.7)

In the above formula, the publishing of relevant documents (δ(d̂fP,k)) is more accented
than the logarithmic dampened publishing rate (δ(ĉs)). If a peer publishes no documents
at all, or, to be exact, the prediction of δ(ĉs) and, as a consequence, the prediction of δ(d̂f)
is 0,then the pred(P, q) score is also 0. The addition of 1 in the log formulas yields positive
predictions and avoids log 0. A simplified version of prediction function pred(P, q) only
considers publishing relevant documents and ignores the overall rate of peer.

3function δ() signifies difference.

- 55 -



Chapter 4 Publisher Peer Selection

4.2.3 Why Both Strategies Are Needed

A key component of the peer selection procedure and peer ranking function 4.1 is the
behavior prediction mechanism introduced in this thesis. Prediction is complementary to
well-known resource selection techniques (e.g., MRS or CORI approach). The following
example using the characteristics of Table 4.1 will demonstrate the necessity in a filtering
setting to combine both components of the ranking function, and shows why an approach
that relies only on resource selection is not sufficient. Table 4.1 lists all four possible
combinations describing the past4 and the future5.

Publisher Resource Selection Behavior Prediction
P1 authority in Sports publishes no Sports-related documents
P2 not an authority in Sports publishes Sports-related documents
P3 not an authority in Sports publishes no Sports-related documents
P4 authority in Sports publishes Sports-related documents

Table 4.1: Different Publisher Characteristics.

Assume a publisher peer P1 that has specialized and become an authority in Sports, but
publishes no relevant documents any more. Assume that P1 will not publish any Sports-
related documents in the future. Another publisher peer P2 is not specialized in Sports,
but is currently crawling a sports portal. Imagine a user who wants to stay informed
about the upcoming 2008 Olympic Games, and subscribes with the continuous query 2008
Olympic Games. If the ranking function solely relied on resource selection, peer P1 would
always be chosen to index the user’s information demand, which would be wrong given
that peer P1 no longer publishes Sports-related documents. On the other hand, to have a
high ranking score assigned, peer P2 would have to specialize in Sports – a long procedure
that is inapplicable in a IF setting which is by definition dynamic. This makes the use
of a ranking and selection strategy that recognizes and predicts publishing behaviors an
important component.

On the other hand, authorities are expected with high probability to publish new docu-
ments from the same topic in the future. In this case, assume another publisher peer P3

similar to P1 that is not publishing Sports-related documents at the moment. But contrary
to P1, P3 is not a good authority for Sports. So, a peer selection strategy should prefer P1

because a Sports-authority is expected to publish Sports-related documents in the future
with a higher probability than a publisher that is specialized in another topic. For this
reason, MAPS peer selection strategy combines resource selection and behavior prediction
techniques. The following experiments in Section 4.3 will investigate several scenarios where
a combination of both parts have to be stressed using the system parameter α in Equation
4.1. Obviously, a publisher P4 that is an authority for Sports (since it stores many docu-
ments regarding Sports) and that also publishes new documents concerning this topic, will
be the best choice for monitoring the issued continuous query.

The fact that resource selection alone is not sufficient is even more evident in the case of
news items. News items have a short self-life, making them the worst candidate for slow-
paced resource selection algorithms. The above example shows the need to make slow-paced
selection algorithms more sensitive to the publication dynamics in the network, and MAPS
employs peer behavior prediction to cope with such dynamic scenarios.
4The past describes whether a publisher is or not a good authority for a topic based on the stored data

that has been published before.
5The future describes the predicted and expected publishing behavior whether a publisher will provide

matching documents or not.

- 56 -



Chapter 4 Publisher Peer Selection

4.3 Experimental Evaluation

This experimental section evaluates the MAPS approach and investigates the filtering ef-
fectiveness and efficiency depending on the peer selection strategy in different publishing
scenarios. Section 4.3.1 describes the experimental setup including the performance mea-
sures used in the evaluation. The experimental data is explained in Section 4.3.2 including
the continuous query set. Section 4.3.3 shows experimental results for various publishing
scenarios in terms of recall and benefit/cost ratio. An investigation across scenarios is
included in Section 4.3.4, whereas Section 4.3.5 compares an existing exact filtering ap-
proach with MAPS. Finally, Section 4.3.6 sums up the observed experimental results of
this extensive evaluation.

4.3.1 Experimental Setup

To conduct each experiment described in the next sections of this evaluation, the following
five steps are executed:

1. Initially the network is set up and the underlying distributed hash table is created.
All publisher peers join the DHT such that a structured P2P network is build-up.

2. Then, all peers in the DHT distribute metadata concerning their local collection by
applying the directory protocol as described in Section 3.3.1.

3. Subsequently, subscribers utilize the protocol described in Section 3.3.2 to subscribe
to selected publishers. It can be said that a publisher peer is monitored with a
continuous query q by a subscriber, when it stores q in its local query database store,
and notifies the subscriber for all publications matching q.

4. Once queries are stored, the documents are published to the network and at certain
intervals (called rounds) queries are repositioned. A repositioning round occurs every
30 document publications per peer.

5. At the end of each round, message costs and recall for this round are calculated, and
subscribers rank publishers using formula score(P, q) described in Section 4.2 and
reposition their queries accordingly.

To investigate the effectiveness and efficiency of the MAPS approach, peer publishing
behavior is modeled through different publishing scenarios described in Section 4.3.3 in
detail. Additionally, the two following system parameters ρ and α have to be considered in
the experimental setting:

• System parameter ρ determines the percentage of publishers that a subscriber moni-
tors after ranking them using the methods of Section 4.2. In the experimental eval-
uation, ρ is constant for all subscribers and different system properties for a value of
ρ up to 25% are investigated. It follows that when ρ = 100% (i.e., all publishers in
the network are monitored) then recall is 1.0, and the MAPS approach degenerates
to exact information filtering.

• System parameter α controls the influence of resource selection vs. peer behavior
prediction in the experiments. The value of α in the peer selection formula is varied
from 0.0 to 1.0. A value of α close to 0.0 emphasizes peer behavior prediction, while
a value close to 1.0 stresses resource selection.

- 57 -



Chapter 4 Publisher Peer Selection

To evaluate the overall filtering effectiveness of the approach the evaluation utilizes recall,
while efficiency is measured using a benefit/cost ratio metric. Here, the definitions of both
measures are given:

• Recall: The system measures recall by computing the ratio of the total number of
notifications received by subscribers for all continuous queries to the total number
of published documents matching subscriptions. The experiments differentiate be-
tween the recall observed in each subscription repositioning round, and the average
recall computed over all rounds (i.e., for the complete experiment). Notice that mea-
sures like precision are not covered since the experiments assume that all documents
matching a continuous query (i.e., containing all query keys) are relevant.

• Benefit/Cost Ratio: To evaluate the efficiency of the approach, the total number
of subscription and notification messages is measured to calculate the benefit/cost
ratio as the number of notifications per message sent. Notice that in the MAPS
approach no publication messages are needed, since publications trigger only local
peer computations and are not disseminated as in exact matching approaches.

As explained in the protocols of Chapter 3, the number of subscription messages depends
on the number of query keys and monitored publishers. In addition, the subscription costs
are proportional to the number of query repositionings, since for each repositioning the sub-
scription protocol is re-executed. Finally, for each publication matching an indexed query,
a notification message is created and sent to the subscriber. In the experiments of Sections
4.3.3 and 4.3.4, the message cost needed to maintain the distributed directory information
is not taken into account since the main goal is to focus on the filtering protocol costs.
Since directory messages are typically included in DHT maintenance messages, they can
be considered as part of the underlying routing infrastructure. The directory maintenance
messages are included in the cost analysis of Section 4.3.5 when MAPS is compared with
DHTrie [TIK05b], an distributed exact IF approach that delivers the recall of a centralized
system in a P2P setting.

4.3.2 Experimental Data

The data collection used in the experiments contains more than 2 million documents from a
focused Web crawl with the focused Web crawler system BINGO! [STSW02]. All documents
are categorized in one of ten categories: Music, Finance, Arts, Sports, Natural Science,
Health, Movies, Travel, Politics, and Nature. The overall number of corpus documents
is 2, 052, 712. The smallest category consists of 67, 374 documents, the largest category
of 325, 377 documents. In Addition, there are 36, 831 documents with unknown category
(documents that are non-categorized by the focused crawler). Table 4.2 summaries the
statistical overview of the experimental data collection. The number of distinct keys after
stemming and removing stop words amounts to 593, 876.

In all experiments, the network consists of 1, 000 peers containing 300 documents each
in their initial local collection. Each peer hosts 15% random documents (i.e., from random
categories), 10% not categorized documents, and 75% documents from one single category,
resulting in 100 peers specializing in each category. Using the document collection, 30
continuous queries are constructed containing two, three or four query keys as follows.
Each of the query keys selected is a strong representative of a document category (i.e.,
a frequent key in documents of one category and infrequent in documents of the other
categories). Example queries are music instrument, museum modern art, or space model
research study. The complete list of continuous queries is shown in Table 4.3.

- 58 -



Chapter 4 Publisher Peer Selection

Category Number of Documents
Arts 237, 557
Finance 303, 805
Health 213, 504
Movies 82, 078
Music 67, 374
Nature 151, 295
Natural Science 155, 147
Politics 273, 825
Sports 205, 919
Travel 325, 377
Minimum Size 67, 374
Average Size 201, 588
Maximum Size 325, 377
Unknown Documents 36, 831
Overall Collection Size 2, 052, 712

Table 4.2: Web Collection Statistics Grouped by Categories.

Continuous Query
music instrument medical risk
music instrument piano medical risk disease
music instrument piano classic medical risk disease heart
money invest movie star
money invest finance movie star video
money invest finance market movie star video hollywood
museum modern travel hotel
museum modern art travel hotel offer
museum modern art design travel hotel offer city
team sport politics party
team sport field politics party campaign
team sport field score politics party campaign leader
space model animal nature
space model research animal nature life
space model research study animal nature life environ

Table 4.3: Collection of 30 Continuous Queries with Two, Three, or Four Keys.

- 59 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.1: Average Recall in the Consist Scenario.

4.3.3 Different Publishing Scenarios

To measure MAPS’s efficiency in terms of recall and message cost under various settings, five
scenarios are considered representing different publishing behaviors. The overall number of
published documents is constant in all scenarios (300, 000 documents) therefore the maxi-
mum number of notifications concerning the 30 active continuous queries is also constant
(146, 319 notifications), allowing us to compare across different scenarios. The following
sections shows experimental results with average recall and benefit/cost ratio for different
publishing scenarios and different α and ρ values. A baseline approach (called rand) that
implements a random peer selection method is included for comparison purposes.

4.3.3.1 The Consistent Publishing Scenario

The first publishing scenario Consist targets the performance of the approach when peers’
interests remain unchanged over time. Figures 4.1 and 4.2 show that the average recall
and the benefit/cost ratio do not depend on the ranking method used, and the MAPS
approach presents the same performance for all values of α. This can be explained as
follows. Publishers that are consistently publishing documents from one category have
built up an expertise in this category and peer selection techniques are able to detect this
and monitor the authorities for each topic.

Similarly, publication prediction observes this trend for consistent behavior and chooses
to monitor the most specialized peers. Compared to the baseline approach of random
selection (rand), the MAPS approach achieves up to 7 times a higher average recall (e.g.,
for ρ = 10%). Finally, the best value for the benefit/cost ratio is when ρ = 10% that means
when 10% of the publisher peers in the network store a continuous query.

- 60 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

B
en

ef
it 

/ C
os

t R
at

io

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.2: Benefit/Cost Ratio in the Consist Scenario.

4.3.3.2 The Half Publishing Scenario

The second scenario (called Half ) that is observed in this evaluation series assumes that only
half of the peers publish documents at all. Image a network with so-called free-riders that
means peers only subscribing but not publishing anything. Figures 4.3 and 4.4 illustrate
that the average recall is slightly higher than in the Consist scenario. The explanation
is that MAPS peer selection recognizes that some peers do not publish documents at all.
The benefit/cost ratio is also higher than in in previous scenario. It reaches the highest
benefit/cost ratio for ρ = 5%. As in the previous scenario, MAPS outperforms the random
peer selection approach rand for all parameter settings.

4.3.3.3 The Category Change Scenario

Since users may publish documents from different topics, the evaluation uses the scenario
CatChg to simulate the changes in a publisher’s content. In the CatChg scenario, a peer
initially publishes documents from one category, and later on switches to a different category
at some point in time. Figures 4.5 and 4.6 illustrate the performance of the approach in
this scenario for different values for α and ρ. The most important observation from these
figures is the performance of the prediction method in comparison to resource selection. In
some cases (e.g., when ρ = 10%) not only publication prediction achieves more that 6 times
better average recall than resource selection, but also resource selection is only marginally
better than rand (e.g., when monitoring 15% of publishers). So, this scenario affirms the
example of Section 4.2.3 why resource selection is not sufficient for filtering scenarios.

In general, both average recall and benefit cost/ratio improve as α reaches 0.0 and pre-
diction is stressed. This abrupt changes in the publishers’ content cannot be captured by
any resource selection method, which favors topic authorities. On the other hand, pub-
lication prediction detects the publishers’ topic change from observed changes in the IR
statistics and adapts the scoring function to monitor peers publishing documents relevant
to subscribed continuous queries.

- 61 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.3: Average Recall in the Half Scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

B
en

ef
it 

/ C
os

t R
at

io

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.4: Benefit/Cost Ratio in the Half Scenario.

- 62 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.5: Average Recall in the CatChg Scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

B
en

ef
it 

/ C
os

t R
at

io

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.6: Benefit/Cost Ratio in the CatChg Scenario.

- 63 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

R
ec

al
l p

er
 R

ou
nd

Publishing Round

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.7: Recall per Publishing Round for ρ = 5% in the CatChg Scenario.

The experiments shown in Figures 4.7 and 4.8 are introduced to demonstrate the retrieval
effectiveness of MAPS in each of the 10 query repositioning rounds for the CatChg scenario,
when α is variable and for ρ = 5% and ρ = 10%6. In round one, all combinations of
publication prediction and resource selection provide the same performance because no
time series values are available yet; thus only the resource selection method is used to rank
peers. As new statistics become available in later rounds, the prediction method improves
recall. The more emphasis is put on the prediction part of the ranking, the faster the
learning process evolves, as is clearly shown by the recall increase. A comparison of the two
figures reveals that the learning process of the scoring function remains unaffected by ρ, and
that prediction manages to adapt quickly in topic shifts, by needing only two repositioning
rounds to reach the maximum recall.

4.3.3.4 The Publishing Breaks Scenario

The Break scenario models the behavior of peers as they log in and out of the network. It is
assumed that some publishers are active and publish documents for some rounds, and then
log out of the network, publishing no documents any more. This procedure is continued
in intervals, modeling, e.g., a user using the publication service at home, and switching it
off every day in the office. The ranking mechanism should recognize and adapt to these
inactivity periods, and distinguish between peers not publishing documents any more and
peers making temporary pauses. Figures 4.9 and 4.10 demonstrate that both average recall
and benefit/cost ratio improve when resource selection is emphasized (i.e., when α is close
to 1.0), since pauses in the publishing mislead the prediction formula to foresee that, in the
future, no relevant publications will occur. For this reason, peers with inactivity periods
are ranked lower resulting in miss of relevant documents. On the other hand, resource
selection accommodates less dynamics, so temporary breaks remain undetected and the
topic authorities continue to be monitored since the ranking procedure is not affected.

6Monitoring 5% or 10% of the network seems to be a realistic size.

- 64 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

R
ec

al
l p

er
 R

ou
nd

Publishing Round

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.8: Recall per Publishing Round for ρ = 10% in the CatChg Scenario.

Consequently, selecting a ranking method that favors prediction leads to poor recall and
low benefit/cost ratio, that are comparable to those of rand. This scenario also fits to the
example presented in Section 4.2.3 where the use of resource selection can be argued by the
higher probability to publish related content.

4.3.3.5 The Temporary Changes Scenario

The last scenario investigated (TmpChg), targets temporary changes in a peer’s published
content. This scenario models users utilizing the service e.g., for both their work and
hobbies, or users that temporarily change their publishing topic due to an unexpected
or highly interesting event (earthquake, world cup finals, etc.). Here, a publisher makes
available documents about one topic for a number of rounds, and then temporarily publishes
documents about a different topic. In the next rounds, the publisher reverts between
publishing documents out of these categories, to stress the behavior of peers being interested
in a topic but occasionally publish documents covering other topics.

In this scenario, MAPS presents the highest average recall values when equally utilizing
resource selection and prediction methods (α = 0.5), as suggested by Figures 4.11 and
4.12. This happens because TmpChg can be considered a scenario lying between an abrupt
category change (CatChg scenario) and publishing documents about a specific topic with
small breaks (Break scenario). Thus, the combination of publication prediction and resource
selection used by subscribers, aids in identifying these publication patterns in publisher’s
behaviors and thus selecting the peers publishing more relevant documents.

Finally, an interesting observation emerging from these figures is that almost all combina-
tions of ranking methods perform similarly both in terms of average recall and benefit/cost
ratio. This is due to the effectiveness of the ranking methods, that cause the dampening
of the subscription messages by the high number of notification messages created. Com-
pared to the baseline random peer selection rand, all methods show an increase of as much
as 600% for average recall and 200% for benefit/cost ratio. This improvement shows the
potentials of the MAPS filtering approach.

- 65 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.9: Average Recall in the Break Scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

B
en

ef
it 

/ C
os

t R
at

io

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.10: Benefit/Cost Ratio in the Break Scenario.

- 66 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.11: Average Recall in the TmpChg Scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

B
en

ef
it 

/ C
os

t R
at

io

ρ - Percentage of Monitored Publisher Peers

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

Figure 4.12: Benefit/Cost Ratio in the TmpChg Scenario.

- 67 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

Consist
Half

CatChg
Break

TmpChg

Figure 4.13: Average Recall for α = 0.5 in Different Scenarios.

4.3.4 Comparison Across Scenarios

In this section, the experimental viewpoint is changed. The evaluation selects some baseline
values for α and ρ, and compare the average recall and the benefit/cost across scenarios
to get some more insights. Reasonable baseline values for the experiments in this section
are α = 0.5 and ρ = 10%.

4.3.4.1 Average Recall Analysis

Figures 4.13 and 4.14 illustrate the average recall values achieved for the various publishing
scenarios. When α = 0.5 and ρ value increases up to 25% of monitored publishers (Figure
4.13), it is shown that Consist achieves the highest average recall, since, as explained in
Section 4.3.3.1, it is not affected by the choice of α. The rest of the scenarios achieve lower
average recall with the TmpChg scenario being the most promising. For the rest of the
scenarios the choice of α = 0.5 is a compromise that leads to satisfactory average recall.

When ρ is set to 10% and the emphasis of the ranking method moves from behavior
prediction (α = 0.0) to resource selection (α = 1.0), the average recall remains relatively
unaffected for Consist and Half publication scenarios (Figure 4.14). In contrast, CatChg
and Break are influenced by the applied ranking method, and demonstrate a significant
change in their behavior and average recall achieved. The TmpChg scenario reaches the
highest average recall levels when both publication prediction and resource selection are
equally weighted with α = 0.5.

4.3.4.2 Message Costs Analysis

The benefit/cost ratio for the different publishing scenarios is shown in Figures 4.15 and
4.16. Here, the value of ρ increases to demonstrate the benefit/cost ratio for a constant
α = 0.5 (Figure 4.15) and the dependency of the benefit/cost ratio parameter on the ranking
method is illustrated as a function of α for a constant ρ of 10% (Figure 4.16).

- 68 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

A
ve

ra
ge

 R
ec

al
l

α - Balance Resource Selection / Behavior Prediction

Consist
Half

CatChg
Break

TmpChg

Figure 4.14: Average Recall for ρ = 10% in Different Scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

B
en

ef
it 

/ C
os

t R
at

io

ρ - Percentage of Monitored Publisher Peers

Consist
Half

CatChg
Break

TmpChg

Figure 4.15: Benefit/Cost Ratio for α = 0.5 in Different Scenarios.

- 69 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

B
en

ef
it 

/ C
os

t R
at

io

α - Balance Resource Selection / Behavior Prediction

Consist
Half

CatChg
Break

TmpChg

Figure 4.16: Benefit/Cost Ratio for ρ = 10% in Different Scenarios.

The most important observation from these experiments is that independently of the
ranking method used, in all scenarios, the highest value for the benefit/cost ratio is achieved
when monitoring 10% of the publisher peers (Half is an exception with highest ratio for
5%). Obviously, this observations is partly caused by the construction of the publishers
since there are 10% of the peers specialized in each category7. At this value, the MAPS
approach needs around 1.2 messages per notification generated (since the number of noti-
fications/message is around 0.8 as shown in the graphs). Obviously, the best possible ben-
efit/cost ratio is 1.0, since at least one message (the notification message itself) is needed
at publication time to inform a subscriber about a matching document. This means that
an average of 0.2 extra subscription messages per notification sent are generated in the
experimental evaluation.

It can be observed that in the Consist scenario, a change in the ranking method has
no effect on the value of the benefit/cost ratio. The same holds for the Half scenario.
Nevertheless, the Break and CatChg scenarios perform differently such that the benefit/cost
ratio increases for the case of resource selection and publication prediction respectively. The
TmpChg scenario differs from all other scenarios because, for the same reason as in Section
4.3.4.1, the highest benefit/cost ratio is achieved when combining both resource selection
as peer prediction scores.

4.3.5 Comparison to Exact Information Filtering

In the last set of experiments, the evaluation studies the message cost imposed by the MAPS
approach on the network as a function of the average recall achieved. The results are shown
in Figure 4.17. In addition, this a short comparison to an existing exact filtering system
called DHTrie [TIK05b] is presented and the results are shown in Figure 4.18. Notice that
DHTrie is an exact filtering approach that delivers notifications to all matching publications
by disseminating documents in the network.

7In the Half scenario only half of all peers publish documents.

- 70 -



Chapter 4 Publisher Peer Selection

 0

 50

 100

 150

 200

 250

 300

 350

0.0 0.2 0.4 0.6 0.8 1.0

N
um

be
r 

of
 M

es
sa

ge
s 

(x
1K

)

Average Recall

Consist
Half

CatChg
Break

TmpChg

Figure 4.17: Number of Messages and Average Recall Level.

Figure 4.17 presents the costs in filtering messages needed to achieve a certain level of
average recall for α = 0.5. As can be seen, to achieve average recall equal to 1.0 (i.e., as in
an exact filtering approach), roughly 300, 000 filtering messages are needed independently
of the scenario in question. Additionally, for all scenarios, the MAPS approach achieves an
average recall between 65% - 85% by using only 50% (i.e., about 150K messages) of the
total messages needed to achieve a recall of 1.0.

The evaluation has not considered the directory maintenance cost so far, since the main
focus was on recall and filtering cost imposed on the network. To compare the MAPS
approach with exact IF, all types of network costs have to be included. Thus, the evaluation
used an implementation of the DHTrie protocols of [TIK05b] and compared the network
costs between approximate and exact IF.

Figure 4.18 shows the total message cost (including directory maintenance and filtering
messages) as a function of the total number of documents published in the system for both
approaches. As shown, approximate filtering costs are independent of the number of pub-
lications, since publications trigger only local computations. On the other hand, DHTrie
(and also all other exact filtering approaches) are sensitive to this parameter since docu-
ments have to be disseminated to the network to meet stored queries. Thus, approximate
filtering improves network costs up to a factor of 8, at the expense of lower recall.

In [BMW06], several strategies to decrease directory maintenance costs in a retrieval
setting are presented. The main idea behind these strategies, is that if the statistics of the
low-ranked peers are not regularly posted to the directory, peer selection quality does not
decrease, while directory maintenance cost are significantly reduced. In the evaluation this
technique is exploited and two approaches to threshold the posted statistics in the IF setting
are utilized: an absolute and a relative threshold strategy. In absolute thresholding , peers do
not take into account the size of their document collection for setting the threshold, whereas
relative thresholding adapts to peer collection size to allow for a more flexible pruning. The
proposed strategies manage to lower message costs by a factor of 11 compared to the full
directory maintenance costs while having a recall loss of less than 4%.

- 71 -



Chapter 4 Publisher Peer Selection

 0

 20

 40

 60

 80

 100

100 300

N
um

be
r 

of
 M

es
sa

ge
s 

(x
1M

)

Number of Documents (x1K)

approximate IF
exact IF

Figure 4.18: Comparison Exact vs. Approximate Information Filtering.

4.3.6 Summing Up

The evaluation has shown the tradeoffs of the MAPS approach with respect to retrieval
effectiveness and network load, and also in comparison with exact IF approaches. In MAPS,
most of the effort is spent at query indexing time, to minimize network traffic at publication
time. It presents minimal message costs since only 0.2 messages per matching document
are created. Additionally, by exploiting peer specialization, it can achieve recall as high
as 80% by monitoring only 8% of the publishers. To maximize system performance, a
judicious choice of system parameter values should take into account the specifics of each
application. In scenarios with high dynamics, publication prediction should be stressed,
whereas, in scenarios with high peer specialization and less dynamics, resource selection
should be favored. Finally, a comparison to exact IF showed that MAPS trades 10% - 20%
of recall to reduce message traffic by a factor of 8.

4.4 Improving Prediction

This section investigates strategies to improve behavior prediction in the presented approx-
imate filtering approach. In MAPS, the double exponential smoothing (DES) technique is
used to predict the future publishing behavior of publisher peers, and this prediction is
used to calculate peer scores that rank publisher peers according to the likelihood to pub-
lish in the future documents of interest. Besides this property, DES assigns exponentially
decreasing weights to older values and is able to recognize trends in a time series of values.
To achieve this, DES utilizes two parameters, η and γ, that are used to tune the prediction
formula to follow a more aggressive or passive prediction of values (see Section 2.4.4.2). In
this section, the most appropriate parameter choices for different value behaviors are inves-
tigated. The claim is that one global combination for η and γ is not sufficient to recognize
individual publishing behaviors of different peers, since it may lead to significantly lower
recall.

- 72 -



Chapter 4 Publisher Peer Selection

For this reason, the MAPS Selective Method as described in [ZTB+07] is introduced to
compute the best parameter setting per peer. This results in the reduction of prediction
errors and significant recall improvements since individual publishers may present various
behaviors. The method is scalable, since it does not incur additional communication costs
between peers, but rather utilizes information that is locally available at each peer. In the
extensive experimental evaluation the MAPS Selective Method is compared against two
opponents:

• An oracle that always predicts the monitored values accurately. As a consequence,
this opponent describes the best possible recall achievements for MAPS using behavior
prediction techniques.

• An opponent selecting parameter combinations that require a global view of the net-
work, which is highly inefficient for large-scale approaches since additional communi-
cation overhead is incurred.

The MSM approach manages to perform almost as good as the oracle and centralized
opponents, but without incurring any extra communication cost since only local communi-
cation has to be applied.

Based on the equations of double exponential smoothing presented in 2.4.4.2, different
publishing behaviors are analyzed in Section 4.4.1. In 4.4.2, the MAPS Selective Method
is introduced to automatically adapt the double exponential smoothing technique to the
observed data series. MSM uses an algorithm that does not need any additional communi-
cation cost. Next, alternative approaches are discussed in 4.4.3. The following Section 4.5
presents an extensive experimental evaluation of the MAPS Selective Method using a Web
data collection and publisher peers with different behaviors. Average recall and prediction
errors are used as experimental measures.

4.4.1 Analyzing Different Behaviors

To provide a better understanding of the exponential smoothing techniques and especially
DES, there is an investigation how double exponential smoothing is able to predict the
correct future values. For this, eight different data series are assumed, each simulating a
different publishing behavior. Table 4.4 shows all behaviors with corresponding observa-
tions. All values range from 0 to 600, and the series length is 10. Table 4.4 also shows
how the i-th value of the series is computed. The behaviors LinDec and LinInc show a
linear trend since, here, a linear time series is described. All six other behaviors (LogInc,
LogDec, QuadInc, QuadDec, ExpInc, and ExpDec) clearly show a non-linear trend in their
data value. For simplification reasons, no data series shows periodicity (or seasonality) thus
triple exponential smoothing is not necessary.

Subsequently, the influence of the two double exponential smoothing parameters η and
γ is investigated by looking at all possible combinations from 0.0 to 1.0 in steps of 0.1 for
both parameters. This way, there are overall 121 different parameter combinations for η
and γ. For each combination, the first four data values of the different behaviors are used
as bootstrapping values, and the average absolute prediction error is computed per round
between the real data observation and the predicted observation using double exponential
smoothing technique. Figure 4.19 shows for each behavior the corresponding absolute
prediction errors (y-axis) when varying the average prediction Avg value per parameter
combination (x-axis) in descending order. Consider that parameter combinations are not
in numerical order for η or γ.

- 73 -



Chapter 4 Publisher Peer Selection

Behavior Properties

LogInc log(i) ∗ (600/ log 10)
0, 180, 286, ..., 541, 572, 600

LogDec log(10− i + 1) ∗ (600/ log 10)
600, 572, 541, ..., 286, 180, 0

LinInc (600/10) ∗ i
60, 120, 180, ..., 480, 540, 600

LinDec (600/10) ∗ (10− i + 1)
600, 540, 480, ..., 180, 120, 60

QuadInc (i2) ∗ (6)
6, 24, 54, ..., 384, 486, 600

QuadDec ((10− i + 1)2) ∗ (6)
600, 486, 384, ..., 54, 24, 6

ExpInc 600/(10− i + 1)
60, 66, 75, ..., 200, 300, 600

ExpDec 600/i
600, 300, 200, ..., 75, 66, 60

Table 4.4: Data Series Simulating Different Publishing Behaviors.

 0

 100

 200

 300

 400

 500

 0  20  40  60  80  100  120

P
re

di
ct

io
n 

E
rr

or

All Parameter Combinations

ExpInc
ExpDec

QuadInc
QuadDec

LinInc
LinDec
LogInc

LogDec
Avg

Figure 4.19: Prediction Errors with DES for Different Behaviors.

- 74 -



Chapter 4 Publisher Peer Selection

As a result, Figure 4.19 illustrates that there is a high variation of prediction errors
depending on the choice of the parameter combination of η and γ. Although different
value pairs may lead to small prediction error for double exponential smoothing, notice
that there is no optimal parameter combination. The best combination for one behavior
does not necessarily result in satisfying predictions for another one. The conclusion of this
observation is that a global choice for η and γ cannot be used to predict all peer behaviors
for all active continuous queries. This is reasonable since some behaviors show stronger
or less stronger trends that have to be addressed with DES. As a result, MAPS has to
adapt the parameter combination for η and γ to the observed value behavior. In the next
section, the MAPS Selective Method is presented as a novel method for capturing parameter
combinations that will result in high recall at no extra communication cost.

4.4.2 The MAPS Selective Method

The conclusion of the previous investigation is that there exists no single setting for param-
eters η and γ to effectively model all different publishing behaviors. Therefore, the MAPS
Selective Method is introduced to adapt the parameter setting to the given scenario. The
approach works as follows.

Let the values x1, . . . , xn−1 denote the observed time series values and let x̂n be the
predicted value. The Selective Method uses the values x1, . . . , xn−2 to predict the already
known last observed value xn−1. Let x̂n−1,η,γ denote the predicted value for all combi-
nations of η and γ. Now, the parameter combination with the smallest error concerning
the real observed value of xn−1 is selected. If there are more than one combination with
smallest error, the one with the lowest distance to η = 0.5 and γ = 0.5 is picked. The
selected parameters are used to predict the next future value x̂n.

The MSM algorithm uses the observed data series x1, . . . , xn−1 and the function DESη,γ

as input to predict the next value. The algorithm outputs the selected parameter values
for η and γ, as well as the prediction value x̂n as the result of DESη,γ . Notice that the
algorithm is simplified such that the case that several parameter combinations have the
smallest error is not considered. Moreover, the observed time series needs at least two
values such that the MSM algorithm can be applied.

