
Interactive Mixed Reality Rendering in a
Distributed Ray Tracing Framework

Andreas Pomi
Computer Graphics Group

Saarland University
Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

S
A

R
A V I E N

S
I

S

U
N

I V
E R S I T

A
S

Betreuender Hochschullehrer / Supervisor:

Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes,
Saarbrücken, Germany

Gutachter / Reviewers:

Prof. Dr.-Ing. Philipp Slusallek, Universität des Saarlandes,
Saarbrücken, Germany
Dr. Marcus Magnor, MPI Informatik,
Saarbrücken, Germany

Dekan / Dean:

Prof. Dr. Jörg Eschmeier

Eingereicht am / Thesis submitted:

6. Juni 2005 / June 6th, 2005

Datum des Kolloquiums / Date of defense:

20. Juli 2005 / July 20th, 2005

Prüfungskommission / Committee:

Prof. Hans-Peter Seidel, MPI Saarbrücken
Prof. Philipp Slusallek, Universität des Saarlandes
Dr. Marcus Magnor, MPI Saarbrücken
Dr. Marco Lohse, Universität des Saarlandes

Andreas Pomi
Lehrstuhl für Computergraphik, Geb. 36.1
Universität des Saarlandes
Im Stadtwald, 66123 Saarbrücken
apomi@graphics.cs.uni-sb.de

iii

Abstract

The recent availability of interactive ray tracing opened the way for new ap-
plications and for improving existing ones in terms of quality. Since today
CPUs are still too slow for this purpose, the necessary computing power is
obtained by connecting a number of machines and using distributed algo-
rithms. Mixed reality rendering — the realm of convincingly combining real
and virtual parts to a new composite scene — needs a powerful rendering
method to obtain a photorealistic result. The ray tracing algorithm thus
provides an excellent basis for photorealistic rendering and also advantages
over other methods. It is worth to explore its abilities for interactive mixed
reality rendering.

This thesis shows the applicability of interactive ray tracing for mixed
(MR) and augmented reality (AR) applications on the basis of the OpenRT
framework. Two extensions to the OpenRT system are introduced and serve
as basic building blocks: streaming video textures and in-shader AR view
compositing. Streaming video textures allow for inclusion of the real world
into interactive applications in terms of imagery. The AR view compositing
mechanism is needed to fully exploit the advantages of modular shading in
a ray tracer.

A number of example applications from the entire spectrum of the Mil-
gram Reality-Virtuality continuum illustrate the practical implications. An
implementation of a classic AR scenario, inserting a virtual object into live
video, shows how a differential rendering method can be used in combination
with a custom build real-time lightprobe device to capture the incident light
and include it into the rendering process to achieve convincing shading and
shadows. Another field of mixed reality rendering is the insertion of real ac-
tors into a virtual scene in real-time. Two methods — video billboards and
a live 3D visual hull reconstruction — are discussed.

The implementation of live mixed reality systems is based on a number of
technologies beside rendering and a comprehensive understanding of related
methods and hardware is necessary. Large parts of this thesis hence deal
with the discussion of technical implementations and design alternatives. A
final summary discusses the benefits and drawbacks of interactive ray tracing
for mixed reality rendering.

iv

Kurzfassung

Die Verfügbarkeit von interaktivem Ray-Tracing ebnet den Weg für neue An-
wendungen, aber auch für die Verbesserung der Qualität bestehener Metho-
den. Da die heute verfügbaren CPUs noch zu langsam sind, ist es notwendig,
mehrere Maschinen zu verbinden und verteilte Algorithmen zu verwenden.
Mixed Reality Rendering — die Technik der überzeugenden Kombination
von realen und synthetischen Teilen zu einer neuen Szene — braucht eine lei-
stungsfähige Rendering-Methode um photorealistische Ergebnisse zu erzielen.
Der Ray-Tracing-Algorithmus bietet hierfür eine exzellente Basis, aber auch
Vorteile gegenüber anderen Methoden. Es ist naheliegend, die Möglichkeiten
von Ray-Tracing für Mixed-Reality-Anwendungen zu erforschen.

Diese Arbeit zeigt die Anwendbarkeit von interaktivem Ray-Tracing für
Mixed-Reality (MR) und Augmented-Reality (AR) Anwendungen anhand
des OpenRT-Systems. Zwei Erweiterungen dienen als Grundbausteine: Vi-
deotexturen und In-Shader AR View Compositing. Videotexturen erlauben
die reale Welt in Form von Bildern in den Rendering-Prozess mit einzubezie-
hen. Der View-Compositing-Mechanismus is notwendig um die Modularität
einen Ray-Tracers voll auszunutzen.

Eine Reihe von Beispielanwendungen von beiden Enden des Milgram-
schen Reality-Virtuality-Kontinuums verdeutlichen die praktischen Aspek-
te. Eine Implementierung des klassischen AR-Szenarios, das Einfügen eines
virtuellen Objektes in eine Live-Übertragung zeigt, wie mittels einer Diffe-
rential Rendering Methode und einem selbstgebauten Gerät zur Erfassung
des einfallenden Lichts realistische Beleuchtung und Schatten erzielt wer-
den können. Ein anderer Anwendungsbereich ist das Einfügen einer realen
Person in eine künstliche Szene. Hierzu werden zwei Methoden besprochen:
Video-Billboards und eine interaktive 3D Rekonstruktion.

Da die Implementierung von Mixed-Reality-Anwendungen Kentnisse und
Verständnis einer ganzen Reihe von Technologien nebem dem eigentlichen
Rendering voraus setzt, ist eine Diskussion der technischen Grundlagen ein
wesentlicher Bestandteil dieser Arbeit. Dies ist notwenig, um die Entschei-
dungen für bestimmte Designalternativen zu verstehen. Den Abschluss bildet
eine Diskussion der Vor- und Nachteile von interaktivem Ray-Tracing für Mi-
xed Reality Anwendungen.

v

Acknowledgements

I would like to thank a number of people for their help with the work on
this thesis. Working on large software system like distributed interactive ray
tracing is teamwork, of course.

First of all, I would like to thank Philipp Slusallek, my supervisor. He
guided me in the last five years, pushed me forward and helped me with
discussions and ideas.

Another thanks I owe my colleagues, (in alphabetical order) Carsten
Benthin, Tim Dahmen (inTrace), Georg Demme, Andreas Dietrich, Heiko
Friedrich, Krzysztof Kobus (inTrace), Marco Lohse, Gerd Marmitt, Michael
Repplinger, Michael Scherbaum (inTrace), Jörg Schmittler, Ingo Wald, Sven
Woop, and Hanna Schilt, the secretary of our computer graphics group. They
helped me a lot with ideas, discussion and programming on all my projects.

I also want to thank all our students, in particular those who worked with
me on the Mixed Reality projects in the last years: Tim Dahmen, Benjamin
Deutsch, Kim Herzig, Simon Hoffmann, Christian Linz, Benjamin Peters,
and Stefan Schüffler.

A special thanks goes to Stefan Schüffler for helping me to set up the
studio lab and to Simon Hoffmann, who worked a long time with me and
helped me a lot in maintaining the studio.

Further I want to thank my colleagues from the Max-Plank-Institute for
Computer Science (MPII) at the department AG4, led by Prof. Hans-Peter
Seidel. Special thanks also goes to Marcus Magnor at the MPII for reviewing
this thesis.

Another thanks goes to the SysAdmin Team (Bonsai) of the computer
graphics group: Georg Demme, Rainer Jochem, and Maik Schmidt.

Finally, and most important, I want to thank my parents, Waltraud und
Rolf Pomi, who supported me all time with my computer science studies
and my best friend Daniel Bach, who always reminds me of what’s really
important.

vi

Contents

1 Introduction 1

2 Interactive Ray Tracing and the OpenRT System 5
2.1 The General Ray Tracing Algorithm 5

2.1.1 Ray Tracing Based Algorithms 7
2.2 Interactive Ray Tracing . 7

2.2.1 GPU Based Interactive Ray Tracing 7
2.2.2 Special Ray Tracing Hardware 8
2.2.3 Software Based Interactive (Parallel) Ray Tracing . . . 8

2.3 The OpenRT System . 9
2.3.1 The OpenRT API . 10
2.3.2 Programmable Shaders 11
2.3.3 The Rendering Object 11
2.3.4 OpenRT Application Programs 12

2.4 Application Examples for Interactive Ray Tracing 13
2.4.1 Virtual Reality . 13
2.4.2 Augmented Reality and Mixed Reality 14
2.4.3 Virtual Television Studios (Actor Insertion) 14
2.4.4 Interactive Global Illumination 15
2.4.5 Massive Models . 15
2.4.6 Volume Rendering . 16
2.4.7 Games . 16

3 An Introduction to Mixed Reality Rendering 19
3.1 Mixed Reality . 19

3.1.1 Augmented Reality . 20
3.1.2 Augmented Virtuality 21

3.2 Related Rendering Techniques 21
3.2.1 Shadow Generation in MR 22
3.2.2 Common Illumination 22
3.2.3 Image-Based Lighting 23

viii CONTENTS

3.2.4 Sampling of Incident Lightmaps 23
3.2.5 Relighting Methods . 24
3.2.6 Inverse Rendering Methods 25
3.2.7 Precomputed Radiance Transfer Methods 25
3.2.8 Environment Matting 25

4 Streaming Video Textures 27
4.1 Video Textures . 28
4.2 Video Data Distribution . 29

4.2.1 OpenRT Payload . 29
4.2.2 A Demand Driven Approach 30
4.2.3 Direct Video Connection 31
4.2.4 Multicast Networking 32

4.3 The OpenRT Video Texture Subsystem 34
4.3.1 The System Architecture 34
4.3.2 Synchronization . 34
4.3.3 Packetizing . 36
4.3.4 Texture Data Formats 37
4.3.5 Network Packet Loss 37
4.3.6 The OpenRT Video Texture API 39

4.4 A Video Texture Example Application 39
4.4.1 Lighting from Video Textures 40
4.4.2 Results . 41

4.5 Conclusion and Future Work 41

5 Video Billboards 43
5.1 Virtual Television Studios . 43

5.1.1 Video Compositing for Virtual Studios 45
5.1.2 Consistent Lighting . 46

5.2 Foreground Segmentation . 48
5.2.1 Garbage Matte . 48
5.2.2 Chroma Keying . 48
5.2.3 Invisible Keying . 50
5.2.4 Background Subtraction 51

5.3 Video Billboards . 52
5.3.1 The Concept of In-Shader Compositing 53

5.4 An OpenRT Video Billboard Example 55
5.4.1 Hardware Setup . 55
5.4.2 OpenRT Setup . 56
5.4.3 A Billboard Shader . 56
5.4.4 Chroma Keying . 57

CONTENTS ix

5.4.5 Results . 59
5.5 Drawbacks of Billboards . 61
5.6 Conclusion and Future Work 63

6 Augmented Reality View Compositing 65
6.1 Video-Based Augmented Reality 65

6.1.1 Camera Tracking . 66
6.1.2 AR Compositing . 67

6.2 The Concept of In-Shader Compositing for Augmented Reality 68
6.3 Differential Rendering . 69

6.3.1 Stand-In Geometry . 71
6.4 AR View Compositing in OpenRT 72

6.4.1 AR View Video Streaming 72
6.4.2 Tonemapping . 74
6.4.3 A Differential Rendering Example 75
6.4.4 Results . 76

6.5 Conclusion and Future Work 76

7 A Real-Time Lightprobe 79
7.1 Measuring Incident Light . 81

7.1.1 Digital Image Sensors 82
7.1.2 High Dynamic Range Cameras 83
7.1.3 True High Dynamic Range Sensors 84
7.1.4 Spatially Varying Pixel Exposures 84
7.1.5 Spatially Varying Image Exposures 85
7.1.6 Multiple Sensors . 85
7.1.7 Sequential Multiple Exposures 86

7.2 Principles of Multiple Exposure High Dynamic Range Imaging 87
7.2.1 Camera System Response Function 89
7.2.2 Image Reconstruction 91

7.3 Panoramic Acquisition . 93
7.3.1 Mirror Balls . 93
7.3.2 Fish-Eye Lens . 94
7.3.3 Moving Cameras . 95
7.3.4 Multi-Sensor Rigs . 96

7.4 Restrictions of a Single Panoramic Lightprobe 96
7.4.1 Acquiring Incident Lightfields 98

7.5 A Real-Time Lightprobe . 99
7.5.1 Building a Simple Video Lightprobe 100
7.5.2 Results . 103

7.6 An OpenRT IBL Application Example 104

x CONTENTS

7.6.1 Hardware Setup . 104
7.6.2 OpenRT Setup . 105
7.6.3 Light Sample Generation 105
7.6.4 Shadows and Reflections of Virtual Object in the Video

Background . 107
7.6.5 Ambient Occlusion . 109
7.6.6 Lighting the Virtual Objects 110
7.6.7 Results . 111

7.7 Conclusion and Future Work 112

8 In-Shader Image Based Visual Hull Reconstruction 115
8.1 Interactive 3D Reconstruction Methods 116

8.1.1 Related Work . 116
8.2 Towards a Visual Hull Shader 117
8.3 Silhouette Acquisition . 119

8.3.1 A Calibrated Multi-Camera Setup 120
8.3.2 Foreground Segmentation 121
8.3.3 Silhouette Data Compression 121

8.4 An OpenRT Visual Hull Shader Example 122
8.4.1 Data Acquisition . 122
8.4.2 The Compression Method 123
8.4.3 Image Based Ray Traversal 124
8.4.4 An OpenRT Visual Hull Shader 126
8.4.5 View Dependent Texturing 129
8.4.6 Surface Normals . 131
8.4.7 Results . 132

8.5 Conclusion and Future Work 133

9 Final Summary 137

A The CTools Suite 145

B A Triggering Interface for Sony DFW Cameras 147

C The OpenRT Video Texture API 149

D An OpenRT Video Billboard Shader Example 151

E The Studio Lab 155

Bibliography 157

List of Figures

2.1 The General Ray Tracing Algorithm 6
2.2 SaarCOR Application Example 8
2.3 Plug-and-Play Shading . 9
2.4 The OpenRT System Hardware Setup 10
2.5 Example Applications of an OpenRT VRML Scenegraph . . . 12
2.6 Virtual Reality Example Applications 13
2.7 Actor Insertion Example Applications 14
2.8 Interactive Global Illumination Example Applications 15
2.9 Massive Model Example Applications 16
2.10 Volume Rendering Example Applications 17
2.11 Game Example Applications 17

3.1 The Milgram RV Continuum 20

4.1 Video Texture Application Examples 28
4.2 Video Texture Distribution: OpenRT Payload 30
4.3 Video Texture Distribution: Demand Driven 31
4.4 Video Texture Distribution: Direct Connection 32
4.5 Video Texture Distribution: Multicast 33
4.6 The OpenRT Video Texture Subsystem 35
4.7 A Video Texture Packet . 36
4.8 A Video Texture Example Application 39
4.9 Lighting from Video Textures 40

5.1 Virtual Studio Hardware Setup 45
5.2 Lighting for the BBC Truematte Technology 49
5.3 Invisible Infrared Keying . 51
5.4 Traditional vs. In-Shader Compositing 54
5.5 Video Billboard Example Hardware Setup 55
5.6 A Billboard Application . 56
5.7 A Billboard Shader . 57

xii LIST OF FIGURES

5.8 Practical Chroma Keying . 58
5.9 Chroma Keying Scale Factor 59
5.10 Billboard Results . 60
5.11 Billboard Distortion . 61
5.12 Billboard Floating . 62
5.13 Billboard Mirror . 62
5.14 Billboard Shadows . 63

6.1 A Video-Based Augmented Reality System 66
6.2 OpenRT AR Compositing Data Flow 72
6.3 Differential Rendering 1 . 74
6.4 Differential Rendering 2 . 75

7.1 An AR Example with OpenRT 79
7.2 Incident Light . 80
7.3 The Photographers Incident Lightmeter 81
7.4 A CCD Sensor and Vertical Smear 82
7.5 A Spatially Varying Pixel Exposure Sensor 84
7.6 A Spatially Varying Image Exposures System 85
7.7 A Beam-Splitter HDR Camera 86
7.8 An Exposure Sequence . 88
7.9 The Camera Response Curve 89
7.10 The HDR Compositing Principle 89
7.11 The Response Curve of a JAI CV-S3300 Camera 92
7.12 Mirror Ball Shots . 94
7.13 Moving Panorama Cameras 95
7.14 The Point Grey Research Ladybug Camera 97
7.15 Failure of The Environment Map Assumption 98
7.16 Incident Lightfield Acquisition 99
7.17 The ICT Real-Time Lightprobe 100
7.18 Components of our Real-Time Lightprobe 101
7.19 The Real-Time Lightprobe . 102
7.20 IBL Example Hardware Setup 105
7.21 Light Sample Generation . 106
7.22 Lightprobe Warping . 107
7.23 An OpenRT IBL Example . 111
7.24 A Virtual Car in a Real Background 112

8.1 A Visual Hull Shader in a VR Scene 115
8.2 Visual Hull Shader System Principle 118
8.3 An Intersection Example . 119

LIST OF FIGURES xiii

8.4 The Input Views . 123
8.5 Image Compression . 124
8.6 Image-Based Visual Hull Intersection 125
8.7 Image-Based Visual Hull Intersection Flowchart 126
8.8 Pixel Exact Occlusion . 127
8.9 Visual Hull Shader Flowchart 128
8.10 View Occlusion Artefacts . 130
8.11 Visual Hull Normals . 132
8.12 Visual Hull Shader Examples 134

A.1 The CEdit System . 145

B.1 A Triggering Interface for Sony DFW Cameras 147
B.2 Triggering Interface Schematics 148

E.1 The Studio Lab . 155
E.2 The Studio Sphere . 156

xiv LIST OF FIGURES

Chapter 1

Introduction

Photorealistic rendering methods are required for convincing combinations
of real and virtual scenes. High-Quality Mixed Reality (MR) rendering is the
art of providing a seamless visual integration of both worlds, the digital and
the analog one. This is a difficult task, however, since a number of means are
needed to transfer the necessary information to provide consistency between
these two very different representations.

The ray tracing algorithm, improved with a number of additions like global
illumination simulation over the years, has proven its ability to provide real-
istic images for a long time. When it comes to interactive applications with
an output of several frames per second, hardware (GPU, Graphics Process-
ing Unit) based rendering has usually been preferred. The raster graphics
algorithms, even on todays GPUs, are brute force like on the first days of
computer graphics. Hardware resources are limited and force the program-
mer to many trade-offs in quality and speed. Applications are hard to port
from one hardware platform to another due to differences in GPU design.
[OpenGL] provides an industry standard API and manufacturers of modern
graphics boards advertise programmable shading features, but in reality the
possibilities are often limited due to hardware restrictions like code memory.
Application of global effects like global illumination simulation on GPUs is
difficult.

The recent availability of interactive ray tracing technology has opened
the field for new applications and also for improvement of existing ones. The
high image quality, that can be obtained with the ray tracing algorithm,
can provide a new, yet unreached level of photorealism to applications. The
modular properties of the algorithm help in simplification of the software
design compared to traditional raster graphics methods.

2 Chapter 1: Introduction

Interactive ray tracing systems, like the OpenRT [OpenRT, Wald04a]
framework, achieve the necessary rendering power by parallelization on a
number of CPUs and by algorithmic improvements. Code optimization for
modern CPU designs, supporting multiple numerical operations at the same
time (SIMD), can provide an additional speedup. This results in interactive
frame rates up to video rates. A system API, familiar to OpenGL program-
mers, allows for easy implementation or porting of application programs.

Since shared memory machines with a high number of CPUs are even
today very seldom and expensive, it is necessary to connect a number of
machines via a network. Algorithms need to be adapted, since maintaining
global data structures in a distributed system is often not possible due to
latency and network bandwidth limitations.

It is worth to explore the capabilities of modern, interactive ray tracing
systems in the mixed reality field. Here, the availability of a higher realism
can provide a new quality for interactive applications.

In this thesis, I give an overview of interactive mixed reality and aug-
mented reality (AR) rendering based on the OpenRT framework. I provide
the necessary background information and a number of application examples
that I developed over the last years. These applications prove the applica-
bility of interactive ray tracing for mixed reality rendering but also show up
a huge field of future research possibilities.

The main contributions of this thesis to the field of ray tracing based
interactive mixed reality rendering are

• the concept of in-shader compositing to combine shading and composit-
ing in mixed reality applications,

• the extension of the OpenRT framework with streaming video textures
to provide a means for representing the real world inside the rendering
process,

• an AR view compositing mechanism for OpenRT suited to the special
needs of distributed rendering,

• a 3D compositing method for actor insertion based on in-shader visual
hull reconstruction and allowing for a seamless integration of a real
person into the distributed ray tracing process at interactive frame
rates,

• and the design and construction of a real-time lightprobe device based
on a low cost video camera for including a real lighting situation into
the rendering process.

3

Outline of this thesis

Chapter 2 will provide an overview over interactive ray tracing technology
with focus on distributed, cluster based systems. The OpenRT system will be
discussed in some detail to provide the necessary background for the following
chapters.

In Chapter 3, I will give a brief overview over the rendering techniques
related to (traditional) mixed reality and related research work. The focus
will remain on rendering and compositing aspects .

To provide support for mixed reality rendering in OpenRT, I introduce the
concept of streaming video textures in Chapter 4. The necessary background
for implementation in a distributed real-time rendering system is provided
and an advanced application example is given.

Chapter 5 comes up with a description of the actor insertion problem
related to virtual television studios. I describe the use of video billboards in
a ray tracer to achieve rendering effects like shadows and reflections.

For the application of video-based augmented reality, Chapter 6 provides
an extension to the OpenRT framework to allow the necessary compositing
to be done inside the ray tracers shading process.

A more advanced AR application is described in Chapter 7: a virtual
car is rendered into the live video backplate of a hall. Consistent lighting
is achieved by a real-time lightprobe device. In this chapter, I provide the
necessary technological background for building the lightprobe device and
describe the image-based lighting method for the car.

To overcome the drawbacks of the video billboards from Chapter 5, a full
3D solution is introduced in Chapter 8. Here, an actor is reconstructed at
interactive frame rates within an OpenRT shader. Correct interaction with
the environment is the result.

I will close with a final summary over the benefits of using interactive ray
tracing for mixed reality rendering. A number of short appendices provide
additional technical informations to some of the projects.

4 Chapter 1: Introduction

Chapter 2

Interactive Ray Tracing and the
OpenRT System

Even though known for decades, the ray tracing algorithm was never con-
sidered for interactive work until the recent years. Its flexibility due to the
modular approach of intersection and shading makes it an interesting alter-
native to the raster graphics algorithms widely used for interactive graphics
today.

This chapter provides a brief overview over (interactive) ray tracing and
a description of the OpenRT ray tracing framework in some detail. It closes
with a short discussion of typical application examples for interactive ray
tracing.

2.1 The General Ray Tracing Algorithm

The idea of ray shooting was first used in [Appel68] for hidden surface render-
ing. Rays are traced from a virtual camera into the scene. After determining
the closest intersection with a ray, the color for the related pixel in the image
plane of the camera is calculated (shading). The same ray shooting concept
can be used to determine the visibility of light sources from a point in the
scene to test if a surface point lies in shadow (Figure 2.1).

In the shading process for a surface point, secondary rays for reflection,
refraction and shadow test can be spawn. This can happen recursively. A
single primary ray can thus result in a whole recursion tree of rays. This
concept of recursive ray tracing was introduced by Whitted in [Whitted80].

For efficient intersection of a ray with the scene description an acceler-
ation data structure is needed (e.g. BSP, kd-tree). The primitives need to

6 Chapter 2: Interactive Ray Tracing and the OpenRT System

Camera Center

Image Plane

Reflection Ray

Shadow Ray

Primary Rays

Lightsource

Scene Geometry

Figure 2.1: The General Ray Tracing Algorithm. The camera on the left side
is described by a center point and an image plane subdivided into pixel cells.
Rays for each cell are intersected with the scene geometry. Two ray cases are
shown: a primary ray hitting the sphere spawning a shadow ray for shading
and another primary ray reflected on the floor plane.

be spatially sorted in the data structure in a pre-process. Due to the loga-
rithmic complexity of database searching, the ray tracing algorithm is better
suited for complex scenes and models with a huge number of primitives com-
pared to raster graphics using a Z-Buffer method, which has in general linear
complexity.

The shading process in these early systems was limited to (ideal) mirror
reflections and hard shadows and yielded artifical looking images. [Cook84]
presents a system for glossy reflections (distribution ray tracing). Multiple
primary rays per pixel and secondary rays per surface reflection in combi-
nation with spatial probability distributions allow for more realistic images
featuring soft shadows, glossy reflections, depth-of field, and even motion
blur.

Ray tracing is a demand-driven algorithm. Shading calculation (and thus
spawning of secondary rays) is only performed when needed. The computa-
tional effort for the output image depends on the parts of the scene visible
with the actual camera settings. The ray tracing algorithm is thus said to
be output sensitive. This makes it a ideal method for complex scenes with
large occluded parts.

Compared to raster graphics methods [Moeller99], ray tracing provides a
more straightforward and modular way for implementing rendering systems.
Complex multi-pass methods, like used with raster graphics for overcom-
ing limited system resources, are not needed. Ray tracing also serves as a
powerful frame work for more complex rendering algorithms.

2.2 Interactive Ray Tracing 7

2.1.1 Ray Tracing Based Algorithms

Most of the algorithms that are built on top of a ray tracing framework break
with the classical concept of recursive ray tracing and use only the ray/scene
intersection mechanism (ray shooting). A number of Global Illumination
algorithms are based on ray shooting. Extending the concepts of [Cook84],
algorithms like bi-directional path tracing [Lafortune93] and photon mapping
[Jensen96] use a ray tracing framework for providing realistic and physically-
correct lighting simulations.

There are a number of applications of ray shooting outside computer
graphics. The basic ray tracing framework can, for example, be used for
physical simulation of radio-wave propagation for mobile phone networks
considering complex reflections at the walls of buildings. Another applica-
tions include particle tracing in nuclear processes or simulation of audio wave
propagation.

2.2 Interactive Ray Tracing

With the availability of faster machines, larger main memory and complex
GPUs, more and more research aiming towards interactive ray tracing came
up in the last years (see [Wald01a] for an overview). There are several ways
to achieve interactive frame rates: using GPUs, using special designed ray
tracing hardware or just using plain CPU power.

2.2.1 GPU Based Interactive Ray Tracing

In [Purcell02] Purcell et al. showed that ray tracing at interactive frame rates
is possible using commodity PC graphics boards. The scene data is stored
in the on-board texture memory (which is very limited). Ray intersection is
done via a multi-pass state machine over the ray state for each pixel. Shading
is performed using the programmable pixel shaders of current GPU hardware.

Some parts of the algorithm like the state machine control has to be done
by the CPU because the used GPU lacked branching and looping. A num-
ber of special hardware features like GPU support for texture indirection is
needed. Purcell et al. [Purcell02] showed that it is even possible to implement
Global Illumination algorithms like path tracing on GPU hardware.

Implementing interactive ray tracing on a GPU is limited by the current
available hardware features. Design variations of the various manufacturers
make porting of individual algorithms difficult.

Note that there are a number of publications that mix raster graphics
and ray tracing effects by using rasterization for the ’simple’ parts of the

8 Chapter 2: Interactive Ray Tracing and the OpenRT System

scene and add ray tracing effects afterwards by tracing rays for a low number
of pixels. This should not be confused with real, modular interactive ray
tracing.

2.2.2 Special Ray Tracing Hardware

Figure 2.2: Some screenshots rendered with the SaarCOR ray tracing hard-
ware built at Saarland University by Schmittler, Woop et al. [Schmittler02].

A special designed graphics hardware optimized to ray tracing seems
a more promising approach than the GPU based one. Schmittler et al.
[Schmittler02, Schmittler03, Schmittler04b, Woop05] recently came up with
a modular and scalable FPGA1 architecture (SaarCOR) for a ray tracing
based graphics board. A running prototype impressively shows the possi-
bilities and there’s still room for orders of magnitude of speed using more
sophisticates hardware (ASIC) that allows higher clock rates and provides
more chip space.

2.2.3 Software Based Interactive (Parallel) Ray Tracing

A pure software implementation of a ray tracer is of course the classic way. It
is not limited by the narrow resources of specialized hardware and thus allows
for complex shading algorithms (plug-and-play shading, see Figure 2.3).

Since a single CPU is still too slow to achieve real-time (video) frame
rates at a moderate image resolution, pure software implementations need
the power of multiple CPUs. There are two alternatives for multi CPU
machines: shared memory machines or clusters with per client memory con-
nected by a network. Both ways need slightly different approaches to balance
the computation load on the CPUs.

1FPGA: Field Programmable Gate Array.

2.3 The OpenRT System 9

Figure 2.3: Examples of plug-and-play shading in software ray tracers. The
left image shows a number of shader types like a bump mapped mirror on the
wall, a procedural wood texture on the desk, a light-field shader (the dragon)
or a volumetric shader applied to a box (the skull) The right image shows the
possibilities of using special shaders for global illumination algorithms. Those
shaders are too complex for implementing them on the limited resources of
programmable raster graphics hardware (GPU).

Load balancing in a parallel ray tracing system is typically done by a
screen space subdivision of the output image. Different parts of the frame
are scheduled for rendering on the different CPUs. Since the computational
effort is not equal for each tile and depends on the visible parts of the scene,
a proper load balancing scheme is vital for an interactive parallel ray tracer.
This is especially true for the network distributed cluster solution.

The OpenRT system is an example of a distributed, software based in-
teractive ray tracing system.

2.3 The OpenRT System

The OpenRT ray tracing system was created at Saarland University by Ingo
Wald, Carsten Benthin, and others [Wald01c, Wald04a, Wald02a]. The in-
tention was to provide a framework for network distributed, interactive ray
tracing on a cluster of commodity PCs. Figure 2.4 shows a typical hardware
setup for an OpenRT based system.

Each rendering frame is subdivided into a regular grid of tiles. These
tiles are scheduled on the individual clients for rendering. A load balancing
mechanism sends job descriptions of the tiles over the network and thus keeps
the clients busy on rendering.

Once a client finished a tile job, the resulting sub-image is sent back. A
frame is displayed when all tiles are sent back. Of course the server can start

10 Chapter 2: Interactive Ray Tracing and the OpenRT System

Switch

OpenRT Server

Cluster

Monitor

Figure 2.4: A typical OpenRT based ray tracing system. A number of ren-
dering clients and a rendering server with monitor output are connected to
a central switch. To overcome network bottlenecks, the server has a higher
bandwidth connection (Gigabit, 1000Mbit/s) compared to the clients (Fast-
Ethernet, 100Mbit/s).

to generate jobs for tiles of the following frame as soon as all jobs of the
current frame have been distributed.

2.3.1 The OpenRT API

To facilitate programming of new OpenRT applications and porting of ex-
isting OpenGL applications, an OpenRT-API, very much in the spirit of the
OpenGL API [Woo97], was created [Dietrich03]. Some of the OpenGL con-
cepts do not apply for ray tracing (framebuffer and fragment operations, etc).
One important difference with the OpenRT system is that the full geometry
needs to be specified in before. Here a mechanism very similar to OpenGL
display lists is used. Besides the OpenRT application API, a second API for
shader programming is used (see next section).

The OpenRT reference manual [OpenRT] gives the details of the used data
structures and functions. An OpenRT tutorial document [Wald03b] provides
the necessary introduction in writing OpenRT applications and shaders.

OpenRT currently supports only triangles as geometric primitives. An
experimental implementation of geometry shaders allows for plugins for ar-
bitrary primitives like free-form surfaces [Benthin04] or volumetric data.

At the time of writing, the OpenRT API is still evolving. For the example
MR OpenRT applications in the following chapters, I refer to the current
API status at the time when the programming work was done. Newer API
versions may provide more efficient ways to performs the necessary tasks.

2.3 The OpenRT System 11

2.3.2 Programmable Shaders

OpenRT features programmable shaders in the spirit of the RenderMan API
[Apodaca90]. While RenderMan uses a custom shading language, OpenRT
shaders are written as C++ classes based on a generic OpenRT shader class.
One or more shaders can be compiled to a shared object file, a library that is
loaded at run-time when the shader is referenced by the applications.

A shader can have a number of parameters that can be edited at run-time.
Local class attributes are bound to parameter names using special functions
of the OpenRT shader API. The access of the shader environment data (tex-
ture coordinates, normals, etc.) is done on demand using API calls. An
OpenRT shader provides a shade method that calculates the color and even-
tually spawns secondary rays. A second method (called light transparency
in OpenRT) is used for shadow rays allowing to skip the color calculation if
only an occlusion information is needed. Utility methods for initialization of
local data and per frame calculations complete the shader class.

Besides surface shaders, OpenRT also provides lightsource shaders bound
to the lightsources specified in the scene description. In addition to the tra-
ditional lightsources like point light or spot light, an area lightsource shader
facilitates sampling of area lights specified as geometry in the scene. Note
that there is no high level support of sampling like the RenderMan gather

function in OpenRT.
Other examples of OpenRT shaders are camera shaders to create primary

rays (useful e.g. to provide a virtual camera that is calibrated to match
a real camera for mixed reality rendering) and environment shaders used
for shading calculation of rays that do not intersect the scene geometry (to
simulate a distant environment).

Appendix D provides OpenRT example shader. It is used for the video
billboard application introduced in Chapter 5 is.

2.3.3 The Rendering Object

The OpenRT rendering object is a special kind of shader. It controls the
communication between the OpenRT server and the clients. The user can
specify his own rendering object for an application.

The rendering object is implemented as a C++ class that is instantiated
on both, the server and the clients. Parts of the method set are executed only
on the server, the other methods on each client. Besides initialization and
per frame methods, a rendering object can provide a method for subdividing
the screen space into tiles and a method called on each clients that contains
the rendering loop over the pixels of a tile. Custom data can be added to

12 Chapter 2: Interactive Ray Tracing and the OpenRT System

the tile data structure by a user pointer and is automatically transmitted to
the clients.

2.3.4 OpenRT Application Programs

The main OpenRT application used for the examples in this thesis is a
VRML97 viewer. It was originally written by Wagner [Wagner02] and is
based on the XRML library by Bekaert [Bekaert01]. In recent years the
viewer evolved to a commercial product (’inView’) sold by inTrace GmbH.
The VRML97 viewer is used as an application for all mixed reality applica-
tion examples implemented with OpenRT in the work on this thesis.

In [Dietrich04b], a scenegraph library, optimized for the use with OpenRT
API, is introduced. Conventional scenegraph systems (e.g. SGI Performer or
OpenSG) are optimized for complex OpenGL multi-pass rendering methods
and the use of OpenGL display lists and therefore not suited for ray tracing
systems.

A scenegraph API is the key to user interaction with a scene like (con-
strained) moving of objects, e.g. opening a hinged car door. The VRML97
based scenegraph from [Dietrich04b] also provides the VRML scripting inter-
face for easy interconnection of OpenRT applications to external programs,
like the chess program used for a 3D chess game in Figure 2.5.

Figure 2.5: Two applications of an OpenRT scenegraph library [Dietrich04b].
The left image shows a desk lamp illuminating a room. A VRML97 animation
path [Carey97] is used to move the lamp. A global illumination simulation
is updated each frame. In the right image a chess program is connected to a
rendered chess board using the VRML97 scripting mechanism.

2.4 Application Examples for Interactive Ray Tracing 13

2.4 Application Examples for Interactive Ray
Tracing

Having a modular, interactive ray tracing system like OpenRT, it is worth
to explore the space of potential applications. Besides new implementation
possibilities of existing application fields, a number of new applications are
only possible because of the availability of interactive ray tracing. In the
following, the most important applications fields of an interactive ray tracing
system are described.

2.4.1 Virtual Reality

Figure 2.6: Virtual reality application examples. The left image shows a
virtual design study of a car in a photographic environment (design review).
The right image shows a detail of a technical model of a power plant.

Virtual Reality rendering is of course a basic discipline of interactive ren-
dering. Figure 2.6 shows typical applications which benefit from the abilities
of a ray tracer to render large, complex models and provide high realism at
the same time.

