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i
AbstractThis thesis addresses the question of which are the important issues in the design of ahigh-speed oating-point unit (FPU) that is fully compliant with the IEEE oating-pointstandard 754-1985 [19]. There are a few choices that need to be made when designingan IEEE compliant FPU, among them: the internal representation of oating-point num-bers, the rounding algorithms, handling of denormal results, usage of the same roundinghardware for di�erent units (e.g. adder, multiplier, divider), and the implementations ofthe adder, the multiplier and the divider. These choices inuence both the cost and theperformance of the FPU. Nevertheless, these issues have not been discussed in the open lit-erature todate. This work begins to �ll this gap by designing, analyzing and comparing 18di�erent IEEE compliant FPU implementations, that consider design options regarding:(a) the internal representation of oating-point numbers; (b) the rounding algorithms; (c)sharing of a rounding unit, the implementation of gradual step rounding or the implemen-tation of dedicated rounding units for each functional unit; (d) the implementation of theoating-point multiplier; and (e) the implementation of the oating-point divider. Thepresented FPU designs make also use of the following innovations, that were developedin the context of this work: (a) a fast implementation of variable position rounding inte-grated into a FP multiplier [37]; (b) to the best of our knowledge the fastest integrated FPaddition and rounding algorithm published todate [40], (c) the fastest FP multiplicationrounding algorithm published todate [11, 12] and (d) the fastest linear reciprocal approx-imation implementation published todate. [36, 39]; (e) an e�cient integration of singleand double precision rounding [9]; (f) a Booth encoded adder-tree with an improved costformula [30].All the FPUs designed in this work are fully compliant with the IEEE standard for allimplemented operations, support both single and double precision, and deal with denor-mal values and special cases in hardware. Because to design an IEEE compliant FPU is acomplex and error-prone task, all the FPU designs are speci�ed in full detail at gate leveland the correctness of the FPU designs (in particular the compliance with the IEEE stan-dard) is proven. The proposed FPU implementations are analyed and compared regardingthe hardware cost, the cycle time and the performance that they achieve on traces of theSPECfp92 benchmark suite [17] integrated into a pipelined RISC processor from [23]. Inthis quantitative analysis [38] it is demonstrated that the choice of the rounding archi-tecture in the FPU has a larger impact on the performance of the microprocessor thanthe choice of the FP multiplication or the FP division implementation. In comparison tothis the impact of the rounding architecture choice on the cost is relatively small. Therounding architecture that uses dedicated rounding units provides the best performancewith only small additional cost, so that this rounding architecture seems to be the bestchoice in oating-point implementations. The fast implementation of this rounding archi-tecture is only made possible by the fast variable position rounding implementation formultipliers from [37]. This underlines the importance of this technique.



iiKurzzusammenfassungIn dieser Arbeit wird der Frage nachgegangen, welches die wichtigsten Designentscheidun-gen bei der Implementierung einer schnellen Gleitkommaeinheit (FPU), die dem IEEEStandard 754-1985 [19] gen�ugt, sind. Es gibt verschiedene Entscheidungen, die beim En-twurf einer IEEE konformen FPU getro�en werden m�ussen, darunter: die internen Darstel-lungen der Gleitkomma- (FP) Zahlen, die Rundungsalgorithmen, die Art der Behandlungvon denormalisierten Ergebnissen, die Mehrfachverwendung von Teilen der Hardware,wie z.B. die Benutzung derselben Rundungshardware f�ur verschiedene Einheiten, unddie Implementierungen des FP Addierers, des FP Multiplizierers und des FP Dividier-ers. Diese Entscheidungen beeinussen sowohl die Kosten alsauch die Leistung der FPU.Nichtsdestotrotz wurden diese Entscheidungen bislang nicht in der Literatur diskutiert.Die vorliegende Arbeit setzt in dieser L�ucke an. Es werden 18 unterschiedliche FPUsvorgestellt, analysiert und verglichen, die Optionen zu den folgenden Entscheidungen be-trachten: (a) interne Darstellung der FP Zahlen; (b) Rundungsalgorithmen; (c) Gemein-same Nutzung einer allgemeinen Rundungseinheit, Aufteilen des Rundens in mehrereSchritte und gemeinsame Realisierung einer Teilmenge dieser Schritte oder vollst�andigeeigene Implementierung des Rundens f�ur jede Funktionseinheit; (d) Implementierung desFP Multiplizierers; (e) Implementierung des FP Dividierers. Die vorgestellten FPU De-signs benutzen dar�uberhinaus folgende Neuerungen, die im Rahmen dieser Arbeit ent-standen sind: (a) eine schnelle Rundungsimplementierung f�ur den FP Multiplizierer mitvariabler Rundungsposition [37]; (b) nach unserem besten Wissen den bisher schnellstenpublizierten Algorithmus zum Addieren und Runden von FP Zahlen [40], (c) den bisherschnellsten publizierten Algorithmus zum Runden bei der FP Multiplikation [11, 12] und(d) die bisher schnellste publizierte Implementierung einer linearen Approximation vonReziproken [36, 39]; (e) eine e�ziente Integration des Rundens in single precision unddouble precision [9]; (f) einen Booth-Multiplizierer mit verringerten Kosten [30].Alle entworfenen FPUs sind f�ur alle implementierten Operationen vollst�andig konformzum IEEE FP Standard 754, unterst�utzen sowohl single alsauch double precision Zahlen,und behandeln selbst denormalisierte Ergebnisse und Spezialf�alle in Hardware. Weil derEntwurf von IEEE konformen FPUs eine komplexe und fehleranf�allige Aufgabe ist, werdens�amtliche entworfenen FPUs detailiert auf Gatterebene spezi�ziert und ihre Korrektheit(insbesondere die Konformit�at zum IEEE FP Standard 754) bewiesen. Die vorgestelltenFPU Implementierungen werden bez�uglich der Hardwarekosten, der Zykluszeit und derLeistung, die sie integriert in einen gepipelinten RISC Processor aus [23] auf Traces derSPECfp92 Benchmark Suite erbringen, analysiert und verglichen. In dieser quantitativenAnalyse (siehe auch [38]) wird demonstriert, da� die Auswahl der Rundungs-Architektureiner FPU einen gr�o�eren Einu� auf die Prozessorleistung hat als die Auswahl der Im-plementierung der FP Multiplikation oder der FP Division. Im Gegensatz dazu ist derEinu� der Auswahl einer Rundungs-Architektur der FPU auf die Hardwarekosten vergle-ichsweise gering. Die Rundungs-Architektur, die vollst�andige eigene Rundungsimplemen-tierungen f�ur jede Funktionseinheit benutzt, liefert bei weitem die beste Leistung und istlediglich geringf�ugig teurer als Varianten mit anderen Rundungs-Architekturen. Demzu-folge scheint diese Rundungs-Architektur die beste Wahl in FP Implementierungen zusein. Die schnelle Implementierung dieser Rundungs-Architektur wurde erst durch dieschnelle Rundungsimplementierung f�ur FP Multiplizierer mit variabler Rundungspositionnach [37] erm�oglicht. Das unterstreicht die Bedeutung dieser Technik.



Extended AbstractThe importance of oating-point operations is increasing in recent graphic and multimediaapplications. Therefore, each modern microprocessor has to contain at least one oating-point unit, that supports and accelerates the oating-point computations. To achievea well de�ned behavior during the computations, the oating-point support should beconform with the IEEE oating-point standard 754-1985 [19].Despite the high demand for oating-point hardware implementations, an answer tothe question, how to design a fast IEEE compliant FP unit, rarely can be found in theopen literature. Moreover, there are several choices that need to be made when designingan IEEE compliant FPU, among them: the internal representation of oating-point num-bers, the rounding algorithms, handling of denormal results, usage of the same roundinghardware for di�erent units (e.g. adder, multiplier, divider), and the implementations ofthe adder, the multiplier and the divider. These choices inuence both the cost and theperformance of the FPU. Nevertheless, these issues have not been discussed in the openliterature todate. In contrast to this lack of publications about the implementation of fullyIEEE compliant FP operations or fully IEEE compliant FPUs, there are many publishedimplementations of speci�c oating-point operations for the case of normalized operandsin a speci�c precision, e.g. [9, 26, 27, 32, 40, 43, 44], and these implementations are highlyoptimized for speed. Therefore, it is an important question, how to integrate the imple-mentations of the di�erent FP operations for normalized operands into a oating-pointunit that supports more than one precision, denormalized numbers and special value re-sults. This mainly includes the questions of which internal FP representations should beused in a FP unit and how the microarchitecture of a FP unit could be organized.This work starts to �ll these gaps in the open literature and to �nd answers to theseopen questions. For this purpose, 18 di�erent implementations of a oating-point unitare designed, quantitatively analyzed and compared in this thesis. All proposed FP de-signs provide full compliance with the IEEE FP standard 754-1985 for all implementedoperations, support both single precision and double precision operands and also considerdenormalized numbers, special values, exponent wrapping and oating-point exceptionsin hardware. The core of this work is the design and the comparison of three di�erentFPU microarchitectures that consider the following three options:(I) the use of a shared general rounder for all functional units; A basic speci�cation ofsuch a rounder was �rst described in [10]. Thereafter, this rounder was implementedby our group, resulting in a version that will be included in [23], where also arigorous proof of the compliance with the IEEE rounding de�nition will be found.This rounder was further optimized to be included in this thesis.(II) a gradual rounding implementation in two steps, a �rst rounding step within thefunctional units assuming the case of a normalized double precision result and asecond rounding step within a shared gradual rounder that �xes the result for alliii



iv other cases; For the integrated rounding in the functional units assuming normalized,double precision operands and results, several algorithms from literature could beused. The implementation of the gradual rounder is based on the theory from [21]about gradual rounding. This rounding technique is integrated in this thesis for fullIEEE compliant rounding including the handling of denormalized results, specialvalues, exceptions and exponent wrapping.(III) the use of separate fully IEEE compliant rounding implementations for each func-tional unit, each including the handling of denormalized numbers, special cases,exceptions and exponent wrapping. The implementation of this microarchitecturefor a full IEEE compliant FPU with dedicated rounding implementations is com-pletely new in this thesis. Especially the integration of a variable position roundingimplementation into the multiplier, that is required to deal with denormalized mul-tiplication results, was one of the main problems for the implementation of thismicroarchitecture and is one of the main innovations of this work [37].Directly linked to the choice of the FP microarchitecture is the question of the internaloating-point representations. In this work, �ve di�erent internal FP representationsare de�ned. These are used to specify the interfaces between the functional units indetail. In addition to the consideration of the three di�erent microarchitectures for theFP implementation, the implementations of the FP-multiplication and the FP-division arechosen among 6(2x3) variants:� For the FP multiplication implementation a Booth encoded adder tree is used eitherin a full-sized version that is able to compute double precision and single precisionmultiplications in one iteration or in a half-sized version that computes double pre-cision multiplications in two iterations and single precision multiplications in oneiteration.� For the FP division implementation, we consider three di�erent implementationsof the Newton-Raphson iteration with an initial reciprocal approximation with anabsolute approximation error bounded by 2�8, 2�16, and 2�28, respectively. For thisinitial reciprocal approximation a fast implementation of a linear approximationformula using partial compressions was developed [36, 39].In addition to the di�erent design choices for the internal FP representations, the roundingmicroarchitecture and the choice of the FP multiplication and the FP division implemen-tation, the presented FPU designs make also use of the following innovations, that weredeveloped in the context of this work:(a) a fast implementation of variable position rounding for FP multiplication [37];(b) to the best of our knowledge the fastest integrated FP addition and rounding algo-rithm published todate [40],(c) the fastest FP multiplication rounding algorithm published todate [11, 12] and(d) the fastest linear reciprocal approximation implementation published todate. [36,39];(e) an e�cient integration of single and double precision rounding for FP multiplication[9];



v(f) a Booth encoded adder-tree with an improved cost formula [30].The proposed FPUs are quantitatively analyzed regarding the hardware cost, the cycletime and the performance. The hardware cost and the cycle time are measured using theformal Hardware model from [22]. The performance of the FP units is analyzed on tracesof the SPECfp92 Benchmark Suite integrated into a pipelined RISC-processor from [23].In this quantitative analysis (see also [38]) it is demonstrated that the choice of therounding microarchitecture in the FPU has a larger impact on the performance of the mi-croprocessor than the choice of the FP multiplication or the FP division implementation.In comparison to this the impact of the microarchitecture choice on the cost is relativelysmall. The microarchitecture that uses dedicated rounding units provides the best perfor-mance with only small additional cost, so that this rounding architecture seems to be thebest choice in oating-point implementations.
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ZusammenfassungFloating-Point Operationen gewinnen in heutigen Gra�k- und Multimedia-Anwendungenimmer mehr an Bedeutung. Deshalb besitzen aktuelle Mikroprozessoren mindestens eineFloating-Point Einheit, die die Floating-point Berechnungen unterst�utzt und beschleunigt.Um ein wohlde�niertes Verhalten der Floating-point Berechnungen zu erhalten, sollte dieFloating-point Unterst�utzung konform zum IEEE oating-point Standard 754-1985 [19]sein.Trotz des gro�en Bedeutung von Floating-Point Implementierungen in Hardware, gibtes in der o�enen Literatur nur sp�arliche Antworten auf die Frage, wie man eine schnelleIEEE konforme FP Einheit entwirft. Dar�uberhinaus gibt es verschiedene Entscheidungen,die beim Entwurf einer IEEE konformen FPU getro�en werden m�ussen, darunter: dieWahl der internen Darstellungen der Gleitkomma- (FP) Zahlen, die Rundungsalgorith-men, die Art der Behandlung von denormalisierten Ergebnissen, die Mehrfachverwendungvon Teilen der Hardware, wie z.B. die Benutzung derselben Rundungshardware f�ur ver-schiedene Einheiten, und die Implementierungen des FP Addierers, des FP Multiplizierersund des FP Dividierers. Diese Entscheidungen beeinussen sowohl die Kosten alsauchdie Leistung der FPU. Nichtsdestotrotz wurden diese Entscheidungen bislang nicht in derLiteratur diskutiert.Im Gegensatz zu diesem Mangel an Publikationen �uber die Implementierung von IEEEkonformen FPUs, gibt es allerdings eine Reihe von publizierten Implementierungen voneinzelnen Floating-point Operationen f�ur den Fall von normalisierten Operanden in einerfestgelegten Genauigkeit, z.B. [9, 26, 27, 32, 40, 43, 44], und diese Implementierungen sindin Hinblick auf ihre Geschwindigkeit optimiert. Deshalb ist es eine wichtige und inter-essante Frage, wie diese Implementierungen einzelner FP Operationen f�ur normalisierteOperanden in eine FPU, die mehr als einen FP Typ unterst�utzt und auch die Behandlungvon denormalisierten Zahlen und special values ber�ucksichtigt, integriert werden k�onnen.Das beinhaltet haupts�achlich die Fragen, welche internen FP Zahlendarstellungen in einerFP Einheit verwendet werden sollten und wie die Architetur einer FP Einheit zu organ-isieren ist.Die vorliegende Arbeit setzt in dieser L�ucke an. Zu diesem Zweck werden in dieserArbeit 18 verschiedene FP Implementierungen entworfen, quantitativ analysiert und ver-glichen. Alle vorgestellten FPU Entw�urfe sind f�ur die FP Operationen, die sie implemen-tieren vollst�andig konform zu dem IEEE Standard 754-1985, unterst�utzen sowohl singleprecision alsauch double precision Operanden und ber�ucksichtigen auch denormalisierteErgebnisse, special values, Exponenten wrapping und FP exceptions in Hardware. DerKern dieser Arbeit ist der Entwurf und der Vergleich von drei unterschiedlichen FPUArchitekturen, die die folgenden Optionen betrachten:(I) die Verwendung eines gemeinsamen allgemeinen Runders f�ur alle Funktionseinheiten.Eine grundlegende Spezi�kation eines solchen Runders wurde zuerst in [10] beschrieben.vii



viii Danach wurde dieser Runder in unserer Gruppe in einer Version implementiert, diein [23] vorgestellt werden wird. Dieser Runder wurde f�ur die vorliegende Arbeitweiter optimiert.(II) eine Rundungsimplementierung in zwei Schritten (gradual rounding), ein erster Run-dungsschritt in den Funktionseinheiten unter der Annahme von normalisierten Ergeb-nissen in double precision und ein zweiter Rundungsschritt in einem gemeinsamenGradual Rounder, der das Ergebis f�ur alle anderen F�alle (nicht double precisionoder kein normalisiertes Ergebnis) anpa�t. F�ur das Runden in den Funktionsein-heiten unter der Annahme von normalisierten double precision Ergebnissen k�onnenunterschiedliche Algorithmen aus der o�enen Literatur verwendet werden. Die Im-plementierung des gradual rounders basiert auf der Theorie aus [21]. Dieses Run-dungsprinzip wird in der vorliegenden Arbeit f�ur vollst�andig IEEE konformes Run-den unter Ber�ucksichtigung von denormalisierten Ergebnissen, special values, excep-tions und Exponent wrapping integriert.(III) die Verwendung von eigenen voll IEEE konformen Rundungsimplementierungen f�urjede Funktionseinheit, die jeweils eigenst�andig denormalisierte Ergebnisse, specialvalues, exceptions und ExponentWrapping gem�a� dem IEEE Standard ber�ucksichtigen.Die Implementierung dieser Architektur einer IEEE konformen FPU mit eigenst�andigenRundungsimplementierungen ist vollst�andig neu in dieser Arbeit. Besonders die In-tegration des Variable Position Rundens in den Multiplizierer, das erforderlich wird,um denormalisierte Multiplikationsergebnisse behandeln zu k�onnen, ist eines derHauptprobleme dieser FPU Architektur und damit ist die beschriebene Implemen-tierung eine der wichtigsten Innovationen der vorliegenden Arbeit [37] .Direkt verbunden mit der Wahl der Architektur der FPU ist die Frage nach den zu ver-wendenden internen FP Darstellungen. In dieser Arbeit werden f�unf verschiedene interneFP Darstellungen de�niert. Diese werden dann dazu verwendet um die Schnittstellenzwischen den Funktionseinheiten einfach, aber detailiert zu spezi�zieren.Zus�atzlich zur Betrachtung der drei unterschiedlichen FPU Architekturen w�ahlen wirdie Implementierungen der FP Multiplikation und der FP Division unter 6(2x3) verschiede-nen Varianten aus:� F�ur die Implementierung der FP Multiplikation wird entweder ein Booth2 Multi-plizierer vollst�andiger Gr�o�e verwendet, der sowohl single alsauch double precisionMultiplikationen in einer Iteration berechnen kann oder es wird ein Booth2 Mul-tiplizierer halber Gr�o�e verwendet, der single precision Multiplikationen in einerIteration und double precision Multiplikationen in zwei Iterationen berechnet.� F�ur die Implementierung der FP Division betrachten wir drei unterschiedliche Im-plementierungen der Newton-Raphson Iteration mit einer Startapproximation desReziproken 1fbmit absolutem Approximationsfehler kleiner als 2�8, 2�16 bzw. 2�28.F�ur diese Approximation des Reziproken wurde eine schnelle Implementierung einerlinearen Approximationsformel unter Verwendung einer partiellen Kompression en-twickelt [36, 39].Die vorgestellten FPU Designs benutzen dar�uberhinaus folgende Neuerungen, die im Rah-men dieser Arbeit entstanden sind:(a) eine schnelle Rundungsimplementierung f�ur den FPMultiplizierer mit variabler Run-dungsposition [37];



ix(b) nach unserem besten Wissen den bisher schnellsten publizierten Algorithmus zumAddieren und Runden von FP Zahlen [40],(c) den bisher schnellsten publizierten Algorithmus zum Runden bei der FP Multiplika-tion [11, 12] und(d) die bisher schnellste publizierte Implementierung einer linearen Approximation vonReziproken [36, 39],(e) eine e�ziente Integration des Rundens in single precision und double precision [9];(f) einen Booth-Multiplizierer mit verringerten Kosten [30].Die vorgestellten FPU Implementierungen werden bez�uglich der Hardwarekosten, der Zyk-luszeit und der Leistung, die sie integriert in einen gepipelinten RISC Processor aus [23]auf Traces der SPECfp92 Benchmark Suite erbringen, analysiert und verglichen. In dieserquantitativen Analyse (siehe auch [38]) wird gezeigt, da� die Auswahl der Rundungs-Architektur einer FPU einen gr�o�eren Einu� auf die Prozessorleistung hat als die Auswahlder Implementierung der FP Multiplikation oder der FP Division. Im Gegensatz dazu istder Einu� der Auswahl einer Rundungs-Architektur der FPU auf die Hardwarekostenvergleichsweise gering. Die Rundungs-Architektur, die vollst�andige eigene Rundungsim-plementierungen f�ur jede Funktionseinheit benutzt, liefert bei weitem die beste Leistungund ist lediglich geringf�ugig teurer als Varianten mit anderen Rundungs-Architekturen.Demzufolge scheint diese Rundungs-Architektur die beste Wahl in FP Implementierungenzu sein.
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Chapter 1IntroductionThe importance of oating-point operations is increasing in recent graphic and multimediaapplications. Therefore, each modern microprocessor has to contain at least one oating-point unit, that supports and accelerates the oating-point computations. To achievea well de�ned behavior during the computations, the oating-point support should beconform with the IEEE oating-point standard 754-1985 [19]. This IEEE speci�cationcould also be achieved by supporting parts of it in software, but for high-performancesystems a hardware solution is preferable.Despite the high demand for oating-point hardware implementations, a full answerto the question, how to design a fast IEEE compliant FP unit, rarely can be found in theopen literature. Moreover, there are several choices that need to be made when designingan IEEE compliant FPU, among them: the internal representation of oating-point num-bers, the rounding algorithms, handling of denormal results, usage of the same roundinghardware for di�erent units (e.g. adder, multiplier, divider), and the implementationsof the adder, the multiplier and the divider. These choices inuence both the cost andthe performance of the FPU. Nevertheless, these issues have not been discussed in theopen literature todate.In contrast to this lack of publications about the implementationof fully IEEE compliant FP operations or fully IEEE compliant FPUs, there are manypublications about the implementation of speci�c oating-point operations for the case ofnormalized operands in a speci�c precision, e.g. [9, 26, 27, 32, 40, 43, 44], and these im-plementations are highly optimized for speed. Therefore, it is an important question, howto integrate the implementations of the di�erent FP operations for normalized operandsinto a oating-point unit that supports more than one precision, denormalized numbersand special value results. This mainly includes the questions of which internal FP repre-sentations should be used in a FP unit and how the microarchitecture of a FP unit couldbe organized.We present an answer to this question by developing and comparing three di�erentrounding microarchitectures for a FP unit:(I) In the �rst microarchitecture all the rounding computations are concentrated ina shared general rounding unit. This rounding unit considers the rounding for allIEEE results including the exponent wrapping and the FP exceptions for both singleand double precision operations. A basic speci�cation of such a rounder was �rstdescribed in [10]. Thereafter, this rounder was implemented by our group, resultingin a version that will be included in [23], where also a rigorous correctness proof ofthe compliance with the IEEE rounding de�nition will be found. This rounder isfurther optimized in this thesis. 1