The Selective Method means that the most appropriate parameter setting concerning the
last observed value is always used. In this way, double exponential smoothing is adapted
to the given data series. Obviously, at least four observed values are needed to apply this
method because three values are indispensable to properly predict the last observed value.
Next, to analyze the approach, the absolute prediction errors for the various behaviors
in Table 4.4 are computed. Figure 4.20 compares the MAPS Selective Method, named in
the graph as selective, with the minimum absolute prediction error per round (min), the
average prediction error (average), and the prediction errors for parameter combination
η = 0.5 and γ = 0.5 (as an obvious parameter choice). This series is named 0.5/0.5 in the
graph. Since the maximum prediction error is very high it is not plotted in the graph to
allow for the better illustration of the other methods.

As shown in Figure 4.20 the Selective Method is in all behaviors almost as good as
min that means that the approach selects the appropriate parameters. The combination
0.5/0.5 does not really deliver satisfying error rates although this could be an obvious
choice of parameters and is often recommended. As expected, average presents higher
prediction errors even when compared against 0.5/0.5. This is caused by the fact that
most parameter combinations result in high error rates. Looking at the different behaviors,
the MAPS Selective Method accurately predicts the real values for the LinInc and LinDec
behaviors because these data series are the simplest without any trend.

- 75 -



Chapter 4 Publisher Peer Selection

Algorithm 1 MAPS Selective Method.
1: input: values x1, . . . , xn−1

2: input: function DESη,γ

3: output: parameter η, γ
4: output: prediction value x̂n

5: errormin := ∞
6: for i = 0.0 to 1.0 do
7: for j = 0.0 to 1.0 do
8: x̂n−1,η,γ := DESi,j(x1, . . . , xn−2)
9: error := |x̂n−1,η,γ − xn−1|

10: if error ≤ errormin then
11: errormin := error
12: η := i
13: γ := j
14: end if
15: end for
16: end for
17: x̂n := DESη,γ(x1, . . . , xn−1)

In addition, Figure 4.20 shows the average over all eight behaviors. Here, the novel
method performs even better than min which might seem counter-intuitive at a first glance.
Notice however that in the MSM case the average prediction error over all publishers is
measured while min refers to the best global parameter combinations of parameters per
publisher, averaged for all publishers. This is caused by the fact that a per publisher
parameter combination yields to the best possible prediction. If the errors of the MAPS
Selective Method are combined, the individual best combination is almost reached and this
is still better than the global min. Notice also the proportion between predicted values and
prediction errors. Since the observed values range from 0 to 600 average prediction errors
higher than 50 or 100 are not acceptable. In contrast, the selective method shows satisfying
prediction regarding the predicted value range.

In the next section, an alternative approach for parameter setting is presented and sub-
sequently, Section 4.5 evaluates MSM in terms of usability in the MAPS filtering system.

4.4.3 An Alternative Approach

In this section, an alternative approach to improve the prediction of double exponential
smoothing is described. Usually, to select the most appropriate values for the parameters
η and γ, each peer would investigate the parameter influence using a test collection with a
centralized computation, and this training phase would estimate the parameters. Obviously,
each peer would have one fixed combination for all publisher peers. In this case, MAPS
would not be able to recognize the individual publishing behavior of peers. Therefore, this
training approach helps selecting a local parameter combination for each querying peer but
is not as flexible as the Selective Method which is able to individually recognize and adopt
to the publishing behavior of every peer that is a candidate to monitor.

All alternative ways to select parameter values for η and γ suffer from the the problem
of selecting the appropriate training set. Even if distributed approaches are considered, the
wrong choice of text collections may result in unsatisfying results.

- 76 -



Chapter 4 Publisher Peer Selection

 0

 50

 100

 150

 200

ExpInc ExpDec QuadInc QuadDec LinInc LinDec LogInc LogDec Avg

P
re

di
ct

io
n 

E
rr

or

Different Publishing Scenarios

selective
min

average
0.5/0.5

Figure 4.20: Comparing MSM For Different Publishing Scenarios.

4.5 Experimental Evaluation

This section evaluates the Selective Method implemented for the MAPS system. The fol-
lowing sections explain the experimental setup (Section 4.5.1), measures (Section 4.5.2),
and data (Section 4.5.3). In Section 4.5.4 the detailed experimental results using differ-
ent peer publishing scenarios (Mixed, ExpInc, and QuadDec) are presented. Section 4.5.5
summarizes the experimental results regarding MSM.

4.5.1 Experimental Setup

In all experiments described below, the following steps are executed. The network is set
up and the underlying distributed hash table (DHT) is initiated. Next, there are four
bootstrapping rounds where the subscriber peers collect the posted directory statistics to the
requested continuous queries. After this bootstrapping phase, in the six subsequent rounds,
the querying peers subscribe to selected publisher peers, to reach a total of ten rounds.
During these six rounds that represent the monitoring phase, a publisher peer is monitored
by a subscriber, when the subscriber’s continuous query is stored in the publishers local
query database. The monitored peers notify the subscriber for all published documents
matching the stored continuous query.

All peers in the network publish documents during both phases and at certain intervals (or
rounds), the continuous queries are repositioned. The intervals and the number of published
documents per round depend on the individual peer behavior that will be inspected in
Section 4.5.4. At the end of each round of the subscription phase, the subscriber peers
rank publishers using the formula described in Section 4.2 and reposition their queries
accordingly. In this experimental setting, resource selection is ignored to emphasize the
prediction benefits. Thus, in Equation 4.1, α = 0.0 is utilized such that only behavior
prediction is considered.

- 77 -



Chapter 4 Publisher Peer Selection

4.5.2 Experimental Measures

To evaluate the retrieval effectiveness, the measures recall is used as the ratio of the total
number of notifications received by subscribers to the total number of published documents
matching subscriptions. The average recall over all rounds of the subscription phase is
reported.

Similar to the publishing behaviors shown previously in the analysis of double exponential
smoothing, the recall of the MAPS Selective Method is compared with the minimum and
maximum recall that would be possible if a single global pair of parameter values is used
for η and γ for all the peers in the network. In addition, an oracle peer selection approach
(referred to as oracle) is applied such that it always predicts the accurate IR statistics.
The recall of oracle represents the highest possible recall that could be achieved by MAPS.
The random peer selection approach is implemented only for comparison purposes and
demonstrates the performance of a random baseline approach.

Besides recall, the prediction quality is also analyzed. The average absolute prediction
error per key, peer and round is measured. In the graphs MSM is compared only to the
minimum prediction error opponent (min) since the maximum prediction error (max ) is
very high. Notice that, similarly to the case of recall measures, the min and max opponents
refer to globally selecting the set of parameters that would minimize or maximize the
prediction error. The two other approaches are not considered because random does not
utilize a prediction-based peer selection and oracle has by definition a prediction error of
zero. In Section 4.5.4 different peer publishing behaviors are investigated in terms of recall
and average prediction error.

4.5.3 Experimental Data

The document collection that was used for the experiments contains more than 2 million
documents from a focused Web crawl by the focused crawler BINGO! [STSW02]. All
documents are categorized in one of ten categories: Music, Finance, Arts, Sports, Natural
Science, Health, Movies, Travel, Politics, and Nature. The category size ranges from 68, 000
to more than 325, 000 documents (see Table 4.2). There are more than 500, 000 different
keys (stop words are not considered) and the documents from different categories are used
to categorize the peer set. In all experiments, the network consists of 100 peers with 10
peers per category. Using the document collection, seven strong representative single-key
queries are extracted: music, arts, sports, travel, hotel, offer, city. Single-key queries have
the advantage that there is a direct dependency between correctly predicting values and
recall. In the case of multi-key queries, there can be the effect that a peer publishes a lot
of documents containing the single keys but only a few containing the whole query key set.
For simplicity, only single-key queries are considered in this experimental setting. Multi-key
queries are considered in Chapter 5.

4.5.4 Experimental Results

After explaining the setup and the dataset of the experimental evaluation, the recall and
absolute prediction error results for different peer behaviors are presented. In the set of
experiments shown in this section, the publishing behaviors listed in Table 4.4 are utilized.
This means that a peer following the LogInc behavior publishes in the first round no
documents and in the last of the ten rounds 600 documents. In addition, a constant
publishing behavior is considered where a peer constantly publishes 300 documents per
round during both publishing phases.

- 78 -



Chapter 4 Publisher Peer Selection

To investigate the effectiveness of the MAPS Selective Method, three different scenarios
are analyzed. In the first scenario, all mentioned behaviors are used such that some peers
have a constant publishing behavior and others increase or decrease their publication rate
accordingly. The second scenario looks at the results when all peers in the network have an
ExpInc behavior, and in the last scenario, all peers follow a QuadDec publishing behavior.

The graphs for all scenarios illustrate the performance of the different opponents. The
oracle opponent shows the maximum recall MAPS can reach by accurately predicting the
IR statistics. Naturally, the prediction error for the oracle opponent is zero. The random
peer selection shows the results when publisher peers are selected completely at random. In
the random setting, the prediction error is not of interest, because prediction is completely
ignored. The min and max opponents present the best and worst recall MAPS can get with
a global setting of parameters across all peers. Similarly to Section 4.4.2, in the graphs only
the min absolute prediction error is included to better illustrate the differences between
the different opponents. The MSM approach shows the recall and prediction error of the
local parameter computation that is used to adapt the DES parameters.

4.5.4.1 The Mixed Publishing Scenario

Over the ten rounds of this scenario, all 100 peers publish together 285, 960 documents
following the different publishing behaviors. Figure 4.21 shows the recall depending on the
percentage of monitored peers in the network (ρ). As it can be seen, the MAPS Selective
Method performs marginally better than the max opponent and slightly worse than the
oracle, whereas min and random achieve significantly lower recall. This means that the
correct choice for the parameters can greatly affect the recall level. Notice that in this sce-
nario the Selective Method not only performs slightly better than the best global parameter
choice for η and γ, but also this performance is not greatly affected by the percentage of
monitored publishers. This shows that a local auto-adjustment of prediction parameters is
possible and results in recall similar to approaches that require global knowledge to com-
pute these parameters. Thus, MSM is able to achieve recall of 60% by monitoring only
20% of all publisher peers in the network.

Additionally, Figure 4.22 shows the absolute prediction error per key, peer, and round.
The prediction error of the MAPS Selective Method is about as good as the minimum
absolute prediction error computed min using a global parameter setting. The error varies
for both strategies from 13 to 20 on average. Notice, that oracle and max are for the known
reasons not included in this graph.

4.5.4.2 The ExpInc Publishing Scenario

Figures 4.23 and 4.24 show the recall and absolute prediction error results of the second
scenario where all 100 peers follow a ExpInc publishing behavior. The total number of
published documents amounts to 175, 600. In this scenario, recall is almost independent of
the parameter choice (see Figure 4.23). All approaches (min, max, oracle, and selective)
perform almost the same. Only the random strategy is not competitive. Even the prediction
quality of selective and min are similar and vary from about 22 to 35 per key, round, and
peer. The absolute prediction error for max is still very high and not included in Figure
4.24, but there is no influence to the recall. This is caused by the fact that all publisher
peers follow the same behavior ExpInc. Compared to other behaviors, this scenario shows
the highest absolute prediction errors since the data series shows a strong growing trend.

- 79 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

min
max

oracle
random

selective

Figure 4.21: Average Recall in Mixed Publishing Scenario.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25

P
re

di
ct

io
n 

E
rr

or

ρ - Percentage of Monitored Publisher Peers

min
selective

Figure 4.22: Average Prediction Error in Mixed Publishing Scenario.

- 80 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

min
max

oracle
random

selective

Figure 4.23: Average Recall in ExpInc Publishing Scenario.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25

P
re

di
ct

io
n 

E
rr

or

ρ - Percentage of Monitored Publisher Peers

min
selective

Figure 4.24: Average Prediction Error in ExpInc Publishing Scenario.

- 81 -



Chapter 4 Publisher Peer Selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

ρ - Percentage of Monitored Publisher Peers

min
max

oracle
random

selective

Figure 4.25: Average Recall in the QuadDec Publishing Scenario.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25

P
re

di
ct

io
n 

E
rr

or

ρ - Percentage of Monitored Publisher Peers

min
selective

Figure 4.26: Average Prediction Error in the QuadDec Publishing Scenario.

- 82 -



Chapter 4 Publisher Peer Selection

4.5.4.3 The QuadDec Publishing Scenario

The last investigated scenario considers the case that all peers publish documents using a
QuadDec behavior. The overall number of published documents is about 231, 000. Here,
the MAPS Selective Method performs much better than min in terms of recall but does
not reach the level of max (see Figure 4.25). This result corresponds to the observations
of Section 4.4.2. The same result holds for the absolute prediction errors where selective
causes higher errors than the best global parameter choice. As also shown in the graph,
the selective approach still performs better than the worst parameter choice for η and γ.
It can also be constituted that the absolute prediction error is almost independent from
the number of monitored peers in the network since there is only a small error variation
recognizable in Figure 4.26.

4.5.5 Summing Up

The experimental section presented the effectiveness of the MAPS Selective Method in
terms of recall improvement against several opponents. In the most considered scenarios,
the proposed novel method reached almost the same recall level as the best global parameter
combination providing the smallest prediction error. When compared to the opponents
examined, the main advantage of MSM is the fact that no additional communication is
needed to adopt the two prediction parameters.

4.6 Discussion

This chapter presented a novel peer selection approach, called MAPS, appropriate for sup-
porting approximate publish/subscribe functionality in a structured P2P environment. The
peer selection strategy is embedded in the service and protocol architecture presented in the
previous chapter. A combination of resource selection and behavior prediction techniques
is applied to the collected metadata such that the most promising publisher peers can be
selected. The extensive experimental evaluation approved the effectiveness and efficiency
of MAPS in several settings using real Web data.

This chapter also conducted an approach to improve the proposed prediction method
of time series analysis with double exponential smoothing. The MAPS Selective Method
clearly improved prediction by individually recognizing publisher behavior without any ad-
ditional communication overhead. In the next chapter, two strategies to consider correlated
keys in MAPS will be presented.

- 83 -



Chapter 4 Publisher Peer Selection

- 84 -



Chapter 5 Correlated Key Sets

Chapter 5

Correlated Key Sets

Based on the MAPS architecture and peer selection strategies presented earlier, this chapter
provides two novel algorithms for exploiting correlations among keywords in continuous
queries for an approximate information filtering setting [ZTW08]. This setting assumes
that metadata is maintained in a distributed directory, usually on a per-keyword basis,
thus disregarding possible relatedness among keywords. The work presented in this chapter
extends traditional query routing techniques and strategies from the domain of distributed
information retrieval.

Section 5.1 introduces the issue of correlated keys (or keywords), mentions the main
contributions of correlation awareness, and investigates some previous work in this research
area. The baseline approach, a slightly modified protocol for publish/subscribe, and the
correlation measure are presented in Sections 5.2 and 5.3. The two algorithms USS and
CSS to exploit correlations among key sets are explained in Section 5.4 and evaluated in
Section 5.5. This chapter will revisit the DV estimation synopses (hash sketches and KMV
synopses) listed in Section 2.5. The chapter is concluded with a closing discussion in Section
5.6.

5.1 Introduction

In an approximate information filtering as the one presented in Chapter 3, only a few care-
fully selected, specialized, and promising publishers store the user query and are monitored
for new publications. Thus, the user query is replicated to these sources and only published
documents from these sources are forwarded to the subscriber. The system is responsible
for managing the user query, discovering new potential sources and moving queries to better
or more promising sources. Since in an IF scenario the data is originally highly distributed
residing on millions of sites (e.g., with people contributing to blogs), approximate IF seems
an ideal candidate for such a setting. This is also supported by the fact that exact IF func-
tionality has proven expensive for such distributed environments [TIK05a, TX03, AT05].
Thus, approximate IF achieves much better scalability of such systems by trading faster
response times and lower message traffic for a moderate loss in recall.

Publisher selection in approximate IF regarding a given continuous query with multiple
keywords is driven by statistical summaries (metadata) that are stored by the system.
These summaries are provided to the directory by the publishers and can be managed in
different ways ranging from centralized solutions like servers or server farms, to super-peer
or pure peer-to-peer solutions in the form of a distributed P2P directory built on top of a
DHT [Abe01, SMK+01] or other kinds of overlay networks. For scalability, the summaries
have publisher granularity, not document granularity, thus capturing the best publisher for
certain keywords (also referred to as keys) but not for specific documents.

- 85 -



Chapter 5 Correlated Key Sets

This, together with per-key organization of the directory that disregards keyword cor-
relations (also referred to as key sets) are two of the basic reasons that may possibly lead
to insufficient recall. On the other hand, considering statistics for all possible key sets is
clearly not possible due to the explosion in the feature space.

As an example scenario, consider a user Bob who wants to follow the discussion about
the presidential elections1 in the US, and wants to receive notifications from a number of
different sites like news agencies, portals, and user blogs. Clearly, Bob would be interested in
monitoring a variety of publishers but is not interested in receiving all the articles published
by all sources, as it would be the case for exact IF. Thus, in an approximate IF scenario,
Bob would submit the continuous query US presidential elections to the filtering system.
The basic approach would decompose the continuous query into the three individual keys
and use the statistics from the directory to compute a combined score (e.g., intersection
or some other kind of aggregation of individual key scores) for each key and publisher.
This score would represent the probability of each source to publish documents about US
presidential elections in the near future. This approach may lead to poor filtering quality
as the top-ranked publishers for the complete query may not be among the top selected
publishers. In the worst case, a selected publisher may deliver many documents for each
single keyword, but no single document matching all keywords, since this information is
not present in the directory.

In this chapter, two approaches that use correlations among keys to improve filtering
quality in the scenario described above are introduced and evaluated in detail. The first al-
gorithm (coined USS for Unique Synopses Storage) uses existing single-key synopses stored
in the directory to estimate the publishing behavior of information sources for key sets,
while the second (coined CSS for Combined Synopses Storage) enhances the directory to
explicitly maintain statistical metadata about selectively chosen key sets. Both algorithms
build upon previous work in the area of information retrieval over distributed P2P networks
[MBN+06] and extend it to the approximate IF setting in various novel ways.

5.1.1 Contributions

The main contributions of the algorithms presented in this chapter are as follows:

• In contrast to distributed IR settings for one-time searching where sources are ranked
according to their document collections (i.e., using resource selection strategies), in
approximate IF the publishers are ranked according to their probability to publish
relevant documents in the near future, which poses different requirements for the
maintenance of statistics. This is the first work to develop algorithms for exploiting
keyword correlations in such an dynamic IF setting.

• The self-limited approach of [MBN+06] for two-key queries is extended to the case of
multi-key continuous queries for an arbitrary number of keys. Next, new algorithms
to approximate multi-key statistics by combining the statistics of arbitrary subsets
are provided.

• Hash sketches, used in [MBN+06] for compactly representing the documents, yield
inaccurate results when considering continuous queries with more than two keys.
Thus, the usage of recent state-of-the-art techniques for compact representation of
multisets is proposed [BHR+07] and applied. These new techniques (called KMV
synopses) allow the system to compute accurate synopses for multi-key queries, and
further improve the filtering effectiveness.

1The United States presidential election of 2008 is scheduled for November 4, 2008

- 86 -



Chapter 5 Correlated Key Sets

Symbol Explanation
|X| number of distinct documents in a multiset X
D set of documents in the system
Di set of documents on publisher pi

a, b individual keys
ab key set (both of a and b)

D(a) set of documents in D containing key a
Di(a) set of documents in Di containing key a
df(a) frequency of key a in D (= |D(a)|)
dfi(a) frequency of key a in Di (= |Di(a)|)

SY N(a) synopsis representing documents in D(a)
SY Ni(a) synopsis representing documents in Di(a)

d(a) directory peer responsible for key a

Table 5.1: Summary of Notation

5.1.2 Previous Research on Correlated Key Sets

This section present some previous work in the context of information retrieval and filtering
that includes the usage of correlations among keys within these settings. All methods
mentioned in this thesis organize the statistics about publisher peers, which drive the
necessary query routing decisions, on a per-key basis disregarding key correlations. The
only recent works that consider key correlations in the context of P2P search are [MBN+06]
and [SLZ+07]. [MBN+06] considers frequent key combinations in query logs and documents
for P2P IR, where [PRL+07] proposes a framework for Highly Discriminative Keys (HDK),
which includes correlated key combinations; however, it does not give any algorithms for
managing the corresponding statistics in a distributed setting and for correlation-aware
query routing. Previous work on information filtering does not consider correlations among
keys so far such that the work in this thesis presents the first approach.

5.2 The Baseline Approach

This section presents the baseline approach as a starting point to introduce the two al-
gorithms that exploit correlations in key sets. The baseline approach uses the protocols
presented in Section 3.3 with an approximate IF architecture consisting of three different
system components: the directory, the publishers and the subscribers. The notation that
will be used is summarized in Table 5.1.

In this chapter, the additions and modifications over the baseline protocols presented in
Chapter 3 are described including the distribution of special-purpose synopses by the pub-
lishers. The synopses represent the inverted lists of documents a publisher hosts concerning
a key a. This can be done using hash sketches or KMV synopses as presented in Section
2.5. A publisher pi inserts an identifier for each document contained in its collection into a
local hash sketch or KMV synopsis for key a to obtain SY Ni(a). The distributed directory
stores all disseminated statistics. Since there is a well-defined directory peer responsible for
each key (through the DHT hash function), the synopses representing the index lists of all
publishers for a particular key a are all sent to the same directory peer d(a). Thus, d(a)
can compute a moving-window estimate for the global df value of a – df(a) – by performing
an union operation for all synopses SY Ni(a) sent by every publisher pi for key a.

- 87 -



Chapter 5 Correlated Key Sets

The baseline approach intersects the statistics for the single keys of a continuous query
cq = {k1, k2, . . . , kn} consisting of multiple keys ki, and sends the continuous query only
to (a subset of) the publishers that published (or will publish) statistics for all queried
keys. However, this approach may lead to reduced recall, since a publisher appearing in the
publisher lists for both keys ki and kj will not necessarily publish documents containing
both ki and kj . Thus, to select an appropriate publisher for cq, the statistics of the key
set have to be considered to determine more accurately its future publishing behavior.
Obviously, the larger the subset of cq statistics are maintained for, the more accurate the
prediction about the behavior of the publisher will be.

5.3 Correlation Measures

This section covers the question how to measure the correlation among keys. Thus, the ex-
isting measures for correlated key pairs is presented and extended for capturing relatedness
among keys in key sets. Next, the correlation model that will drive the extended synopses
construction and publisher selection is explained.

In [MBN+06], the conditional probability that a random document contains a key a given
that it contains a key b was introduced as an asymmetric measure of relatedness. Using
this measures, there is no need for knowing or estimating the total number of documents,
since the estimator for key sets with two keys a and b is given by Equation 5.1 for the
conditional probability P̂ (A|B) as follows:

P̂ (A|B) =
df(ab)/|D|
df(b)/|D|

=
df(ab)
df(b)

(5.1)

To estimate the value of df(ab), the number of documents containing keys a and b, hash
sketches and KMV synopses provide appropriate multiset operations. A nice property
of this measure is that it can be applied without knowing (or estimating) the number of
documents |D|. Subsequently, [MBN+06] proposes methods to identify sufficiently frequent
and interesting key pairs, and select those that present the lowest correlation. The output
of this process would then be used to guide query routing to appropriate peers for local
result retrieval.

Notice that standard measures like the correlation coefficient has the drawback that its
estimation requires knowledge (or an estimate) of the total number of documents in the
network. Moreover, there may be situations where it is important to capture that key b is
related to key a, but the reverse direction is uninteresting. For example, in popular, recent
Web queries the key Olympics often implies that the same query contains also the key
Beijing2, but the reverse direction has a much weaker association from a user viewpoint.
So, in the proposed setting, the conditional probability is a better measure for relatedness.

Here, the approach summarized above is modified to consider arbitrary numbers of keys
(instead of only key pairs) and to identify appropriate key sets in an approximate informa-
tion filtering scenario. Thus, to consider an arbitrary number of keys in a correlated key set
S = {k0, k1, . . . , kn−1} and to compute the probability estimator that a random document
contains k0 given that it contains all other keys, the previous formula has to be modified
as follows:

P̂ (K0|K1 . . .Kn−1) =
df(k0k1 . . . kn−1)
df(k1 . . . kn−1)

(5.2)

2since the Olympic Games 2008 take place in Beijing

- 88 -



Chapter 5 Correlated Key Sets

Notice that, in an information filtering setting, the continuous queries are actually long-
standing queries that will be assessed several times in the future. Thus, all continuous
queries can be effectively considered as candidate key sets for harvesting multi-key statistics.
In contrast, a requested query in the retrieval scenario can be asked only once. Should a
more selective system behavior be intended (e.g., for performance reasons), the submitted
continuous queries can be further analyzed using frequent itemset mining techniques [AIS93,
FSGM+98] to discover the most common ones.

To identify either uncorrelated key pairs or negatively correlated key pairs, additional
statistics are needed to find the best publishers to index a multi-key continuous query. To
clarify this need, consider a key pair ab that has no correlation. For these keys, there are
only few publishers in the network that have the potential to publish in the future relevant
documents that would contain both a and b, and these publishers cannot be located by
selecting and combining the statistics for key a and key b alone. The conclusion from
this is that a pair ab has to be considered as interesting if both P̂ (A|B) and P̂ (B|A) are
below some threshold β within the documents. Extending the above to a key set S with
an arbitrary number of keys using the conditional probability in Equation 5.2, for each key
k0 the value of P̂ (K0|K1 . . .Kn−1) has to be estimated. The key set S is of interest if all
estimated probabilities are below some threshold β.

5.4 Exploiting Correlations

This section presents two new algorithms to exploit correlations among key sets: (i) the
USS algorithm (Unique Synopses Storage) presented in 5.4.1 uses single-key synopses (hash
sketches or KMV synopsis) already stored in the distributed directory to estimate the fil-
tering behaviors for key sets, and (ii) the CSS algorithm (Combined Synopses Storage)
explained in 5.4.2 enhances the single key directory to explicitly maintain statistical meta-
data about selectively chosen sets of multiple keys depending on the correlation measures
(conditional probability) introduced in previous Section 5.3. Both algorithm build-upon
and extend the baseline algorithm introduced in Section 5.2.

5.4.1 The USS Algorithm

In this section, the USS algorithm (Unique Synopses Storage) is presented. USS uses
single-key synopses already stored in the distributed directory to estimate the publishing
behavior for complete key sets. As the distributed statistics of a publisher pi regarding a
key a contain the synopsis SY Ni(a) (to represent the documents of pi containing key a),
it is possible to compute the number of documents containing all keys of a given key set S.
For this, the algorithm uses the intersection operation for multisets as explained in detail
in Section 2.5 as an estimation for the frequency of the whole key set in pi’s local collection
(dfi(S)). Together with prediction techniques presented in this thesis, the most promising
publishers can be selected by applying appropriate scoring functions based on publisher
behavior prediction.

To explain the algorithm, consider a subscriber s subscribing with a multi-key continuous
query cq = {k1, k2, . . . , kn} containing n distinct keys. According to the USS algorithm the
following steps are executed:

1. For each key kj , 1 ≤ k ≤ n in cq, subscriber s contacts the directory peer d(kj)
responsible for kj and retrieves the statistical summaries published individually for
all keys, including the synopses SY Ni(kj) produced by a publisher pi.

- 89 -



Chapter 5 Correlated Key Sets

2. For each publisher pi appearing in all statistics, s computes an estimation for dfi(cq)
using formulas introduced in Section 2.5 and applies prediction techniques based on
time series analysis to compute a behavior prediction score as described in Chapter
3. This score indicates pi’s potential to provide appropriate published documents in
the future.

3. Subscriber s sends the continuous query cq to the top-ranked publishers with the
highest publisher scores. Only these publishers will index cq and in the future notify
s about matching documents. Obviously, non-selected publishers will not notify s for
published matching documents, since they are not aware of cq.

4. Due to publisher churn and dynamics in publishing behavior, s has to reposition the
continuous query cq by repeating steps 1 to 3 in a periodic way.

The USS approach has the major advantage that it can be performed for all possible key
sets and queries in the directory, while the CSS approach, presented in the next section,
uses multi-key statistics of judiciously selected key sets, and can only be applied to these
predefined key set collections. Below, some important issues about the USS approach are
listed:

• Higher Network Load: To exploit the single-key statistics for a given key set, the
directory has to send long lists of statistics to the requesting subscriber since the lists
have to be merged. In contrast, given multi-key statistics in the directory, only the
statistics of the top-ranked publishers have to be retrieved. Beyond this, the number
of directory peers in the USS algorithm depends on the number of keys contained in
the continuous query.

• Inaccuracy: While both hash sketches and KMV synopses allow to estimate the
number of distinct values in the intersection of multisets, it is inaccurate to create
a synopsis for the intersection that represents the documents containing all keys.
In the case of hash sketches, an estimation for a key set with more than two keys
suffers from a significant degrading in accuracy due to its indirect way to compute
the sieve formula, whereas the KMV synopses provide better cardinality estimations
for multiple set intersections.

• Prediction Errors: Considering single-key statistics to predict publisher behavior
introduces additional errors. The subscriber has to perform time series analysis of es-
timated values thus increasing the probability of prediction errors whereas prediction
on accurate values shows very promising results.

5.4.2 The CSS Algorithm

To overcome the problems of the USS algorithm, the CSS algorithm (Combined Synopses
Storage) is introduced. The algorithm identifies valuable key combinations, enhances the
directory to explicitly maintain these multi-key statistics, and exploits these statistics to
improve publisher selection. In addition, the CSS algorithm combines multi-key statistics
for subsets of the requested continuous query.

As already discussed in Section 5.3, uncorrelated or negatively correlated keys are of
interest to collect multi-key statistics. The CSS algorithm aims at addressing the following
questions: (i) how to decide which key sets are of interest to disseminate additional multi-
key statistics; (ii) how to disseminate multi-key statistics of publishers to the directory;
(iii) how to exploit the additional statistics to improve publisher selection; (iv) how to deal
with multi-key statistics for subsets of the complete continuous query.

- 90 -



Chapter 5 Correlated Key Sets

5.4.2.1 Assessing Key Sets

Given a key set S = {k1, k2, . . . , kn} with n distinct keys, a deterministic function is em-
ployed (e.g., by selecting the lexicographically highest or lowest key) to select one directory
peer that has to assess the relatedness among the keys of S and be responsible for this
key set. A deterministic approach with pre-hashing the key-values ensures load balancing
among the directory peers. The CSS approach uses the following three steps to assess a
candidate key set S where d(S) is the directory peer that is responsible for the assessment
decision:

1. Initially, d(S) contacts all directory peers responsible for the other keys kj ∈ S to
retrieve the synopsis SY N(kj) representing all documents in the network containing
the key. The answering directory peers d(kj) for a key kj compute locally the syn-
opsis SY N(kj) by using the union operation over all individual publisher synopses
SY Ni(kj) (see Section 2.5).

2. Subsequently d(S) computes the intersections among the synopses SY N(kj), to re-
trieve the estimated cardinality of documents containing all keys in the candidate set
(denoted as df(S)).

3. Finally, using Equation 5.2, directory peer d(S) then computes the conditional prob-
abilities for each key kj ∈ S.

Small values for the conditional probabilities show that the occurrence of all keys in the
documents are largely independent, meaning that publisher selection decisions can strongly
benefit from the existence of available multi-key statistics. Thus, CSS initiates the creation
of these additional summaries if the conditional probabilities for all keys kj ∈ S are below
some threshold β.