VR systems are usually based on top of a specialized VR scenegraph li-
brary. This library controls rendering, allows user interaction, manages move-
ment constraints, provides control over output devices like PowerWallTM ,
CaveTM or Head-Mounted Displays and processes the input from user in-
teraction devices like trackers. Such a library can be build on top of a ray
tracer much more simpler than on GPU based systems because of the high
modularity of the ray tracing algorithm and because there is no need for
multi-pass rendering and thus no influence on the scenegraph system by the

14 Chapter 2: Interactive Ray Tracing and the OpenRT System

rendering algorithm. At the time of writing, there is no OpenRT based VR
system yet.

2.4.2 Augmented Reality and Mixed Reality

The high photo-realism available with a ray tracer in combination with ap-
propriate shading algorithms makes it an interesting alternative to raster
graphics. The modularity of the ray tracing algorithm allows to include data
from ’real world’ into the shading process for mixed reality applications.

Since mixed reality rendering based on interactive (software) ray tracing
is the topic of this thesis, there will be a number of examples and a closer
discussion in the following chapters.

2.4.3 Virtual Television Studios (Actor Insertion)

Figure 2.7: Actor insertion applications. The left image shows two persons
inserted into a virtual scene using video billboards (see Chapter 5). The right
image shows a 3D visual hull reconstruction of three persons using the method
introduced in Chapter 8.

Virtual television studios allow actors to walk around in a virtual, live ren-
dered scene (actor insertion). The high image quality and the possibility to
easily add shadows and reflections of the real actors to the virtual scene part,
make ray tracing a good candidate for rendering. The hard requirements of
live real-time systems for television are still too high for current interactive
ray tracer, though. Figure 2.7 shows two methods based on streaming video
textures, using different technologies to represent the actors.

The topic of live actor insertion will be discussed in more detail in Chap-
ters 5 and 8 of this thesis.

2.4 Application Examples for Interactive Ray Tracing 15

2.4.4 Interactive Global Illumination

Most modern global illumination algorithms are based on ray tracing. With
the availability of an interactive ray tracer, one would expect that fast global
illumination systems come up automatically. Unfortunately this is not true.
Most algorithms need to be adapted to a distributed rendering system be-
cause of the lack of global data structures. A carefully redesign can provide
impressive results, though (see [Wald04a]).

Figure 2.8: Interactive global illumination examples. The left image shows
a conference room lit by linear lightsources on the ceiling. The right image
shows a simulation of the caustics projected by a drinking glass. A distributed,
real-time photon mapping algorithm was used [Guenther04].

The ’IGI2 system’ build on top of OpenRT can provide global illumination
solutions at interactive frame rates [Wald02b, Wald03a, Benthin03] (see Fig-
ure 2.8 left) using path tracing an the instant radiosity method [Keller97].
An implementation of the photon mapping algorithm [Jensen96] makes it
possible to render complex caustics at real-time [Wald04c, Guenther04].

2.4.5 Massive Models

The ability of a ray tracer to handle very huge models due to the logarithmic
complexity of the intersection operation makes interactive ray tracing the
only candidate when it comes to displaying and walking thru models that
are too large for processing on current raster graphics hardware [Wald01b].
An efficient, multi-level acceleration structure for the ray/scene intersection
can be combined with a virtual memory manager to render even models that
do not fit into the main memory completely. The ray tracer only needs to
access memory for the primitives visible in the actual view. A pre-process
for spatially sorting of the geometry data is needed.

16 Chapter 2: Interactive Ray Tracing and the OpenRT System

Figure 2.9: Examples of massive model applications. The left image shows
the interactive rendering of a sunflower patch with trees. The whole scene
features over one billion (109) triangles. The right image shows a Virtual
Reality walk-thru of a highly detailed Boeing-777 construction model (about.
350 million triangles) (Model courtesy of Boeing Company).

Figure 2.9 shows examples of interactive rendering scenery with plants
and trees and a highly detailed technical model of an airplane [Wald04b,
Dietrich04a].

2.4.6 Volume Rendering

Of course the ray tracing algorithm is not limited to rigid surface shading.
Volumetric shading methods like ray marching can be used for atmospheric
effects like fog or clouds. Iso-surface rendering can be efficiently implemented
[Marmitt04] for direct displaying of implicit surfaces in real volumetric data,
acquired for example with medical machinery (CT, MR). Figure 2.10 shows
some applications.

The modularity of a ray tracer allows to combine this data with conven-
tional (polygonal) data easily in the same scene. Shading on the volume data
can be done in the same way as for polygonal data. Thus the whole palette
of ray tracing effects like shadows and reflections can be used.

2.4.7 Games

The by far most important field of interactive (consumer) computer graph-
ics is the game industry. Interactive ray tracing can provide more realistic
looking game scenario. The ability of handling more complex model than
raster graphics allows a much higher complexity of scenery and actors. The

2.4 Application Examples for Interactive Ray Tracing 17

Figure 2.10: Volume rendering examples with OpenRT. The left image shows
a volumetric model of an engine part rendered with iso-surfaces. Ray tracing
style shading allows reflections from the environment. The right image shows
the rendering of a bonsai tree based on tomography data. Multiple iso-surfaces
are shown in different colors according to the density values they represent.

simple ray intersection test also allows easy implementation of user inter-
action (’shooting’). Unpleasant programming of complex multi-pass algo-
rithms, like used with today GPUs, completely disappear with ray tracing
[Schmittler04a]. Figure 2.11 shows some screenshots of the game ’Oasen’
written exclusively for use on top of the OpenRT framework.

Figure 2.11: Two screenshots of the game ’Oasen’ written exclusively for
rendering with OpenRT by Tim Dahmen et al. at Saarland University to
show the benefits of ray tracing for game engines.

18 Chapter 2: Interactive Ray Tracing and the OpenRT System

Chapter 3

An Introduction to Mixed Reality
Rendering

Mixed reality (MR) is the technology of creating applications that supply our
perception with both: real and synthetic informations. The visual aspects of
mixed reality are typically accomplished by the means of computer graphics.
Since the main aspect of MR applications is the interaction of the virtual and
the real world, interactive (or even better: real-time) methods are needed.

This chapter gives a brief background and the related definitions on mixed
reality, necessary for understanding the problems and applications in this
thesis. The focus is kept on the rendering aspects. A number of summaries
and state-of-the-art reports are available on general AR/MR concepts and
philosophy (e.g. [Azuma95, Azuma01, Bimber03b]). The chapter closes with
an overview of related techniques for (interactive) mixed reality rendering.

3.1 Mixed Reality

Milgram [Milgram94, Ohta99] gives a good definition of what Mixed Real-
ity (MR) is. His Reality-Virtuality (RV) continuum (Figure 3.1) shows the
possible spectrum of mixed reality applications and defines the basic nomen-
clature. It spans the whole spectrum from the real world to the (pure) virtual
world.

The terms augmented reality (AR) and augmented virtuality (AV) are
used for the areas near the ends of the continuum, for methods where (only
few) parts of one world are included in the other world.

Mixed reality should not be seen only in the (rather small) borders of
computer graphics rendering. The philosophical aspects go much farther.

20 Chapter 3: An Introduction to Mixed Reality Rendering

Environment (RE)
Real Virtual

Environment (VE)

Augmented
Reality (AR)

Augmented
Virtuality (AV)

Mixed Reality (MR)

Reality − Virtuality (RV) Continuum

Figure 3.1: Milgram’s Reality-Virtuality continuum. Mixed reality applica-
tions span from augmenting real environments with synthetic parts (aug-
mented reality), up to placing real objects or persons into synthetic envi-
ronments (augmented virtuality).

Even putting a monitor or video projector in a real world scenario can be
seen as some kind of mixed (or augmented) reality.

In this thesis, I will concentrate on the aspects of computer graphics
rendering for mixed reality. The aim of this thesis is to prove the applicability
of interactive ray tracing to mixed reality rendering by giving a number of
example applications from both ends of the Milgram continuum.

3.1.1 Augmented Reality

In augmented reality applications, a (real) environment is augmented by com-
puter graphics. This can be done with the aid of monitors, displays, or video
projectors. Often the view of a person is augmented. Here, the virtual part
needs to follow the view and must fit into the real scene (tracked) in terms
of a correct perspective. The virtual part can be just some flat and simple
line drawings like arrows or text characters, up to photorealistically objects
integrated into the real scene in a seamless manner.

The practical aspects of augmenting a subject’s view can be solved by
a number of techniques (see [Bimber03b]). The two most common methods
are optical-see-thru, where the virtual parts and the real view are blended
by a semi-transparent mirror, and video-see-thru, where the virtual parts are
inserted electronically into a video view of the real scene.

A number of additional technologies are related to augmented reality.
The are endless applications and methods for tracking, from large scale GPS1

tracking of persons in wide areas to video-based tracking of gestures for inter-

1GPS: Global Positioning System.

3.2 Related Rendering Techniques 21

action. A survey of applications and technologies can be found for example
in [Azuma95, Azuma01].

To simplify the implementation of AR applications, a number of frame-
works (middleware) specialized for AR purpose are available. For instance
ARToolKit from Washington University [ARToolkit] provides easy camera
matching and compositing of an OpenGL camera to the (video-based) view
camera by the means of simple markers. ARToolKit replaces the common
OpenGL GLUT library.

Examples for video-see-thru based AR technology in this thesis can be
found in the Chapters 6 and 7. Details on the related AR techniques are give
there.

3.1.2 Augmented Virtuality

Though the term augmented virtuality is rather seldomly used, there’s at least
one important application in this field: putting real persons into a virtual
world and allow them to interact with each other and the virtual objects
(virtual actor insertion). Possible application fields are (tele) cooperative
work (e.g. the blue-c system [Gross03]) and virtual television studios. The
latter allow actors to play in virtual sets and are the real-time counterpart
of compositing work in the movies [Kelly00, Brinkmann99].

The aim of integrating a person in a virtual world can be accomplished
with a number of methods depending on the desired degree of interaction.
Two methods, video billboards and 3D reconstruction, are explored in more
detail in Chapters 5 and 8. The related research work, technical background
and applications examples can be found there.

3.2 Related Rendering Techniques

Rendering in augmented reality applications spans from inserting simple 2D
flat shaded objects like text, lines, or arrows, up to full 3D photorealism. The
used rendering technique depends on the intended effect on the user and, of
course, on the computational resources. Portable computers are, even today,
still too slow for complex, realistic rendering. Stationary machines, especially
parallel machines like shared memory architectures or clusters of commodity
PCs can provide an immense higher computation power and thus high-quality
rendering for (pure) virtual and also mixed reality applications.

Traditional rendering methods, based on local or global illumination mod-
els (e.g. [Glassner95, Watt92]), can also be used for MR/AR applications.

22 Chapter 3: An Introduction to Mixed Reality Rendering

Common global illuminations methods are based on the radiosity approach
[Goral84] or ray tracing based (e.g. (Quasi) Monte Carlo methods [Keller98]).

In the following sections, I will provide an overview over the most im-
portant computer graphics techniques related to mixed reality rendering. I
will keep the focus on methods that can be used for interactive and real-
time applications. A detailed discussion of illuminations methods for MR
applications can be found in [Jacobs04].

3.2.1 Shadow Generation in MR

A number of publications deal with the (isolated) problem of generating
(soft) shadows from virtual object cast onto a real scene. Shadows increase
the realism of the composite result, but are only one aspect of consistent
illumination in MR/AR scenarios [Slater95]. Convincing shadows require to
recover the lighting scheme in the real background scene. This is often done
by simple estimates or the lighting is known in advance in a lab setup (e.g.
[Marschner97, Sato99b]). Once the illumination is known, real-time shadow
methods based on hardware graphics (see e.g. [Moeller99]) can be applied.
Often the incident light is represented by a (small) number of point lights.
The position of the lights is optimized to fit the shadows to the real shad-
ows present in the background scene. Examples of these local illumination
methods are [State94, Haller03, Bimber03a].

3.2.2 Common Illumination

To augment a scene with virtual objects and their effects (shadows, reflec-
tions), often a (simplified) model of the real scene is needed. A number of
methods and commercial tools are available for semi-automatic generation of
such a model from a number of photographs (see [Jacobs04] for more details).
A complete model consists not only of geometry but also material properties
and lighting information.

Gibson et al. [Gibson00] describe a common illumination method using
shadow maps. A variation followed in [Gibson03b, Gibson03a]. Debevec
[Debevec98a] describes a method based on differential rendering. The real
scene is subdivided into two parts: the local scene with the effect of the
virtual objects and an unaffected, distant scene. The local scene needs to
be represented by a (rough) model in the rendering process: geometry and
light. The latter is acquired by a mirror ball lightprobe. Debevec does
not describe the rendering process in detail and uses the Radiance [Ward94]
system. [Debevec02a] gives a recipe for Image-based Lighting (IBL) with

3.2 Related Rendering Techniques 23

Radiance. Sato et al. [Sato99a] describe a comparable method, but explain
the rendering process in more detail.

Other methods are based on the radiosity [Goral84] approach. Fournier at
al. [Fournier93] use a representation of the real scene by boxes textured with
images of the objects. Drettakis et al. [Drettakis97a] uses the hierarchical
radiosity [Hanrahan91] approach with clustering [Smits94, Sillion95]. A line-
space hierarchy [Drettakis97b] is used for speed-up [Schoeffel99, Pomi99].

For a full discussion of the more than twenty methods and systems intro-
duced in the last ten years, please refer to [Jacobs04].

3.2.3 Image-Based Lighting

Image-based lighting (IBL) uses an image instead of a number of specified
lightsources for lighting virtual objects. The image is typically correlated
with a mapping of spatial directions, e.g. a spherical lightprobe image. Spher-
ical lightprobes can be created by photographing a mirror ball. For repro-
ducing the dynamic range of a real scene, a high dynamic range (HDR)
photograph is taken, typically by fusion of a number of conventional pho-
tographs with different exposures (e.g. [Mann94, Debevec97]). A lightprobe
image represents the incident light from all direction at one point in a scene.
A lightprobe image can be used for rendering by sampling (see next section)
or by subdividing the image of the environment into patches and applying
the radiosity method [Goral84]. Rendering with image-based lighting meth-
ods yields pictures of ’naturally’ lit synthetic objects fitting seamlessly into
a background photograph of the real scene. This technique is widely used
in design and virtual product shots. Image-based lighting is often used in
combination with the common illumination methods from the last section.

Single lightprobes only represent the incident light at one point in a scene.
For complex local effect, like reproduction of a shadow pattern, multiple
positions need to be taken into account. Acquisition of incident lightfields
over planes can be performed with an array of lightprobes of by moving a
single lightprobe around to take measures [Unger03].

.

3.2.4 Sampling of Incident Lightmaps

Very closely related to IBL are methods to sample maps of incident light
(lightprobes). The samples are used for rendering with ray tracing based
methods. The lightmaps represent a sphere of incident lighting directions.
Its radiance values are usually given as an high dynamic range image.

24 Chapter 3: An Introduction to Mixed Reality Rendering

A correct sampling method subdivides the lightmap into different regions
represented by a sample position and an average irradiance value. The area
of all regions sums to the area of the hemisphere. The size of each region is
chosen to obtain the local frequency and importance of an area.

Beside regular sampling methods, importance sampling yield irregular
sampling distributions related to the contribution of an area to the illumina-
tion of a surface point. Optimal sample distributions can be achieved using
optimization methods. The LightGen plugin [LightGen] for [HDRShop] gen-
erates a (user supplied) number of point lights for a lightprobe. Kollig et
al. [Kollig03] use a relaxation procedure based on quadrature rules to opti-
mize sample placement. Agarwal [Agarwal03] uses a hierarchical stratifying
method. In [Masselus02], a Voronoi based approach is used. [Szecsi04] gives
some background on correlated importance sampling from a Monte Carlo
view.

A good sampling distribution can yield smoother soft shadows with less
samples and thus better performance in real-time applications. For generat-
ing soft shadows usually more samples are required than for lighting a virtual
object.

All of these methods are computationally expensive and thus slow. They
are not suited for reproduction of fast changing lighting conditions in real-
time applications.

3.2.5 Relighting Methods

Relighting methods deal with changing the lighting in images (rendered im-
ages or photographs) of a scene. This is done by removing the light at
the time of an image of the scene was generated and adding a new lighting
situation (image-based relighting). This method can be used for objects or
persons.

One class of methods exploit the linearity property of light: a number
of photographs of the same scene but under different lighting conditions
can be added to simulate the lighting effect that would be achieved with
a combined lighting. Debevec et al. [Debevec00] presented a method for
relighting of subjects. A (high) number of photographs are taken of a person,
each under a single, different lighting direction. The resulting set of images
shows the subject lit from many possible directions of incident light. Complex
lighting, like from a lightprobe with incident light from an environment, can
be achieved by adding all images with the proper weights. The weight for
each direction is derived from the corresponding direction in the lightprobe
image. If the photographs are taken under white light, the colors from the
environment can be reproduced. The same method can be used for arbitrary

3.2 Related Rendering Techniques 25

(small) objects (e.g. [Masselus02, Masselus03]).
A different class of methods deals with relighting of environments (like a

room) and uses similar methods to Section 3.2.2 (e.g. [Loscos99]).

3.2.6 Inverse Rendering Methods

Inverse rendering methods try to reverse the classical rendering formula
(model+lighting+camera→ image) to obtain a model (geometry and mate-
rial) or the lighting setup (inverse lighting methods) from photographs. Typ-
ically, the geometric model (with the matching camera) has to be specified in
order to obtain the material properties and/or the lighting. Inverse render-
ing methods are computationally expensive, not real-time and often unstable.
Examples for BRDF recovery are [Yu99, Ramamoorthi01b, Lensch01] and for
lighting setup recovery [Sato99b, Marschner97].

Photometric methods for geometry model generation can also be seen
as inverse rendering problems (e.g. shape-from-shading). A full survey and
discussion of inverse rendering methods can be found in [Patow03]. Most
methods are closely related to other techniques mentioned in this section (in
particular relighting methods).

3.2.7 Precomputed Radiance Transfer Methods

A method to compress the data in incident lightmaps are spherical harmonics
(SH, [Ramamoorthi01a]). They provide a basis on a sphere analogue to a
Fourier basis. The maximum reproducible frequence depends on the number
of used coefficients (implicit pre-filtering). Obtaining the (diffuse) incident
lighting integrated over the hemisphere according to a given surface normal
can be done by just a simple multiplication of the normal vector with the SH
coefficients matrix. This makes lighting based on SH ideally for hardware
rendering. The method is typically used for lighting single objects (product
shots).

Precomputed radiance transfer (PRT) methods add an occlusion term
to the integration to render self-shadowing and self-interreflection effects.
A (ray based) pre-process is used to generate a radiance transfer function
(RTF) for a rigid object. This function is parameterized over the surface of
the object and used in the SH lighting process [Sloan02].

3.2.8 Environment Matting

The term environment matting (from environment map and alpha matting,
[Zonker99]) is used for methods to acquire the light-transport properties

26 Chapter 3: An Introduction to Mixed Reality Rendering

of ’optically active’ elements, typically transparent, refractive and reflec-
tive objects (e.g. a magnifying glass). The derived model is often repre-
sented as a lightfield [Levoy96, Gortler96] (Image-based environment matting,
[Wexler02]). To aquire the optical properties of an object, active lighting
methods are used. Often the object is photographed under light patterns
generated on a computer monitor. The resulting model for the objects in-
cludes all optical effects and can be used for real-time rendering.

Chapter 4

Streaming Video Textures

Mixed reality rendering deals with combining parts of the real world with
synthetic ones. Since the synthetic parts are typically generated by a com-
puter, it is often easier to include the real world in the rendering process
than to do the fusion of both worlds in the real one1.

For including the real world parts in the rendering process, exact models
are needed, including geometry, material description, and lighting. A number
of methods of obtaining these parameters from real world objects are available
today, but almost none of them can provide a dynamic model at real-time.

One alternative to a model is the use of images (image-based rendering).
In terms of mixed reality rendering, this means that the real world parts are
only represented as photographs or live video. These images are included
in the rendering process like traditional textures. For interactive rendering
with real world parts, a mechanism of including live video is needed. This
results in the concept of video textures. Video textures can be seen as a basic
building block for mixed reality applications.

Please note that the term video textures was also introduced by Schödel
et al. for pseudo-randomly looped, animated textures [Schoedl00]. In the
remainder, I use the term to refer to textures from live video streams.

In this chapter, I will give an overview of streaming video in a distributed
rendering system and present a video texture subsystem for the OpenRT
framework. A simple example application is given at the end of the chapter
and will illustrate the use of video textures in the shading process.

28 Chapter 4: Streaming Video Textures

Figure 4.1: Some application examples for streaming video textures. Top
left: A video texture on a TV set (Section 4.4). Top right: Video billboards
for actor insertion (Section 5.4). Bottom left: Image-based lighting of a
virtual car in a dynamic environment (Section 7.6). Bottom right: 3D
visual hull reconstruction of several persons (Chapter 8).

4.1 Video Textures

When it comes to introducing imagery (real photographs or synthetic images)
to the rendering process, texture maps are the appropriate mean. Texture
maps allow to access parts of single pixels (texels) of an image. Texture
filtering methods specify how a texel is derived from the image map, e.g. by
linear interpolation of its nearest neighbor texels.

Video textures are pretty much the same as conventional (static) texture
maps. The only difference is that the image contents changes with the time.
They can be implemented as a (pre-recorded) table of texture maps (e.g.
[Schoedl00]).

For an interactive rendering application, the inclusion of live video is often
desired. Here the rendering system needs to access an external video input

1The latter is done in projector-based AR (e.g. [Raskar01]).

4.2 Video Data Distribution 29

(e.g. a frame-grabber board). Figure 4.1 shows a number of applications
of video textures from this thesis. In a distributed rendering system (like
OpenRT) rendering is performed on a number of clients simultaneously. A
method of distributing the video content to the clients is needed (streaming
video textures). In the following sections, I give an overview of how video
data can be distributed to the rendering clients.

4.2 Video Data Distribution

To use a video stream in the rendering process, it is necessary to have access
to the individual video frames from the shaders. On a shared memory ma-
chine a common memory area for all shading threads is easy to implement
since the data is read-only for the shaders.

In a distributed rendering system connected by a network, a more so-
phisticated method is needed. The video data has to be distributed to the
rendering clients and a synchronization mechanism has to be used. Since
the different rendering threads on the clients can render parts of different
rendering frames, the video texture system has to take care of using the
appropriate video texture frame for the rendering process. In addition, the
frame rates of the video textures and the rendering frame rate can differ. The
expected video latency in a networked solution is higher than for a shared
memory machine. For interactive applications the latency has to be minimal
for obvious reasons.

There are a number of methods for distributing video texture stream
data in a distributed ray tracing system. In the following, I will give a brief
discussion of the most important and practical ones of these methods.

4.2.1 OpenRT Payload

OpenRT uses a tile description data structure for the communication of the
rendering server with the individual rendering clients. This tile data structure
can be augmented with arbitrary user data. The OpenRT network layer takes
care of sending the data to the clients (see also Section 2.3.3).

This mechanism can be used to send video texture data from the server
to the clients (Figure 4.2). The OpenRT client communication uses the TCP
protocol [Stevens98] which is reliable, i.e. no video data can get lost on the
network. Due to TCP/IP retransmissions there can be jitter, however. This
jitter shows up as a ’hickup’ effect in the rendering frame rate (stalling).

Since it is unknown in before which parts of a texture map will be accessed
by a clients, the whole video texture frame has to be sent with each tile job.

30 Chapter 4: Streaming Video Textures

Cluster

Switch

OpenRT Server

Monitor

T T T T

T T TT

T

Figure 4.2: Video texture data distribution via the OpenRT payload mecha-
nism. The OpenRT server also acts as video texture server. A texture frame
T (green) is copied with each tile job.

This causes a bad scaling in the number of clients. The efficiency is low since
the clients may only use a small part of the texture or even won’t access it at
all depending on the assigned rendering tile. There is no need for an explicit
synchronization mechanism (see below) with this method.

4.2.2 A Demand Driven Approach

Another approach is a demand-driven one: when a shader needs to access
a frame of a video texture, it asks the video texture server for the data.
This method causes two network packets, a request from the client with the
desired texture coordinates and a response from the video texture server. A
texture filtering can be performed on the server to keep the network load
minimal.

Figure 4.3 shows the demand drive approach. The main drawback of this
method is the high latency introduced by the request-and-response system.
The video texture servers have to process a high number of requests, which
can be a problem of network subsystem performance and computing power.
A synchronization mechanism is needed since the clients can render parts of
different output images and have to specify the desired video texture frame
number in the request.

4.2 Video Data Distribution 31

Cluster

Switch

OpenRT Server

Monitor

R1 T1 R2 T2

R1
R2

T2
T1

Texture Server

Figure 4.3: A demand driven video texture approach. When a client PC
needs to access a part of the current video frame, it asks the video texture
server (request, Ri, red). The video texture server responds with a texture
(tile) packet (texture, Ti, green).

4.2.3 Direct Video Connection

To keep the network free of video data, a separate connection for the video
texture data can be used. Figure 4.4 shows a system with an analog video
source fed to all clients via a video distribution amplifier. Each client has its
own frame-grabber board.

Of course, the hardware effort is immense when considering multiple video
texture streams. Also a complex synchronization mechanism is needed. The
only way to guarantee correct synchronization is to include timecode in the
analog video signal. The SMPTE/EBU2 VITC (Vertically Integrated Time
Code), a time information included into the vertical blanking area of the ana-
log video signal, is the appropriate method. A timecode generator is needed
for each video texture source. On the client side the timecode information
can be obtained from the frame-grabber in software (Vertical Blanking De-
vice). The rendering server has to keep track of the video timecode to provide
the synchronization information to the clients.

Even though the hardware effort is high, this is often the only solution

2SMPTE: Society of Motion Picture and Television Engineering. EBU: European
Broadcast Union.

32 Chapter 4: Streaming Video Textures

Cluster

Switch

OpenRT Server

Monitor

Video Distribution Amplifier

Figure 4.4: Video texture data distribution via a separate connection. The
video source is connected to all client PCs by an analog video distribution
amplifier. There’s no dedicated video server. The network is not used for
video texture data.

of hard real-time applications. There are alternatives to analog video dis-
tribution like uncompressed digital video interfaces (SDI [Poynton03]) or
the IEEE1394 bus, which can stream arbitrary data to multiple hosts in
an isochronous broadcast mode [IEEE1394, Anderson98]. The IEEE1394
bus can be seen as a special purpose video network.

4.2.4 Multicast Networking

Since video streaming in IP3 is a common problem, a dedicated networking
mode was introduced (of course not only for video data): multicast network-
ing. A multicast packet sent by a host is automatically transfered to all the
hosts that have subscribed for receiving the packet. To keep the network load
as low as possible, the network hardware (routers and switches) copies the
packet when needed, i.e. when the route forks for different hosts or subnets
[Stevens98]. Figure 4.5 shows a multicast video texture system.

IP Multicast uses groups rather than IP host addresses. Group addresses
are special IP addresses in a reserved address range. By choosing appropriate
address groups, the user can restrict the group availability to the local net or
up to the whole world. Group addresses are mapped to multicast addresses

3IP: Internet Protocol [Stevens98].

4.2 Video Data Distribution 33

Cluster

Switch

OpenRT Server

Monitor

T

T T T T

T

Texture Server

Figure 4.5: Video texture data distribution via multicast. A video texture
server streams the texture frames T (green) to the switch. The switch sends
a copy of each packet to the participating client PCs.

of the underlying media (e.g. Ethernet). Note that Ethernet uses fewer bits
for multicast addresses than IPv4, which means a number of IP multicast
groups are mapped to the same Ethernet multicast group [Stevens98]. This
fact has to be considered when choosing group addresses for minimal network
load.

Sending multicast data packets (datagrams) is done the same way as for
conventional UDP4 data. The only difference is the assigned IP address,
which is one out of the reserved address range for multicast [Stevens98].
Clients can subscribe a certain multicast group using special network calls
(socket options). A number of different multicast address ranges are used
to control the propagation of multicast packets over WAN routers. For the
video texture application it is desired to keep the packets in the local network,
invisible to subscription from the outside world. This also facilitates choosing
an appropriate group address.

Since IP multicast is based on UDP, packet transmission is not reliable.
A high level protocol should be implemented on top of the plain UDP mech-
anism to detect packet loss. Note that there are protocols for reliable multi-
casting (e.g. the Reliable Multicast Protocol RMP [Whetten95]). They use

4UDP: User Datagram Protocol.

34 Chapter 4: Streaming Video Textures

retransmission of lost packets and are not designed for low latency applica-
tions in local networks.

The multicast networking approach for distributing video texture data
is used for the OpenRT video texture subsystem described in the following
section.

4.3 The OpenRT Video Texture Subsystem

The following sections show how the OpenRT framework was extended with
a streaming video texture subsystem. The subsystem is implemented as an
OpenRT rendering object (see Section 2.3.3). No changes in the OpenRT
library were necessary. A video texture API provides the shader programmer
access the the texture data. The number of available video textures is only
limited by the available network bandwidth.

4.3.1 The System Architecture

Figure 4.6 gives an overview over the OpenRT video texture subsystem.
Multiple video texture servers can send their texture data via multicast to
the clients. Each video texture has its unique texture ID. This ID allows the
shader programmer to reference a specific texture stream. The ID is assigned
manually to the texture server.

A texture server is basically a host running a video texture server ap-
plications. Multiple textures can be streamed from the same host. The
texture server can obtain the video input from a local (pre-recorded) file or
via a Video4Linux [Video4Linux] device. Video4Linux provides input from
a number of devices like a frame-grabber board for an analog video camera,
USB cameras or a TV tuner.

The video texture server is designed as a C++ class. It can be included in
other applications like the Network Integrated Multi Media System Frame-
work NMM [NMM, Lohse02]. Stream data is not limited to texture maps.
Arbitrary data structures can be distributed in the same manner as conven-
tional video textures (see Section 7.6 for an example).

4.3.2 Synchronization

To ensure that all client tiles of one frame use the same video texture frame
independent of which client they are rendered on, a synchronization mecha-
nism is needed. Synchronization is achieved by using timestamps.

4.3 The OpenRT Video Texture Subsystem 35

Cluster

Switch

OpenRT Server

Texture Server 2

Texture Server 3

Texture Server 1

T

T

T

T
T

T

T T T

T T T

S

S’

S’

S

S

S

S’

T T T

S’

S’

Figure 4.6: The OpenRT video texture system. Several video texture servers
send their data (T) via multicast to all client PCs. Additional synchroniza-
tion information (S) is send to the OpenRT server on a separate multicast
group. The server relays this information to the clients together with the ren-
dering job packets to guarantee that each tile is rendered with the matching
video texture frame.

The synchronization mechanism works as follows: Each video texture
server assigns consecutive numbers to the frames of a video texture. The
frame data is sent out using a multicast group. The rendering clients and
the OpenRT server (i.e. the video texture rendering object) subscribe this
multicast group. The clients stores the received frames in an queue. A
separate queue is used for each texture ID. Each frame in a queue can be
identified by the timestamp.

The server also receives the texture frames but discards the actual texture
data. It maintains a table with the last received timestamp for each texture
ID. When a new rendering frame is started, the server can look at the table
and expect that for each texture the texture frame preceding the one identified
by the timestamp in the table should be available in the clients texture frame
queue.

The server thus sends a table with timestamps for each texture ID with
each tile job using the OpenRT payload mechanism. When a texture is
accessed in the rendering process of a tile, the appropriate texture frame is
chosen by the timestamp from the table. The texture frame queues on the
clients have a fixed size (e.g. 10 texture frames).

It is not recommended to stress the network bandwidth of the server

36 Chapter 4: Streaming Video Textures

width
height

format
offset
data

ID ID
timestamp

timestamp

...
Figure 4.7: The data structures contained in a video texture network packet.
Left: The packet type used sending the etxture data to the clients. It contains
the texture ID, texture image size, the timestamp, the texture data encoding
format, the offset of the data in the packet relative to the texture frame and
the image data. Right: The packet type used for synchronization between
the texture servers and the OpenRT server (see Section 4.3.2).

connection with the texture data since here is already a network bottleneck
caused by the returned rendering tile data. The OpenRT server needs only
the timestamps and not the actual texture data. Instead of subscribing the
same packets as the clients, we use a smaller packet type here. It contains only
the texture ID and the timestamp (see 4.7). These packets are transmitted
on another multicast group that can be subscribed independently from the
texture data group. In Figure 4.6 these packets are marked S while the full
texture packets are marked T .

4.3.3 Packetizing

Since the maximum size of a network datagram packet is limited (typ. UDP
size is 64 Kbyte), it is necessary to break the data of a texture frame down
into smaller packets. Each packet should contain the full texture specification
(size and format) since an arbitrary number of packets can get lost (see
Section 4.3.5).

Figure 4.7 shows the data structures contained in OpenRT video texture
multicast packets. The packet header contains the texture ID, the texture
map size, the timestamp of the texture frame the packet belongs to, a texture
data encoding format description (see Section 4.3.4), and the offset of the
texture data in the packet in relation to the texture frame.

There are several ways to split a texture frame into smaller parts. For
instance the tile approach used in OpenRT could be used. We chose to
break down the texture by the individual scanlines of the texture image.

4.3 The OpenRT Video Texture Subsystem 37

Each network packet contains one scanline (or a part of a scanline for large
texture sizes). Compared to the tile approach, this method is simpler and
needs less memory copy operations.

Other splitting schemes could be considered. For stream based compres-
sion like MPEG this packetizing scheme would provide difficulties in syn-
chronization since the MPEG stream cannot simply split into frames and
packet loss can influence a number of frames due to the MPEG interpolation
scheme. MJPEG5 is better suited to this approach since it has a frame based
structure.

4.3.4 Texture Data Formats

Texture images can have very different data representations in terms of color
space, dynamic range, compression, etc. To provide a flexible approach for
accessing texture data, a modular concept for adding new formats was chosen.
Texture formats are identified by a unique, global texture format ID number.
Each texture buffer (and each texture network packet) contains a data field
with the format ID.

New formats can be implemented by inheriting from a base format C++
class and supplying methods for texture memory buffer access. Typical ac-
cess methods are texture interpolation schemes like bilinear or box filtering.
Access to an additional alpha channel needs separate functions since OpenRT
does not support an alpha value in its color primitive. The texture manager
on the clients holds a list of formats available and instantiates the appropriate
texture format handling class when the first texture packet arrives.

The implemented texture data formats include e.g. RGB(A) or RGB565
(16bit) [FourCC] to save network bandwidth. For more complex applications
like the image-based lighting example in Chapter 7, high-dynamic range for-
mats like the 32bit/pixel RGBE format [Ward96] are available.

A raw format allows the user direct access to the texture buffers without
interpolation. This mechanism is useful for streaming data structures like
sample tables (Section 7.6) or for implementing texture compression (Section
8.4.2).

4.3.5 Network Packet Loss

Multicast uses a datagram protocol (UDP/IP) with no handshake, hence
packet loss can occur. Since all hosts in a OpenRT system are typically

5Motion JPEG.

38 Chapter 4: Streaming Video Textures

located in one subnetwork and are usually connected to one central switch,
the question arises where packets can get lost.

Lets have a look at the multicast data flow in the OpenRT videotexture
system. The video texture server sends a texture packet via a socket call to
the network subsystem. The packet is wrapped in an Ethernet packet and
put into the output queue of the appropriate network board. The board sends
the packet to a switch, which buffers all incoming packets and sends copies to
the connected clients. The packets are received in the client network board
buffer and submitted to the network subsystem. If a client socket listens
for these specific packets, the client application (the OpenRT video texture
manager) receives the packet with a read socket call.

Ethernet packets can always be discarded if a buffer on a network board
or in a switch overflows. Since we use UDP, the loss of an Ethernet packet
containing UDP data causes also the loss of the UDP packet. A UDP packet
can be split into several Ethernet packets (fragmentation [Stevens98]) since
Ethernet packets have a maximum size (MTU6). Fragmentation is handled
transparently by the network subsystem. If one fragment gets lost, all other
fragments belonging to the same UDP packet will be discarded. Since UDP
has no handshake, the packet will be lost without notice.

Our experiments with the multicast mechanism for video texture under
Linux showed that especially one missing feature of the kernel (or the network
board drivers) causes packet loss. There seems no signaling when a network
board buffer overflows and the kernel is out of buffer space for a certain socket.
The POSIX specification demands to return the write call an appropriate
error code or to block the sending process, which seems both not to be
implemented under Linux for multicast7. The same effect occurs with the
select call which always indicates that the socket is ready for writing.