2 CHAPTER 1. INTRODUCTION(II) In the second microarchitecture, the rounding for the case of normalized doubleprecision results is computed within each functional unit and this rounded result is�xed for all the remaining cases in a second rounding step implemented by a sharedgradual rounding unit. For the integrated rounding in the functional units assumingnormalized, double precision operands and results, several algorithms from literaturecould be used. The implementation of the gradual rounder is based on the theoryfrom [21] about gradual rounding. This rounding technique is applied in this thesisfor full IEEE compliant rounding including the handling of denormalized results,special values, exceptions and exponent wrapping.(III) By the third rounding architecture a completely new architecture for an IEEE com-pliant FPU is suggested. In this architecture no rounding hardware is shared, buteach functional unit contains a dedicated rounding implementation that computesfull IEEE rounding considering denormal and special values, exceptions and expo-nent wrapping. The special problem with the implementation of this microarchitec-ture is the implementation if the oating-point multiplication. The oating-pointmultiplier conventionally requires normalized signi�cands in its operands and de-livers an almost normalized result. For the fast integration of IEEE rounding intothe FP multiplier, the signi�cand has to be rounded in parallel to the mulplicationcomputations. For the case of denormalized results this rounding has to be com-puted at a variable rounding position, that could be at each position within thesigni�cand. The idea, how to integrate such a variable position rounding into themultiplication implementation is the key concept for this microarchitecture. Suchan implementation is developed in this work. Because such a multiplication imple-mentation allows to work on normalized FP representations (even for denormalizedvalues) as inputs and outputs, the internal FP representations can eb changed tonormalized FP representations for this microarchitecture.To �nd out the impact of the microarchitecture choice on the quality of the oating-point implementation, we model the performance and the cost of designs that di�er by theuse of the di�erent microarchitectures. This would already be possible by a comparisonof three FP designs, but to improve the expressiveness of the comparison, and to be ableto compare the rounding architectures under several conditions, we additionally vary theFP multiplication and FP division implementation for each FP microarchitecture. Forthis purpose, we choose between two di�erent FP multiplication and three di�erent FPdivision implementations.� For the FP multiplication implementation a Booth encoded adder tree is used eitherin a full-sized version that is able to compute double precision and single precisionmultiplications in one iteration or in a half-sized version that computes double pre-cision multiplications in two iterations and single precision multiplications in oneiteration. For the Booth encoded adder trees the constructions from [30], where weimproved cost formula, are used.� For the FP division implementation, we consider three di�erent implementationsof the Newton-Raphson iteration with an initial reciprocal approximation with anabsolute approximation error bounded by 2�8, 2�16, and 2�28, respectively. For thisinitial reciprocal approximation a fast implementation of a linear approximationformula using partial compressions is used, that we developed in [36, 39].



3In combination with the three microarchitectures these options combine to a comparisonof 18 di�erent FP implementations.All the FPUs designed in this work are fully compliant with the IEEE standard for allimplemented operations, support both single and double precision, and deal with denor-malized values and special cases in hardware. Because to design an IEEE compliant FPUis a complex and error-prone task, all the FPU designs are speci�ed in full detail at gatelevel and the correctness of the FPU designs (in particular the compliance with the IEEEstandard) is proven.The performance of the designs is measured by a trace-driven run-time simulation ofa R3000 like pipelined RISC processor [22, 23] that integrates the proposed oating-pointimplementations. The simulations are computed on traces of the SPECfp92 Benchmarkssuite [17]. The costs of the designs are modeled by counting the gates that are requiredby the di�erent implementations. Thus, based on the performance and the cost of eachFP design, the quality of the FP designs and, in particular, the quality of the roundingmicroarchitectures can be compared.This thesis is partitioned into the following chapters. Chapter 2 prepares the de�ni-tions of the IEEE FP standard in preparation for the description of the FP implementa-tions. The basic description of the FP standard is similar to the description in [10, 23].Moreover, in this chapter a general framework for the integrated description of di�erentrounding functions is developed. Rigorous correctness proofs for the partitioning of fullIEEE compliant rounding into these rounding functions are given. This chapter also pro-vides computation utilities for the implementation of these rounding function. As oneimportant basic concept, injection-based rounding [9, 40, 11, 12] is introduced. Finally,this chapter prepares the internal FP representations, by that the interfaces between thefunctional units and the shared rounding hardware are speci�ed. Chapter 3 overviews therequirements on the implementation of a FPU und describes the microarchitectures andthe design choices for the proposed FP designs. Chapter 4 describes the implementationsof all basic FP operations for all three microarchitectures . In combination with a detaileddescription of the implementations at gate level, the correctness of the designs and thecompliance with the IEEE standard is proven. Finally, in Chapter 5 the proposed FPUimplementations are quantitatively analyzed and compared.



Chapter 2IEEE Floating-Point StandardThe IEEE oating-point Standard 754-1985 [19] speci�es oating-point number formats,operations and exception handling in detail. This chapter presents its information in aslightly di�erent form following [10, 23].2.1 NotationWe denote real values by small-letter names xyz and bit-strings by small capitalized namesxyz. The single bits of a bit-string xyz 2 f0; 1gn can be indexed by xyz[n2 : n1] =(xyz[n2]; � � � ;xyz[n1]) with integers n2 = n1 + n � 1. The operation < xyz[n2 : n1] >de�nes the binary value of xyz[n2 : n1], < xyz[n2 : n1] >2 de�nes the value of xyz[n2 : n1]interpreted as a 2's-complement number, and < xyz[n2 : n1] >biasn de�nes the value ofxyz[n2 : n1] interpreted as a biased binary number, that includes the bias biasn = 2n�1�1:< xyz[n2 : n1] > = Xn2i=n1 xyz[i] � 2i< xyz[n2 : n1] >2 = �xyz[n2] � 2n2 +Xn2�1i=n1 xyz[i] � 2i< xyz[n2 : n1] >biasn = Xn2i=n1 xyz[i] � 2i � biasn:To avoid negative indizes, we allow the right index of a bit-string to be larger than theleft index, like in xyz[n1 : n2]. Then, we de�ne a second version of the operations <> and<>2, that interpret the indizes to be multiplied by (�1). These operations are de�ned by< xyz[n1 : n2] >neg = Xn2i=n1 xyz[i] � 2�i< xyz[n1 : n2] >2neg = �xyz[n1] � 2�n1 +Xn2i=n1+1 xyz[i] � 2�i:The operation bin�+n�1� (x) : IR �! f0; 1gn computes the bit-string of the binary repre-sentation of x of length n from bit-position with weight 2� to bit-position with weight2�+n�1. If x has two di�erent binary representations, we choose the binary representationwith �nite length, so that in x = Pi x[i] � 2i the x[i] are unique and bin�+n�1� (x) can bewritten by: bin�+n�1� (x) = x[�+n�1 : �]:For x 2 f0; 1gn and s 2 f0; 1g we de�nex = (x[n� 1]; : : : ;x[0]) and x� s = (x[n� 1]� s; : : : ;x[0]� s):4



2.1. NOTATION 5Some crucial properties of two's complement numbers are (see [MP95])< 0;x[n� 1 : 0] >2 = < x[n� 1 : 0] >�< x[n� 1 : 0] >2 = < x[n� 1 : 0] >2 + 1< x[n� 1];x[n� 1 : 0] >2 = < x[n� 1 : 0] >2< x[n� 1 : 0] >2 � < x[n� 2 : 0] > mod 2n�1:From these properties one immediately derives the basic subtraction algorithm for binarynumbers. Let x;y 2 f0; 1gn and let <x> � <y>. Because 2n > <x> � <y> it su�cesto compute the result modulo 2n. Thus< x >�< y > = < 0;x >2 �< 0;y >2= < 0;x >2 +< 1;y >2 + 1� < x > + < y > +1 mod 2n:Lemma 2.1 Biased number strings x[n � 1 : 0] 6= 1n can be converted to two's com-plement number strings by (i) an increment and the invertation of the sign bit. Using< y[n� 1 : 0] > = < x[n� 1 : 0] >+ 1, we have:< (0;x[n� 1 : 0]) >biasn= < (y[n� 1];y[n� 1];y[n� 2 : 0]) >2:(ii) In the conversion, the sequence of the sign bit inversion and the increment can alsobe reversed, so that:< (0;x[n� 1 : 0]) >biasn = < (x[n� 1];x[n� 1];x[n� 2 : 0]) >2 + 1:Proof: (i):< (0;x[n� 1 : 0]) >biasn = < (0;x[n� 1 : 0]) >2 � biasn= < (0;x[n� 1 : 0]) >2 +< (1; 10n�21) >2= < (0;y[n� 1 : 0]) >2 +< (1; 10n�20) >2= < (y[n� 1];y[n� 1];y[n� 2 : 0]) >2:(ii): < (0;x[n� 1 : 0]) >biasn = < (0;x[n� 1 : 0]) >2 +< (1; 10n�21) >2= < (x[n� 1];x[n� 1];x[n� 2 : 0]) >2 + 1: 2Lemma 2.2 In the other direction, two's complement number strings x[n � 1 : 0] 6=(1; 0n�1) can be converted to biased number strings by an inversion and a decrement.Using < y[n� 1 : 0] >2 = < (x[n� 1];x[n� 2 : 0]) >2 � 1, we have:< x[n� 1 : 0] >2 = < y[n� 1 : 0] >biasn :



6 CHAPTER 2. IEEE FLOATING-POINT STANDARDProof:< x[n� 1 : 0] >2 = < (x[n� 1];x[n� 1 : 0]) >2 + biasn � biasn= < (x[n� 1];x[n� 1 : 0]) >2 +< (0; 01n�1) >2 � biasn= < (x[n� 1];x[n� 1 : 0]) >2 +< (0; 10n�1) >2 � 1� biasn= < (x[n� 1];x[n� 1];x[n� 2 : 0]) >2 � 1� biasn= < (x[n� 1];x[n� 2 : 0]) >2 � 1� biasn= < y[n� 1 : 0] >2 �biasn= < y[n� 1 : 0] >biasn 22.2 Numbers and Operations2.2.1 FactoringsEvery real number x can be factored into a sign factor (determined by a sign-bit s), ascale factor (determined by an exponent e) and a signi�cand f :x = (�1)s � f � 2e:The tripel (s; e; f) is called a factoring and the operationx = val(s; e; f) = (�1)s � f � 2ecomputes the value of this factoring.Although every factoring (s; e; f) is mapped to exactly one real number x by theoperation val(s; e; f), every real number x could be represented by in�nitely many di�erentfactorings, that correspond to the same valuex = val(sign(x); 0; jxj) = val(sign(x);�1; 2 � jxj) = � � � :De�nition 2.1 For a set of numbers X , we de�ne the set of factorings, FACT (X ), thatrepresent numbers of X byFACT (X ) = f(s; e; f) j s 2 f0; 1g; e 2 ZZ; f 2 IR and val(s; e; f) 2 XgTo de�ne a unique factoring representation of a real number, normalized factorings areintroduced:De�nition 2.2 A normalized factoring (s0; e0; f 0) is a factoring with s0 2 f0; 1g, e0 2 ZZ,f 0 2 [1; 2[: The condition f 0 2 [1; 2[ de�nes a normalized signi�cand f 0.Thus, every non-zero real value can be represented by a unique normalized factoring.De�nition 2.3 For all non-zero factorings (s; e; f) with f 6= 0, we de�ne the operation�(s; e; f) = (s0; e0; f 0) to compute the normalized factoring (s0; e0; f 0), so that val(s0; e0; f 0) =val(s; e; f). For factorings of zero with f = 0, we de�ne � to compute the identity func-tion: �(s; e; 0) = (s; e; 0). As in the normalization operation � the exponent range is notlimited, � is called an unbounded normalization shift. The result of an unbounded normal-ization shift, (s0; e0; f 0), is called an unbounded normalized factoring. Note, that from thede�nition of the unbounded normalization shift for zeros it follows, that also all factoringsof zero with f = 0 are unbounded normalized.



2.2. NUMBERS AND OPERATIONS 7Lemma 2.3 (i) For f 6= 0 and k = �blog(f)c, the unbounded normalization shift �(s; e; f)can be computed by: �(s; e; f) = (s; e� k; f � 2k):(ii) If 2� � f < 2, k can be interpreted as the number of leading zeros lz of the binaryrepresentation bin0�(f), so that �(s; e; f) = (s; e� lz; f � 2lz):Proof: (i) The result of the unbounded normalization shift �(s; e; f) has to be thenormalized factoring of (s; e; f). Therefore, (s; e� k; f � 2k) has to ful�ll the properties (1)val(s; e � k; f � 2k) = val(s; e; f) and (2) f � 2k 2 [1; 2[:(1) val(s; e� k; f � 2k) = (�1)s � f � 2k � 2e�k = (�1)s � f � 2e = val(s; e; f):(2) From �log(f) � �blog(f)c < �log(f) + 1, it follows, thatf � 2�log(f) � f � 2�blog(f)c < f � 2�log(f)+1f=f � f � 2�blog(f)c < 2f=f;and, therefore, f � 2k 2 [1; 2[, as required.(ii) We know from (i), that f � 2k 2 [1; 2[, and therefore, f 2 [2�k; 2�k+1[. From thecondition f < 2�k+1, it follows, that in the binary representation of f , f [0 : ] = bin0�(f),the bits f [0 : k � 1] have to be zero. From f > 2�k and f [0 : k � 1] = 0k, it follows, thatf [k] = 1. Thus, f [0 : ] contains exactly lz = k leading zeros and the lemma follows. 2De�nition 2.4 In contrast to the de�nition of an unbounded normalization shift, we de-�ne a bounded normalization shift of (s; e; f) by the operation b��c(s; e; f) = (s00; e00; f 00):b��c(s; e; f) = � (s0; e0; f 0) = �(s; e; f) if e0 � �(s; �; f � 2e��) otherwise, (2.1)i.e., the factoring (s00; e00; f 00) is normalized only if the normalization operation does notproduce an exponent smaller than �. The result of a bounded normalization shift (s00; e00; f 00)is called a bounded normalized factoring. From val(s; e; f) = val(s; �; f e��) and de�ni-tion 2.3, it follows that also the bounded normalization shift does not change the value ofthe factoring and we have val(b��c(s; e; f)) = val(s; e; f).2.2.2 IEEE NumbersFloating-point number types form subsets of the Reals. They can be represented byfactorings with limited and discretized value ranges for exponents and signi�cands. TheIEEE oating-point types are de�ned by describing the possible choices for the sign, theexponent and the signi�cand of a factoring and by the de�nition of some special values,so that each IEEE oating-point type (precision) consists of:� Normalized numbers are represented by normalized factorings (s0; e0; f 0), where theexponent e0 is an integer in the range emin � e0 � emax and the signi�cand f 0 belongsto the discrete set < f0[0 : p� 1] >neg 2 f1; 1 + 2�p+1; :::; 2� 2�p+1g. The conditionf 0 2 [1; 2[ de�nes a normalized signi�cand f 0.� Denormalized numbers are represented by factorings (s; e; f), where the exponentis e = emin and the signi�cand f belongs to the discrete set < f [0 : p� 1] >neg 2f0; 2�p+1; :::; 1 � 2�p+1g. As f 2 [0; 1[, and thus f 62 [1; 2[, the signi�cand is calleddenormalized.
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Figure 2.1: Geometry of IEEE oating-point numbers.� Special values are de�ned by the set consisting of +1, �1 and two types of Nota Number (NaN): signaling NaN (sNaN) and quiet NaN (qNaN). These values cannot be represented by factorings with �nite exponents. Therefore, special bit stringsfor the representation of special numbers are used. Nevertheless, we use the symbols(0; e1; f1) for the factoring of +1 and the symbols (1; e1; f1) for the factoring �1corresponding to the special bit strings for the IEEE in�nity representations. TheNaN representations are not unique. Therefore, if it does not matter which represen-tation is chosen, we use the symbols (s; esNaN ; fsNaN ) for sNaN factorings and thesymbols (s; eqNaN ; fqNaN ) for qNaN factorings corresponding to an arbitrary IEEENaN representation. If we want to refer to a speci�c NaN representation, we indexthem with a positive number, like in (s1; esNaN1; fsNaN1) or (s2; eqNaN2; fqNaN2). Wede�ne these factorings of special values to be normalized, so that the normalizationshifts compute the identity function on them. Moreover, we extend the de�nition ofthe function val by val(s; e1; f1) = (�1)s � 1, val(s; esNaN ; fsNaN ) = sNaN andval(s; eqNaN ; fqNaN ) = qNaN .The union of normalized numbers and denormalized numbers form the representable num-bers of an IEEE oating-point type. The geometry of the representable numbers is depictedin �gure 2.1 on page 8 and shows the following properties:� For every exponent value e between emin and emax there are two intervals of rep-resentable (normalized) numbers: [2e; 2e+1[ and ]�2e+1;�2e]. The gaps betweenconsecutive representable numbers in these intervals are 2e�(p�1).� As the exponent value increases by one, the length of the interval [2e; 2e+1[ doubles,and the gaps between the representable (normalized) numbers double as well. Thus,the number of representable numbers per interval is �xed and it equals 2p�1.� The denormalized numbers are the representable numbers in the interval ]�2emin; 2emin[.The gaps between consecutive representable numbers in this interval are 2emin�(p�1).Thus, the gaps in the interval [0; 2emin [ equal the gaps in the interval [2emin ; 2emin+1[.This property is called in the literature gradual underow since the large gap betweenzero and 2emin is �lled with denormalized numbers.The IEEE de�nition of normalized and denormalized oating-point numbers includes ade�nition of their factorings, so that we distinguish between the following sets of factoringsof an IEEE oating-point type:



2.2. NUMBERS AND OPERATIONS 9De�nition 2.5 The set of normalized IEEE factorings, NORfactn;p, the set of denor-malized IEEE factorings, DENfactn;p, and the set of special IEEE factorings, SPEfact :NORfactn;p = f(s; e; f) j s 2 f0; 1g; e 2 ZZ with (emin � e � emax);and b 2 IN with (0 � b < 2p�1) : f = 1 + b � 2�(p�1)oDENfactn;p = n(s; emin; f) j s 2 f0; 1g; b 2 IN with (0 � b < 2p�1) : f = b � 2�(p�1)oSPEfact = f(0; e1; f1); (1; e1; f1); (s; eqNaN ; fqNaN ); (s; esNaN ; fsNaN )g :We de�ne the set of IEEE factorings byIEEEfactn;p = DENfactn;p [NORfactn;p [ SPEfact:Accordingly, the following sets of numbers are de�ned:De�nition 2.6 For each IEEE oating-point type, the set of normalized numbers, NORn;p,the set of denormalized numbers, DEN n;p, and the set of IEEE special values, SPE , arede�ned by NORn;p = fx j 9(s; e; f) 2 NORfactn;p : x = val(s; e; f)gDENn;p = fx j 9(s; e; f) 2 DENfactn;p : x = val(s; e; f)gSPE = f+1;�1; qNaN; sNaNg :We de�ne the set of representable numbers of an IEEE oating-point type, REPn;p, byREPn;p = DEN n;p [NORn;p:The set of values of an IEEE oating-point type, FPn;p, additionaly includes the specialvalues, so that FPn;p = DEN n;p [NORn;p [ SPE= REPn;p [ SPE :Lemma 2.4 The sets of denormalized and normalized IEEE numbers/factorings are dis-junct: NORn;p \ DENn;p = ; and NORfactn;p \ DENfactn;p = ;. Thus, each IEEEoating-point value x 2 FPn;p has a unique IEEE factoring (s; e; f) 2 IEEEfactn;p withx = val(s; e; f).Proof: For normalized IEEE factorings (snor; enor; fnor) 2 NORfactn;p, we have enor �emin and fnor � 1, so that jxnorj = jval(snor; enor; fnor)j � 2emin : For denormalized IEEEfactorings (sden; eden; fden) 2 DENfactn;p, we have eden = emin and fnor < 1, so thatjxdenj = jval(sden; eden; fden)j < 2emin Thus, all normalized IEEE factorings have a largerabsolute value than each of the denormalized IEEE factorings, jxnorj > jxdenj, so thatNORn;p \ DEN n;p = ; and NORfactn;p \DENfactn;p = ;. For the second part of thelemma we additionaly have to use, that also each special value has a unique factoringrepresentation. This can easily be seen from the de�nitions of SPE and SPEfact. 2Lemma 2.5 From an arbitrary factoring (s; e; f) 2 FACT (FPn;p) of an IEEE FP num-ber x = val(s; e; f) 2 FPn;p, the bounded normalization shift d�emine(s; e; f) = (s00; e00; f 00)computes the corresponding IEEE factoring (s00; e00; f 00) 2 IEEEfactn;p with val(s00; e00; f 00) =x = val(s; e; f).