To further optimize message traffic between directory peers, a threshold α is introduced,
such that if the conditional probability of a key kj is above α, publisher selection strategy
does not have to consider the single-key statistics of that key. The idea behind this is that kj

is contained in almost all documents containing the rest of the keys S\{kj}, making this key
set a candidate for multi-key statistics. The experimental evaluation will also investigate
this strategy in Section 5.5 by computing the conditional probabilities of several continuous
query.

5.4.2.2 Disseminating Multi-Key Statistics

As soon as a key set has been assessed as a useful candidate that is worth collecting multi-
key statistics for (as explained before), publishers have to learn this fact immediately.
Especially in an information filtering scenario, where statistics have to get updated, the
continuous process of directory refreshment can be used to disseminate the knowledge about
valuable multi-key sets.

Assuming that a directory peer d(S) that is responsible for a key k ∈ S and key set
S identified key set S as useful. According to the algorithm, d(S) is also responsible
to maintain the multi-key statistics for the complete key set S. Whenever a publisher p
updates its statistics for key k, d(S) can inform the publisher about the new key set. In this
way, p will compute its local statistics for the complete set S and disseminate them to the
directory peer d(S). This procedure does not incur any additional messages compared to
the baseline approach described in Chapter 3, since additional statistics can be piggybacked
on messages that need to be sent anyway.

- 91 -



Chapter 5 Correlated Key Sets

5.4.2.3 Exploiting Multi-Key Statistics

Next, it is assumed that a subscriber s submitting a continuous query cq asks the directory
peers responsible for the keys in cq to provide the related statistics. Since cq is included
in the request message, a directory peer d(S) that stores statistics about a key set S,
where S ⊆ cq, will return the statistics for S together with the single-key statistics it is
responsible for. The following section explains how to compute the statistics for a multi-
key query by combining statistics from subsets available in the directory. Subsequently,
the subscriber collects the multi-key statistics and uses them to perform publisher ranking.
Note that the subscriber applies publisher selection based on multi-key statistics, and is
thus able to predict the publishing behavior of sources more accurately. Contrary, the
baseline algorithm performs a separate prediction for each single key. If no summaries for
the key set (or subsets, see Section 5.4.2.4) have been published, the baseline procedure
using single-key summaries is still applicable without contacting additional directory peers.

5.4.2.4 Combining Multi-Key Statistics

A usual case for continuous queries with more than two keys is that there are no statistics
for the full key set S of the query, because, e.g., the assessment step did not consider the
full key set as sufficiently useful. However there might be available statistics for several
multi-key subsets of S. In this case, by design, all of these subsets can be found by the
subscriber by simply asking the directory peers responsible for the single keys as explained
in the previous section.

To give an example, assume that the directory maintains the multi-key statistics of
S1 = {a, b, c} and S2 = {b, c, d}. Then, for a given five-key query S = {a, b, c, d, e}, the
algorithm has several options at hand. The CSS approach proposes to select all maximal
subsets among the available multi-key summaries. This is efficient in terms of network
costs because the entire continuous query will be sent to all single-key directory peers
anyway. But this consideration opens up a space of optimization strategies; Combining
such incomparable but mutually related multi-key statistics is reminiscent of the recent
work on multidimensional histograms with incomplete information [MMK+05], but the
setting here has the additional complexity of very-high-dimensional key space.

To combine the different multi-key statistics, the CSS algorithm weights them depending
on the size of the multi-key subset. The scoring function to calculate a publisher score is
given by Equation 5.3:

scoreS(p) =
∑

Si⊆S

|Si| · predScoresi
(p) (5.3)

Here, Si is a subset of the key set S contained in the continuous query, |Si| is its cardinal-
ity, and predScoresi(p) represents the likelihood that p will produce a document containing
Si in the future. This score is produced using time series analysis techniques similarly (plus
resource selection techniques) as presented in Chapter 4. Thus, to obtain a publisher score,
the system sums-up all prediction scores for the subsets Si that have been received from
the directory peers such there is no Sj with Si ⊂ Sj .

The intuition behind weighting the prediction score with the size of the key set |Si|
is that the prediction score for small subsets dominates the sum. This happens because
the number of documents containing all the keys of small key sets is higher, resulting in
higher prediction scores. Next section experimentally investigates different scenarios where
multi-key statistics for the full continuous query are not available, but a combination of the
statistics of subsets is possible.

- 92 -



Chapter 5 Correlated Key Sets

5.5 Experimental Evaluation

In this experimental section, the USS and CSS algorithms are evaluated using two real-life
corpora with Web and blog data. Since it is extremely difficult to find real-life continuous
queries except by obtaining proprietary data (e.g., from CNN’s news or Springer’s journal
alert system), the experiments utilize the popular Web queries contained in the Zeitgeist
query-log, and treats them as subscriptions (e.g., assuming that a user is interested in
staying informed about his favorite pop star, or a big sport event). The Google Zeitgeist3

query-log is published periodically for different geographic regions to express the most
interesting search trends.

5.5.1 Experimental Setup

The evaluation compares the filtering performance of both algorithms with different syn-
opses (hash sketches and KMV synopses) and against a baseline algorithm that computes
publisher scores using single-key frequencies to predict the publishing behavior of informa-
tion producers. This baseline algorithm corresponds with the baseline approach presented
in 5.2. The prediction mechanisms have an average prediction error of 10% to ensure a
realistic system behavior.

As quality measure to evaluate the filtering performance of both algorithms, the exper-
iments use recall . Recall in the IF setting is defined as the ratio of the total number of
notifications received by subscribers to the total number of published documents matching
the subscriptions. In the experiments, the average recall over several publication rounds
is considered. In all graphs illustrated in this section, recall depends on the percentage of
monitored publisher peers.

5.5.2 Experimental Data

For the experimental setup, a recently proposed benchmark [NBMW06] designed specifically
for use in the evaluation of distributed and P2P settings is utilized. Briefly, the benchmark
consists of more than 800, 000 Web documents drawn from the Wikipedia corpus, and an
algorithm to distribute the documents among 1, 000 publishers with controlled overlap that
mimics the real-world behavior.

The Zeitgeist query-log contains queries with one, two, and three keys. To investigate
filtering quality depending on the conditional probabilities, the set of distinct single-keys in
all queries is used to create two-, three, and four-key queries by combinations. During query
evaluation, a continuous query is indexed in up to 25% of the publishers. The experiments
use the concept of publication rounds to simulate the time properties of the published
documents; here, a publisher peer publishes around 400 documents in each round, which
could represent the weekly publications of a digital library or news portal.

The second data set focuses on blog data4. Out of a huge set of blogs, about 1, 000 blogs
have been selected that published more than 300 postings each during a time period of
three weeks. The selected blogs have been crawled and assigned to 1, 000 publishers. The
crawled blog data also spans over three weeks. Again, the same Zeitgeist query-log is used
to evaluate the filtering performance, while the query repositioning algorithm was executed
to simulate one query repositioning per week.

3http://www.google.com/press/zeitgeist.html archives query-logs since 2001
4Another well-known source of blog data is Blogsphere [BK07].

- 93 -



Chapter 5 Correlated Key Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Peers

baseline
CSS

USS-HS
USS-KMV

Figure 5.1: Average Recall for Two-Key Zeitgeist Queries.

5.5.3 Experimental Results

This section shows the experimental results of the evaluation for both data sets. Section
5.5.3.1 considers experiments using the Web data collection whereas Section 5.5.3.2 uses
the blog data collection.

5.5.3.1 Results Using Web Data

Figure 5.1 (respectively 5.2) shows the filtering quality for all two-key (respectively three-
key) continuous queries from the Web query-log using the Web data set. The evaluation
compares a baseline publisher selection algorithm based on behavior prediction for single-
key statistics as described in this thesis in Chapter 3, with the CSS approach of multi-
key statistics maintained in the directory, and with the USS approach using two different
synopses (hash sketches and KMV synopses).

The results show the recall improvements obtained by the proposed algorithms. For
two-key queries, 24% publishers have to be monitored to reach a recall level of 0.50 in the
baseline approach, whereas, using the CSS approach, the subscriber only has to monitor
19% of the network. The CSS outperforms both USS approaches, because it offers more
accurate and explicit statistics for the key-pairs. Comparing the two USS approaches, the
use of KMV synopses slightly improves filtering quality when compared to hash sketches.

Considering the results for the three-key query set, the improvements are much higher.
The CSS approach reaches a recall of 0.79 by subscribing to 15% of all publishers. In
contrast, the baseline approach reaches a recall of 0.44 by monitoring the same number of
publishers. Using this query set, a considerable difference between the results of the two USS
approaches can be seen. The USS-KMV approach that uses KMV synopses almost reaches
the result quality of the multi-key approach, while USS-HS suffers from the inaccuracy of
combining hash sketches of more than two sets. Recall that KMV synopses use a direct
way to intersect multisets, whereas hash sketches reside on an indirect computation that
causes loss in accuracy.

- 94 -



Chapter 5 Correlated Key Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Peers

baseline
CSS

USS-HS
USS KMV

Figure 5.2: Average Recall for Three-Key Zeitgeist Queries.

To investigate the filtering quality of both approaches for four-key continuous queries,
queries were created using the single keys from the real-world Zeitgeist query set. Out of
the full set of all possible four-key queries, the 500 combinations with the highest number
of matching documents in the Web collection have been selected. Examples of resulting
queries are time war unit world, day nation world game, or war world london british. All
selected continuous queries have more than 3, 000 matching documents within the Web
data collection.

In the first experimental series with this query set, the general filtering quality of the CSS
and USS approaches are investigated. Figure 5.3 shows that CSS outperforms the baseline
approach and both USS approaches. When hash sketches are used to represent documents
the filtering performance is worse even from the baseline approach due to the inaccuracy of
multiset operations. Hash sketches have to use the sieve formula to perform the multiset
operation thus suffering from inaccurate estimations. Contrary, the use of KMV synopses
improves the filtering quality because it guaranties better distinct-value estimations for the
intersections of multiple sets (see Section 2.5.2). Notice that the selected four-key queries
do not fully show the improvement margins of the CSS algorithm, since more selective key
sets with less matching documents benefit more from multi-key statistics.

Using the set of four-key continuous queries described above, the evaluation measured the
filtering quality for combining multi-key statistics as proposed in Section 5.4.2.4. Figure
5.4 illustrates the improvements for several scenarios of available multi-key statistics in
comparison to the baseline approach. The filtering quality of CSS gives the upper bound
by using the exact multi-key statistics of the full continuous query:

• In the first scenario CSS-1 , all four possible three-key statistics are available to use
select the most appropriate publishers. This means for a four-key continuous query
abcd that the statistics for abc, abd, acd, and bcd are available. Notice that multi-key
statistics for single keys or pairs can also be stored in the directory but not be used
since the proposed algorithm in Section 5.4.2.4 to combine multi-key statistics only
considers maximal subsets.

- 95 -



Chapter 5 Correlated Key Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Peers

baseline
CSS

USS-HS
USS-KMV

Figure 5.3: Average Recall for Four-Key Zeitgeist Queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Peers

baseline
CSS

CSS-1
CSS-2
CSS-3
CSS-4
CSS-5

Figure 5.4: Average Recall for Different Multi-Key Statistics.

- 96 -



Chapter 5 Correlated Key Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Peers

baseline 2-Key-Low
CSS 2-Key-Low

baseline 2-Key-High
CSS 2-Key-High

baseline 2-Key-All-High
CSS 2-Key-All-High

Figure 5.5: Average Recall Improvements for Two-Key Queries.

• All six two-key statistics are provided by the directory in the second scenario denoted
as CSS-2 but the directory does not store statistics for three key subsets.

• The third CSS-3 scenario assumes the existence of two two-key statistics such that
the whole key set is covered (e.g., for query abcd, the statistics of ab and cd are
available).

• One three-key plus one complementary single-key statistics are provided by the di-
rectory in the CSS-4 scenario (e.g., statistics for acd and b).

• The last CSS-5 scenario assumes two overlapping multi-key statistics for one two-key
plus one three-key statistics. Here, the multi-key statistics for abc and cd meet the
scenario condition.

The results show that all combinations improve the baseline approach, but cannot reach
the filtering quality of the CSS approach. Naturally, filtering quality depends on the size
of the multi-key statistics: the scenarios (CSS-5 and CSS-1 ) where multi-key statistics
for three keys are considered to select publishers show the best filtering performance; in
contrast, the three other scenarios only have two-key statistics.

Figures 5.5 and 5.6 demonstrate another series of experiments that targeted the im-
provements in filtering performance over the baseline algorithm, when using the proposed
correlation measures for multi-key statistics. To conduct this experiment, all possible two-
and three-key queries are created using the single-keys from the Zeitgeist query-log. Three
different query sets with a size of 100 each are selected; the query sets have the following
properties:

• Low-Corr includes those key sets where all keys have a low conditional probability
such that there are only a few documents in the Web data set that contain both keys
at the same time.

- 97 -



Chapter 5 Correlated Key Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Peers

baseline 3-Key-Low
CSS 3-Key-Low

baseline 3-Key-High
CSS 3-Key-High

baseline 3-Key-All-High
CSS 3-Key-All-High

Figure 5.6: Average Recall Improvements for Three-Key Queries.

• High-Corr consists of key sets with high conditional probability for at least one key.
The main characteristic of such a key set is that one of the keys almost only appears
in documents that also contain the remaining keys.

• All-High-Corr consists of key sets with high conditional probabilities for all keys.
Here, the key set appears together in documents very often.

Tables 5.2 and 5.3 show example two-key and three-key queries for the used query sets
described above. Underlined scores denote high conditional probabilities. The threshold
depend on the number of keys. The key sets island brother and british sport star show
low conditional probabilities whereas in the key sets football sport and nation unit world,
all keys have a high conditional probability. The other two examples belong to the query
set High-Corr where keys show a diverse correlation measure (at least one key has a high
conditional probability).

keyA, keyB P (A|B) P (B|A)
island brother 0.10 0.05
time gift 0.62 0.03
football sport 0.33 0.27

Table 5.2: Relatedness of Example Two-Key Queries.

keyA, keyB , keyC P (A|BC) P (B|AC) P (C|AB)
british sport star 0.13 0.21 0.22
time face friend 0.83 0.25 0.22
nation unit world 0.54 0.47 0.45

Table 5.3: Relatedness of Example Three-Key Queries.

- 98 -



Chapter 5 Correlated Key Sets

As already explained in Section 5.4, subscribing to key sets where all keys have low
conditional probabilities yields to the highest filtering result improvements when monitor-
ing the same percentage of publishers. This is caused by the fact that a low conditional
probability means that there are a lot of matching documents this key without matching
the remaining keys. Thus, when monitoring only 10% of the publishers, 2-Key-Low-Corr
has an recall improvement from 0.44 to 0.65 whereas 2-Key-All-High-Corr only improves
filtering quality from 0.25 to 0.28 (see Figure 5.5). Similar results hold for three-key queries
in Figure 5.6 where 3-Key-Low-Corr has an improvement from 0.43 to 0.68 compared to
improvement for 3-Key-All-High-Corr from 0.30 to 0.33. This leads to the conclusion that
the CSS algorithm has no significant effect for key sets where all keys are highly correlated,
while it significantly improves filtering for key sets with low correlations.

Analyzing the results for key sets where one key is highly correlated to all others (High-
Corr), an smaller improvement compared to unrelated keys can be observed. Here, the use
of the CSS approach is possible, but an alternative strategy is proposed: a high conditional
probability for a key k means that there is almost no additional information included
in multi-key statistics for the full key set in comparison to the key set without k. As
an example, the multi-key statistics for key set time face friend yield to similar filtering
results than the multi-key statistics for face friend because the conditional probability
P (time|face, friend) is high (83% of all documents containing face and friend also contain
time). The same observation holds for the key set time gift where time denotes the highly
correlated key. There, 60% of all documents containing gift also contain time.

5.5.3.2 Results Using Blog Data

In this section, experimental results from the blog data experiment are presented. Overall,
the observations for blog data lead to similar conclusions with the Web data corpus, with
CSS outperforming USS and baseline.

The results for all two-, and three-key queries from the Zeitgeist query-log are presented
in Figure 5.7. The complete Zeitgeist queries are listed in the appendix B. Again, the
KMV synopses perform better than hash sketches. The USS-KMV approach is almost as
good as the the upper bound of CSS whereas USS-HS at least outperforms the baseline
approach. Notice that, contrary to the Web data collection, a smaller number of blogs have
to be monitored to acquire a sufficiently high recall. This happens because all blogs are
highly specialized and thus only a small number of them contribute new posts matching
the requested continuous queries. Compared to this, the Web data collection provides less
specified publisher peers.

Subsequently, Figures 5.8, 5.9, and 5.10 illustrate the average recall improvements for
two-key, three-key queries, or four-key queries respectively considering the different query
sets introduced in the previous section (Low-Corr, High-Corr, and All-High-Corr). Again,
the experiments use selections of all possible key set combinations created by single keys
with maximal numbers of matching blog posts. The sizes of all query sets range from 10
to 20, and now, key sets with four keys are regarded, too.

Similar to the experiments with Web data, the CSS approach for multi-key queries with
low conditional probabilities shows the highest recall improvement. In Figure 5.8, there is
almost no improvement for two-key queries where both keys have a high conditional prob-
ability (2-All-High-Corr) but the improvement for queries with low conditional probability
(Low-Corr) is significant: from 0.53 to 0.67 when monitoring 10 blogs. Thus, blog data
experiments confirm the previous observations. In Figures 5.9 and 5.10, the differences be-
tween low correlated (Low-Corr) and high correlated key sets (All-High-Corr) are reduced
but still existing.

- 99 -



Chapter 5 Correlated Key Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Number of Monitored Blogs

baseline
CSS

USS-HS
USS-KMV

Figure 5.7: Average Recall for Two- and Three-Key Queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Number of Monitored Blogs

baseline 2-Key-Low
CSS 2-Key-Low

baseline 2-Key-High
CSS 2-Key-High

baseline 2-Key-All-High
CSS 2-Key-All-High

Figure 5.8: Average Recall Improvements for Two-Key Queries.

- 100 -



Chapter 5 Correlated Key Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Number of Monitored Blogs

baseline 3-Key-Low
CSS 3-Key-Low

baseline 3-Key-High
CSS 3-Key-High

baseline 3-Key-All-High
CSS 3-Key-All-High

Figure 5.9: Average Recall Improvements for Three-Key Queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Number of Monitored Blogs

baseline 4-Key-Low
CSS 4-Key-Low

baseline 4-Key-High
CSS 4-Key-High

baseline 4-Key-All-High
CSS 4-Key-All-High

Figure 5.10: Average Recall Improvements for Four-Key Queries.

- 101 -



Chapter 5 Correlated Key Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

A
ve

ra
ge

 R
ec

al
l

Number of Monitored Blogs

baseline
CSS

CSS 3-Keys only

Figure 5.11: Average Recall for High-Correlated Four-Key Queries.

Similar to the experiments with Web data, the next evaluation investigates under which
conditions, the statistics of subsets are sufficient to get a satisfying recall. Thus, Figure 5.11
uses four-key queries where one key is highly correlated with the remaining set. Formally,
there is k0 ∈ S = {k0, k1, k2, k3} such that P̂ (k0|k1, k2, k3) is very high. The graph shows
the recall for the query using CSS approach for the complete key set k0, k1, k2, k3 in com-
parison to the results applying CSS approach with key set k1, k2, k3 missing k0. Obviously,
the average recall for 10 four-key queries with this characteristics is almost stable. The
graph also shows the average recall for the baseline approach. This leads to the following
conclusion: the CSS approach can be applied to subsets missing a high correlated key be-
cause there is no additional information when considering the multi-key statistics of the
complete key set.

keyA, keyB , keyC , keyD P (A|BCD) P (B|ACD) P (C|ABD) P (D|BCD)
london time train bbc 0.97 0.55 0.36 0.34
day face news london 0.51 0.27 0.26 0.17

Table 5.4: Examples of Relatedness among Four-Key Queries.

The following example makes this point clear using the conditional probabilities in Table
5.4. Using a multi-key continuous query london time train bbc, it is sufficient to apply
the CSS approach for the subset time train bbc because the key london has a conditional
probability of 0.97. In other words, 97% of all posts containing the key london also contain
the remaining keys. So, there is no significant additional information included in the multi-
key statistics of the complete key set.

- 102 -



Chapter 5 Correlated Key Sets

5.6 Discussion

This chapter introduced two approaches that utilize correlations among keys to improve
filtering quality. The USS algorithm uses existing single-key synopses stored in the direc-
tory to estimate the publishing behavior of information sources for key sets, while the CSS
algorithm enhances the directory to explicitly maintain statistical metadata about selec-
tively chosen key sets. This is the first work to develop algorithms for exploiting keyword
correlations in such an dynamic IF setting.

Whereas the approach of [MBN+06] is limited to two-key queries, the USS algorithm
can be applied to multi-key continuous queries for an arbitrary number of keys. Therefore
the usage of very recent state-of-the-art techniques for compact representation of multisets
(KMV synopses) is included in the algorithm. These synopses overcome the restrictions of
hash sketches. The CSS algorithm uses a new strategy to approximate multi-key statistics
by combining the statistics of arbitrary subsets. This strategy is useful when the multi-key
statistics for the full continuous query are not included in the directory.

The experimental evaluation illustrated the filtering performance improvements of both
algorithms in comparison to the baseline approach presented in this thesis. All experi-
mental series used two different real-world collections for Web and blog data, and applied
real-world Google Zeitgeist queries. The evaluation also investigated filtering performance
gains depending on the introduced correlation measure (conditional probability) represent-
ing a way to compute the relatedness among keys. The next chapter presents the current
prototype implementation of the MAPS approximate information filtering approach.

- 103 -



Chapter 5 Correlated Key Sets

- 104 -



Chapter 6 Prototype Implementation

Chapter 6

Prototype Implementation
This chapter presents the current prototype implementation [ZHTW08] of the MAPS ap-
proximate information filtering approach introduced in the previous chapters of this thesis.
Therefore, the Minerva search engine developed as explained in [BMPC07] is used and ex-
tended with additional components to realize both functionalities (one-time searching and
publish/subscribe) in one unifying system.

Section 6.1 introduces some aspects of current Web search. In Section 6.2, the main as-
pects of the Minerva search engine are explained including an implementation overview. In
addition, the most important principles that drive the P2P search paradigm are illustrated.
Section 6.3 presents the additional components for approximate pub/sub functionality that
have been implemented. This section also shows the usage of both functionalities by fol-
lowing some example (continuous and one-time) queries. Screenshots from the system’s
graphical user interface (GUI) are used to demonstrate and explain the MAPS system. A
short overview of some other prototype systems for IR and IF in P2P networks presented
in Section 6.4, and the discussion in Section 6.5 conclude this chapter.

6.1 Introduction

Today, full-fledged Web search is more or less under the control of centralized search engines.
In the US, more than 10 billion searches have been conducted at core search engines in
November 2007. Here, the big players share the market as shown in Table 6.11. In Germany,
Google is even more dominant with a market share of almost 90%2. Various projects
have been started to build and operate a P2P Web search network (e.g., [TD04, LKP+05,
CAPMN03, YVGM04]) including the Minerva project. Web search and Internet-scale file
content search seem to be perfect candidates for a P2P approach for several reasons:

• The Web is increasing at a much faster rate than the indexing capability of any
centralized search engine [HT99, WMYL01, SE00]. In addition, the data is highly
distributed by nature, residing on millions of sites.

• A P2P network could potentially outperform even the largest server farm in terms
of processing power and could, thus, enable much more advanced methods (e.g.,
ontology-based background knowledge). A P2P Web search engine can potentially
benefit from the intellectual input of a large user community, as every peer’s behavior
is influenced by a human user.

• There is growing concern about the world’s dependency on a few monopolistic search
engines and their susceptibility to commercial interests.

1http://www.comscore.com
2http://www.webhits.de

- 105 -



Chapter 6 Prototype Implementation

Search Queries Share of Searches
(in billion requests) (in percent)

Total Core Search 10.03 100.0%
Google Sites 5.88 58.6%
Yahoo! Sites 2.25 22.8%
Microsoft Sites 0.98 9.8%
Ask Network 0.46 4.6%
Time Warner Network 0.45 4.5%

Table 6.1: US Search Engine Rankings November 2007.

6.2 The Minerva Search System

This section introduces the Minerva3 prototype for P2P search [BMWZ05, BMT+05a,
BMT+05b]. The next sections elaborate the main principles of the Minerva search engine
(Section 6.2.1), present its architecture (Section 6.2.2), and summarize some core funda-
mentals of its prototype implementation (Section 6.2.3).

6.2.1 System Principles

In [LLH+03], approaches to comprehensive Web search based on a P2P network have been
considered infeasible, or at least being a grand challenge, from a scalability viewpoint.
Early approaches typically spread inverted index lists across the directory such that each
peer is responsible for maintaining a subset of index lists. Such systems allow for exact
and complete execution of top-k style aggregation queries over the P2P network. However,
bandwidth requirements and also latency issues raise concerns about their scalability claims.
Novel approaches [CW04, MTW05] try to overcome these challenges by utilizing efficient
large-scale top-k query aggregation algorithms for distributed systems.

The system design of Minerva differs from the approaches mentioned above. Instead
of disseminating inverted index lists across the directory, Minerva uses only pointers to
promising peers (enriched with compact statistical metadata describing the index contents
of that peer) and utilize these pointers to answer multi-keyword queries. Here, some fun-
damental design principles are listed that influenced the architecture of the Minerva search
system presented in the next section:

• The first principle is peer autonomy such that peers do not disseminate index lists
to other peers and the network, and peers do not store/maintain index lists of other
peers.

• Minerva introduces the principle of keyword-granularity . Peers only disseminate sta-
tistical metadata concerning single keywords. This avoids the dissemination of full
documents to the network.

• The principle of approximation means that the Minerva search system does not pro-
vide exact and complete answers because only a fraction of peers is contacted to
retrieve data.

3Minerva is the Roman goddess of wisdom, and also the icon of the Max-Planck Society (and a Greek
underwear manufacturer).

- 106 -



Chapter 6 Prototype Implementation

P1

P2P8

P

P8

a) Directory Maintenance b) Query 

DHT P3

P4

P7

P6

DHP7

P6

Step 1
Post per-key

summaries of local indexes

Step
Retrieve lis
for each q

P5 P

message sent peer-to-peer

P1

P2

P1

P2P8

Routing c) Query Processing

HT P3

P4

DHT P3

P4

P7

P6

p 2:
st of peers
query key

Step 3:
Retrieve and combine local query 

results from peers

P5 P5

message sent using DHT

Figure 6.1: Minerva Search Architecture and Query Execution.

• Minerva does not forward requests to all possible peers in the network. The scalability
principle ensures that only the most appropriate peers are involved in the query
execution.

6.2.2 System Architecture

The P2P Web search prototype system Minerva [BMT+05b] assumes a P2P collaboration
in which every peer is autonomous and has a local index that can be built from the peer’s
own crawls or imported from external sources representing the user’s interest profile. The
local index contains inverted index lists with URLs for Web pages that contain specific
keywords. A conceptually global but physically distributed directory, which is layered on
top of a distributed hash table, holds compact, aggregated information about the peers’ local
indexes. The DHT partitions the key space, such that each directory peer is responsible
for maintaining the metadata about a randomized subset of keys. For failure resilience and
availability, the metadata may be replicated across multiple directory peers. The three
steps of query execution work as follows (see Figure 6.1):

1. Directory Maintenance: Every peer publishes in step 1 a number of key-specific sta-
tistical summaries (posts) describing its local index to the directory (shown in Figure
6.1a). Posts contain contact information about the peer who published this summary
together with statistical information to support appropriate query routing strategies
(e.g., the size of the inverted list for the key, the maximum average score among the
key’s inverted list entries, or various other statistical synopses [MBN+06]). The DHT
is used to determine the directory peer responsible for this key.

2. Query Routing : If the results of a local query execution are unsatisfactory, the user
can utilize in step 2 the distributed directory to identify more promising peers for
a particular query as follows (shown in Figure 6.1b): for each query key, the query
initiator identifies the peer that is currently maintaining the appropriate statistics,
using the DHT functionality. Then the query initiator retrieves the relevant posts

- 107 -



Chapter 6 Prototype Implementation

by issuing requests directly to these peers. The statistical synopses contained in the
posts are used to perform query routing, i.e., to identify the most promising peers for
that particular query.

3. Query Processing : After a small subset of peers has been selected, the query is for-
warded and executed based on their local indexes in step 3 (shown in Figure 6.1c).
Note that this communication is carried out in a point-to-point manner. Finally, the
remote peers return their local results to the query initiator, where they are combined
into a single result list (result merging).

This Minerva baseline approach can be extended such that multiple directories are uti-
lized to maintain information beyond local index summaries, such as information about local
bookmarks [BMWZ04], information about relevance assessments (e.g., from peer-specific
query logs or click streams [KLFW06]), and (implicit or explicit) user feedback .

The upcoming sections discuss the two major challenges of query execution with Minerva,
namely query routing in Section 6.2.2.1 and result merging in Section 6.2.2.2.

6.2.2.1 Query Routing

Query routing is one of the key issues to make P2P search feasible. A user requesting a
multi-keyword query expects a high-quality top-10 or top-100 ranked result list. There-
fore, the system has to select the peers that have to answer the query. This decision is
based on statistical information stored in the directory. [BMWZ05] introduces the base-
line query routing approach utilizing resource selection strategies (e.g., CORI [CLC95],
DTF [NF03], or GlOSS [GGM95]). These resource selection strategies (or database se-
lection) originally been designed for distributed IR need to be adapted to the large-scale
and the high dynamics of a P2P system. The work presented in [BMT+05a, MBTW06]
introduces an overlap-aware query routing approach that takes the novelty of peers into ac-
count. Another extension [MBN+06] considers the correlations among keywords to improve
P2P query routing. Caching strategies as shown in [ZBW08] can improve result-quality of
P2P search and reduce response times by retrieving cached results of previously executed
queries. In addition, aggressively reuse cached results of even subsets of a query towards
an approximate caching technique can drastically reduce the bandwidth overheads.

6.2.2.2 Result Merging

A key issue in a P2P search engine is result merging : the querying peer has to combine all
top-ranked local results into a single, comprehensively ranked result list, which is eventually
displayed to the user. The obvious solution is to use local statistics but this leads to scores
incomparable across peer boundaries. There are several options to solve this problem:

• If all peers agree on a common scoring function that exclusively utilizes objective
components (e.g., term frequencies), scores are immediately comparable across peer
boundaries, and result merging simply involves sorting the combined result list of all
peers by document scores.

• A second option combines local query results in a round-robin manner but does not
really consider the differences between peers and their ability to contribute satisfying
results.

• A last option tries to estimate global statistics (e.g., global document frequencies
[BMTW06, PMBW05]) and local peers use these estimates to produce compatible
document scores.

- 108 -



Chapter 6 Prototype Implementation

Local Query
Processor

Event H
andler

Distributed Hashtable (Chord / Pastry)

C
om

m
unicator

Global Query
Processor

Poster

Peer Descriptor

PeerList
Processor

Local
Index

Peer Descriptor

One-Time Query

Figure 6.2: Minerva Search Engine Implementation.

6.2.3 Implementation

Minerva is implemented in a platform-independent way using Java 5. The software ar-
chitecture of a peer is illustrated in Figure 6.2. Each peer is build on top of a globally
distributed directory which is organized as a distributed hash table, e.g, Chord [SMK+01]
or Pastry [RD01a]. Minerva utilizes the lookup functionality of the DHT to provide a
mapping from keys to peers. Early versions of Minerva relied on a reimplementation of
the Chord protocol, and more recent versions run as a FreePastry application, using Pas-
try’s network routing mechanisms and Past’s storage functionalities to become resilient
to network dynamics and peer failures. The latter version works as follows: each peer
maintains a PastryNode, implementing the PastryApplication interface, and is registered
at a PastryEndpoint . Once registered, the PastryNode delivers incoming messages to the
registered applications. There exist two different implementations of Past (PastImpl and
GCPastImpl). GCPastImpl is an extension of PastImpl that offers garbage collection based
on time-stamps. Minerva uses this extended version in order to prune outdated metadata
objects after a specific time interval.