Sending packets in a higher speed than the network can handle thus
causes packet loss. A typical indication for this kind of packet loss is a burst
scheme of consecutively missing packets. Please refer to [Servetto02] for a
more detailed discussion on multicast problems in local area networks.

How can the problem of packet loss be solved? Since the clients can
keep a list of all received texture packets of a texture frame, it is easy to
determine the missing parts. A client could request missing texture data
from the texture server, but this would block the rendering process until the
texture server sends the response (see also Section 4.2.2).

Another solution is the reuse of texture data from previous frames. Single
missing image map scanlines could also be interpolated from the neighboring

6MTU: Maximum Transferable Unit, typ. 1500 bytes for Fast Ethernet.
7We used Linux kernel version 2.4.19.

4.4 A Video Texture Example Application 39

scanlines of the actual frame. This solution could be improved by augmenting
the texture data with a certain redundancy, e.g. by using a forward error
correction (FEC) mechanism.

4.3.6 The OpenRT Video Texture API

To allow the user to access video textures when writing shaders, an API was
specified. Calling of a static function of the video texture manager object
(singleton) is used to obtain a reference for a specific video texture using the
texture ID. This reference is used to access texture data. The video texture
manager hides the synchronization and networking issues to the user. More
details of the video texture API can be found in Appendix C.

4.4 A Video Texture Example Application

An example application demonstrates the usage of video textures in the ren-
dering process. Figure 4.8 shows a simple living room scene with a TV set.
A video texture is used to display a video image on the TV screen. The
texture data is encoded as 16bit RGB (RGB565). Video input is provided
by a Video4Linux frame-grabber board. It is connected to a camera outside
the lab showing the cars passing down the street.

Figure 4.8: An example application for OpenRT video texture. A video tex-
ture is used on the screen of a TV set in a virtual room. The right image
shows the room when the video texture also acts as a lightsource for the room.
Note the soft shadows cast by the table’s legs.

40 Chapter 4: Streaming Video Textures

4.4.1 Lighting from Video Textures

To enhance the realism of the rendered scene, the TV set can be used as
a lightsource (Figure 4.8 right). The front screen of a TV set is an area
lightsource. We simulate the light emission by a fixed number of point light-
sources placed on the screen rectangle. A modified OpenRT point lightsource
shader is used to derive the individual lightsource intensities and colors from
the video texture.

Each call to the pointlight shader results in averaging a certain part of the
video image and returning the appropriate light color. The material shaders
for the objects in the scene use the point lights for shading.

The only exception is the TV screen shader which shows only the video
texture and ignores the point lights. A cosine term gives the screen a direc-
tional light quality. The effect can be seen on the wall (Figure 4.8 right).
In the example application the point lights are positioned in a regular grid.
Note the soft shadows cast by the TV light.

Since this simulates direct light only, we add a dynamic ambient term.
This term is calculated in the shader for the scene objects. A singleton
mechanism guarantees that the term is only computed once per frame and
client for all instances of the shader. The ambient light is estimated by
averaging over the whole video texture (Figure 4.9).

Figure 4.9: These images show how the light in the room changes with the
video contents. In the left image a red car passes in front of the camera. In
the right image a green translucent bottle is held in front of the camera.

Future versions of the IGI2 system [Benthin03] will include direct sam-
pling of textured area lightsources. The IGI2 system must be made aware of
that the texture content is changing and a resampling must be performed.

4.5 Conclusion and Future Work 41

This will allow a full global illumination solution containing also indirect
light.

4.4.2 Results

Figures 4.8 and 4.9 show examples of the TV setup [Pomi03]. The lighting in
the room changes interactively with the video content (Figure 4.9). The video
texture is sent with 25fps@320x240 pixel. For the lighting, 9 samples were
used. Table 4.1 gives the resulting frame rates with and without lighting.

Scene Figure #CPUs Resolution fps

TV unlit 4.8 left 16 320x240 20.1
TV unlit 4.8 left 6 640x480 5.3
TV unlit 4.8 left 16 640x480 14.1
TV unlit 4.8 left 24 640x480 18
TV w/lighting 4.8 right + 4.9 6 640x480 1.8
TV w/lighting 4.8 right + 4.9 16 640x480 4.4
TV w/lighting 4.8 right + 4.9 24 640x480 6.7

Table 4.1: Frame rates for the TV example. All measurements were done
on Athlon MP 1800+ CPUs. The OpenRT version is limited to about
20fps@640x480 due to network bandwidth.

When video streaming is stopped, the frame rates increases slightly (about
1–2 fps). This is because the increasing packet loss due to the larger network
load causing TCP retransmits in the OpenRT client connections.

We experienced the bust packet loss in the network as occasional dropouts
in larger texture areas. The texture lines are sent in ascending order and are
not shuffled randomly. The dropouts occur very irregularly in time.

4.5 Conclusion and Future Work

The implementation of streaming video textures with a low video latency in
a distributed rendering system is hard. The discussed multicast problems
under Linux are hard to fix and network system developers unfortunately
tend to point out the un-reliability of UDP as an excuse. The related texture
dropouts can be disturbing. Multicast is the only practical approach when
scalability in the number of clients is needed, however. An forward error
correction (FEC) scheme can be included for compensating dropouts.

42 Chapter 4: Streaming Video Textures

Packet loss problems restricts the multicast approach to non-critical appli-
cations. The shared memory version of OpenRT provides dropout free video
textures and is thus suited for more critical application fields like virtual
television studios. Todays limited availability of (inexpensive) multi-CPU
shared memory machines restrict the available rendering power for shading
effects, though.

Future improvements of the OpenRT video texture subsystem could com-
prise an adaptive frame rate feedback from the OpenRT server to the texture
servers to adapt the video frame rate to the rendering frame rate. This would
result in a minimal necessary network load and thus minimizing packet loss.

Further research could be done on reducing the bandwidth by using a
compression scheme for the texture data. Section 8.4.2 gives an example of
a fast and simple loss-less compression method for silhouette image data.
A multi resolution image set (like a mipmap [Watt92]) could be adapted to
provide at least a lower resolution image in case of packet loss. Appropriate
methods could be found in progressive picture compression schemes.

Other application examples for video textures can be found in the Chap-
ters 5 (Video Billboards), 7 (Image-Based Lighting), and 8 (Visual Hull Re-
construction).

Chapter 5

Video Billboards

One frequent task in mixed reality is the insertion of real persons in virtual
scenes (actor insertion). It can be seen in most of todays action and SciFi
movies. Actors are ’cut out’ from the background of the filmed action and
’pasted’ into a new environment. Care has to be taken to match the lighting
conditions to provide a convincing result. In the movies this is done offline,
of course. Errors produced by the software, like wrong segmentation, can be
corrected manually.

Live compositing of persons in virtual scenes provides a bigger challenge.
To isolate the actor from the (studio) background, a real-time segmentation
method is needed. Often a blue or green backdrop in combination with
chroma keying is used. The next step is an appropriate compositing method.
This can be done together with the rendering of the virtual scene or in a
post-process. Rendering has to be performed in real-time.

All of todays actor insertion method are based on raster graphics hard-
ware (GPU). Ray tracing can provide a good alternative since environmental
effects like reflections and shadows are more easy to generate in comparison
to raster graphics methods.

This chapter describes the main application of live actor insertion, virtual
television studios, and the related technology. I present an implementation
of video billboard for OpenRT using the video textures from Chapter 4. I
close with a discussion of the billboard method for actor insertion.

5.1 Virtual Television Studios

The idea of a virtual studio is to place a subject into a (virtual) studio set in
real-time. Building, storing, and maintaining of a real set becomes obsolete.
The absence of a post-process makes virtual studios ideal for live broadcast

44 Chapter 5: Video Billboards

purpose, although the technology is most time used for recording of daily
single presenter shows where a short production time is essential.

The concept of virtual studios originated already in the late 70s. One
example is the Magicam [Starlog81] technology. Here a video camera in a blue
studio was mechanically tracked and connected to a snorkel camera1 filming
a model. The model camera copied the movements of the studio camera and
created a perfect matching background plate. The presenter was keyed in
the background electronically. The system was used for documentaries and
allowed a presenter to walk in ancient building that were lost with the time
like the grand library of Alexandria.

Today, the computer has replaced real models. The rest of the system
remained still the same, however. But due to modern computer graphics and
broadcast technology like chroma keyers, the quality is much higher today.

The secret of a convincing combined output image is matching camera
perspective and providing visual cues like shadows. Ideally both, real scene
and virtual model, are lit the same way. Virtual lighting can be done to match
the studio light, at least for a static standard TV studio lighting setup.

Camera tracking is used to ensure the right perspective. A number of
companies supplies tracking equipment specialized for virtual studios. A
complete tracking system often uses a mix of technologies. Camera param-
eters (zoom, focus, aperture) are often tracked mechanically. Camera pose
can be determined by ultrasonic or active optical tracking with additional
tracking cameras. [Orad] uses a special blue backdrop with a binary coded
pattern and a special image processing hardware to determine all camera
parameters from the cameras’ video output.

The rendering system used for virtual studios must be highly reliable,
at least when used for live purpose. Often, large high end machines (SGI
Onyx) are used since they can guarantee a constant frame rate and provide
the proper video connections for broadcast environments.

Interlaced, field based [Poynton03] video output is needed. The rendering
is performed using OpenGL. Video textures (supported by special high band-
width hardware in high end systems) allow to insert video content (like news
inserts). Depth-of-field simulation aids to match foreground and background
view [Wojdala98].

A survey over current virtual television studio technology can be found
in [DP97, DP00a, DP00b].

1A camera with a periscope featuring a very small mirror at the end.

5.1 Virtual Television Studios 45

5.1.1 Video Compositing for Virtual Studios

An overview over the hardware setup of a traditional virtual television studio
is shown in Figure 5.1. A number of studio cameras are used in a studio
equipped with a blue or green backdrop. Hardware chroma keyers provide
the compositing of the cameras signal with the rendered background. Camera
tracking feeds the rendering servers with the necessary information to match
the virtual cameras. Each camera has its own rendering system to provide a
composited image on the preview monitors. The director in the control room
has the same view of the studio on his monitors like with a real set.

Video Keyer

Rendering Server

Studio Camera 1

Video Keyer

Rendering Server

Studio Camera 2

Video Mixer/Switcher

Broadcast

Preview

Preview

Figure 5.1: A traditional virtual studio hardware setup with two cameras.
Each camera has has its own rendering server to provide a preview of the
composited scene. Video (chroma) keyers are used for compositing. The
cameras are tracked to provide matching information for the virtual cameras
(red). The video switcher decides which camera goes on air.

Exact real-time generation of the virtual set is not possible. Camera
tracking and rendering create a certain video latency of several frames. The
video keyer features a delay line for delaying the camera signal for better
matching with the rendered video.

46 Chapter 5: Video Billboards

This concept can be arbitrary scaled, e.g. down to the simple setup seen
at the TV news every day. Here often static camera (without tracking) and
a simple rendered background wall with a video insert for the news trailers
rendered in 2D are used. Video processing technology remains the same,
though.

Keying is performed with special keyer hardware. A keyer is a device
that mixes two video signals according to the content of a third signal (key
signal). The latter is usually supplied in monochrome. The luminance of
the key signal controls the mixing (luma keyer). Chroma keying can be
done by adding a circuit that converts the color difference to a key signal
[Keith96, Poynton03]. The key signal is comparable to the alpha channel in
computer graphic image processing.

An alternative to the traditional compositing method is to do the com-
positing on the rendering servers, for example as part of the rendering pro-
cess.

5.1.2 Consistent Lighting

Consistent lighting is essential when a convincing result is expected. This
means not only matching of virtual and studio light but also providing visual
cues like shadows cast by the actor or the reflection of the actor on a shiny
floor.

The usual way to obtain a shadow of the actor on a floor is to key out the
real shadow in the studio together with the actor. High end keying systems
are designed to provide keying with respect to shadows [Ultimatte].

This approach does not work when the shadow is cast onto a virtual
object different from the floor plane, e.g. a table. Here we expect the shadow
to adapt to the contours of the table which is impossible with the keyed
shadow. A blue stand-in object for the table can help (or using a real table
keyed out together with the shadow).

Another approach uses a virtual shadow of the actor. This shadow is
implicitly cast on virtual objects in the right way. Since the actor has no
representation in the virtual scene, casting a shadow of him is difficult.

A solution is using an auxiliary camera (shadow camera, [Wojdala00]).
This camera is mounted near the shadow casting lightsource in the studio
and provides a perspective view of the actors silhouette as seen from the
lightsource. The video image of this silhouette can be used as shadow map in
the rendering process. A projective texture map, projected from the position
representing the shadow camera in the virtual scene, generates a shadow on
the floor and other objects. Since the real actor is not present in the virtual

5.1 Virtual Television Studios 47

scene, there is no depth test necessary as with conventional shadow maps
[Moeller99].

Reflections of the actor, e.g. on a shiny floor, can also achieved by keying.
The studio floor is just made reflective for this purpose. A sheet of plexiglass
is often used. More complex reflections need to be done in rendering. Again
there’s a problem since the actor is not represented in the virtual scene.
Sometimes, simple floor reflections are simulated by inserting a mirrored
video image. Due to the missing perspective information, the insert position
needs to be tracked with the actor [DP00a].

Matching of the lighting conditions in the studio and in the virtual scene
are done manually. It is difficult to create a dynamic scene with chang-
ing lighting conditions (e.g. a fire) and have the real scene automatically
matched. Debevec et al. provide some ideas how this can be done (Light-
stage 3, [Debevec02b]). Even when lighting is matched, something more is
needed to provide a convincing result: a color calibration of real video and
rendering (e.g. [Wenger03]).

Consistent interaction of the actor with the virtual scene is also impor-
tant. Often real props and furniture are used in the studio and keyed together
with the actor. When virtual furniture is desired, often blue painted stand-in
objects are placed in the studio. For instance the presenter can stand behind
a shiny glass table reflecting the virtual scene while in the studio there is
only a blue board on a blue stand. Here rendering of the table is the only
solution, a real table would reflect the blue studio instead of the virtual scene
and also cause chroma keying problems.

Often convincing interaction involves occlusion of virtual objects by the
actor. Since the compositing is done completely in 2D, there is no depth
information. Think of an actor walking behind a row of columns. There are
two solutions: building blue stand-in columns (which can be simple boards)
or forcing the keyer to place the virtual columns always in the foreground
(e.g. by using a garbage matte, Section 5.2.1). The latter can only be accom-
plished when the renderer can control the keying process by the means of an
additional signal (alpha channel). Usually the keyer has a dedicated input
for a special monochrome video signal that is combined logically with the
key signal from the chroma circuit. Rendering machines aimed on virtual
studios (SGI Onyx) can provide such signals.

Special cameras designed for virtual studios try to overcome the problem
of missing depth information in the compositing process (e.g. Z-Cam by
[3DV]). They can provide a (rough) depth measurement per pixel (depth
map). This map can be used in the rendering process to control the keying,
e.g. to ’switch’ objects to foreground or background as an actor walks around
of them.

48 Chapter 5: Video Billboards

Note that though the problem of consistent lighting is discussed for actors
here, the same principles apply for arbitrary objects in MR compositing work.

5.2 Foreground Segmentation

To insert people (or objects) shot in a studio into a virtual scene (or real
footage) there’s the need to cut out the people from the background of the
shot. A segmentation method for segmenting an image (or video frame) into
foreground and background pixels is needed.

This foreground segmentation problem can be stated as follows: A fore-
ground segmentation algorithm has to state for each pixel in an image whether
the pixel belongs to a foreground object or to the background. The output
of the algorithm is a binary picture called a matte. There is no algorithm
that can solve this problem for arbitrary pictures and thus this is a funda-
mental problem of computer-based image understanding research. But often
there is a solution if some constraints are introduced, like a fixed background
or a disjunct color scheme for foreground and background. Sometimes this
solution can be accomplished in real-time.

There are several methods for computing a matte under practical condi-
tions. In the following I will explain some of them in more detail.

5.2.1 Garbage Matte

A garbage matte is a (often coarse) manually created mask for segmentation
[Kelly00, Brinkmann99]. Garbage mattes are used in combination with the
automatic methods described below. The user manually indicates image
areas as strict background. These are typically areas for which automatic
recognition fails, e.g. where no color backdrop can be applied or equipment
like lighting fixtures need to be placed. A garbage matte can also be used to
lower the computing power needed for automatic segmentation by restricting
the necessary calculation to those areas outside the garbage matte.

5.2.2 Chroma Keying

Petro Vlahos was the first who patented a method for foreground segmen-
tation based on colors [Vlahos78]. Segmentation is performed by putting
a subject in front of a background with a unique color not present in the
subjects color palette. In this early days of chroma keying, the process was
difficult and done in the lab using a color separation process. A black and
white film with the matte was the result.

5.2 Foreground Segmentation 49

With the availability of digital processing, more elaborated chroma keying
methods were invented. Today, the Ultimatte Company [Ultimatte], holding
still some of the Vlahos patents, is the most famous provider of chroma
keying technology available as ready-to-use hardware or software plugins.
The highly elaborated Ultimatte method uses more than thirty parameters
to adapt the process to the actual needs. It is even possible to segment
glassware or smoke. [Smith96] describes the theory of the chroma keying
process.

Chroma keying can be done using arbitrary colors, but the spectrum of
the key color should not overlap the spectra of the foreground. Due to the
color of caucasian skin, green or blue are used for work with actors. Red
is sometimes used for model shots. Since the human eye is less sensitive to
blue, video compression algorithms tend to use less resolution for the blue
channel and a green backdrop is often a better choice.

One problem of the chroma keying method is color spilling from the back-
ground. This effect occurs when colored light from the backdrop hits the
foreground subject and causes parts of it to reflect the background color.
Color spill leads to wrong segmentation results.

Another problem is the high level of light necessary for the background.
To provide a good segmentation, the color needs to be as pure and uniform as
possible. Shadows cast by the actor onto the background can cause problems.
Drama lighting with a dark foreground (low key [Viera93]) is difficult to
achieve.

Figure 5.2: The Lighting device for the BBC Truematte technology. A ring of
colored LEDs on the camera lens in combination with a highly retro-reflective
backdrop fabric provides a nearly perfect chroma keying method.

Addressing those problems, BBC R&D [BBC RD] came up with an inter-
esting solution. The BBC Truematte technology uses a highly retro-reflective
fabric (comparable to the ScotchLiteTM material used in traffic signs) for the
background. Under normal white light, it just appears grey. A special light-
ing device (Figure 5.2) is used on the camera. A number of green or blue

50 Chapter 5: Video Billboards

high efficiency LEDs2 illuminate the backdrop and cause the camera to see
a evenly distributed color. Due to the qualities of the fabric, only a low
light power is necessary. No spill is cast. Light from other directions than
the camera axis has no influence. This technology is available under several
trademarks (e.g. HoloSet, Chromaflex).

Chroma keying algorithms are based on the color distance of foreground
and background color. Color models like HLS3, HSV4 of YUV are better
suited than the RGB model.

[Bergh99] describes a simple method used for real-time segmentation in
VR applications. The chroma keying method used for the billboard example
in Section 5.4 is based on their method. Please see Section 5.4.4 for a more
detailed description.

A number of other methods, for example based on Baysian networks
[Chuang01, Chuang02] have been published. Most of them use an optimiza-
tion process and are not suitable to real-time requirements. In [Peters03], a
combination of chroma keying and background subtraction is used. A cam-
era noise filtering process ensures proper operation under difficult lighting
conditions.

5.2.3 Invisible Keying

Another approach to provide a proper matte is to use an invisible keying.
This can be accomplished e.g. with infrared (IR), ultraviolet (UV) or polar-
ized light [Ben-Ezra00].

In [Debevec02c], a practical approach is described to perform segmenta-
tion for the Lightstage 3 setup. An infrared keying system is used (Figure
5.3). Two cameras – one equipped with an infrared stopping filter and on
with a filter that only passes infrared light – are connected via a beam-splitter
(see Figure 7.7) to a common lens. The background needs to have a high
infrared reflectivity and is lit by IR LEDs. The output from the color camera
is used as foreground signal, while the second cameras output (which can be
a monochrome camera) provides a (binary) key signal.

Note that the invisible key technique overcomes the problem of color
spilling on the foreground since no highly saturated colors are needed. A
post-processing for spill removal is hence not necessary. The method is also
useful when the foreground is near the background and foreground lighting
spills onto the background. Instead the reflective backdrop a translucent one
can be used in combination with back-lighting.

2LED: Light Emitting Diode.
3HLS: Hue, Lightness, Saturation.
4HSV: Hue, Saturation, Value.

5.2 Foreground Segmentation 51

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Lens
Beam−Splitter Foreground ObjectIR Stop Filter

Color Camera

Monochrome Camera

IR Filter

IR Reflective Background

IR Light

Figure 5.3: Principle of invisible keying with infrared light. The object is
photographed in front of a background lit with infrared light. Two cameras
are used in combination with a beam-splitter. One (color) camera has a
infrared stopping filter while the second one (monochrome) has a filter that
stops all light except infrared. The latter camera provides a key signal.

5.2.4 Background Subtraction

Background subtraction methods need no special (colored) backdrops or other
dedicated hardware. The only necessary prerequisite is that the background
colors clearly distinguish from the foreground objects. This makes those
methods attractive for complex (multi-) camera setups where a backdrop is
difficult to set up.

A simple background subtraction method works as follows: The camera
takes an image (a video frame) I0 of the background without any foreground
objects. For further frames Ii, including the objects, a foreground mask can
be computed from

Di = |Ii − I0| (5.1)

where ’−’ is an appropriate color difference operator (hence the name
background subtraction). High pixel values in the (monochrome) color differ-
ence image Di indicate (possible) foreground pixels. A comparison with a
threshold T provides a matte image:

mattepixel =

{
foreground if Dpixel > T
background if Dpixel ≤ T

(5.2)

The color difference can be computed in RGB space but other models like
HLS or HSV seem to be more suitable for this purpose.

52 Chapter 5: Video Billboards

One implicit assumption such a simple method makes, is that changes in
the foreground do not affect the background. In reality this is often difficult
to accomplish, e.g. the shadow of a person on a floor can cause the shadowed
floor part be accidentally segmented as foreground. In [Matusik00] a back-
ground subtraction method is used for 3D reconstruction of an actor (see also
Chapter 8) and causes an artefact in the silhouette due to a hard shadow.
Careful lighting can overcome this problem.

Another problem arises when using noisy video cameras (and most inex-
pensive cameras are noisy), the noise in the frames can cause color differences
in the background and hence wrong segmentation. A (software) noise filter-
ing can help [Peters03].

The color difference can be calculated in real-time. Intels [OpenCV] li-
brary provides functions for a simple background subtraction method, but
most real world applications need more robust methods.

Optical flow methods (e.g. [Chuang02]) provide a more complex attempt
for the background subtraction problem. With robust real-time computation
of optical flow becoming available (e.g. [Bruhn03]), these algorithms can be
easily adapted for foreground segmentation. One assumption is needed in-
deed: the objects or persons in the scene need to move at least once. If a
person passes in front of a fixed foreground object the object will be lost in
the matte when it reappears behind the person. A combination of optical
flow methods and color differencing heuristics can avoid those problems.

5.3 Video Billboards

One of the drawbacks of direct video compositing is the one-to-one relation
between the two images: the frame line of the insert image must match the
frame line of the background. If you think of a long shot of an actor, this can
cause problems when the studio is too small. With digital video effects units
(DVE) available, this problem diminishes. DVE units allow to scale and
place the segmented video image of the actor arbitrarily in the video frame.
But there remains still a problem if, for example, the virtual camera moves
around in the scene and the real camera can not copy the movement due to
studio space restriction. This compositing problem cannot be accomplished
in pure 2D post-processing.

An alternative to 2D compositing is to represent the actor in the 3D scene
by a model and to perform compositing implicitly in the rendering process.
Since a complete actor model in 3D acquired in real-time is hard to obtain
(see also Chapter 8), billboards with the video insert provide an alternative.

A billboard is a (flat) rectangle, textured with the video insert image

5.3 Video Billboards 53

of the actor. The billboard is positioned with its surface normal pointing
always towards the camera. Billboards can be found in computer games and
VR applications when full geometry would need too much rendering power.
When the billboards texture has an alpha channel, parts of the billboard can
be transparent.

A video billboard can be arbitrary scaled and placed in the virtual scene.
It can even move around in the scene, e.g. when the actor stands on a virtual
vehicle or if he pretends to walk along a huge scene where the real studio
space is too small and the actor is walking on the spot.

Billboards can be implemented simply in raster graphics. The OpenGL
alpha test enables conditional rendering based on the alpha channel infor-
mation. OpenGL blending allows mixing of foreground and background us-
ing the alpha value. Both features can be used for billboards alternatively.
Shadows cast from a billboard can be created by using projective textur-
ing together with the billboard texture. Reflections can be achieved using
multi-pass rendering [Moeller99].

Software ray tracing on the other hand provides full programmable shad-
ing and thus allows to do demand-driven segmentation in the shader. Blend-
ing with the background is done by tracing secondary (transparency) rays
for the transparent part of the billboard. Shadows and reflections come up
automatically and do not need special shaders on the scenes objects. There’s
no need for the scene shaders to access the billboard texture. Ray tracing
even allows the use of refractive objects in front of the billboard to distort
the view which is hard to do with raster graphics.

Compared to traditional compositing, the billboard methods can provide
better solutions when depth and occlusion is important. Though the bill-
board object yields a (rather) constant depth value (distance to the camera),
it is possible to place a billboard in a scene to allow the actor to move around
between virtual objects.

5.3.1 The Concept of In-Shader Compositing

Billboards can be seen as an application of an in-shader compositing method.
In-shader compositing means that the compositing process is performed to-
gether with the shading process in one single step (Figure 5.4).

For billboards — or for using textures in general — this seems obvious,
but compared to the traditional compositing method (Section 5.1.1) in-shader
methods have some benefits: Since rendering and compositing merge into
one step, the compositing process can make use of all the information that is
available in the shading process. This is especially important for 3D related
information like depth which is needed for correct rendering of occlusion.

54 Chapter 5: Video Billboards

In−Shader Compositing
Renderer with

out

Renderer

Compositing

out

Aux

Figure 5.4: Traditional compositing (top) vs. in-shader compositing (bottom)
in a virtual studio application. The in-shader concept integrates rendering
and compositing into one step. There is no need to carry auxiliary informa-
tion (red) from the renderer to the compositing step.

With traditional compositing it is necessary to carry this information from
the rendering step to the compositing step (e.g. depth or alpha channel). A
separate compositing step also makes a system more complex.

For in-shader compositing in combination with ray tracing there’s another
benefit: the demand-driven concept of a ray tracer leads automatically to
a demand-driven compositing step, i.e. the necessary calculations for the
compositing step are only performed when needed. For the billboard example
the means demand-driven background segmentation for instance.

Other applications of the concept of in-shader compositing are described
in Section 6.2 (AR view compositing) and Chapter 8 (3D visual hull com-
positing).

5.4 An OpenRT Video Billboard Example 55

5.4 An OpenRT Video Billboard Example

To illustrate the possibilities of video billboards, I provide a small OpenRT
application example. One or more subjects are inserted into a virtual back-
ground using rectangles with video textures.

Chroma keying and compositing is done inside the billboard shader. Ray
tracing effects like shadows and reflections come up nearly automatic. It is
even possible to render a person thru a refractive glass object [Pomi03].

5.4.1 Hardware Setup

Figure 5.5 shows the necessary hardware setup for the video billboard exam-
ple. The subject is photographed by a video camera. An evenly lit green-
screen is used as backdrop. The camera signal is fed to a PC acting as video
texture server (see Chapter 4).

Cluster

Switch

Texture Server OpenRT Server

Monitor

Camera

Greenscreen

Figure 5.5: The hardware setup for the video billboard example. A person
is photographed by the video camera in front of a greenscreen. The camera
output signal is fed to a video texture server equipped with a frame-grabber
board. The OpenRT server PC is connected via a Gigabit network to a central
switch and outputs the final rendering on a monitor. The video texture server
and the cluster PCs are connected via 100Mbit/s FastEthernet.

Care has to be taken for the camera setup. All automatic features like
white balance and auto exposure have to be switched off. White balance
must be performed with the camera aimed fully at a white target (a piece
of paper for example) to avoid confusion of the white balance circuit by the
green background. Wrong white balance yields a video image with a low

56 Chapter 5: Video Billboards

saturated greenscreen and wrong subject colors. Auto exposure in a video
camera is typically done by averaging the video signal output over the whole
chip area. The auto exposure circuit controls the lens aperture with a motor
(on professional cameras like the JVC GY-DV500 used in the example). If
auto exposure would be switched on, the aperture would constantly change
when the subject walks in front of the greenscreen. A proper aperture setting
is needed to get a saturated green background color and to expose the subject
right. Deep black areas in the subjects clothing can cause problems with a
simple chroma keying algorithm. The subject should not wear any green for
obvious reasons.

5.4.2 OpenRT Setup

The necessary OpenRT setup just comprises the video texture feature from
Chapter 4. An appropriate rendering object is used to provide video texture
support. The scene contains two billboard rectangles (Figure 5.6 right). No
compression was used for the video textures in this example (for an suitable
compression method please see Section 8.4.2).

Figure 5.6: A video billboard application. The left image shows the final ren-
dering output with two persons inserted separately into a virtual background
scene. The right image shows the billboard rectangles in the scene description.

A special billboard shader is assigned to the rectangles, each instance
receiving a different texture ID. The source for one billboard was the live
camera while the other shows a pre-recorded video. Chroma keying is per-
formed in the billboard shader.

5.4.3 A Billboard Shader

Figure 5.7 shows the principle of the billboard shader assigned to the rectan-
gles. If a ray hits the rectangle, the video texture is accessed at the position

5.4 An OpenRT Video Billboard Example 57

determined by the interpolated texture coordinates assigned to the rectan-
gles vertices. The chroma keying test (see next Section) is performed to
determine whether the hit point belongs to the silhouette of the subject or
not.

Other Scene GeometryBillboard

Camera

Figure 5.7: Principle of a billboard shader. Where a ray hits the silhouette
(green), the color value of the texture is returned. When the silhouette is
missed, a transparency ray (red) is spawned and intersected with the scene.
This also works for shadow rays.

Where a point inside the silhouette is hit, the shader returns the color
from the video texture (foreground). If the silhouette is missed, a trans-
parency ray is generated and traced from the hit point into the scene in the
same direction as the incident ray. If this secondary ray hits anything, the
color is returned (background). OpenRT features a separate shading call for
shadow rays. Here, no color calculation is necessary. The billboard shader
just performs the chroma keying and returns a binary flag for transparency
of opacity.

The complete C++ source code of the billboard shader can be found as
an OpenRT shader example in Appendix D of this thesis.

5.4.4 Chroma Keying

Chroma keying is performed on demand inside the billboard shader. In the
following, I describe the principal component chroma keying method used in
this example. The method is based on finding the principle component in the
input color vector and ensuring a certain distance to the other components.
For the greenscreen used in the example setup, the green component in the
video texture image needs to be examined.

58 Chapter 5: Video Billboards

a) b)

Figure 5.8: Fast chroma keying using the principal component method.
a) The input image shows the author in front of a greenscreen. b) The output
of the chroma keying method. The background parts are colored in red. Some
parts from the hair, the shoes and on the knees are missing. The right arm
shows color spilling from the backdrop. The used chroma scaling factor was
0.8.

The according (binary) segmentation function for the color value of a
pixel is described as

Seg(pixel) =

background if pixel.green > pixel.red and

pixel.green > pixel.blue
foreground otherwise

(5.3)

Due the to minimal necessary distance of components to trigger the func-
tion, it acts rather unstable. A scaling factor for the green component pro-
vides the means of adjusting the green level to the scene needs. With the
scaling factor s, Equation 5.3 yields

Segs(pixel) =

background if s · pixel.green > pixel.red and

s · pixel.green > pixel.blue
foreground otherwise

(5.4)
Problems still remain for dark area in the input signal. The video circuit

clips dark greens (e.g. in the shadows cast on the green background) to black.
The color information is lost and Equation 5.4 defines black as foreground.

Figure 5.8 shows the resulting images when using Equation 5.4 for chroma
keying. The video input is given in Figure 5.8a. Figure 5.8b is the output
image. The part segmented by Equation 5.4 as background is colored in red.
Problems are caused by green color spilling (diffuse and glare reflections) on
the subject.

5.4 An OpenRT Video Billboard Example 59

a) b)

Figure 5.9: Choosing of an appropriate scaling factor is important. a) A too
low scaling factor can result in too few of the background being segmented.
Problems by shadows on the wrinkles of the green fabric are clearly visible
(scaling factor 0.65). b) Using a too high scaling factor causes loosing of the
’problem zones’ like dark parts of spill zones. Here a factor of 1.0 was used.

Choosing of an appropriate color scaling factor is very important. Figure
5.9 shows the result with factors higher and lower than the ideal factor for the
scene (about 0.8). Wrong segmentation of shadow parts in the background
and spill zones cause artefacts. The color scale factor can be set interactively
in the billboard shader by means of a slider in the OpenRT application.
Finding the right value for a setup is hence a matter of adjusting the slider.

5.4.5 Results

Figure 5.10 shows some more examples for the billboard application. The
subject can even be rendered through a refractive glass sphere, which is
difficult to do with a GPU based approach.

The rendering performance of a billboard is mainly based on the number
of necessary transparency rays. This number is typically high since the bill-
board rectangle is usually wide to allow the actor to move around. Is has also
to be taken into account that secondary rays like reflected rays and shadow
rays hit the billboard. For each ray the chroma keying is performed. The
chroma keying method used in this example is rather simple and fast, though.
A more sophisticated keying method provides better results on closeups.

Table 5.1 gives some frame rates for video texture sizes of about 320x240
pixel and different numbers of CPUs. The aspect ratio of the texture was
adapted to the billboard geometry by cutting out the subject using texture
coordinates. Switching the video streaming off (resulting in a still image on
the billboard), yield slightly higher rates (about 1–2 fps faster).

60 Chapter 5: Video Billboards

Figure 5.10: Some examples of video billboards with OpenRT. The left image
shows how rendering effects like shadows and reflections influence the result
by providing the necessary visual cues to ’anchor’ the subject in the scene.
The right image shows a person walking behind a refractive glass sphere. This
example is difficult to achieve with graphics hardware.

Scene Figure #CPUs Resolution fps

1 person w/o 5.10 left 6 640x480 8.3
1 person w/o 5.10 left 16 640x480 17
1 person w/o 5.10 left 24 640x480 20.1
2 person w/lighting+reflection 5.6 6 640x480 4.5
2 person w/lighting+reflection 5.6 16 640x480 14.3
Glass sphere 5.10 right 6 640x480 5.5
Glass sphere 5.10 right 16 640x480 16.3

Table 5.1: Some frame rates for the video billboard examples. All measure-
ments were done on Athlon MP 1800+ CPUs. The OpenRT version is limited
to about 20fps@640x480 due to network bandwidth.

5.5 Drawbacks of Billboards 61

5.5 Drawbacks of Billboards

Billboards are a simple and effective drawing primitive and allow easy in-
sertion of a subject into a virtual scene. Due to their flat, two-dimensional
character, they have a number of drawbacks, however.

Perspective distortion is a problem with billboards (Figure 5.11). The
billboard definition dictates to rotate the rectangle always perpendicular to
the camera axis. In a ray tracer, secondary rays can have arbitrary direc-
tions different from the primary camera direction. This may cause wrong
perspective in the rendering of reflections.

Figure 5.11: Perspective distortion of a billboard when viewed at a shallower
angle than the right angle. The billboard could be aligned perpendicular to the
camera axis, but not for primary and secondary rays at the same time.

Another problem with billboards is the constant depth value they provide.
Depth-based compositing of a scene, to allow an actor to walk around an
object, is not possible.

Since billboards show a 2D (perspective) image of the real 3D scene in
the studio, perspective is a problem if the subject walks forth and back in
relation to the camera. The depth dimension is mapped to an up and down
movement in the perspective projection performed in the camera lens. This
results in a floating effect (Figure 5.12): the subject begins to levitate in the
virtual world if he walks away from the camera in the real world.

The floating effect can be compensated by adjusting the billboard texture
area in a way that the subjects silhouette always begins at the bottom of the
billboard. This can be accomplished by adding a certain offset to the vertical
texture coordinate inside the shader. The offset is chosen according to the
bounding box of the silhouette. Note that the relation of the texture image
to the billboard geometry is constant and thus not influenced by perspective.