10 CHAPTER 2. IEEE FLOATING-POINT STANDARDprecision p n biasn emin emax jxjmin jxjmaxsingle 24 8 127 �126 127 �1:4 �10�45 �3:4 �1038single ext. �32 �11 | ��1022 �1023 | |double 53 11 1023 �1022 1023 �4:9 �10�322 �1:8 �10310double ext. �64 �15 | ��16382 �16383 | |Table 2.1: IEEE oating-point formats.Proof: The proof consists of two parts for the cases: (a) val(s; e; f) 2 DEN n;p and (b)(s; e; f) 2 NORn;p.(a) For val(s; e; f) 2 DEN n;p, there is a denormalized IEEE factoring (a; b; c) 2DENfactn;p with val(s; e; f) = val(a; b; c). We know already from the de�nition of thebounded normalization shift 2.4, that also val(s00; e00; f 00) = val(s; e; f). From the de�nitionof denormalized IEEE factorings (see de�nition 2.5), it follows that b = emin. Therefore,for the proof of (s00; e00; f 00) = (a; b; c) and (s00; e00; f 00) 2 DENfactn;p, it su�ces to showthat e00 = emin. From val(s; e; f) 2 DENn;p it follows, that jval(s; e; f)j < 2emin . We con-sider the normalized factoring (s; e0; f 0) = �(s; e; f). Because f 0 � 1, and 2e0 � f 0 < 2emin ,the exponent e0 < emin is smaller than the exponent bound of the bounded normalizationshift. Therefore, it follows from the de�nition of d�emine that e00 = emin and part (a) ofthe proof is completed.(b) For val(s; e; f) 2 NORn;p, we have to show that (s00; e00; f 00) is normalized. Fromval(s; e; f) 2 NORn;p, it follows, that jval(s; e; f)j � 2emin . We consider the normalizedfactoring (s; e0; f 0) = �(s; e; f). Because f 0 < 2, and 2e0 �f 0 � 2emin , the exponent e0 � eminis larger than or equal to the exponent bound of the bounded normalization shift. There-fore, it follows from the de�nition of d�emine that (s00; e00; f 00) is the normalized factoring(s00; e00; f 00) = �(s; e; f) and also part (b) of the proof is completed. 2De�nition 2.7 If an unbounded normalization shift is computed on the factorings fromFACT (FPn;p), we get a set, that includes the (unbounded) normalized factoring for eachIEEE number in FPn;p. In this way we de�ne the set of NF factorings NFfactn;p by:NFfactn;p = f(s; e; f) j (s; e; f) 2 FACT (FPn;p) and (s; e; f) = �(s; e; f)g :In the early days of oating-point design, many di�erent formats with di�erent valuesfor emin, emax, n and p were used. The success of the IEEE oating-point Standard 754-1985 [19] reduced the supported FP types to a few: single, double, single extended anddouble extended. The parameters for these precisions are given in table 2.1. In an IEEEcompliant FPU-Design only some of these FP-types have to be implemented. We will focuson the implementation of the single and double precision types, because these types aremost commonly used and the integration of additional types would be straight-forward.2.2.3 Packed IEEE Floating-Point FormatAt the bit level, numbers in the single and double formats are composed of three �eldscorresponding to sign, biased exponent and fraction (signi�cand without �rst bit) likedepicted in �gure 2.2. In the biased exponent representation, a bias of biasn = 2n�1� 1 isused. Because biasn = �emin+1 = emax (see table 2.1 for single and double precision), the
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Single Format (32 bits)

Double Format (64 bits)Figure 2.2: Packed IEEE oating-point format.value of e+biasn is in the range 1 � e+biasn � 2n�2. Thus, the bit strings for 0 and 2n�1do not occur in the n-bit biased binary representation e[n� 1 : 0] = binn�10 (e + biasn).Therefore, the exponent strings e = 0n and e = 1n are used for the representation ofdenormalized numbers and special values.The signi�cand f of a representable number can be represented with p bits f[0 :p�1] =bin0�p+1(f). But only the fraction f[1 :p�1] is included in the number string, and thehidden bit f[0] does not occur explicitely in the number representation. The hidden bitf[0] equals 1, i� f is normalized, and f[0] equals 0, i� f is denormalized. Because theexponent representation of emin for denormalized numbers di�ers from all exponent rep-resentations from normalized numbers, the hidden bit f[0] can be extracted from theexponent representation.The value of a number x represented by the packed representation (s;e[n�1:0]; f[1 :p�1])is de�ned by1. If e[n� 1 : 0] = 0n (denormalized numbers),then x = (�1)s �< (0:f[1 : p� 1]) >neg � 2emin .2. If e[n� 1 : 0] 6= 0n and e[n� 1 : 0] 6= 1n (normalized numbers),then x = (�1)s �< (1:f[1 : p� 1]) >neg � 2<e[n�1:0]>biasn .3. If e[n� 1 : 0] = 1n (special values),then x is a special value depending on f[1 : p� 1]:� If f[1 : p� 1] = 0p�1, then x is 1 and has the sign of (�1)s.� If f[1 : p� 1] 6= 0p�1, then x is NaN regardless of s.The standard does not specify how to distinguish between signaling and quietNaNs. We follow the speci�cation used in [29] and distinguish between signalingand quiet NaNs by the value of f [1]: If f [1] = 1, then x is a signaling NaN(sNaN), otherwise x is a quiet NaN (qNaN).2.2.4 OperationsBeside oating-point types, the IEEE FP Standard de�nes arithmetic operations thathave to be implemented in hardware or in software. In this section, we only de�ne exactresults of these operations for �nite input operands x = val(sx; ex; fx) 2 REPn;p andy = val(sy; ey; fy) 2 REPn;p. The computations involving special values will be describedlater in combination with the exception handling.



12 CHAPTER 2. IEEE FLOATING-POINT STANDARD� Addition/substraction. We use the bit sop to distinguish between addition (sop = 0)and substraction (sop = 1). The exact value of the addition/substraction result isde�ned by: exactADD=SUB = x+ (�1)sop � yThe computation of the factoring of this value involves several steps. Therefore, wepostpone its speci�cation to the description of the addition implementations.� Multiplication. The exact product of x and y is denoted by:exactMULT = x � y = (�1)sx+sy � (fx � fy) � 2ex+ey :Thus, (sx 
 sy; fx � fy; ex + ey) is a factoring of exactMULT .� Division. The exact quotient of x and y is denoted by:exactDIV = x=y = (�1)sx�sy � (fx=fy) � 2ex�ey :Thus, (sx 
 sy; fx=fy; ex � ey) is a factoring of exactDIV .� Square-root. For non-negative x � 0 the exact square-root of x is denoted by:exactSQRT = px =qfx � 2(exMOD2) � 2exDIV 2Thus, (0;pfx � 2(exMOD2); exDIV 2) is a factoring of exactSQRT .� Remainder. For non-zero y the exact remainder xREMy is de�ned by:exactREM = x� y � n;where n is the integer nearest the exact value x=y; whenever jn � x=yj = 0:5, thenn is even.� Conversion. In conversions, the input operand has already the exact value of theconversion. This value has than to be converted to the destination's format.exactCONV = x:In this operation we have to consider, that the input operand could also be an integer< x >2 in two's complement representation. Then,exactCONV = < x >2:A factoring of exactCONV is given by (sx; ex; fx) or (sign(< x >2); 0; j< x >2j).Moreover, the computations of the absolute value (sx := 0) and the negative of a oating-point number (sx := not(sx)) are suggested to be implemented.The oating-point types are not closed on all of these arithmetic operations. Therefore,the exact result of an operation might not belong to the same oating-point type. To beable to operate on results of operations, nevertheless, it is a basic principle of the IEEEstandard to consider the exact result of an operation �rst and map it to a oating-pointnumber by a selected rounding scheme to get a rounded result in the same oating-pointtype, �nally.Apart from that, the test operation (comparison) delivers a boolean value from twooating-point inputs. There are 26 di�erent comparisons de�ned by the IEEE standard,which we decode by 5 condition code bits cond[4 : 0]. The bits cond[3 : 0] switch theconditions f>;<;=; UNORDERD(?)g, and cond[4] negates the boolean result bit. Only26 of the 32 possible combinations are required by the standard. These are listed intable 2.2.
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condition cond[4 : 0] > < = ? INV if ?= 00010 F F T F No? <> 01101 T T F T No> 01000 T F F F Yes>= 01010 T F T F Yes< 00100 F T F F Yes<= 00110 F T T F Yes? 00001 F F F T No<> 01100 T T F F Yes<=> 01110 T T T F Yes? > 01001 T F F T No? >= 01011 T F T T No? < 00101 F T F T No? <= 00111 F T T T No? = 00011 F F T T NoNOT (>) 11000 F T T T YesNOT (>=) 11010 F T F T YesNOT (<) 10100 T F T T YesNOT (<=) 10110 T F F T YesNOT (?) 10001 T T T F NoNOT (<>) 11100 F F T T YesNOT (<=>) 11110 F F F T YesNOT (? >) 11001 F T T F NoNOT (? >=) 11011 F T F F NoNOT (? <) 10101 T F T F NoNOT (? <=) 10111 T F F F NoNOT (? =) 10011 T T F F NoTable 2.2: IEEE test operation (comparison).



14 CHAPTER 2. IEEE FLOATING-POINT STANDARD2.3 Rounding2.3.1 IEEE Rounding De�nitionIEEE rounding is a mapping from the reals into an IEEE oating-point type. The IEEEstandard de�nes rounding in four rounding modes: round toward 0 (RZ), round to near-est(even) (RNE), round toward +1 (RI) and round toward �1 (RMI). Let REP1 =REP [ f+1;�1g. For the rounding mode mode 2 fRZ;RNE;RI;RMIg, we presentthe rounding de�nition of the IEEE standard by the description of the rounding functionrmode : IR �! REP1. For the three directed rounding modes mode 2 fRZ;RI;RMIgthe obvious meaning of IEEE rounding is given by:rRI(x) = minfy 2 REP1 j x � ygrRMI(x) = maxfy 2 REP1 j x � ygrRZ(x) = � rRMI(x) if x � 0rRI(x) if x < 0:The de�nition of the rounding function rRNE is a bit more complicated. Let x�max =2emax(2�2�p) and let y 2 REP be the representable number nearest to x if this is unique,otherwise let y 2 REP be the even representable number, that is nearest to x. Then,rRNE(x) = 8<: +1 if x � x�max�1 if x � �x�maxy otherwise.2.3.2 Rounding FunctionsIn this section we de�ne rounding for a particular precision �, so that a real number xis mapped to an integral multiple of 2��. For a precision �, we de�ne four roundingfunctions, that we index by the names of the four IEEE rounding modes RZ, RNE, RI,and RMI. We will show in the next section how these rounding functions can be usedto implement IEEE rounding. For the de�nition of the rounding functions, we chose theinteger t, so that t � 2�� � x < (t+1) � 2�� and t� is the even number of the set ft; t+ 1g.rndRI;�(x) = � t � 2�� if x = t � 2��(t+ 1) � 2�� otherwise (2.2)rndRMI;�(x) = t � 2�� (2.3)rndRZ;�(x) = � t � 2�� if x � 0 OR x = t � 2��(t+ 1) � 2�� otherwise (2.4)rndRNE;�(x) = 8<: t � 2�� if x < (t+ 0:5) � 2�t� � 2�� if x = (t+ 0:5) � 2�(t+ 1) � 2�� otherwise (2.5)For the rounding of sign-magnitude representations with x = (�1)s � jxj, the four IEEErounding modes for the rounding of x can be reduced to the three IEEE rounding modesfRZ;RNE;RIg for the rounding of jxj [33]. This is done by reducing the directed roundingmodes RZ, RI and RMI to the rounding modes RZ and RI for the rounding on positivearguments based on the sign s of the number. Thus, leaving only the three rounding modesRZ, RNE, and RI that have only to operate on the positive argument jxj. In conjunction



2.3. ROUNDING 15mode rnd mode[1:0] mode ? 0 : sr mode[1:0] mode ? 1 : sr mode[1:0]RZ 00 RZ 00 RZ 00RNE 01 RNE 01 RNE 01RI 10 RI 10 RZ 00RMI 11 RZ 00 RI 10Table 2.3: rounding mode reduction for sign-magnitude argumentswith table 2.3 for the rounding mode reduction, we de�ne the ?-operation:?: fRZ;RNE;RI;RMIg � f0; 1g �! fRZ;RNE;RIg(mode; s) 7�! mode ? sthat maps the rounding mode mode and the sign s to the corresponding reduced roundingmode mode ? s. Based on this de�nition, the rounding mode reduction can be written as:rndmode;�(x) = rndmode;�((�1)s � jxj) = (�1)s � rndmode?s;�(jxj):If we encode the four IEEE rounding modes by rnd mode[1 :0] and the three reducedrounding modes by sr mode[1 :0] according to table 2.3, the ?-operation can be expressedby the equations: sr mode[1] = rnd mode[1] ^ (rnd mode[0]
s) (2.6)sr mode[0] = rnd mode[1] ^ rnd mode[0]: (2.7)Furthermore, Quach et al. [33] suggested to implement RNE by round to nearest up(RNU). With an integer t, such that t � 2�� � jxj < (t+1) � 2��, the rounding mode RNUis de�ned by: rndRNU;�(jxj) = � t � 2�� if jxj < (t+ 0:5) � 2��(t+ 1) � 2�� otherwise. (2.8)The reason that RNE can be implemented by RNU is that rndRNU;�(x) 6= rndRNE;�(x)i� x = (t+ 0:5) � 2�� and the LSB of the binary encoding of (t+ 1) � 2�� is 1. Therefore,obtaining rndRNE;�(x) from rndRNU;�(x) can be accomplished by \pulling down" theLSB, when x = (t+ 0:5) � 2��.2.3.3 IEEE Rounding FunctionsIn this section a description of IEEE rounding is given, which is more practical than thede�nition by the IEEE standard. The following lemma shows how the rounding functionsfor a particular precision � from the previous section are related to IEEE rounding. Afterthat we will consider the IEEE rounding on factorings.Lemma 2.6 For 2e0� jxj <2e0+1 andmode2fRZ;RNE;RI;RMIg, let e00=maxfe0; emingand xr = rndmode;�e00+p�1(x). Then,rmode(x) = 8>>>><>>>>: 1 if xr � 2emax+1 and mode 2 fRNE;RIgxmax if xr � 2emax+1 and mode 2 fRZ;RMIg�xmax if xr � �2emax+1 and mode 2 fRZ;RIg�1 if xr � �2emax+1 and mode 2 fRNE;RMIgxr otherwise



16 CHAPTER 2. IEEE FLOATING-POINT STANDARDProof: In the de�nitions of IEEE rounding, in all cases the rounded result rmode(x) iseither the nearest number of the destination FP type that is larger than the operand x orthe nearest number of the destination FP type that is smaller than or equal to the operandx. In the following, we distinguish between the cases: (a) jxj < xmax and (b) jxj � xmax.(a) For jxj < xmax, we get jxrj � xmax < 2emax+1, so that we have to show thatthe IEEE rounding de�nition from rmode(x) is equivalent to rndmode;�e00+p�1(x) for allrounding modes. We will �rst show that the two possible rounding choices of the IEEErounding de�nitions are identical to the two possible results from the de�nition of thefunction rndmode;�e00+p�1(x).(i) For jxj < 2emin , we are in the range of denormalized numbers, so that the gapbetween two consecutive FP numbers is 2emin�p+1 (see geometry of representablenumbers in section 2.2.2) and there is an integer k, such thatf1 = k � 2emin�p+1 � x < (k + 1) � 2emin�p+1 = f2and f1; f2 2 FPn;p are the nearest oating-point numbers in FPn;p larger than andsmaller than or equal to x.The de�nition of rndmode;�e00+p�1(x) uses the possible rounding results: f3 = l �2e00�p+1 and f4 = (l + 1) � 2e00�p+1 with f3 � x < f4. Since jxj < 2emin , we gete0 < emin and e00 = emin. Thus, the possible rounding choices are the same like in theIEEE rounding de�nition: f1 = k �2emin�p+1 = f3 and f2 = (k+1) �2emin�p+1 = f4.(ii) For jxj � 2emin , we are in the range of normalized numbers, so that the gap betweentwo consecutive FP numbers is 2e0�p+1 (see geometry of representable numbers insection 2.2.2). In this case, there is an integer k, so thatf1 = k � 2e0�p+1 � x < (k + 1) � 2e0�p+1 = f2and f1; f2 2 FPn;p are the nearest oating-point numbers in FPn;p larger than andsmaller than or equal to x. Because for jxj � 2emin , we get e0 � emin and e00 = e0,the numbers f1 and f2 agree with the two possible rounding results of the functionrndmode;�e00+p�1(x) = rndmode;�e0+p�1(x) also in this case.Based on the agreement of the two possible rounding choices, one can now easily check,that also the rounding decisions are the same for both the IEEE de�nition rmode(x) andthe rounding functions rndmode;�e00+p�1(x) for all four rounding modes. This completesthe proof for case (a).(b) For jxj � xmax, the possible rounding choices for the IEEE rounding de�nitionrmode(x) are += � xmax and += �1. One can easily check that the speci�cation of therounding cases in the lemma corresponds to the IEEE de�nition for jrndmode;e00�p+1(x)j �2emax+1, so that we only have to proof part (b) for jrndmode;e00�p+1(x)j < 2emax+1. Forjxj � xmax, the condition jrndmode;e00�p+1(x)j < 2emax+1 can only be ful�lled, if also atleast one of the following �ve conditions is ful�lled:(i) jxj = xmax;(ii) mode = RZ;(iii) x > 0 and mode = RMI;(iv) x < 0 and mode = RI;(v) jxj < (2� 2�p) � 2emax and mode = RNE.