The DHT layer returns a Peer Descriptor object containing the contact information
(e.g., IP address and port) of the peer currently responsible for a key. A Communicator
is instantiated with this data to perform the communication with remote peers. Each
peer runs an Event Handler listener that receives incoming messages and forwards them
to the appropriate local components of a peer. Every peer has a Local Index holding the
peer data using any database system capable of executing standard SQL commands (e.g.,
Oracle, MySQL, or Cloudscape/Derby). The index can be used for query execution by
the Local Query Processor component. Additionally, the Poster component uses the local
index to produce the key-specific summaries that are published to the global directory using
the Communicator. Each peer implements a PeerList Processor to maintain the incoming
posts, i.e., all posts from across the network regarding the subset of keys that the actual peer
is currently responsible for. Notice that Past is designed to handle such inserts natively,
such that recent versions of Minerva do not need to use a PeerList Processor.

- 109 -



Chapter 6 Prototype Implementation

When the user initiates a one-time query using Minerva, the Global Query Processor
component uses the DHT to locate the peer responsible for each query key and retrieves
the respective metadata using Communicator components. After appropriately processing
the metadata, the Global Query Processor forwards the complete query to selected peers,
which in turn process the query using their Local Query Processors and return their results.
In a final step, the Global Query Processor merges these remote results and presents the
merged result to the user. There are some cases where Minerva peers communicate directly,
i.e., without using the DHT lookup functionality.

6.3 The MAPS Filtering Extension

The MAPS approximate information filtering approach introduced in this thesis has been
integrated into the Minerva search prototype such that Minerva provides in addition to one-
time searching an approximate publish/subscribe functionality in addition. Section 6.3.1
presents the implementation aspects concerning the extension of Minerva, while Section
6.3.2 explains the usage of the extended Minerva prototype by executing example one-time
and continuous queries. There, the various parts of the graphical user interface (GUI) are
illustrated.

6.3.1 Implementation

In this section, the changes implemented to add the publish/subscribe functionality at the
Minerva prototype are explained. Figure 6.3 shows how the three new components of a
peer are integrated in the existing system.

Besides one-time queries, the modifications described below, allow issuing continuous
queries. Thus, the Global Query Processor component is able to handle both types of
queries as input. A continuous query has in addition a lifetime parameter to determine
how long such a request should be valid. To process a continuous query requested by
a user, the Global Query Processor utilizes the Time Analysis Storage component that
maintains statistical metadata of active continuous queries. Therefore, the future behavior
of publisher peers can be predicted by applying time series analysis techniques to stored
metadata as described in Chapter 3 in detail.

Collecting publisher metadata is performed similarly to the one-time querying by utilizing
the lookup functionality of the DHT, and asking the peers responsible for the keys in the
continuous query. Having selected the most promising publisher peers for a query, the Global
Query Processor uses the Communicator to send the continuous query to the remote peers.
Whenever a peer receives a continuous query (as an event of the Event Handler), the query
is stored at the Continuous Query Store. This store denotes the second new component
for filtering. Each time, a peer inserts a new query, outdated queries stored at the peer are
removed from the Continuous Query Store.

The third new component to integrate approximate publish/subscribe functionality to
Minerva, is the Publisher module. This component receives new documents as input and
adds these documents to the Local Index . In addition, the Publisher checks the Continuous
Query Storage for active continuous queries matching the publication. Subscriptions that
are no longer valid (e.g., because the lifetime has expired) are removed from the store.
Checking the matching continuous queries delivers a set of peers that have subscribed with
one of these queries, and have to be notified about the published document. The Publisher
component sends a notification message using the Communicator to inform the subscriber
peers about the new document.

- 110 -



Chapter 6 Prototype Implementation

Local Query
Processor

Event H
andler

Distributed Hashtable (Chord / Pastry)

C
om

m
unicator

Global Query
Processor

Poster

Peer Descriptor

PeerList
Processor

Local
Index

Peer Descriptor

One-Time & 
Continuous Query

Time Analysis Storage
Cont. Query

Storage

Publisher
Notifications

Figure 6.3: Extended MAPS Implementation with IF Components.

6.3.2 Example Use of MAPS

This section showcases the usage of Minerva (respectively MAPS) with the extended ap-
proximate publish/subscribe functionality by means of screenshots taken from the latest
prototype version. It also serves as a short explanation how one-time and continuous query
functionality is used within Minerva.

In this showcase example, 10 Cloudscape or Derby databases are used to host about 100
documents per database. Thus, 10 peers can be created to manage one of the 10 collections
each. To publish new documents, there is an additional database that hosts about 100, 000
additional documents simulating the input from a crawling component such as BINGO!
[STSW02] commonly used in such a P2P search engine. A peer can select a random or
query-specific document from this shared collection to store it in its local database. The
shared collection is also realized by a Cloudscape database. The peer instances can run
on one or more machines. The following sections present a usage scenario and explain the
graphical user interface of the client in detail.

6.3.2.1 Minerva Initialization

When starting the Minerva client, the user has to input the network details and database
login as shown in Figure 6.4. On the left, the Local Port and the Nickname of the peer
have to be specified. If the peer joins an existing network, the Remote IP address and the
Remote Port number of a random peer in the network must be declared. On the right,
the connection to a local database has to be stated including DB Service Name, Host
Name, Port number, Username, and Password . Here, the database DB1 runs on the same
machine realized by the server mentioned in the previous section.

The Create Ring button specifies that a new P2P network should be created whereas the
Join Ring button is used to contact an existing network. The form also allows to select
which widgets should be shown automatically after initialization. All three check boxes are
preselected.

- 111 -



Chapter 6 Prototype Implementation

Figure 6.4: Initiating the Minerva Client GUI.

6.3.2.2 Publishing Metadata

After initialization, the peer is connected to a P2P network. Figure 6.5 shows on the right
the Network Properties and Collection Statistics. The Network Properties illustrate that
the peer is connected, has a certain Pastry Node ID with local port, and owns the local
collection with DB1 as DB Service Name. The Collection Statistics present some statistical
information (e.g., the number of documents) concerning the local collection.

The Received Posts widget in the middle manages the metadata the peer is responsible
for. The list shows all keys a peer stores metadata for, e.g., three peers in the network
have published metadata for key music. The entry of Peer02 tells that this peer hosts
17 documents containing the key music. The Refresh button updates the shown list such
that metadata received in the meantime from other network peers is updated. The Post
all button starts the posting procedure of this peer and distributes the metadata of its
local collection to the network. In addition, the Collection Statistics are recomputed to
incorporate new documents that have been recently published.

6.3.2.3 One-Time Query Execution

Figure 6.6 summarizes the one-time query execution. The query input field contains the
requested query modern music, and the unselected check box designates that this is a one-
time query. When the user executes the query, the peer contacts the directory peers storing
the metadata for key modern and key music to retrieve the key statistics. For this query,
the peer itself hosts the key statistics such that it is fact that only Peer02 stores documents
for both keys.

- 112 -



Chapter 6 Prototype Implementation

Figure 6.5: Updating and Disseminating Metadata.

Peer selection for this query is trivial and the one-time query is forwarded to this peer.
Nevertheless, Minerva allows to specify the peer selection strategy (e.g., CORI [SJCO02])
and the number of remote peers that receive the query. The Query Results widget shows
the final result document list to the user. All three documents are hosted at Peer02. The
URL allows to visit the document’s online version. If more than one peer contribute their
local results for the requested query, and if the overall number of results is high, Minerva
merges the collected result documents (e.g., using CORI-based merging algorithms) and
displays only the top-ranked documents to the user.

6.3.2.4 Continuous Query Execution

Subscribing with a continuous query using the Minerva prototype with extended MAPS
functionality is shown in Figure 6.7. The user enters the continuous query in the text
field mentioned before and selects the check box on the left to specify that this request is
a continuous query. In the background, Minerva checks whether this continuous query is
already active, i.e., it was requested by the same user in the past. If the query is active,
the directory is used to retrieve updated statistical metadata about the query keys, and
time series analysis is applied according to the MAPS approach presented in this thesis.
Prediction methods such as double exponential smoothing can not be applied to continuous
queries requested for the first time. Thus, resource selection alone is used to select the most
promising publishers in the future. Having selected the interesting publisher peers, the
Minerva prototype system sends the continuous query to them and waits for new published
documents. Periodically, continuous queries have to be updated to recognize publishing
behavior. This can be realized automatically by the system or manually by the user.

- 113 -



Chapter 6 Prototype Implementation

Figure 6.6: One-Time Query Execution with Minerva.

Figure 6.7: Continuous Query Execution with Minerva.

- 114 -



Chapter 6 Prototype Implementation

Figure 6.8: Publishing Documents with Notifying Subscriber Peers.

6.3.2.5 Document Publication

Figure 6.8 illustrates the publication process for the showcase where a peer can publish
new documents by adding them to its own local collection. Each peer in the network
has a database connection to this server, and two different methods allow to publish new
documents:

• Random Insert selects a completely random document from the server collection and
adds the selected one to the local database. A random document can not be published
twice such that the server reminds of this publication.

• Matched Insert allows in this showcase to select documents that match active contin-
uous queries a peer stores. In this case, the peer selects a random stored information
demand and gets a matching document from the server to add it to its local store.
If there is no matching document available or no active continuous query stored, a
random publication occurs.

On the lower right, Figure 6.8 shows the incoming requests. The first request was the
one-time query for modern music and the second request was the same query as long-term
demand. Having added new documents to the local collection, a peer updates its Collection
Statistics and disseminates its refreshed metadata to the network by pushing again the Post
all button. This procedure can be done periodically to decrease network traffic caused by
update messages.

- 115 -



Chapter 6 Prototype Implementation

Figure 6.9: Receiving Notifications for Subscribed Continuous Queries.

6.3.2.6 Receiving Notifications

Receiving a notification for a new published document is shown in Figure 6.9. Here, the
querying peer for modern music gets a notification message from Peer02. This message is
included in the Notifications widget. Of course, the user can directly follow the URL link to
access the online-version of the published document. In addition, the Running continuous
queries widget lists all active subscriptions of the current peer. Again, continuous queries
with expired lifetime are removed from the list.

6.3.2.7 Resubmitting Continuous Queries

The last screenshot deals with the resubmission of already existing continuous queries.
Figure 6.10 shows that the query modern music is requested again. In the meantime,
several peers in the network have published new documents. The Received Posts widget
lists all currently available metadata for the two requested keys. Now, two peers have
published documents concerning modern, and five peers store data regarding music. Thus,
peer selection for the whole query selects Peer01 and Peer02 also considering the time
series observations since the query was last requested.

The Running continuous queries widget designates that this query was stored before,
such that metadata of previous executions and selection processes are available to be used
in the future.

- 116 -



Chapter 6 Prototype Implementation

Figure 6.10: Resubmitting a Continuous Query.

6.4 Other Prototypes

This sections briefly introduces some existing prototypes for P2P retrieval and P2P filtering.
LibraRing [TIK05a] is the only other system that combines retrieval and filtering function-
ality in a P2P environment of digital libraries. In contrast to the prototype presented in
this chapter, LibraRing focuses on exact searching and filtering functionality by dissemi-
nating documents or continuous queries in the network. Section 6.4.1 presents some P2P
retrieval systems, whereas Section 6.4.2 discusses relevant P2P filtering systems. Overall,
the prototype presented in this thesis is the only approach that provides approximate P2P
searching and filtering functionality in a unifying framework.

6.4.1 P2P Retrieval Prototypes

Galanx [WGD03, GWJD03] is a P2P search engine implemented using the Apache HTTP
server and BerkeleyDB . Web site servers form the P2P layer of this architecture; pages
are stored only where they originate from. Galanx directs user queries to relevant peers
by consulting a local peer index that is maintained on each peer. In the experimental
evaluation, the use of peer indices to direct searches is investigated. In contrast, the Minerva
approach relies on peers to decide at what extent they want to crawl interesting fractions of
the Web and build their own local indexes. [GWJD03] focuses on XML data repositories and
postulates that, upon completion of the query, regardless of the number of results or how
they are ranked and presented, the system guarantees that all the relevant data sources
known at query submission time have been contacted. For this purpose, a distributed
catalog service that maintains summaries of all peers is designed.

- 117 -



Chapter 6 Prototype Implementation

PlanetP [CAPMN03] is a publish-subscribe service for unstructured P2P communities,
supporting content ranking search. PlanetP distinguishes local indexes and a global index
to describe all peers and their shared information. The global index is replicated using a
gossiping algorithm. PlanetP does not provide notification messages about new published
data. Odissea [SMwW+03] (Open DIStributed Search Engine Architecture) assumes a
two-layered search engine architecture with a global index structure distributed over the
peers in the system. The system provides a highly distributed global indexing and query
execution service that can be used for content residing inside or outside the P2P network. A
single peer holds the complete, Web-scale, index for a given text key (i.e., keyword or word
stem). Query execution uses a distributed version of Fagin’s threshold algorithm [Fag02].
The system appears to cause higher network traffic when posting document metadata into
the network, and the presented query execution method seems limited to queries with at
most two keywords. The paper actually advocates using a limited number of peers, in the
spirit of a server farm.

The OverCite system [SCL+05] was proposed as a distributed alternative for the scientific
literature digital library CiteSeer . This functionality was made possible by utilizing a
DHT infrastructure to harness distributed resources (storage, computational power, etc.).
OverCite is able to support new features such as documents alerts. The work presented
in [RV03] adopts an architecture very similar to Minerva, but seems incomplete since one
cannot locate a running implementation. The presented results are based on simulations
that also support the assumption that a Minerva-like architectures do in fact scale and
are well within reasonable bandwidth limits. The system described in the paper provides
keyword search functionality for a DHT-based file system or archival storage system, to
map keyword queries to unique routing keys. It does so by mapping each keyword to a
peer in the DHT that will store a list of documents containing that keyword.

The eSearch system presented in [TD04] is a P2P keyword search system based on a
hybrid indexing structure in which each peer is responsible for certain keys. Given a doc-
ument, eSearch selects a small number of important keys in the document and publishes
the complete key list for the document to peers responsible for those top keys. This selec-
tive replication of key lists allows a multi-key query to be processed locally at the peers
responsible for the query keys, but the document granularity indexes may interfere with
the goal of unlimited scalability. The authors claim that eSearch is scalable and efficient,
and obtains search results as good as state-of-the-art centralized systems.

Rumorama [EH05] is an approach based on the replication of peer data summaries via
rumor spreading and multi-casting techniques in a structured overlay. Rumorama utilizes
a hierarchical structure, and adopts a summary-based approach to support P2P-IR in the
spirit of PlanetP . In a Rumorama network, each peer views the network as a small PlanetP
network with connections to peers that see other small PlanetP networks. Each peer can
select the size of the PlanetP network it wants to see according to its local processing power
and bandwidth. Rumorama manages to process a query such that the summary of each
peer is considered exactly once in a network without churn. The actual number of peers to
be contacted for a query is a small fraction of the total number of peers in the network.

Alvis [LKP+05] is a prototype for scalable full-text P2P-IR using the notion of Highly
Discriminative Keys (HDK ) for indexing, which claims to overcome the scalability problem
of single-key retrieval in structured P2P networks. Alvis is a fully-functional retrieval engine
built on top of P-Grid . It provides distributed indexing, retrieval, and a content-based
ranking module. While the index size is even larger than the single key index, the authors
bring forward that storage is available in P2P systems as opposed to network bandwidth.
ALVIS includes a component for HDK-based indexing and retrieval, and a distributed
content-based ranking module.

- 118 -



Chapter 6 Prototype Implementation

6.4.2 P2P Filtering Prototypes

Scribe [RKCD01] is a large-scale event notification infrastructure for topic-based publish-
subscribe applications. It supports large numbers of topics, with a potentially large number
of subscribers per topic. Scribe is built on top of Pastry [RD01a], and leverages Pastry’s
reliability, self-organization and locality properties. Pastry is used to create a topic (group)
and to build an efficient multi-cast tree for the dissemination of events to the topic’s sub-
scribers. Hermes [FFS+01] is similar to Scribe because it uses the same underlying DHT
but it allows more expressive subscriptions by supporting the notion of an event type with
attributes. Hermes offers sophisticated filtering capabilities preventing the user from noti-
fications about non-interesting events. From the user’s point of view Hermes integrates the
providers into a single source. Its simple provider interface makes it easy for publishers to
join the service and thus reaching the potential readers directly.

The pFilter system [TX03] is a global-scale decentralized information filtering and dissem-
ination system for unstructured documents that connects potentially millions of computers
in national (and international) computing Grids or ordinary desktops into a structured P2P
overlay network. The pFilter system uses a hierarchical extension of the CAN DHT to filter
unstructured documents and relies on multi-cast trees to notify subscribers. VSM and LSI
can be used to match documents to user queries. The DHTStrings system [AT05] utilizes
a DHT-agnostic architecture to develop algorithms for efficient multi-dimensional event
processing. It addresses the issue of supporting efficiently queries over string-attributes
involving prefix, suffix, containment, and equality operators in large-scale data networks.

PeerCQ is a totally decentralized system that performs information monitoring tasks over
a network of peers with heterogeneous capabilities. It uses Continual Queries (CQs) as its
primitives to express information monitoring requests. A primary objective of the PeerCQ
system is to build a decentralized Internet-scale distributed information monitoring system,
which is highly scalable, self-configurable and supports efficient and robust CQ processing.
PeerCQ’s most important contribution is that it takes into account peer heterogeneity and
extends consistent hashing with simple load-balancing techniques based on appropriate
assignment of peer identifiers to network peers.

P2P-DIET [IKT04a] utilizes an expressive query language based on IR concepts and is
implemented as an unstructured P2P network with routing techniques based on shortest
paths and minimum weight spanning trees. P2P-DIET has been implemented on top of
the open source DIET Agents Platform4 [HWBM02] and combines ad-hoc querying as
found in other super-peer networks and also as proposed in the DIAS system [KKTR02].
Finally, the AGILE system [DFK05] presents Context-aware Information Filters (CIF )
using two input streams with messages and context updates. The system extends existing
index structures such that the indexes adapt to message/update workload with satisfying
performance results.

6.5 Discussion

This chapter presented the current prototype implementation of the MAPS approximate
information filtering approach. The prototype extends the Minerva search system with
additional components to realize filtering functionality. An extensive showcase illustrated
the usage of the extended prototype system. The following chapter will present a use case
for digital libraries that supports retrieval and filtering functionality under a single unifying
framework.

4http://diet-agents.sourceforge.net/

- 119 -



Chapter 6 Prototype Implementation

- 120 -



Chapter 7 Digital Library Use Case

Chapter 7

Digital Library Use Case

This chapter presents a digital library use case using the MinervaDL architecture. Miner-
vaDL is build upon a two-tier version of the MAPS architecture and designed to support
approximate retrieval and filtering functionality under a single unifying framework. The
architecture of MinervaDL as introduced in [ZTW07] is able to handle huge amounts of data
provided by digital libraries in a distributed and self-organizing manner. The super-peer
architecture and the use of the distributed hash table as the routing substrate provides an
infrastructure for creating large networks of digital libraries with minimal administration
costs.

Section 7.1 introduces the main characteristics of this DL use case, and discusses some
related work in this area. The high-level DL architecture including the involved compo-
nents is presented in Section 7.2, whereas Section 7.3 explains in detail the appropriate
protocols to ensure the two functionalities (retrieval and filtering). Section 7.4 discusses
the two different scoring functions to ensure approximate search and filtering, and Section
7.5 presents the experimental evaluation of MinervaDL. Finally, Section 7.6 concludes this
chapter.

7.1 Introduction

This chapter presents a novel DL architecture called MinervaDL; it is designed to support
approximate information retrieval and filtering functionality in a single super-peer-based
architecture. In contrast to the MAPS architecture presented in the previous chapters,
MinervaDL is hierarchical like the ones in [TIK05a, LC03, SMwW+03, TZWK07, RPTW08]
and utilizes a DHT to achieve scalability, fault-tolerance, and robustness in its routing
layer. The MinervaDL architecture allows handling huge amounts of data provided by DLs
in a distributed and self-organizing way, and provides an infrastructure for creating large
networks of digital libraries with minimal administration costs. There are two kinds of
basic functionality that are offered in MinervaDL:

• Information Retrieval : In an information retrieval scenario (also known as one-time
querying), a user poses an one-time query and the system returns all resources match-
ing the query (e.g., all currently available documents relevant to the requested query).

• Information Filtering : In an information filtering scenario (also known as publish/subscribe
or continuous querying or selective dissemination of information), a user submits a
continuous query (or subscription or profile) and will later be notified from the system
about certain events of interest that take place (i.e., about newly published documents
relevant to the continuous query).

- 121 -



Chapter 7 Digital Library Use Case

DHT-based P2P overlay network

Distributed Directory maintaining metadata

Information Retrieval (IR)
Routing Protocols

Information Filtering (IF)
Routing Protocols

Figure 7.1: DHT-based Distributed Directory to Perform IR and IF.

The proposed DL architecture is built upon a distributed directory similar to [BMT+05b,
BMT+05a] that stores metadata. Routing protocols for information filtering and retrieval
use this directory information to perform the two functionalities. Figure 7.1 shows this
design principle. MinervaDL identifies three main components: super-peers, providers,
and consumers. Providers are implemented by information sources (e.g., digital libraries)
that want to expose their content to the rest of the MinervaDL network, while consumers
are utilized by users to query for and subscribe to new content. Super-peers utilize the
Chord DHT [SMLN+03] to create a conceptually global, but physically distributed directory
that manages aggregated statistical information about each provider’s local knowledge in
compact form. This distributed directory allows information consumers to collect statistics
about information sources and rank them according to the probability to answer a specific
information need. This reduces network costs and enhances scalability since only the most
relevant information sources are queried. In MinervaDL, both publications and (one-time
and continuous) queries are interpreted using the vector space model (VSM), but other
appropriate data models and languages could also be used, e.g., latent semantic indexing
(LSI) or language models.

7.1.1 A Motivating Example

To give an better understanding of the potential benefits of a system that integrates both
IR and IF functionality in the DL context, consider the example of John, a professor in
computer science, who is interested in constraint programming. He wants to follow the
work of prominent researchers in this area. He regularly uses the digital library of his
department and a handful of other digital libraries to search for new papers in the area.
Even though searching for interesting papers this week turned up nothing, a search next
week may turn up new information. Clearly, John would benefit from accessing a system
that is able to not only provide a search functionality that integrates a big number of sources
(e.g., organizational digital libraries or even libraries from big publishing houses), but also
capture his long term information need (e.g., in the spirit of [TIK05a, PB02, YJ06]).

- 122 -



Chapter 7 Digital Library Use Case

This system would be a valuable tool, beyond anything supported in current digital li-
brary systems, that would allow John to save time and effort. In the example scenario,
the university John works in is comprised of three geographically distributed campuses
(Literature, Sciences, and Biology) and each campus has its own local digital library. In
the context of MinervaDL, each campus would maintain its own super-peer, which provides
an access point for the provider representing the campus’ digital library, and the clients
deployed by users such as John. Other super-peers may also be deployed by larger institu-
tions, like research centers or content providers (e.g., CiteSeer, ACM, Springer, or Elsevier),
to provide access points for their users (students, faculty or employees) and make the con-
tents of their digital libraries available in a timely way. MinervaDL offers an infrastructure,
based on concepts of P2P systems, for organizing the super-peers in a scalable, efficient and
self-organizing architecture. This architecture allows seamless integration of information
sources, enhances fault-tolerance, and requires minimum administration costs.

7.1.2 The Evolution of Digital Libraries

In [GT02], a digital library is defined as follows: A digital library is a library in which
collections are stored in digital formats (as opposed to print, microform, or other media)
and accessible by computers. The digital content may be stored locally, or accessed remotely
via computer networks. The term digital library was used the first time in 1988 in a
report to the Corporation for National Research Initiatives. The older names electronic
library or virtual library are also occasionally used, though electronic library nowadays
more often refers to portals, often provided by government or public agencies (e.g., the
Florida Electronic Library). Digital libraries (DLs) have been made possible, due to the
integration and the use of a number of information technologies, the availability of digital
content on a global scale, and a strong demand for users who are now online. They are
destined to become an essential part of the information infrastructure in the 21st century
(Information Age also known as Digital Age or Wireless Age).

The term digital library can be applied to a wide range of collections and organizations,
but, to be considered a digital library, an online collection of information must be managed
by and made accessible to a community of users. A lot of known digital libraries are older
than the Web (e.g., Project Gutenberg). But, as a result of the development of the Web
and its search potential, digital libraries are now moving towards Web-based environments.
Often, there is a distinction between content (created in a digital format), known as born-
digital, and information (converted from a physical medium), e.g., paper, by digitizing.

Most digital libraries provide a search interface to locate resources (typically Deep Web
resources that cannot be located by Web search engines). Some digital libraries create
special pages or sitemaps to allow search engines to find all their resources. Digital libraries
frequently use the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH)
[LdS01] to expose their metadata to other digital libraries, and search engines like Google,
and Yahoo. There are two general strategies for searching a federation of digital libraries:
(i) distributed searching, and (ii) searching previously harvested metadata.

Distributed searching typically involves a client sending multiple search requests in par-
allel to a number of servers in the federation. The results are gathered, duplicates are
eliminated or clustered, and the remaining items are sorted and presented back to the
client. Protocols like Z39.50 are frequently used in distributed searching. A benefit to this
approach is that the resource-intensive tasks of indexing and storage are left to the respec-
tive servers in the federation. A drawback to this approach is that the search mechanism
is limited by the different indexing and ranking capabilities of each database, making it
difficult to assemble a combined result consisting of the most relevant found items.

- 123 -



Chapter 7 Digital Library Use Case

Searching over previously harvested metadata involves searching a locally stored index of
information that has previously been collected from the libraries in the federation. When
a search is performed, the search mechanism does not need to make connections with the
digital libraries it is searching - it already has a local representation of the information. This
approach requires the creation of an indexing and harvesting mechanism which operates
regularly; it connects to all the digital libraries and queries the whole collection in order to
discover new and updated resources. OAI-PMH is frequently used by digital libraries for
allowing metadata to be harvested. A benefit to this approach is that the search mechanism
has full control over indexing and ranking algorithms, possibly allowing more consistent
results. A drawback is that harvesting and indexing systems are more resource-intensive
and therefore expensive. Now, large scale digitization projects are underway (e.g., Google
Books). With continued improvements in book handling and presentation technologies, and
development of alternative depositories and business models, digital libraries are rapidly
growing in popularity. Beyond that, libraries have just ventured into audio and video
collections (e.g., digital libraries such as the Internet Archive).

7.1.3 Previous Research on P2P Digital Library Architectures

P2P-DIET [IKT04a] and LibraRing where the first approaches that tried to support both
IR and IF functionalities in a single unifying framework. P2P-DIET utilizes an expressive
query language based on IR concepts and is implemented as an unstructured P2P network
with routing techniques based on shortest paths and minimum weight spanning trees. An
extension of P2P-DIET [CIKN04] considers a similar problem for distributing RDF meta-
data in an Edutella [NWQ+02] fashion. LibraRing [TIK05a] was the first approach to
provide protocols for the support of both IR and IF functionality in DLs using DHTs. In
LibraRing, super-peers are organized in a Chord DHT and both (continuous) queries and
documents are indexed by hashing words contained in them. This hashing scheme depends
heavily on the data model and query language adopted, and the protocols have to be mod-
ified when the data model changes [TIK05a]. The DHT is used to make sure that queries
meet the matching documents (in the IR scenario) or that published documents meet the
indexed continuous queries (in the IF scenario). In this way the retrieval effectiveness of a
centralized system is achieved, while a number of routing optimizations (such as value prox-
ying, content based-multicasting, etc.) are used to enhance scalability. [RPTW08] presents
iClusterDL, a self-organizing overlay network that supports information retrieval and filter-
ing functionality in a digital library environment. Contrary to approaches like LibraRing
[TIK05a] that focus on exact retrieval and filtering functionality (e.g., by disseminating
documents or continuous queries in the network), in MinervaDL publications are processed
locally and query or subscribe to only selected information sources that are most likely to
satisfy the user’s information demand. In this way, efficiency and scalability are enhanced
by trading faster response times for some loss in recall, achieving approximate retrieval and
filtering functionality. MinervaDL is the first approach to provide a comprehensive architec-
ture and the related protocols to support approximate retrieval and filtering functionality
in a digital library context. Contrary to the LibraRing approach, in MinervaDL the Chord
DHT is used to disseminate and store metadata about the document providers rather than
the documents themselves. Avoiding per-document indexing granularity allows to improve
scalability by trading recall for lower message traffic. This approximate retrieval and fil-
tering approach relaxes the assumption of potentially delivering notifications from every
producer that holds in the works mentioned above and amplifies scalability. Additionally,
it allows to easily support different data models and query languages, without modifications
to the protocols, since matching is performed locally in each peer.

- 124 -



Chapter 7 Digital Library Use Case

C

user

/ lt

CP

SP
SP

DL

DHT-based Directo

C

C

subscription /
notification

query / results SP

SP
SP

SP

user

super-peer

SP

SP

P DLpublication /SP

user

ory

P

P

P

DL

DL

p
notification

post
metadata

SP

SP

SP DL

provider peer consumer peerP C

Figure 7.2: High-Level View of the MinervaDL Architecture.

7.2 The MinervaDL Architecture

This section of the use case presents the high-level view of the MinervaDL architecture
and presents the various system components. The system architecture of MinervaDL is
composed of three different types of peers: super-peers, consumer peers (or consumers),
and provider peers (or providers).

Figure 7.2 shows a high-level view using an underlying DHT-based directory (e.g., Chord
[SMK+01]). The following sections explain the three main components and explain their
properties and abilities in detail while Section 7.3 presents the protocols regulating peer
interactions.

7.2.1 Super-Peers

Super-peers run the DHT protocol and form a distributed directory that maintains statistics
(metadata) about providers’ local knowledge in compact form. In MinervaDL, the Chord
DHT is used to partition the key space such that each directory peer (super-peer) is re-
sponsible for the statistics of a randomized subset of keys. Directory peers are super-peers,
peers with more capabilities than consumer or provider peers (e.g., more cpu power and
bandwidth capacities) that are responsible for serving information consumers and providers
and act as their access point to the MinervaDL network. When the number of super-peers
is small, each peer can easily locate others in a single hop by maintaining a full routing
table. When the super-peer network grows in size, the DHT provides a scalable means of
locating other super-peers in the network.

Super-peers can be deployed by large institutions like universities, research centers or
content providers (e.g., CiteSeer, ACM, Springer, Elsevier) to provide access points for
their users (students, faculty or employees) or digital libraries. As shown in Figure 7.2,
more than one provider and/or consumer can be connected to a single super-peer that acts
as their common access point.

- 125 -



Chapter 7 Digital Library Use Case

7.2.2 Consumer Peers

Consumer peers (or consumers) are utilized by users (e.g., students, faculty or employees) to
connect to the MinervaDL network, using a single super-peer as their access point. Utilizing
a consumer peer allows users to pose one-time queries, receive relevant resources, subscribe
to resource publications with continuous queries and receive notifications about published
resources (e.g., documents) that match their interests. Consumer peers are responsible for
selecting the best information sources to query (respectively monitor) with respect to a
given one-time query (respectively continuous query). If consumer peers are not online to
receive notifications about documents matching their submitted continuous queries, these
notifications are stored by their access point and are delivered upon reconnection. Section
7.3 presents the protocols regulating the activities of consumer peers.