Since a billboard shows only one view of an actor, reflection rays hitting
the billboard can result in wrong reflections. Figure 5.13 shows an example

62 Chapter 5: Video Billboards

Figure 5.12: The floating effect that occurs with billboards when the actor
walks away from the real world camera. The effect is caused by the perspective
mapping inside the camera.

Figure 5.13: A mirror behind a billboard yields a wrong reflection since there’s
only one view of the subject available.

with a mirror behind the actor. This is an obvious effect due to the sim-
ple nature of a billboard. Multi-view billboards can compensate this effect.
A multi-view billboard features a view-dependent texture [Debevec98c], i.e.
the texture image is switched according to the incident ray angle. Multiple
cameras are needed for acquisition. Because of the other drawbacks still re-
maining, a 3D reconstruction approach (Chapter 8) provides a better result
than the use of multi-view billboards.

The same problem as with reflection rays occurs with shadow rays. Since
the billboard is aligned to the camera position, a lightsource ’sees’ the bill-
board from a shallow angle and thus yield a smaller projected area of the
silhouette shadow. Figure 5.14 shows an example of a vanishing shadow as
the incident light direction changes.

5.6 Conclusion and Future Work 63

Figure 5.14: Using billboards to project a shadow from shallow angles results
in a too small shadow area. For the light direction parallel to the billboard
rectangle, the shadow disappears.

5.6 Conclusion and Future Work

Video billboards provide a simple and effective means of inserting subjects
into a virtual scene. While coming from the raster graphics world to overcome
problems with rendering performance (image-based rendering), the billboard
concept also fits well into a ray tracing framework. In contrast to com-
plex multi-pass rendering effects and projective texturing necessary in raster
graphics for rendering environmental effects like shadows and reflections from
billboard, a ray tracer provides a much more elegant way to accomplish these
effects. The necessary shaders for the billboard object and the rest of the
scene are completely independent.

The billboard concept is more flexible than the traditional compositing
approach (Section 5.1.1), but also has a number of drawbacks. These draw-
backs could be diminished by extending the billboard concept. But since
most drawbacks are caused by the 2D nature of a billboard, a proper 3D
approach is the better choice (see also [Grau01]).

In Chapter 8, I will describe a full 3D solution for live actor insertion
into a virtual scene by extending the billboard concept to an in-shader 3D
reconstruction method, overcoming with all billboard drawbacks.

64 Chapter 5: Video Billboards

Chapter 6

Augmented Reality View
Compositing

In this chapter, I describe an extension to the OpenRT framework for video-
based augmented reality rendering. The concept of in-shader compositing, in-
troduced in Chapter 5, is used for implementing differential rendering meth-
ods to enhance the real video background with effects from the synthetic
objects like shadows and reflections.

6.1 Video-Based Augmented Reality

For augmented reality applications, a method to combine the real parts of a
scene with the synthetic, computer generated parts is needed. This is referred
to as compositing (see also Chapter 5). One (simple) method to accomplish
this is called video-based augmented reality. The synthetic parts of the scene
are rendered over a video signal from a camera (the view camera).

Figure 6.1 shows a traditional system using a specialized keyer. This
system is very similar to the one used in virtual TV studios (Section 5.1.1).
A keyer is a video device that allows the blending of two (synchronized) video
signals according to the luminance of a third signal (key signal [Poynton03]).

In an AR system, the key signal is delivered by the renderer, e.g. in terms
of an alpha signal [Poynton03], where in the virtual studio the key signal is
usually derived from the camera input (e.g. by chroma keying). This type of
AR compositing system is also referred to as video-see-thru.

Today this approach is a bit outdated since most computers feature a
video input for a camera. Compositing can then be done in software or using
appropriate OpenGL framebuffer operations [Woo97]. The final AR output
is displayed on the computer monitor. Simple AR applications just render

66 Chapter 6: Augmented Reality View Compositing

View Camera

Video Keyer

Rendering Server

Video Monitor

Foreground and Key

Background

Figure 6.1: A traditional video-based augmented reality system. Both, the
view camera and the rendering server are connected to a video keyer. Based
on the key information in the video signal of the rendering output (alpha,
luma or chroma), the keyer blends the camera video with the renderer output.
A full interactive system needs matching of the virtual camera to the real
camera by some tracking connection (red).

the synthetic scene over the video frames by initializing the framebuffer with
a frame from the camera rather than clearing it.

Alternatives to the video-see-thru method are for example the optical-see-
thru method, using semi-reflective mirrors for compositing (e.g. in front of
glasses showing the real scene and a ’mirrored-in’ TFT display), and the aug-
mentation of the real environment with the aid of video projectors (spatially
augmented reality, e.g. [Raskar01]).

Please see [Bimber03b] for a comprehensive discussion of the endless num-
ber of possibilities of AR compositing. In this thesis, I refer to video-based
compositing methods only.

6.1.1 Camera Tracking

For a convincing result, matching of the virtual camera to the real video
camera acquiring the video view is necessary (tracking). This has to be
performed in real-time.

To match the perspective and camera pose the intrinsic and extrinsic
camera parameters have to be known. The intrinsic parameters describe the
camera mapping from real world points to the image plane considering lens
distortion, pixel resolution, etc. They are typically determined by taking

6.1 Video-Based Augmented Reality 67

pictures of a calibration target like a checker board. Often the intrinsic
parameters remain constant during a session and can be acquired offline in
a pre-processing step.

The extrinsic parameters describe the camera position and pose. For
tracking, there are several methods: optical tracking, electro-magnetic track-
ing or mechanical tracking are the most important ones.

Optical tracking of camera pose can be done in two ways. One method is
to use the camera output and a number of markers with known 3D positions
in the scene. The 2D position of these markers is tracked in the images and
the camera position and pose is determined by solving a non-linear system.
The other method is to use a number of secondary cameras tracking a set of
markers on the AR view camera.

Electro-magnetic tracking is mostly used in VR environments for user
interaction. Due to the influence of all the other equipment needed for AR,
the electro-magnetic field is highly distorted and calibration is cumbersome.
This method is seldom used for AR tracking.

A good alternative for environments where optical or electro-magnetic
tracking cannot be used is mechanical tracking. The video output device
(often a flat TFT display) is mounted together with the view camera onto a
hinged arm. The hinges positions are tracked by electronic position sensors
like rotary encoders or precision potentiometers. The user can move the
display around and ’inspect’ the real scenery with the virtual parts in it by
seeing ’thru’ the monitor. This method is often referred by the metaphor of
a ’window’.

Note that the same issues apply to camera tracking for virtual television
studios (Section 5.1). Another discussion of camera calibration in the context
of 3D reconstruction can be found in Section 8.3.1.

6.1.2 AR Compositing

In [Porter84], Porter and Duff describe compositing from an algebraic point
of view. Two images can be combined by a number of operators. These
can be just as easy as replacing the color information in one image by the
other. More complex operators use auxiliary information for combining the
image data. This information can be thought as a third image controlling
the combining process. In practical terms this image is called a mask (also
matte in term of photography/cinematography or alpha channel in computer
graphics).

For a AR view compositing system, this information is usually supplied
from the renderer as an alpha or a depth signal. Compositing is done using

68 Chapter 6: Augmented Reality View Compositing

a special hardware device (keyer [Poynton03]) or directly in the framebuffer
[Woo97].

Since the video view camera provides no 3D information from the real
scene in terms of distance of objects to the camera (depth), it is hard to
render mutual occlusion effects of real and virtual objects.

This problem can be overcome by using rough models (stand-in, double
or phantom geometry) of the real scene in the rendering process. Occlusion
can be simulated by forcing the alpha signal to use the video background
as foreground (depth based compositing). Manual (or semi-manual) work is
necessary to generate those models of the real scene (see e.g. [Gibson03a]).

6.2 The Concept of In-Shader Compositing for
Augmented Reality

In-shader compositing methods break with the concept of an explicit matte
for blending foreground and background. The calculations necessary for gen-
erating a matte are implicitly performed in the shading process. The back-
ground image is used as an additional input to the shader. There’s no need
for a compositing post-process any more (see also Chapter 5).

Traditional compositing methods only allow to replace (or to blend) the
color of the video background with the color from the rendering. Also, the
color of the background does not affect the rendering process in any way.

With in-shader compositing, the additional background information can
not only be used for generating the implicit matte (e.g. in-shader chroma
keying), but also for performing differential rendering methods (see further
below).

How does in-shader compositing works? Like for traditional compositing,
we assume that the view video camera and the virtual camera of the renderer
match in terms of perspective. Corresponding pixels in the background image
and the rendered image are thus related to the same scene parts.

For each output image pixel the corresponding background image pixel
color is accessible in the shading process. The shading algorithm can use
the background color for segmentation (as described in Chapter 5), or for
blending with a synthetic object. The simplest operation would be to just
overwrite the background color with the synthetic objects’ color. For a semi-
transparent synthetic object, the background color can be used in the same
way as the shading result of a transparency ray in ray tracing. The result of
the shading calculation is the final composite output.

For output pixels that do not show any scene geometry, usually no shad-

6.3 Differential Rendering 69

ing calculation is performed (at last in the demand-driven concept of a ray
tracer). For this case just the background color is used instead of the re-
sult of a shading process. Thus image parts that contain no scene geometry
automatically show the background.

The concept of in-shader compositing has a number of benefits over tra-
ditional methods:

• The overall system design gets simpler since there’s no separate com-
positing step. Also there’s no need to carry auxiliary information (alpha
or depth) from the renderer to the compositing process. Precision of
auxiliary data is no issue (e.g. for depth compositing).

• In-shader compositing is an implicit 3D compositing method. All 3D
related information like surface normals or the absolute position of a
shaded surface point in the scene are available in the shading process
and can thus be included into the compositing.

• Combined shading and compositing methods, like differential render-
ing, are easy to implement. There is no need for intermediate mattes
and difference images (see e.g. [Debevec98a] for a ’traditional’ approach
to differential rendering).

• In-shader compositing fits quite good into the demand-driven concept
of ray tracing. Since compositing is only performed where virtual ob-
jects are shaded, there’s no unnecessary compositing calculation com-
pared to the framebuffer compositing approach [Porter84].

There are also some drawbacks of in-shader compositing. To use in-
shader compositing on graphics hardware (GPU), the shading process needs
to be programmable. The background image can be accessed by using a
texture map in combination with automatically generated projective texture
coordinates that match the view frustum [Woo97].

In a distributed rendering system like OpenRT the background view needs
to be streamed to the rendering clients. This can introduce additional latency
which is usually unwanted in interactive AR applications.

6.3 Differential Rendering

The process of differential rendering is a method to combine the rendered
parts with the real parts of an AR scene with the aim to show the effects
(shadows, reflections or caustics) of the virtual part on the real part. Simply

70 Chapter 6: Augmented Reality View Compositing

speaking, this is achieved by ’appropriately’ modifying the color information
on the background image.

Let’s assume we have a synthetic model of a real (background) scene
that allows us to render an image of it. Camera calibration ensures that this
rendered image matches a real image of the background. We call the rendered
image Rwithout, which means it is rendered without the synthetic objects we
want to insert. Rwith should denote its counterpart with the synthetic objects.
The real background image is called B.

When we compare B and our synthetic version Rwithout of it, we will
notice a difference D due to the fact that the BRDF of the model does not
correctly match the real scene (assuming the illumination in both scenes is
equal, see also Chapter 7). The difference can be written as

D = Rwithout −B (6.1)

We get the same error when we compare the full synthetic scene Rwith

and the final composited output image F , thus

F = Rwith −D (6.2)

We can write

F = B + (Rwith −Rwithout) (6.3)

which is the basis equation of differential rendering [Debevec98a]. When-
ever Rwith and Rwithout are the same in the scene (i.e. where the virtual objects
have no influence on the local scene), the output becomes simply F = B,
what means we just see the background image. Where Rwith is darker than
Rwithout, light is subtracted to form shadows and where it’s lighter, light is
added for reflections or caustics.

For practical purpose, it is recommended that the rendering takes a good
approximation of the BRDF of the local scene into account. Otherwise D can
get too large and Equation 6.2 results in a negative F . [Debevec98a] gives a
method for estimating the BRDF (see also e.g. [Fournier93, Sato99a]).

An alternative approach is rather based on the relative error than on the
absolute value D [Debevec98a, Sato99a]:

F = B · Rwith

Rwithout

(6.4)

This quotient method is better suited for using with in-shader compositing
since the background color needs just to be multiplied by

6.3 Differential Rendering 71

δ =
Rwith

Rwithout

(6.5)

.

The example application at the end of Chapter 7 uses this method.

For an illustration of a differential rendering method, please see also Fig-
ures 6.3 and 6.4 in Section 6.4.3.

6.3.1 Stand-In Geometry

Since the real scene is only represented as an 2D image in the in-shader
compositing process, additional information is necessary to represent the 3D
relation between virtual and real objects. This relationship is important to
correctly render mutual occlusion of real and synthetic objects and shadows
or reflections of synthetic objects onto real ones.

The necessary information is supplied as a model of the real scene. The
AR view camera setup must be chosen to match a rendered view of this
model to the real scene. The model contains stand-in geometry and material
descriptions for the real objects. Together with the model of the virtual scene
(the inserted objects) this is the scene input to the AR renderer. Special (e.g.
differential rendering) shaders are used with the stand-in geometry.

This stand-in geometry is only necessary for the parts of the real scene
affected by the virtual scene. We call this part of the real scene ’near’ the vir-
tual scene the local scene. The unaffected part of the real scene is accordingly
called the distant scene [Debevec98a].

We have thus three scene parts for differential rendering: the virtual (or
synthetic) scene, containing the objects to insert, the distant scene, which just
contains the surrounding background and which needs not to be known in
the rendering process1, and the local scene showing the effects of the inserted
objects and about which we have to know at least the geometry [Debevec98a].

Stand-in objects can be a very rough model of the real world. For instance
for rendering the shadow of a virtual object onto a real floor, a small rectangle
representing the affected area of the floor can be sufficient.

Stand-in objects are usually invisible in the composite AR image. Only
rendering effects like reflections or shadows give an idea of their presence. ’In-
visible’ stand-in geometry can be used to simulate mutual occlusion between
real and virtual objects. The stand-in object representing the real object is
thus associated with a simple shader that just returns the background color.

1This is not true for reflective virtual objects showing the whole real scene. This cannot
be accomplished with simple in-shader compositing. See Section 7.6 for a possible solution.

72 Chapter 6: Augmented Reality View Compositing

6.4 AR View Compositing in OpenRT

In the following, I give an overview over the design of the AR view com-
positing system for OpenRT and how the background video is streamed to
the rendering clients. A simple example application shows how AR view
compositing can be used for implementing differential rendering in an AR
application.

6.4.1 AR View Video Streaming

Since we want to render in a distributed OpenRT system, we need to stream
the video data of the AR view camera over the network to the clients. Section
4.2 already provided a discussion of video streaming methods in the context
of video textures.

Figure 6.2: Data flow in the OpenRT AR compositing subsystem. The cam-
era captures the background video. The image part for one tile is scheduled on
a client. The clients iterates over the pixels in the tile and applies the inverse
tonemapping (Equation 6.7). A primary ray is initialized with the background
color and intersected with the virtual scene. The result is tonemapped (Equa-
tion 6.6) and the completed tile sent back to the server.

The multicast methods (Section 4.3) could be also applied for streaming
the AR view information. This would be a waste of network bandwidth,
though. Each client renders only small tiles (abt. 16x16 or 32x32 pixel)
of the final rendering frame. Thus, a clients doesn’t need to access the
whole background image. Furthermore, the dropout problems related to the
multicast streaming would be disturbing.

6.4 AR View Compositing in OpenRT 73

We opted for a variation of the method from Section 4.2.1 instead: the
view data is streamed using the OpenRT payload mechanism (see Section
2.3.3). The payload mechanism uses TCP/IP, dropouts do not occur.

For AR compositing, the AR input image has the same size as the OpenRT
rendering framebuffer. The framebuffer is subdivided into tiles for render-
ing. For each tile, the appropriate image data is taken from the input image.
Together with the job description of the tile, the data is sent to a client
determined by the OpenRT scheduling mechanism (Section 2.3).

The clients generate one (or more) primary ray(s) per pixel of a tile.
If an object is hit, the shader function of the associated shader is called
with an OpenRT ray state data structure as argument. This data structure
contains a color field, which is used to store the color resulting from the
shading calculations. The shader can read and set this color field. In an
OpenRT version without AR view compositing, this field will be uninitialized
when entering the shade function. The shader fills in the result, which will
be stored by the rendering loop (contained in the rendering object, Section
2.3.3) in the tile image. Once a tile is completed, the tile image will be sent
back to the OpenRT server.

To provide in-shader AR compositing, we just initialize the color field
with the color taken from the background tile image. The shader can access
this information and use the color in the shading process, e.g. for a differential
rendering method. Note that it was not necessary to extend the OpenRT
API since the API calls for setting and writing the color field were already
available. Figure 6.2 illustrates the data flow.

The shade function is only called if an object is hit by a (primary) ray.
When nothing is hit, the color field ray state data structure is directly stored
in the output tile. This ensures, that the background view can be seen in
those areas of the output image where no scene geometry was hit.

The main drawback of the in-shader AR compositing methods is that all
view data is streamed to the clients. Since typical AR applications show
virtual objects and their effects in only small portions of the output image, a
lot of view data is streamed without any processing performed on the clients.
Since the OpenRT server does not know whether a part of the render image
contains any geometry, there is no (simple) alternative.

The AR view mechanism is implemented as an OpenRT rendering object
(Section 2.3.3). Video input is supported by [Video4Linux].

Note that in a full-duplex network the additional load from the back-
ground video data equals the load caused by the tile images returned by the
clients.

74 Chapter 6: Augmented Reality View Compositing

Figure 6.3: An example of differential rendering. The left image shows a
frame from the background video. In the right image, the virtual scene parts
were just rendered over the video. A stand-in object for the floor plane was
used to capture the shadow and the reflection of the sphere. Without differ-
ential rendering, the floor stand-in will not match to the real floor texture.
No camera calibration was used.

6.4.2 Tonemapping

One problem occurs when comparing a rendered image of the local scene
and a frame from the view camera: the rendering is based on measured
physical values like the incident irradiance while the (low dynamic range)
video image is non-linearly compressed in dynamics. For rendering often a
dynamic compression function (often referred to as tonemapping) is used to
map the output values of the rendering algorithm (which can be in the range
[0,∞]) to [0, 1] to match the needs of the low dynamic range output video
display (Figure 6.2).

For the examples in this thesis, I use a simple compression function to
map the intensity I of the color channels R,G,B with

I ′ = 1− e−I·scaling (6.6)

where scaling is a user supplied value (’brightness slider’). We can use
the inverse mapping function

I = − log(1− I ′)
scaling

(6.7)

for processing the video input used for a primary ray. This ensures that
the two mappings cancel each other out when nothing is hit by the ray.
Note that the scaling value then only affects the inserted objects and their

6.4 AR View Compositing in OpenRT 75

Figure 6.4: The final output frame of the differential rendering method can
be seen in the left image. The color of the stand-in for the floor was taken
from the video background pixels this time. The shadow was only roughly
estimated and not generated by measuring the incident light like for the IBL
example in Chapter 7. The right image shows the same scene without the
visual cues provided by the differential rendering method.

effects while the video background remains at the same brightness. The video
background brightness can be controlled via the Video4Linux controls.

6.4.3 A Differential Rendering Example

In this section I provide a simple example application in OpenRT to illustrate
the mechanism of differential rendering in combination with the in-shader AR
view compositing concept.

Figure 6.3 shows the background video (left image) and the virtual scene
containing a sphere and a stand-in rectangle for the floor plane (right image).
The incident light in the entrance hall is coming from the right of the frame
and is only roughly estimated. The shader on the floor rectangle generates
a shadow and a reflection of the sphere.

In Figure 6.4 the final output, achieved when the shader on the floor
is adapted for differential rendering, is shown. Differential rendering was
performed using the quotient method described in Section 6.3. The right
image in Figure 6.4 shows the same scenario without effects of the virtual
object. The lack of visual cues for the sphere makes it impossible to determine
its position. The sphere seems to float in space. The AR view camera was
not calibrated or tracked for this example.

Another example of an differential rendering applications can be found
in Section 7.6.

76 Chapter 6: Augmented Reality View Compositing

6.4.4 Results

The OpenRT AR view mechanism achieves a frame rate of about 20 fps for
a resolution of 640x480. The current2 OpenRT implementation is limited to
this frame rate due to network bandwidth and load balancing when rendering
over the network. No video compression is used. For lower resolutions than
640x480 the full input video rate of 25 fps is obtained.

The video latency of the distributed version is about 4–5 frames. For
the local rendering version a latency of about 1–2 frame is achieved. Note
that the latency is at least one frame due to the synchronous buffering of the
video input device.

Simple scene geometry like in Figures 6.3 and 6.4 do not have a noticeable
impact on the frame rate. All measurements were done on Athlon MP 1800+
CPUs.

6.5 Conclusion and Future Work

The concept of in-shader compositing provides an interesting alternative to
the traditional, matte based compositing approach. A number of benefits,
especially in a demand-driven ray tracing framework, make it a rewarding
choice for AR applications.

The OpenRT AR view compositing system is the basis for implement-
ing AR rendering applications in the OpenRT framework. Streaming the
background image to the clients allows to use the background colors in the
shading process and fulfills thus the necessary prerequisites for differential
rendering methods. Compositing in done inside the shader. This results in
a straightforward way in the implementation of AR applications.

The main drawback is that all video data needs to be streamed to the
clients, unregarded whether there’s any scene geometry visible in a tile. The
video latency is slightly higher than with traditional AR compositing meth-
ods when rendering over the network. Rendering on the local host only can
provide a minimal latency but also slows down the achievable frame rate.
For simple virtual objects and a rough quality of soft shadows this approach
may still deliver interactive frame rates, though. Unfortunately human per-
ception is very sensitive to this kind of latency and a delay of 4–5 frames at
a video rate of 25 fps can already be distracting.

There is no video compression used for transmission of the background
color data to the clients and for the tile data back to the server. Com-
pression methods based on the same schemes as used for MPEG and JPEG

2At the time of writing this thesis.

6.5 Conclusion and Future Work 77

[Poynton03] (macroblocks) could be adopted. They should fit the needs of
compressing the rather small tiles (typically 16x16 or 32x32). Compression
increases the latency due to the processing time for encoding and decoding,
though.

Using the OpenRT payload mechanism based on TCP/IP ensures that
there is no packet loss on the network and thus no video dropouts. Dropouts
would be very disturbing to the AR user.

With the presented AR compositing method, real refraction of the back-
ground view by synthetic objects is not possible. If refractive effects are
needed, a video texture with a panoramic representation of the background
must be used.

For simple AR application a video resolution of 640x480 is often suffi-
cient. In addition the number of pixels in the rendering that are affected by
the virtual scene is often low. This meets the demand-driven concept of ray
tracing and can allow a low latency rendering on a single machine without
networking. Note that ray tracing also simply adapts to the needs of inter-
laced rendering [Poynton03] that is useful when using standard video output
equipment for AR output.

78 Chapter 6: Augmented Reality View Compositing

Chapter 7

A Real-Time Lightprobe

Photorealistic augmented reality rendering is the art of ’fitting’ synthetic,
rendered objects into a real (background) scene in a convincing way. The
human sensivity for very subtile visual errors in the composite scene makes
this task very hard. All effects that are visible on the real objects like shad-
ows and reflections need to be simulated for the virtual objects. Consistent
Lighting is one of the key factors for convincing results. Other factors include
e.g. matching camera perspective. For real-time application the challenge is
even higher than for offline rendering.

Figure 7.1: An Augmented Reality application example with OpenRT. The
left photograph shows real cars in a hall. In the right image a virtual car is
rendered live into the background video of a hall. A real-time lightprobe (on
the floor at the cars position) captures the incident light for rendering. A
differential rendering method creates an appropriate soft shadow on the real
floor.

80 Chapter 7: A Real-Time Lightprobe

a) b)

Figure 7.2: Incident light. a) For the lighting (shading) of a surface point,
the incident light over a hemisphere defined by the surface normal needs to be
known. b) If the object shape is not known at the time the light is captured,
the incident light from all directions must be measured.

To get an idea of the spectrum of arising problems related to a photo-
realistic AR rendering task, just imagine the following example application:
Figure 7.1 shows in the left image a (real) car in a hall with large windows.
Since there is no direct sunlight, the light thru the windows has a certain soft
character that can be seen in the soft shadows on the floor. The image on
the right side shows an interactively rendered version of a synthetic car in a
hall. Before I explain the implementation details for this example, I will give
an introduction to interactive image-based lighting methods and the related
hardware technology. I believe, it is necessary to understand the limits of
current technology to get a feeling what is possible today.

The key to interactive image-based lighting is live measurement of the
incident light. The necessary light directions to shade a surface point of a
virtual object are defined by the surface normal of the point. For interactive
applications, where the final shape of an object is not known in before, a full
spherical measurement is needed in order to determine the important sub-
hemisphere later (Figure 7.2). Omnidirectional measurement of incident light
can be accomplished with a lightprobe device (e.g. [Debevec98b]). For real-
time purpose the lightprobe device must be capable of contiguous acquisition
of incident light. A video camera is a simple example of such a device but
not for incident light from all directions. It can provide a good starting point
to built one, however!

In this chapter, I describe the basic principles of measuring incident light
using digital cameras (Section 7.1), high dynamic range (HDR) camera tech-
nology (Section 7.1.2), fusion of a series of images of a scene at different ex-
posures to a HDR image (Section 7.2), the basics of panoramic environment
acquisition (Section 7.3), building of a real-time lightprobe (Section 7.5), the
principles of image-based lighting (Section 3.2.3) and the implementation
details for the example AR application shown in Figure 7.1 (Section 7.6).
Finally, I provide a discussion and an outlook to future research work.

7.1 Measuring Incident Light 81

7.1 Measuring Incident Light

a) b)

Figure 7.3: A Photographers Incident Lightmeter. a) The white diffuser
hemisphere is used to integrate the incident light. A single sensor element
under the hemisphere converts the light level to an electric voltage. The scale
gives a readout in photometric units. A dial allows calibration for film speed.
b) To take a measure of the light illuminating a plane, the lightmeter is held
parallel to the plane.

Figure 7.3 shows a photographers (and cinematographers) incident light-
meter. It is used to determine the necessary film (or video) exposure for
a scene. A hemispherical diffuser provides a cosine weighted integration of
the incident light. To take a reading, the lightmeter is held parallel to a
surface. The lightmeter displays a value related to the reflected light, based
on the measured incident light and a fixed reflectivity (nominal amount of
18 percent). A photographers lightmeter is only suited for static lighting
conditions.

For the real-time rendering tasks, we have four additional demands to a
lightmeter:

1. It has to provide a continuous stream of measuring values (’live’).

2. The incident light from each direction has to be represented as a sepa-
rate value (directional resolution).

3. We want the full sphere of directions (omnidirectional).

4. We want to measure ’real-world’, physical values (high dynamic range).

A video camera provides at least a solution for points 1 and 2, so it’s
suggesting to start the design of a real-time lightprobe with a video camera. In
the following sections, I provide the necessary background for understanding
video camera sensors and how to generate high dynamic range (HDR) video
to accomplish point 4 of the above list.

82 Chapter 7: A Real-Time Lightprobe

7.1.1 Digital Image Sensors

Modern still and video cameras use semiconductor chips as sensors. The
sensors feature a grid of light sensitive cells, each acting like a tiny light-
meter. Additional circuits on the chip provide readout, digital conversion
and integration time control [Luther98, Ward00].

Color capability is achieved by combining three sensors with a beam split-
ter and color filters (red, green and blue) or by putting a color filter pattern
directly in front the cells (e.g. Bayer pattern [Bayer76]).

Vertical Shift Registers

Horizontal Shift Register Output

Photo Cells

Figure 7.4: A basic CCD sensor. Light sensitive cells feed vertical shift reg-
isters with charges proportional to the integrated incident light. A horizontal
shift register provides the final (analog) output. The right image shows the
vertical smear artefacts that occur with CCD sensors when very bright light
causes leaking on the chip. The image was taken with a Sony DFW-V500
camera. A bright blue LED flashlight is held in front of the lens.

Most digital cameras today use CCD1 sensor technology. Light sensitive
semiconductor cells collect electric charges. Each column of cells of features a
vertical (analog) shift register feeding a single horizontal shift register outside
the lower base of the light sensitive area (Figure 7.4). This layout was chosen
to provide compatibility to the line based transmission of television video
standards. The shift registers are protected from light to avoid changes in
the charges after readout from the light sensitive cells [Ward00].

Excessive incident light can cause leaking of light directly into the vertical
shift register. This results in image artefacts called vertical smear (see Figure
7.4 right). The timing of the transfer process from the cells into the vertical
shift register can be varied to act as an electronic shutter. Note that vertical

1CCD: Charge Coupled Device

7.1 Measuring Incident Light 83

smear artefacts cannot be avoided by lower shutter times when an electronic
shutter is used since penetrating of light directly into the shift registers occurs
always and is not affected by the integration time.

Modern CCD chip designs try to overcome the smear problem by adding
additional registers and a modified fast readout timing (FIT2 technology).
New HAD3 and hyperHAD technology provide increased dynamic range and
sensivity [Luther98, Ward00]. This makes CCD chips more expensive and is
still used in professional (television) cameras only.

In recent time more and more cameras using CMOS4 technology based
sensors are available. The CMOS technology allows to build cameras with
an increased dynamic range and does not suffer from artefacts like vertical
smear [Luther98].

7.1.2 High Dynamic Range Cameras

Conventional camera sensors are only capable of capturing a moderate dy-
namic range of a few f-stops5. ’Real World’ lighting conditions typically
comprise a much higher contrast (dynamic ratio) than (LDR) sensors or
photographic film emulsion is able to record correctly. In film and television
work it is usual to adapt the existing lighting to the needs of the camera by
adding or reducing light with a wide number of tools [Box99].

For measuring real-world lighting conditions, we need a camera sensor
with an appropriate dynamic range to capture the high numbers of magnitude
occurring in nature: a high dynamic range (HDR) camera. The output data
of a high dynamic range video camera can be used for live rendering or
recorded to disk in terms of a video file. Common high dynamic range image
formats (like RGBE [Ward96] or OpenEXR [OpenEXR]) are not designed
for video storage at high frame rates. A MPEG like compression is desirable,
[Mantiuk04] describes the issues of modifying the MPEG data structures for
high dynamic range capabilities.

High dynamic range cameras can be built on a number of different basic
principles. In the following, I will give an overview and explain these princi-
ples in more detail and discuss their drawbacks and their applicability for a
real-time lightprobe.

2FIT: Frame Interline Transfer
3HAD: Hole Accumulated Diode
4CMOS: Complementary Metal Oxide Semiconductor
5The f-stop is a photography related unit. A difference of one F-stop marks a doubling

or halving in the amount of light. In electrical engineering the dynamic range is measured
in dB (Dezibel). One F-stop correspondents to 6dB.

84 Chapter 7: A Real-Time Lightprobe

7.1.3 True High Dynamic Range Sensors

In the recent years, a number of truly HDR capable sensor chips have ap-
peared on the market. Some of them are capable of capturing live video and
(a small number of) off-the-shelf HDR cameras are available (e.g. [HDRC]).
Video output on those cameras can be implemented by proprietary (digi-
tal) interfaces or by a dynamics compression system (logarithmic scaling)
for standard video system output. These sensors are typically designed for
computer vision under heavy lighting conditions, like quality checking at
automatic assembly lines in factories. Here it is sufficient that often only
monochrome images are acquired.

Due to the high price, the proprietary interfaces and since nearly all
available cameras can only provide monochrome video, a true HDR camera
is only a minor option for our (inexpensive) HDR lightprobe.

7.1.4 Spatially Varying Pixel Exposures

A high dynamic range sensor can be built out of a normal camera sensor and
a spatially varying neutral density filter [Nayar00]. The filter is applied to the
chip in the same manner as in color imaging (RGB pattern, e.g. Bayer pattern
[Bayer76]), e.g. as a 2x2 group of pixels is filtered for four different exposures
(see Figure 7.5). This reduces the effective resolution of the resulting HDR
camera. A post-process reconstructs the final HDR image. This type of
camera is rather inexpensive in production and capable of outputting HDR
video. Since the ND (Neutral Density) filters already take the space in front
of the sensor, these cameras typically deliver monochrome images.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

a)

R G

B R

1 1/2

1/4 1/8

b)

Figure 7.5: A Spatially Varying Pixel Exposure Sensor. Instead of a color
filter pattern on the sensor (a), a neutral density pattern is used (b).

This type of camera is only a variation of the true HDR chip based cam-
eras from the last section. Also fitting a (low cost) video sensor with an
appropriate filter grid is hard. Hence this method provides no option for a
lightprobe application.

7.1 Measuring Incident Light 85

7.1.5 Spatially Varying Image Exposures

Another approach to acquire a high dynamic range image of a scene is to
project several congruent images of the scene with different exposures on the
same (LDR) sensor side by side (Figure 7.6). The several images on the
sensor are then composed by software to one HDR image.

Splitter
ND

Sensor

Figure 7.6: A high dynamic range camera system based on the spatially vary-
ing image exposures method. A splitter prism is used to project the same
input thru different ND filters on the same sensor side by side.

The projection can be accomplished by a splitting device used behind or
in front of a single lens. A set of different ND filters in front of the sensor
areas ensure different exposures. The splitting of the incident light energy
causes lower energy levels on the individual sensors compared to a single
sensor solution. The necessary sensor gain amplification introduces noise.

Even though this method has low practical impact for industrial HDR
sensor construction, the ICT real-time lightprobe [Waese01] is an example of
a HDR camera based on this concept (see Section 7.5).

7.1.6 Multiple Sensors

A beam-splitter in combination with normal (LDR) cameras can be used to
build a HDR camera6. Figure 7.7 illustrates the principle.

One drawback is the fixed and low number of simultaneously exposures
due to the connections on the splitter. Stacking of splitters is not recom-
mended because of optical problems.

Due to mechanical tolerances, the cameras need to be aligned for pixel
registration in the individual images. This can be done by shifting the images

6In fact the same method is used in 3-chip color cameras for RGB colors.

86 Chapter 7: A Real-Time Lightprobe

Cameras

LensBeam−Splitter

Figure 7.7: A beam-splitter with a semi-reflective mirror allows three cameras
to be connected to the same lens. Each camera is set to a different exposure.

in software. Another problem is the increased flange focal depth7 due to
the space taken by the splitter, i.e. the lens is farther from the sensors as
normal. When using standard (of-the-shelf) lens in such a configuration,
it is not possible any more to focus at infinity. Monolithic beam-splitter
based high dynamic range cameras need special constructed build-in lens
therefore. The beam splitter also diminishes the signal-to-noise ration due
to energy distribution to the several cameras and transmission loss in the
semi-reflective mirror.

The cameras need to be synchronized to expose at the same point in
time to deliver proper registered images. This method is capable of deliv-
ering HDR video. To combine the images of the cameras, a post-process is
necessary that can be performed in real-time (see Section 7.2).

7.1.7 Sequential Multiple Exposures

One very popular method is to create high dynamic range images by acquiring
a series of (LDR) images with different exposures (exposure bracketing like
the photographer says) and combine them digitally. Exposure can be varied
by shutter time, aperture (f-stop), ND (Neutral Density) filters or gain (on
electronic cameras).

Varying the shutter time is the common method. Note that the shutter
time can only be selected from a fixed set of times in a progressive (about
halving) row (e.g. 1/50, 1/100, 1/250, 1/500, 1/1000, and 1/2000 on cheap
video cameras).

7german: Auflagemass

7.2 Principles of Multiple Exposure High Dynamic Range Imaging 87

Changing the aperture should be avoided since it influences the optical
performance of the lens and possibly introduces a change in depth-of-field.
Nevertheless, this is the method used on most professional (and also con-
sumer) video cameras to automatically control exposure since the aperture
can be set continuously and not in steps like shutter times. Aperture setting
are describes in f-stops (e.g. F1.4, F2, F2.8, F4, F5.6, F8, F11, F16). The
stop numbers resemble the light flux in relation to the aperture area (hence
the
√

2 based numbers).