2.3. ROUNDING 17For the rounding mode RNE, the value jxj = (2�2�p) �2emax (rounding interval midpoint)is not included in case (v), because this value is rounded to �2emax+1, which is the 'even'value among the two rounding choices. Since (2 � 2�p) � 2emax = x�max, in all of these�ve cases, the IEEE rounding de�nition leads to jrmode(x)j = xmax. From jxj � xmax,we get e00 = e0 � emax, so that all results of rndmode;�e00+p�1(x) are integral multiplesof 2emax�p+1. Because the only multiples of 2emax�p+1, that have a magnitude largerthan or equal to xmax and smaller than 2emax+1, are += � xmax, it follows that alsojrndmode;e00�p+1(x)j = xmax and the proof of the lemma is completed. 2In an FP implementation, the exact result of an operation will be represented by a factor-ing. In the following, we therefore de�ne IEEE rounding on factorings. We do not haveany conditions on the input factoring, but by the requirements for the destination factor-ing we distinguish between two versions: We would like to get either the IEEE factoringor the NF factoring of the rounded result.De�nition 2.8 For mode 2 fRZ;RNE;RI;RMIg, the rounding function iroundmode :FACT (IR) �! IEEEfact is de�ned to compute the IEEE factoring of the rounded result:iroundmode(s; e; f) = (sr; er; fr) 2 IEEEfact, with val(sr; er; fr) = rmode(val(s; e; f))and the rounding function nroundmode : FACT (IR) �! NFfact is de�ned to computethe NF factoring of the rounded result:nroundmode(s; e; f) = (sr; er; fr) 2 NFfact, with val(sr; er; fr) = rmode(val(s; e; f)):Moreover, we de�ne some functions that will be used for the rounding computationsDe�nition 2.9 For mode ? s 2 fRZ;RNE;RIg, aligned signi�cand rounding is therounding at the least signi�cant bit position p� 1 of the signi�cand f :a sig rndmode?s(s; e; f) = (s; e; rndmode?s;p�1(f)): (2.9)With mode ? s 2 fRZ;RNE;RIg, and vp = (p � 1) � maxf0; emin � eg, normalizedsigni�cand rounding is the rounding of the signi�cand f at the (variable) position vp:n sig rndmode?s(s; e; f) = (s; e; rndmode?s;vp(f)): (2.10)We de�ne the post-normalization shift function, that normalizes a factoring, i� the sig-ni�cand f of the factoring equals f = 2:post norm(s; e; f) = � (s; e+ 1; 1) if f = 2(s; e; f) otherwise. (2.11)The exponent rounding maps factorings that represent magnitudes larger than or equal to2emax+1 to the factoring of += �1 for the reduced rounding modes RNE or RI and tothe factoring of += � xmax in the reduced rounding mode RZ while restoring the sign ofthe factoring:exp rndmode?s(s; e; f) = 8>>>><>>>>:(s; e1; f1) if jval(s; e; f)j � 2emax+1 AND val(s; e; f) =2 SPEAND (mode ? s) 2 fRNE;RIg(s; emax; fmax) if jval(s; e; f)j � 2emax+1 ANDval(s; e; f) =2 SPE AND (mode ? s) = RZ(s; e; f) otherwise. (2.12)



18 CHAPTER 2. IEEE FLOATING-POINT STANDARDIn this de�nition, we distinguish between two di�erent rounding functions for the signif-icand: the aligned signi�cand rounding and the normalized signi�cand rounding. Thesetwo rounding functions di�er by the choice of the rounding position for the signi�cand.The aligned signi�cand rounding assumes, that the signi�cand is aligned, in such a way,that the signi�cand rounding position is always at signi�cand position p� 1. This is thecase for IEEE factorings. The situation is di�erent for NF factorings. Because they arenormalized even for denormalized values, the least signi�cant bit position of the signif-icand, which is the signi�cand rounding position, could vary within a wide range. Thevariable rounding position vp of the normalized signi�cand rounding takes care of thisrounding position shift. In this way, normalized signi�cand rounding is suitable for thesigni�cand rounding of NF factorings. The following two lemmas will show, how the com-putation of IEEE rounding on factorings can be based on the functions from de�nition2.9 and proove the above argumentation in detail. Lemma 2.7 will consider the IEEEfactoring and lemma 2.8 will consider the NF factoring of the rounded result.Lemma 2.7 For mode 2 fRZ;RNE;RI;RMIg, the IEEE factoring iroundmode(s; e; f) :FACT (IR) �! IEEEfact, with val(iroundmode(s; e; f) = rmode(val(s; e; f)), can be com-puted by the sequence of a bounded normalization shift, aligned signi�cand rounding, apost-normalization shift and exponent rounding:iroundmode(s; e; f) = exp rndmode?s(post norm(a sig rndmode?s(b�eminc(s; e; f)))).Proof: Let (s1; e1; f1) = b�eminc(s; e; f), and (s2; e2; f2) = a sig rndmode?s(s1; e1; f1),and (s3; e3; f3) =post norm(s2; e2; f2) and (sir; eir; fir) = exp rndmode?s(s3; e3; f3).We devide the proof into two steps. We will �rst show in part (a) of the proof,that the factoring (sir; eir; fir) has the value of the rounded result: val(sir; eir; fir) =rmode(val(s; e; f)). In part (b), it will then be shown, that the factoring (sir; eir; fir) is anIEEE factoring, namely that (sir; eir; fir) 2 IEEEfactn;p.(a) From the de�nitions of the bounded normalization shift and the post-normalizationshift it follows directly, that these two shift operations do not change the value of thefactoring, namely that val(s1; e1; f1) = val(s; e; f) and val(s3; e3; f3) = val(s2; e2; f2).Thus, we have to show, that the combination of the aligned signi�cand rounding and theexponent rounding implements IEEE rounding.From the de�nition of the bounded normalization shift it also follows, that e1 =maxfemin; e0g = e00, where e0 is the exponent of the corresponding unbounded normal-ized factoring. Thus, we can writeval(s3; e3; f3) = val(s2; e2; f2)= val(a sig rndmode?s(s1; e1; f1))= val(s1; e1; rndmode?s;p�1(f1))= val(s1; 0; 2e1 � rndmode?s;p�1(f1))= val(s1; 0; rndmode?s;�e1+p�1(2e1 � f1))= val(0; 0; rndmode;�e1+p�1((�1)s1 � 2e1 � f1))= rndmode;�e1+p�1(val(s1; e1; f1))= rndmode;�e00+p�1(val(s; e; f)):Let xr = rndmode;�e00+p�1(val(s; e; f)). Because val(s3; e3; f3) 62 SPE and s = s1 = s2 =s3 = sir, we get for the value of the rounded result:
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val(sir; eir; fir) = val(exp rndmode?s(s3; e3; f3))= 8<: (�1)s � 1 if jxrj � 2emax+1 AND (mode ? s) 2 fRNE;RIg(�1)s � xmax if jxrj � 2emax+1 AND (mode ? s) = RZxr otherwise.= rmode(val(s; e; f))The last of these equations follows from lemma 2.6 and from table 2.3 for the combinationof signs and reduced rounding modes. In this way step (a) of the proof is completed.(b) We have to show, that (sir; eir; fir) 2 IEEEfactn;p: For the factorings of +=�xmaxand +=�1 in the exponent rounding de�nition this is obvious, so that we focus on the caseof representable rounding results with (sir; eir; fir) = (s3; e3; f3) in the following. Frompart (a) we already know that val(sir; eir; fir) 2 FPn;p. Because of this and because IEEEfactoring representations are unique, it su�ces to show that the following two conditionsare ful�lled: (COND1) (jval(sir; eir; fir)j � 2emin) =) (fir 2 [1; 2[); and(COND2) (jval(sir; eir; fir)j < 2emin) =) (eir = emin):For the remaining part of the proof we distinguish between: (i) jval(s; e; f)j � 2emin ;and (ii) jval(s; e; f)j < 2emin . For both of these cases we have to show (COND1) and(COND2):(i) Because 2emin is a representable number, it follows from jval(s; e; f)j � 2emin , thatalso the absolute value of the rounded result is larger than or equal to 2emin . Hence,the condition (COND2) is always full�lled for case (i).From jval(s; e; f)j � 2emin , it follows, that the result of the bounded normalizationshift is normalized, so that f1 2 [1; 2[. After signi�cand rounding we get a signi�-cand in the range f2 2 [1; 2], so that the post-normalization shift always outputs anormalized rounded signi�cand f3 = fir 2 [1; 2[, and thus, also condition (COND1)is ful�lled.(ii) From jval(s; e; f)j < 2emin it follows, that the result of the bounded normalizationshift is denormalized with f1 2 [0; 1[ and e1 = emin. For f1 2 [0; 1[ we get a roundedsigni�cand in the range f2 2 [0; 1], so the exponent rounding does no change andwe get the exponent of the rounded result eir = e3 = emin. In this way condition(COND2) is full�lled. From val(sir; eir; fir) � 2emin , fir 2 [0; 1] and eir = emin, itfollows that fir = 1 is normalized, so that also (COND1) is ful�lled. 2Lemma 2.8 For mode 2 fRZ;RNE;RI;RMIg the NF factoring nroundmode(s; e; f) :FACT (IR) �! NFfact, which has the value val(nroundmode(s; e; f)) = rmode(val(s; e; f)),can be computed by the sequence of an unbounded normalization shift, normalized signi�-cand rounding, another unbounded normalization shift and exponent rounding:nroundmode(s; e; f) = exp rndmode?s(�(n sig rndmode?s(�(s; e; f)))).Proof: Let (s1n; e1n; f1n) = �(s; e; f), and let (s2n; e2n; f2n) = n sig rndmode?s(s1n; e1n; f1n).In addition to this we use the notation from the previous lemma.We devide the proof into the following two steps: We will �rst show in part (a) thatthe factoring (snr; enr; fnr) = exp rndmode?s(�(n sig rndmode?s(�(s; e; f)))) has the valueof the rounded result: val(snr; enr; fnr) = rmode(val(s; e; f)). In part (b) of the proof,



20 CHAPTER 2. IEEE FLOATING-POINT STANDARDit will then be shown that the factoring (snr; enr; fnr) is a NF factoring, namely that(snr; enr; fnr) 2 NFfactn;p.(a) The normalization shifts do not change the value of a factoring and the value ofthe exponent rounding only depends on the value of its input factoring. Hence, for theproof of val(snr; enr; fnr) = val(sir; eir; fir) = rmode(val(s; e; f)), it su�ces to show thatval(s2n; e2n; f2n) = n sig round(�(s; e; f)) = a sig round(d�emine(s; e; f) = val(s2; e2; f2):For the proof of this equation, we distinguish between: (i) jval(s; e; f)j � 2emin ; and (ii)jval(s; e; f)j < 2emin .(i) For jval(s; e; f)j � 2emin ,the output of the bounded normalization shift is normalized,so that (s1n; e1n; f1n) = (s1; e1; f1) and e1n = e0 > emin. Hence, in the de�nitionof normalized signi�cand rounding, the variable rounding position becomes vp =(p � 1) �maxf0; emin � eg = p� 1 and agrees with the rounding position p � 1 ofthe aligned signi�cand rounding.Thus, also the output factorings of both signi�candrounding functions are the same: val(s2n; e2n; f2n) = val(s2; e2; f2).(ii) Because for jval(s; e; f)j = 0, none of the 2 steps in both computations change thefactoring, we only deal with non-zero numbers in the following. Since jval(s; e; f)j <2emin , we get for the exponent of the unbounded normalized factoring e1n = e0 <emin. For the same reason, the output of the bounded normalization shift is denor-malized with e1 = emin, so that the overall rounding position of aligned signi�candrounding becomes �emin + p � 1. In the case of normalized signi�cand rounding,the variable signi�cand rounding position is vp = (p � 1) �maxf0; emin � e1ng =(p� 1) � emin � e1n. In the combination with the exponent factor 2e1n , we get theoverall rounding position �emin + p� 1 also in this case.(b) We have to show, that (snr; enr; fnr) is a NF factoring. Hence, (snr; enr; fnr) has tobe normalized for all non-zero numbers. After the second unbounded normalization shift,we get a normalized signi�cand fnr in the range fnr 2 [1; 2[ for all non-zero representablenumbers. Because there is no condition on the NF factoring of a zero and the factoringrepresentations of +=�1 and +=� xmax are de�ned in the exponent rounding output tobe normalized, (snr; enr; fnr) is a NF factoring in any case. 2We distinguish between rounding in single precision and double precision by the choiceof the corresponding values of: p, n, emin, emax, fmax, e1 and f1.For the de�nition of exceptions, and some correctness proofs, it is helpful to have arounding function �r with an unbounded exponent range. For a factoring (s; e; f) withf 6= 0, the new rounding �r is de�ned by:�rmode(s; e; f) = post norm(a sig rndmode?s(�(s; e; f))): (2.13)



2.4. SPECIAL CASES 212.4 Special CasesThe IEEE standard de�nes six exceptions, that can occur, when a oating-point operationis executed: overow, underow, inexact, invalid, division by zero and unimplemented FPoperation. The occurrences of these exceptions are signaled by the six IEEE ags ovf,unf, inx, inv, dvz, and ufo. Exept for the combinations of inx with ovf or unf, atmost one FP exception can occur during an operation.The trap handler enable-bits: ovf en, unf en, inx en, inv en, and dvz en are setby the user. For an unimplemented FP operation, the corresponding trap handler isalways enabled. If a trap handler is enabled, i.e., the trap handler enable bit is active,the occurrence of the corresponding exception starts the execution of an exception traproutine. With a disabled trap handler, a result is returned immedately even for theoccurance of the corresponding exception. If inx en and ovf en or unf en are enabledand both exceptions occur during the same operation, the ovf or unf-trap has precedenceover the execution of the inx-trap.After describing the IEEE ags and exception handling in detail, we will overviewthe results of operations on special values, that have a strong relationship to exceptions.Finally, we will give a general summary on the computations for each IEEE operation.2.4.1 IEEE FlagsWe consider an arithmetic oating-point operation op 2 f ADD/SUB, MULT, DIV, SQRT,CONVg operating on �nite operands. This operation op delivers the exact result exactop,that can be represented by the factoring (sex; eex; fex). We denote the value of the roundedresult of the operation by bro = val(roundmode((sex; eex; fex)), and the value of the resultthat is rounded with an unbounded exponent range by: uro = val(�rmode(sex; eex; fex)):Overow The overow ag signals, that the magnitude of the unbounded rounded resultis bigger than the magnitude of the largest representable number:juroj > jxmaxj = (2� 2�p+1) � 2emax :Underow The conditions for an underow di�er depending on the value of unf en.They are based on the de�nitions of tininess and loss-of-accuracy:� There are two possible de�nitions for tininess given by the standard: A result is tiny-before-rounding, if 0 6= jexactopj<2emin , and tiny-after-rounding, if 0 6= juroj<2emin :� Similarly, the standard provides two loss-of-accuracy de�nitions: Loss-of-accuracy-aoccurs, if exactop 6=0 AND uro 6=bro, and loss-of-accuracy-b occurs, if bro 6=exactop.For both tininess and loss-of-accuracy, the implementor may choose one of the two de�ni-tions provided by the standard, but these choices have to be the same for all operationsand precisions. Based on these conditions, the underow exception is de�ned by:� If unf en = 0, then an underow occurs if tininess and loss-of-accuracy occurs.� If unf en = 1, then an underow occurs if tininess occurs.De�nition 2.10 We de�ne the boolean function TINY (s; e; f), that delivers the booleanvalue corresponding to the tininess condition (0 6= jval(s; e; f)j < 2emin).



22 CHAPTER 2. IEEE FLOATING-POINT STANDARDLemma 2.9 For 0 6= f and the normalized factoring (s; e0; f 0) = �(s; e; f), the numberx = val(s; e; f) is tiny, signaled by (TINY (s; e; f) = 1), i� (e0 < emin).Proof: Because (s; e0; f 0) is normalized, 1 � f 0 < 2 and 2e0 � jval(s; e; f)j < 2e0+1. Thus,the tininess condition can be written as e0+1 � emin. This is equivalent to e0 < emin. 2Inexact An inexact exception occurs if bro 6= exactop. This is exactly the loss-of-accuracy-b condition and includes the case of an overow.Division by Zero The dvz ag signals, that the second operand of a division equals+0 or �0 and the �rst operand is a �nite non-zero number.Invalid The inv ag is signaled:1. for any operation, where at least one operand is a signaling NaN,2. for e�ective subtractions of two in�nities,3. for the multiplication of 0 and in�nity regardless of the signs,4. for divisions of 0=0 or 1=1 regardless of the signs,5. for remainders, where the �rst operand is in�nite or the second is a zero,6. for the square root of an operand less than zero,7. for comparisons with a condition code that demands 'invalid if unordered'(see ta-ble 2.2) and the operands are unordered.Unimplemented FP operation The ufo ag is signaled for any FP operation that isnot implemented in hardware.2.4.2 ExceptionsIf an exception is recognized during the computation of an operation, the correspondingIEEE ag(s) are set to 1. The IEEE ags are sticky, i.e., if they have been set once, theystay active till they are cleared by the user. The further computation depends on thevalue of the corresponding trap handler enable bit:Disabled Trap Handler In most cases the delivered result has to be the correctlyrounded result bro, but for a division by zero, a correctly signed in�nity, and for an invalidexception, a qNaN has to be delivered. Moreover, for operations on special values andzeros, the results are summarized in the next paragraph. With the computation of theresult, the execution of the operation is �nished.



2.4. SPECIAL CASES 23Enabled Trap Handler The operation starts the corresponding trap routine, that isresponsible for the further computations. The operands for the trap routine are speci�edby the standard and di�er from the above results depending on the exception:Each trap should get the operation type of the operation that caused the exception,the information, which exception occured and the destination's format. In the case of atrapped invalid or a trapped division by zero, the operand values have to be accessible tothe trap routine. In a trapped inexact exception the correctly rounded result is given tothe trap routine. In trapped overows and trapped underows exponent wrapping has tobe computed, before the result is fed to the trap routine:� Trapped Overow. If a trapped overow occurs, then the wrapped exponent e� �is used and a factoring of rmode(exactop � 2��) is delivered to the trap routine, where� = 3 � 2n�2. We will consider the corresponding IEEE factoring iroundmode(s; e� �; f)or the corresponding NF factoring nroundmode(s; e� �; f))The magnitude of all exact overow results is larger than lboundovf = 2emax =22n�1�1. An upper bound on the magnitude of exact results is found looking at thecase, that the largest representable number, that is smaller than 2 � 2emax = 22n�1 ,is divided by the representable number with the smallest magnitude 2emin�p+1 =2�2n�1+2�p+1: 22n�1=2�2n�1+2�p+1 = 22n�1+2n�1�2+p�1 = 22n+p�3Thus, the magnitude of all exact results of the standard's operations on representablenumbers is smaller than uboundovf = 22n+p�3. The exponent wrapping by ��reduces the lower bound on the magnitude of exact overow results tolboundovf � 2�� = 22n�1�1�3�2n�2 = 2�2n�2�1 > 2�2n�1+2 = 2eminand the upper bound on the magnitude of exact overow results touboundovf � 2�� = 22n+p�3�3�2n�2 = 22n�2+p�3 < 22n�1�1 = 2emax :Therefore, after exponent wrapping all overow results have values of normalizednumbers.� Trapped Underow. If a trapped underow occurs, then the wrapped expo-nent e+ � is used and a factoring of rmode(exactop � 2�) is delivered to the traproutine, where � = 3 � 2n�2. We will consider the corresponding IEEE factoringiroundmode(s; e+ �; f) or the corresponding NF factoring nroundmode(s; e+ �; f))The magnitude of all exact underow results is smaller than uboundunf = 2emin =2�2n�1+2. A lower bound on the magnitude of exact results is found looking atthe case, that the representable number with the smallest magnitude 2emin�p+1 =2�2n�1�p+3 is multiplied by itself:2�2n�1�p+3 � 2�2n�1�p+3 = 2�2n�2p+6:Thus, the magnitude of all exact results of the standard's operations on representablenumbers is larger than or equal to lboundunf = 2�2n�2p+6.The exponent wrapping by � increases the lower bound on the magnitude of exactunderow results tolboundunf � 2� = 2�2n�2p+6+3�2n�2 = 2�2n�2�2p+6 > 2�2n�1+2 = 2emin



24 CHAPTER 2. IEEE FLOATING-POINT STANDARDADD +0 �0 +y �y +1 �1 qNaN2 sNaN+0 +0 +0(�0RMI) +y �y +1 �1 qNaN2 qNaN�0 +0(�0RMI) �0 +y �y +1 �1 qNaN2 qNaN+x +x +x n:s: n:s: +1 �1 qNaN2 qNaN�x �x �x n:s: n:s: +1 �1 qNaN2 qNaN+1 +1 +1 +1 +1 +1 qNaN qNaN2 qNaN�1 �1 �1 �1 �1 qNaN �1 qNaN2 qNaNqNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1/2 qNaNsNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaNTable 2.4: Results of additions on special values.ADD +=� 0 +y �y +1 �1 qNaN2 sNaN+=� 0 no no no no no no INV+x no OVF/UNF/INX/no UNF/INX/no no no no INV�x no UNF/INX/no OVF/UNF/INX/no no no no INV+1 no no no no INV no INV�1 no no no INV no no INVqNaN1 no no no no no no INVsNaN INV INV INV INV INV INV INVTable 2.5: Exceptions of additions.and the upper bound on the magnitude of exact underow results touboundunf � 2� = 2�2n�1+2+3�2n�2 = 22n�2+2 < 22n�1�1 = 2emax :Therefore, after exponent wrapping also all underow results have values of normal-ized numbers.Corollary 2.10 After exponent wrapping all results of operations on representable num-bers have values of normalized numbers.2.4.3 Operations on Special ValuesIn this section, we summarize the results of additions (see table 2.4, for subtractions thesecond operand has to be multiplied by �1), multiplications (see table 2.6), divisions (seetable 2.8), and square roots (see table 2.10) on special values and zeros and list the possibleexceptions (see table 2.5,2.7,2.9, and 2.10).In the tables, di�erent possibilities of one entry are separated by '/', 'n.s.' means thatthe corresponding entry can not be speci�ed in general, 'no' means, that no exceptionoccurs, and '(�0 RMI)' means, that the result is �0 if the rounding mode is RMI. Becausethe representation of qNaNs is not unique, we enumerate such operands by qNaN1 andqNaN2.