7.2.3 Provider Peer

Provider peers (or providers) are implemented by information sources that want to expose
their content to the MinervaDL network. Typical examples are digital libraries deployed by
larger institutions, like research centers or content providers (e.g., CiteSeer, ACM, Springer,
or Elsevier). Provider peers use a directory peer (super-peer) as their access point and
utilize it to distribute statistics about their local resources to the network. Providers
answer one-time queries and store continuous queries submitted by consumers to match
them against new documents they publish. More than one provider peers may be used to
expose the contents of large digital libraries, and also an integration layer can be used to
unify different types of DLs.

7.3 The MinervaDL Protocols

Having introduced in the previous section the main architecture of MinervaDL with three
different types of peers, in this section, the protocols that regulate the interactions between
all types of peers in the DL architecture are explained in detail. The protocols include
the joining and leaving of consumers, providers, and super-peers, but also the publication
of new documents, the submission of one-time or continuous queries, and the receipt of
answers and notifications for submitted requests.

Before explaining the individual protocols, three different functions have to be defined.
These will be used to ensure the basic communication procedures of the presented protocols:

• Function key(n) denotes the key of a consumer or provider peer n. The key is created
the first time a consumer or provider joins the MinervaDL network by using, e.g., the
IP address, port, and timestamp of the joining peer. It is used to support dynamic
IP addressing.

• The identifier of a peer n is denoted by function id(n). This identifier is produced
by applying the Chord hash function and is used to identify a super-peer within the
Chord ring.

• Function ip(n) refers to the IP address of a peer n, and is applied to get the current
contact address of that peer. Whereas function key(n) is only applied to consumer
or provider peers, and function id(n) only to super-peers, all three peer types need
an IP address resolved by function ip(n).

- 126 -



Chapter 7 Digital Library Use Case

7.3.1 Provider & Consumer Join/Leave

The first time, a provider peer P wants to connect to the existing MinervaDL network, it has
to follow the join protocol. P has to find the IP address of a super-peer S using out-of-band
means (e.g., via a secure Web site that contains IP addresses for the super-peers that are
currently online in the network). Then, P sends to S a NewProv(key(P ), ip(P )) message,
and S adds P in its local provider table (PT ), which is a hash table used for identifying
the providers that use S as their access point . Here, key(P ) is used to index providers in
PT , while each PT slot stores contact information about the provider including its status
(connected or disconnected) and its stored notifications (see Section 7.3.8 for notification
delivery).

Subsequently, super-peer S sends to provider P an appropriate acknowledgement mes-
sage AckNewProv(id(S), ip(S)). Once P has joined, it can use the connect/disconnect
protocol described next to connect to and disconnect from the network. A consumers C
uses a similar protocol to join the MinervaDL network. In this case the appropriate mes-
sages NewCons and AckNewCons are utilized in combination with a consumer table CT
managing contact information about consumers.

A provider peer P or a consumer peer C that want to leave the network has to send
a LeaveProv(key(P ), ip(P ), id(S)) or LeaveCons(key(C), ip(C), id(S)) message to its
access point S, respectively. The super-peer S deletes the peer from its provider or consumer
table including all contact information.

7.3.2 Provider & Consumer Connect/Disconnect

When a provider P wants to connect to the network, it sends to its access point S a
ConnectProv(key(P ), ip(P ), id(S)) message. If key(P ) exists in PT of S, P is marked as
connected. If key(P ) does not exist in PT , this means that S was not the access point of P
the last time that P connected (Section 7.3.8 discusses this case). When a provider P wants
to disconnect, it sends to its access point S a DisconnectProv(key(P ), ip(P ), id(S))
message and S marks P as disconnected in its PT .

Consumers connect/disconnect from the network in a similar way (applying messages
ConnectCons and DisconnectCons), but S has also to make sure that a disconnecting
consumer C will not miss notifications about resources of interest while not online. Thus,
notifications for C are stored in the consumer table CT of S and wait to be delivered upon
reconnection of C (see Section 7.3.8).

7.3.3 Super-Peer Join/Leave

To join the MinervaDL network, a super-peer S must find the IP address of another
super-peer S′ using out-of-band means. S creates a NewSPeer(id(S), ip(S)) message
and sends it to S′ which performs a lookup operation by calling lookup(id(S)) to find
Ssucc = successor(id(S)), similarly to the Chord joining procedure. S′ sends a Ack-
NewSPeer(id(Ssucc), ip(Ssucc)) message to S and S updates its successor to Ssucc. S also
contacts Ssucc asking its predecessor and the data that should now be stored at S. Ssucc

updates its predecessor to S, and answers back with the contact information of its previous
predecessor, Spred, and all continuous queries and publications that were indexed under
key k, with id(S) ≤ k < id(Spred). S makes Spred its predecessor and populates its index
structures with the new data that arrived. After that S populates its finger table entries
by repeatedly performing lookup operations on the desired keys.

- 127 -



Chapter 7 Digital Library Use Case

When a super-peer S wants to leave MinervaDL network, it constructs a Disconnect-
SPeer(id(S), ip(S), id(Spred), ip(Spred), data) message, where data are all the continuous
queries, published resources and stored notifications of off-line peers that S was responsible
for. Subsequently, S sends the message to its successor Ssucc and notifies Spred that its suc-
cessor is now Ssucc. Clients that used S as their access point connect to the network through
another super-peer S′. Stored notifications can be retrieved through successor(id(S)).

7.3.4 Directory Maintenance

In MinervaDL, the super-peers utilize a Chord-like DHT [SMK+01] to build-up a distributed
directory, while each provider P uses its access point to distribute per-key statistics about
its local index to the directory using Post messages. At certain intervals (e.g., every t
publications or time units) the provider has to update its statistics in the directory. Now,
the updating process done by a provider P is described.

Let K = k1, k2, . . . , kn denote the set of all keys included in the documents a provider P
has published after the last directory update. For each key k ∈ K, the provider com-
putes statistics: (i) the maximum term frequency of occurrence within P ’s document
collection (tfmax

k ); (ii) the number of documents in its document collection containing
t (dfk); (iii) the size of P ’s document collection (cs). Using its IP address, P forwards the
Post(key(P ), ip(P ), tfmax

k , dfk, cs, k) message to the super-peer S that is P ’s access point
to the directory.

Next, S uses the Chord lookup() function to forward a modified Post message (including
in addition S’s IP address ip(S) and identifier id(S)) to the super-peer responsible for
identifier H(k) (i.e., this peer is responsible for maintaining statistics for key k). This peer
Sk stores the received Post message in its local statistics table ST to be able to provide
the key statistics to peers requesting them.

7.3.5 Submitting an One-Time Query

In this section it is shown how to answer one-time vector space queries. Let us assume
that a consumer C wants to submit a one-time query q containing keys k1, k2, . . . , kn. The
following steps take place to execute this query:

In step one, consumer C sends to its access point S a SubmitQ(key(C), ip(C), q) message.
This message includes besides the query also C’s contact information necessary to receive
answering messages.

In the second step, for each key k ∈ q, S computes H(k) to obtain the identifier of
the super-peer responsible for storing statistics about key k. Then, it sends a Get-
Stats(key(C), ip(C), k) message by using the Chord lookup() function.

In step three each super-peer Sk that receives a GetStats message, searches its local
statistics table ST for key k to retrieve a list L of provider peers storing documents contain-
ing the key t. Each element in list L is a tuple (key(P ), ip(P ), tfmax

k , dfk, cs, k) containing
contact information about providers and statistics about keys contained in documents that
these providers publish. Subsequently, Sk creates a RetStats(id(Sk), ip(Sk), L) message
and sends it to consumer C using ip(C) included in the GetStats message. In this way,
the consumer receives provider statistics for all query keys.

In step four, C uses the scoring function sel(P, q) described in Section 7.4 to rank the
providers with respect to q and identify the top-k providers that hold documents satisfying
q. This scoring function is based on resource selection algorithms known from the IR
literature (see Section 7.4).

- 128 -



Chapter 7 Digital Library Use Case

Subsequently, C creates a GetResults(ip(C), key(C), q) message and forwards it, using
the contact information associated with the statistics, to all provider peers selected pre-
viously. Once a provider peer P receives a GetResults message containing a query q,
it matches q against its local document collection to retrieve the documents matching q.
The local results are ranked according to their relevance to the query to create a result
list R. Subsequently, P creates a RetResults(ip(P ), R, q) message and sends it to C. In
this way, C collects the local result lists of all selected providers and uses them to compute
a final result list that is then presented to the user. To merge the retrieved result lists,
standard IR scoring functions (e.g., CORI [CLC95], GlOSS [GGMT99], or CVV [YL97])
are used. In [FPC+99], various standard approaches are compared.

7.3.6 Subscribing with a Continuous Query

This section describes how to extend the protocols of Section 7.3.5 to provide information
filtering functionality. To submit a continuous query cq containing keys k1, k2, . . . , kn, the
one-time query submission protocol needs to be modified. The first three steps are identical
while step four is modified as follows.

C uses the scoring function pred(P, cq) described in Section 7.4 to rank the providers
with respect to cq and identify the top−k providers that may publish documents matching
cq in the future. These are the peers that will store cq and C will receive notifications from
these peers only. This query indexing scheme makes provider selection a critical component
of the filtering functionality. Notice that, in a filtering setting, resource selection techniques
like sel(P, cq) described in Section 7.4 and used for one-time querying, are not appropriate
since MinervaDL is not interested in the current document collection of the providers but
rather in their future publishing behavior.

Once providers that will store cq have been determined, consumer C creates an message
IndexQuery(key(C), ip(C), id(S), ip(S), cq) and sends it to these providers using the IP
addresses associated with the GetStats messages C received in the previous step. When a
provider peer P receives an IndexQuery message, it stores cq in its local continuous query
data structures to match it against future publications. P utilizes these data structures at
publication time to find quickly all continuous queries that match a publication. This can
be done using efficient algorithms, e.g., BestFitTrie [TKD04], or SQI [YGM99].

7.3.7 Publishing a new Document

Contrary to approaches such as [TIK05a] that distribute the documents or the index lists
among the peers to achieve exact retrieval and filtering functionality, publications in Min-
ervaDL are kept locally at each provider. This lack of publication forwarding mechanism
is a design decision that offers increased scalability in MinervaDL by trading recall. Thus,
only monitored provider peers (i.e., indexing a continuous query cq) can notify a consumer
C, although other providers may also publish relevant documents. As already stated, this
makes the scoring function pred(P, cq) a critical component.

Thus, when a provider peer P wants to publish a new document d to the MinervaDL
network, the document is only matched against P ’s local continuous query database to
determine which continuous queries match d, and thus which consumers should be notified.
Additionally, at certain intervals P creates Post messages with updated statistics and
sends them to its access point S.

- 129 -



Chapter 7 Digital Library Use Case

7.3.8 Notification Delivery

Assume a provider P that has to deliver a notification for a continuous query cq to consumer
C. It creates a Notify(ip(P ), key(P ), d, cq) message, where d is the document matching
cq, and sends it to C. If C is not online at that time, then P sends the message to S,
where S is the access point of C, using ip(S) associated with cq. S then is responsible for
storing the message and delivering it to C upon reconnection. If S is also off-line then the
message is sent to S′, which is the access point of P , and S′ utilizes the DHT to locate the
successor(id(S)) (as defined in Chord [SMLN+03]), by calling function lookup(). Answers
to one-time queries are handled in a similar way.

7.4 Scoring Functions

Selecting the appropriate provider peers to forward an one-time or a continuous query
requires a ranking or scoring function that will be used to determine the most appropriate
sources (providers) for a given information demand. Although, both IR and IF protocols
utilize the same metadata stored in the distributed directory, the peer ranking strategies
in this use case differ significantly and have to consider varying objectives:

• In the case of information retrieval, the scoring algorithm has to identify authorities
with respect to a given query q, i.e., peers that have already made available a lot of
relevant document in the past. These peers should receive high scores, and thus be
ranked high in the respective peer ranking that will result. For this purpose, standard
resource selection algorithms known from the IR literature can be utilized. Section
7.4.1 discusses the scoring function for one-time querying.

• In contrast, in the information filtering case, the scoring function has to determine
the most appropriate provider peers that given a continuous query cq, will publish
documents matching cq in the future. In this setting, relying on existing resource
selection algorithms similar to the ones utilized for one-time querying leads to low
recall, as these algorithms are able to capture past publishing behavior, and cannot
adapt to the dynamics of the filtering case.

So, it is clear, that both functionalities have to consider different objectives. In the
filtering scenario, the main approach of this doctoral theses is used to select the best
providers. To even better illustrate this, consider the following example: Assume two
providers, where the first is specialized in soccer (i.e., in the past has published a lot of
documents about soccer), although now it is rarely publishing new documents. The second
provider is not specialized in soccer but currently it is publishing many documents about
soccer. Now, a consumer subscribes beginning 2008 for documents with the continuous
query soccer Euro 2008 1. A ranking function based on resource selection algorithms would
always choose the first provider. To get a higher ranking score, and thus get selected for
indexing the query, the second provider has to specialize in soccer, a long procedure that
is inapplicable in a filtering setting, which is by definition dynamic. The above example
illustrates that the ranking formula should be able to predict the publishing behavior of
providers by observing both their past and current behavior and projecting it to the future.
Section 7.4.2 discusses the appropriate technique from this doctoral thesis.

1The 2008 UEFA European Football Championship, commonly referred to as Euro 2008, takes place in
Austria and Switzerland, from 7 to 29 June 2008.

- 130 -



Chapter 7 Digital Library Use Case

7.4.1 Resource Selection

As mentioned before, a number of resource selection methods (e.g., CORI [CLC95], GlOSS
[GGMT99], CVV [YL97], language models, etc.) are available to identify good authorities
with respect to a given multi-key query q. A simple but effective approach utilizes term
frequencies (tf) and document frequencies (df) already stored in the directory to compute
a score sel(P, q) for all provider peers P :

sel(P, q) =
∑
t∈q

β · log (dfP,k) + (1− β) · log
(
tfmax

P,k

)
(7.1)

The parameter β in Equation 7.1 can be chosen in the range between 0 and 1. It is used
to stress the importance of df or tfmax. Preliminary experiments have shown that β = 0.5
is an appropriate value in most cases [BMT+05a]. Using the scoring function presented
above, providers can be can identified that store high-quality documents for query q, and
thus achieve high recall by querying only a few providers in the MinervaDL network. To
further improve recall, there are peer selection strategies that consider overlap-awareness
[BMT+05a] and key correlations [MBN+06].

7.4.2 Behavior Prediction

The prediction mechanism collects IR statistics from the distributed directory and treats
them as time series data to perform statistical analysis over them. A statistical analysis
assumes that the data points taken over time have some sort of internal structure (e.g., trend
etc.), and uses this observation to analyze older values and predict future ones [Cha04].
There exist various approaches (see 2.4) that differ in their assumptions about the internal
structure of the time-series (e.g., whether it exhibits a trend or seasonality). Moving average
techniques as described in 2.4.4.1 are a well-known group of time series prediction techniques
that assign equal weights to past observations (e.g., averaging is the simplest form of moving
average techniques), and thus cannot cope with trends or seasonality. In the Minerva DL
setting, it is reasonable to put more emphasis on a peer’s recent behavior and thus assign
higher weights to recent observations. Double exponential smoothing assigns exponentially
decreasing weights to past observations and assumes that the time series data present some
trend to predict future values. Since many queries are expected to be short-lived so that
no seasonality will be observed in the IR statistics time series, seasonality is not considered
in the predictions (and thus, triple exponential smoothing is not used).

The scoring function pred(P, cq) returns for a score representing the probability that
provider P will publish in the future documents relevant to the continuous query cq. Min-
ervaDL uses double exponential smoothing to predict the following two statistical values.
Initially, for all keys k in cq, the approach predicts the value for dfP,k (denoted as d̂fP,k),
and uses the difference (denoted as δ(d̂fP,k)) between d̂fP,k and the last received value
from the directory to calculate the score for P . δ(d̂fP,k) reflects the number of relevant
documents concerning t that P will publish in the next period. Secondly, MinervaDL pre-
dicts δ(ĉs) as the difference in the collection size of P reflecting the provider peer’s overall
expected future publishing activity. In this way two aspects of the peer’s behavior are
modeled: its ability to publish relevant documents in the future and its overall expected
publishing activity. The consumer peer that submits cq obtains the IR statistics that are
needed as an input to the prediction mechanism by utilizing the distributed directory. The
following formula is used to compute the prediction score for a provider P with respect to
a continuous query cq:

- 131 -



Chapter 7 Digital Library Use Case

pred(P, cq) =
∑
t∈cq

log
(
δ(d̂fP,k) + log (δ(ĉsP ) + 1) + 1

)
(7.2)

In the above formula, publication of relevant documents is accented compared to pub-
lishing rates. If a peer P publishes no documents at all, or, to be exact, the prediction of
δ(ĉsP ), and thus the prediction of δ(d̂fP,k) for all k ∈ cq, is 0 then the pred(P, cq) value is
also 0. The addition of 1 in the log formulas is used to yield positive predictions and to
avoid log 0.

7.5 Experimental Evaluation

This section presents the evaluation of MinervaDL. In the experimental evaluation, a total
number of 1000 providers and the same number of consumers is assumed. All these peers
are connected to a MinervaDL network using 400 super-peers as access points. At boot-
strapping, each provider stores about 300 documents and is mainly specialized in one out
of ten categories: Music, Finance, Arts, Sports, Natural Science, Health, Movies, Travel,
Politics, and Nature. Thus, there are 100 specialized information sources per category.

Overall, the experimental runs use 30 queries2 containing two, three or four keys that are
strong representatives of a certain document category and are used both as one-time and
continuous queries. The next sections investigate search performance, filtering performance,
and a message cost analysis.

7.5.1 Search Performance

In Figure 7.3, the experimental results of the information retrieval functionality of Miner-
vaDL are presented. Consumers issue the 30 one-time queries and the evaluation measures
the relative recall to a centralized search engine hosting the complete document collection:
the ratio of top-25 documents for a query included in the merged P2P query result. Thus,
MinervaDL applies the resource selection strategy as described before in 7.4.1 and increase
the percentage ρ of providers in the system that are requested to answer the query.

Figure 7.3 shows that the retrieval performance of MinervaDL manages to retrieve more
than 90% of the top rated documents by asking only a fraction of the providers, whereas
the baseline approach of random peer selection reaches a much lower recall (around 20%).
This experiment shows that a random selection of provider peers does not lead to satisfying
retrieval results.

7.5.2 Filtering Performance

To evaluate the filtering functionality of MinervaDL, the experiments assume that providers
publish 30 documents within a specific time period (called publishing round) and the results
after ten publishing rounds are investigated. A scenario that models periods of inactivity in
the publishing behavior is considered. This scenario assumes that consumers subscribe with
30 continuous queries and reposition them in each publishing round. In the experiments,
the percentage ρ of monitored providers is varied and the providers are ranked using the two
scoring functions approaches described in Section 7.4. Recall is used as filtering measures;
it is defined as the ratio of total number of notifications received by the consumers to the
total number of published documents matching a subscription.

2Example queries are museum modern art, or space model.

- 132 -



Chapter 7 Digital Library Use Case

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

A
ve

ra
ge

 R
el

at
iv

e 
R

ec
al

l

Percentage of Asked Provider Peers

random selection
resource selection

Figure 7.3: Search Performance of MinervaDL.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Provider Peers

resource selection
behavior prediction

Figure 7.4: Filtering Performance of MinervaDL.

- 133 -



Chapter 7 Digital Library Use Case

 0

 5

 10

 15

 20

 25

20 50 100

N
um

be
r 

of
 M

es
sa

ge
s 

(x
1M

)

Number of Documents (x1K)

MinervaDL
LibraRing

Figure 7.5: Approximate vs. Exact Information Filtering.

As illustrated in Figure 7.4, the use of behavior prediction improves recall over resource
selection as it manages to model more accurately the publishing behavior of providers.
In this way, the proposed scoring function manages to achieve a recall of around 80% by
monitoring only 20% of the providers in the MinervaDL network. Notice that for resource
selection, this number is only 35% which makes it an inapplicable solution to a filtering
environment.

7.5.3 Message Costs Analysis

Figures 7.5 and 7.6 show different aspects of a message costs analysis of MinervaDL. Here,
in each round, the subscriptions are repositioned and the one-time queries are requested
again (e.g., by another consumer peer). In this setting, there are three types of messages:
directory , retrieval , and filtering messages. Figure 7.5 compares MinervaDL with an im-
plementation of the exact matching protocols of LibraRing [TIK05a].

The overall message costs are considered as a function of the total number of documents
published in the system for both approaches. As shown, message costs of MinervaDL are
independent of the number of publications, whereas LibraRing, as with all exact matching
approaches, is sensitive to this parameter since documents have to be disseminated to
the network at publication time. This imposes a higher network cost especially for high
publication rates as those expected in a DL setting.

Finally, in Figure 7.6, it can be observed that directory messages dominate both retrieval
and filtering messages. This is expected since matching and filtering mechanisms are by
design local to accommodate high publication rates. This means that building both IR
and IF functionality on top of the routing infrastructure imposes no extra cost on the
architecture, compared to one that supports only one type of functionality. Since other
types of information can also be stored in the directory in the same fashion (e.g., QoS
statistics or load balancing information) building extra functionality will increase the added
value of the directory maintenance, and come at almost no extra cost.

- 134 -



Chapter 7 Digital Library Use Case

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

5 15 25

N
um

be
r 

of
 M

es
sa

ge
s 

(x
1M

)

Percentage of Provider Peers

Search Messages
Filtering Messages

Directory Messages

Figure 7.6: Message Costs in MinervaDL.

7.6 Discussion

This chapter presented a digital library use case utilizing a novel DL architecture coined
MinervaDL, designed to provide both IR and IF functionality in a single unifying framework.
All introduced protocols regulate the communication between the three peer types (super-
peers, providers, and consumers). The experimental evaluation of this use case investigated
the influence of the individual scoring functions used to perform the two functionalities of
MinervaDL. Furthermore, MinervaDL was compared against the LibraRing architecture
designed to provide exact retrieval and filtering. The next chapter will conclude this thesis
by summarizing the main contributions, and giving an outlook of open problems.

- 135 -



Chapter 7 Digital Library Use Case

- 136 -



Chapter 8 Conclusion and Open Questions

Chapter 8

Conclusion and Open Questions

The last chapter of this doctoral thesis summarizes the presented work (Section 8.1), and
lists the main contributions (Section 8.2). Finally, Section 8.3 discusses possible exten-
sions to the presented work and elaborates on open research questions with regard to load
balancing, dynamics in P2P networks, replication & caching, and economic aspects1.

8.1 Summary

Recently, the P2P paradigm has moved towards distributed data management systems that
are able to offer information retrieval or information filtering functionality. The main
advantage of P2P is its ability to handle huge amounts of data in a decentralized and self-
organizing manner. The characteristics of P2P offer high potential benefit for information
systems powerful regarding scalability, efficiency, and resilience to failures and dynamics.
Beyond that, such an information management system can potentially benefit from the
intellectual input of a large user community participating in the data sharing network. Fi-
nally, P2P information systems can also bring forward pluralism in informing users about
Internet content, a crucial property that breaks information-resource monopolies and by-
passes the biased visibility of content from economically powerful sources. In the above
distributed and dynamic setting, information filtering, also referred to as publish/subscribe
or continuous querying or information push, can be seen as equally important to infor-
mation retrieval (or one-time querying), since users are able to subscribe to information
sources and be notified when new events of interest happen. A user posts a subscription
(or continuous query) to the system to receive notifications whenever matching events of
interest take place. Information filtering and information retrieval are often referred as two
sides of the same coin [BC92].

The main challenge addressed in this thesis was to exploit P2P technology for efficient
and approximate information filtering. While there exist several approaches to perform
exact information filtering in P2P environments, the work in this thesis emphasized a novel
architecture to support content-based approximate information filtering. Most information
filtering approaches taken so far have the underlying hypothesis of potentially delivering
notifications from all information producers. This exact pub/sub functionality has proven
expensive for such distributed environments. The approximate approach in this thesis
relaxed this assumption by monitoring only selected sources that are likely to publish
documents relevant to the user interests in the future. Since in an IF scenario the data is
originally highly distributed residing on millions of sites (e.g., with people contributing to
blogs), a P2P approach seems an ideal candidate for such a setting.

1This chapter focuses on the most important open research questions.

- 137 -



Chapter 8 Conclusion and Open Questions

The system presented here offers the ability to identify the top-k most appropriate pub-
lisher peers for a given continuous query, i.e., those publishers that are expected to provide
the best documents matching it in the future. In this thesis, this task was referred to as
publisher peer selection. To select this set of peers, this thesis introduced new strategies
based on already known resource selection techniques in combination with new behavior
prediction techniques. These new techniques utilize a distributed directory to predict fu-
ture publishing behavior of peers by applying prediction techniques on time series of IR
statistics.

8.2 Contributions

The present thesis gives the following four main contributions that have been discussed in
detail in the previous chapters:

8.2.1 Approximate Information Filtering

One of the main contributions of this thesis was to introduce the novel MAPS architecture
to support content-based approximate information filtering in P2P environments. Most
IF approaches so far have the underlying hypothesis of potentially delivering notifications
from every information producer. Contrary, MAPS relaxes this assumption and monitors
only selected sources that are likely to publish documents relevant to the user interests
in the future. In MAPS, a user subscribes with a continuous query and only published
documents from these monitored sources are forwarded to him. The system provides a
network-agnostic P2P architecture with different services and its related protocols (direc-
tory, subscription, publication, and notification protocol) for supporting approximate IF
functionality in a distributed P2P environment. It is the first approach that looks into the
problem of approximate IF in such a setting by exploiting metadata stored in a conceptu-
ally global, but physically distributed directory. The most critical task in approximate IF
is the selection of appropriate publisher peers to meet the information demand in the fu-
ture. Therefore, MAPS combines existing resource selection techniques with new behavior
prediction strategies. The thesis showed that existing resource selection approaches (also
referred to as collection or database selection) are not sufficient in a dynamic filtering set-
ting since resource selection can only determine appropriate authorities that have already
published matching documents in the past.

A novel method aiming at behavior prediction of publisher peers complements the peer
selection strategy by applying prediction techniques to time series of IR statistics. So,
MAPS introduces research of time series analysis to P2P information filtering environ-
ments. The experimental evaluation of MAPS approved the effectiveness and efficiency in
several settings using real Web data. Various publishing behaviors have been investigated
to conclude that only the combination resource selection and behavior prediction allows to
improve recall, while monitoring only a small number of publishers.

Finally, the aforementioned prediction method was further enhanced by an automatic pa-
rameter tuning component. The MAPS Selective Method introduces an automatic method
to tune prediction parameters by utilizing known values to adjust the parameters used in
the time-series analysis. This is achieved at no additional communication cost, and is a
local task performed at each peer individually. To demonstrate the potential gaining from
the usage of MAPS, the thesis compared it against an existing exact information filtering
approach in the P2P setting and studied several major characteristics (e.g., load balancing
issues, query placement, or routing infrastructure).

- 138 -



Chapter 8 Conclusion and Open Questions

8.2.2 Correlation Awareness

The second contribution of this thesis covers publisher peer selection for a given continuous
query with multiple keywords. For scalability reasons, MAPS’s summaries are stored in the
distributed directory and have publisher (rather than document) granularity, thus capturing
the best publisher for certain keys. This, together with per-key organization of the directory
that disregards keyword correlations (also referred to as correlated key sets) are two of the
basic reasons that may lead to low recall. However, considering statistics for all possible
key sets is clearly not possible due to the explosion in the feature space. In the baseline
approach, a continuous query is decomposed into individual keys, and the statistics from
the directory are used to compute a combined score for each publisher. This score would
represent the probability of each source to publish documents matching the information
demand in the near future. This approach may lead to poor filtering quality as the top-
ranked publishers for the complete query may not be among the top selected publishers. In
the worst case, a selected publisher may deliver many documents for each single keyword,
but no single document matching all keywords, since this information is not present in the
directory.

To overcome his problem, this thesis introduced two approaches that use correlations
among keys to improve filtering quality: (i) the USS (Unique Synopses Storage) algorithm
that uses existing single-key synopses stored in the directory to estimate the publishing be-
havior of information sources for key sets, and (ii) the CSS (Combined Synopses Storage)
that enhances the directory to explicitly maintain statistical metadata about selectively
chosen key sets. Contrary to distributed IR settings for one-time searching where sources
are ranked according to their document collections (i.e., using resource selection strate-
gies), in approximate IF the publishers are ranked according to their probability to publish
relevant documents in the near future, which poses different requirements for maintaining
metadata. This thesis presented the first work to develop algorithms for exploiting keyword
correlations in such a dynamic IF setting. Existing and self-limited approaches for two-key
queries have been extended to the case of multi-key continuous queries for an arbitrary
number of keys. Beyond that, new algorithms to approximate multi-key statistics by com-
bining the statistics of arbitrary subsets have been provided. Hash sketches have been used
in similar algorithms with an IR emphasis to compactly represent the documents. This
choice has however yielded inaccurate results when considering continuous queries with
more than two keys. For this reason the usage of very recent state-of-the-art techniques
(KMV synopses) for compact representation of multisets is proposed and applied to an IF
setting. These new structures allow the system to compute accurate synopses for multi-
key queries, and improve the filtering effectiveness. The experimental evaluation of both
algorithms illustrated the filtering performance improvements in comparison to the basic
MAPS approach. All experimental series used two different real-world collections for Web
and blog data, and applied real-world queries from Google Zeitgeist. The evaluation also
investigated filtering performance gains depending on the introduced correlation measure
(conditional probability) representing a way to compute the relatedness among keys.

8.2.3 Prototype System

In addition to the architecture and algorithms for approximate information filtering pre-
sented above, the thesis has also developed a prototype implementation of the approximate
information filtering approach of MAPS. This implementation was meant to serve as a
testing environment for conducted experiments, but also serve as a prototype that is able
to demonstrate the applicability of the proposed techniques.

- 139 -



Chapter 8 Conclusion and Open Questions

The approximate information filtering approach introduced in this thesis has been inte-
grated into the Minerva search prototype [BMT+05b] such that Minerva provides an ap-
proximate publish/subscribe functionality in addition. In this regard, the implementation
aspects concerning the extension of Minerva have been investigated and new components
to support IF in addition to IR have been implemented and integrated into the existing
prototype. An extensive showcase has been used to describe the application of the extended
Minerva prototype by executing sample one-time and continuous queries in detail.

8.2.4 Digital Library Use Case

Finally, the thesis presented a digital library use case using the MinervaDL architecture as
an application scenario to support approximate information retrieval and filtering function-
ality in a single unifying framework. MinervaDL is hierarchical and utilizes a distributed
hash table to achieve scalability, fault-tolerance, and robustness in its routing layer.

The MinervaDL architecture allows handling huge amounts of data provided by DLs in
a distributed and self-organizing way, and provides an infrastructure for creating large net-
works of digital libraries with minimal administration costs. There are two kinds of basic
functionality that are offered in the DL architecture of MinervaDL: (i) an information re-
trieval scenario (or one-time querying, where a user poses an one-time query and the system
returns all resources matching the query (e.g., all currently available documents relevant
to the requested query), and (ii) an information filtering scenario (or publish/subscribe or
continuous querying), where a user submits a continuous query (or subscription) and waits
to be notified from the system about certain events of interest that take place (i.e., about
newly published documents relevant to the continuous query).

The proposed DL architecture is built upon a distributed directory storing metadata.
The thesis presents routing protocols for information filtering and retrieval that use this
directory information to perform the two functionalities. MinervaDL introduces three main
components. Super-peers run the DHT protocol and form a distributed directory maintain-
ing metadata about providers’ local knowledge in compact form. Consumers are utilized
by users to connect to the MinervaDL network, using a single super-peer as their access
point. Providers are implemented by information sources that want to expose their content
to the MinervaDL network. Typical examples of provider peers are digital libraries of large
institutions, like research centers or content providers.