ND filters put in front of the lens are used when the available shutter
times are to long for proper exposure. Some cheap video cameras only have
a fixed shutter time and perform exposure via gain. Since ND filters cannot
be changed automatically they are of limited use.

Most (video) cameras provide additional boosting of sensivity by elec-
tronic gain (amplification of the signal) increase. Higher gain causes noise
and should be avoided. Cheap cameras use the gain setting for continuous
auto exposure (Auto Gain) and have a fixed aperture.

To combine the images to a final HDR image a numerical process is
necessary that can be performed in real-time (see Section 7.2). Note that all
automatic exposure features on a camera have to be switched off for acquiring
an image sequence. Also automatic white balancing should be performed first
for a moderate exposure time and then locked to avoid color hue changes for
the extreme exposure times.

This method is limited to static scenes since the exposures are taken at
disjunct points in time and a moving camera or objects can not be regis-
tered properly for the HDR combination process. Some recent work tries to
overcome with this drawback by using motion estimation [Liu03] (for slowly
moving objects causing motion blur) and image warping [Kang03], but can-
not provide real-time results. Despite the drawbacks, we chose the sequential
multiple exposure method for our implementation of a real-time lightprobe
since it is simple to implement and the cost is low compared to other methods.

7.2 Principles of Multiple Exposure High Dy-
namic Range Imaging

A wide number of publications and patents describe the basic principles of
combining a series of LDR images into an output image with a higher dy-
namic range (see [Nayar00] for an overview). Practical method are described
in detail in [Mann94, Robertson99, Debevec97, Madden93, Mitsunaga99,
Battiato03] for example.

88 Chapter 7: A Real-Time Lightprobe

Mann [Mann94] refers to a collection of images that only differ in exposure
as a Wyckoff Set (in honor of Charles Wyckoff [Wyckoff61]). Wyckoff was the
first to exploit multi-exposure imaging in 1961 with the aim to enhance the
dynamic range of photographic film. Figure 7.8 shows a sequence of images
taken at different exposures.

Figure 7.8: A sequence of LDR images from a fish-eye lens lightprobe (see
Section 7.5) with different exposures sorted from longest shutter time (top
left) to shortest.

In the following sections, I describe the process of combining a number of
LDR images to a HDR output image. It is based on [Debevec97] and used
for the real-time lightprobe device introduced in Section 7.5.

For the fusion of the images of a bracketing sequence, two steps are nec-
essary: the camera response curve of the used camera has to be acquired
and the weights for blending the images have to be determined. Figure 7.9a
shows a typical camera response curve (also for photographic film emulsion).
The curve is drawn as a function of density (D, from the chemically re-
duced silver particles in a developed film negative) over a logarithmic scale
of exposure (log E). Since only a part of the immense dynamic range in
real-world is transferred, the function ’clips’ the density at the ends of the
curve. The linear part in the middle section can be used for measuring. A
’certainty’ function (Figure 7.9b) results in a high value for the linear parts.
The certainty function is basically the first derivative of the response curve.

Figure 7.10 illustrates the principle of combining multiple images into
one HDR image. The different exposures are chosen to fit together in their
linear parts to form a new response curve. This curve can be seen as the vir-
tual response curve of the (simulated) HDR camera. A ’certainty’ functions

7.2 Principles of Multiple Exposure High Dynamic Range Imaging 89

D

log E log Ea) b)

Certainty

Figure 7.9: A typical D log E (camera) system response curve. a) Two
response curves for different exposures. The nearly linear section is marked
by the red line. b) The corresponding ’certainty’ functions.

are used for blending the curves. The exposure difference in the bracketing
sequence defines the ’shift’ of a curve in the graph.

D

log E log E

D

Figure 7.10: The basic principle for compositing multiple (LDR) images with
different exposure to one high dynamic range (HDR) image. The three re-
sponse curves on the right are shifted vertically and combined to act like a
single response curve (red) of a camera with increased dynamic range.

7.2.1 Camera System Response Function

To determine a response curve, the whole system must be taken into account.
This system consists not only of the camera but also the lens, aperture, the
sensor, video gain, analog/digital conversion characteristics, the color matrix
used to encode the colors and the interface to the host. This response curve
needs only to be determined once for such a system.

In the following, I describe the necessary algorithms to determine the
response curve and to reconstruct a high dynamic range image as used for
the real-time lightprobe introduced in Section 7.5. The principles follow the
method outlined in [Debevec97].

90 Chapter 7: A Real-Time Lightprobe

The exposure X to which an image sensor had been exposed, is defined as
the product of the irradiance E arriving at the sensor cells and the exposure
time ∆t. For each pixel on the sensor the camera outputs a digital number
Z, which is related to the exposure X by a nonlinear response function
f (Color cameras output several numbers per pixel according to the color
coding scheme, e.g. RGB444 or YUV422 [FourCC]). Once f is recovered, the
exposure X at each pixel can be determined as X = f−1(Z), assuming that
f is monotonically increasing and thus f−1 is well defined. The reciprocity
assumption states that only the product E∆t is important and e.g. doubling
E and halving ∆t produces the same result. If the exposure time ∆t is
known, the irradiance can be computed by E = X/∆t.

An algorithm to determine the system response curve takes an exposure
series of P input images (Figure 7.8) with known exposure times ∆tj. A
pixel value in the image j at position i is denoted by Zij. Reciprocity gives

Zij = f(Ei∆tj) (7.1)

The function f is assumed to be invertible:

f−1(Zij) = Ei∆tj (7.2)

Applying a natural logarithm on both sides yields:

ln f−1(Zij) = lnEi + ln ∆tj (7.3)

Substituting g = ln f−1 gives:

g(Zij) = lnEi + ln ∆tij (7.4)

The two unknowns in this equation are the irradiances Ei and the function
g, which is smooth and monotonic.

In order to recover g, only a finite number of possible values of g(Z)
needs to be recovered, because the domain of camera output values Z is
finite (usually Z ∈ [0...255]). We denote the total number of pixel position
in an input image by N and the lowest and highest possible values of Z by
Zmin and Zmax. We only need to recover the (Zmax−Zmin+1) values of g(Z)
and the N values of lnEi that minimize the following objective function to
satisfy Equation 7.4 in a least-square sense:

O =
N∑
i=1

P∑
j=1

[g(Zij)− lnEi − ln ∆tj]
2 + λ

Zmax+1∑
z=Zmin+1

g′′(z)2 (7.5)

The first term in Equation 7.5 ensures that the solution satisfies the set of
equations from 7.4 in a least-square error sense and the second term ensures

7.2 Principles of Multiple Exposure High Dynamic Range Imaging 91

smoothness of g. The factor λ serves as a weighting factor between the data
fitting term and the smoothness term. It is dependent on the expected noise
in the input images.

A solution can only be determined up to a scaling factor. The fitting of
the data can be improved by exploiting the knowledge about the basic shape
of a camera response curve with steep slopes near Zmin and Zmax causing
poorer fitting. A simple triangle function

w(z) =

{
z − Zmin for z ≤ 1

2
(Zmin + Zmax)

Zmax − z for z > 1
2
(Zmin + Zmax)

(7.6)

as weighting function will put higher weights on the smoothness and
fitting terms in the middle of the curve. This yields

O =
N∑
i=1

P∑
j=1

w(Zij)[g(Zij)− lnEi − ln ∆tj]
2 + λ

Zmax+1∑
z=Zmin+1

[w(z)g′′(z)]2 (7.7)

In this algorithm N pixels and P input images are taken, while it is
sufficient to solve only for N values of lnEi and (Zmax − Zmin) values of g.
This means that not every set of corresponding pixels has to be taken into
account – also for reasons of computational complexity. In order for the linear
system to be sufficiently overdetermined, it should hold that N(P − 1) >
(Zmax − Zmin). A set of pixel positions can be generated by the use of
evenly distributed random numbers. Since O is quadratic in Ei and g(Z),
minimizing is a linear least squares problem that can be solved using singular
value decomposition (SVD) [Press99]. Figure 7.11 shows a reconstructed
response curve for a JAI CV-S3300 camera [Jai], the camera we used for
the real-time lightprobe in Section 7.5. Reconstruction of the curve was
done using 256 random pixel positions from 5 input images [Hoffmann03].
Computation takes several seconds depending on the input image data.

7.2.2 Image Reconstruction

With the system response curve g known, pixel values can be composed to
high dynamic range values by a simple algorithm. Equation 7.4 solved for
Ei yields:

lnEi = g(Zij)− ln ∆tj (7.8)

For best results, all exposures should be taken into account to compute
the radiance values as a weighted average. The weighting function from

92 Chapter 7: A Real-Time Lightprobe

Figure 7.11: The response curves of a JAI CV-S3300 camera for the red,
green and blue channels (including the frame-grabber conversion) recon-
structed from 256 random samples. The x-axis shows the image output values
in the range [0...255]. On the y-axis the function values for g according to
Equation 7.4 are shown. Note that the axes are mirrored compared to the
standard D log E plot.

Equation 7.6 can be reused to give exposures in the middle of the response
curve a higher weight and ignore saturated pixels near Zmin and Zmax:

lnEi =

∑P
j=1 w(Zij)(g(Zij)− ln ∆tj)∑P

j=1 w(Zij)
(7.9)

The reconstruction algorithm now works as following:

for all pixels j do
for all color channels c do

total weight W = 0
sum s = 0
for all images i do

weight w = weightingFunction(i, j, c)
s = s+ w × (responseCurve(i, j, c)− log(exposureT ime(i))
W = W + w

s = s/W
resulting HDR value v = exp(s)

7.3 Panoramic Acquisition 93

The computational cost for composing one high dynamic range image
from P input images for one color channel is thus: 2P table lookups (one for
the weighting function and one for the response curve), P multiplications, P
logarithms, 3P additions, 1 division and 1 exponentiation.

This method allows a fast reconstruction at video rates on modern PCs
[Hoffmann03]. Note that the linear system for the response curve recovery
must only be solved once for a camera system. For further results see Section
7.5.

7.3 Panoramic Acquisition

To complete the list of demands from Section 7.1, there is still one point
missing: panoramic acquisition of incident light from all directions. There are
a number of methods trying to accomplish this. I will give a brief discussion
of the most important ones in the next sections.

7.3.1 Mirror Balls

A common method to acquire incident light from all direction is to photo-
graph a mirror ball. The reflection in the ball shows nearly the full envi-
ronment, except a small angle behind the ball. Often a mirror ball shot
is assumed to be ideal, i.e. the ball would be at an infinite distance from
the camera and thus the camera can be assumed to be orthographic. This
yields a simple mapping for a direction D = (x, y, z) to image coordinates
s, t ∈ [−1, 1] for a cropped mirror ball image8:

s =
x√

2(z + 1)
, t =

y√
2(z + 1)

(7.10)

Since the mapping is highly distorted at the outer image parts of the ball,
often two photographs from different angles are taken and combined (Figure
7.12). This has also the advantage to get rid of the unwanted reflections
of camera and photographer. To preserve the better sampling achievable
with the two shots, another mapping is needed. Otherwise the additional
information would be lost again.

Most mirror ball images (lightprobes) use an angular mapping ([Debevec]):

s =
x

1
π
acos(z) 1√

x2+y2

, t =
y

1
π
acos(z) 1√

x2+y2

(7.11)

8The actual equations depend on the axis assignment. Please note that the assumption
of the infinite distance is not true for a real mirror ball shot.

94 Chapter 7: A Real-Time Lightprobe

Figure 7.12: Two shots of a mirror ball from different camera positions enable
to remove the reflection of the photographer and provide a better sampling
compared to a single shot. The lightprobe image on the right is composed from
both shots and uses angular mapping. (Images Courtesy of Paul Debevec).

This mapping provides a better sampling in the off-center regions. Other
mapping include paraboloids [Heidrich98] or a cubemap [Haeberli93]. Heidrich
[Heidrich99] provides a discussion of the sampling properties of different map-
pings. Mirror ball shots are often used as environment maps [Greene86] to
simulate reflections and to include a surrounding panorama around a scene.

Special panoramic cameras with a full or half mirror ball or paraboloid are
available off-the-shelf. They are usually expensive and do not feature HDR
output. Most devices are thus homebrew like the ICT lightprobe [Waese01].
There’s even a publication in which the reflection in a human eye ball is used
[Nishino04]. A large number of mirror ball shots (often as HDR lightprobes)
can be found on the Web for free (e.g. at Paul Debevecs website [Debevec])
or can be bought from companies (e.g. [Dosch]).

In combination with a (HDR) video camera this method can be used for
live video acquisition of an incident light map (lightprobe).

7.3.2 Fish-Eye Lens

A fish-eye lens provides another means for panoramic acquisition, though
available lenses usually feature a field of view less than a hemisphere. The re-
sulting image resembles a mirror ball but depends on the actual angle and dis-
tortion of the used lens. A calibration procedure is needed [Swaminathan00].
The sampling density depends on the lens distortion but is usually compa-
rable to a mirror ball. Figures 7.8 and 7.19 show images acquired with a
fish-eye lens.

To overcome the smaller acquisition field, two ore more fish-eye rigs can be
combined. A fish-eye lens allows simple mounting on a (HDR) video camera.
We used this acquisition method for out real-time lightprobe (Section 7.5).

7.3 Panoramic Acquisition 95

a) b)

Figure 7.13: a) A GlobuScopeTM moving slit camera. Under the metal cap
is a small conventional camera rotating uniformly around the vertical axis
performing a single exposure. The slit in the cap is in front of the center
of the wide angle (abt. 180 degree) lens. The camera is held at the bottom
handle over the head of the photographer and the trigger button is pressed. It
produces a very wide picture on 35mm film. b)The Spheron SpheroCamTM

is an example of a digital rotating panorama camera. The SpheroCam HDR
version includes a control software capable of acquiring HDR panoramas in
less than 3 minutes. (Right photo courtesy of Spheron GmbH, Germany).

7.3.3 Moving Cameras

Modern digital pocket size cameras often come with a panorama stitching
software and a special photographing mode for (cylindrical) panoramas. The
photographer takes a number of pictures while he turns around 360 degree
(or less if an incomplete panorama is wanted). The software uses the lens
setting information (focal length) in the image files [Exif] and creates warping
maps for rectifying and composing the images to one panoramic picture. The
camera mode ensures that all pictures are taken with the same settings and
shows the necessary overlapping in the (LCD) finder.

In the days before computers and digital warping, ingenious engineers
worked on the mechanical predecessors of our todays digital panoramic cam-
eras. Since a later stitching of multiple pictures was to difficult, they tried
to build a camera that exposes a single piece of film continously and found
the slit camera principle for panorama cameras. A camera performs a 180
degree rotation with a constant speed and the film moved in synchronization.
Instead of a shutter, a small slit, positioned in the center of the lens image,
is used. This results in a very wide image on the film featuring only small
distortion in the horizontal direction.

96 Chapter 7: A Real-Time Lightprobe

An example of these ancient (and still used) camera construction is the
famous GlobuScope camera (Figure 7.13a). A modern descendant is the
Spheron [Spheron] SpheroCam, a rotating camera that can acquire a full
panorama in less than 3 minutes. For comparison: the old GlobuScope takes
only about one second and delivers a panorama at a resolution about ten
times higher than the Spheron on photographic film.

A very interesting and related approach is sketched in [Mann97]. A hand-
held video camera is used to ’scan’ the environment, a post-process combines
the video frame to a spheric panorama. The method can even be used to ac-
quire HDR when the timing of the auto-exposure feature of the video camera
is taken into account. While the camera is moved around, the auto-exposure
constantly adapts and thus consecutive frames in the video are taken at
different exposures. The panorama reconstruction can be combined with a
photometric calibration to combine the frames into a HDR output [Mann96].
Unfortunately, there’s no (stable) implementation yet.

For obvious reasons, moving camera methods are not suited for acquisi-
tion of live panoramic video and thus not applicable for our car example. The
method of Mann [Mann96] could provide an inexpensive option for acquiring
HDR panoramas at huge resolutions, though.

7.3.4 Multi-Sensor Rigs

To get panorama (video) at a high resolution, several individual (video) cam-
eras can be rigged according to the desired panorama parameterization (cylin-
drical, spherical or cubic). A geometric calibration procedure and a post-
processing (stitching) in software are necessary [Swaminathan00, Nielsen01,
Nielsen02].

Figure 7.14 shows a commercial solution, the Point Grey Ladybug camera
[PointGrey]. It is capable of recording panoramic video of up to 15 fps on a
special recording unit for later download to a host (only low dynamic range).
This special hardware is rather expensive. The Ladybug was e.g. used for
generating shadows in [Hughes04b, Hughes04a].

7.4 Restrictions of a Single Panoramic Light-
probe

When using lightprobes and environment maps for rendering, we implicitly
assume that they show lights and objects at an infinite distance from the
rendered virtual objects (distant scene vs. local scene, see also Section 6.2
and [Debevec98a]). For practical applications, this assumption is seldom

7.4 Restrictions of a Single Panoramic Lightprobe 97

Figure 7.14: The Point Grey Ladybug camera uses six 1024x768 color video
sensors that can deliver up to 15 fps LDR (up to 30 fps for lower resolution).
A separate storage unit with a hard disk array and a proprietary 1.2 Gbps
optical link to the camera head is used for panoramic video acquisition. The
data can be downloaded to a host PC via an IEEE1394 interface. (Photo
courtesy of Point Grey Research Inc., Vancouver BC).

true. When you think of a full environment for the car scene (Figure 7.1)
taken at the cars position, the floor in the lightprobe is not a distant object.
Using the probe to render a reflection of the floor on the car will result in a
wrong, distorted perspective.

The problem of the environment mapping assumption is sketched in Fig-
ure 7.15. Nearby objects cause an offset in the lookup and a wrong assumed
direction. Parallax effects are the result.

Another problem is that a lightprobe is usually taken only at single posi-
tion in a setup. The resulting lightprobe image thus shows only the incident
light from all directions at this single point. In the example of the car scene,
this problem can cause a person walking nearby the car to be rendered by a
very distorted, grotesque and far too large reflection. Also patterns of light
on the floor, like those caused by the shafts of light thru the windows, cannot
be reproduced in the virtual car lighting.

In some cases, these problems can be diminished by using a reprojection
of the single lightprobe on stand-in geometry representing the local scene
[Debevec98a, Gibson03a]. This causes the virtual object to ’see’ the nearby,
real objects in the right directions. Reprojection is often done in a pre-process
and by texturing the stand-in geometry with the lightprobe image content.
This additional geometry is then used for ray tracing (e.g. [Debevec98a]) or
radiosity simulation (e.g. [Gibson03a]). Of course, in a dynamic live envi-
ronment it is not possible to provide stand-in geometry on demand for e.g.
a person walking nearby the car.

To overcome the restrictions of a single lightprobe for acquisition, the
suggesting solution is to use multiple probes. This approach is used for
acquiring full incident lightfields.

98 Chapter 7: A Real-Time Lightprobe

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

Figure 7.15: The environment assumption fails for near lightsources. A light-
probe (or an environment map, red) is acquired at the center of an object and
used for lighting the object surface (green). The actual direction towards the
lightsource (yellow) from the surface points differs from the direction seen in
the acquired map (angle between red dashed and blue lines). If the lightsource
moves away to infinity this angle disappears and the environment assumption
is a good approximation.

7.4.1 Acquiring Incident Lightfields

An incident lightfield describes not only the incident light at one point but at
a number of points of a surface. An even more complete information would
be comprised in a whole irradiance volume, describing the irradiance at all
points in a room from all directions [Greger98, Gibson03a]. Acquisition of
such a full description is not possible today.

A simple method of acquiring light at different positions is to move around
a mirror ball in the desired area and to take a photograph (of HDR series) for
each position. The exact positions need to be considered for the rendering.
This method is obviously not suited for real-time purpose.

Another method is to take a single (HDR) image and to use a bunch of
mirror balls (Figure 7.16a). Since the balls occlude each other at a number
of angles, usually only the upper hemisphere can be reconstructed properly
[Unger03].

Figure 7.16b shows a method to overcome the occlusion problem: a single
probe (fish-eye) is moved around by a motion control rig [Unger03].

Since there is today no method to acquire the irradiance volume of a
room or even the incident lightfield over the floor plane, we concentrate in
the following on the single probe approach, bearing in mind that it can fail
in some situations.

7.5 A Real-Time Lightprobe 99

a) b)

Figure 7.16: Two methods for the acquisition of incident lightfields. a) An
array of mirror balls. b) A fish-eye lens camera on a 2D moving rig. Motors
allow to place the camera at arbitrary positions. (Photos Courtesy of ICT,
Paul Debevec)

7.5 A Real-Time Lightprobe

In [Waese01], Waese and Debevec present an interesting design of a real-
time lightprobe device: the ICT real-time lightprobe. This lightprobe uses
the ’Spatially Varying Image Exposures’ HDR camera principle explained in
Section 7.1.5. A consumer video camcorder is mounted on a bar with a small
mirror ball in front of the lens (Figure 7.17a). An effect prism (an off-the-shelf
part available in photo shops, Figure 7.17b) on the lens in combination with
several ND gel filters [Lee] fixed to the facets of the prism projects multiple
images of the mirror ball at different exposures on the (LDR) sensor of the
camera (Figure 7.17c). A post-processing step cuts out the individual images
of the ball and combines them to a HDR lightprobe video. As an application
example, [Waese01] provide a video clip with a person walking with the
lightprobe around in their lab. In an offline rendering step, a spaceship
model is rendered with an image-based lighting technique (see Section 3.2.3)
in a video that was taken walking the same path without the effects prism
(Video available at [Debevec]). Due to the video resolution of the camcorder
and the prism the effective resolution of the final HDR lightprobe video is
rather low.

For our car example, we need a live real-time lighprobe. The processing
for the ICT probe could be done at real-time, but the fragile setup and the
low HDR resolution seems to be inappropriate for us. We opted for a fish-eye
lens based setup with a HDR camera instead. In the following sections, I will
give a report of the implementation of our version of a real-time lightprobe.

100 Chapter 7: A Real-Time Lightprobe

a) b) c)

Figure 7.17: a) The ICT real-time lightprobe consisting of a consumer video
camcorder, a small mirror ball, an optical effect prism and ND filter gels.
b) An effect prism filter to achieve multiple images. c) One frame of the
recorded video. A post-process generates a HDR lightprobe video. (Photos
a+c Courtesy of ICT, Jamie Waese)

7.5.1 Building a Simple Video Lightprobe

The idea of a real-time lightprobe is to have a (small) device that can be put
everywhere we want to know about the incident light. This device should
ideally

• be inexpensive,

• be small,

• use off-the-shelf hardware,

• have a suitable dynamic range (HDR),

• have the highest possible resolution for reproducing specular reflections,

• run under Linux,

• and be capable of delivering several frames HDR per second.

When we started to work on a real-time lightprobe in 1999, real HDR
cameras (Section 7.1.3) were not available. Since today only a few HDR
cameras are on the market, all feature a proprietary interface (often without
a Linux driver) and most of them are monochrome only.

Inspired by [Nelson99], we decided to go for a fish-eye based solution
with a conventional video camera and exposure bracketing (Section 7.1.7).
[Nelson99] used a Sony DXC-LS1 camera. A Nikon CoolPix FC-E8 fish-eye
lens [Nikon] adapter (normally used to put in front of the CoolPix build-in
lens) in combination with a BFI 2.8mm fixed focus lens [BFI] we found to

7.5 A Real-Time Lightprobe 101

have a low and almost linear radial distortion9. The field of view is slightly
less than 180 degree.

As a camera we decided to use the newly available Sony DFW-V500
camera [Sony] with an IEEE1394 interface [Anderson98] for digital video
output and control. IEEE1394 support was brand-new and very experimental
under Linux those days [Linux1394]. It took almost one year of experimenting
[Repplinger01] to get the camera proper running. A firmware update at Sony
Services was also necessary.

a) b) c)

Figure 7.18: The components of our real-time lightprobe. a) A JAI CV-S3300
camera with a BFI 2.8mm fixed focus lens. The cable is for serial control
and can be extended with conventional XLR cables to the controlling host.
b) A Nikon CoolPix Fisheye Adapter (Nikon FC-E8) on the lens mounting
adapter. c) Our custom lathed lens adapter made of brass. The inner side
is partially blackened to prevent lens flares.

When we started our first tests with the assembled DFW-V500 based
lightprobe, we had to learn about the bad dynamic response of the Sony
CCD chip used in the DFW-V500. We were not able to find appropriate
exposures to get images with direct lightsources in sight without vertical
smear artefacts (see Figure 7.4). Nevertheless the Sony camera could change
the shutter time very fast, at a video rate of 30 fps only one or two frames
were unreliable.

Discouraged, we rested our efforts for a while and finally decided to try
other cameras. Since some of our (expensive) Sony cameras refused any
operation after two years (we bought a number of cameras for the visual
hull experiments we intended, see Chapter 8), we wanted to go for a cheaper
solution. We bought an inexpensive analog color CCD camera with serial
(RS232) control: a JAI CV-S3300 [Jai]. Since the optics (the fish-eye adapter

9That means the function that maps the distance to the optical center of a pixel on the
output image to an elevation angle is almost linear. Radial distortion can be examined
simply by putting a tube of grid paper over the lens and observing the circles in the image.

102 Chapter 7: A Real-Time Lightprobe

and the BFI lens) we had from the Sony camera were designed for 1/3′′ CCD
sensors we hat to stay with this chip size.

The JAI camera (Figure 7.18a) provides analog CVBS and Y/C video
output. The latter should be used in HDR applications due to cross lu-
minance problems with high lighting frequencies [Poynton03]. Serial RS232
control at 9600 Baud allows to change shutter time and other parameters.
The rather slow communication speed implies upcoming problems with the
fast shutter time change rates we intended caused by a slow internal con-
trol processing speed. The JAI camera features shutter time from 1/50 to
1/10000 of a second.

a) b)

Figure 7.19: Our hemispherical real-time lightprobe. a) The assembled JAI
camera based lightprobe. Three connections for power (12 VDC), serial con-
trol (RS232) and video output (Y/C) are necessary. The brass lens adapter
allows to mount the Nikon FC-E8 on the BFI 2.8mm lens. b) An image
taken in the entrance hall of the computer science building.

Figure 7.18 shows the components of our lightprobe device. A custom
lathed lens adapter was used to fit the fish-eye extension lens in front of the
fixed focus wide angle lens. In Figure 7.19, the final assembled device can be
seen.

The control software [Hoffmann03] takes care of changing the shutter
frequencies and assembles the final HDR frames using the algorithm outlined
in Section 7.2. In a photometric calibration postprocess the response curve
of the lightprobe can be determined and saved to a file (see Figure 7.11).
A frame-grabber board [Video4Linux] is used as an interface between the
analog camera an the host PC.

7.5 A Real-Time Lightprobe 103

7.5.2 Results

The optical quality of the lightprobe device is fair. The main problem is the
bad design of the flange focal depth adjustment on the JAI camera which is
done by screwing the CS-to-C mount adapter in and out10 The adjustment
is very important since the BFI lens is fixed focus and the focal plane moves
slightly with the aperture setting. The aperture is the only parameter set at
the lightprobe device manually. Slight shocks to the device can cause changes
in the delicate flange focal depth (The depth is typically set in precision of a
1/100 mm).

Our real-time lightprobe captures only one hemisphere, or more exactly:
slightly less than 180 degree. A full hemisphere could be achieved by combin-
ing two lightprobe devices. Experiments showed that the missing 2–3 degrees
to the full hemisphere and the difficult mechanical alignment of two devices
are cumbersome.

The JAI camera provides only a slow shutter time changing rate, i.e. when
the command on the serial remote is send it takes a while for the camera to
setup the new shutter time and several unreliable frames (at unknown expo-
sure time or even with artefacts) are generated. Experiments showed that
the reconstruction software has to skip at least 7–10 frames. In comparison
the Sony DFW-V500 produced reliable output after only 1–2 frames. Note
that the Sony DFW outputs a video rate of 30 fps compared to the 25 fps
of the JAI camera. The slow time seems caused by the slow internal control
processor. We also tested a Sony EVI-D100P camera with 38400 Baud con-
trol (VISCA) and experienced a comparable slow speed. The EVI camera
showed a bad dynamic response by the way. Since it has a build-in zoom
lens it is not suitable for our lightprobe.

The slow shutter time changing rate is the reason why we get only slightly
more than one frame HDR output per second with 3 shutter times. The
reconstruction algorithm is no limiting factor since the computational effort
is rather low (Section 7.2.2). With the Sony DFW camera we could get about
8 fps HDR output with 3 shutter times but the bad dynamic response of the
Sony sensor renders it unusable for our application.

In the recent time, newer IEEE1394 based cameras [PointGrey] featuring
the necessary 1/3” sensor width and C-mount for our lens combination are
available (even with CMOS sensors). For future experiments these cameras
seem worth to take into account.

The JAI camera has a good dynamic response (compares to our Sony
DFW and EVI cameras). This allows to use a minimal number of different

10Sony DFW cameras provide a much more precise control with a screw and a sliding
wedge.

104 Chapter 7: A Real-Time Lightprobe

shutter times and thus a higher output frame rate of the lightprobe. Ver-
tical smear is no problem since it occurs very seldom and could then be
compensated with a more closed aperture.

The frame-grabber delivers a resolution of 640x480 pixel with the image of
the lightprobe centered in an area of about 400x400 pixel. Without the black
border around the circular image the effective resolution of the lightprobe is

4002 · π
4
≈ 4002 · 0.7853 ≈ 125600 pixel. (7.12)

This resolution is rather high compared to the ICT lightprobe [Waese01]
but low in comparison to static lightprobe images taken with high resolution
digital (photo) cameras. The resolution of the lightprobe is an issue when
the image is used for specular reflections on a virtual object (see Section 7.6).

The analog video camera delivers an interlaced ([Poynton03]) video signal,
which means that two fields, one containing only the odd and the other
containing only the even pixel lines of the image, are captured rather than
full frames (progressive). The correct rate of the video camera is thus defined
as 50i (50 fields interlace) in opposition to the more desirable 25p (25 frames
progressive). A 25p camera (or 30p, like the Sony DFW series) would be a
better choice for a lightprobe application.

Our real-time lightprobe was used for the AR setup in Section 7.6 to
capture the incident light at ’live’ conditions and to add shadows and lighting
to a virtual car composed into a live video background.

7.6 An OpenRT IBL Application Example

In this section, I explain the ’car in a hall’ OpenRT example, introduced at
the beginning of this chapter, in more detail. The basic idea was to create
a real-time version of the methods described in [Debevec98a] and [Sato99a].
Live captured incident light from the upper hemisphere above the floor is
used to light the car (including reflections) and to generate a soft shadow on
the floor (image based lighting, IBL). The video texture mechanism (Chapter
4) and the AR view compositing (Chapter 6) are both used.

7.6.1 Hardware Setup

Figure 7.20 shows the necessary hardware setup. The real-time lightprobe
device is put at the desired position for the virtual car in the hall (see also
Figure 7.23 left). A JVC GY-DV500 video camera is used for acquiring a
view of the hall for compositing.

7.6 An OpenRT IBL Application Example 105

Cluster

Switch

Texture Server OpenRT Server

Video Lightprobe

AR View Camera

Monitor

Figure 7.20: The hardware setup for car IBL example. The real-time light-
probe is connected to a special video texture server to provide shutter control
(RS232, black) and video input (green) for HDR reconstruction. The OpenRT
server uses a video camera for AR view compositing of the output image.

7.6.2 OpenRT Setup

The OpenRT (software) setup comprises the video texture mechanism and
the AR view compositing. The HDR lightprobe image is sampled on the
texture server (see next section). The texture server sends the list of samples,
and also the full resolution HDR texture image for reflection mapping, to the
clients. The raw format option (see Section 4.3.4) is used for the sample list.
A lightprobe image can bee seen in Figure 7.19.

The OpenRT rendering object manages view compositing and video tex-
ture synchronization and is thus a combination of both default rendering
objects. The background is tonemapped inversely to allow latter remapping
for adjusting the contrast of the virtual car image (see Section 6.4).

7.6.3 Light Sample Generation

To light the car and to create a (soft) shadow on the real floor, it is neces-
sary to sample the lightprobe. The number of samples directly affects the
rendering speed because each sample causes a shadow ray to be intersected
with the the car model. The number of generated samples should hence be
easy controllable.

The sampling methods discussed in Section 3.2.4 are not suited for real-
time applications because they are too slow due to the iterative optimization
methods used.

106 Chapter 7: A Real-Time Lightprobe

a) b)

Figure 7.21: Fast sampling of the real-time lightprobe images. a) A grid with
sample positions for the lightprobe from Figure 7.19. The selected grid width
was 10x10 pixels. b) The set of cells with the average value of the luminance
exceeding a given threshold are marked red.

We opted for a brute-force approach instead. A grid of sampling cells is
placed over the lightprobe HDR image (Figure 7.21a). The pixels of each cell
are averaged and those cells exceeding a given threshold value are put into a
sample list sorted by ascending luminance Y (Figure 7.21b). This yields a list
with N samples. The number N depends on the particular lighting situation
and the threshold value and is difficult to control when the lighting changes.
To achieve a better control, we generate a second list with M samples from
the first list. The luminance Y of the HDR values R, G and B for sorting is
computed by

Y = 0.299 ·R + 0.587 ·G+ 0.114 ·B (7.13)

The number M needs to be high for soft shadows. It should also be
guaranteed that important but dimmer secondary lights also get sampled.
Sometimes a random sub-list of M samples provides better results than the
sorted version.

Since samples at the edge of the disk have a lower impact on the integral
lighting (cosine-law), the sampling method can be improved by taking the
distance of the sample position to the center of the disk into account. This
can be done by multiplying the luminance with the appropriate cosine value
or by using a variable threshold value.

Using a rectangular filter kernel for averaging on a spheric lightprobe

7.6 An OpenRT IBL Application Example 107

a) b)

Figure 7.22: A warping of the lightprobe from Figure 7.19 using the low-
distortion mapping from [Shirley97]. a) The warped lightprobe image. b)
The set of cells with the average value of the luminance exceeding a given
threshold are marked red. The sample positions are in the center of the cells.

image is not correct, of course. An appropriate filtering method should use
elliptic, spatially-variant filter kernels. But those are computationally too
expensive for real-time applications.

An alternative is to warp the disk image to a rectangular, low-distortion
representation. In [Shirley97], Shirley et al. present an appropriate low-
distortion warping from a disk to a square (see also [Masselus02]). There is
no correct method to warp a lightprobe and to sample it with rectangular
filter kernels, but [Shirley97] provides a good approximation. Figure 7.22a
shows the warped lightprobe image. In Figure 7.22b the result of the grid
sampling method is shown.

Note that the sample optimizing methods of Section 3.2.4 can yield nicer
soft shadows with a lower number of samples (and hence a lower number of
necessary shadow rays) due to a better spatial distribution of the samples.

7.6.4 Shadows and Reflections of Virtual Object in the
Video Background

To provide a visual cue of the position of a virtual object inserted into a
background, shadows and reflections of the object in the real scene are nec-
essary. Soft shadows can be created using the light samples generated by the
sampling of the lightprobe images.

108 Chapter 7: A Real-Time Lightprobe

Stand-in (phantom) objects with an appropriate shader assigned and a
differential rendering method are used for representing the real objects of the
local scene part (see also Chapter 6). To perform a differential rendering
method, the incident light, measured by the real-time lightprobe, must be
set in relation to the partial occlusion caused by the virtual objects. In the
following, I will derive the necessary equations.

The irradiance E at a point ~x is defined by the integral over the hemi-
sphere of incident light L

E =
∫

Ω+
L(~x, ~ω) cos Θ dΘ (7.14)

With a hemispherical parameterization Θ ∈ [0, π
2
] (elevation) and φ ∈

[−π, π] (azimut) this yields

E =
∫ π

−π

∫ π
2

0
L(Θ, φ) cos Θ sin Θ dΘ dφ (7.15)

For computing the double integral, Equation 7.15 needs to be approxi-
mated by discreet sampling over the hemisphere (Section 7.6.3). The number
of used samples is N . The irradiance E can the be approximated by

E =
2π

N

N−1∑
i=0

L(Θi, φi) cos Θi (7.16)

When we refer to the direction of incident light (Θi, φi) by a vector ~Di

and take the visibility of the point ~x from that direction into account, this
yields

E =
2π

N

N−1∑
i=0

V (~Di) L(~Di) < ~n, ~Di > (7.17)

with V (~Di) ∈ 0, 1 and V (~Di) = 0 if the light direction ~Di is occluded by
a virtual object seen from the surface point ~x. ~n is the surface normal at the
point ~x.