2.4. SPECIAL CASES 25MULT +0 �0 +y �y +1 �1 qNaN2 sNaN+0 +0 �0 +0 �0 qNaN qNaN qNaN2 qNaN�0 �0 +0 �0 +0 qNaN qNaN qNaN2 qNaN+x +0 �0 n:s: n:s: +1 �1 qNaN2 qNaN�x �0 +0 n:s: n:s: �1 +1 qNaN2 qNaN+1 qNaN qNaN +1 �1 +1 �1 qNaN2 qNaN�1 qNaN qNaN �1 +1 �1 +1 qNaN2 qNaNqNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1/2 qNaNsNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaNTable 2.6: Results of multiplications on special values.MULT +=� 0 +=� y +=�1 qNaN2 sNaN+=� 0 no no INV no INV+=� x no OVF/UNF/INX/no no no INV+=�1 INV no no no INVqNaN1 no no no no INVsNaN INV INV INV INV INVTable 2.7: Multiplication exceptions.DIV +0 �0 +y �y +1 �1 qNaN2 sNaN+0 qNaN qNaN +0 �0 +0 �0 qNaN2 qNaN�0 qNaN qNaN �0 +0 �0 +0 qNaN2 qNaN+x +1 �1 n:s: n:s: +0 �0 qNaN2 qNaN�x �1 +1 n:s: n:s: �0 +0 qNaN2 qNaN+1 +1 �1 +1 �1 qNaN qNaN qNaN2 qNaN�1 �1 +1 �1 +1 qNaN qNaN qNaN2 qNaNqNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1 qNaN1/2 qNaNsNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaNTable 2.8: results of division on special values.DIV +=� 0 +=�y +=�1 qNaN sNaN+=� 0 INV no no no INV+=� x DVZ OVF/UNF/INX/no no no INV+=�1 no no INV no INVqNaN no no no no INVsNaN INV INV INV INV INVTable 2.9: Division exceptions.SQRT +0 �0 +y �y +1 �1 qNaN1 sNaNresultexception +0no �0no n:s:INX/no qNaNINV +1no qNaNINV qNaN1no qNaNINVTable 2.10: Results and exceptions of squareroots on special values.



26 CHAPTER 2. IEEE FLOATING-POINT STANDARD2.4.4 Summary of IEEE ComputationsIn the previous sections, various aspects of the computations for IEEE operations weredescribed separately. In this section all aspects of the computations will be summarizedfor each IEEE operation.In the previous section about the computation on special value and zero operands xand y, we saw, that for these cases the result can have only one of a few possible values,namely, +=�0, +=�1, qNaN , x, y. If none of these special cases occurs, the IEEErounded result with or without exponent wrapping should be output.Assume, that we have a factoring (src; erc; frc), that represents the exact result exactopfor op 2 fADD=SUB;MULT;DIV;SQRT;CONVg and for non-zero representable operands.We de�ne �ve special condition ags scqnan, scinf, scx, scy, and sczero that corre-spond to the occurance of the special cases results: qNaN , +=�1, x = val(sa; ea; fa),y = val(sb; eb; fb), and +=�0. Moreover, the exponent wrapping constant is de�ned by:wec = 8<: �� if ovf AND ovf en (wrapped overow)+� if unf AND unf en (wrapped underow)0 otherwise, (2.14)Based on these de�nitions, the IEEE factoring of the �nal result of an IEEE operationcan be selected by:(sifnl; eifnl; fifnl) = 8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczeroiround(src; erc + wec; frc) otherwise (2.15)The corresponding NF factoring of the rounded IEEE operation result is given by (seelemma 2.8):(snfnl; enfnl; fnfnl) = 8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczeronround(src; erc + wec; frc) otherwise (2.16)De�nition 2.11 We extend the de�nition of the function iround on factorings of specialvalues (ssp; esp; fsp) 2 SPEfact by the identity iround(ssp; esp; fsp) = (ssp; esp; fsp).Also this extension is included in the computation sequence for iround from lemma2.7. The reason for this is, that we de�ne the factorings of special values to be exactand normalized and with an exponent of emax + 1. Thus, the �rst three steps of thebounded normalization shift, the signi�cand rounding and the post-normalization shift donot change the factorings of special values. Also in the last step the factoring is notchanged, because the de�nition of the exponent rounding in equation 2.12 already includesthis case.Note, that the exponent wrapping constant is 0 for operations on special values, becauseno overow or underow can occur for them. Thus, with the extension of the de�nition



2.4. SPECIAL CASES 27of the function iround and the de�nition of the exact result factoring:(sex; eex; fex) = 8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczero(src; erc; frc) otherwise, (2.17)for all cases the IEEE factoring of the �nal result (sifnl; eifnl; fifnl) can be described by:(sifnl; eifnl; fifnl) = iround(sex; eex + wec; fex) (2.18)With the same extension of the function nround and a similar argumentation for thecomputation sequence for nround from lemma 2.8, for all cases the corresponding NFfactoring of the �nal result (snfnl; enfnl; fnfnl) is computed by(snfnl; enfnl; fnfnl) = nround(sex; eex + wec; fex) (2.19)The equations for the special condition ags and the sign ssc can be easily extracted foreach IEEE operation from the tables on the special value results in the previous section.With the factorings of the input operands (sa; ea; fa) and (sb; eb; fb), and the followingconditions on these factoringszeroa () (jval(sa; ea; fa)j = 0) zerob () (jval(sb; eb; fb)j = 0)infa () (jval(sa; ea; fa)j =1) infb () (jval(sb; eb; fb)j =1)qnana () (val(sa; ea; fa) = qNaN) qnanb () (val(sb; eb; fb) = qNaN)snana () (val(sa; ea; fa) = sNaN) snanb () (val(sb; eb; fb) = sNaN)zerorc () (frc = 0);we get the following equations:� addition/subtraction:scqnan = snana _ snanb_ (infa ^ infb ^ (sa
 sb)) (2.20)scx = (qnana ^ snanb) _ (zerob ^ zeroa ^ snana) (2.21)scy = (qnanb ^ qnana ^ snana) _ (zeroa ^ zerob ^ snanb) (2.22)scinf = scqnan ^ scx ^ scy ^ (infa _ infb) (2.23)sczero = (zeroa ^ zerob) _ zerorc (2.24)sinf = (sa ^ infa) _ (sb ^ infb) (2.25)s0 = (is RMI ^ (sa� sb� sop)) _ (sa ^ (sb� sop)) (2.26)� multiplication:scqnan = snana _ snanb _ (infa ^ zerob) _ (infb ^ zeroa) (2.27)scx = qnana ^ snanb (2.28)scy = qnanb ^ scx ^ snana (2.29)scinf = scqnan^ scx ^ scy ^ (infa _ infb) (2.30)sczero = (zeroa ^ zerob) _ (scqnan _ scx _ scy) (2.31)sinf = sa
 sb (2.32)s0 = sinf (2.33)



28 CHAPTER 2. IEEE FLOATING-POINT STANDARD� division: scqnan = snana _ snanb _ (zeroa ^ zerob) _ (infa ^ infb) (2.34)scx = qnana ^ snanb (2.35)scy = qnanb ^ scx ^ snana (2.36)scinf = scqnan^ scx ^ scy ^ (infa _ zerob) (2.37)sczero = scqnan^ scx ^ scy ^ (infb _ zeroa) (2.38)sinf = sa
 sb (2.39)s0 = sinf (2.40)� square-root: scqnan = (zeroa ^ sa ^ qnana) _ snana (2.41)scx = qnana (2.42)scy = 0 (2.43)scinf = infa ^ sa (2.44)sczero = zeroa (2.45)sinf = 0 (2.46)s0 = sa (2.47)This completes the speci�cation of the IEEE operations. In the next section we willprovide some methodologies, by that the rounding computations can be simpli�ed.



2.5. ROUNDING COMPUTATION UTILITIES 292.5 Rounding Computation Utilities2.5.1 RepresentativesDe�nition 2.12 For an integer , two real numbers x1 and x2 are -equivalent, denotedby x1 = x2 if there exists an integer q such that x1; x2 2]q � 2� ; (q+1) � 2� [ or x1 = x2 =q � 2� .Thus, the binary representation of -equivalent reals must agree in the �rst  positions tothe right of the binary point. We choose the -representatives of the equivalence classesas follows:De�nition 2.13 Let x denote a real number and  an integer. Let q denote the integersatisfying: q2� � x < (q + 1)2� . The -representative of x, denoted by rep(x), isde�ned by: rep(x) = � q2� if x = q2�(q + 0:5)2� if x 2]q2� ; (q + 1)2� [.The -representatives form integral multiples of 2��1. Thus, they can be representedby  + 1 bits to the right of the binary point. Note, that the least signi�cant bit in thisrepresentation indicates whether the corresponding equivalence class is a single point oran open interval. The following lemma describes, how the -representative of a binarynumber can be computed.Lemma 2.11 With f 2 [0; 2[, integers 0 <  < k, so that f is a multiple of 2�k, andf[0 : k] = bin0�k(f), we de�ne:sticky bit(f) = or(f[ + 1 : k])sticky(f) = < f[0 : ] >neg + sticky bit(f) � 2��1:The -representative of f is then given byrep(f) = sticky(f):Proof: The binary representation rep(f) is identical to f[0 : k] up to the position withweight 2� . If f is an integral multiple of 2� , then f = rep(f) =< f[0 : ] >neg andf[+1 : k] is all zeros, and so is sticky bit(f). If f is not an integral multiple of 2� , thenf[ + 1 : k] is not all zeros, and therefore, sticky bit(f) = 1, and rep(f) = sticky(f),as required. 2Lemma 2.12 For integers 1; 2, with 0< 2 < 1, and f = < f[0 : k] >neg (i) one canderive rep2(f) from rep1(f) = < rep1[0 : 1+1] >neg byrep2(f) = < (rep1[0 : 2];or(rep1[2+1 : 1+1])) >neg;(ii) fx 1= fy �! fx 2= fy.Proof: (i) The bits sticky bit1(f) and sticky bit2(f) are de�ned bysticky bit1(f) = or(f[1 + 1 : k])sticky bit2(f) = or(f[2 + 1 : k]):



30 CHAPTER 2. IEEE FLOATING-POINT STANDARDSubstitution of the sticky bit1(f)-de�nition in the sticky bit2(f)-de�nition, yieldssticky bit2(f) = or(f[2 + 1 : 1]; sticky bit1(f)):Because rep1[0 : 1] = f[0 : 1] and rep1[1 + 1] = sticky bit1(f) by the de�nition ofrep1(f), we have sticky bit2(f) = or(rep1[2 + 1 : 1 + 1])and part (i) of the lemma follows.(ii) We have rep1(fx) = rep1(fy). In the �rst part was shown, that 2-representativescan be computed from 1-representatives. Therefore, rep2(fx) = rep2(fy), and part (ii)of the lemma follows. 2For mode 2 fRZ;RNE;RIg and f 0 = rep(f) one can additionaly show the followingequations: fx = fy i� 2k � fx �k= fy � 2k for an integer k (2.48)rndmode;�1(f) = rndmode;�1(f 0) (2.49)rndmode;�1(f) = f i� rndmode;�1(f 0) = f 0 (2.50)rndmode;�1(f 0) = f 0 i� f 0 = q � 2�(�1) for an integer q (2.51)f 0 = f i� rndmode;�1(f 0) = f: (2.52)For the computation of rounded factorings we will use the following properties.Lemma 2.13 Let (sx;ex;fx)and (sy ;ey;fy)be two factorings and let (s0x;e0x;f 0x)and (s0y ;e0y;f 0y)be the corresponding bounded normalized factorings: (s0x; e0x; f 0x)=b�eminc(sx; ex; fx) and(s0y; e0y; f 0y) = b�eminc(sy; ey; fy). If the values of (sx; ex; fx) and (sy; ey; fy) are (p � e0x)-equivalent:x = val(sx; ex; fx) = val(s0x; e0x; f 0x) p�e0x= val(s0y; e0y; f 0y) = val(sy; ey; fy) = y;then (i) s0x = s0y, e0x = e0y, and f 0x p= f 0y;(ii) iroundmode(sx; ex; fx) = iroundmode(sy; ey; fy);and (iii) nroundmode(sx; ex; fx) = nroundmode(sy; ey; fy).Proof: The assumption that x p�ex= y means that either x = y or x; y 2 I, where I =]q �2e0x�p; (q+1)�2e0x�p[, for some integer q. If x = y then the claim follows from the uniquenessof the (bounded) normalized factoring representations (s0x; e0x; f 0x) and (s0y; e0y; f 0y). For thesecond case, since the interval I cannot contain both negative and positive numbers, letus assume that x > 0, and hence y > 0 as well.Note also, that the interval I either consists only of denormalized values or normalizedvalues. The reason is that 2emin can not belong to the interval I. Since both factorings(s0x; e0x; f 0x) and (s0y; e0y; f 0y) are bounded normalized, it follows that either f 0x; f 0y 2 [0; 1[or f 0x; f 0y 2 [1; 2[. If f 0x; f 0y 2 [0; 1[, then it follows that e0x = e0y = emin. Therefore,f 0x; f 0y 2]q � 2�p; (q + 1) � 2�p[, and f 0x p= f 0y, as required in part (i).If f 0x; f 0y 2 [1; 2[, let us assume by contradiction that e0x > e0y. This would imply thatf 0y � 2e0y < 21+e0y � 2e0x � f 0x � 2e0x :But the interval I cannot contain 2e0x , so that we have a contradiction to our assumption.Therefore, ex = ey, and as before, this implies f 0x p= f 0y, as required. Part (ii) follows from



2.5. ROUNDING COMPUTATION UTILITIES 31the computation of the rounding function iround(s; e; f) according to lemma 2.7, thede�nition of aligned signi�cand rounding in equation 2.9 and equation 2.49 with  = p.We use from de�nition 2.8, that the rounded values are the same for both roundingfunctions iroundmode(s; e; f) and nroundmode(s; e; f), so that from part (ii) it follows, thatval(nroundmode(sx; ex; fx)) = val(nroundmode(sy; ey; fy)): Part (iii) then follows from theuniqueness of NF factoring representations. 2Similarly, for the computation of �rmode(s; e; f), we have:Lemma 2.14 Let (sx; ex; fx) and (sy; ey; fy) be two factorings and let (s0x; e0x; f 0x) and(s0y; e0y; f 0y) be the corresponding unbounded normalized factorings: (s0x; e0x; f 0x) = �(sx; ex; fx)and (s0y; e0y; f 0y) = �(sy; ey; fy). If the values of (s0x; e0x; f 0x) and (s0y; e0y; f 0y) are (p � e0x)-equivalent: val(sx; ex; fx) p�e0x= val(sy; ey; fy);then (i) s0x = s0y, e0x = e0y, and f 0x p= f 0y; and (ii) �rmode(sx; ex; fx) = �rmode(sy; ey; fy).Proof: The proof is a simpli�ed version of the proof of the previous Lemma, because allfactorings are normalized in this case and no distinction between normalized and denor-malized factorings is necessary. 2Based on Lemma 2.13 and Lemma 2.14 a rounding circuitry only has to know the p-representative of the signi�cand of the unbounded or bounded normalized factoring andnot its precise value to be able to round the factoring correctly.Usually, no bounded or unbounded normalized factoring, but only an arbitrary fac-toring is considered as input of the rounding computations. Then, the knowledge of thep-representative of the signi�cand does not directly ensure the possibility of correct IEEErounding like in the cases of Lemma 2.13 and Lemma 2.14. But if a simple additionalcondition on this p-representative of the signi�cand is ful�lled, it is possible to �nd thecorrectly rounded result nevertheless:Lemma 2.15 Let (s; e; f) be a an arbitrary factoring and e0 the exponent of the corre-sponding normalized factoring. If a positive integer p0 � p exists, so that fr = repp0(f)and the following condition is ful�lled:fr � 1 OR fr = f;then (s; e; f) p�e0= (s; e; fr), iroundmode(s; e; f) = iroundmode(s; e; fr) andnroundmode(s; e; f) = nroundmode(s; e; fr):Proof: We separate the conditions (i) fr = f and (ii) fr � 1:(i) If fr = f , it is obvious that roundmode(s; e; f) = roundmode(s; e; fr): (ii) By equa-tion 2.48 from fr p0= f , it follows that val(s; e; fr) p0�e= val(s; e; f). Let (s0; e0; f 0) and(s00; e00; fr0) be the bounded normalized factoring corresponding to (s; e; f) and (s; e; fr):(s0; e0; f 0) = b�eminc(s; e; f) and (s00; e00; fr0) = b�eminc(s; e; fr). From fr � 1 it followsthat f � 1, so that with f 0 � 2, and val(s; e; f) = val(s0; e0; f 0), we have e0 � e. Usingp� e0 � p0 � e and lemma 2.12 we getval(s00; e00; fr0) = val(s; e; fr) p�e0= val(s; e; f) = val(s0; e0; f 0):The use of lemma 2.13(ii)-(iii) on this equation completes the proof. 2



32 CHAPTER 2. IEEE FLOATING-POINT STANDARDl r sticky RZ RNE RId.c. 0 0 ftr ftr ftrd.c. 0 1 ftr ftr ftri0 1 0 ftr ftr ftri1 1 0 ftr ftri ftrid.c. 1 1 ftr ftri ftriTable 2.11: Signi�cand rounding on representatives.Lemma 2.16 We consider an integer p, positive values x, xh and the value xl with x =xh + xl, xh = k � 2�p for an integer k and jxlj < 2�p, and a non-zero positive value q withq � jxlj < 2�p. The value x0 = xh + q � xl then is p-equivalent to x, so thatrepp(x) = repp(x0):Proof: We separate the proof in three cases: (a) (xl = 0); (b) (xl > 0); and (c)(xl > 0). The proof of case (a) follows directly from x = xh = x0. In case (b), from0 < xl < 2�p it follows, that xh < x < xh + 2�p, and repp(x) = xh + 2�p�1. Inthe same way from 0 < q � xl < 2�p, it follows, that xh < x0 < xh + 2�p and, thus,repp(x0) = xh + 2�p�1 = repp(x). In case (c), from �2�p < xl < 0 it follows, thatxh � 2�p < x < xh, and repp(x) = xh � 2�p�1. In the same way from �2�p < q � xl < 0,it follows, that xh � 2�p < x0 < xh. Thus, repp(x0) = xh � 2�p�1 = repp(x) and the proofof the lemma is completed. 2Finally, we describe some details of signi�cand rounding on representatives.De�nition 2.14 For the rounding at position ��1 of a positive signi�cand f < 2 with the�-representative frep =<frep[0 :�+1]>neg= rep�(f); we de�ne the truncated signi�candftr =<frep[0 :��1]>neg and the incremented signi�cand ftri = ftr + 2��+1.Because ftr � f < ftr+2��+1 = ftri, the values ftr and ftri are the two possible resultsof rnd(mode?s);��1(frep). Which of them is chosen, depends only on the rounding mode(mode ? s) 2 fRZ;RNE;RIg that is encoded by sr mode[1 :0] according to table2.3 andthe three least signi�cant bits of the representative, the L-bit l = frep[��1], the round-bitr = frep[�], and the sticky bit sticky = frep[�+1]. Table 2.11 lists all di�erent roundingcases according to the rounding de�nitions for positive arguments from equation 2.4-2.2.In this table an entry 'd.c.' (don't care) means, that the value of this bit does not e�ectthe result. From this table one can easily derive the equation for the condition that theincremented signi�cand ftri has to be chosen as the rounded signi�cand. This conditionis called the condition for the rounding increment:rinc = is RI(mode) ^ (r _ sticky) _ is RNE(mode) ^ r ^ (l _ sticky) (2.53)= sr mode[1] ^ (r _ sticky) _ sr mode[0] ^ r ^ (l _ sticky) (2.54)so that with � = p signi�cand rounding can be written by:sig rndmode?s(s; e; f) = � (s; e; ftri) if rinc(s; e; ftr) otherwise. (2.55)
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Figure 2.3: Injection mappingLemma 2.17 For a factoring (s; e; f) with a signi�cand f < 2, the p-representativefrep = < frep[0 : p+1] >neg = repp(f), the rounding mode (mode?s) 2 fRZ;RNE;RIgand the rounded factoring (s; e; frnd) = sig rndmode?s(s; e; frep), the case that signifcandrounding changes the value of the signi�cand can be recognized by:(frep[p] OR frep[p+ 1]) () (frnd 6= f)We call this condition the signi�cand rounding inexactness.Proof: The lemma follows from equation 2.51-2.52 with  = p and the use of the propertythat frep is an integral multiple of 2�p+1, i� (frep[p] OR frep[p+ 1]) = 0. 22.5.2 Injection Based RoundingRounding by injection reduces the rounding modes RI and RNU to RZ [9, 40, 11, 12].This reduction is possible for the rounding of operands x, that are integral multiples of2�k, with an integer k, that is larger than the rounding position �. The rounding modereduction is based on adding an injection:inj = 8<: 0 if RZ2���1 if RNU2�� � 2�k if RI,that depends only on the rounding mode.Lemma 2.18 With mode 2 fRZ;RNU;RIg, the e�ect of adding inj can be described byrndmode;�(x) = rndRZ;�(x+ inj):Proof: Figure 2.3 depicts this reduction of RNU and RI to RZ. 2