Finally, this thesis presented different scoring functions to select appropriate provider
peers answering a one-time query or storing a continuous query for future matching pub-
lications. The experimental evaluation investigated the influence of the individual scoring
functions used to perform the two functionalities of MinervaDL. Furthermore, MinervaDL
was compared to another DL architecture for P2P networks (LibraRing) providing retrieval
and filtering at the same time. Unlike MinervaDL, this architecture provides exact retrieval
and filtering functionality.

8.3 Open Questions

In this section, a list of interesting open problems for approximate information filtering is
presented. The topics discussed are relevant not only within the scope of this thesis, but
are also interesting in the context of P2P data management in general. The discussion will
focus on topics relevant to the efficiency and effectiveness of data management, and will
not go into security or privacy issues that, although of high importance, are independent
of the proposed solutions.

- 140 -



Chapter 8 Conclusion and Open Questions

Thus, the remainder of this section will discuss open questions in the fields of load bal-
ancing , dynamics, economics, and replication & caching .

8.3.1 Load Balancing

The first open problem related to the thesis is load balancing in a distributed P2P setting.
Load balancing can be defined as distributing processing and communication activity evenly
across a computer network so that no single device is overwhelmed. In a P2P system, the
data load of a peer is usually determined by the amount of stored data items per peer. The
total data load of the P2P system is defined as the sum of the loads of all peers participating
in the system. To talk about a load balanced network, the load of a peer should be around
1/n of the total load when considering a network of n peers. A peer is referred to as
overloaded or heavy if it has a significantly higher load compared to the load it would have
in a load balanced case. Similarly, a peer is light if it has significantly less load than the
load in the load balanced case.

As presented in the previous chapters of this thesis, the MAPS approach utilizes dis-
tributed hash tables (e.g., Chord [SMK+01] or Pastry [RD01a]) as underlying infrastruc-
ture thus exploiting existing work on load balancing techniques for this kind of overlay
network. The literature distinguishes two particular problems related to load balancing in
distributed hash tables:

• Address-space load balancing tries to partition the address-space of the DHT evenly
among keys. This problem can be seen as solved by relying on consistent hash-
ing (i.e., main property of DHT overlay networks) and constructions such as virtual
peers. With virtual peers, each real peer pretends to be several distinct peers, each
participating independently in the DHT protocol. The load of a peer is thus deter-
mined by summing the load of all its virtual peers. The Chord DHT [SMK+01] is
based on consistent hashing and needs O(log n) copies to be operated for every peer
[RLS+03]. Drawbacks of virtual peers are increased storage requirement and higher
network bandwidth demand. In [KR06], the authors solve the drawbacks by activat-
ing only one of the virtual peers at any given time. The work presented in [BKadH05]
considers the task of keeping a system balanced in presence of peers leaving and join-
ing the network. The goals is to keep the lengths of intervals assigned to peers differ
at most by a constant factor. The proposed scheme works in a constant number of
rounds and achieves an optimal balance with high probability.

• Item load balancing aims to directly balance the distribution of items among peers
in the network. Here, an arbitrary load distribution of items is assumed, i.e., some
keys are more popular or appear more frequent than others. [ADH05] and [KR06] are
prominent work addressing this issue. A simple and cost-effective approach for item
load balancing is presented in [BCM03] applying the power of two choices paradigm.
There, an item is stored at the less loaded of two or more random alternatives.
[RPW04] presents a simple approach for balancing stored data items between peers
in a fashion analogous to the dissipation of heat energy in materials. This algorithm
improves the distribution of load in DHTs without requiring major changes of the
DHTs themselves. In addition, the fault tolerance of P2P systems is increased by the
proposed algorithm. Another approach for load balancing is described in [SVF08] and
considers differences in peer capacities. In addition, load balance in heavily loaded
P2P systems is investigated.

- 141 -



Chapter 8 Conclusion and Open Questions

Regarding the MAPS approach presented in this thesis, load balancing affects address-
space and item load balancing at the level of the distributed metadata directory. Beyond
that, the distribution of active subscriptions is also important since highly monitored pub-
lishers may become a bottleneck. Overall, the following load balancing questions arise and
have to be addressed in future work:

• The distributed directory stores metadata concerning publishers for keys or key sets
(see Chapter 5). Some keys (or key sets) are more frequent than others resulting in an
unbalanced directory distribution. A combination of address-space and item (or key)
load balancing techniques will be able to reach a good distribution among keys on
directory peers. Nevertheless, metadata lists for certain frequent keys are much longer
than lists for infrequent keys since publishers disseminate more directory messages
for these keys. Thus, assuming an evenly distributed address-space and an evenly
distributed key space is unrealistic, since some directory peers have to store more
metadata than others. This issue calls for load balancing techniques that take the
frequency of keys into consideration. A possible solutions to load balanced directory
entries is to store metadata for a small number of keys (perhaps only for one single
key) that are very frequent in one directory peer, whereas another directory peer is
assigned to metadata for a high number of very infrequent key.

• Maintaining metadata for key sets in the directory containing more than one key
adds additional complexity to the problem of key load balancing. But, key sets can
be reduced to single keys since a deterministic mapping from key sets to one single
key is considered in Chapter 5. Thus, solving the problem of load balancing for key
sets depends on providing solutions for load balancing for single keys.

• Besides the key distribution in the published data sets or documents, the key distribu-
tion in the requested continuous queries also influences the directory load distribution.
There is no direct relation between these two key distributions since users may request
both frequent and infrequent keys.

• Clearly, information filtering in P2P networks is a dynamic process, and publication
rates and query rates are not constant but rather change over time. Thus, the dis-
tribution of keys in published metadata and the distribution of keys in continuous
queries is dynamic too. This calls for load balancing techniques that take changes of
key distributions over time into consideration.

• Load balancing is also important regarding active subscriptions. Publisher peers that
store many subscriptions for requested continuous queries have to send a high number
of notifications for new published documents that match these subscriptions. Thus,
load balancing depends also on the number of publications since each publisher peer
can adjust the number of publications to its capacities. Decreasing the publication
rate also decreases the load for sending notifications because publishers with a low
publication rate are less monitored.

Load balancing in P2P information management systems, including the presented MAPS
approach, is a very important research topic for future work. Although existing balancing
techniques can be applied, there still exist some additional issues that need more sophisti-
cated balancing strategies.

- 142 -



Chapter 8 Conclusion and Open Questions

8.3.2 Dynamics

Another open problem for future work involves the effect of dynamics in P2P networks.
Within a P2P network, the churn rate2 refers to the number of peers leaving the system
during a given time period (e.g., an hour, or a year). Churn is a significant problem for
large-scale systems, as they must maintain consistent information about peers in the system
in order to operate effectively. For example, with a large churn rate it may be impossible to
index file locations, making some files inaccessible even though the peers that store these
files are online. In addition to peers leaving the network, dynamics in such a setting also
includes peers joining or even changing content in an abrupt way.

[KEAAH05] presents an analytical study of churn using a master-equation-based ap-
proach using the Chord DHT. For any churn and stabilization rate, and any system size,
the authors predict the fraction of failed or incorrect successor and finger pointers (see
Section 2.1.3). Earlier work [RGRK04, CCR04, LNBK02] considered theoretical studies of
asymptotic performance bounds of DHTs under churn or simulation-based studies.

Discussing the influence of dynamics for the MAPS architecture has to consider several
aspects including the directory maintenance, the subscriber and publisher behavior. Since
publishing documents is a main part of the information filtering setting, data dynamics is
not a concern in MAPS. Thus dynamics in MAPS only covers leaving and joining peers:

• The impact of publishers that leave or join the MAPS network is small. Whenever a
publisher joins the network, it has to update the metadata stored in the distributed
directory. If it is not the first time that this publisher joins (e.g., the digital library
had some downtime), the publishing behavior is recognizable. Subscriptions from
previous participation are still valid for future publications. Publishers leaving the
MAPS network can not publish documents any more until the next join. A subscriber
is not able to send a query to a publisher that has left the network. So, the number of
monitored publishers needs to be increased (depending on the expected or estimated
number of inactive publishers) to ensure a predefined number of monitored publishers.

• Similarly to the previous discussion, the impact of leaving or joining subscribers is
minor. Whenever a subscriber leaves the network, it can not request new continuous
queries, although Its active subscriptions will stay valid and issue notifications for
matching publications. Of course, the subscriber will not receive the notification, so
protocols that support storing notifications in the directory seem to be a necessary
system component (see Section 7.3). Then, a subscriber rejoining the MAPS network
receives the stored notifications for matching publications during its downtime.

• The effect of peer churn on directory maintenance is a challenging problem that might
affect both the effectiveness and efficiency of the system. If a new directory peer joins
the MAPS system, it is responsible for a certain subset of the key space. Thus,
there are two possibilities to handle joins: (i) the directory peer waits for updated
metadata from publishers, but until then, the directory cannot provide metadata for
certain keys; (ii) the joining protocol includes the dissemination of existing metadata
by exploiting the consistent hashing property. In this context, a critical issue that
arises is the departure of directory peers from the network without prior notification
or without following the network disconnection protocol. If so, the metadata for
keys that the directory peer was responsible for are no longer available. In this
case, publisher peers have to update their statistics to ensure a proper directory
maintenance.

2The phrase is based on the English idiom to churn up, meaning to agitate or produce violent motion

- 143 -



Chapter 8 Conclusion and Open Questions

A possible solution for the problem of churn on directory maintenance is replication:
more than one directory peers may store metadata for a key to ensure the availability of
directory statistics. This issue will be discussed in the next section.

8.3.3 Replication & Caching

An interesting open question for future work involves dealing with replication & caching .
Replication is the process of sharing information so as to ensure consistency between

redundant resources, such as software or hardware components, to improve reliability, fault-
tolerance, or accessibility. It could be data replication if the same data is stored on multiple
storage devices, or computation replication if the same computing task is executed many
times. Typically, the access to a replicated entity is uniform with access to a single, non-
replicated entity. The replication itself should be transparent to an external user. Also, in
a failure scenario, a failover of replicas is hidden as much as possible.

In computer science, a cache is a collection of data duplicating original values stored
elsewhere or computed earlier, where the original data is expensive to fetch (owing to longer
access time) or to compute, compared to the cost of reading the cache. In other words, a
cache is a temporary storage area where frequently accessed data can be stored for rapid
access. Once the data is stored in the cache, future use can be made by accessing the
cached copy rather than re-fetching or recomputing the original data, so that the average
access time is shorter. Cache, therefore, helps expedite data access that the CPU would
otherwise need to fetch from main memory.

Both caching and replication are also two popular topics in distributed information man-
agement. [RL05] compares two popular redundancy schemes: replication and erasure encod-
ing . Replication is also considered in both DHT protocols used in MAPS (Chord [RFH+01]
and Pastry [RD01b]) whereas erasure encoding is investigated in [DLS+04, KBC+00]. In
general, replication denotes the simple redundancy scheme where k identical copies of each
data object are kept in the system. The erasure encoding redundancy scheme means that
each data object divided into m fragments is recorded into n fragments stored separately
with n > m. The key property of erasure encoding is that the original data object can
be reconstructed from any m fragments. In [ZBW08], a cache-aware, multi-round query
routing strategy is developed that balances between query efficiency and result quality in
distributed P2P information retrieval (e.g., for the Minerva architecture). In addition to
this Exact Caching (EC) strategy, the aggressive reuse of the cached results of even sub-
sets of a query is proposed as the Approximate Caching (AC) technique. This strategy
can drastically reduce the bandwidth overheads. Older work proposes a Uniform Index
Caching (UIC) approach where query results are cached in all peers along the inverse
query path such that the same query requested by other peers can be replied from their
nearby cached results. The DiCAS (Distributed Caching and Adaptive Search) approach
[WXLZ04] extends this by distributing the cached results among neighboring peers and
queries are forwarded to peers with high probability of providing the desired cache results.
Both UIC and DiCAS protocols cache the final results of a query and reuse them only if
a query matches exactly the cached results, i.e., only if the results were cached due to an
identical query issued earlier. It should be noted that UIC and DiCAS are developed in
the context of unstructured P2P networks and are not directly applicable in DHT-based
structured networks. In [BCG+03], the authors present a way to efficiently maintain a
distributed version of inverted list intersections that were computed frequently to answer
queries. Here, the cacheable entity is a materialized intersection of inverted lists which re-
duces the bandwidth consumption due to frequent shipping of inverted lists. Similar ideas
are also proposed recently in [SA06].

- 144 -



Chapter 8 Conclusion and Open Questions

In the context of P2P information filtering, it is not obvious either how or what to cache
or replicate. In the setting of the thesis, the most benefits out of replication and caching
emerge from applying them to the distributed directory of statistics to ensure directory
maintenance for high dynamics. In a combined architecture as MinervaDL, caching strate-
gies as mentioned above should be applied. Other caching and replication strategies need
more work in the future.

8.3.4 Economics

Finally, an interesting direction for future research covers the economic aspects of the
presented approximate information filtering approach. In contrast to existing exact filtering
approaches, publishers have to disseminate their data items or documents such that the
data is available in the system. In MAPS, publishers are not required to expose their actual
content to the rest of the network, but rather they disseminate metadata about it. This new
paradigm allows to introduce a payment model for approximate filtering which introduces
a new research direction and an interesting business model.

The design of an incentive-based payment model has to consider several cost aspects and
restrictions, e.g., the MAPS system has to avoid that subscribers increase the number of
monitored publishers above a certain threshold. This can be achieved by introducing a cost
for submitting a subscription to a publisher. In the following, the properties of a possible
payment model are driven by the following assumptions: (i) subscribers are interested in
harvesting information while minimizing their costs, and (ii) publishers are interested in
selling information in order to maximize their profit.

An interesting dimension introduced by adding an economic perspective involves the
limitation of subscribers to monitor only a few publishers. This limitation makes publisher
selection a crucial issue, since subscribers may afford to monitor only a few sources. In the
following, interesting issues introduced by an economic model are elaborated:

• Directory peers have to maintain metadata of publishers and provide this information
to subscribers that submit a continuous query. One possible payment model could
assume that publishers have to pay for storing metadata and subscribers have to pay
for receiving metadata. Thus, directory peers have an incentive to store as much
metadata as possible, and they are only restricted by their storage capacity and
computational power. This assumption ensures that peers not interested in taking
part in the directory maintenance get paid.

• Subscribers are interested in receiving documents and data items matching their in-
formation demand. Thus, for each continuous query, subscribers have to collect meta-
data from the directory to perform publisher selection. To avoid harvesting metadata
too frequently, subscribers may be charged for that service. In the second step of
the payment model, subscribers send the continuous query to providers to store the
information demand. Under this assumption, subscribers have to pay for storing their
continuous queries to prevent them from subscribing to a high number of publishers.
If a subscriber does not receive enough or receives unsatisfying notifications from a
publisher, the payment ends and the continuous query is removed.

• Publishers may also need to pay to disseminate their metadata to the directory, since
this improves the probability to get selected for storing a continuous query. If a
publisher stores a continuous query, and publishes a new document matching this
request, a notification is send to the subscribers. Under this model, the publisher
may charge on a pay-per-view basis, and the subscriber might choose or not to view

- 145 -



Chapter 8 Conclusion and Open Questions

a relevant publication. The notification in this case is used by the subscriber to check
the meta information concerning a published document or data item and does not
include the full publication but only an excerpt or abstract in the form of search
engine result presentation.

This simple payment model needs to consider some more issues, e.g., computational
power restrictions. Currently, there are efforts to introduce economic interactions into the
MAPS architecture.

- 146 -



Appendix A Abbreviations

Appendix A

Abbreviations
Here, the appendix presents a list of abbreviations used in the present doctoral thesis. All
abbreviations of table A.1 have been introduced in the previous chapters.

P2P peer-to-peer
IF information filtering
IR information retrieval
DHT distributed hash table
DL digital library
MAPS Minerva Approximate Publish/Subscribe
MSM MAPS Selective Method
MRS MAPS Resource Selection
SES single exponential smoothing
DES double exponential smoothing
TES triple exponential smoothing
USS Unique Synopses Storage
CSS Combined Synopses Storage
TTL time-to-live
TA threshold algorithm
KMV k minimum values
AKMV augmented k minimum values
CMS content management system
df document frequency
tf term frequency
HDK highly discriminative keys
DTF decision theoretic framework
UIC Uniform Index Caching
EC Exact Caching
AC Approximate Caching
GUI Graphical User Interface
VSM vector space model
LSI latent semantic indexing

Table A.1: List of Abbreviations used in the Thesis.

- 147 -



Appendix A Abbreviations

- 148 -



Appendix B Zeitgeist Queries

Appendix B

Zeitgeist Queries
This chapter in the appendix lists the set of used Zeitgeist queries. the list of queries from
[NBMW06] is used, and distinguishes one-, two-, and three-key queries as shown in Tables
B.1, B.2, and B.3. Notice that all queries are stemmed using Porter Stemmer , and stop
words are removed.

3 argo arsen bbc beyonc bit car
cat cbbc cbeebi dictionari dog dot dolphin
easter easyjet eminem expedia fish florida flower
footbal franc game gorilla ibiza jennif jordan
kenya lingeri britain live8 liverpool london madagascar
mcfli multimap o2 oasi orang paintbal playboy
pope ryanair simpson spain mobil tesco killer
tsunami u2 usher vodafon wimbledon eastend

Table B.1: 55 One-Key Queries from Zeitgeist Query-Log.

50 cent abi titmuss alton tower angelina joli
bbc news bbc sport big brother blink 182
brad pitt brian mcfadden british airway britney spear
charlott church crazi frog currenc convert david beckham
ebay uk face parti friend reunit girl aloud
good charlott grand nation green day harri potter
inland revenu jennif ellison jessica alba johnni depp
london marathon love heart manchest unit michael jackson
paris hilton radcliff paula robbi william star war
wed crasher train time valentin day valentin gift
war world

Table B.2: 41 Two-Key Queries from Zeitgeist Query-Log.

celebr love island charli chocol factori red nose day

Table B.3: 3 Three-Key Queries from Zeitgeist Query-Log.

- 149 -



Appendix B Zeitgeist Queries

- 150 -



Appendix C Acknowledgements

Appendix C

Acknowledgements
Writing a doctoral thesis needs assistance and supervision. Thus, sincere thanks are given
to all that helped me to make this doctoral thesis during the last years.

• First of all, I have to thank Prof. Dr.-Ing. Gerhard Weikum for his support through-
out the years of my PhD. His experiences and cooperation improved many ideas. In
the last years, I enjoyed the great team work with Dr. Christos Tryfonopoulos. It was
a great pleasure to work together in such a friendly atmosphere. I have to say thank
you to all members of the doctoral committee, Prof. Dr. Jens Dittrich, Prof. Dr.
Manolis Koubarakis, and Dr.-Ing. Ralf Schenkel, for their comments and suggestions
on improvements and extensions of this work.

• Last years, I was allowed to work in a great research group. So, many thanks to
all members of the Databases and Information Systems Department for the nice and
international atmosphere. A special thank goes to the secretary team and the whole
Max-Planck Institute for Informatics for providing a professional research infrastruc-
ture.

• Special thanks go to my family and my parents for their love and encouragement
throughout all my life endeavors. Their courage in life and their strength in difficulties
was an extra motivation for this effort.

- 151 -



Appendix C Acknowledgements

- 152 -



Bibliography

Bibliography

[Abe01] Karl Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information
Systems. In Carlo Batini, Fausto Giunchiglia, Paolo Giorgini, and Massimo
Mecella, editors, Cooperative Information Systems, 9th International Confer-
ence, CoopIS 2001, Trento, Italy, September 5-7, 2001, Proceedings, volume
2172 of Lecture Notes in Computer Science, pages 179–194. Springer, 2001.
20, 28, 85

[Ac04] Yanif Ahmad and Ugur Çetintemel. Networked Query Processing for Dis-
tributed Stream-Based Applications. In Mario A. Nascimento, M. Tamer
Özsu, Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard
Schiefer, editors, (e)Proceedings of the Thirtieth International Conference on
Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004,
pages 456–467. Morgan Kaufmann, 2004. 39

[ADH05] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. Multifaceted Si-
multaneous Load Balancing in DHT-Based P2P Systems: A New Game with
Old Balls and Bins. In Özalp Babaoglu, Márk Jelasity, Alberto Montresor,
Christof Fetzer, Stefano Leonardi, Aad P. A. van Moorsel, and Maarten van
Steen, editors, Self-star Properties in Complex Information Systems, Concep-
tual and Practical Foundations, volume 3460 of Lecture Notes in Computer
Science, pages 373–391. Springer, 2005. 141

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient Filtering of XML Doc-
uments for Selective Dissemination of Information. In Amr El Abbadi,
Michael L. Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel,
Gunter Schlageter, and Kyu-Young Whang, editors, VLDB 2000, Proceed-
ings of 26th International Conference on Very Large Data Bases, September
10-14, 2000, Cairo, Egypt, pages 53–64. Morgan Kaufmann, 2000. 28

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining Association
Rules between Sets of Items in Large Databases. In Peter Buneman and
Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, D.C., May 26-28, 1993,
pages 207–216. ACM Press, 1993. 89

[AT05] Ioannis Aekaterinidis and Peter Triantafillou. Internet Scale String Attribute
Publish/Subscribe Data Networks. In Otthein Herzog, Hans-Jörg Schek, Nor-
bert Fuhr, Abdur Chowdhury, and Wilfried Teiken, editors, Proceedings of the
2005 ACM CIKM International Conference on Information and Knowledge
Management, Bremen, Germany, October 31 - November 5, 2005, pages 44–
51. ACM, 2005. 29, 85, 119

- 153 -



Bibliography

[AT06] Ioannis Aekaterinidis and Peter Triantafillou. PastryStrings: A Comprehen-
sive Content-Based Publish/Subscribe DHT Network. In 26th IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS 2006), 4-7
July 2006, Lisboa, Portugal, page 23. IEEE Computer Society, 2006. 29, 38,
39

[BAS04] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mer-
cury: Supporting Scalable Multi-Attribute Range Queries. In Raj Yavatkar,
Ellen W. Zegura, and Jennifer Rexford, editors, Proceedings of the ACM
SIGCOMM 2004 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, August 30 - September 3, 2004,
Portland, Oregon, USA, pages 353–366. ACM, 2004. 29

[BC92] Nicholas J. Belkin and W. Bruce Croft. Information Filtering and Informa-
tion Retrieval: Two Sides of the Same Coin? Communications of the ACM
(CACM), 35(12):29–38, 1992. 9, 27, 37, 137

[BCFM00] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzen-
macher. Min-Wise Independent Permutations. Journal of Computer and
System Sciences (JCSS), 60(3):630–659, 2000. 53

[BCG+03] Bobby Bhattacharjee, Sudarshan S. Chawathe, Vijay Gopalakrishnan, Pe-
ter J. Keleher, and Bujor D. Silaghi. Efficient Peer-To-Peer Searches Us-
ing Result-Caching. In M. Frans Kaashoek and Ion Stoica, editors, Peer-to-
Peer Systems II, Second International Workshop, IPTPS 2003, Berkeley, CA,
USA, February 21-22,2003, Revised Papers, volume 2735 of Lecture Notes in
Computer Science, pages 225–236. Springer, 2003. 144

[BCM03] John W. Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple Load
Balancing for Distributed Hash Tables. In M. Frans Kaashoek and Ion Sto-
ica, editors, Peer-to-Peer Systems II, Second International Workshop, IPTPS
2003, Berkeley, CA, USA, February 21-22,2003, Revised Papers, volume 2735
of Lecture Notes in Computer Science, pages 80–87. Springer, 2003. 141

[BHR+07] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and
Rainer Gemulla. On Synopses for Distinct-Value Estimation Under Multiset
Operations. In Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors,
Proceedings of the ACM SIGMOD International Conference on Management
of Data, Beijing, China, June 12-14, 2007, pages 199–210. ACM, 2007. 35,
86

[BK07] Nilesh Bansal and Nick Koudas. Searching the Blogosphere. In Tenth Inter-
national Workshop on the Web and Databases, WebDB 2007, Beijing, China,
June 15, 2007, 2007. 93

[BKadH05] Marcin Bienkowski, Miroslaw Korzeniowski, and Friedhelm Meyer auf der
Heide. Dynamic Load Balancing in Distributed Hash Tables. In Miguel Castro
and Robbert van Renesse, editors, Peer-to-Peer Systems IV, 4th International
Workshop, IPTPS 2005, Ithaca, NY, USA, February 24-25, 2005, Revised
Selected Papers, volume 3640 of Lecture Notes in Computer Science, pages
217–225. Springer, 2005. 141

- 154 -



Bibliography

[BKK+03] Hari Balakrishnan, M. Frans Kaashoek, David R. Karger, Robert Morris, and
Ion Stoica. Looking Up Data in P2P systems. Communications of the ACM
(CACM), 46(2):43–48, 2003. 16

[Blo70] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Communications of the ACM (CACM), 13(7):422–426, 1970. 53

[BM96] Timothy A. H. Bell and Alistair Moffat. The Design of a High Performance
Information Filtering System. In Hans-Peter Frei, Donna Harman, Peter
Schäuble, and Ross Wilkinson, editors, Proceedings of the 19th Annual Inter-
national ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR’96, August 18-22, 1996, Zurich, Switzerland (Special
Issue of the SIGIR Forum), pages 12–20. ACM, 1996. 28

[BMPC07] Matthias Bender, Sebastian Michel, Josiane Xavier Parreira, and Tom Cre-
celius. P2P Web Search: Make It Light, Make It Fly (Demo). In CIDR
2007, Third Biennial Conference on Innovative Data Systems Research, Asilo-
mar, CA, USA, January 7-10, 2007, Online Proceedings, pages 164–168.
www.crdrdb.org, 2007. 105

[BMS+06] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Ger-
hard Weikum. IO-Top-k: Index-access Optimized Top-k Query Processing. In
Proceedings of the 32nd International Conference on Very Large Data Bases,
Seoul, Korea, September 12-15, 2006, pages 475–486. ACM, 2006. 27

[BMT+05a] Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard Weikum,
and Christian Zimmer. Improving Collection Selection with Overlap Aware-
ness in P2P Search Engines. In Ricardo A. Baeza-Yates, Nivio Ziviani, Gary
Marchionini, Alistair Moffat, and John Tait, editors, SIGIR 2005: Proceed-
ings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Salvador, Brazil, August 15-19,
2005, pages 67–74. ACM, 2005. 38, 41, 42, 46, 53, 106, 108, 122, 131

[BMT+05b] Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard Weikum,
and Christian Zimmer. MINERVA: Collaborative P2P Search. In Klemens
Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Lar-
son, and Beng Chin Ooi, editors, Proceedings of the 31st International Confer-
ence on Very Large Data Bases, Trondheim, Norway, August 30 - September
2, 2005, pages 1263–1266. ACM, 2005. 12, 106, 107, 122, 140

[BMTW06] Matthias Bender, Sebastian Michel, Peter Triantafillou, and Gerhard
Weikum. Global Document Frequency Estimation in Peer-to-Peer Web
Search. In Ninth International Workshop on the Web and Databases, WebDB
2006, Chicago, Illinois, USA, June 30, 2006, 2006. 108

[BMW06] Matthias Bender, Sebastian Michel, and Gerhard Weikum. P2P Directo-
ries for Distributed Web Search: From Each According to His Ability, to
Each According to His Needs. In Roger S. Barga and Xiaofang Zhou, edi-
tors, Proceedings of the 22nd International Conference on Data Engineering
Workshops, ICDE 2006, 3-7 April 2006, Atlanta, GA, USA, page 51. IEEE
Computer Society, 2006. 71

- 155 -



Bibliography

[BMWZ04] Matthias Bender, Sebastian Michel, Gerhard Weikum, and Christian Zim-
mer. Bookmark-driven Query Routing in Peer-to-Peer Web Search. In Jamie
Callan, Norbert Fuhr, and Wolfgang Nejdl, editors, Proceedings of the SIGIR
Workshop on Peer-to-Peer Information Retrieval (P2P-IR), 27th Annual In-
ternational ACM SIGIR Conference, July 29, 2004, Sheffield, UK, 2004. 108

[BMWZ05] Matthias Bender, Sebastian Michel, Gerhard Weikum, and Christian Zim-
mer. The MINERVA Project: Database Selection in the Context of P2P
Search. In Gottfried Vossen, Frank Leymann, Peter C. Lockemann, and Wolf-
fried Stucky, editors, Datenbanksysteme in Business, Technologie und Web,
11. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme"
(DBIS), Karlsruhe, 2.-4. März 2005, volume 65 of LNI, pages 125–144. GI,
2005. 38, 53, 54, 106, 108

[BY99] Ricardo Baeza-Yates. Modern Information Retrieval. Addison Wesley, 1999.
25

[BYJK+02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
Counting Distinct Elements in a Data Stream. In José D. P. Rolim and
Salil P. Vadhan, editors, Randomization and Approximation Techniques, 6th
International Workshop, RANDOM 2002, Cambridge, MA, USA, September
13-15, 2002, Proceedings, volume 2483 of Lecture Notes in Computer Science,
pages 1–10. Springer, 2002. 35

[Cal96] James P. Callan. Document Filtering With Inference Networks. In Pro-
ceedings of the 19th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR’96, August 18-22,
1996, Zurich, Switzerland (Special Issue of the SIGIR Forum), pages 262–269.
ACM, 1996. 28

[Cal98] James P. Callan. Learning While Filtering DFocuments. In SIGIR ’98: Pro-
ceedings of the 21st Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, August 24-28 1998, Mel-
bourne, Australia, pages 224–231. ACM, 1998. 28

[CAPMN03] Francisco Matias Cuenca-Acuna, Christopher Peery, Richard P. Martin, and
Thu D. Nguyen. PlanetP: Using Gossiping to Build Content Addressable Peer-
to-Peer Information Sharing Communities. In 12th International Symposium
on High-Performance Distributed Computing (HPDC-12 2003), 22-24 June
2003, Seattle, WA, USA, pages 236–249. IEEE Computer Society, 2003. 105,
118

[CCC+01] Alexis Campailla, Sagar Chaki, Edmund M. Clarke, Somesh Jha, and Hel-
mut Veith. Efficient Filtering in Publish-Subscribe Systems Using Binary
Decision. In Proceedings of the 23rd International Conference on Software
Engineering, ICSE 2001, 12-19 May 2001, Toronto, Ontario, Canada, pages
443–452. IEEE Computer Society, 2001. 28

[CCH92] James P. Callan, W. Bruce Croft, and Stephen M. Harding. The INQUERY
Retrieval System. In Database and Expert Systems Applications (DEXA),
Proceedings of the International Conference in Valencia, Spain, 1992, pages
78–83. Springer, 1992. 53

- 156 -



Bibliography

[CCMN00] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek R.
Narasayya. Towards Estimation Error Guarantees for Distinct Values. In
Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, May 15-17, 2000, Dallas, Texas, USA,
pages 268–279. ACM, 2000. 33

[CCR04] Miguel Castro, Manuel Costa, and Antony I. T. Rowstron. Performance and
Dependability of Structured Peer-to-Peer Overlays. In 2004 International
Conference on Dependable Systems and Networks (DSN 2004), 28 June - 1
July 2004, Florence, Italy, Proceedings, pages 9–18. IEEE Computer Society,
2004. 143

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases. In Weidong Chen
and Jeffrey F. Naughton and Philip A. Bernstein, editor, Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, May
16-18, 2000, Dallas, Texas, USA, pages 379–390. ACM, 2000. 39