Applying a differential rendering method (see Section 6.3) yields the fol-
lowing equation for the intensities of the color channels

I ′c = Ic
Ec
E0
c

c ∈ {R,G,B} (7.18)

where Ic is the intensity of the video background and I ′c the resulting
video output intensity. Ec is the irradiance calculated by Equation 7.17. E0

c

is the unoccluded irradiance that we assume to arrive on the floor in the real
world (and thus seen by the camera).

7.6 An OpenRT IBL Application Example 109

Note that this approach is completely independent from the lighting
model (or BRDF). We compute both, occluded and unoccluded irradiance
in the virtual world assuming an arbitrary BRDF. The BRDF thus cancels
out.

When we substitute Equation 7.17 in Equation 7.18, we get

I ′c = Ic

∑N−1
i=0 Lc(~D) V (~D) < ~n, ~D >∑N−1

i=0 Lc(~D) < ~n, ~D >
(7.19)

Since the color channels c have different values due to the color of the
incident light, Equation 7.19 cannot be simplified any more. The main cost
lies in the term V (~D) since a ray needs to be shot for each occlusion test.

A reflection of the virtual object (the car) on the floor can be easily added
by superposition of a specular part to the diffuse lighting. A reflection ray (or
multiple rays, if a glossy reflection is wanted) is generated for the appropriate
direction. If the ray hits the car, the derived color from the car shader is
added to the diffuse intensity I ′. The same method can be used for caustics.

7.6.5 Ambient Occlusion

As a short excursion, I will describe an interesting variation on this method.
There’s one case where Equation 7.19 can be further simplified: when the
incident radiance Lc is equal from all directions. In this case we can assume

I ′ = I

∑N−1
i=0 Lc(~D) V (~D) < ~n, ~D >∑N−1

i=0 Lc(~D) < ~n, ~D >
(7.20)

yields

I ′c = Ic Lconst,c

∑N−1
i=0 V (~D)∑N−1

i=0 1
(7.21)

with a constant incident radiance Lconst,c per color channel. Further sim-
plified this results in

I ′c = Ic Lconst,c

∑N−1
i=0 V (~D)

N
(7.22)

or in simple words: the ratio between background video color and output
color is the quotient of unoccluded samples to the total number of samples.

The algorithm for this method looks like following:

110 Chapter 7: A Real-Time Lightprobe

SampleDirectionTable S[N]
integer n = 0
foreach sample s in S[]

if s is unoccluded then n++
color c = BackgroundColor·(n/N)

The assumption of a constant radiance from all directions is useful when
no lightprobe is available. In a constant controlled lighting environment —
e.g. in a lab setup for an AR simulation of machine part assembly — there is
no need to capture the incident light at real-time. Nevertheless such a simple
algorithm can enhance the look of such a simulation with soft shadows and
hence improve proper recognition of virtual part locations.

This method is a variation of the Ambient Occlusion method [Zhukov98].
Methods of this kind are currently quite popular in the industry for generat-
ing soft shadows without explicit information on incident light.

7.6.6 Lighting the Virtual Objects

To light the virtual objects (the car), the incident light is calculated from the
lightprobe and the occlusion by the virtual objects themselves using Equation
7.17. The irradiance E is then used for shading by an appropriate model.
Since the material properties of the virtual objects are known (in comparison
to the real objects of the background), shading is straightforward.

We used two shaders for the car: one for the metal parts and a glass shader
for the windows. The first shader shows just a simple diffuse lighting model
(cosine) and a specular reflection derived from the lightprobe video texture
used as reflection map. The glass shader adds transparency to this. This
could be simply done by blending with the AR background color supplied
by the view compositing. But the background view thru the transparent car
windows always passes two glass screens. Also, the car’s interior can be seen
thru a window. The glass shader thus works as following:

color c = diffuse(E) + specular(lightprobe)
ray r = transparency ray()
if(trace(r))

c = c + r.color
else

c = c + background color
return c

7.6 An OpenRT IBL Application Example 111

The (only minimal) refraction of the car windows glass cannot be taken
into account because the AR view compositing does not work with redirected
rays (Section 6.2).

7.6.7 Results

Frames of the resulting output video of the car example can be seen in Figures
7.23 and 7.24. The latter also shows an outdoor lighting situation.

Figure 7.23: Results of the car example. The left image shows a background
video frame, the right image the final composite. Note the soft shadow cast
on the real floor.

Table 7.1 gives the resulting frame rates. For generating the shadows and
lighting the car, 32 samples of the lightprobe were used. No warping of the
lightprobe image was used.

The main impact on the resulting frame rate is the size of the floor stand-
in rectangle. It has to be large enough to capture all effects of a lighting
situation that is not known in advance. On the other side, each (primary)
ray hitting it causes expensive spawning of 32 occlusion rays for testing the
visibility of light directions.

This example application features only a very simple shading model for
the car. We didn’t experiment with more complex models. A better shading
would result in a more convincing look of the car.

Also no perspective matching of the virtual and the real camera was per-
formed. The human eye is very sensitive to slight inaccuracies on perspective.
A camera calibration method (see also Section 8.3.1), in combination with
an OpenRT camera shader matching the calibration data, should provide a
better result.

The main drawback of the application results from the simple lightprobe
device. It captures only the upper hemisphere, which causes the real floor

112 Chapter 7: A Real-Time Lightprobe

Scene Figure #CPUs Resolution fps

Car w/o shadow - 6 640x480 5.5
Car w/o shadow - 16 640x480 14
Car w/shadow 7.23 6 640x480 0.7
Car w/shadow 7.23 16 640x480 1.8
Car w/shadow 7.23 24 640x480 2.9

Table 7.1: Some frame rates for the car example. The car model has about
200000 triangles. All measurements were done on Athlon MP 1800+ CPUs.

not to be reflected in the car. The fish-eye lens could be tilted to provide a
look onto the floor, but light from the back would be missed for the shadows
and the reflection of the floor would look very strange because of the failing
environment map assumption.

Also, a person walking nearby the lightprobe would result in a very large,
grotesque reflection on the car. The low frame rate a achievable with the real-
time lightprobe of about 1–2 fps HDR is only suitable for slowly changing
light conditions.

Figure 7.24: Two more example frames. The left image shows the car with
different lighting and another surface color. The right image gives an im-
pression of an outdoor application with a rather hard shadow cast by the sun.

7.7 Conclusion and Future Work

The car example shows the applicability of interactive ray tracing for a typ-
ical, advanced AR application. Ray tracing is ideal for complex light sim-
ulation compared to traditional raster graphics and provides a number of
benefits like an easy, modular system design.

7.7 Conclusion and Future Work 113

The presented real-time lightprobe has a number of drawbacks, but pro-
vides a good starting point for further experiments. The design of an omni-
directional real-time lightprobe is still a challenging task left for the future.
Depending on the application, the design can be adapted for a special pur-
pose. For the car example, a lightprobe design to overcome the distortion of
nearby objects in the reflection is desirable. A setup with a number of cam-
eras (Section 7.3.4) rigged on a car-sized mockup seems to be an interesting
approach.

On the other side, for small scale rendering like closeup of models in a
design-review application, the use of a (tracked) mirror ball in combination
with a HDR camera used for AR view and to acquire the lightprobe, could
be successful. Results from the movie industry also showed that real HDR
acquisition is not always necessary for realistic rendering. For simple AR ap-
plications, where exact lighting is not important (like manual part assembly
simulation), the Ambient Occlusion method (Section 7.6.5) provides a useful
option and is simple to implement.

114 Chapter 7: A Real-Time Lightprobe

Chapter 8

In-Shader Image Based Visual
Hull Reconstruction

In Chapter 5, I showed how subjects can be inserted into the virtual world
using video billboards. Billboards have a number of drawbacks due to their
2D nature, though (Section 5.5). A real 3D representation of a person,
rendered together with the other (3D) geometry of the virtual scene, would
provide a much better integration.

Figure 8.1: Idea of a visual hull shader. The left image shows a person
reconstructed into a VR scene at interactive rates. Correct reflections and
shadows provide a seamless integration. The right image shows a closeup of
a reflection in the car.

The simple billboard concept can be extended to 3D: A box is used instead
of the flat rectangle and a more complex shader than the billboard shader is
attached to the box. In combination with multiple streaming video textures
featuring video streams from cameras showing the subject under different

116 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

angles, an image-based full 3D reconstruction of a person (or other objects)
can be created inside the box (Figure 8.1).

In this chapter, I will provide a background in (interactive) 3D recon-
struction methods for actors and introduce the idea of an image-based visual
hull shader. I will describe the necessary building blocks of a framework for
live rendering and supply an OpenRT example implementation of the 3D
reconstruction process.

8.1 Interactive 3D Reconstruction Methods

A huge number of methods for 3D reconstruction of objects and persons from
a number of view images were published in computer graphics and computer
vision over the last years. Some of them work in real-time. The methods can
be classified by the information in the input images used for reconstruction
(shape-from-x).

Many methods compute the visual hull of an object [Laurentini94], which
is basically the 3D intersection of the reprojected silhouettes of the object
(shape-from-silhouette). For the photo hull, a representation more close to
the actual shape of the object, photo consistency is taken into account. Here
not only the binary silhouette is used, but also the color of the object(shape-
from-texture).

Other methods remove voxels from a space (like a sculptor) until only the
shape of the object remains. This can be based on the silhouette or on the
texture (photo-consistency). Examples are voxel-coloring [Seitz97] and space-
carving [Kutulakos98a, Kutulakos98b]. A survey is given in [Slabaugh01].

Nearly all methods are based on two steps: generation of a data structure
that represents the subject and using this structure for rendering. The data
structures can vary from images over volumetric representations up to true
geometry. This concept can be a problem in the demand-driven world of a
ray tracer. Often only parts of the reconstructed subject are needed or for
a distant view the quality does not need to be the best possible. For a fast
interactive method, we do not want to waste CPU time with reconstructing
a better model than needed in the actual scene view.

8.1.1 Related Work

Giving an extensive survey of (interactive) 3D reconstruction methods is be-
yond the scope of this thesis. Nevertheless, I want to mention some related
work with a special interest in the actor insertion problem and integration

8.2 Towards a Visual Hull Shader 117

with additional rendering effects. Most of this publications present a com-
plete interactive system.

Among the first interactive systems, and probably the most famous one, is
the image-based visual hull system of Matusik et al. [Matusik00, Buehler99].
They use 2D rasterization on the view images (hence image-based) for the
silhouette intersection. The method I present in this chapter is based on this
method.

A method for polyhedral visual hulls followed [Matusik01]. Here the sil-
houette is represented by a polygon and the intersection is done geometrically,
yielding a real model (a textured polyhedron) of the subject.

The blue-c system for virtual collaboration [Gross03] uses an elaborated
setup of projectors and cameras to provide a common acting area for several
tele-present persons. A 3D representation of the subject based on a point-
based variant of [Matusik00] is used [Wuermlin04, Lamboray04].

Li et al. presented a hardware accelerated method for computing a visual
hull reconstruction using GPUs [Li03a, Li03b]. A version for computing
photo hulls is also available [Li04a].

Hasenfratz et al. describe an actor insertion system based on voxels using
GPU hardware for reconstruction [Hasenfratz03, Hasenfratz04]. They also
provide (geometrical) interaction examples of the subject with the virtual
scene.

A different approach is taken by Theobald et al. [Theobalt03, Theobalt04].
A model of the subject is acquired before and fitted to the actual pose by
motion capturing from the camera images. The method is not real-time, but
can deliver a smoother and nicer looking subject representation than a real
reconstruction method.

8.2 Towards a Visual Hull Shader

The basic idea behind a interactive in-shader 3D reconstruction is to extend
the billboard concept to 3D. Instead of a flat rectangle, a box is used in the
scene description. A special shader is attached to the triangles of the box.
Each ray hitting the box invokes a shader call which simulates a volumetric
ray traversal inside the box. Video textures (Chapter 4) stream a number of
views of an acting area to the shader. The box acts as a ’window’ from the
virtual scene to this acting area.

Figure 8.2 illustrates the setup. For extracting the actor from the real
scene, a segmentation method (see Chapter 5) is used. Because multiple
video streams are needed, compression of the image streams on the network
is vital.

118 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

Cameras

Real Scene

SegmentationViews
& Compression

Video Textures

Box with Shader

Figure 8.2: Principle of a 3D reconstruction shader. A subject is captured
by several cameras in an acting area. The foreground is segmented and the
images are compressed. The video streams are transmitted to the shader
assigned to box in the virtual scene.

The 3D reconstruction algorithm used inside the shader should be care-
fully chosen to preserve the benefits in a ray tracing framework. The algo-
rithm needs to be

• capable of interactive rates

• demand-driven,

• evaluable for single rays, and

• free of global data structures.

Demand-driven means that a reconstruction should be only invoked if the
subject (or an effect like a reflection or a shadow) is visible in the actual view.
Evaluation of single (primary, secondary, shadow) rays is necessary to fit
into the ray tracing concept. Since shadow rays need less effort (no shading
calculation), geometry and shading color should be separately calculated
within the algorithm. The reconstruction needs a lot of rendering power,
the algorithm has to run in a distributed environment. OpenRT does not
support dynamic global data structures for shading.

We opted for the image-based visual hull (IBVH) algorithm [Matusik00,
Buehler99]. Some modifications provide additional speedup and the (global)

8.3 Silhouette Acquisition 119

data structure (a view-dependent layered depth image [Shade98], used for
later occlusion testing in the shading pass) can be replaced by a compute-
on-demand scheme. This also meets the requirements of a ray tracer, where
(secondary) rays can origin from arbitrary directions and not only the camera
view.

Figure 8.3: Illustration of the visual hull intersection principle. Top row:
Projection of the view cones. The right image shows the intersection. Bot-
tom row: The middle image shows the result using three views. In the right
image the box object is highlighted.

Figure 8.3 illustrates the principle of the algorithm. For each view, the
silhouette is projected from the camera center into the scene. The cones are
intersected and the final intersection forms the resulting visual hull. Figure
8.3 shows that only three views can be sufficient for a good approximation
of the subject. In the last image in Figure 8.3, the box object used in the
scene description is highlighted to show its size.

8.3 Silhouette Acquisition

For live capturing of subjects for 3D reconstruction, an elaborated setup
is needed. A number of cameras, observing the acting area, need to be
mounted, calibrated, and synchronized. The cameras feed the additional
video processing like foreground segmentation and video compression before
the silhouettes are sent to the rendering clients.

120 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

8.3.1 A Calibrated Multi-Camera Setup

The several cameras in a multi-camera setup for interactive 3D reconstruction
need to be synchronized in order to acquire a set of images taken at the same
point in time.

Conventional analog video cameras can be synchronized by feeding the
genlock inputs with the output video signal from one camera. Due to the
internal processing speed, the video output is delayed somewhat and the
sync phase on the slave cameras need to be adjusted [Poynton03]. A better
solution is to use a symmetric feeding of all cameras from a central timebase
like a sync generator.

Digital cameras, like the Sony DFW IEEE1394 camera [Sony], can be syn-
chronized externally and triggered by a contiguous pulse signal at the desired
frame rate. Appendix B describes the necessary hardware interface (used in
[Deutsch02]). Newer IEEE1394 based cameras can often be synchronized
using the IEEE1394 bus timing [PointGrey, Anderson98].

Another factor is the effective resolution of the video output. The effective
resolution is defined by the number of pixel actually present in the silhouette
part. The ratio between foreground and background pixel typically present in
a view image is a compromise between camera resolution and acting area size
since the cameras are fixed. A high video resolution of the view cameras is
thus desired. Typical analog cameras deliver 768x576 pixel, interlaced in two
video fields. Since the interlaced fields are acquired at different points in time,
only one field can be used for 3D reconstruction. The effective resolution is
thus halved in the number of scanlines. Deinterlacing [Poynton03] can be
done, but usually just blends the fields (analogous to antialiasing methods)
and provides thus only a minor improvement. The use of progressive scan
cameras1 is recommended.

Digital cameras usually provide higher resolutions than 640x480 pixel
and also feature progressive scanning. This makes them more interesting
for the multi-camera setup purpose. The digital bus system can restrict the
mounting possibilities due to maximum cable length, though. Note that the
camera bus bandwidth (e.g. IEEE1394 at 400 MBit/s) can limit the frame
rate for higher video resolutions.

Besides synchronization, the cameras also need to be setup equally for
color and brightness reproduction. Automatic features like auto-exposure
and auto-whitebalance have to be switched off. Care should be taken with
the lighting of background and subject to ensure proper segmentation and
correct exposure.

1Some video cameras with analog video output feature both: 50i and 25p.

8.3 Silhouette Acquisition 121

Another issue is the geometric calibration of the cameras (see also Section
6.1.1). The imaging characteristics of the camera system (sensor and lens)
need to be determined (intrinsic parameters) to provide a mapping function
from a point in 3D to a 2D pixel position in the output image. This is also
affected by the camera pose (extrinsic parameters). A number of calibrations
methods for both parameter sets are available (e.g. [Tsai86]), most work semi-
automatic by taking several images of a calibration target. A number of
ready-to-use implementations are available (e.g. [OpenCV, Bouguet04]). For
3D reconstruction, the accuracy of the used calibration method is important.
Inaccurate calibration results in loss of features of the reconstructed subject.

Special calibration methods for simultaneous calibration of multi-camera
setups are available. Here a small target, like a bright LED, is moved around
in the view of all cameras to derive a mapping from a point in 3D to all
image planes (e.g. [Chen00, Ihrke04]).

8.3.2 Foreground Segmentation

To segment the silhouette of the actor from the studio background, a real-
time segmentation method is needed. Chroma keying methods are often
adopted for this purpose but hard to setup for several simultaneous camera
views (Section 5.2.2). Garbage mattes (Section 5.2.1) can help a lot if other
cameras and rigs get into the view of a camera. They also reduce processing
time since less pixel need to be tested.

A background subtraction (Section 5.2.4) method seems better suited,
but is usually less stable due to slight changes in indirect light and other
movement in the studio. An optical flow method can provide good results
here (e.g. [Bruhn03]).

8.3.3 Silhouette Data Compression

Since the available network bandwidth from the video texture servers to
the rendering clients is limited, data compression must be used. For the
billboard example in Chapter 5 the whole camera image was streamed and
segmentation was performed on demand in the shader. For combination with
a compression method, it is better to compress the images after segmentation.
This results in less data since the background part is not needed. On the
other side, the silhouette is not rectangular and the number of foreground
pixels varies each frame.

Common schemes as MPEG2 of JPEG can be adapted. The alternative

2Some MPEG version support compression of irregular shaped objects.

122 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

is a loss-less compression on the silhouette data. OpenRT provides an com-
pression API to a fast compression library [LZO], which is used for real-time
updates of scene data.

The major criteria for choosing a good compression methods is processing
speed. It has to be performed in real-time and supply encoding and decoding
with an overall speed of more than 20 fps, at least for broadcast needs. Since
texture access is demand-driven, evaluation of single texels, directly in the
compressed data, would be desirable.

Besides a good compression rate, the compressed data has to meet the
requirements of the packetizing schemes for the video textures. Overall com-
pression over the full image is critical if a single, lost network packet can
make the whole texture frame useless (see Section 4.3.3).

A scanline based compression approach yields not as good compression
rates as a full image method, but provides much better control of texture
recovery with lost data packets. This methods also allows faster access to
the individual parts of the image. To access a texel, only the current scanline
needs to be decompressed (see also Section 8.4.2).

8.4 An OpenRT Visual Hull Shader Example

To give an impression of an image-based visual hull shader, I will provide a
simple example application in OpenRT [Hoffmann04, Pomi04a]. The focus
is held on the reconstruction algorithm and the integration in OpenRT.

8.4.1 Data Acquisition

For testing our in-shader reconstruction method, we used still photographs
of a subject. Setup of a live capturing system is still complex. Because of
our (bad) experience with cameras (Section 7.5.1), we did not want to waste
time with setting up a full system and chose a minimal setup with focus on
the ray tracing and reconstruction part. Figure 8.4 shows some of the input
view photographs. The foreground was segmented manually.

We tested several camera calibration toolkits and calibration methods
[OpenCV, ARToolkit, Bouguet04, Linz04]. With all of them we experienced
problems with the precision of the calibration parameters. Inexact calibra-
tion parameters result in problems with the reconstruction of small features.
Often, whole arms or legs of the subject got lost. We finally found a working
method based on [Bouguet04] and used a a large calibration target, basically
a 1 × 2 meter piece of linoleum floor with a (regular) checkerboard pattern
(16.5×16.5cm squares). For calibration of the intrinsic parameters, about 50

8.4 An OpenRT Visual Hull Shader Example 123

Figure 8.4: Some of the input view photographs. The original photographs
are on top. The linoleum checkerboard target for calibration is clearly visible.
The lower row shows the (manually) segmented foreground images used as
input for the compression scheme.

photographs were taken in advance from the target only. [Bouguet04] pro-
vides additional output to estimate the reliability of the calculated camera
parameters

For the subject views only one photograph is sufficient, provided that
most of the target is visible in the image. The subject had to keep in a
still pose for several minutes, which is hard, of course. Unavoidable, slight
movements of the subject cause loss or merge of smallest features like fingers.

8.4.2 The Compression Method

For representing the silhouette we chose a compressed data structure similar
to a run-length encoding (RLE) scheme. The data structure allows direct
access to single texels without prior decompression of the whole frame and
meets thus the demand-driven requirements of a ray tracer.

Figure 8.5 shows the components of the data structure for one frame of
a view data stream. A header component contains the resolution of a full
view frame and a bounding box for the sub-image actually containing the
silhouette. The silhouette is encoded as lists of intervals per scanline. The
foreground colors are stored in a single color vector for the whole silhouette.
Offset pointers in the interval data structure provide fast access to the color
vector. Segmentation and encoding can be done in a single O(#pixel) pass
over the input image. Looking up whether a texel belongs to the silhouette

124 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

Colors

Header

Scanlines

start
end

intervals_per_line
first_interval
first_colorwidth

height
bbox_left
bbox_right
bbox_top

bbox_bottom
scanlines
intervals
colors

Intervals

Figure 8.5: The data structures used for the compressed silhouette data rep-
resentation. The bounding box accelerates the ray traversal.

is done by jumping to the requested scanline and searching the intervals.
The data structures can be further extended to provide additional data per
texel like a blending weight used for view dependent texturing (see [Li04b,
Hoffmann04]).

For streaming with video textures the RLE can be reordered to meet the
needs of the video texture packetizing scheme. The data for each scanline is
then transmitted separately, i.e. a video texture scanline packet consists of
the header, a list of the intervals of this scanline and the correspondent part
of the color vector.

8.4.3 Image Based Ray Traversal

According to [Matusik00, Buehler99], the intersection of a ray with the visual
hull is computed in 2D on the view images. The ray segment inside the box
object is transformed to the local coordinate system and start and end point
are projected into each view. The parametric ray representation allows easy
reprojection to 3D when all calculations are done in homogenous coordinates.
The ray is rasterized into the view image using a variation of the Cleary-
Wyvill algorithm [Cleary88].

The ray intersection is done based on a sorted list of ray intervals. The
list contains the values of the ray parameter at the starting and the end

8.4 An OpenRT Visual Hull Shader Example 125

Figure 8.6: Principle of the visual hull intersection for two silhouette images.
The left image shows how a ray (dark blue) gets split into intervals. After
clipping to the bounding box (red) of the silhouette (light blue), the intersec-
tion of the ray with the silhouette yields two intervals (yellow). In the right
image the ray intervals are projected into another view of the subject. After
clipping to the bounding box, the yellow interval (which is the projection of
the lower interval in the left image) is intersected with the silhouette. The
start point marked with the red circle is the nearest intersection point in the
remaining interval list.

point. The initial list contains the entering and the leaving point of the box.
For each view, the ray is projected using the camera calibration data. Only
the parts with the appropriate ray parameters in the list are rasterized. The
intervals are cropped, removed or merged according to the silhouette. Each
processed view results in a new interval list. If the list is empty, there is no
intersection of the ray with the visual hull and the remaining views need not
to be considered. When all views are processed and the list is not empty, the
first parameter (the startpoint of the first interval in the sorted list) is the
nearest intersection with the visual hull. The point can be reprojected in 3D
using the ray parameterization. Figure 8.6 illustrates the method by giving
an example using only two view images. The algorithm for the image-based
intersection is shown in Figure 8.7.

To improve the performance, we added several details to the basic algo-
rithm from [Matusik00]. Before the ray is rasterized into a view, it is clipped
against the bounding box of the silhouette. The bounding box is supplied
from the RLE encoding. Only the ray segment near the silhouette is raster-
ized. This allows for large, sparse input images and for effective processing
of a large acting area.

126 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

Transform to object
coordinates (P1t, P2t)

Get view list
from ViewManager

Sort view list according to
desired viewing direction

YES

YES

NOInput: ray seg-
ment (P1, P2)

Initialize interval list with
complete ray segment

Get next view from
view list

Project all intervals in list
into current view, rasterize

Determine new occupancy
intervals, update list

Interval list
empty?

No VH data on ray
segment; return false

NO

Any views
unprocessed?

Determine ray parameter
for frontmost interval

Interpolate 3D hitpoint

VH hitpoint found;
return true

Figure 8.7: The image-based intersection algorithm for a ray segment with
the view images. (Image courtesy of Simon Hoffmann [Hoffmann04])

We also sort the views for decreasing orthogonality to the ray direction.
Using the most orthogonal view first results in fast trimming of the ray
parameter range and best precision since the ray parameter is quantized by
the rasterization. The reprojected length of a rasterization step onto the ray
is maximal for an orthogonal view. The method also yields a low number of
processed views for the rejection case due to fast trimming.

Note that the used method can be extended for photo hulls [Slabaugh02a,
Slabaugh02b], a representation more close to the real subject than the vi-
sual hull. The photo hull is based on color consistency rather than binary
silhouette intersection.

8.4.4 An OpenRT Visual Hull Shader

The intersection method from the previous section can be used as a building
block for an OpenRT visual hull shader. The visual hull shader is assigned
to a box in the VRML97 scene description. Each ray hitting a face of the
box invokes a shader call. The ray is shot from the entering point further
inside the box and there will be an intersection with the box itself or with
other geometry contained inside the box. Both cases can be distinguished by
comparing the shader reference (instance pointer) of the visual hull shader

8.4 An OpenRT Visual Hull Shader Example 127

(C++ this pointer) with the shader reference of the hit object. The ray
segment between entering point and new hit point is tested with the visual
hull intersection method. If there is no visual hull data contained in the
ray segment and the ray hits a face of the box object, the ray needs to be
traced further behind the box (transparency ray). Otherwise the result of
the shading process is either the color of the visual hull object, derived by a
view dependent texture mapping (VDTM) method (see below), or the shading
color of other geometry hit in front of the visual hull surface. This allows
pixel exact intersection of visual hull data and other ray tracing geometry
(see Figure 8.8). Figure 8.9 gives an overview over the algorithm of the visual
hull shader.

Figure 8.8: Pixel exact occlusion between the visual hull and other ray tracing
objects is achieved by distance comparison of the hitpoint relative to the box
intersection point in the visual hull shader.

The separate shading call for shadow rays in OpenRT (see Chapter 5 and
Appendix D) allows a fast solution by performing the visual hull intersec-
tion only and neglecting the costly texturing process with additional view
occlusion test (see below).

A problem raises when a ray originates inside the box and also hits a
(virtual) object inside the box. In this case, the visual hull shader is not
invoked, but the visual hull could occlude the ray. The only solution is to
observe this case and test the ray segment afterwards against the visual hull.
This test is only necessary if the ray origin lies inside the box.

OpenRT does not provide direct access to geometry like a scenegraph
library, where an object can be referenced by a name and the object’s at-

128 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

Input: ray S
intersecting bbox

Update current VH object
transformation matrices

Get ray hit position P
from ray state

Get ray direction D
from ray state

P is bbox exit point; get
entering point P0 from S

Perform VH test for ray
segment (P0, P)

Is ray S out-
side volume?

Does (P0, P)
contain VH?

P is bbox entering point;
find bbox exit point

Shoot ray S further;
get next hitpoint P1

Perform VH test for ray
segment (P, P1)

Does (P, P1)
contain VH?

Is hitpoint P1
on VH object?

Call shader of other object
and get its shading color C

P1 is bbox exit point;
no VH intersection

Trace ray further
behind bbox

Return shading color C

Get VDTM color C
for closest VH hitpoint

Get VDTM color C
for closest VH hitpoint

YES

YES

YES YES

NO

NO NO

NO

Figure 8.9: Control flow of the visual hull shader. VDTM: view dependent
texture mapping. (Image courtesy of Simon Hoffmann [Hoffmann04])

8.4 An OpenRT Visual Hull Shader Example 129

tributes can be read out. Thus it is difficult to implement a function for
testing whether a certain 3D point is inside the visual hull box object.

We used a trick here. The OpenRT ray data structure is augmented with
a flag indicating whether the ray’s current origin is inside or outside the box.
The flag is updated each time the ray intersects the box and the visual hull
shader is called. To determine the initial value (for the primary ray) of the
flag, it must be known if the ray tracers’ camera is inside or outside the box.
This cannot be simply restricted to outside by assuming a small box since
the resulting acting area would be very small. Due to the ray projection
clipping in Section 8.4.3, the size of the acting area has not much impact on
the rendering speed.

To test whether the camera is inside the box, we store the current box
object transformation inside the visual hull shader and access it from the
rendering object. Each new frame, the camera center point (which is the
origin of a primary ray) is tested using the transformation. In the VRML97
scene description the box object is defined as a unity box ([−0.5, 0.5]3 units),
scaled and placed by an additional transformation. The point test transforms
the point with the object transformation and tests it for inclusion in the unity
box. Note that the visual hull box object can be transformed and moved
interactively.

All calculations are done in the local coordinate system inside the visual
hull box. This coordinate system is defined by the calibration coordinate
system and the current transformation of the box object. Since lightsources
(and other objects) are defined in scene coordinates, each ray leaving the box
must be retransformed.

The concept can be extended to multiple visual hull objects if several
shader instances are used to represent a number of subjects independently.

8.4.5 View Dependent Texturing

To texture the visual hull surface from the view images, the foreground colors
from the several cameras need to be blended to obtain a smooth transition.
The diffuse color C can be computed as

C =

∑M
i=0 Vi · wi · Ci∑M
i=0 Vi · wi

(8.1)

where Ci is the color of the texel in the texture of camera i, Vi ∈ {0, 1}
is the surface visibility of camera i, and wi are the blending weights (view-
dependent texture mapping, [Debevec98c]). The visibility is important since
using the view from a camera that is actually occluded by some part of the

130 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

subject can cause ghosting artefacts (Figure 8.10). Compared to the two-
pass method in [Matusik00, Buehler99], we need to determine the visibility
on demand since we do not store any visual hull representation data for
occlusion test. The camera occlusion test is done by additional visual hull
ray tests. Since the ray test is very costly, only a subset of all cameras is
considered for blending. The sorted view list from the traversal algorithm is
reused here and only the first M cameras are blended.

Figure 8.10: The resulting artefacts when no camera view occlusion test is
used. The left image shows the ghosting on the body part when the view
occlusion by the arm is not considered. The right image shows the correct
rendering with an additional view occlusion test. The object is a reconstruc-
tion based on rendered images of a model.

Choosing good blending weights wi is a bit difficult. The view direction
of the view camera in relation to the virtual camera direction can be used
to favor a view that is dominated from the nearest camera direction. This
can cause distortion artefacts near the silhouette boundary if the views are
far apart. Another possibility is to use the surface normal of the recon-
structed visual hull for choosing a view camera. Here the distortion is less,
but specular effects caused by the lighting can be completely different. Both
information is used in combination for a good compromise [Mukaigawa03].
Further, border areas can be identified using the silhouette information and
a distance transformation [Li04b].

The diffuse (texture) color can be modulated by the incident light in the
virtual scene for lighting effects. Since no material information (BRDF) for
the subject is known, a lighting model must be estimated. A diffuse model is
often sufficient. For closeups, an additional specular term for the skin areas
can be added (e.g. a Phong highlight). The skin areas can be identified by
their typical color.

8.4 An OpenRT Visual Hull Shader Example 131

The incident light is computed by looping over the virtual lightsources in
the scene, the usual way in a ray tracing shader. The visual hull also needs to
be taken into account for the shadow rays. This concept also allows for self-
shadowing of the subject, e.g. by casting the shadow of an arm onto the body.
The texture should not already contain lighting effects. The studio lighting
should be soft and shadowless for later addition of shadows. This also meets
the requirements of lighting for the foreground segmentation method.

8.4.6 Surface Normals

Sometime, surface normals for assisting in the shading process are desired.
Since no geometry is present in the reconstruction process and the evaluation
of the visual hull surface is done by discrete sampling points, reconstruction
of normals is hard. The use of the (unfiltered) normals of the visual hull
geometry is limited because the visual hull is not smooth, at least when only
a few views are used for reconstruction. Artefact in shading can be the result.
Specular effects on a subject are not possible. Nevertheless, rough normals
can assist in the shading process as blending weights for view dependent
texturing [Mukaigawa03]. The process of normal computation should be
invoked on demand if needed for shading.

We get only one surface point per ray intersection. To compute a normal
at this point, the ’neighborhood’ in the visual hull must be examined. An
obvious method is to intersect additional rays with the visual hull and to use
a gradient by fitting a tangent plane to the visual hull surface. For a rough
normal estimation, two additional rays, displaced slightly in two directions
perpendicular to the ray direction, are sufficient. The two additional surface
hits form a triangle with the hitpoint of the original ray. The normal of this
triangle can be used as approximation to a surface normal. Problems occur
if the additional rays miss the visual hull near the borders. An iterative
method with variable displacement values and directions can be used, but
would result in a bad performance.

Matusik et al. [Matusik02] describes another method, working directly in
the image space of the views. In their reconstruction method, a polygonal
representation of the silhouette is given. The interval list structure (Section
8.4.3) is augmented by a pointer to the view responsible for changing the
interval start point. The hitpoint on the visual hull is a border point in this
view. The normal is defined by the polygon edge and the camera center of
the view. Since we have no edge lines in our method, we can compute a 2D
normal of a border point by using a 3x3 Sobel filter kernel (Figure 8.11).

132 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

Figure 8.11: Color coded visual hull surface normals derived with the 2D
Sobel filter method. The method is noisy due to the discreet sampling of the
visual hull and the limited number of possible values of a small filter kernel
used on a binary image.

8.4.7 Results

Example images, rendered using the visual hull shader, can be found in the
Figures 8.1, 8.3, 8.8 and 8.12. Table 8.1 shows the according frame rates.

Since the reconstruction process is demand-driven, the frame rate is heav-
ily affected by the number of necessary visual hull intersections and thus the
number of pixels showing the subject or its effects (reflection or shadow). For
closeups, the frame rate drops to a few frames per second. The setup with
three subjects yields about the same frame rate like the one subject example
because the number of total visual hull pixels is about the same in the shown
images.

We used nine photographs per subject at full resolution of the digital
camera (2048 × 1536 pixel). Our experiments showed that smaller view
images cause only minimal speedup in reconstruction. It should be considered
that the typical foreground/background ratio is about 10–15 percent. The
bounding box test provides an immense speedup by achieving a low number
of rasterization steps.

Segmentation was performed manually by painting the background green.
The RLE encoder performed the chroma test from Section 5.4.4 in a single
pass together with the encoding. The whole process of compressing a view
frame with 1024×768 pixels takes about 21ms with unoptimized code (Athlon
MP 1800+ CPU).

For shading, simple view dependent texturing in combination with a dif-
fuse lighting model (one point lightsource) was used. The additional normal
calculation with the Sobel method showed no further impact on the frame
rate.

8.5 Conclusion and Future Work 133

Scene Figure #CPUs Resolution fps

1 subject w/o lighting - 10 320x240 34
1 subject with lighting 8.8 4 640x480 4.4
1 subject with lighting 8.8 10 640x480 10.5
1 subject with lighting 8.8 16 640x480 15.5
1 subject, closeup 8.12 right 16 640x480 2.1
1 subject and car 8.1 16 320x240 5.3
1 subject and car 8.1 16 640x480 1.6
1 subject and car 8.1 24 320x240 9.6
1 subject and car 8.1 24 640x480 3.3
3 subjects and car 8.12 left 16 640x480 2.1
3 subjects and car 8.12 left 24 640x480 3.6

Table 8.1: Some frame rates for the visual hull shader examples. Nine (eight
at 45 degree around and one from above) views were used per subject. View
input resolution is 2048x1536 pixel. The speedup with smaller view resolu-
tions is only minimal. All measurements are done on Athlon MP 1800+
CPUs.