34 CHAPTER 2. IEEE FLOATING-POINT STANDARD2.5.3 Gradual RoundingIn this section we deal with the situation, that rounding of a positive value x is notcomputed at the proper position �2 in a single step like insires = rndmode;�2(x);but that the rounding result has to be computed in multiple steps, where a result of onerounding step is the input of the next rounding step with a smaller rounding precision0 < �2 � �1 like in mures = rndmode;�2(rndmode;�1(x)):In [21], the principles and problems of such gradual rounding are described. If only therounded result rores1 = rndmode;�1(x) of a rounding step is used in the succeeding round-ing decision, information gets lost and the multi-step rounding result mures could di�erfrom the correct single-step rounding result sires (like in �gure 2.4). In [21] this situationis called a step error and it is proven that such a step error can only occur in roundingmode RNE. To prevent step errors, two tag bits are required for the rounding decision inaddition to the rounded result of the previous step:� tinx is active if the rounded result of the previous step was inexact:(rndmode;�1(x) 6= x):Corresponding to the inexactness recognition in signi�cand rounding, tinx can becomputed from the round-bit r1 and the sticky-bit sticky1 of the previous roundingstep: tinx = r1 OR sticky1: (2.56)� tinc is active if the previous rounding decision was a rounding increment (rinc=1):(bin��1��1(rndmode;�1(x)) 6= bin��1��1(x)): (2.57)Like in the conventional rounding, the rounded result of the previous rounding step rores1lies between two rounding possibilities ftr = t � 2��2 � rores1 < (t+ 1) � 2��2 = ftri,so that the gradual rounding of rores1 at position �2 corresponds to the selectionrores2 = sires = � ftri if grincftr otherwise. (2.58)Using the two tag bits tinx and tinc in the gradual rounding decision grinc enablesto simulate single-step rounding by multi-step rounding in all rounding modes (mode ?s) 2 fRZ;RNE;RIg (encoded by sr mode[1 :0]). As a solution [21] suggests to use thefollowing equations to compute grinc and the two tag bits tinx2 and tinc2 of the actualrounding step, where (l2;r2; sticky2) = rep�2+1(rores1)[�2 :�2+2] and tinx1 and tinc1are the corresponding tag bits of the previous rounding step:grinc = (sr mode[1] ^ (r2 _ sticky2))_((sr mode[0] ^ r2) ^ (sticky2 _ tinc1 ^ (l2 _ tinx1))) (2.59)= (sr mode[1] ^ (r2 _ sticky2)) ^((sr mode[0] ^ r2) ^ (sticky2 ^ (tinc1 ^ (l2 _ tinx1)))) (2.60)tinx2 = r2 _ sticky2 _ tinx1 (2.61)tinc2 = grinc _ (sticky2 ^ r2 ^ tinc1): (2.62)
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Figure 2.4: Gradual rounding: In rounding mode RNE the value x should be roundedat position �2 to the value sires = (2k � 1) � 2��2 like depicted by arrow (2). If weround the value x in a �rst step at position �1, we get the intermediate rounded resultrores1 = k0 �2��1 like depicted by arrow (1a). The result of a second conventional roundingstep of rores1 at position �2 (arrow (1b)) is mures = 2k � 2��2 and di�ers from the singlestep rounding result sires. A gradual rounding step on rores1 at position �2 that usesadditional information from the previous rounding step yields the rounded result sireslike depicted by arrow (1b*).Based on the equations for the gradual rounding, we de�ne gradual rounding functionscorresponding to the de�nition of the rounding functions rndmode;�:De�nition 2.15 For mode 2 fRZ;RNE;RIg encoded by sr mode[1 : 0], the gradualrounding function grndmode;� : IR� f0:1g2 �! IR� f0:1g2 is de�ned bygrndmode;�(f;tinc1;tinx1) = � (ftri;tinc2;tinx2) if grinc(ftr;tinc2;tinx2) otherwise.with the truncated signi�cand ftr and the incremented signi�cand ftri from de�nition2.14, and the computation of grinc, tinc2 and tinx2 according to equations 2.60-2.62.Lemma 2.19 For any integers �2 � �1 the rounding function rndmode;�2 can be decom-posed into two gradual rounding steps, so that for(frnd;x[1 : 0]) = grndmode;�2 (grndmode;�1(f; 00) ;we get frnd = rndmode;�2(f):Proof: This lemma just summarizes the previous descriptions of the properties of gradualrounding using our de�nition 2.15 of the gradual rounding function grndmode?s;�. 2De�nition 2.16 For the signi�cand rounding we de�ne two gradual rounding steps by thesigni�cand rounding functions sgrnd1 : FACT (IR) �! FACT (IR)�f0; 1g2 and sgrnd2 :FACT (IR)� f0; 1g2 �! FACT (IR). With (frnd1;tinc1;tinx1) = grndmode?s;52(f; 00);sgrnd1mode?s(s; e; f) = ((s; e; frnd1);tinc1;tinx1)and with (frnd3;tinc3;tinx3) = grndmode?s;52(frnd2;tinc2;tinx2);sgrnd2mode?s ((s; e; frnd2);tinc2;tinx2) = (s; e; frnd3)Additionally, we extend the de�nitions of the bounded normalization shift, the post-normaliza-tion shift and the function val on outputs of the �rst gradual rounding step:d��e ((s; e; f);x[1 : 0]) = (d��e(s; e; f);x[1 : 0])post norm ((s; e; f);x[1 : 0]) = (post norm(s; e; f);x[1 : 0])val ((s; e; f);x[1 : 0]) = val(s; e; f)



36 CHAPTER 2. IEEE FLOATING-POINT STANDARDLemma 2.20 The rounding function iround can be docomposed into a normalizationshift, a �rst signi�cand gradual rounding step by sig grnd1, a bounded normalization shift,a second signi�cand gradual rounding step by sig grnd1, a post-normalization shift andexponent rounding. Thus, with the de�nition of the normalized gradual result factoring((sGF ; eGF ; fGF );tinc;tinx) = post norm(sgrnd1mode?s(�(s; e; f))); (2.63)the IEEE factoring of the rounded result can be computed by(sres; eres; fres) =exp rndmode?s(post norm(sgrnd2mode?s(d�emine((sGF ; eGF ; fGF );tinc;tinx))));so that iroundmode(s; e; f) = (sres; eres; fres).Proof: We �rst introduce some notation: We denote the input factoring of the �rst grad-ual rounding step by (s1; e1; f1) = �(s; e; f) and the output by ((s2; e2; f2)tinc;tinx) =sgrnd1mode?s(s1; e1; f1). The input factoring of the second gradual rounding step is de-noted by ((s3; e3; f3)tinc;tinx) = d�emine((sGF ; eGF ; fGF );tinc;tinx) and the output isdenoted by (s4; e4; f4) = sgrnd2mode?s ((s3; e3; f3)tinc;tinx).The lemma will be proven in two steps. In the �rst step (a) we will show thatthe value of val(sres; eres; fres) corresponds to the value of the IEEE rounded resultval(iround(s; e; f)). In the second step (b) we will show, that also (sres; eres; fres) isan IEEE factoring like iround(s; e; f).In part (a) of the proof, we have only to consider the values during the computation.The value of the input factoring might only be changed by the two gradual roundingsteps and by the exponent rounding, so that x1 = val(s; e; f) = val(s1; e1; f1) and x2 =val(s2; e2; f2) = val(s3; e3; f3). Because the exponent rounding function is the same likein the computation of iround(s; e; f) according to lemma 2.7, we only have to comparethe signi�cand rounding, namely we only have to show that for e00 = maxfemin; e1gval(s4; e4; f4) = rndmode;�e00+p�1(x):Like for the rounding function rnd, we can also use for the gradual rounding functiongrnd, that for integers x: 2x �val(grndmode;�(f;x[1 :0])) = val(grndmode;��x(2x �f;x[1 :0])).In this way the rounded values of the gradual rounding steps x2 and x4 = val(s4; e4; f4)can be written by:x4 = (�1)s4 � 2e4 � f4 (2.64)= (�1)s3 � 2e3 � val(grndmode?s;p�1(f3;tinc;tinx)) (2.65)= (�1)s3 � val(grndmode?s;�e3+p�1(2e3 � f3;tinc;tinx)) (2.66)x3 = (�1)s3 � 2e3 � f3 (2.67)= (�1)s2 � 2e2 � f2 (2.68)= (�1)s1 � 2e1 � val(grndmode?s;52(f1; 00)) (2.69)= (�1)s1 � val(grndmode?s;�e1+52(2e1 � f1; 00)) (2.70)= (�1)s � val(grndmode?s;�e1+52(abs(x); 00)) (2.71)In the computation steps between the two gradual rounding steps, the exponent could bechanged by the post-normalization shift, so that eGF 2 fe1; e1 + 1g and by the boundednormalization shift, so that e3 = maxfemin; eGF g (Note, that fGF is normalized, so that



2.5. ROUNDING COMPUTATION UTILITIES 37eGF is already the normalized exponent.) Because both operations only could increase theexponent and because we consider p 2 f24; 53g, we get �e3 + p� 1 � �e1 + 52. For thisreason we can use lemma 2.19 on the two gradual rounding steps with �1 = �e1+52 and�2 = �e3 + p� 1. In this way equation 2.67, 2.68 and 2.71 combine tox4 = (�1)s � grndmode?s;�e3+p�1(grndmode?s;�e1+52(abs(x); 00)) (2.72)= (�1)s � rndmode?s;�e3+p�1(abs(x)) (2.73)= rndmode;�e3+p�1(x): (2.74)There are only two cases possible, namely: (i) eGF = e1, and (ii) eGF = e1 + 1:(i) From eGF = e1, it follows, that e3 = maxfemin; e1g = e00, so that we get x4 =rndmode;�e00+p�1(x), as required.(ii) For eGF = e1 +1, it follows from the de�nition of the post-normalization shift, thatthe signi�cand is changed to fGF = 1. The rounding does not change the operand((�1)s � 2e1+1) regardless of whether rounding position �(e1+1)+ p� 1 or roundingposition �e1 + p � 1 is considered. Thus, we get x4 = rndmode;�e00+p�1(x) also inthis case and part (a) of the proof is completed.Part (b) can be proven like part (b) of lemma 2.7 starting with the input factoringof the bounded normalization shift (sGF ; eGF ; fGF ), because the computations in the foursteps that are computed on (sGF ; eGF ; fGF ) in this lemma correspond to the four steps inthe computation of iround(s; e; f) according to lemma 2.7. 2De�nition 2.17 For mode 2 fRZ;RNE;RI;RMIg, we de�ne the two gradual roundingfunctions ground1mode and ground2mode byground1mode(s; e; f) = post norm(sgrnd1mode?s(�(s; e; f)))ground2mode((sGF ; eGF ; fGF );tinc;tinx) =exp rndmode?s(post norm(sgrnd2mode?s(d�emine((sGF ; eGF ; fGF );tinc;tinx)))):Corollary 2.21 With the de�nition 2.17, lemma 2.20 can be written by:iroundmode(s; e; f) = ground2mode(ground1mode(s; e; f)):Lemma 2.22 The equation ((sGF ; eGF ; fGF );tinc;tinx) = ground1mode(s; e; f) is in-variant on the addition of k 2 IR to the exponent, namely((sGF ; eGF + k; fGF );tinc;tinx) = ground1mode(s; e+ k; f);so that it does not matter if k is added to the exponent of the input or the output factoring.Proof: The computations in each of the three steps according to de�nition 2.17 offunction ground1, namely, the unbounded normalization shift, the gradual rounding andthe post-normalization shift only depend on the values of the signi�cands and the signsof the factorings and not on the exponent values and so does the sequence of these threesteps in function ground1. 2Corollary 2.23 With ((sGF ; eGF ; fGF );tinc;tinx)=ground1mode(sex; eex; fex) and corol-lary 2.21, the IEEE factoring of the �nal result according to equation 2.18 is given byiround(sex; eex + wec; fex) = ground2mode((sGF ; eGF + wec; fGF );tinc;tinx):



38 CHAPTER 2. IEEE FLOATING-POINT STANDARD2.6 Internal RepresentationsIn this section, based on factoring representations, we de�ne oating-point number rep-resentations at the bit level. In each presented format the number representations areintegrated for the cases of single precision and double precision. The �rst three formats,namely the packed format, the unpacked format and the normalized format contain therepresentation of single precision and double precision IEEE values. The last two formats,the representative format and the gradual result format, represent results of IEEE opera-tions that have not been fully rounded yet, In these cases some further computation stepsare required to achieve the corresponding single precision or double precision IEEE FPvalue and there could be two or more representations in these formats that lead to thesame IEEE FP value after rounding.2.6.1 Packed FormatThe number representations in the packed format (PF) are based on the packed repre-sentations for single precision and double precision de�ned by the IEEE standard. Thesepacked representations encode the IEEE factoring of a number in a binary form. In thepacked format, the IEEE packed representations for single and double precision (see �g-ure 2.2) are integrated into a 64 bit wide representation, where the smaller single precisionrepresentations are left aligned and padded with 32 zeros (�gure 2.5). We index a buswith this format by BUSPF [63 : 0]. For single precision usage we have:sPF = BUSPF [63] (2.75)ePF [7 : 0] = BUSPF [62 : 55] (2.76)fPF [1 : 23] = BUSPF [54 : 32] (2.77)and for double precision usage we have:sPF = BUSPF [63] (2.78)ePF [10 : 0] = BUSPF [62 : 52] (2.79)fPF [1 : 52] = BUSPF [51 : 0]: (2.80)De�nition 2.18 For single and double precision with (n; p) 2 f(8; 24); (11; 53)g we de�nethe function pf : IEEEfactn;p �! f0; 1g64, that computes the representation of an IEEEfactoring (s; e; f) 2 IEEEfactn;p in the packed format. With e = <ePF [n :0]>biasn andf = <fPF [0 :p�1]>neg for representable numbers and quiet NaNs, the function pf isde�ned bypf(s; e; f) = 8>><>>: (s; 1n�1; 064�n) if f = f1(s; 1n�1; 1; 063�n) if f = fsNaN(s; 1n�1; 0; fPF [2 :p�1]; 064�n�p) if f = fqNaN�s; (ePF [n�1:0] ^ fPF [0]); fPF [1 :p�1]; 064�n�p� otherwise.In the opposite direction the function factPF : f0; 1g64 �! IEEEfactn;p computes theIEEE factoring that is represented by BUSPF [63 : 0] in the packed format. With(s;ePF [n� 1 : 0]; fPF [1 :p�1]) = BUSPF [63 : 63�n�p�1];the denormalized factoring (s; eden; fden) = (s; emin; < (0; fPF [1 :p�1]) >neg) and the nor-malized factoring (s; enor; fnor) = (s;< ePF [n�1:0] >biasn ; < (1; fPF [1 :p�1]) >neg) ; the
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Figure 2.5: Packed format for single and double precision.function factPF is de�ned according to the de�nitions of the IEEE packed representationsfrom section 2.2.3 byfactPF (BUSPF [63 :0]) = 8>>>><>>>>: (s; eden; fden) if ePF [n�1:0] = 0n(s; enor; fnor) if ePF [n�1:0] 6= 1n ^ fPF [1 :p�1] 6= 0p�1(s; e1; f1) if ePF [n�1:0] = 1n ^ fPF [1 :p�1] = 0p�1(s; esNaN ; fsNaN ) if ePF [n�1:0] = 1n ^ fPF [1] = 1(s; eqNaN ; fqNaN ) otherwise2.6.2 Unpacked FormatThe unpacked format is also a binary encoding for IEEE factorings. But in this casethe number representations are unpacked, i.e., information about an IEEE factoring isnot provided with the minimum amount of bits, but additional bits are included in therepresentation to have better access to certain informations about the number:The hidden bit fUF [0] is included in the unpacked number representation. For repre-sentable numbers this bit is well de�ned by the exponent representation from the packedformat. For special values like +=�1 and NaNs, we de�ne the hidden bit to have thevalue fUF [0] = 1, so that 1 and NaN representations always include a normalized signif-icand. Moreover, special values and zeros are indicated by 4 additional bits: zero, inf,qnan and snan. At most one of these bits can be active in a number representation.In the unpacked format the exponent is represented in the two's-complement repre-sentation for representable numbers. We de�ne the exponent of special values to havethe two's complement representation of eUF = emax + 1 in analogy to the packed format.To be able to include the two's complement representation of emax + 1 = 2n�1 in theexponent, the exponent representation is extended by one bit to a width of n+1-bits. Forrepresentable numbers this bit extension is computed by a sign extension. Representationsof zero include an arbitrary exponent. In this case the value of the number is indicatedby the sign and the additional bit zero in a unique way.For an integrated representation of single and double precision values three bit �eldsare separated according to sign, exponent and signi�cand (see �gure 2.6). For singleprecision usage the signi�cand is padded with 29 zeros on the right and a single precisionexponent needs 3 additional bits on the left, that are computed by sign extension. Weindex a bus with this format by BUSUF [69 : 0] and have:sUF = BUSUF [69]eUF [11 : 0] = BUSUF [68 : 57]fUF [0 : 52] = BUSUF [56 : 4]
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3E[8]Figure 2.6: Unpacked format for single and double precision.zeroUF = BUSUF [3] infUF = BUSUF [2]qnanUF = BUSUF [1] snanUF = BUSUF [0]:De�nition 2.19 We de�ne the function uf : IEEEfactn;p �! f0; 1g70, that computesthe representation of an IEEE factoring (s; e; f) 2 IEEEfact in the unpacked format.With e = <eUF [11 :0]>2 and f = <fUF [0 :52]>neg for representable numbers and quietNaNs, the function uf is de�ned byuf(s; e; f) = 8>>>><>>>>: (s; 012; 0; 052; 1; 0; 0; 0) if f = 0(s; 0; 1; 010; 1; 052; 0; 1; 0; 0) if f = f1(s; 0; 1; 010; 1; 0; fUF [2 :52]; 0; 0; 1; 0) if f = fqNaN(s; 0; 1; 010; 1; 1; 051; 0; 0; 0; 1) if f = fsNaN(s; eUF [11 :0]; fUF [0 :52]; 0; 0; 0; 0) otherwise.In the opposite direction the function factUF : f0; 1g70 �! IEEEfactn;p computes theIEEE factoring that is represented by BUSUF [69 : 0] in the unpacked format. With(s;eUF [11 : 0]; fUF [0 :52]; zero; inf;qnan; snan) = BUSUF [69 : 0];the function factUF is de�ned byfactUF (BUSUF [69 :0]) = 8>>>><>>>>: (s; e0; 0) if zero(s; e1; f1) if inf(s; eqNaN ; fqNaN ) if qnan(s; esNaN ; fsNaN ) if snan(s;<eUF [11 :0]>2; <fUF [0 :52]>neg) otherwise.2.6.2.1 Packed Format �! Unpacked FormatFor the conversion of a number from a packed representation to the corresponding un-packed representation we summarize the conditions on the additional bits that have to becomputed:fUF [0] = 0 , i� ePF = 0nzero = 1 , i� ePF = 0n AND fPF [1 :p�1] = 0p�1inf = 1 , i� ePF = 1n AND fPF [1 :p�1] = 0p�1qnan = 1 , i� ePF = 1n AND fPF [1] = 0 AND fPF [2 :p�1] 6= 0p�2snan = 1 , i� ePF = 1n AND fPF [1] = 1: (2.81)Among the other bits, only the exponent representation changes by the subtraction of thecorresponding bias and the non-redundant representation of emin. The following equation