[CF03] Sirish Chandrasekaran and Michael J. Franklin. PSoup: A System for Stream-
ing Queries Over Streaming Data. VLDB Journals, 12(2):140–156, 2003. 39

[CFGR02] Chee Yong Chan, Pascal Felber, Minos N. Garofalakis, and Rajeev Rastogi.
Efficient Filtering of XML Documents with XPath Expressions. In Proceedings
of the 18th International Conference on Data Engineering, 26 February - 1
March 2002, San Jose, CA, pages 235–244. IEEE Computer Society, 2002.
28

[CG05] Graham Cormode and Minos N. Garofalakis. Sketching Streams Through the
Net: Distributed Approximate Query Tracking. In Proceedings of the 31st
International Conference on Very Large Data Bases, Trondheim, Norway,
August 30 - September 2, 2005, pages 373–384. ACM, 2005. 36

[CGR05] Gianna M. Del Corso, Antonio Gulli, and Francesco Romani. Ranking a
Stream of News. In Allan Ellis and Tatsuya Hagino, editors, Proceedings of
the 14th international conference on World Wide Web, WWW 2005, Chiba,
Japan, May 10-14, 2005, pages 97–106. ACM, 2005. 28

[Cha02] Soumen Chakrabarti. Mining the Web: Discovering Knowledge from Hyper-
text Data. Morgan-Kauffman, 2002. 24, 25

[Cha04] Christopher Chatfield. The Analysis of Time Series: An Introduction. CRC
Press, 2004. 29, 33, 54, 131

[CIKN04] Paul-Alexandru Chirita, Stratos Idreos, Manolis Koubarakis, and Wolfgang
Nejdl. Publish/subscribe for rdf-based p2p networks. In Christoph Bussler,
John Davies, Dieter Fensel, and Rudi Studer, editors, The Semantic Web:
Research and Applications, First European Semantic Web Symposium, ESWS
2004, Heraklion, Crete, Greece, May 10-12, 2004, Proceedings, volume 3053
of Lecture Notes in Computer Science, pages 182–197. Springer, 2004. 124

[CLC95] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching Distributed Col-
lections with Inference Networks. In Edward A. Fox, Peter Ingwersen, and
Raya Fidel, editors, SIGIR’95, Proceedings of the 18th Annual International

- 157 -



Bibliography

ACM SIGIR Conference on Research and Development in Information Re-
trieval. Seattle, Washington, USA, July 9-13, 1995, pages 21–28. ACM Press,
1995. 53, 54, 108, 129, 131

[CMH+02] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, and Bran-
don Wiley. Protecting Free Expression Online with Freenet. IEEE Internet
Computing (IC), 6(1):40–49, 2002. 19

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service. ACM Transactions on
Database Systems (TODS), 19(3):332–383, 2001. 28

[CW04] Pei Cao and Zhe Wang. Efficient Top-K Query Calculation in Distributed
Networks. In Soma Chaudhuri and Shay Kutten, editors, Proceedings of the
Twenty-Third Annual ACM Symposium on Principles of Distributed Com-
puting, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004,
pages 206–215. ACM, 2004. 106

[DAF+03] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and Peter M.
Fischer. Path Sharing and Predicate Evaluation for High-Performance XML
Filtering. ACM Transactions on Database Systems (TODS), 28(4):467–516,
2003. 28

[Den82] Peter J. Denning. Electronic Junk. Communications of the ACM (CACM),
25(3):163–165, 1982. 27

[DF03] Marianne Durand and Philippe Flajolet. Loglog Counting of Large Cardinal-
ities (Extended Abstract). In Giuseppe Di Battista and Uri Zwick, editors,
Algorithms - ESA 2003, 11th Annual European Symposium, Budapest, Hun-
gary, September 16-19, 2003, Proceedings, volume 2832 of Lecture Notes in
Computer Science, pages 605–617. Springer, 2003. 33, 34

[DFK05] Jens-Peter Dittrich, Peter M. Fischer, and Donald Kossmann. AGILE: Adap-
tive Indexing for Context-Aware Information Filters. In Fatma Özcan, editor,
Proceedings of the ACM SIGMOD International Conference on Management
of Data, Baltimore, Maryland, USA, June 14-16, 2005, pages 215–226. ACM,
2005. 119

[DLS+04] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek,
and Robert Morris. Designing a DHT for Low Latency and High Through-
put. In 1st Symposium on Networked Systems Design and Implementation
(NSDI 2004), March 29-31, 2004, San Francisco, California, USA, Proceed-
ings, pages 85–98. USENIX, 2004. 144

[EH05] Wolfgang Müller 0002, Martin Eisenhardt, and Andreas Henrich. Scalable
Summary Based Retrieval in P2P Networks. In Otthein Herzog, Hans-Jörg
Schek, Norbert Fuhr, Abdur Chowdhury, and Wilfried Teiken, editors, Pro-
ceedings of the 2005 ACM CIKM International Conference on Information
and Knowledge Management, Bremen, Germany, October 31 - November 5,
2005, pages 586–593. ACM, 2005. 118

[Fag02] Ronald Fagin. Combining Fuzzy Information: an Overview. ACM SIGMOD
Record, 31(2):109–118, 2002. 118

- 158 -



Bibliography

[FFS+01] Daniel Faensen, Lukas Faulstich, Heinz Schweppe, Annika Hinze, and Alexan-
der Steidinger. Hermes: A Notification Service for Digital Libraries. In
ACM/IEEE Joint Conference on Digital Libraries, JCDL 2001, Roanoke,
Virginia, USA, June 24-28, 2001, Proceedings, pages 373–380. ACM, 2001.
41, 119

[FJL+01] Françoise Fabret, Hans-Arno Jacobsen, François Llirbat, João Pereira, Ken-
neth A. Ross, and Dennis Shasha. Filtering Algorithms and Implementation
for Very Fast Publish/Subscribe. In ACM SIGMOD Conference 2001: Santa
Barbara, CA, USA, pages 115–126. ACM, 2001. 28

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Al-
gorithms for Middleware. In Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-
23, 2001, Santa Barbara, California, USA. ACM, 2001. 26

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic Counting Algorithms for
Data Base Applications. Journal of Computer and System Sciences (JCSS),
31(2):182–209, 1985. 33

[FPC+99] James C. French, Allison L. Powell, James P. Callan, Charles L. Viles, Travis
Emmitt, Kevin J. Prey, and Yun Mou. Comparing the Performance of
Database Selection Algorithms. In SIGIR ’99: Proceedings of the 22nd An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, August 15-19, 1999, Berkeley, CA, USA, pages 238–
245. ACM, 1999. 129

[FSGM+98] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani,
and Jeffrey D. Ullman. Computing Iceberg Queries Efficiently. In Ashish
Gupta, Oded Shmueli, and Jennifer Widom, editors, VLDB’98, Proceedings
of 24rd International Conference on Very Large Data Bases, August 24-27,
1998, New York City, New York, USA, pages 299–310. Morgan Kaufmann,
1998. 89

[Fuh99] Norbert Fuhr. A Decision-Theoretic Approach to Database Selection in Net-
worked IR. ACM Transactions on Information Systems (TOIS), 17(3):229–
249, 1999. 25, 53

[FZ98] Michael J. Franklin and Stanley B. Zdonik. Data In Your Face: Push Technol-
ogy in Perspective. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD
1998, Proceedings ACM SIGMOD International Conference on Management
of Data, June 2-4, 1998, Seattle, Washington, USA, pages 516–519. ACM
Press, 1998. 28

[GBK00] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Optimizing Multi-
Feature Queries for Image Databases. In Amr El Abbadi, Michael L. Brodie,
Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter,
and Kyu-Young Whang, editors, VLDB 2000, Proceedings of 26th Interna-
tional Conference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt, pages 419–428. Morgan Kaufmann, 2000. 26

[GDH04] Evgeniy Gabrilovich, Susan T. Dumais, and Eric Horvitz. Newsjunkie: Pro-
viding Personalized Newsfeeds via Analysis of Information Novelty. In Stu-
art I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors,

- 159 -



Bibliography

Proceedings of the 13th international conference on World Wide Web, WWW
2004, New York, NY, USA, May 17-20, 2004, pages 482–490. ACM, 2004. 28

[GGG+03] P. Krishna Gummadi, Ramakrishna Gummadi, Steven D. Gribble, Sylvia
Ratnasamy, Scott Shenker, and Ion Stoica. The Impact of DHT Routing Ge-
ometry on Resilience and Proximity. In Proceedings of the ACM SIGCOMM
2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, August 25-29, 2003, Karlsruhe, Germany,
pages 381–394, 2003. 20

[GGM95] Luis Gravano and Hector Garcia-Molina. Generalizing GlOSS to Vector-Space
Databases and Broker Hierarchies. In Umeshwar Dayal, Peter M. D. Gray, and
Shojiro Nishio, editors, VLDB’95, Proceedings of 21th International Confer-
ence on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland,
pages 78–89. Morgan Kaufmann, 1995. 53, 108

[GGMT99] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. GlOSS: Text-
Source Discovery over the Internet. ACM Transactions on Database Systems
(TODS), 24(2):229–264, 1999. 53, 129, 131

[Gib01] Phillip B. Gibbons. Distinct Sampling for Highly-Accurate Answers to Dis-
tinct Values Queries and Event Reports. In Peter M. G. Apers, Paolo Atzeni,
Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao, and Richard T.
Snodgrass, editors, VLDB 2001, Proceedings of 27th International Confer-
ence on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages
541–550. Morgan Kaufmann, 2001. 33

[GL03] Bugra Gedik and Ling Liu. PeerCQ: A Decentralized and Self-Configuring
Peer-to-Peer Information Monitoring System. In 23rd International Confer-
ence on Distributed Computing Systems (ICDCS 2003), 19-22 May 2003,
Providence, RI, USA, pages 490–499. IEEE Computer Society, 2003. 29, 39

[GSAA04] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi.
Meghdoot: Content-Based Publish/Subscribe over P2P Networks. In Hans-
Arno Jacobsen, editor, Middleware 2004, ACM/IFIP/USENIX International
Middleware Conference, Toronto, Canada, October 18-20, 2004, Proceedings,
volume 3231 of Lecture Notes in Computer Science, pages 254–273. Springer,
2004. 29, 39

[GT02] Daniel I. Greenstein and Suzanne E. Thorin. The Digital Library: A Biog-
raphy. Digital Library Federation and Council on Library and Information
Resources, 2002. 123

[GWJD03] Leonidas Galanis, Yuan Wang, Shawn R. Jeffery, and David J. DeWitt. Locat-
ing Data Sources in Large Distributed Systems. In Johann Christoph Freytag,
Peter C. Lockemann, Serge Abiteboul, Michael J. Carey, Patricia G. Selinger,
and Andreas Heuer, editors, VLDB 2003, Proceedings of 29th International
Conference on Very Large Data Bases, September 9-12, 2003, Berlin, Ger-
many, pages 874–885. Morgan Kaufmann, 2003. 117

[Ham94] James Douglas Hamilton. Time Series Analysis. Princeton University Press,
1994. 29

- 160 -



Bibliography

[HPS96] David A. Hull, Jan O. Pedersen, and Hinrich Schütze. Method Combination
For Document Filtering. In Hans-Peter Frei, Donna Harman, Peter Schäuble,
and Ross Wilkinson, editors, Proceedings of the 19th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR’96, August 18-22, 1996, Zurich, Switzerland (Special Issue of
the SIGIR Forum), pages 279–287. ACM, 1996. 27

[HT99] David Hawking and Paul B. Thistlewaite. Methods for Information Server
Selection. ACM Transactions on Information Systems (TOIS), 17(1):40–76,
1999. 105

[HWBM02] Cefn Hoile, Fang Wang, Erwin Bonsma, and Paul Marrow. Core Specification
and Experiments in DIET: A Decentralised Ecosystem-inspired Mobile Agent
System. In The First International Joint Conference on Autonomous Agents
& Multiagent Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy, Pro-
ceedings, pages 623–630. ACM, 2002. 119

[IKT04a] Stratos Idreos, Manolis Koubarakis, and Christos Tryfonopoulos. P2P-DIET:
An Extensible P2P Service that Unifies Ad-hoc and Continuous Querying in
Super-Peer Networks. In Gerhard Weikum, Arnd Christian König, and Stefan
Deßloch, editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, Paris, France, June 13-18, 2004, pages 933–934.
ACM, 2004. 28, 119, 124

[IKT04b] Stratos Idreos, Manolis Koubarakis, and Christos Tryfonopoulos. P2P-DIET:
One-Time and Continuous Queries in Super-Peer Networks. In Advances in
Database Technology - EDBT 2004, 9th International Conference on Extend-
ing Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Pro-
ceedings, volume 2992 of Lecture Notes in Computer Science, pages 851–853.
Springer, 2004. 28

[JHR+04] Ankur Jain, Joseph M. Hellerstein, Sylvia Ratnasamy, , and David Wether-
all. A Wakeup Call for Internet Monitoring Systems: The Case for Dis-
tributed Triggers. In Mario A. Nascimento, M. Tamer Özsu, Donald Koss-
mann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors,
Third Workshop on Hot Topics in Networks (HotNets-III), November 15-16,
2004, San Diego, CA USA, 2004. 39

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven E. Czerwinski, Patrick R.
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean C. Rhea, Hakim Weath-
erspoon, Westley Weimer, Chris Wells, and Ben Y. Zhao. OceanStore: An
Architecture for Global-Scale Persistent Storage. In ASPLOS-IX Proceedings
of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, USA, November 12-15,
2000., pages 190–201, 2000. 144

[KEAAH05] Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi. A
Statistical Theory of Chord Under Churn. In Miguel Castro and Robbert
van Renesse, editors, Peer-to-Peer Systems IV, 4th International Workshop,
IPTPS 2005, Ithaca, NY, USA, February 24-25, 2005, Revised Selected Pa-
pers, volume 3640 of Lecture Notes in Computer Science, pages 93–103.
Springer, 2005. 143

- 161 -



Bibliography

[KKTR02] Manolis Koubarakis, Theodoros Koutris, Christos Tryfonopoulos, and
Paraskevi Raftopoulou. Information Alert in Distributed Digital Libraries:
The Models, Languages, and Architecture of DIAS. In Maristella Agosti and
Costantino Thanos, editors, Research and Advances Technology for Digital
Technology : 6th European Conference, ECDL 2002, Rome, Italy, September
16-18, 2002. Proceedings, volume 2458 of Lecture Notes in Computer Science,
pages 527–542. Springer, 2002. 28, 119

[Kle00] Jon M. Kleinberg. The small-world phenomenon: an algorithm perspective.
In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, May 21-23, 2000, Portland, OR, USA. ACM, 2000, pages 163–
170, 2000. 19

[KLFW06] Nils Kammenhuber, Julia Luxenburger, Anja Feldmann, and Gerhard
Weikum. Web Search Clickstreams. In Jussara M. Almeida, Virgílio A. F.
Almeida, and Paul Barford, editors, Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement 2006, Rio de Janeriro, Brazil, October
25-27, 2006, pages 245–250. ACM, 2006. 108

[KLL+97] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy,
Matthew S. Levine, and Daniel Lewin. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
654–663. ACM, 1997. 29

[KP05] Georgia Koloniari and Evaggelia Pitoura. Peer-to-Peer Management of XML
Data: Issues and Research Challenges. ACM SIGMOD Record, 34(2):6–17,
2005. 28

[KR06] David R. Karger and Matthias Ruhl. Simple Efficient Load-Balancing Algo-
rithms for Peer-to-Peer Systems. Theory of Computing Systems, 39(6):787–
804, 2006. 141

[KTID03] Manolis Koubarakis, Christos Tryfonopoulos, Stratos Idreos, and Yannis
Drougas. Selective Information Dissemination in P2P Networks: Problems
and Solutions. ACM SIGMOD Record, 32(3):71–76, 2003. 28

[LC03] Jie Lu and James P. Callan. Content-based Retrieval in Hybrid Peer-to-Peer
Nnetworks. In Proceedings of the 2003 ACM CIKM International Conference
on Information and Knowledge Management, New Orleans, Louisiana, USA,
November 2-8, 2003, pages 199–206. ACM, 2003. 121

[LCC00] Leah S. Larkey, Margaret E. Connell, and James P. Callan. Collection Selec-
tion and Results Merging with Topically Organized U.S. Patents and TREC
Data. In Proceedings of the 2000 ACM CIKM International Conference on In-
formation and Knowledge Management, McLean, VA, USA, November 6-11,
2000, pages 282–289. ACM, 2000. 45

[LdS01] Carl Lagoze and Herbert Van de Sompel. The Open Archives Initiative:
Building a Low-barrier Interoperability Framework. In ACM/IEEE Joint
Conference on Digital Libraries, JCDL 2001, Roanoke, Virginia, USA, June
24-28, 2001, Proceedings, pages 54–62. ACM, 2001. 123

- 162 -



Bibliography

[LKP+05] Toan Luu, Fabius Klemm, Ivana Podnar, Martin Rajman, and Karl Aberer.
Alvis Peers: A Scalable Full-Text Peer-to-Peer Retrieval Engine. In Pro-
ceedings of the International Workshop on Information Retrieval in Peer-to-
Peer Networks (P2PIR 2006), Arlington, Virginia, USA, November 11, 2006,
pages 41–48. ACM, 2005. 105, 118

[LLH+03] Jinyang Li, Boon Thau Loo, Joseph M. Hellerstein, M. Frans Kaashoek,
David R. Karger, and Robert Morris. On the Feasibility of Peer-to-Peer Web
Indexing and Search. In M. Frans Kaashoek and Ion Stoica, editors, Peer-to-
Peer Systems II, Second International Workshop, IPTPS 2003, Berkeley, CA,
USA, February 21-22,2003, Revised Papers, volume 2735 of Lecture Notes in
Computer Science, pages 207–215. Springer, 2003. 106

[LNBK02] David Liben-Nowell, Hari Balakrishnan, and David R. Karger. Analysis of
the Evolution of Peer-to-Peer Systems. In Proceedings of the Twenty-First
Annual ACM Symposium on Principles of Distributed Computing (PODC),
July 21-24, 2002 Monterey, California, USA. ACM, 2002, pages 233–242,
2002. 22, 143

[LPT00] Ling Liu, Calton Pu, and Wei Tang. Continual Queries for Internet Scale
Event-Driven Information Delivery. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 12(5):861, 2000. 39

[Luh58] H. P. Luhn. A Business Intelligence System. IBM Journal of Reasearch and
Development, 2(4):314–319, 1958. 27

[MBN+06] Sebastian Michel, Matthias Bender, Nikos Ntarmos, Peter Triantafillou, Ger-
hard Weikum, and Christian Zimmer. Discovering and Exploiting Keyword
and Attribute-Value Co-occurrences to Improve P2P Routing Indices. In
Philip S. Yu, Vassilis J. Tsotras, Edward A. Fox, and Bing Liu, editors,
Proceedings of the 2006 ACM CIKM International Conference on Informa-
tion and Knowledge Management, Arlington, Virginia, USA, November 6-11,
2006, pages 172–181. ACM, 2006. 38, 46, 53, 86, 87, 88, 103, 107, 108, 131

[MBTW06] Sebastian Michel, Matthias Bender, Peter Triantafillou, and Gerhard
Weikum. IQN Routing: Integrating Quality and Novelty in P2P Querying and
Ranking. In Yannis E. Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Flo-
rian Matthes, Michael Hatzopoulos, Klemens Böhm, Alfons Kemper, Torsten
Grust, and Christian Böhm, editors, Advances in Database Technology -
EDBT 2006, 10th International Conference on Extending Database Tech-
nology, Munich, Germany, March 26-31, 2006, Proceedings, volume 3896 of
Lecture Notes in Computer Science, pages 149–166. Springer, 2006. 108

[MLS99] David R. H. Miller, Tim Leek, and Richard M. Schwartz. A Hidden Markov
Model Information Retrieval System. In SIGIR ’99: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, August 15-19, 1999, Berkeley, CA, USA, pages
214–221. ACM, 1999. 53

[MMK+05] Volker Markl, Nimrod Megiddo, Marcel Kutsch, Tam Minh Tran, Peter J.
Haas, and Utkarsh Srivastava. Consistently Estimating the Selectivity of
Conjuncts of Predicates. In Proceedings of the 31st International Conference

- 163 -



Bibliography

on Very Large Data Bases, Trondheim, Norway, August 30 - September 2,
2005, pages 373–384. ACM, 2005. 92

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable and
Dynamic Emulation of the Butterfly. In PODC 2002, Proceedings of the
Twenty-First Annual ACM Symposium on Principles of Distributed Comput-
ing, July 21-24, 2002 Monterey, California, USA. ACM, 2002, pages 183–192,
2002. 20

[MS94] Masahiro Morita and Yoichi Shinoda. Information Filtering Based on User
Behaviour Analysis and Best Match Text Retrieval. In W. Bruce Croft and
C. J. van Rijsbergen, editors, Proceedings of the 17th Annual International
ACM-SIGIR Conference on Research and Development in Information Re-
trieval. Dublin,Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum),
pages 272–281. ACM/Springer, 1994. 27

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Nat-
ural Language Processing. The MIT Press, 1999. 25

[MS05] Peter Mahlmann and Christian Schindelhauer. Peer-to-Peer Networks Based
on Random Transformations of Connected Regular Undirected Graphs. In
SPAA 2005: Proceedings of the 17th Annual ACM Symposium on Parallel
Algorithms, July 18-20, 2005, Las Vegas, Nevada, USA, pages 155–164, 2005.
20

[MSHR02] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar Ra-
man. Continuously Adaptive Continuous Queries Over Streams. In Michael J.
Franklin, Bongki Moon, and Anastassia Ailamaki, editors, Proceedings of
the 2002 ACM SIGMOD International Conference on Management of Data,
Madison, Wisconsin, June 3-6, 2002, pages 49–60. ACM, 2002. 39

[MTW05] Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. KLEE: A Frame-
work for Distributed Top-k Query Algorithms. In Klemens Böhm, Christian S.
Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and Beng Chin
Ooi, editors, Proceedings of the 31st International Conference on Very Large
Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 637–
648. ACM, 2005. 106

[MYL02] Weiyi Meng, Clement T. Yu, and King-Lup Liu. Building Efficient and Ef-
fective Metasearch Engines. ACM Computing Surveys (CSUR), 34(1):48–89,
2002. 24, 53

[NACP01] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda. Mon-
itoring XML Data on the Web. In SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, pages 437–448.
ACM, 2001. 28

[NBMW06] Thomas Neumann, Matthias Bender, Sebastian Michel, and Gerhard
Weikum. A Reproducible Benchmark for P2P Retrieval. In Philippe Bonnet
and Ioana Manolescu, editors, Proceedings of the First International Work-
shop on Performance and Evaluation of Data Management Systems, ExpDB
2006, in cooperation with ACM SIGMOD, June 30, 2006, Chicago, Illinois,
USA, pages 1–8, 2006. 93, 149

- 164 -



Bibliography

[NF03] Henrik Nottelmann and Norbert Fuhr. Evaluating Different Methods of Esti-
mating Retrieval Quality for Resource Selection. In SIGIR 2003: Proceedings
of the 26th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, July 28 - August 1, 2003, Toronto,
Canada, pages 290–297. ACM, 2003. 53, 108

[NF06] Henrik Nottelmann and Norbert Fuhr. Comparing Different Architectures for
Query Routing in Peer-to-Peer Networks. In Mounia Lalmas, Andy MacFar-
lane, Stefan M. Rüger, Anastasios Tombros, Theodora Tsikrika, and Alexei
Yavlinsky, editors, Advances in Information Retrieval, 28th European Con-
ference on IR Research, ECIR 2006, London, UK, April 10-12, 2006, Pro-
ceedings, volume 3936 of Lecture Notes in Computer Science, pages 253–264.
Springer, 2006. 53

[NR99] Surya Nepal and M. V. Ramakrishna. Query Processing Issues in Image
(Multimedia) Databases. In Proceedings of the 15th International Conference
on Data Engineering (ICDE), 23-26 March 1999, Sydney, Austrialia, pages
22–29. IEEE Computer Society, 1999. 26

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sin-
tek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch.
EDUTELLA: A P2P Networking Infrastructure based on RDF. In Proceed-
ings of the Eleventh International World Wide Web Conference, WWW2002,
Honolulu, Hawaii, USA, 7-11 May 2002, pages 604–615. ACM, 2002. 28, 124

[Ora01] Andy Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly, 2001. 16

[PB02] Peter R. Pietzuch and Jean Bacon. Hermes: A Distributed Event-Based Mid-
dleware Architecture. In 22nd International Conference on Distributed Com-
puting Systems, Workshops (ICDCSW ’02) July 2-5, 2002, Vienna, Austria,
Proceedings, pages 611–618. IEEE Computer Society, 2002. 28, 39, 122

[PC98] Jay M. Ponte and W. Bruce Croft. A Language Modeling Approach to Infor-
mation Retrieval. In SIGIR ’98: Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, August 24-28 1998, Melbourne, Australia, pages 275–281. ACM, 1998.
25, 53

[PMBW05] Odysseas Papapetrou, Sebastian Michel, Matthias Bender, and Gerhard
Weikum. On the Usage of Global Document Occurrences in Peer-to-Peer
Information Systems. In Robert Meersman, Zahir Tari, Mohand-Said Hacid,
John Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno Jacobsen,
Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra, editors, On the
Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,
OTM Confederated International Conferences CoopIS, DOA, and ODBASE
2005, Agia Napa, Cyprus, October 31 - November 4, 2005, Proceedings,
Part I, volume 3760 of Lecture Notes in Computer Science, pages 310–328.
Springer, 2005. 108

[PRL+07] Ivana Podnar, Martin Rajman, Toan Luu, Fabius Klemm, and Karl Aberer.
Scalable Peer-to-Peer Web Retrieval with Highly Discriminative Keys. In
Proceedings of the 23nd International Conference on Data Engineering, ICDE

- 165 -



Bibliography

2007, April 15-20, 2007, The Marmara Hotel, Istanbul, Turkey, pages 1096–
1105. IEEE, 2007. 87

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing
Nearby Copies of Replicated Objects in a Distributed Environment. In SPAA
’97: Proceedings of the 9th Annual ACM Symposium on Parallel Algorithms
and Architectures, June 23-25, 1997, Newport, RI, USA. ACM Press, pages
311–320, 1997. 20

[RD01a] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In
Rachid Guerraoui, editor, Middleware 2001, IFIP/ACM International Con-
ference on Distributed Systems Platforms Heidelberg, Germany, November
12-16, 2001, Proceedings, volume 2218 of Lecture Notes in Computer Science,
pages 329–350. Springer, 2001. 20, 23, 28, 109, 119, 141

[RD01b] Antony I. T. Rowstron and Peter Druschel. Storage Management and Caching
in PAST, A Large-scale, Persistent Peer-to-peer Storage Utility. In Proceed-
ings of the 18th ACM Symposium on Operating System Principles (SOSP),
October 21-24, 2001, Chateau Lake Louise, Banff, Alberta, Canada, pages
188–201. ACM, 2001. 23, 144

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proceedings of the
ACM SIGCOMM 2001 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, August 27-31, 2001, San
Diego, CA, USA, pages 161–172. ACM, 2001. 20, 28, 39, 41, 144

[RGRK04] Sean C. Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Han-
dling Churn in a DHT (Awarded Best Paper!). In Proceedings of the General
Track: 2004 USENIX Annual Technical Conference, June 27 - July 2, 2004,
Boston Marriott Copley Place, Boston, MA, USA, pages 127–140. USENIX,
2004. 143

[RKCD01] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter
Druschel. SCRIBE: The Design of a Large-Scale Event Notification Infras-
tructure. In Jon Crowcroft and Markus Hofmann, editors, Networked Group
Communication, Third International COST264 Workshop, NGC 2001, Lon-
don, UK, November 7-9, 2001, Proceedings, volume 2233 of Lecture Notes in
Computer Science, pages 30–43. Springer, 2001. 23, 28, 119

[RL05] Rodrigo Rodrigues and Barbara Liskov. High Availability in DHTs: Erasure
Coding vs. Replication. In Miguel Castro and Robbert van Renesse, editors,
Peer-to-Peer Systems IV, 4th International Workshop, IPTPS 2005, Ithaca,
NY, USA, February 24-25, 2005, Revised Selected Papers, volume 3640 of
Lecture Notes in Computer Science, pages 226–239. Springer, 2005. 144

[RLS+03] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard M. Karp,
and Ion Stoica. Load Balancing in Structured P2P Systems. In M. Frans
Kaashoek and Ion Stoica, editors, Peer-to-Peer Systems II, Second Interna-
tional Workshop, IPTPS 2003, Berkeley, CA, USA, February 21-22, 2003,
Revised Papers, volume 2735 of Lecture Notes in Computer Science, pages
68–79. Springer, 2003. 141

- 166 -



Bibliography

[RPTW08] Paraskevi Raftopoulou, Euripides G.M. Petrakis, Christos Tryfonopoulos, and
Gerhard Weikum. Information Retrieval and Filtering over Self-Organising
Digital Libraries. In Research and Advanced Technology for Digital Libraries,
12th European Conference, ECDL 2008, Aarhus, Denmark, September 14-19,
2008, Proceedings, Lecture Notes in Computer Science. Springer, 2008. 121,
124

[RPW04] Simon Rieche, Leo Petrak, and Klaus Wehrle. A Thermal-Dissipation-Based
Approach for Balancing Data Load in Distributed Hash Tables. In 29th
Annual IEEE Conference on Local Computer Networks (LCN 2004), 16-18
November 2004, Tampa, FL, USA, Proceedings, pages 15–23. IEEE Computer
Society, 2004. 141

[RV03] Patrick Reynolds and Amin Vahdat. Efficient Peer-to-Peer Keyword Search-
ing. In Markus Endler and Douglas C. Schmidt, editors, Middleware 2003,
ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro,
Brazil, June 16-20, 2003, Proceedings, volume 2672 of Lecture Notes in Com-
puter Science, pages 21–40. Springer, 2003. 118

[RvRP80] Stephen E. Robertson, C. J. van Rijsbergen, and Martin F. Porter. Probabilis-
tic Models of Indexing and Searching. In Proceedings of the 3rd annual ACM
conference on Research and Development in Information Retrieval (SIGIR),
Cambridge, England, pages 35–56. ACM, 1980. 25

[RWHB+92] Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Aarron
Gull, and Marianna Lau. Okapi at trec. In The First Text REtrieval Confer-
ence (TREC). National Institute of Standards and Technology (NIST), pages
21–30, 1992. 26

[SA06] Gleb Skobeltsyn and Karl Aberer. Distributed Cache Table: Efficient Query-
driven Processing of Multi-term Queries in P2P Networks. In P2PIR ’06:
Proceedings of the International Workshop on Information Retrieval in Peer-
to-Peer Networks, Arlington, Virginia, USA., pages 33–40. ACM, 2006. 144

[SC99] Fei Song and W. Bruce Croft. A General Language Model for Information
Retrieval. In Proceedings of the 1999 ACM CIKM International Conference
on Information and Knowledge Management, Kansas City, Missouri, USA,
November 2-6, 1999, pages 316–321. ACM, 1999. 53

[SCL+05] Jeremy Stribling, Isaac G. Councill, Jinyang Li, M. Frans Kaashoek, David R.
Karger, Robert Morris, and Scott Shenker. OverCite: A Cooperative Digital
Research Library. In Miguel Castro and Robbert van Renesse, editors, Peer-
to-Peer Systems IV, 4th International Workshop, IPTPS 2005, Ithaca, NY,
USA, February 24-25, 2005, Revised Selected Papers, volume 3640 of Lecture
Notes in Computer Science, pages 69–79. Springer, 2005. 118

[SE00] Atsushi Sugiura and Oren Etzioni. Query Routing for Web Search Engines:
Architecture and Experiments. Computer Networks, 33(1-6):417–429, 2000.
105