8.5 Conclusion and Future Work

The implementation of a visual hull shader for OpenRT showed how sim-
ple the inclusion of a reconstruction method can be done in a ray tracing
framework. The shader allows reconstruction of subjects (and objects) at
interactive frame rates and fits well into the demand-driven concept of a ray
tracer. No changes to the existing OpenRT framework are needed. Render-
ing effects like shadows and reflections come up automatically. The visual
hull shader can be seen as a, more evolved, replacement for the billboard
shader of Chapter 5. It overcomes all drawbacks of video billboards men-
tioned there. The price is, of course, the lower rendering speed due to the
much more complex calculations for 3D reconstruction.

GPU accelerated methods can yield higher speeds, but are more restricted
in terms of integration when it comes to reflections and lighting effects. Since
the reconstruction in GPU based methods is view-dependent, the whole cal-
culation needs to be repeated for reflections and shadow maps. Here, the
demand-drive concept of ray tracing shows its benefits. No unnecessary cal-
culations are done in a ray tracing framework. The shaders of the surrounding
scene need not to know about the special visual hull shader and can treat it
like any other shader.

134 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

Figure 8.12: Some more examples of the visual hull shader. The left image
shows three persons reconstructed separately using three instances of the vi-
sual hull shader. The car model has about 200000 triangles. The right image
shows a closeup shot.

For the future, we still owe a full featured live system with video stream-
ing. A more sophisticated compression scheme is needed to cope with the
available network bandwidth. A multi-processor, shared memory machine
(e.g. [Altix]) should provide lower video latency and less trouble with the
video textures (see Section 4.3.5).

Combination of the visual hull shader with the AR view compositing
method of Chapter 6 can provide new applications, like video-based tele-
presence where a reconstructed subject is rendered into a video background
with a real person. The integration of both methods is simple and straightfor-
ward. The same holds for an integration with the global illumination system
(IGI2, [Benthin03]).

The shading and texturing of the reconstructed visual hull can be im-
proved much more. We only used simple view dependent texture blending,
so far. More sophisticated blending schemes will provide better results, in
particular for closeups. Our method could also be extended for rendering
photo hulls [Slabaugh02a].

Though the concept of a virtual camera, rendering the scene at arbitrary
camera positions, provides new possibilities to the studio director, the ren-
dering quality of the blended textures on the visual hull reconstruction do
not meet broadcast quality demands [Grau01]. To overcome this problem,
a hybrid system, which combines the reconstruction with traditional com-
positing, can be used. The 3D reconstruction of the subject would only be
used for rendering the effects like shadows and reflections, while the primary
image of the silhouette is taken by a tracked, mobile studio camera and 2D

8.5 Conclusion and Future Work 135

composited in the traditional way (Chapter 5). A number of fixed, low qual-
ity cameras are used for the visual hull reconstruction. The tracked primary
camera(s) should not be used for reconstruction since the tracking precision
is often too low to meet the demands of the visual hull algorithm.

136 Chapter 8: In-Shader Image Based Visual Hull Reconstruction

Chapter 9

Final Summary

The aim of this thesis is to prove the applicability of (distributed) interac-
tive ray tracing for mixed reality rendering. On the basis of the OpenRT
system, I showed how two extensions (streaming video textures and AR view
compositing), build on top of the OpenRT framework and without changes
in the existing OpenRT API, enable applications from both ends of the Mil-
gram continuum. I described how existing applications can be improved in
terms of rendering quality and realism (lighting from video, video billboards,
integrated 3D reconstruction) [Pomi04b]. The ray tracing environment pro-
vides a number of benefits, but also some drawbacks today, to the application
programmer and to the end user. Just as ray tracing has been the main tech-
nology for achieving realistic images over the years, interactive ray tracing
will be the main source of high quality rendering in real-time applications
like VR and MR.

I introduced the concept of in-shader compositing which integrates the
compositing of real and synthetic elements in MR applications into the shad-
ing process. Compared to traditional compositing performed in a (2D) post-
process, the in-shader concept provides a number of benefits. Also the overall
system design is simpler since there is no need to carry any additional in-
formation (like alpha or depth) from the renderer to the post-compositing
process. In-shader compositing fits perfectly into a ray tracing framework
like OpenRT. Since the programmability of modern GPUs steadily improves,
the in-shader compositing concept can also be used in rasterization based
systems.

Interactive MR applications, even video-based, often rely on additional
hardware, which cannot be pulled off the shelf most of the time. The real-time
lightprobe device or a complex multi-camera setup with proper calibration
and synchronization are good examples for this. Since computer graphics

138 Chapter 9: Final Summary

is part of the computer science department, people often think computer
graphics is only programming (and debugging, of course). But the previous
examples show that also engineering skills (mechanical, electrical, optical)
are mandatory to build a complete system.

To close this thesis, I will give a brief discussion of the benefits and
drawback of using interactive ray tracing in mixed reality applications and
provide an outlook to the future.

Benefits from Interactive Ray Tracing for Mixed
Reality Rendering

The modular framework of a ray tracing, which provides independent scene
description, primary ray generation (camera), ray shooting and shading, al-
lows an easy and straightforward implementation. The OpenRT API, sup-
porting all of the above areas and being close to OpenGL and RenderMan SL
[Apodaca00, Apodaca90], provides additional help for both, porting existing
applications and creating new ones.

In a pure software ray tracing environment, the complexity of the shading
process is only limited by the computing power of a CPU. Hardware limits
and resource conflicts, like on GPUs, are not present. Also the instruction set
of a CPU is not specialized compared to GPUs and provide general purpose
constructs like loops and branching. This enables the implementation of
advances shading methods and global illumination methods, a key technology
to photorealistic mixed reality applications. The independence of geometry
intersection and shading provides an alternative to the sophisticated multi-
pass rendering algorithms still necessary on graphics hardware. Also the
evolved programmability of graphics boards (fragment shaders) is still ways
from the flexibility of software ray tracing.

The demand-driven approach of ray tracing ensures that no more com-
puting power is used as necessary for a specific output. This is in particular
valuable for complex and expensive shading methods in MR. The demand-
driven 3D visual hull reconstruction is a good example.

Ray tracing is logarithmic in the number of scene primitives, compared
to the linear complexity of rasterization (z-buffer) algorithms. This enables
the application of larger and more complex models. This is very important
for industrial VR/AR applications, since model simplifications, as practiced
today to enable rendering of real CAD data, is not necessary any more.

139

Drawbacks, at least today...

The main drawback of interactive ray tracing is the low speed (compared to
GPUs) in todays implementations. Often single CPUs or small dual- and
quad-processor machines are not sufficient to provide a high enough frame
rate at the desired image resolution. Distributing the rendering process on a
number of machines (cluster) helps for the rendering speed due to the par-
allel nature of the ray tracing algorithm, but introduces a higher latency at
the same time. The higher latency is caused by the (asynchronous) network
transfer of the rendering data. For highly interactive applications, in partic-
ular with video included in the rendering process, this can be distracting to
the user. Also, MR applications increase the overall network load by adding
video streaming.

The network also introduces problems in scalability and thus sets a limit
for connecting more and more rendering clients to achieve higher frame rates.
Multicast provides a scalable alternative, but raises new problems like unreli-
ability causing visible dropouts. Large shared memory machines can provide
an alternative and seems to be the only option if reliable and fast video-
based rendering is necessary (e.g. virtual TV studio broadcast requirements).
It should be noted that distributed graphics hardware systems suffer from
the same problems. Here, expensive specialized hardware (e.g. pixel bus
[Matysczok04]) is often the only solution.

Ray tracing is not capable of rendering 2D features, like text or lines.
These are often used primitives for user interaction and annotations in to-
days AR applications. Of course, 3D objects can be used instead, but often
imply (unwanted) perspective hints. Ray tracing can be easily extended for
rendering 2D features by adding traditional rasterization methods. Since the
2D objects needed in AR applications are not complex, software 2D rendering
would be sufficient.

The Future

With the availability of interactive ray tracing, an alternative to traditional
raster graphics hardware for interactive applications was provided. Many
existing applications could be improved by migration to this new technology,
in terms of more realism and quality, but also of software design advantages
and modularity of a ray tracer.

It should be noted that most of todays AR applications feature rather
simple, flat 2D graphics. This is often due to the limited possibilities of
the used rendering techniques. User interaction researchers often state, that

140 Chapter 9: Final Summary

these simple rendering are sufficient, but I believe, that a better rendering
quality can improve many applications and can be more appealing. A sim-
ple framework to allow the implementation of complex AR/MR applications
with a high quality would help here. A middleware, based on OpenRT and
specialized for AR/MR applications with a number of additional, modular
features (e.g. tracking), can provide an easy starting point for implementa-
tion. The adaption of the widely used ARToolkit1 could be a beginning.

The availability of (inexpensive) shared memory machines with a high
number of CPUs in the future will provide the necessary rendering power
with a smaller effort (financial, power and space) than todays commodity
clusters. OpenRT has already proven its ability to render very huge models
with advanced shading effects on shared memory machines (e.g. SGI [Altix]).
The problems of video distribution for the implementation of video texture
would be much simplified on a shared memory machine. Video dropouts in
the textures cannot occur. All other benefits of ray tracing remain, of course.

The SaarCOR [Woop05, Schmittler03] architecture can provide a hard-
ware alternative to pure software ray tracing an a cluster. The prototype
promises good scalability and programmable shading at a better quality com-
pared to today GPUs and with a much simpler chip technology, lower clock
rate and less power consumption. ’Single chip’ ray tracers will provide new
ways to image quality in wearable AR technology at low power consumption.

Though OpenRT has a good load balancing to keep all rendering CPUs
busy, there’s still no mechanism for a guaranteed rendering frame rate. Like
with GPU based approaches, rendering speed could be controlled by dy-
namically changing the effective rendering resolution and scaling the output
image afterwards. Guaranteed frame rates are important for interactive ap-
plications and vital for real-time systems like virtual TV studios.

The shaders and applications in this thesis do not take fully advantage
from today CPU features, in particular the SSE2 extension (SIMD). Writing
shaders with parallel SSE code can provide a maximum rendering power,
but also still needs assembler programming. OpenRT already features SSE
based ray shooting and an SEE capable shading API extension, but the user
needs still to provide his shaders in SSE code. SSE and MMX3 can also help
to speed up additional processing like background segmentation and HDR
acquisition.

Most of the MR applications presented in this thesis should only be seen
as ’starting points’. Further research is necessary to evolve them to industry

1OpenRT does not support the OpenGL modelview/projection matrix model, hence
ARToolkit cannot be just compiled with OpenRT.

2SSE: Super Scalar Extension.
3MMX: Multimedia Extensions: The integer counterpart to floating-point SSE.

141

applicable systems. Better technologies in the future will make it possible
to build better lightprobe devices for acquiring incident light, which is one
of the keys to realistic AR rendering. An integration of IBL into the global
illumination IGI2 system [Benthin03] based on OpenRT will further simplify
building of applications.

Actor insertion based on 3D reconstruction provides an interesting option
to traditional systems, but also still a number of technical challenges. The
OpenRT visual hull shader needs still to be tested in a large, interactive
setup. The nearly automatic integration with all rendering features available
in a ray tracer will make this effort rewarding.

142 Chapter 9: Final Summary

Zusammenfassung

Das Ziel dieser Arbeit war die Untersuchung der Tauglichkeit von (verteiltem)
interaktivem Ray-Tracing für Mixed-Reality-Anwendungen. Dies erfolgte an-
hand des OpenRT Systems.

Neben einer Einführung in die Technik interaktiven Ray-Tracings (Kapi-
tel 2) und einem Überblick über Verfahren zur Erstellung von video-basierten
Mixed-Reality-Anwendungen (Kapitel 3) mit Schwerpunkt auf dem Ren-
dering-Vorgang, werden anhand einer Reihe von Beispielanwendungen von
beiden Enden des Milgramschen Kontinuums die Möglichkeiten ray-tracing-
basierten Mixed-Reality-Renderings illustriert.

Kapitel 5 beschreibt die Problematik des Einfügens (realer) Personen in
synthetische Szenen, wie sie etwa in der Technik virtueller Fernseh-Studios
auftritt. Ein Video-Billboard Shader ermöglicht eine 2D Integration von Per-
sonen in die Ray-Tracing Szene, inklusive der Generierung von ray-tracing
typischen Effekten wie Reflektionen und Schatten.

Da Billboards jedoch auch mit Nachteilen, die in ihrem 2D-Charakter be-
gründet liegen, behaftet sind, wird in Kapitel 8 eine 3D Lösung beschrieben.
Ein OpenRT-Shader ermöglicht mittels einer bild-basierter Visual-Hull Tech-
nik echtes dreidimensionales Compositing. Diese Vorgehensweise erlaubt alle
Effekte wie korrekte Reflektionen, Schatten und pixelgenaue Verdeckung.

In Kapitel 7 wird auf das interaktive Einfügen synthetischer Objekte in
einen Video-Hintergrund eingegangen. Eine eigens dafür konstruierte Spezial-
Kamera erlaubt die Erfassung einer realen Beleuchtungs-Situation. Die von
ihr gelieferten Informationen erlauben die realistische Beleuchtung der syn-
thetischen Objekte und die Generierung von (synthetischen) Schatten, die
für die Wahrnehmung einer solchen kombinierten Szene wichtig sind.

Um Mixed-Reality-Anwendungen zu unterstützten, wurde das OpenRT
System in zwei Punkten erweitert: Videotexturen erlauben das Einbeziehen
von Live-Bildern der ’echten’ Welt direkt in den Rendering-Prozess. Kapitel 4
beschreibt Methoden, einen Video-Datenstrom auf die einzelnen Rendering-
Rechner zu verteilen und die Synchronität sicher zu stellen.

144 Chapter 9: Final Summary

Ein weiterer Baustein, speziell für Augmented-Reality-Anwendungen, ist
eine verteilte View Compositing-Methode, um gerenderte Objekte auf über-
zeugende Weise in einem Video-Hintergrund mit Hilfe von Schatten und Re-
flektionen zu verankern (Kapitel 6). Hier kommt ein Differential-Rendering
Verfahren zum Einsatz.

Beide Bausteine wurden ohne die OpenRT Bibliothek zu verändern als
Plugins realisiert (als sog. OpenRT Rendering-Objekt). Eine Verwendung
der beschriebenen Methoden in Verbindung mit Graphik-Hardware (GPU)
basierten Rendering-Methoden ist ebenfalls denkbar.

Ein zentrales Konzept dieser Arbeit ist das In-Shader Compositing. Hier-
bei werden die notwendigen Berechnungen um reale und synthetische Ele-
mente zu verbinden im Rahmen des Shading-Prozesses mitberechnet. Ein
nachträglicher Compositing-Schritt entfällt. Gerade in Verbindung mit ei-
nem Ray-Tracer hat In-Shader Compositing eine Reihe von Vorteilen, so
wird zum Beispiel die Qualität des Compositing automatisch dem jeweiligen
Bildausschnitt angeglichen.

Diese Arbeit bestätigt auch, dass sich das Erstellung von Mixed-Reality-
Anwendungen nicht nur auf Software beschränkt, sondern auch umfangreiche
Kentnisse und Verständnis einer ganzen Reihe anderer Technologien, wie zum
Beispiel Kameratechnik oder Netzwerktechnik, notwendig ist.

Schlussfolgerung

Diese Arbeit zeigt, dass interaktives Mixed-Reality-Rendering auf der Basis
von OpenRT möglich ist und im Vergleich zu (Raster-) Graphik-Hardware
basierten Methoden Vorteile hat. Diese liegen in der unbegrenzten Flexibilität
der reinen Software-Implementierung von OpenRT und der hohen Modula-
rität des Ray-Tracing Verfahrens begründet.

Die Nachteile der Verwendung von interaktivem Ray-Tracing für Mixed-
Reality-Anwendungen liegen in den derzeit geringeren erzielbaren Bildraten
im Vergleich zu Graphik-Hardware. Auch ist der Aufwand des verteilten Ren-
derns im Vergleich zu einer einzelnen Graphikkarte ungleich höher. Preiswer-
tere Shared-Memory-Maschinen können hier in Zukunft Abhilfe schaffen. La-
tenzzeiten und Netzwerkprobleme würden damit auf ein Minimum reduziert
werden.

Appendix A

The CTools Suite

Figure A.1: The CEdit GUI front-end allows easy creation and manipulation
of CTools graphs.

To simplify testing of image and video manipulation algorithms like chroma
keying and background subtraction (see Section 5.2) or high dynamic range
image sampling (see Section 7.6.3), I developed a framework inspired by
graph based systems used in the creative industry for film and video com-
positing.

146 Chapter A: The CTools Suite

The CTools (for Compositing Tools) suite consists of a library and two front-
end applications: a Qt [Qt] based graph editor (CEdit (see Figure A.1) and
a batch processing command line tool (CRun). The library provides functions
for connecting nodes (plugins) as separately compiled shared libraries, con-
trols the graph data flow of image buffers and allows to save and load the
graph to disk. The versatile image buffer supports a number of encoding
formats up to floating point buffers for high dynamic range image manipu-
lation. The buffer access mechanism in the plugins provides a transparent
interface to write generic algorithm running with the same code on LDR or
HDR data. Plugins export their parameters including range description to
allow automatic generation of a GUI dialog for the plugin. Support for a
number of parameter types (color, integer, float, mode, etc.) is provided.
The graph can be run iteratively for video sequences.

Appendix B

A Triggering Interface for Sony
DFW Cameras

Figure B.1: A simple home-brew triggering box for Sony DFW (and other)
cameras built by the author.

For simultaneous capturing of images with a number of cameras (e.g. for
the 3D Visual Hull reconstruction described in Chapter 8), it is necessary
to ensure that all cameras expose at the same time. While some newer
IEEE1394 bus cameras provide bus support for synchronous contiguous run
modes (running at a fixed frame rate, typically only a small number of fixed
rates are available, e.g. 30 fps, 15 fps, 7.5 fps, 3.75 fps), it is often desirable
to run at an frame rate that adapts closely to the processing speed of the
reconstruction algorithm.
The Sony DFW-V500 (and many comparable cameras) provides an external
hardware input for triggering. A simple hardware interface allows to trigger

148 Chapter B: A Triggering Interface for Sony DFW Cameras

the cameras at speeds up to 30 fps from a PC. Figure B.1 shows my trigger
box for up to eight cameras. It is connected to the parallel port (LPT) of
the PC. Writing a single byte to the parallel port allows to trigger a single
camera or a group of cameras dependent on the bits set in the byte. A Linux
device driver provides an alternative ioctl based interface. The cameras
are connected via standard XLR extension cables. The interface is opto-
insulated.

3

2

1

4

5

6

Gnd

LPT n

DFW Trigger

Gnd

2K2

CNY−17 II

Figure B.2: The schematics of one of the eight trigger circuits. An opto-
coupler (CNY-17 II) provides opto-insulation for minimizing ground loop in-
terference via the IEEE1394 cabling.

Appendix C

The OpenRT Video Texture API

The OpenRT video texture API is an extension to the OpenRT shading
API (see [OpenRT]). In the following, I give a brief overview over the most
important API calls for shader programming. An example shader is given in
Appendix D. Please refer to Section 4.3 for an overview of the architecture
of the video texture subsystem.

static VTex *VTexManager::openStream(uint id)

static VTex *VTexManager::openFile(char *path)

The function can be called directly on the (singleton) VTexManager class. The
return value is a pointer to a VTex video texture object. openStream(uint

id) opens a multicast stream. The appropriate multicast group is joined
if it is not already available on the client host. openFile(char *path)

opens a local file in a custom video texture file format (a header and one or
multiple texture images) for testing purpose. If a stream or file is currently
not available, these functions return a NULL pointer.

RTuint VTex::getWidth()

RTuint VTex::getHeight()

Called on a video texture object, these functions return the width and height
of the texture image.

R3 VTex::getTexel(RTuint u, RTuint v)

R3 VTex::getTexelNearest(RTFloat u, RTFloat v)

R3 VTex::getTexelLinear(RTFloat u, RTFloat v)

150 Chapter C: The OpenRT Video Texture API

To access a texel of the current texture frame, the function getTexel(RTuint

u, RTuint v) provides direct access. For convenience two functions with
texture filtering (nearest texel and linear interpolation) with u, v ∈ [0, 1) are
available.

RTvoid *VTex::getBuffer()

To use the video texture system for streaming arbitrary data structures like
the sample tables in Section 7.6, a number of functions provide a direct access
to the raw data. More advanced functions can cope with the network packet
loss problem to ensure the integrity of the data.

Appendix D

An OpenRT Video Billboard
Shader Example

In the following, I will give a commented OpenRT shader code example: the
chroma keying billboard shader from Section 5.4. The OpenRT video texture
API calls are explained in Appendix C. Please see the OpenRT API reference
[OpenRT] for an explanation of the OpenRT calls.

#include "OpenRTS/RTS.hxx"

#include "OpenRTS/RTS++.hxx"

#include "OpenRTS/RTShader.hxx"

#include "VTex/vtex.hxx"

Some OpenRT standard include files. The file vtex.hxx contains the OpenRT
video texture API calls.

class ChromakeyBillboardShader:public RTShader

{

int id;

float chromascale;

The local variables: id is the video texture stream id and chromascale is
the scaling factor for chroma keying (see Section 5.4.4).

public:

virtual RTvoid Register()

{

Init();

152 Chapter D: An OpenRT Video Billboard Shader Example

RTShader::Register();

rtsDeclareParameter("texture_id", PER_SHADER,

offsetof(RTChromaBillboardShader, id),

sizeof(id));

rtsDeclareParameter("chromascale", PER_SHADER,

memberoffset(chromascale),

sizeof(chromascale));

}

The shader parameters are bound to the local variables.

virtual RTvoid Shade(RTState *const state)

{

R3 texcoord;

rtsFindST(state, texcoord);

The 2D texture coordinates for the hitpoint are determined.

VTex *vtex = VTexManager::openStream(id);

if(!vtex) return;

The reference to the desired video texture stream is obtained. If the stream
is currently not in use, NULL is returned.

R3 color = vtex->getTexelLinear(texcoord.s, texcoord.t);

float green = color.g * chromascale;

The texture color is interpolated from the video texture. The green value
is scaled accordingly to provide a more stable chrome keying criteria (see
Section 5.4.4).

if(green > color.r && green > color.b)

{

RTState transparence;

rtsInitState(state, &transparence);

rtsTransparencyRay(state, &transparence);

rtsTrace(&transparence, color);

}

rtsReturnColor(state, color);

}

153

The chroma keying background condition is evaluated. If it holds, a trans-
parency ray is shot and the color of the hit object is obtained. If the condition
fails, the video texture color is preserved since this is a foreground pixel.

virtual bool LightTransparency(RTState *const state)

{

R3 texcoord;

rtsFindST(state, texcoord);

VTex *vtex = VTexManager::openStream(id);

if(!vtex) return;

R3 color = vtex->getTexelLinear(texcoord.s, texcoord.t);

float green = color.g * chromascale;

if(green > color.r && green > color.b)

return false;

else

return true;

}

}

The LightTransparency() function is called for shadow rays. For fore-
ground pixel in the video texture it returns true, which means the billboard
is opaque at this point.

rtDeclareShader(ChromakeyBillboardShader, ChromakeyBillboard);

Finally an export name for the shader is declared. The shader can be used in
a VRML file by the name ChromakeyBillboard. The shader can be compiled
separately or together with other shaders in a shared library. The full shader
name is defined as shadername@library.so.

154 Chapter D: An OpenRT Video Billboard Shader Example

Appendix E

The Studio Lab

Figure E.1: The (Mixed Reality) Studio Lab at the Computer Graphics De-
partment at Saarland University. A high ceiling headroom, a mounting grid
for lighting fixtures, cameras and chroma green backdrops simplify mixed re-
ality experiments.

Since I was the first PhD student when the new Computer Graphics Depart-
ment at Saarland University was opened in October 1999, I had the chance
to set up a new Studio Lab for mixed reality experiments and demos. After a
search of more than one year and a lot of political and bureaucracy obstacles,
a suitable place was found in a corner of the entrance hall of the computer
science building. A newly constructed wall separates the lab from the rest of
the hall. The high ceiling headroom of 3.7m allows to hang lighting fixtures.
The studio walls and ceiling were painted dark gray for control of spill light.
A lighting grid consisting of 50mm aluminium tubes was installed under the
ceiling and supports hanging of lighting fixtures, cameras and backdrops.

156 Chapter E: The Studio Lab

For lighting we choose cool fluorescent fixtures (NesyFlex [Nesys]) and a num-
ber of small fresnel spots (Desisti Magis and Dedolights) since the studio has
no air conditioning. Green chroma keying fabric [Gerriets] for backdrops
and floor is available. A JVC GY-DV500 professional video camera, a video
rack with monitors, video recorders and scan conversion for VGA, various
mounting/grip equipment, plenty of power connections and a screen projec-
tion make the Studio Lab a universal place for demos and experiments.
A special thanks goes to Simon Hoffmann and Stefan Schüffler who helped
me a lot in building and equipping the Studio Lab.

Figure E.2: A sphere rendered into the studio with the method described in
Section 7.6.

Bibliography

[3DV] http://www.3dvsystems.com. 3DV Systems Technology,
Israel.

[Agarwal03] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie,
and Henrik Wann Jensen. Structured Importance Sam-
pling of Environment Maps. ACM Transactions on
Graphics, Vol. 22, No. 3, pages 605–612, July 2003.

[Altix] http://www.sgi.com/products/servers/alitx/350. SGI Al-
tix 350 Server, Silicon Graphics Inc., US.

[Anderson98] Don Anderson. FireWire(R) System Architecture: IEEE
1394A. Addison-Wesley, Second edition, 1998.

[Apodaca90] Anthony A. Apodaca and M. W. Mantle. RenderMan:
Pursuing the Future of Graphics. IEEE Computer
Graphics & Applications, Vol. 10, No. 4, pages 44–49,
July 1990.

[Apodaca00] Anthony A. Apodaca and Larry Gritz. Advanced Render-
Man. Creating CGI for Motion Pictures. Morgan Kauf-
mann, First edition, 2000.

[Appel68] Arthur Appel. Some Techniques for Shading Machine
Renderings of Solids. SJCC, pages 27–45, 1968.

[ARToolkit] http://www.hitl.washington.edu/artoolkit/. ARToolkit
Library, Washington University, US.

[Azuma95] Ron Azuma. A survey of augmented reality. Computer
Graphics (SIGGRAPH’95 Proceedings, Course Notes
#9: Developing Advanced Virtual Reality Applications),
pages 1–38, 1995.

158 BIBLIOGRAPHY

[Azuma01] Ronald Azuma, Yohan Baillot, Reinhold Behringer,
Steven Feiner, Simon Julier, and Blair MacIntyre. Re-
cent Advances in Augmented Reality. IEEE Computer
Graphics Applications, Vol. 21, No. 6, pages 34–47, 2001.

[Battiato03] Sebastiano Battiato, Alfio Castorina, and Massimo Man-
cuso. High dynamic range imaging for digital still cam-
era: an overview. Journal of Electronic Imaging, Vol. 12,
No. 3, pages 459–469, July 2003.

[Bayer76] Bryce E. Bayer. Color imaging array. US Patent 3971065,
1976.

[BBC RD] http://www.bbc.co.uk. British Broadcast Company, Re-
search and Development Department, UK.

[Bekaert01] Philippe Bekaert. Extensible Scene Graph Manager,
August 2001. http://www.cs.kuleuven.ac.be/∼graphics-
/XRML/.

[Ben-Ezra00] Moshe Ben-Ezra. Segmentation with invisible keying sig-
nal. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 568–575, 2000.

[Benthin03] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A
Scalable Approach to Interactive Global Illumination.
Computer Graphics Forum, Vol. 22, No. 3, pages 621–
630, 2003. (Proceedings of Eurographics).

[Benthin04] Carsten Benthin, Ingo Wald, and Philipp Slusallek. In-
teractive Ray Tracing of Free-Form Surfaces. In Proceed-
ings of Afrigraph 2004, pages 99–106, November 2004.

[Bergh99] Frans van den Bergh and Vali Lalioti. Software Chroma
Keying in an Immersive Virtual Environment. In SAIC-
SIT’99, Annual Conference. South African Institute of
Computer Scientists and Information Technologies, 1999.

[BFI] http://www.bfioptilas.de. Optical Technology Supply,
BFI Optilas, Germany.

[Bimber03a] Oliver Bimber, Anselm Grundheimer, Gordon Wetzstein,
and Sebastian Knodel. Consistent Illumination within op-
tical see-through augmented environments. In Proceed-

BIBLIOGRAPHY 159

ings of IEEE/ACM International Symposium aon Aug-
mented and Mixed Reality 2003 (ISMAR’03), pages 1–8.
ACM Press, 2003.

[Bimber03b] Oliver Bimber and Ramesh Raskar. Alternative Aug-
mented Reality Approaches: Concepts, Techniques, and
Applications. Eurographics Conference 2003, Tutorial,
2003.

[Bouguet04] http://www.vision.caltech.edu/bouguetj/calib doc/.
Camera Calibration Toolbox for Matlab by Jean-Yves
Bouguet.

[Box99] Harry C. Box. The Gaffer’s Handbook – Film lighting
practices, equipment and electrical distribution. Focal
Press, Second edition, 1999.

[Brinkmann99] Ron Brinkmann. The Art and Science of Digital Com-
positing. Morgan Kaufmann Publishers Inc., First edi-
tion, 1999.

[Bruhn03] Andres Bruhn, Joachim Weickert, Christian Feddern,
Timo Kohlberger, and Christoph Schnörr. Real-Time
Optic Flow Computation with Variational Methods. In
Computer Analysis of Images and Patterns, Proceed-
ings 10th International Conference CAIP 2003, pages
222–229. Lecture Notes in Computer Science, Vol. 2756,
Springer, Berlin, August 2003.

[Buehler99] Chris Buehler, Wojciech Matusik, Leonard McMillan,
and Steven Gortler. Creating and Rendering Image-
Based Visual Hulls. Technical Report MIT/LCS/TR-
780, Massachusetts Institute of Technology, 1999.

[Carey97] Rikk Carey, Gavin Bell, and Chris Mar-
rin. ISO/IEC 14772-1:1997 Virtual Reality
Modelling Language (VRML97), April 1997.
http://www.vrml.org/Specifications/VRML97.

[Chen00] Xing Chen, James Davis, and Philipp Slusallek. Wide
Area Camera Calibration Using Virtual Calibration Ob-
jects. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2000,
pages 520–527, 2000.

160 BIBLIOGRAPHY

[Chuang01] Yung-Yu Chuang, Brian Curless, David H. Salesin, and
Richard Szeliski. A Bayesian Approach to Digital Mat-
ting. In 2001 Conference on Computer Vision and Pat-
tern Recognition (CVPR 2001), pages 264–271, Decem-
ber 2001.

[Chuang02] Yung-Yu Chuang, Aseem Agarwala, Brian Curless,
David H. Salesin, and Richard Szeliski. Video Matting of
Complex Scenes. ACM Transactions on Graphics, Vol.
21, No. 3, pages 243–248, July 2002.

[Cleary88] John G. Cleary and Geoff Wyvill. An Analysis of an Al-
gorithm for Fast Ray-Tracing using Uniform Space Sub-
division. The Visual Computer, Vol. 4, No. 2, pages 65–
83, 1988.

[Cook84] Robert Cook, Thomas Porter, and Loren Carpenter. Dis-
tributed Ray Tracing. Computer Graphics (Proceeding
of SIGGRAPH 84), Vol. 18, No. 3, pages 137–144, 1984.

[Debevec] http://www.debevec.org. Paul Debevecs Website at the
ICT, US.

[Debevec97] Paul E. Debevec and Jitendra Malik. Recovering High
Dynamic Range Radiance Maps from Photographs. In
Proceedings of SIGGRAPH 97, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 369–378, Au-
gust 1997.

[Debevec98a] Paul Debevec. Rendering Synthetic Objects Into Real
Scenes: Bridging Traditional and Image-Based Graph-
ics With Global Illumination and High Dynamic Range
Photography. In Proceedings of SIGGRAPH 98, Com-
puter Graphics Proceedings, Annual Conference Series,
pages 189–198, July 1998.

[Debevec98b] Paul Debevec. Rendering with natural light. In SIG-
GRAPH ’98: ACM SIGGRAPH 98 Electronic art and
animation catalog, page 166. ACM Press, 1998.

[Debevec98c] Paul E. Debevec, Yizhou Yu, and George D. Borshukov.
Efficient View-Dependent Image-Based Rendering with
Projective Texture-Mapping. In Eurographics Rendering
Workshop 1998, pages 105–116, June 1998.

BIBLIOGRAPHY 161

[Debevec00] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter
Duiker, Westley Sarokin, and Mark Sagar. Acquiring
the Reflectance Field of a Human Face. In Proceed-
ings of ACM SIGGRAPH 2000, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 145–156, July
2000.

[Debevec02a] Paul Debevec. Image-Based Lighting. IEEE Computer
Graphics & Applications, Vol. 22, No. 2, pages 26–34,
March/April 2002.

[Debevec02b] Paul Debevec, Andreas Wenger, Chris Tchou, Andrew
Gardner, Jamie Waese, and Tim Hawkins. A Light-
ing Reproduction Approach to Live-Action Compositing.
ACM Transactions on Graphics, Vol. 21, No. 3, pages
547–556, July 2002.

[Debevec02c] Paul Debevec, Andreas Wenger, Chris Tchou, Andrew
Gardner, Jamie Waese, and Tim Hawkins. A Light-
ing Reproduction Approach to Live-Action Compositing.
ACM Transactions on Graphics, Vol. 21, No. 3, pages
547–556, July 2002.

[Deutsch02] Benjamin Deutsch. Image Based Visual Hull Rendering.
Diploma Thesis, Saarland University. March 2002.

[Dietrich03] Andreas Dietrich, Ingo Wald, Carsten Benthin, and
Philipp Slusallek. The OpenRT Application Program-
ming Interface – Towards A Common API for Interactive
Ray Tracing. In Proceedings of the 2003 OpenSG Sym-
posium, pages 23–31, Darmstadt, Germany, 2003. Euro-
graphics Association.

[Dietrich04a] Andreas Dietrich, Ingo Wald, and Philipp Slusallek. In-
teractive Visualization of Exceptionally Complex Indus-
trial Datasets. In ACM SIGGRAPH 2004, Sketches and
Applications, August 2004.

[Dietrich04b] Andreas Dietrich, Ingo Wald, Markus Wagner, and
Philipp Slusallek. VRML Scene Graphs on an Interac-
tive Ray Tracing Engine. In Proceedings of IEEE VR
2004, pages 109–116, March 2004.

162 BIBLIOGRAPHY

[Dosch] http://www.doschdesign.com. Libraries of textures, en-
vironments, HDR lightprobes and models, Dosch Design
Gmbh, Germany.

[DP97] DP. Virtuelle Studiotechnik – Detaillierte technische
Übersicht. Digital Production, August 1997.

[DP00a] DP. Kollision zweier Welten – Virtuelle Studios von
GMD am Beispiel ’Service Wohnen’. Digital Production,
May 2000.

[DP00b] DP. Virtual Studio Equipment. Digital Production, May
2000.

[Drettakis97a] George Drettakis, Luc Robert, and Sylvain Bougnoux.
Interactive Common Illumination for Computer Aug-
mented Reality. In Eurographics Rendering Workshop
1997, pages 45–56, June 1997.

[Drettakis97b] George Drettakis and Francois Sillion. Interactive update
of global illumination using a line-space hierarchy. Com-
puter Graphics, Vol. 31, No. Annual Conference Series,
pages 57–64, 1997.

[Exif] http://www.exif.org. Exchangeable image file format for
Digital Still Cameras: EXIF, Japan Electronic Industry
Development Association (JEIDA), Japan.

[FourCC] http://www.fourcc.org. Video Codec and Pixel Format
Information.