2.6. INTERNAL REPRESENTATIONS 41uses a sign extension for single precision and double precision exponents and lemma 2.1(ii)to convert the exponent from biased to two's complement representation for ePF 6= 1n.Because for ePF = 1n,binn0 (< (ePF [n�1]2;ePF [n�2 : 0)] > +1) = < (02; 1n�2) > +1 = 2n�1 = emax + 1;also the case ePF = 1n is included in the �rst and the third line.eUF [11 : 0] = 8>>><>>>: bin110 (< (ePF [10]2;ePF [9 : 0)] > +1) if double AND ePF 6= 011(11; 08; 10) if double AND ePF = 011bin110 (< (ePF [7]5;ePF [6 : 0]) > +1) if single AND ePF 6= 07(11111; 05 ; 10) if single AND ePF = 07. (2.82)2.6.2.2 Unpacked Format �! Packed FormatAlso in the conversion direction from unpacked number representations to packed numberrepresentations, the sign bit sPF and the fraction fPF [1 :p�1] are copied identically. Forthe exponent conversion we have to distinguish between two cases of: (a) normalizednumbers or special values; and (b) denormalized numbers or zero.(a) In the case of normalized numbers or special values like +=�1 or NaNs, we haveto convert the exponent from the two's complement representation to the biasedrepresentation. For normalized numbers, the bit eUF [n] is only a sign extension:eUF [n] = eUF [n�1], so that the conversion is computed with the help of lemma 2.2:e0PF [n�1:0] = binn�10 (< (eUF [n�1];eUF [n�2 : 0]) > �1):For +=�1 or NaNs, we have eUF = (01; 0n�1) and the above formula yieldse0PF [n�1:0] = 1n; as required for packed 1- or NaN -representations. Thus, thisformula can be used for normalized numbers, +=�1 or NaNs. Becausebin70(<(eUF [7];eUF [6 :0])>�1) = bin70(<(eUF [10];eUF [9 :8];eUF [7];eUF [6 :0])>�1);the formula can be integrated for single and double precision bye0PF [n�1:0] = binn�10 (<(eUF [10];eUF [9 : 8];eUF [7]�dbl;eUF [6 : 0])> �1):(b) In the case of a zero or a denormalized number, the exponent representation 0n isrequired in the packed format.Because fUF [0] = 0, i� the number is a zero or a denormalized number, we can distinguishbetween the two cases by the value of fUF [0]. Thus, the exponent conversion can besummarized by:ePF = � binn�10 (<(eUF [10];eUF [9 : 8];eUF [7]�dbl;eUF [6 : 0])>�1) if fUF [0]0n otherwise. (2.83)= binn�10 (<(eUF [10];eUF [9 : 8];eUF [7]�dbl;eUF [6 : 0])>�1) ^ fUF [0] (2.84)



42 CHAPTER 2. IEEE FLOATING-POINT STANDARD2.6.3 Normalized FormatThe only di�erence between the unpacked and the normalized format (NF) is, that inthe case of the normalized format, the NF factoring of an IEEE value is encoded, andnot the IEEE factoring like in the unpacked format. Therefore, the representation in thenormalized format only di�ers from the unpacked format representation for denormalizednumbers, which are also represented with a normalized signi�cand in the normalized for-mat. The only numbers which still contain a leading zero signi�cand bit fNF [0] in thenormalized format are +=� 0.Figure 2.7 indexes a bus with the normalized format by BUSNF [69 : 0] and separatesbit �elds similar to the unpacked representation:sNF = BUSNF [69]eNF [11 : 0] = BUSNF [68 : 57]fNF [0 : 52] = BUSNF [56 : 4]zeroNF = BUSNF [3] infNF = BUSNF [2]qnanNF = BUSNF [1] snanNF = BUSNF [0]:De�nition 2.20 We de�ne the function nf : NFfactn;p �! f0; 1g70, that computes therepresentation of an NF factoring (s; e; f) 2 NFfactn;p in the normalized format. Withe = <eNF [11 :0]>2 and f = <fNF [0 :52]>neg for representable numbers and quiet NaNs,the function nf is de�ned bynf(s; e; f) = 8>>>><>>>>: (s; 012; 0; 052; 1; 0; 0; 0) if f = 0(s; 0; 1; 010; 1; 052; 0; 1; 0; 0) if f = f1(s; 0; 1; 010; 1; 0; fNF [2 :52]; 0; 0; 1; 0) if f = fqNaN(s; 0; 1; 010; 1; 1; 051; 0; 0; 0; 1) if f = fsNaN(s; eNF [11 :0]; fNF [0 :52]; 0; 0; 0; 0) otherwise.In the opposite direction the function factNF : f0; 1g70 �! NFfactn;p computes the NFfactoring that is represented by BUSNF [69 : 0] in the normalized format. With(s;eNF [11 : 0]; fNF [0 :52]; zero; inf;qnan; snan) = BUSNF [69 : 0];the function factNF is de�ned byfactNF (BUSNF [69 :0]) = 8>>>><>>>>: (s; e0; 0) if zero(s; e1; f1) if inf(s; eqNaN ; fqNaN ) if qnan(s; esNaN ; fsNaN ) if snan(s;<eNF [11 :0]>2; <fNF [0 :52]>neg) otherwise.2.6.3.1 Unpacked Format �! Normalized FormatTo convert numbers from the unpacked representation to the normalized representation,an unbounded normalization shift � for non-zero denormalized numbers according to de�-nition 2.3 has to be computed. Because we can recognize non-zero denormalized numbersby the condition (f[0] AND zero), the conversion could be described by(sNF ; <eNF >2; <fNF >neg) = ��(sUF ; <eUF >2; <fUF >neg) if (f[0] AND zero)(sUF ; <eUF >2; <fUF >neg) otherwise. (2.85)
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3E[8]Figure 2.7: Normalized format for single and double precision.To determine the shift amount for the unbounded normalization shift, the amount ofleading zeros lz in the signi�cand fUF [0 : 52] has to be detected, following lemma 2.3(ii).For the normalization, the signi�cand is left-shifted and the exponent is decremented by theamount lz. In this way, the normalization shift might decrease the exponent by a maximumof 53, because the widest signi�cand contains 53 bits, that could all be zero. Therefore,by the exponent adjustment the range of the exponent is enlarged to [1024 : �1075] fordouble precision and a 12-bit two's-complement exponent representation is su�cient inthe normalized representation.If (f[0]ANDzero) = 0, the number is either a zero and the signi�cand is fUF [0 : 52] =053, or the number is a normalized number, +=�1 or a NaN, so that fUF [0] = 1, andtherefore, the shift amount is zero: lz = 0. In both cases the signi�cand representation isnot changed by an normalization shift by lz positions. Thus, the normalization shift canalso be computed for (f[0] AND zero) = 0, so that for all casesfNF [0 : 52] = (fUF [lz : 52]; 0lz): (2.86)For the exponent adjustment the shift amount lz is substracted. Because the exponentrepresentation is not valid for zeros, this subtraction can also be computed for all cases.< eNF [11 : 0] >2=< (eUF [10];eUF [10 : 0]) >2 �lz: (2.87)Because lz = 0 for in�nities and NaNs, in the normalized representation we get theexponent eNF = emax+ 1 = eUF for them like in the unpacked representation. Also thesign bit and additional bits stay the same in both representations.As denormalized signi�cands are shifted, these signi�cands do not end with weight2�p+1, but the least signi�cant bit of the signi�cand is changed to the the signi�candposition with weight 2�p+lz+1. Because signi�cand rounding is done at this least signi�cantbit position of the signi�cand, the signi�cand rounding position changes to the positionwith weight 2�p+lz+1 for denormalized numbers. in the normalized format. In combinationwith the changed exponent e�lz this results in the rounding position � = e�lz�p+lz+1 =e�p+1, which agrees with the previous IEEE rounding description and with the roundingprocedure according to lemma 2.8.2.6.3.2 Normalized Format �! Unpacked FormatIn this conversion direction from normalized to unpacked number representations, therepresentations of denormalized IEEE values have to be changed. For these numbers, thefactoring representations have to be denormalized, so that the exponent is adjusted toemin. Because the exponent of denormals in the normalized representation is smaller than



44 CHAPTER 2. IEEE FLOATING-POINT STANDARDemin, the shift distance lz can be computed bylz = � emin� < eNF [11 : 0] >2 if (emin �< eNF [11 : 0] >2) � 00 otherwise. (2.88)The conversion then changes the exponent and the signi�cand representations byfUF [0 : 52] = (0lz; fNF [0 : 52� lz]); (2.89)< eUF [11 : 0] >2 = � < eNF [11 : 0] >2 if fUF [0]emin otherwise. (2.90)The sign bit and additional bits stay the same in both representations.2.6.4 Representative FormatThe representative format (RF) is a representation for results of IEEE operations on IEEEvalues in preparation for IEEE rounding. For a detailed description of the representativeformat, we �rst de�ne the set of values IRESn;p and the set of factorings RFfactn;p onthat the representative format is based and show some properties of these sets.De�nition 2.21 The set of result values IRESn;p is de�ned byIRESn;p := f0g [ fx 2 IR j 2�2n�2p+6 < abs(x) < 22n+p�3g [ SPE :and the set of RF factorings RFfactn;p is de�ned byRFfactn;p = f(s; e; f) j 9x 2 IRESn;p : val(s; e; f) = repp�e(x) AND(f < 4 AND (f � 1 OR (f is multiple of 2�p+1))	If x p�eRF= val(sRF ; eRF ; fRF ) for a value x 2 IRESn;p and a factoring (sRF ; eRF ; fRF ) 2RFfactn;p, then (sRF ; eRF ; fRF ) is called a RF factoring representation of x.Note, that because special values have an exact and normalized signi�cand representationand we de�ned the exponent of special factorings to have properties like esp = emax+1,we get SPEfact � RFfactn;p, and special value factorings are RF factorings of thecorresponding special values.Lemma 2.24 This lemma consists of four parts:(a) Each exact result of an IEEE operation on IEEE values has a value from IRESn;p.(b) Each value x 2 IRESn;p, has at least one RF factoring representation (sRF ; eRF ; fRF ) 2RFfactn;p with val(sRF ; eRF ; fRF ) = repp�eRF (x).(c) Each exact result x of an IEEE operation on IEEE values in single precision ordouble precision has at least one RF factoring representation (sRF ; eRF ; fRF ) 2RFfact11;53.(d) If (sRF ; eRF ; fRF ) 2 RFfact11;53 is a RF factoring of the exact result x 2 IRES11;53then for mode 2 fRZ;RNE;RI;RMIg, IEEE rounding of x in single and doubleprecision can also be computed on the factoring (sRF ; eRF ; fRF ) byrmode(x) = val(iroundmode(sRF ; eRF ; fRF )):
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Representative format (74 bits)Figure 2.8: Representative format for single and double precision.Proof: We proof the four parts of the lemma separately:(a) Obviously all possible zero or special value results of IEEE operations are includedin IRESn;p. All non-zero representable results have a magnitude that is larger than2�2n�2p+6 and smaller than 22n+p�3 (see section 2.4.2). All real numbers with theseproperties are inluded in IRESn;p, so that there can not be an IEEE result, that is notincluded in IRESn;p.(b) If (s; e; f) is an arbitrary factoring of x 2 IRESn;p, and (s0; e0; f 0) is the corre-sponding normalized factoring (s0; e0; f 0) = �(s; e; f), then obviously, (s0; e0; rep53(f 0)) 2RFfactn;p and (s0; e0; rep53(f 0)) is a RF factoring of x. Thus, indeed each x has at leastone RF factoring in RFfactn;p.(c) Part (c) follows from part (a) and part (b) using that IRES8;24 � IRES11;53.(d) If (sRF ; eRF ; fRF ) 2 RFfact11;53 is a RF factoring of the exact result x 2 IRES11;53,then val(sRF ; eRF ; fRF ) = rep53�eRF (x). There is a unique factoring (sRF ; eRF ; f) withx = val(sRF ; eRF ; f). For the signi�cand f of this factoring we get fRF = rep53(f).Because for both, single and double precision, p � 53, it follows from lemma 2.15 withp0 = 53, that iroundmode(sRF ; eRF ; fRF ) = iroundmode(sRF ; eRF ; f) and by de�nition 2.8of iroundmode we get val(iroundmode(sRF ; eRF ; fRF )) = rndmode(x); as required. 2Corollary 2.25 The previous lemma has shown that each exact result x of an IEEE op-eration on IEEE values in both single and double precision has at least one RF factoringrepresentation (sRF ; eRF ; fRF ) 2 RFfact11;53 and that IEEE rounding of x can be com-puted by rounding of (sRF ; eRF ; fRF ).The representative format is an encoding of RF factorings (sRF ; eRF ; fRF ) 2 RFfact11;53.From the conditions on RF factorings in de�nition 2.21 it follows, that the exponent eRFcan be represented by a 13-bit 2's complement representation eRF =< eRF [12 : 0] >2 andthe representation of the signi�cand fRF requires 56-bits: fRF =< fRF [�1 : 54] >neg.Like in the unpacked and normalized format, the special values and zeros are indicatedby the 4 additional bits: zero, inf, qnan, and snan. For these cases, the sign sRF andthe signi�cand representation fRF [1 : 52] correspond to the IEEE representation and thebits fRF [�1], fRF [53 : 54] are de�ned to be zero. Additionaly, for zeros, fRF [0 :52] = 053and the exponent representation is not valid. For +=�1 and NaNs, we de�ne fRF [0] = 1and eRF = emax + 1 like in the unpacked and the normalized format.Figure 2.8 depicts a representation in the representative format BUSRF [73 : 0] withbit �elds: sRF = BUSRF [73]eRF [12 : 0] = BUSRF [72 : 60]fRF [�1 : 54] = BUSRF [59 : 4]zeroRF = BUSRF [3] infRF = BUSRF [2]qnanRF = BUSRF [1] snanRF = BUSRF [0]:



46 CHAPTER 2. IEEE FLOATING-POINT STANDARDDe�nition 2.22 We de�ne the function rf : RFfactn;p �! f0; 1g74, that computes therepresentation of an RF factoring (sRF ; eRFF ; fRF ) 2 RFfactn;p in the representativeformat. With eRF = <eRF [12 :0]>2 and fRF = <fRF [�1:54]>neg for representablenumbers and quiet NaNs, the function rf is de�ned byrf(s; e; f) = 8>>>><>>>>: (s; 013; 00; 054; 1; 0; 0; 0) if f = 0(s; 00; 1; 010; 01; 054; 0; 1; 0; 0) if f = f1(s; 00; 1; 010; 01; 0; fRF [2 :52]; 00; 0; 0; 1; 0) if f = fqNaN(s; 00; 1; 010; 01; 1; 053 ; 0; 0; 0; 1) if f = fsNaN(s; eRF [12 :0]; fRF [�1:54]; 0; 0; 0; 0) otherwise.In the opposite direction the function factRF : f0; 1g74 �! RFfactn;p computes the RFfactoring that is represented by BUSRF [73 : 0] in the representative format. With(s;eRF [12 : 0]; fRF [�1:54]; zero; inf;qnan; snan) = BUSRF [73 : 0];the function factRF is de�ned byfactRF (BUSRF [73 :0]) = 8>>>><>>>>: (s; e0; 0) if zero(s; e1; f1) if inf(s; eqNaN ; fqNaN ) if qnan(s; esNaN ; fsNaN ) if snan(s;<eRF [12 :0]>2; <fRF [�1:54]>neg) otherwise.Note, that not all possible bit combinations from f0; 1g74 are valid representations in therepresentative format. A representation BUSRF [73 : 0] could be invalid for two reasons:1. BUSRF [73 : 0] would be the RF representation of a number that is not in IRES11;53.2. the signi�cand conditions from de�nition 2.21 for RF factorings are not full�lled.We are only interested in the second case, because we will only deal with numbers fromIRES11;53. Therefore, we formulate the conditions that have to be full�lled for the sig-ni�cand of RF representations at bit level in the following:Corollary 2.26 The conditions on the signi�cand fRF =< fRF [�1 : 54] >neg of a RFfactoring, namely (fRF < 4 AND (fRF � 1 OR (fRF is multiple of 2�52)) are full�lled,i� (fRF [�1] _ fRF [0] _ fRF [54]). This means, that either one of the most signi�cant twobits fRF [�1 : 0] = BUSRF [59 : 58] has to be one or the least signi�cant bit fRF [54] =BUSRF [4] has to be zero.2.6.5 Gradual Result FormatAlso in the gradual result format, the results of IEEE operations on IEEE values shouldbe represented. But in contrast to the representative format, in the gradual result formatalready part of the rounding has been computed on the exact IEEE results. For a detaileddescription of the gradual result format, �rst we introduce the set of factorings, on thatthe gradual result format is based.De�nition 2.23 The set of GF factorings GFfact is de�ned by:GFfact = f((sGF ; eGF ; fGF );tinx;tinc) j 9(s; e; f) 2 FACT (IRES11;53) :((sGF ; eGF ; fGF );tinx;tinc) = post norm(sgrnd1(�(s; e; f)))g



2.6. INTERNAL REPRESENTATIONS 47By this de�nition, GF factorings are the result of a gradual rounding step according tothe intermediate result from lemma 2.20. Thus, IEEE rounding can also be computed onthese factorings:Corollary 2.27 If ((sGF ; eGF ; fGF );tinx;tinc) 2 GFfact is the GF factoring of thevalue x 2 IRES11;53, then for mode 2 fRZ;RNE;RI;RMIg IEEE rounding of x insingle and double precision can be computed on ((sGF ; eGF ; fGF );tinc;tinx) according tolemma 2.20 byiroundmode(s; e; f) =exp rndmode?sGF (post norm(sgrnd2mode?sGF (d�emine((sGF ; eGF ; fGF );tinc;tinx))))The gradual result format is an encoding of GF factorings ((sGF ; eGF ; fGF );tinc;tinx) 2GFfact. Because the range of the represented numbers is not changed signi�cantly bythe previous gradual rounding step, also in this case the exponent eGF is represented by13 bits: eGF = <eGF [12 :0]>2. The signi�cand, which was rounded at position 52 andwhich was post-normalized, is represented by fGF = <fGF [0 :52]>neg .Like in the unpacked, normalized and representative format the special values andzeros are indicated by 4 additional bits. For these cases, the sign sGF and the signi�-cand representation fGF [1 :52] correspond to the packed IEEE representation. For zeros,fGF [0] = 0 and the exponent representation is not valid. For +=�1 and NaNs, we de�nefGF [0] = 1 and eGF = emax+1 like in the unpacked, the normalized and the representativeformat. Thus, in the gradual result format the signi�cand is normalized for all non-zeronumbers, i.e., if the additional bit zeroGF = 0, then fGF [0] must be 1.Moreover, the two rounding tags tincGF and tinxGF from the previous gradual round-ing step are included in the number representations of the gradual result format. Forspecial values, which have an exact representation, tincGF and tinxGF have to be zero,so that no rounding will be computed for them.Figure 2.9 depicts a bus in the gradual result format indexed by BUSGF [72 : 0] withbit �elds: sGF = BUSGF [72]eGF [12 : 0] = BUSGF [71 : 59]fGF [0 : 52] = BUSGF [58 : 6]tincGF = BUSGF [5] tinxGF = BUSRF [4]zeroGF = BUSGF [3] infGF = BUSRF [2]qnanGF = BUSGF [1] snanGF = BUSGF [0]:De�nition 2.24 We de�ne the function gf : GFfact �! f0; 1g73, that computes therepresentation of an GF factoring ((sGF ; eGF ; fGF )tinc;tinx) 2 GFfactn;p in the gradualresult format. With eGF = <eGF [12 :0]>2 and fGF = <fGF [0 :52]>neg for representablenumbers and quiet NaNs, the function gf is de�ned bygf(s; e; f) = 8>>>><>>>>: (s; 013; 0; 052; 00; 1; 0; 0; 0) if f = 0(s; 00; 1; 010; 1; 052; 00; 0; 1; 0; 0) if f = f1(s; 00; 1; 010; 1; 0; fGF [2 :52]; 00; 0; 0; 1; 0) if f = fqNaN(s; 00; 1; 010; 1; 1; 051; 00; 0; 0; 0; 1) if f = fsNaN(s; eGF [12 :0]; fGF [0 :52]; tinc;tinx; 0; 0; 0; 0) otherwise.
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Chapter 3FP MicroarchitecturesIn the previous section the de�nitions and the requirements of the IEEE FP standard 754were presented. From this section we know that an IEEE compliant FP implementationhas to implement FP additions/subtractions, FP multiplications, FP divisions, FP square-roots, FP comparisons and FP conversions in hardware or in software.The FP operations have di�erent importance. One measure of the importance of theseFP operations could be the frequency of their usage in an average workload of current mi-croprocessors. As such a measure the frequency of the operations in traces of the SPEC92fpbenchmark suite [17] is depicted in �gure 3.1. Obviously, the FP addition/subtraction andthe FP multiplication are the most frequent arithmetic FP operations in these Benchmarktraces. This result agrees with the analysis from [26]. To accelerate the FP performanceof a microprocessor, it would make sense to spend the most e�ort on accelerating theimplementation of the most frequent FP operations. It can be seen in table 3.1 from thelatencies of the FP operations in commercial microprocessors that indeed the FP additionand the FP multiplication, which are used frequently, are implemented much faster thanthe FP division, which is only rarely used. Because the IEEE FP standard even allowsto implement parts of the FP computations in software, some very infrequent operationslike the FP square-root or the FP division-rest even have no hardware realization in mostcommercial microprocessors. Although the cheap and slow implementation of operations,that are infrequently used, might be cost-e�ective, one should also think about the e�ect,that perhaps some operations are infrequently used and tried to be avoided only becausecurrent microprocessors provide such a poor performance for these operations. This ques-tion could only be answered by the use of benchmarks and compilers, that use as less aspossible about the hardware implementation details.We base our choice of which arithmetic FP operations are implemented in hardwareon the processor model, into which our FP designs will be integrated later. We will use apipelined RISC-processor from [23], that implements the R3000 instruction set. For thisreason the performance of the FP designs will also be determined on R3000 traces of theSPEC92fp Benchmarks. The R3000 instruction set includes the FP addition/subtraction,FP multiplication, FP division, FP test, FP conversion, FP absolute value and FP negativevalue. Therefore, we propose IEEE compliant FP designs that support exactly thesearithmetic operations in hardware.We present three basic microarchitectures of our oating-point designs in the follow-ing. The main di�erences of these microarchitectures is the amout of rounding hardwarethat is shared between the functional units. If the functional units share some roundinghardware at all, the FP microarchitecture is mainly determined by the speci�cation of49
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gsFigure 3.1: Operation frequencies in the traces of the SPECfp 92 benchmarks.the intermediate FP representation at the interfaces between the functional units and theshared rounding hardware. Our three rounding microarchitectures are based on the inter-mediate FP representations, that were de�ned in the previous section. The lemmas 2.7,2.20 and 2.8 and corollary 2.21 about the di�erent possible partitionings of IEEE roundingcomputations already suggest the possible partitionings of the rounding implementations.(I) In the �rst microarchitecture all the rounding computations are concentrated ina shared general rounding unit. This rounding unit considers the rounding for allIEEE results including the exponent wrapping and the FP exceptions for both singleand double precision operations. A basic speci�cation of such a rounder was �rstdescribed in [10]. Thereafter, this rounder was implemented by our group, resultingin a version that will be included in [23], where also a rigorous correctness proof of thecompliance with the IEEE rounding de�nition will be found. This rounder is furtheroptimized in this thesis. The interface between the functional units and the sharedgeneral rounder is the RF factoring representation from de�nition 2.21. We require,that the functional units compute a RF factoring representation (sRF ; eRF ; fRF ) ofthe exact result exactop. The shared general rounder then has to compute IEEErounding on the RF factoring representation iround(sRF ; eRF ; fRF ). Lemma 2.7guarantuees, that the IEEE rounding of the RF factoring (sRF ; eRF ; fRF ) agreeswith IEEE rounding of exactop including the cases of denormalized and special valuesresults, exceptions and exponent wrapping. In this microarchitecture the integratedpacked FP representation is used in the memory and in the register�le.(II) In the second microarchitecture, the rounding for the case of normalized doubleprecision results is computed within each functional unit and this rounded resultis �xed for all the remaining cases in a second rounding step implemented by ashared gradual rounding unit. For the integrated rounding in the functional units