[SJCO02] Luo Si, Rong Jin, James P. Callan, and Paul Ogilvie. A Language Modeling
Framework for Resource Selection and Results Merging. In Proceedings of the
2002 ACM CIKM International Conference on Information and Knowledge

- 167 -



Bibliography

Management, McLean, VA, USA, November 4-9, 2002, pages 391–397. ACM,
2002. 25, 53, 54, 113

[SLZ+07] Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, and Karl
Aberer. Web Text Retrieval with a P2P Query-Driven Index. In Wessel
Kraaij, Arjen P. de Vries, Charles L. A. Clarke, Norbert Fuhr, and Noriko
Kando, editors, SIGIR 2007: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, Amsterdam, The Netherlands, July 23-27, 2007, pages 679–686. ACM,
2007. 87

[SMK+01] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. In Proceedings of the ACM SIGCOMM 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, August 27-31, 2001, San Diego, CA, USA, pages 149–160. ACM,
2001. 20, 28, 42, 43, 85, 109, 125, 128, 141

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a Scalable Peer-to-
Peer Lookup Protocol for Internet Applications. IEEE/ACM Transactions
on Networking (TON), 11(1):17–32, 2003. 122, 130

[SMwW+03] Torsten Suel, Chandan Mathur, Jo wen Wu, Jiangong Zhang, Alex Delis,
Mehdi Kharrazi, Xiaohui Long, and Kulesh Shanmugasundaram. ODISSEA:
A Peer-to-Peer Architecture for Scalable Web Search and Information Re-
trieval. In Vassilis Christophides and Juliana Freire, editors, International
Workshop on Web and Databases, San Diego, California, June 12-13, 2003,
pages 67–72, 2003. 118, 121

[STSW02] Sergej Sizov, Martin Theobald, Stefan Siersdorfer, and Gerhard Weikum.
BINGO!: Bookmark-Induced Gathering of Information. In Tok Wang Ling,
Umeshwar Dayal, Elisa Bertino, Wee Keong Ng, and Angela Goh, editors, 3rd
International Conference on Web Information Systems Engineering (WISE
2002), 12-14 December 2002, Singapore, Proceedings, pages 323–332. IEEE
Computer Society, 2002. 41, 58, 78, 111

[SVF08] Tyler Steele, Vivek Vishnumurthy, and Paul Francis. A Parameter-Free Load
Balancing Mechanism For P2P Networks. In The 7th International Workshop
on Peer-to-Peer Systems, IPTPS 2008, Tampa Bay, Florida, USA, February
25-26, 2008, 2008. 141

[SW05] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and Appli-
cations, volume 3485 of Lecture Notes in Computer Science. Springer, 2005.
15, 16

[TAJ04] David Tam, Reza Azimi, and Hans-Arno Jacobsen. Building Content-Based
Publish/Subscribe Systems with Distributed Hash Tables. In Karl Aberer,
Vana Kalogeraki, and Manolis Koubarakis, editors, Databases, Informa-
tion Systems, and Peer-to-Peer Computing, First International Workshop,
DBISP2P, Berlin Germany, September 7-8, 2003, Revised Papers, volume
2944 of Lecture Notes in Computer Science, pages 138–152. Springer, 2004.
28

- 168 -



Bibliography

[TBF+03] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and
Alejandro P. Buchmann. A Peer-to-Peer Approach to Content-Based Pub-
lish/Subscribe. In Hans-Arno Jacobsen, editor, Proceedings of the 2nd Inter-
national Workshop on Distributed Event-Based Systems, DEBS 2003, Sun-
day, June 8th, 2003, San Diego, California, USA (in conjunction with SIG-
MOD/PODS). ACM, 2003. 28

[TC91] Howard R. Turtle and W. Bruce Croft. Evaluation of an Inference Network-
Based Retrieval Model. ACM Transactions on Information Systems (TOIS),
9(3):187–222, 1991. 53

[TD04] Chunqiang Tang and Sandhya Dwarkadas. Hybrid Global-Local Indexing for
Efficient Peer-to-Peer Information Retrieval. In 1st Symposium on Networked
Systems Design and Implementation (NSDI 2004), March 29-31, 2004, San
Francisco, California, USA, Proceedings, pages 211–224. USENIX, 2004. 105,
118

[TE04] Peter Triantafillou and Andreas A. Economides. Subscription Summarization:
A New Paradigm for Efficient Publish/Subscribe Systems. In 24th Interna-
tional Conference on Distributed Computing Systems (ICDCS 2004), 24-26
March 2004, Hachioji, Tokyo, Japan, pages 562–571. IEEE Computer Society,
2004. 28

[TGNO92] Douglas B. Terry, David Goldberg, David Nichols, and Brian M. Oki. Contin-
uous Queries over Append-Only Databases. In Michael Stonebraker, editor,
Proceedings of the 1992 ACM SIGMOD International Conference on Manage-
ment of Data, San Diego, California, June 2-5, 1992, pages 321–330. ACM
Press, 1992. 39

[TIK05a] Christos Tryfonopoulos, Stratos Idreos, and Manolis Koubarakis. LibraRing:
An Architecture for Distributed Digital Libraries Based on DHTs. In Andreas
Rauber, Stavros Christodoulakis, and A. Min Tjoa, editors, Research and
Advanced Technology for Digital Libraries, 9th European Conference, ECDL
2005, Vienna, Austria, September 18-23, 2005, Proceedings, volume 3652 of
Lecture Notes in Computer Science, pages 25–36. Springer, 2005. 29, 39, 85,
117, 121, 122, 124, 129, 134

[TIK05b] Christos Tryfonopoulos, Stratos Idreos, and Manolis Koubarakis. Pub-
lish/subscribe Functionality in IR Environments using Structured Overlay
Networks. In Ricardo A. Baeza-Yates, Nivio Ziviani, Gary Marchionini, Al-
istair Moffat, and John Tait, editors, SIGIR 2005: Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Salvador, Brazil, August 15-19, 2005, pages 322–
329. ACM, 2005. 29, 38, 39, 40, 47, 58, 70, 71

[TKD04] Christos Tryfonopoulos, Manolis Koubarakis, and Yannis Drougas. Filter-
ing Algorithms for Information Retrieval Models with Named Attributes and
Proximity Operators. In Mark Sanderson, Kalervo Järvelin, James Allan, and
Peter Bruza, editors, SIGIR 2004: Proceedings of the 27th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, Sheffield, UK, July 25-29, 2004, pages 313–320. ACM, 2004. 29,
45, 129

- 169 -



Bibliography

[TKD08] Christos Tryfonopoulos, Manolis Koubarakis, and Yannis Drougas. Informa-
tion Filtering and Query Indexing for an Information Retrieval Model. ACM
Transactions on Information Systems (TOIS), 2008. 29, 45

[TSW05] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An Efficient and
Versatile Query Engine for TopX Search. In Proceedings of the 31st Interna-
tional Conference on Very Large Data Bases, Trondheim, Norway, August 30
- September 2, 2005, pages 625–636. ACM, 2005. 27

[TX03] Chunqiang Tang and Zhichen Xu. pFilter: Global Information Filtering and
Dissemination Using Structured Overlay Networks. In 9th IEEE Interna-
tional Workshop on Future Trends of Distributed Computing Systems (FT-
DCS 2003), 28-30 May 2003, San Juan, Puerto Rico, Proceedings, pages
24–30. IEEE Computer Society, 2003. 29, 38, 39, 40, 85, 119

[TZWK07] Christos Tryfonopoulos, Christian Zimmer, Gerhard Weikum, and Manolis
Koubarakis. Architectural Alternatives for Information Filtering in Struc-
tured Overlays. IEEE Internet Computing (IC), 11(4):24–34, 2007. 11, 47,
121

[WGD03] Yuan Wang, Leonidas Galanis, and David J. DeWitt. Galanx: An efficient
Peer-to-Peer Search Engine System. Technical report, University of Wiscon-
sin, Madison, 2003. 117

[WMYL01] Zonghuan Wu, Weiyi Meng, Clement T. Yu, and Zhuogang Li. Towards a
Highly-Scalable and Effective Metasearch Engine. In Proceedings of the Tenth
International World Wide Web Conference, WWW 10, Hong Kong, China,
May 1-5, 2001, pages 386–395, 2001. 105

[WXLZ04] Chen Wang, Li Xiao, Yunhao Liu, and Pei Zheng. Distributed Caching and
Adaptive Search in Multilayer P2P Networks. In 24th International Confer-
ence on Distributed Computing Systems (ICDCS 2004), 24-26 March 2004,
Hachioji, Tokyo, Japan, pages 219–226. IEEE Computer Society, 2004. 144

[XC99] Jinxi Xu and W. Bruce Croft. Cluster-Based Language Models for Distributed
Retrieval. In SIGIR ’99: Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
August 15-19, 1999, Berkeley, CA, USA, pages 254–261. ACM, 1999. 53

[YGM94a] Tak W. Yan and Hector Garcia-Molina. Index Structures for Information
Filtering Under the Vector Space Model. In Proceedings of the Tenth Inter-
national Conference on Data Engineering, February 14-18, 1994, Houston,
Texas, USA, pages 337–347. IEEE Computer Society, 1994. 28

[YGM94b] Tak W. Yan and Hector Garcia-Molina. Index Structures for Selective Dis-
semination of Information Under the Boolean Model. ACM Transactions on
Database Systems (TODS), 19(2):332–364, 1994. 28

[YGM99] Tak W. Yan and Hector Garcia-Molina. The SIFT Information Dissemination
System. ACM Transactions on Database Systems (TODS), 24(4):529–565,
1999. 28, 45, 129

- 170 -



Bibliography

[YGM03] Beverly Yang and Hector Garcia-Molina. Designing a Super-Peer Network.
In Proceedings of the 19th International Conference on Data Engineering
(ICDE), March 5-8, 2003, Bangalore, India, pages 49–, 2003. 20

[YJ06] Beverly Yang and Glen Jeh. Retroactive Answering of Search Queries. In
Les Carr, David De Roure, Arun Iyengar, Carole A. Goble, and Michael
Dahlin, editors, Proceedings of the 15th international conference on World
Wide Web, WWW 2006, Edinburgh, Scotland, UK, May 23-26, 2006, pages
457–466. ACM, 2006. 37, 122

[YL97] Budi Yuwono and Dik Lun Lee. Server Ranking for Distributed Text Re-
trieval Systems on the Internet. In Rodney W. Topor and Katsumi Tanaka,
editors, Database Systems for Advanced Applications ’97, Proceedings of the
Fifth International Conference on Database Systems for Advanced Applica-
tions (DASFAA), Melbourne, Australia, April 1-4, 1997, volume 6 of Ad-
vanced Database Research and Development Series, pages 41–50. World Sci-
entific, 1997. 129, 131

[YVGM04] Beverly Yang, Patrick Vinograd, and Hector Garcia-Molina. Evaluating
GUESS and Non-Forwarding Peer-to-Peer Search. In 24th International Con-
ference on Distributed Computing Systems (ICDCS 2004), 24-26 March 2004,
Hachioji, Tokyo, Japan, pages 209–218. IEEE Computer Society, 2004. 105

[ZBW08] Christian Zimmer, Srikanta Bedathur, and Gerhard Weikum. Flood Little,
Cache More: Effective Result-reuse in P2P IR Systems. In Jayant R. Har-
itsa, Ramamohanarao Katagiri, and Vikram Pudi, editors, Database Systems
for Advanced Applications, 13th International Conference, DASFAA 2008,
New Delhi, India, March 2008, Proceedings, volume 4947 of Lecture Notes in
Computer Science, pages 235–250. Springer, 2008. 108, 144

[ZC01] Yi Zhang and James P. Callan. Maximum Likelihood Estimation for Filter-
ing Thresholds. In W. Bruce Croft, David J. Harper, Donald H. Kraft, and
Justin Zobel, editors, SIGIR 2001: Proceedings of the 24th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA, pages 294–
302. ACM, 2001. 28

[ZH05] Rongmei Zhang and Y. Charlie Hu. HYPER: A Hybrid Approach to Efficient
Content-Based Publish/Subscribe. In 25th International Conference on Dis-
tributed Computing Systems (ICDCS 2005), 6-10 June 2005, Columbus, OH,
USA, pages 427–436. IEEE Computer Society, 2005. 39

[ZHTW08] Christian Zimmer, Johannes Heinz, Christos Tryfonopoulos, and Gerhard
Weikum. P2P Information Retreival and Filtering with MAPS. In Eighth
IEEE International Conference on Peer-to-Peer Computing (P2P 2008),
September 8-12, 2008, Aachen, Germany. IEEE Computer Society, 2008. 12,
105

[ZL01] ChengXiang Zhai and John D. Lafferty. A Study of Smoothing Methods for
Language Models Applied to Ad Hoc Information Retrieval. In W. Bruce
Croft, David J. Harper, Donald H. Kraft, and Justin Zobel, editors, SIGIR

- 171 -



Bibliography

2001: Proceedings of the 24th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, September 9-13,
2001, New Orleans, Louisiana, USA, pages 334–342. ACM, 2001. 53

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM
Computing Surveys (CSUR), 38(2), 2006. 26

[ZTB+07] Christian Zimmer, Christos Tryfonopoulos, Klaus Berberich, Gerhard
Weikum, and Manolis Koubarakis. Node Behavior Prediction for Large-Scale
Approximate Information Filtering. In Workshop on Large-Scale Distributed
Systems for Information Retrieval (LSDS-IR), July 27 2007, Amsterdam, The
Netherlands, 2007. 10, 73

[ZTB+08] Christian Zimmer, Christos Tryfonopoulos, Klaus Berberich, Manoli
Koubarakis, and Gerhard Weikum. Approximate Information Filtering in
Peer-to-Peer Networks. In James Bailey, David Maier, Klaus-Dieter Schewe,
and Bernhard Thalheim, editors, Web Information Systems Engineering -
WISE 2008, 9th International Conference on Web Information Systems Engi-
neering, Auckland, Newzealand, September 1-4, 2008, volume 5175 of Lecture
Notes in Computer Science, pages 6–19. Springer, 2008. 10, 51

[ZTW07] Christian Zimmer, Christos Tryfonopoulos, and Gerhard Weikum. Miner-
vaDL: An Architecture for Information Retrieval and Filtering in Distributed
Digital Libraries. In László Kovács, Norbert Fuhr, and Carlo Meghini, edi-
tors, Research and Advanced Technology for Digital Libraries, 11th European
Conference, ECDL 2007, Budapest, Hungary, September 16-21, 2007, Pro-
ceedings, volume 4675 of Lecture Notes in Computer Science, pages 148–160.
Springer, 2007. 13, 121

[ZTW08] Christian Zimmer, Christos Tryfonopoulos, and Gerhard Weikum. Exploit-
ing Correlated Keywords to Improve Approximate Information Filtering. In
SIGIR 2008: Proceedings of the 31th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, Singapore,
July 20-24, 2008. ACM, 2008. 12, 85

[ZZJ+01] Shelley Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John
Kubiatowicz. Bayeux: An Architecture for Scalable and Fault-Tolerant Wide-
Area Data Dissemination. In Network and Operating System Support for
Digital Audio and Video, 11th International Workshop, NOSSDAV 2001, Port
Jefferson, NY, USA, June 25-26, 2001, Proceedings, pages 11–20. ACM, 2001.
28

- 172 -



Index

Index

2-Key-All-High-Corr, 99
2-Key-High-Corr, 99
2-Key-Low-Corr, 99
3-Key-All-High-Corr, 99
3-Key-High-Corr, 99
3-Key-Low-Corr, 99

absolute thresholding, 71
AC, 144
access point, 13, 125, 127
AckNewCons, 127
AckNewProv, 127
AckNewSPeer, 127
adaptive filtering, 28
address-space load balancing, 141
AGILE, 119
AKMV synopses, 35
All-High-Corr, 98
Alvis, 118
Apache, 117
approximate, 38
Approximate Caching, 144
approximation, 106
authorities, 130
autonomy, 106
average, 75
average recall, 68, 93

bag-of-words, 26
baseline approach, 85, 87, 91
basic estimator, 35
behavior prediction, 10, 38, 51, 52, 56, 77
benchmark, 93
benefit/cost ratio, 58, 68
BerkeleyDB, 117
BestFitTrie, 129
BINGO, 41, 58
BitTorrent, 9, 15
blogs, 10, 38, 85

bloom filter, 53
Boolean model, 42
bootstrapping phase, 77
breadth-first search, 18
Break, 64
brute-force flooding, 19
Business Intelligence System, 27

cache, 144
CAN, 20, 28, 39
CatChg, 61
centralized P2P, 17
Chord, 17, 20, 28, 39, 42, 109, 122, 125,

144
Chord ring, 20
churn, 22
churn rate, 143
CIF, 119
CiteSeer, 118
click streams, 108
Cloudscape, 109, 111
CMS, 41
collection selection, 52
Collection Statistics, 112
CollectStats message, 44, 46
Combined Synopses Storage, 12, 86, 90
Communicator, 109, 110
completeness, 24
conditional probability, 12, 88, 103
ConnectCons, 127
ConnectProv, 127
Consist, 60
consistent hashing, 141, 143
consumer, 13, 122, 126
consumer peer, 126
consumer table, 127
content-based filtering, 27, 48
continuous query, 9, 37, 121
Continuous Query Store, 110

- 173 -



Index

continuous querying, 9, 37, 121
continuous time series, 30
control, 30
CORI, 45, 53, 56, 108, 113, 129
correlation model, 88
cosine measure, 26, 53
Create Ring, 111
CSS, 12, 85, 86, 89, 90, 93, 94, 99, 103
CSS-1, 95
CSS-2, 97
CSS-3, 97
CSS-4, 97
CSS-5, 97
CVV, 129
cyclic changes, 31

database selection, 52, 108
DB Service Name, 111
decentralized P2P, 18
Deep Web, 123
denial-of-service, 15
Derby, 109, 111
DES, 11, 32, 55, 72
description, 30
deterministic time series, 30
DHT, 11, 20, 48, 77, 85
DHTrie, 39, 47, 49, 58, 70
DHTStrings, 29, 119
DIAS, 28
DiCAS, 144
DIET Agents Platform, 119
difference, 35
digital age, 123
digital library, 20, 29, 41, 121, 123
directory maintenance, 107
directory message, 134
directory protocol, 42
directory service, 40, 41
DisconnectCons, 127
DisconnectProv, 127
DisconnectSPeer, 128
discrete time series, 30
distinct-value estimation, 33
Distributed Caching and Adaptive Search,

144
distributed hash table, 11, 20, 39, 48, 57,

77, 107, 121
DL, 10, 29
DL architecture, 121
document frequency, 25

double exponential smoothing, 11, 32, 51,
55, 72, 131

double moving average, 32
DTF, 53, 108
duplicate elimination, 28
DV estimation, 33, 85
dynamics, 141, 143

EC, 144
economics, 141
Edutella, 28, 124
effectiveness, 57
efficiency, 57
electronic library, 123
erasure encoding, 144
eSearch, 118
Event Handler, 109, 110
Exact Caching, 144
exactness, 24
ExpDec, 73, 74
ExpInc, 73, 74, 79
explanation, 30
exponential smoothing, 31, 32

F1-measure, 24
Fα-measure, 24
F-measure, 24
F-score, 24
Fagin’s threshold algorithm, 118
federation of digital libraries, 123
fidelity, 24
filtering message, 134
finger table, 21
forecasting, 30, 31
free-rider, 61
Freenet, 19
FreePastry, 109
frequent itemset mining, 89
future, 56

Galanx, 117
GCPastImpl, 109
geometric weights, 32
GetResults, 129
GetStats, 128
Global Query Processor, 110
GlOSS, 53, 108, 129
Gnutella, 9, 15, 19, 48
Google, 24, 93, 103, 105, 123
Google Alerts, 9, 37

- 174 -



Index

Google Books, 124
Google Zeitgeist, 12
granularity, 106

Half, 61
hash sketches, 33, 85–88, 93, 94, 103
HDK, 87, 118
heavy, 141
Hermes, 28, 39, 119
High-Corr, 98
Highly Discriminative Keys, 87, 118
horizon, 31
Host Name, 111
HYPER, 39

iClusterDL, 124
ID circle, 20
identifier circle, 20
IF, 9
inclusion-exclusion principle, 34
IndexQ message, 45
IndexQuery, 129
inference network, 53
information age, 123
information avalanche, 37
information filtering, 9, 15, 27, 37, 121
information push, 9, 37
information retrieval, 9, 15, 24, 86, 121
INQUERY, 53
InRoute, 28
Internet, 9
Internet Archive, 124
intersection, 33–35
inverse document frequency, 25
inverted index list, 26
IR, 9
irregular fluctuations, 31
item load balancing, 141

Jaccard Distance, 36
Join Ring, 111

key, 25, 85
key set, 11, 85, 86
keyword, 10, 25, 85
KMV synopses, 33, 35, 85–88, 93, 94, 103

language model, 25
latent semantic indexing, 122
lead time, 31
LeaveCons, 127

LeaveProv, 127
level, 32
LibraRing, 13, 29, 39, 117, 124, 134
lifetime, 110
light, 141
LinDec, 73–75
linear system, 30
linear trend process, 32
LinInc, 73–75
Live Search, 24
load balancing, 49, 141
load imbalances, 49
Local Index, 109, 110
Local Port, 111
Local Query Processor, 109
LogDec, 73, 74
LogInc, 73, 74
lookup problem, 16, 17, 21, 43
Low-Corr, 97
LSI, 42, 122

MAPS, 10, 37, 38, 47, 49, 51, 52, 85, 105,
110

MAPS Resource Selection, 54
MAPS Selective Method, 11, 51, 73, 75
Matched Insert, 115
max, 78
Meghdoot, 29, 39
Mercury, 29
message flooding, 18
metasearch engine, 53
min, 75, 78
min-wise independent permutations, 53
Minerva, 12, 37, 49, 105–107, 144
MinervaDL, 12, 121, 124, 145
monitoring phase, 77
moving average, 31, 55, 131
MRS, 56
MSM, 11, 51, 76
MSN Search, 24
multivariate method, 31
MySQL, 109

Napster, 15, 17
Network Properties, 112
NewCons, 127
NewProv, 127
NewSPeer, 127
NiagaraCQ, 39
Nickname, 111

- 175 -



Index

non-centralized P2P, 18
notification, 9, 37
notification protocol, 42
Notifications, 116
Notify, 130
Notify message, 45

OAI-PMH, 123
observer modules, 41
Odissea, 118
Okapi BM25, 26
one-time query, 121
one-time querying, 9, 37, 121
one-time search protocol, 42
one-time search service, 41, 42
OpenCQ, 39
Oracle, 109
oracle, 78
oracle peer selection, 78
OverCite, 118
overlap, 34
overloaded, 141

P-Grid, 20, 28, 118
P2P, 9
P2P-DIET, 28, 119, 124
Password, 111
PAST, 23
Past, 109
past, 56
PastImpl, 109
Pastry, 17, 20, 23, 28, 109, 144
PastryApplication, 109
PastryEndpoint, 109
PastryNode, 109
PastryStrings, 29
payment model, 145
Peer Descriptor, 109
peer-to-peer, 9, 15
PeerCQ, 29, 39, 119
PeerList Processor, 109
periodicity, 31, 73
pFilter, 29, 39, 119
PlanetP, 118
point process, 30
point-to-point, 108
Port, 111
Porter Stemmer, 25, 149
Post, 128
post, 107

Post all, 112
Post message, 43
Poster, 109
power of two choices, 141
precision, 24, 52
predecessor, 20
prediction, 30, 31
prediction quality, 78
prefix matching, 23
profile, 37, 121
Project Gutenberg, 123
provider, 13, 122, 126
provider peer, 126
provider table, 127
PRR, 20
pub/sub system, 28
publication protocol, 42
publication service, 40–42
publish/subscribe, 9, 27, 37, 48, 121
publish/subscribe system, 28
Publisher, 110

QoS, 134
QSR, 37
QuadDec, 73, 74, 79, 83
QuadInc, 73, 74
query placement, 48
query processing, 108
Query Results, 113
query routing, 46, 53, 107, 108

random, 78
Random Insert, 115
random peer selection, 60, 78, 79
recall, 24, 52, 58, 78, 93
Received Posts, 112, 116
Refresh, 112
relatedness, 88
relative recall, 132
relative thresholding, 71
relevance assessments, 108
Remote IP, 111
Remote Port, 111
replication, 144
replication & caching, 141, 144
repositioning, 58
RequestQ message, 46
resource selection, 10, 38, 40, 45, 51, 52,

56, 77, 86, 108, 131
result merging, 108

- 176 -



Index

RetResults, 129
RetResults message, 46
retrieval message, 134
RetStats, 128
RetStats message, 44, 46
root, 25
round, 57
round-robin, 26, 108
routing infrastructure, 48
Roxio, 17
Rumorama, 118
Running continuous queries, 116

sampled series, 30
scalability, 107
scalar product, 25, 26
scoring function, 52
Scribe, 23, 28, 119
seasonal index, 32
seasonality, 31, 52, 54, 73, 131
selective, 75
selective dissemination, 27, 28, 121
SES, 32, 55
SIENA, 28
sieve formula, 34, 90, 95
SIFT, 28
single exponential smoothing, 32, 55
single moving average, 31
single-points-of-failure, 15
Skype, 9
small-world-phenomenon, 19
smoothing parameter, 32
social network, 19
SQI, 28, 129
stabilization protocol, 22
star network, 17
statistical information, 48
Statistical Language Models, 53
statistics table, 128
stem, 25
stemming, 25, 58
stochastic time series, 30
stop word, 25, 58, 149
structured P2P, 19
subjective method, 31
SubmitQ, 128
subscription, 9, 37, 121
subscription protocol, 42
subscription service, 40, 41
successor, 20

successor list, 22
super-peer, 13, 20, 122, 125
super-peer architecture, 20
synopses, 15

TA, 26
Tapestry, 28
term, 10, 25
term frequency, 25
TES, 32, 55
tf-idf, 25, 53
threshold algorithm, 26
time plot, 30
time series, 10, 11, 29, 52, 131
time series analysis, 11, 15, 29, 38, 51, 52,

54, 90, 110
time-to-live, 18
TmpChg, 65
trend, 31, 32, 52, 54, 72, 131
triple exponential smoothing, 32, 55, 73,

131
TTL, 18

UIC, 144
Uniform Index Caching, 144
union, 33–35
Unique Synopses Storage, 12, 86, 89
univariate method, 31
unstructured P2P, 18
user feedback, 108
Username, 111
USS, 12, 85, 86, 89, 93, 94, 103
USS-HS, 94, 99
USS-KMV, 94, 99

vector space model, 25, 122
vector space query, 28
Viceroy, 20
virtual library, 123
virtual peers, 141
VSM, 42, 122

Wikipedia, 15, 93
wireless age, 123
word, 25
Word Wide Web, 15

XFilter, 28
XML, 117
XPath, 28
XQuery, 28

- 177 -



Index

Xtrie, 28

Yahoo, 24, 123
YFilter, 28

Z39.50, 123
Zeitgeist, 93, 103

- 178 -


	Promotionskolloquium
	Eidesstattliche Versicherung
	List of Figures
	List of Tables
	Abstract
	Kurzfassung
	Summary
	Zusammenfassung
	Introduction
	Motivation
	Main Contributions
	Approximate Information Filtering
	Correlation Awareness
	Prototype System
	Digital Library Use Case

	Thesis Outline

	Background and Technical Basics
	Peer-to-Peer Systems
	The Lookup Problem
	P2P Architectures
	Centralized P2P Architectures
	Unstructured P2P Architectures
	Structured P2P Architectures
	Super-Peer Architectures

	Example: The Chord Protocol
	Example: The Pastry Protocol

	Information Retrieval
	Effectiveness Measures
	Document and Query Representation
	Top-k Query Processing

	Information Filtering
	IF in Databases and Distributed Systems
	IF in Peer-to-Peer Systems

	Time Series Analysis
	Terminology
	Objections of Time Series Analysis
	Types of Variation
	Prediction Techniques
	Moving Average Techniques
	Exponential Smoothing Techniques


	Distinct-Value Estimation
	Hash Sketches
	Creation and DV Estimation
	Multiset Operations

	KMV Synopses
	Creation and DV Estimator
	Multiset Operations



	System Architecture and Protocols
	Introduction
	Main Contributions
	Previous Work on Information Filtering
	IF in Databases
	IF in Information Retrieval
	Exact IF in P2P Networks


	Services
	Directory Service
	Subscription Service
	Publication Service
	One-Time Search Service

	Protocols
	Directory Protocol
	Subscription Protocol
	Publication and Notification Protocol
	One-Time Search Protocol

	Comparison to Exact Information Filtering
	Routing Infrastructure
	Query Placement
	Statistical Information
	Load Balancing

	Discussion

	Publisher Peer Selection
	Introduction
	Peer Selection Strategy
	Resource Selection
	The CORI Approach
	The MRS Approach

	Behavior Prediction
	Why Both Strategies Are Needed

	Experimental Evaluation
	Experimental Setup
	Experimental Data
	Different Publishing Scenarios
	The Consistent Publishing Scenario
	The Half Publishing Scenario
	The Category Change Scenario
	The Publishing Breaks Scenario
	The Temporary Changes Scenario

	Comparison Across Scenarios
	Average Recall Analysis
	Message Costs Analysis

	Comparison to Exact Information Filtering
	Summing Up

	Improving Prediction
	Analyzing Different Behaviors
	The MAPS Selective Method
	An Alternative Approach

	Experimental Evaluation
	Experimental Setup
	Experimental Measures
	Experimental Data
	Experimental Results
	The Mixed Publishing Scenario
	The ExpInc Publishing Scenario
	The QuadDec Publishing Scenario

	Summing Up

	Discussion

	Correlated Key Sets
	Introduction
	Contributions
	Previous Research on Correlated Key Sets

	The Baseline Approach
	Correlation Measures
	Exploiting Correlations
	The USS Algorithm
	The CSS Algorithm
	Assessing Key Sets
	Disseminating Multi-Key Statistics
	Exploiting Multi-Key Statistics
	Combining Multi-Key Statistics


	Experimental Evaluation
	Experimental Setup
	Experimental Data
	Experimental Results
	Results Using Web Data
	Results Using Blog Data


	Discussion

	Prototype Implementation
	Introduction
	The Minerva Search System
	System Principles
	System Architecture
	Query Routing
	Result Merging

	Implementation

	The MAPS Filtering Extension
	Implementation
	Example Use of MAPS
	Minerva Initialization
	Publishing Metadata
	One-Time Query Execution
	Continuous Query Execution
	Document Publication
	Receiving Notifications
	Resubmitting Continuous Queries


	Other Prototypes
	P2P Retrieval Prototypes
	P2P Filtering Prototypes

	Discussion

	Digital Library Use Case
	Introduction
	A Motivating Example
	The Evolution of Digital Libraries
	Previous Research on P2P Digital Library Architectures

	The MinervaDL Architecture
	Super-Peers
	Consumer Peers
	Provider Peer

	The MinervaDL Protocols
	Provider & Consumer Join/Leave
	Provider & Consumer Connect/Disconnect
	Super-Peer Join/Leave
	Directory Maintenance
	Submitting an One-Time Query
	Subscribing with a Continuous Query
	Publishing a new Document
	Notification Delivery

	Scoring Functions
	Resource Selection
	Behavior Prediction

	Experimental Evaluation
	Search Performance
	Filtering Performance
	Message Costs Analysis

	Discussion

	Conclusion and Open Questions
	Summary
	Contributions
	Approximate Information Filtering
	Correlation Awareness
	Prototype System
	Digital Library Use Case

	Open Questions
	Load Balancing
	Dynamics
	Replication & Caching
	Economics


	Abbreviations
	Zeitgeist Queries
	Acknowledgements
	Bibliography
	Index