[Fournier93] Alain Fournier, Atjeng S. Gunawan, and Chris Ro-
manzin. Common Illumination between Real and Com-
puter Generated Scenes. In Proceedings of Graphics In-
terface ’93, pages 254–262, Toronto, ON, Canada, May
1993.

[Gerriets] http://www.gerriets.com. Stage and Studio Fabrics, Ger-
riets GmbH, Germany.

[Gibson00] Simon Gibson and Alan Murta. Interactive Rendering
with real world illumination. In Rendering Techniques
2000: 11th Eurographics Workshop on Rendering, pages
365–376, June 2000.

BIBLIOGRAPHY 163

[Gibson03a] Simon Gibson and Alan Chalmers. Photorealistic Aug-
mented Reality. Eurographics Conference 2003, Tutorial,
2003.

[Gibson03b] Simon Gibson, Jon Cook, Toby Howard, and Roger Hub-
bold. Rapid Shadow Generation in Real-World Lighting
Environments. In Eurographics Symposium on Render-
ing: 14th Eurographics Workshop on Rendering, pages
219–229, June 2003.

[Glassner95] Andrew S. Glassner. Principles of digital image synthe-
sis, volume 1+2. Morgan Kaufmann Publishers, Inc.,
First edition, 1995.

[Goral84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Green-
berg, and Bennett Battaile. Modeling the Interaction
of Light Between Diffuse Surfaces. Computer Graphics
(SIGGRAPH’84 Proceedings), Vol. No. 18, pages 212–
222, July 1984.

[Gortler96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski,
and Michael F. Cohen. The Lumigraph. Computer
Graphics, Vol. 30, No. Annual Conference Series, pages
43–54, 1996.

[Grau01] Oliver Grau, Marc Price, and Graham A. Thomas. Use
of 3-D Techniques for Virtual Production. pages Invited
paper presented at SPIE conference on Videometrics and
Optical Methods for 3D Shape Measurement, 2001.

[Greene86] Ned Greene. Environment mapping and other applica-
tions of world projections. IEEE Computing Graphics
Applications, Vol. 6, No. 11, pages 21–29, 1986.

[Greger98] Gene Greger, Peter Shirley, Philip M. Hubbard, and
Donald P. Greenberg. The Irradiance Volume. IEEE
Computer Graphics and Applications, Vol. 18, No. 2,
pages 32–43, March 1998.

[Gross03] Markus Gross, Stephan Würmlin, Martin Naef, Edouard
Lamboray, Christian Spagno, Andreas Kunz, Esther
Koller-Meier, Tomas Svoboda, Luc Van Gool, Silke Lang,
Kai Strehlke, Andrew Vande Moere, and Oliver Staadt.

164 BIBLIOGRAPHY

blue-c: A Spatially Immersive Display and 3D Video Por-
tal for Telepresence. In Proceedings of ACM SIGGRAPH
2003, pages 819–827, 2003.

[Guenther04] Johannes Guenther, Ingo Wald, and Philipp Slusallek.
Realtime Caustics using Distributed Photon Mapping.
In Rendering Techniques 2004, Proceedings of the Euro-
graphics Symposium on Rendering, pages 111–121, June
2004.

[Haeberli93] Paul Haeberli and Mark Segal. Texture Mapping As A
Fundamental Drawing Primitive. In Michael F. Cohen,
Claude Puech, and Francois Sillion, editors, Fourth Eu-
rographics Workshop on Rendering, pages 259–266, 1993.

[Haller03] Michael Haller, Stephan Drab, and Werner Hartmann.
A real-time shadow approach for an augmented reality
application using shadow volumes. In VRST ’03: Pro-
ceedings of the ACM symposium on Virtual reality soft-
ware and technology, pages 56–65. ACM Press, 2003.

[Hanrahan91] Pat Hanrahan, D. Salzman, and L. Aupperle. A rapid hi-
erarchical radiosity algorithm. Computer Graphics, Vol.
24, No. 4, pages 197–206, 1991.

[Hasenfratz03] Jean-Marc Hasenfratz, Marc Lapierre, Jean-Dominique
Gascuel, and Edmond Boyer. Real-Time Capture, Re-
construction and Insertion into Virtual World of Human
Actors. In Vision, Video and Graphics, pages 49–56. Eu-
rographics, Elsevier, 2003.

[Hasenfratz04] Jean-Marc Hasenfratz, Marc Lapierre, and Francois Sil-
lion. A Real-Time System for Full Body Interaction.
Virtual Environments, pages 147–156, 2004.

[HDRC] http://www.hdrc.com. HDRC High Dynamic Range
CMos Video Camera, IMS Vision GmbH, Germany.

[HDRShop] http://www.debevec.org/hdrshop. HDRShop, ICT, US.

[Heidrich98] Wolfgang Heidrich and Hans-Peter Seidel. View-
independent environment maps. In SIGGRAPH / Euro-
graphics Workshop on Graphics Hardware, pages 39–46,
August 1998.

BIBLIOGRAPHY 165

[Heidrich99] Wolfgang Heidrich. High-quality Shading and Lighting
for Hardware-Accelerated Rendering. PhD thesis, Uni-
versität Erlangen, Germany, 1999.

[Hoffmann03] Simon Hoffmann. Building a High Dynamic Range Video
Camera. Fortgeschrittenenpraktikum, Saarland Univer-
sity. July 2003.

[Hoffmann04] Simon Hoffmann. Interactive Reconstruction and Ren-
dering of Image-Based Visual Hulls in a Distributed Ray
Tracing Framework. Diploma Thesis, Saarland Univer-
sity. December 2004.

[Hughes04a] Charles E. Hughes, Jaakko Konttinen, and Sumanta Pat-
tanaik. The Future of Mixed Reality: Issues in Illumi-
nation and Shadows. In Proceedings of I/ITSEC 2004,
Orlando, December 2004.

[Hughes04b] Charles E. Hughes, Erik Reinhard, Jaakko Konttinen,
and Sumanta Pattanaik. Achieving Interactive-time Re-
alistic Illumination in Mixed Reality. In Proceedings of
the 24th Army Science Conference (Poster), Orlando,
November 2004.

[IEEE1394] http://www.ieee1394.org. The IEEE1394 Interface Stan-
dard (aka Apple FireWire or Sony i-Link).

[Ihrke04] Ivo Ihrke, Lukas Ahrenberg, and Marcus Magnor. Ex-
ternal camera calibration for synchronized multi-video
systems. Journal of WSCG, Vol. 12, No. 1–3, pages 537–
544, January 2004.

[Jacobs04] Katrien Jacobs and Celine Loscos. Classification of Il-
lumination Methods for Mixed Reality. In Eurographics
State of the Art Reports, Grenoble, September 2004.

[Jai] http://www.jai.com. Video cameras, JAI Camera Solu-
tions, Japan.

[Jensen96] Henrik Wann Jensen. Global Illumination using Photon
Maps. In Xavier Pueyo and Peter Schröder, editors, Eu-
rographics Rendering Workshop 1996, pages 21–30. Eu-
rographics, Springer, June 1996.

166 BIBLIOGRAPHY

[Kang03] Sing Bing Kang, Matthew Uyttendaele, Simon Winder,
and Richard Szeliski. High Dynamic Range Video. ACM
Transactions on Graphics, Vol. 22, No. 3, pages 319–325,
July 2003.

[Keith96] Jack Keith. Video Demystified. A Handbook for the Dig-
ital Engineer. Harris Semiconductor, Second edition,
1996.

[Keller97] Alexander Keller. Instant Radiosity. In Turner Whitted,
editor, SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 49–56. ACM SIGGRAPH, Ad-
dison Wesley, August 1997.

[Keller98] Alexander Keller. Quasi-Monte Carlo Methods for Real-
istic Image Synthesis. PhD thesis, University of Kaiser-
slautern, 1998.

[Kelly00] Doug Kelly. Digital Compositing. In Depth. Coriolis,
2000.

[Kollig03] Thomas Kollig and Alexander Keller. Efficient illumina-
tion by high dynamic range images. In Proceedings of the
14th Eurographics workshop on Rendering, pages 45–50.
Eurographics Association, 2003.

[Kutulakos98a] Kiriakos Kutulakos and Steven M. Seitz. What Do n
Photographs Tell Us About 3D Shape? Technical Re-
port 692, Computer Science Department, University of
Rochester, NY, US, May 1998.

[Kutulakos98b] Kiriakos N. Kutulakos and Steven M. Seitz. A Theory of
Shape by Space Carving. Technical Report TR692, Com-
puter Science Department of University of Rochester,
1998.

[Lafortune93] Eric Lafortune and Yves Willems. Bidirectional Path
Tracing. In Proceedings of the 3rd International Confer-
ence on Computational Graphics and Visualization Tech-
niques (Compugraphics), pages 145–153, 1993.

[Lamboray04] Edouard Lamboray, Stephan Würmlin, and Markus
Gross. Real-time Streaming of Point-based 3D Video.

BIBLIOGRAPHY 167

In Proceedings of the IEEE Virtual Reality 2004 Confer-
ence, pages 91–98. IEEE Computer Society Press, 2004.

[Laurentini94] Aldo Laurentini. The Visual Hull Concept for Silhou-
ette Based Image Understanding. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 16, No.
2, pages 150–162, 1994.

[Lee] http://www.leefilters.com. Lee Gel Filters, UK.

[Lensch01] Hendrik P. A. Lensch, Jan Kautz, Michael Goesele,
Wolfgang Heidrich, and Hans-Peter Seidel. Image-based
reconstruction of spatially varying materials. Technical
Report MPI-I-2001-4-001, Max-Plank-Institut für Infor-
matik, Saarbrücken, Germany, 2001.

[Levoy96] Marc Levoy and Pat Hanrahan. Light Field Rendering.
Computer Graphics, Vol. 30, No. Annual Conference Se-
ries, pages 31–42, 1996.

[Li03a] Ming Li, Marcus Magnor, and Hans-Peter Seidel.
Hardware-Accelerated Visual Hull Reconstruction and
Rendering. pages Proceeding of Graphics Interface
(GI’03), Halifax, Canada, June 2003.

[Li03b] Ming Li, Marcus Magnor, and Hans-Peter Seidel. Online
Accelerated Rendering of Visual Hulls in Real Scenes.
Journal of WSCG, Vol. 11, No. 2, pages 290-297, 2003.

[Li04a] Ming Li, Marcus Magnor, and Hans-Peter Seidel.
Hardware-Accelerated Rendering of Photo Hulls. Pro-
ceeding of Eurographics (EG’04) Grenoble, France, pages
635–642, September 2004.

[Li04b] Ming Li, Marcus Magnor, and Hans-Peter Seidel. A Hy-
brid Hardware-accelerated Algorithm for High Quality
Rendering of Visual Hulls. Proceedings of Graphics In-
terface (GI’04), pages 41–48, May 2004.

[LightGen] http://www.ict.usc.edu/j̃cohen/lightgen/lightgen.html.
The LightGen Plugin for HDRShop, US.

[Linux1394] http://www.linux1394.org. Linux IEEE1394, IEEE1394
Support for Linux.

168 BIBLIOGRAPHY

[Linz04] Christian Linz. Implementing a camera calibration tool-
box for Linux. Fortgeschrittenenpraktikum, Saarland
University. July 2004.

[Liu03] X.Q. Liu and Abbas El Gamal. Synthesis of High Dy-
namic Range Motion Blur Free Image From Multiple
Captures. IEEE Transactions on circuits and systems
(TCASI), Vol. 50, No. 4, pages 530–539, April 2003.

[Lohse02] Marco Lohse, Michael Repplinger, and Philipp Slusallek.
An Open Middleware Architecture for Network-
Integrated Multimedia. In Protocols and Systems for
Interactive Distributed Multimedia Systems, Joint In-
ternational Workshops on Interactive Distributed Mul-
timedia Systems and Protocols for Multimedia Sys-
tems, IDMS/PROMS 2002, Proceedings, volume 2515
of Lecture Notes in Computer Science, pages 327–338.
Springer, 2002.

[Loscos99] Céine Loscos, Marie-Claude Frasson, George Drettakis,
Bruce Walter, Xavier Granier, and Pierre Poulin. Inter-
active Virtual Relighting and Remodeling of Real Scenes.
In Eurographics Rendering Workshop 1999, June 1999.

[Luther98] Arch C. Luther. Video Camera Technology. Artech, First
edition, 1998.

[LZO] http://www.dogma.net/DataCompression/LZO.shtml.
LZO-Compression Library by Markus Oberhume.

[Madden93] Brian Madden. Extended intensity range imaging. Tech-
nical Report MS-CS-93-96, University of Pennsylvania,
GRASP Laboratory, 1993.

[Mann94] Steve Mann and Rosalind W. Picard. On being ’undigi-
tal’ with digital cameras: Extending Dynamic Range by
Combining Differently Exposed Pictures. Technical re-
port, M.I.T. Media Lab Perceptual Computing Section
(also IS&T’s 48th Annual Conference, Society for Imag-
ing Science and Technology, pages 422-428, Washington
D.C., May 1995), 1994.

[Mann96] Steve Mann. ‘Pencigraphy’ with AGC: Joint parame-
ter estimation in both domain and range of functions in

BIBLIOGRAPHY 169

same orbit of the projective-Wyckoff group. In IEEE In-
ternational Conference on Image Processing (ICIP-96),
September 1996.

[Mann97] Steve Mann and Rosalind W. Picard. Video Orbits of
the Projective Group: A Simple Approach to Featureless
Estimation of Parameters. IEEE Transactions on Image
Processing, Vol. 6, No. pages 9, September 1997.

[Mantiuk04] Rafal Mantiuk, Grzegorz Krawczyk, Karol Myszkowski,
and Hans-Peter Seidel. Perception-motivated high dy-
namic range video encoding. ACM Transactions on
Graphics, Vol. 23, No. 3, pages 733–741, 2004.

[Marmitt04] Gerd Marmitt, Heiko Friedrich, Andreas Kleer, Ingo
Wald, and Philipp Slusallek. Fast and Accurate Ray-
Voxel Intersection Techniques for Iso-Surface Ray Trac-
ing. In Proceedings of Vision, Modeling, and Visualiza-
tion (VMV), November 2004.

[Marschner97] Stepeh R. Marschner and Donald P. Greenberg. In-
verse lighting for photography. In Proceedings of the
IS&T/SID Fifth Color Imaging Conference, Society for
Imaging Science and Technology, pages 262–265, 1997.

[Masselus02] Vincent Masselus, Philip Dutré, and Frederik Anrys. The
Free-form Light Stage. In Rendering Techniques 2002:
13th Eurographics Workshop on Rendering, pages 247–
256, June 2002.

[Masselus03] Vincent Masselus, Pieter Peers, Philip Dutré, and
Yves D. Willems. Relighting With 4D Incident Light
Fields. ACM Transactions on Graphics, Vol. 22, No. 3,
pages 613–620, July 2003.

[Matusik00] Wojciech Matusik, Chris Buehler, Ramesh Raskar,
Steven J. Gortler, and Leonard McMillan. Image-Based
Visual Hulls. In Kurt Akeley, editor, Siggraph 2000,
Computer Graphics Proceedings, pages 369–374. ACM
Press / ACM SIGGRAPH / Addison Wesley Longman,
2000.

170 BIBLIOGRAPHY

[Matusik01] Wojciech Matusik, Chris Buehler, and Leonard McMil-
lan. Polyhedral Visual Hulls for Real-Time Render-
ing. Proceedings of Eurographics Workshop on Render-
ing, pages 115–126, 2001.

[Matusik02] Wojciech Matusik, Chris Buehler, Leonard McMillan,
and Steven Gortler. Efficient View-Dependent Sampling
of Visual Hulls. pages MIT LCS Technical Memo 624,
2002.

[Matysczok04] Carsten Matysczok and Andrew Wojdala. Rendering of
Highly Polygonal Augmented Reality Applications on a
Scalable PC-Cluster Architecture. In IEEE and ACM In-
ternational Symposium on Mixed and Augmented Reality
ISMAR 2004, pages 254–255, November 2004.

[Milgram94] Paul Milgram and Fumio Kishino. A taxonomy of mixed
reality visual displays. In IEICE Transactions on Infor-
mation Systems, volume 12, December 1994.

[Mitsunaga99] Tomoo Mitsunaga and Shree K. Nayar. Radiometric Self
Calibration. In Proccedings on Computer Vision and
Pattern Recognition, Vol. I, pages 374–380, 1999.

[Moeller99] Tomas Moeller and Eric Haines. Real-Time rendering.
AK Peters, Ltd., First edition, 1999.

[Mukaigawa03] Yasuhiro Mukaigawa, Daisuke Genda, Ryo Yamane, and
Takeshi Shakunaga. Color Blending based on Viewpoint
and Surface Normal for Generating Images from Any
Viewpoint using Multiple Cameras. Proceedings of the
IEEE Conference on Multisensor Fusion and Integration
for Intelligent Systems (MFI2003), pages 95–100, 2003.

[Nayar00] Shree K. Nayar and Tomoo Mitsunaga. High Dynamic
Range Imaging: Spatially Varying Pixel Exposures. In
CVPR, pages 1472–1479, 2000.

[Nelson99] Brad Nelson and Philipp Slusallek. Virtual Light Meter.
Project Sketch, Standford Immersive Television Project,
Stanford, 1999.

[Nesys] http://www.nesys.de. NesyFlex Fluorescent Lighting
Fixtures, Nesys Lichtsysteme, Germany.

BIBLIOGRAPHY 171

[Nielsen01] Frank Nielsen. On Representing Spherical Videos. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Technical sketch, 2001.

[Nielsen02] Frank Nielsen. High Resolution Full Spherical Videos. In
Proceedings of ITCC2002, International Conference on
Information Technology: Coding and Computing, pages
260–267, 2002.

[Nikon] http://www.nikon.com. Cameras and accessories, Nikon
Inc., Japan.

[Nishino04] Ko Nishino and Shree K. Nayar. Eyes for relighting.
ACM Transactions on Graphics, Vol. 23, No. 3, pages
704–711, 2004.

[NMM] http://www.networkmultimedia.org. NMM, Network In-
tegrated Multimedia Middleware for Linux, Saarland
University, Germany.

[Ohta99] Yuichi Ohta and Hideyuki Tamura. Mixed Reality - Merg-
ing Real and Virtual Worlds. Springer (Berlin), 1999.

[OpenCV] http://www.intel.com/research/mrl/research/opencv/.
Intel Open Source Computer Vision Library (OpenCV),
Intel Corp., US.

[OpenEXR] http://www.openexr.net. OpenEXR File Format, Indus-
trial Light and Magic, US.

[OpenGL] http://www.opengl.org. The OpenGL Specification, SGI,
US.

[OpenRT] http://www.openrt.org. The OpenRT Documentation.

[Orad] http://www.orad.com. Orad Virtual Studio Technology,
Israel.

[Patow03] Gustavo Patow and Xavier Pueyo. Inverse Rendering
Problems. Computer Graphics Forum, Vol. 22, No. 4,
pages 663–687, December 2003.

[Peters03] Benjamin Peters. High Quality Chroma Keying. Fort-
geschrittenenpraktikum, Saarland University. October
2003.

172 BIBLIOGRAPHY

[PointGrey] http://www.ptgrey.com. Digital Cameras and Modules,
Point Grey Research Inc., US.

[Pomi99] Andreas Pomi. Dynamisches Radiosity mit Line-Space-
Hierarchie und Movement Prediction. Diploma Thesis.
Technical University of Darmstadt, Germany. January
1999.

[Pomi03] Andreas Pomi, Gerd Marmitt, Ingo Wald, and Philipp
Slusallek. Streaming Video Textures for Mixed Reality
Applications in Interactive Ray Tracing Environments.
In Proceedings of Virtual Reality, Modelling and Visual-
ization (VMV), pages 261–270. AKA, Berlin, November
2003.

[Pomi04a] Andreas Pomi, Simon Hoffmann, and Philipp Slusallek.
Interactive In-Shader Image-Based Visual Hull Recon-
struction and Compositing of Actors in a Distributed
Ray Tracing Framework. In 1. Workshop VR/AR,
Chemnitz, Germany, September 2004.

[Pomi04b] Andreas Pomi and Philipp Slusallek. Interactive Mixed
Reality Rendering in a Distributed Ray Tracing Frame-
work. In IEEE and ACM International Symposium on
Mixed and Augmented Reality ISMAR 2004, Student
Colloquium, November 2004.

[Porter84] Thomas Porter and Tom Duff. Compositing digital im-
ages. In In Proceedings of the 11th Annual International
Conference on Computer Graphics and Interactive Tech-
niques, pages 253–259, 1984.

[Poynton03] Charles Poynton. Digital Video and HDTV. Algorithms
and Interfaces. Morgan Kaufmann, First edition, 2003.

[Press99] William H. Press, Saul A. Teukolsky, William T. Vetterl,
and Brian P. Flannery. Numerical Recipes in C. The Art
of Scientific Computing. Cambridge University Press,
Second edition, 1999.

[Purcell02] Timothy J. Purcell, Ian Buck, William R. Mark, and
Pat Hanrahan. Ray Tracing on Programmable Graphics
Hardware. ACM Transactions on Graphics, Vol. 21, No.

BIBLIOGRAPHY 173

3, pages 703–712, 2002. (Proceedings of SIGGRAPH
2002).

[Qt] http://www.trolltech.com. The Qt Grahics User Interface
Toolkit, Trolltech Inc., Oslo, Norway.

[Ramamoorthi01a] Ravi Ramamoorthi and Pat Hanrahan. An Efficient Rep-
resentation for Irradiance Environment Maps. In Pro-
ceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, pages 497–500,
August 2001.

[Ramamoorthi01b] Ravi Ramamoorthi and Pat Hanrahan. A Signal-
Processing Framework for Inverse Rendering. In Pro-
ceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, pages 117–128,
August 2001.

[Raskar01] Ramesh Raskar, Greg Welch, Kok-Lim Low, and Deepak
Bandyopadhyay. Shader Lamps: Animating Real Objects
With Image-Based Illumination. In Proceedings of the
12th Eurographics Workshop on Rendering Techniques,
pages 89–102. Springer-Verlag, 2001.

[Repplinger01] Michael Repplinger. L1394-Library: Design and Imple-
mentation of a FireWire Library for Linux. Fortgeschrit-
tenenpraktikum, Saarland University. May 2001.

[Robertson99] Mark A. Robertson, Sean Borman, and Robert L. Steven-
son. Dynamic Range Improvement Through Multiple Ex-
posures. In Proceedings of the IEEE International Con-
ference on Image Processing, volume 3, pages 159–163.
IEEE, October 1999.

[Sato99a] Imari Sato, Yoichi Sato, and Katsushi Ikeuchi. Acquiring
a Radiance Distribution to Superimpose Virtual Objects
onto a Real Scene. IEEE Transactions on Visualization
and Computer Graphics, Vol. 5, No. 1, pages 1–12, 1999.

[Sato99b] Imari Sato, Yoichi Sato, and Katsushi Ikeuchi. Illumina-
tion Distribution from Shadows. In CVPR, pages 1306–
1312, 1999.

174 BIBLIOGRAPHY

[Schmittler02] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. Saar-
COR – A Hardware Architecture for Ray Tracing. In
Proceedings of the ACM SIGGRAPH/Eurographics Con-
ference on Graphics Hardware, pages 27–36, 2002.

[Schmittler03] Jörg Schmittler, Alexander Leidinger, and Philipp
Slusallek. A Virtual Memory Architecture for Real-Time
Ray Tracing Hardware. Computer and Graphics, Volume
27, Graphics Hardware, pages 693–699, 2003.

[Schmittler04a] Jörg Schmittler, Tim Dahmen, Daniel Pohl, Christian
Vogelgesang, and Philipp Slusallek. Ray Tracing for Cur-
rent and Future Games. In Proceedings of 34. Jahresta-
gung der Gesellschaft für Informatik, pages 149–153,
2004.

[Schmittler04b] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolf-
gang J. Paul, , and Philipp Slusallek. Realtime Ray Trac-
ing of Dynamic Scenes on an FPGA Chip. In Proceedings
of Graphics Hardware, pages 51–65, 2004.

[Schoedl00] Arno Schoedl, Richard Szeliski, David H. Salesin, and Ir-
fan Essa. Video Textures. In Proceedings of SIGGRAPH
2000, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 489–498. ACM Press, August 2000.

[Schoeffel99] Frank Schoeffel and Andreas Pomi. Reducing Memory
Requirements for Interactive Radiosity using Movement
Prediction. In Dani Lischinski and Greg Ward Lar-
son, editors, Rendering Techniques ’99, pages 225–234.
Springer, June 1999.

[Seitz97] Steven Seitz and Charles Dyer. Photorealistic Scene
Reconstruction by Voxel Coloring. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1067–1073, June 1997.

[Servetto02] Sergio Servetto, Rohit Puri, Jean-Paul Wagner, Pierre
Scholtes, and Martin Vetterli. Video Multicast in (Large)
Local Area Networks. In Proceedings of IEEE INFO-
COM, June 2002.

[Shade98] Jonathan Shade, Steven Gortler, Li Wei He, and Richard
Szeliski. Layered depth images. In SIGGRAPH ’98:

BIBLIOGRAPHY 175

Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 231–242. ACM
Press, 1998.

[Shirley97] Peter Shirley and Kenneth Chiu. A low distortion map
between disk and square. Journal of Graphics Tools, Vol.
2, No. 3, pages 45–52, 1997.

[Sillion95] Francois Sillion. A unified hierarchical algorithm for
global illumination with scattering volumes and object
clusters. IEEE Transactions on Visualization and Com-
puter Graphics, Vol. 3, No. 1, pages 240–254, 1995.

[Slabaugh01] G. Slabaugh, W. Bruce Culbertson, Thomas Malzbender,
and Ron Shafer. A Survey of Methods for Volumetric
Scene Reconstruction from Photographs. pages Interna-
tional Workshop on Volume Graphics 2001, Stony Brook,
New York, June 2001.

[Slabaugh02a] Greg Slabaugh, Ron Schafer, and Mat Hans. Image-
Based Photo Hulls. 1st International Symposium on 3D
Processing, Visualization, and Transmission, pages 704–
708, 2002.

[Slabaugh02b] Greg Slabaugh, Ron Schafer, and Mat Hans. Image-
Based Photo Hulls. Technical Report HPL-2002-28,
Hewlett-Packard Labs, 2002.

[Slater95] Mel Slater, Martin Usoh, and Yiorgos Chrysanthou. The
influence of dynamic shadows on presence in immersive
virtual environments. In Selected papers of the Euro-
graphics workshops in Virtual environments ’95, pages
8–21. Springer, 1995.

[Sloan02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Pre-
computed Radiance Transfer for Real-Time Rendering in
Dynamic, Low-Frequency Lighting Environments. ACM
Transactions on Graphics, Vol. 21, No. 3, pages 527–536,
2002.

[Smith96] Alvy Ray Smith and James F. Blinn. Blue screen mat-
ting. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, pages
259–268. ACM Press, 1996.

176 BIBLIOGRAPHY

[Smits94] Brian Smits, Jim Arvo, and Donald Greenberg. A clus-
tering algorithm for radiosity in complex environments.
Computer Graphics, Vol. 28, No. Annual Conference Se-
ries, pages 435–442, 1994.

[Sony] http://www.sony.net. Sony DFW-V500 Camera Specifi-
cation, Sony Corp., Japan.

[Spheron] http://www.spheron.com. SpheronCam HDR, Spheron
GmbH, Germany.

[Starlog81] Starlog. Magicam Explores the Cosmos. Starlog Press,
1981.

[State94] Andrei State, Gentaro Hirota, David T. Chen,
William F. Garrett, and Marc A. Livingston. Superior
augmented reality registration by integrating landmark
tracking and magnetic tracking. In Computer Graph-
ics 30, Annual Conference Series (1994), pages 429–438,
1994.

[Stevens98] W. Richard Stevens. UNIX Network Programming. Net-
working APIs: Sockets and XTI. Prentice-Hall, Second
edition, 1998.

[Swaminathan00] Rahul Swaminathan and Shree K. Nayar. Nonmetric Cal-
ibration of Wide-Angle Lenses and Polycameras. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 22, No. 10, pages 1172–1178, 2000.

[Szecsi04] Laszlo Szecsi, Mateu Sbert, and Laszlo Szirmay-Kalos.
Combined Correlated and Importance Sampling in Di-
rect Light Source Computation and Environment Map-
ping. Computer Graphics Forum, Vol. 22, No. 3, pages
585–593, 2004. (Proceedings of Eurographics).

[Theobalt03] Christian Theobalt, Joel Carranza, Marcus Magnor, and
Hans-Peter Seidel. A Parallel Framework for Silhouette-
Based Human Motion Capture. In Proceedings of Virtual
Reality, Modelling and Visualization (VMV), pages 207–
214. AKA, Berlin, November 2003.

[Theobalt04] Christian Theobalt, Joel Carranza, Marcus Magnor, and
Hans-Peter Seidel. 3D Video - Being Part of the Movie.

BIBLIOGRAPHY 177

ACM Computer Graphics, Vol. 38, No. 3, pages 18–20,
August 2004.

[Tsai86] Roger Y. Tsai. An efficient and accurate camera calibra-
tion technique for 3D machine vision. In Proceedings of
Computer Vision and Pattern Recognition, 1986.

[Ultimatte] http://www.ultimatte.com. Chroma keying technology,
Ultimatte Corp., US.

[Unger03] Jonas Unger, Andreas Wenger, Tim Hawkins, Andrew
Gardner, and Paul Debevec. Capturing and Rendering
with Incident Light Fields. In Eurographics Symposium
on Rendering: 14th Eurographics Workshop on Render-
ing, pages 141–149, June 2003.

[Video4Linux] http://www.video4linux.net. The Video For Linux
Project.

[Viera93] Dave Viera. Lighting for Film & Electronic Cine-
matograpy. Wadsworth Inc., First edition, 1993.

[Vlahos78] Petro Vlahos. Comprehensive Electronic Compositing
System. US Patent 4100569, 1978.

[Waese01] Jamie Waese and Paul Debevec. A Real Time High Dy-
namic Range Light Probe. SIGGRAPH 01, Technical
Sketch, 2001.

[Wagner02] Markus Wagner. Development of a Ray-Tracing-Based
VRML Browser and Editor. Diploma Thesis, Saarland
University. 2002.

[Wald01a] Ingo Wald and Philipp Slusallek. State-of-the-Art in In-
teractive Ray-Tracing. In State of the Art Reports, Eu-
rographics 2001, pages 21–42, 2001.

[Wald01b] Ingo Wald, Philipp Slusallek, and Carsten Benthin. In-
teractive Distributed Ray Tracing of Highly Complex
Models. In Steven J. Gortler and Karol Myszkowski, ed-
itors, Rendering Techniques 2001, pages 274–285, 2001.

[Wald01c] Ingo Wald, Philipp Slusallek, Carsten Benthin, and
Markus Wagner. Interactive Rendering with Coherent

178 BIBLIOGRAPHY

Ray Tracing. Computer Graphics Forum, Vol. 20, No. 3,
pages 153–164, 2001. (Proceedings of Eurographics).

[Wald02a] Ingo Wald, Carsten Benthin, and Philipp Slusallek.
OpenRT - A Flexible and Scalable Rendering Engine for
Interactive 3D Graphics. Technical report, Saarland Uni-
versity, 2002.

[Wald02b] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander
Keller, and Philipp Slusallek. Interactive Global Illumi-
nation using Fast Ray Tracing. Rendering Techniques,
pages 15–24, 2002. (Proceedings of the 13th Eurograph-
ics Workshop on Rendering).

[Wald03a] Ingo Wald, Carsten Benthin, and Philipp Slusallek. In-
teractive Global Illumination in Complex and Highly Oc-
cluded Environments. In Proceedings of the 2003 Euro-
graphics Symposium on Rendering, pages 74–81, Leuven,
Belgium, June 2003.

[Wald03b] Ingo Wald and Tim Dahmen. OpenRT User Manual.
Computer Graphics Group, Saarland University, 2003.
http://www.openrt.de.

[Wald04a] Ingo Wald. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group,
Saarland University, April 2004.

[Wald04b] Ingo Wald, Andreas Dietrich, and Philipp Slusallek. An
Interactive Out-of-Core Rendering Framework for Visu-
alizing Massively Complex Models. In Rendering Tech-
niques 2004, Proceedings of the Eurographics Symposium
on Rendering, pages 81–92, June 2004.

[Wald04c] Ingo Wald, Johannes Günther, and Philipp Slusallek.
Balancing Considered Harmful – Faster Photon Mapping
using the Voxel Volume Heuristic. Computer Graphics
Forum, Vol. 22, No. 3, pages 595–603, 2004. (Proceed-
ings of Eurographics).

[Ward94] Gregory J. Ward. The RADIANCE Lighting Simula-
tion and Rendering System. In Andrew Glassner, edi-
tor, Proceedings of SIGGRAPH ’94, Computer Graphics

BIBLIOGRAPHY 179

Proceedings, Annual Conference Series, pages 459–472.
ACM SIGGRAPH, ACM Press, July 1994.

[Ward96] Greg Ward. Real Pixels. In James Arvo, editor, Graphics
Gems II. Academic Press, 1996.

[Ward00] Peter Ward, Alan Bermingham, and Chris Wherry. Mul-
tiskilling for Television Production. Focal Press, First
edition, 2000.

[Watt92] Alan Watt and Mark Watt. Advanced Animation and
Rendering Techniques. Theory and Practice. Addison-
Wesley, 1992.

[Wenger03] Andreas Wenger, Tim Hawkins, and Paul Debevec. Op-
timizing Color Matching in a Lighting Reproduction Sys-
tem for Complex Subject and Illuminant Spectra. In Eu-
rographics Symposium on Rendering: 14th Eurographics
Workshop on Rendering, pages 249–259, June 2003.

[Wexler02] Yonatan Wexler, Andrew. W. Fitzgibbon, and Andrew.
Zisserman. Image-based environment matting. In Pro-
ceedings of the 13th Eurographics Workshop on Render-
ing, pages 279–290. Eurographics Association, 2002.

[Whetten95] Brian Whetten. A Reliable Multicast Protocol. pages
Theory and Practice in Distributed Systems. Lecture
Notes on Computer Science, 1995.

[Whitted80] Turner Whitted. An Improved Illumination Model for
Shaded Display. CACM, Vol. 23, No. 6, pages 343–349,
June 1980.

[Wojdala98] Andrzej Wojdala, Marek Gruszewski, K. Dudkiewicz,
and M. Donotek. Real-time depth-of-field algorithm for
virtual studio. MGV (Machine Graphics and Vision),
Vol. 7, No. 1/2, pages 5–14, 1998.

[Wojdala00] Andrzej Wojdala, Marek Gruszewski, and Ryszard Olech.
Real-time shadow casting in virtual studio. MGV (Ma-
chine Graphics and Vision), Vol. 9, No. 1/2, pages 315–
329, 2000.

180 BIBLIOGRAPHY

[Woo97] Mason Woo and Jackie Neider et al. Open GL. Program-
ming Guide. Addison-Wesley, Third edition, 1997.

[Woop05] Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU:
A Programmable Ray Processing Unit for Realtime Ray
Tracing. In Proceedings of SIGGRAPH ’05, Computer
Graphics Proceedings, Annual Conference Series. ACM
Press, August 2005. To appear.

[Wuermlin04] Stephan Wuermlin, Edouard Lamboray, and Markus
Gross. 3D video fragments: Dynamic point samples
for real-time free-viewpoint video. Computers & Graph-
ics, Special Issue on Coding, Compression and Streaming
Techniques for 3D and Multimedia Data, Vol. 28, No. 1,
pages 3–14, January 2004.

[Wyckoff61] Charles W. Wyckoff. An experimental extended response
film. Technical report, Edgerton, Germeshausen & Grier,
Inc., Boston, Massachusetts, March 1961.

[Yu99] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim
Hawkins. Inverse Global Illumination: Recovering Re-
flectance Models of Real Scenes From Photographs. In
Proceedings of SIGGRAPH 99, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 215–224, Au-
gust 1999.

[Zhukov98] Sergey Zhukov, Andrei Iones, and Grigorij Kronin. An
Ambient Light Illumination Model. In Rendering Tech-
niques ’98, pages 45–56, 1998.

[Zonker99] Douglas E. Zonker, David M. Werner, Brian Curles, and
David H. Salesin. Environment Matting and Composit-
ing. In Proceedings of ACM SIGGRAPH 1999, pages
205–214, 1999.