51latencyprocessor ALU FP add FP mult FP divsingle FP divdouble FP sqrtULTRA-Sparc 1 1 3 3 12 22 12-22ULTRA-Sparc 3 1 4 4 12 17 12-24Pentium Pro 1 3 5 17 36 -PowerPC 1 5 5 17 21 -Alpha 21064 1 4 4 34 63 -Alpha 21164 1 4 4 19 31 -Alpha 21264 1 4 4 12 15 -R10000 1 2 2 19 33 -PA-8000 1 3 3 31 31 -Table 3.1: Latencies of oating-point operations in commercial microprocessors.assuming normalized, double precision operands and results, several algorithms fromliterature could be used. The implementation of the gradual rounder is based onthe theory from [21] about gradual rounding. This rounding technique is applied inthis thesis for full IEEE compliant rounding including the handling of denormalizedresults, special values, exceptions and exponent wrapping. The interface betweenthe functional units and the gradual rounder is speci�ed by the gradual result for-mat. We require, that if an exact or an RF factoring of the exact result exactop isgiven by (sex; eex; fex), the functional units have to compute the GF factoring (seede�nition 2.23) ((sGF ; eGF ; fGF );tincGF ;tinxGF ) = ground1(sex; eex; fex). Thiscomputation already includes a �rst gradual rounding step by the gradual roundingfunction ground1, which assumes a normalized double precision result. The secondgradual rounding step is then computed in the shared gradual rounding unit bythe function ground2((sGF ; eGF ; fGF );tincGF ;tinxGF ). Corollary 2.21 and lemma2.20 guarantuees, that the sequence of the rounding by the gradual rounding func-tions ground1 and ground2 on the factoring (sex; eex; fex) simulates IEEE roundingof the factoring (sex; eex; fex) including the cases of denormalized and special val-ues results, exceptions and exponent wrapping. Also in this microarchitecture theintegrated packed FP representation is used in the memory and in the register�le.(III) By the third rounding architecture a completely new architecture for an IEEE com-pliant FPU is suggested. In this architecture no rounding hardware is shared, buteach functional unit contains a dedicated rounding implementation that computesfull IEEE rounding considering denormal and special values, exceptions and expo-nent wrapping. The special problem with the implementation of this microarchitec-ture is the implementation if the oating-point multiplication. The oating-pointmultiplier conventionally requires normalized signi�cands in its operands and deliv-ers an almost normalized result. For the fast integration of IEEE rounding into theFP multiplier, the signi�cand has to be rounded in parallel to the mulplication com-putations. For the case of denormalized results this rounding has to be computed ata variable rounding position, that could be at each position within the signi�cand.The idea, how to integrate such a variable position rounding into the multiplicationimplementation is the key concept for this microarchitecture. Such a multiplicationimplementation including variable position rounding will be presented later (see also
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Figure 3.2: FP unit microarchitecture using a shared general rounding unit[37]). Because such a multiplication implementation allows to work on normalizedFP representations (even for denormalized values) as inputs and outputs, the inter-nal FP representations can be changed to normalized NF factoring representationsfor this microarchitecture. Thus, the register�le contains the operands in the NF fac-toring representation and the functional units have to compute the NF factoring ofthe IEEE rounded result. This is speci�ed by the rounding function nround, so thatif an exact or an RF factoring of the exact result exactop is given by (sex; eex; fex),the functional units have to compute the NF factoring nround(sex; eex; fex). Def-inition 2.8 and lemma 2.8 guarantuee that this function computes IEEE roundingof the exact result exactop including the cases of denormalized and special valuesresults, exceptions and exponent wrapping. The computation of this rounding func-tion according to lemma 2.8 contains the computation of the normalized signi�candrounding function n sig rndmode?s, where the signi�cand has to be rounded at thevariable rounding position vp = vp = (p � 1) �maxf0; emin � eexg (see de�nition2.9) that depends on the exponent eex, so that the rounding position could vary ina wide range as mentioned above.In the following the main structures and implementation details for the three microarchi-tectures are described:Rounding architecture I using general rounding Figure 3.2 depicts the basicstructure of this FP rounding architecture. The operands are stored in the register�le inthe packed representation. The unpacking units convert them to a representation in thenormalized format. The unpacking is computed in two steps, a conversion from the packedto the unpacked format, followed by a conversion from the unpacked to the normalizedformat. The normalized operands are necessary for multiplications and divisions. But asin our designs the whole normalization easily �ts into one clock cycle, there is no overhead
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55compliant rounding.Further options Apart from the three di�erent rounding architectures described above,we vary the FP multiplication implementation to contain either a full-sized or a half-sizedadder tree that both use Booth2 recoding [30, 3, 1]. We have developed an improved costformula for these adder trees was in [30]. Moreover we consider three di�erent imple-mentations of the division based on the Newton-Raphson iteration [26, 23] with di�erentstarting accuracies of the initial reciprocal approximation. These multiplicative divisionimplementations are integrated into the implementations of the multiplier. For the initialreciprocal approximation we use the fast implementation of a linear approximation for-mula that we already presented in [36, 39] with an absolute approximation error boundedby 2�8, 2�16 and 2�28, respectively.



Chapter 4Basic FP Operations4.1 Internal Format Conversions4.1.1 Unpacking I-III (packed �! normalized format)This section describes the unpacking, i.e., the conversion from a packed single or doubleprecision FP representation to the corresponding FP representation in the normalizedformat. The choice whether we have a single or double precision input is signaled bythe bit dbl. In addition to this bit the packed FP input is given by BUSPF [63 : 0](section2.6.1). The FP output in the normalized format is denoted by BUSNF [69 : 0](section2.6.3).First, we deal with the problem to extract the bits belonging to sign, exponent andsigni�cand from the packed representation integrating the cases for single and doubleprecision. Regarding the sign this is an easy task, namely sPF = BUSPF [63]. Theexponent and signi�cand extractions are implemented in the exponent-extract circuit andin the signi�cand-extract circuit in �gure 4.1, that can be realized by a row of muxes each,described by (see equation2.75-equation2.80):ePF [10 : 0] = � BUSPF [62 : 52] if dbl(000; BUSPF [62 : 55]) otherwise,fPF [1 : 52] = � BUSPF [51 : 0] if dblBUSPF [54 : 3] otherwise.The conversion from the packed to the normalized format can be constructed in two steps:(i) a conversion from the packed to the unpacked format (see section 2.6.2, p.40) followedby (ii) a conversion from the unpacked to the normalized format (see section 2.6.3, p.42):(i) The unpacked format di�ers from the packed format by 5 additional bits and adi�erent exponent representation:� The conditions for the 5 additional bits: f[0], snan, qnan, inf, and zero, can beeasily read o� from equation2.81. To implement these conditions three zero testersare necessary according to:fzero = is zero(fPF [1 : 52])ezero = is zero(ePF [10 : 0])eone = � is zero(ePF [10 : 8];ePF [7 : 0]) if dblis zero(ePF [10 : 8];ePF [7 : 0]) otherwise= is zero(ePF [10 : 8]
 dbl;ePF [7 : 0])56



4.1. INTERNAL FORMAT CONVERSIONS 57Based on fzero, ezero, and eone, the additional bits can be computed by:fUF [0] = ezero zero = fzero ^ ezeroinf = fzero ^ eone snan = f[0] ^ eoneqnan = fzero ^ f[0] ^ eone:This completes the description of the additional bits circuit in �gure 4.1.� The exponent representation ePF [10 : 0] has to be converted from packed to two'scomplement representation, where the single and double precision case have to beintegrated. One can easily check, that the following equation describes the conversionfor non-zero packed exponent representations (ezero = 0) given by equation2.82except a missing increment:e1[11 : 0] = ( (ePF [10]2;ePF [9 : 0]) if dbl(ePF [7]5;ePF [6 : 0]) otherwise. (4.1)This missing increment is postponed to the exponent adjustment circuit. Note, thatonly the most signi�cant 5 bits are di�ering, so that the selection can be implementedby 5 muxes. In the next step, we integrate the case ezero = 1:e2[11 : 0] = � (12;dbl3; 06; 1) if ezeroe1[11 : 0] otherwise. (4.2)Note, that the value of < e2[11 : 0] >2=< eUF [11 : 0] >2 �1 is also de�ned to be toosmall by one in the case of ezero = 1, so that the postponed exponent incrementwill correct the exponent value for all cases. In this way equation 4.1 and equation4.2 specify the implementation of the exponent conversion circuit in �gure 4.1.(ii) To convert from the unpacked format to the normalized format, we have to imple-ment the exponent and signi�cand conversion (unbounded normalization shift for denor-malized numbers) according to equations 2.86 and 2.87.To simplify the exponent adjustment, we compute lzi = lz � 1 = lzero(f[0 : 52]) � 1in the shift amount circuit. This is done in two paths and a �nal selection depending onthe value of f[0]:< lzi[11 : 0] >2= lz � 1 = � < (06; lzero(f[1 : 52]; 012)[5 : 0]) >2 if f[0] = 0< 112 >2= �1 if f[0] = 1 (4.3)To compute lzero(f[1 : 52]; 012)[5 : 0], we use circuit lzero from [23] with t=64 and getthe amount of leading zeros lz � 1 = < lzi[5 : 0] > for the case f[0] = 0 represented bylzi[5 : 0]. The most signi�cant 06 in equation 4.3 are the sign extension to the 12-bit two'scomplement representation, because for f[0] = 0, lzi = lz � 1 � 0 is non-negative. Thenormalization shift is then computed by:� A left-shift of fUF [0 : 52] by lz positions: fNF [0 : 52] = (fUF [lz : 52]; 0lz). Becausewe do not know lz, but only lzi = lz � 1, we use a cyclic left-shifte, that computesthe following function cls on an 64-bit input input[0 : 63] and a shift amount sftagiven in a 6-bit binary representation:cls(input[0 : 63]; sfta) = (input[sfta : 63]; input[0 : sfta� 1])
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Figure 4.1: Unpack unitWith this circuit we compute in the signi�cand shift circuit in �gure 4.1f cls[0 : 63] = cls((fUF [0 : 52]; 011); < lzi[5 : 0] >)= (fUF [< lzi[5 : 0] >: 63]; fUF [0 :< lzi[5 : 0] > �1])= � (0; fUF [lz : 52]; 0lz+10) if lzi[5 : 0] 6= 16(0; fUF [0 : 52]; 010) if lzi[5 : 0] = 16 ;so that we get, as required,fNF [0 : 52] = (fUF [lz : 52]; 0lz) = f cls[1 : 53]:� An exponent adjustment e2 � lz. The exponent adjustment circuit in �gure 4.1implements this subtraction including the postponed exponent increment e2� lz+1from the exponent conversion circuit:< eNF [11 : 0] >2 = < e2[11 : 0] >2 �lz + 1= < e2[11 : 0] >2 �(lz � 1)= < e2[11 : 0] >2 � < lzi[11 : 0] >2= < e2[11 : 0] >2 + < lzi[11 : 0] >2 +1A 12-bit wide conditional sum adder is used to compute this sum. The additional 1is fed into the carry-in input of the adder.This completes the description of the unpack unit (�gure 4.1) that outputs the normalizedFP representationBUSNF [69 : 0] = (sPF ;eNF [11 : 0]; fNF [0 : 52]; zero; inf;qnan; snan):



4.1. INTERNAL FORMAT CONVERSIONS 594.1.2 General Rounding I (representative �! packed format)This section describes a general dual mode rounding unit that is able to round and tocompress a FP number from the representative format BUSRF [73 :0] (section 2.6.4) tothe single precision or the double precision packed FP representation BUSPF [63 :0] (sec-tion 2.6.1). The mode, whether the destination is single or double precision, is selectedby the bit dbl. The additional inputs of the rounding mode by rmode[1 :0] and the traphandlers unf en and ovf en select di�erent IEEE rounding options. The IEEE roundingwith these options has to be computed on the input factoring(sRF ; eRF ; fRF ) = factRF (BUSRF [73 :0]):Because the packed representation of the rounded result is based on the IEEE factoringof the rounded result, the packed representation of the rounded result can be speci�edaccording to de�nition 2.8 byBUSPF [63 :0] = pf(iround(sRF ; eRF + wec; fRF )):In addition to the rounding computations, the occurance of an overow, underow andinexact exception should be signaled by ovf, unf, and inx, respectively.We �rst consider to compute the IEEE factoring of the rounded result (sPF ; ePF ; fPF ) =iround(sRF ; eRF+wec; fRF ). A conversion from the IEEE factoring (sPF ; ePF ; fPF ) to thepacked representation BUSPF [63 :0] (packing) by the function pf then yields the requiredresult representation.According to lemma 2.7, namely,iroundmode(s; e; f) = exp rndmode?s(post norm(sig rndmode?s(b�eminc(s; e; f)))),the rounding function iroundmode(sRF ; eRF+wec; fRF ) is computed in four steps:1. a factoring (s1; e1+wec; rep53(f1)) corresponding to the bounded normalization shift(s1; e1+wec; f1) = b�eminc(sRF ; eRF + wec; fRF );2. signi�cand rounding (s2; e2+wec; f2) = a sig rndmode?s1(s1; e1+wec; rep53(f1)) (Note,that for the signi�cand rounding de�nition 2.9, equation 2.49 and lemma 2.12, wehave also (s2; e2+wec; f2) = a sig rndmode?s1(s1; e1+wec; f1) for single and doubleprecision),3. a post-normalization shift (s3; e3+wec; f3) = post norm(s2; e2+wec; f2); and4. exponent rounding (sPF ; ePF ; fPF ) = exp rndmode?s3(s3; e3+wec; f3):We treat the implementation of these 4 steps separately in the next paragraphs (thestructure of the whole implementation is depicted in �gure 4.5):Normalization shift & representative computation (1.) The bounded normaliza-tion shift is de�ned by equation 2.1. Using the de�nition of the function TINY it can bedescribed by:(s1; e1+wec; f1) = b�eminc(sRF ; eRF + wec; fRF )= � �(sRF ; eRF+wec; fRF ) if TINY (sRF ; eRF+wec; fRF )(sRF ; emin; fRF � 2eRF+wec�emin) otherwise.



60 CHAPTER 4. BASIC FP OPERATIONSBecause from TINY (sRF ; eRF��; fRF ) it follows that TINY (sRF ; eRF ; fRF ), all over-ow cases are already contained in the condition TINY (sRF ; eRF ; fRF ). Because afterexponent wrapping all representable results have values of normalized numbers accord-ing to corollary 2.10, these results can not be tiny and wec = 0 for the second line.Moreover, TINY (sRF ; eRF+�; fRF ) follows from unf en for underows, so that withtiny = TINY (sRF ; eRF ; fRF ) () (e0 < emin) the above equation for the bounded nor-malization shift can be reduced to:(s1; e1+wec; f1) = � (sRF ; e0+wec; f 0) = �(sRF ; eRF+wec; fRF ) if tiny OR unf en(sRF ; emin; fRF � 2eRF�emin) otherwise.To simplify the implementation we postpone the wrapping exponent correction after thenormalization shift computations and consider:(s1; e1; f1) = � (sRF ; e0; f 0) = �(sRF ; eRF ; fRF ) if tiny OR unf en(sRF ; emin; fRF � 2eRF�emin) otherwise.Lemma 4.1 With the bit-stringssfta[5 : 0] = � lzii[5 : 0] = lzero((0; fRF [�1 : 54]; 07) if tiny OR unf enbin50(eRF � emin + 2) otherwise.f000[0 : 63] = cls((0; fRF [�1 : 54]; 07); sfta)sftmask[0 : 63] = 8<: 164 if eRF � emin + 2 � 0 OR unf en064 if eRF � emin + 2 < �64hdec(sfta)[63 : 0] otherwise;the factoring (s1; e1; rep53(f1)) can be computed from (sRF ; eRF ; fRF ) by:s1 = sRFe1 = � e0 = eRF + 2� lzii if tiny OR unf enemin otherwise.rep53(f1)[0 : 53] = f000[0 : 53] AND sftmask[0 : 53]rep53(f1)[54] = OR(f000[0 : 53] AND sftmask[0 : 53]; f000[54 : 63]):Proof: We separate case (a) (tiny OR unf en) and (b) (tiny NOR unf en):(a) First, for (tiny OR unf en), we deal with the unbounded normalization shift(s1; e1; f1) = (sRF ; e0; f 0) = �(sRF ; eRF ; fRF ) = �(sRF ; eRF + 2; fRF =4):If we only consider non-zero signi�cands f0 = fRF =4, that have the binary represen-tation f0[0 : 56] = (0; fRF [�1 : 54]), then these signi�cands have values in the range[2�55; 2[, so that lemma 2.3(ii) can be used: Thus, with lzii = lzero(f0[0 : 56]) =lzero((0; fRF [�1 : 54])) � 1, the unbounded normalization shift �(sRF ; eRF ; fRF )can be computed by a left-shift of (0; fRF [�1 : 54]) by lzii = sfta positions (Note,that this computation is also valid for the case of zero signi�cands, because they arenot changed by the normalization shift regardless of the shift amount.)f1[0 : 63] = (f0[lzii : 56]; 0lzii+7) = (fRF [lzii� 2 : 54]; 0lzii+7)= cls((0; fRF [�1 : 54]; 07); sfta)= f000[0 : 63]



4.1. INTERNAL FORMAT CONVERSIONS 61and the exponent adjustment (Note, that also this exponent adjustment is valid forzeros, because their factoring representation may contain an arbitrary exponent.)e1 = e0 = eRF + 2� lzii:With lemma 2.11, the 53-representative of f1, rep53(f1), is computed byrep53(f1)[0 : 54] = (f1[0 : 53]; OR(f1[54 : 63])):Because from tiny it follows, that (eRF + 2 � emin � 0), we get for case (a)sftmask[0 : 53] = 154, so thatrep53(f1)[0 : 53] = f000[0 : 53] AND sftmask[0 : 53]rep53(f1)[54] = OR(f000[0 : 53] AND sftmask[0 : 53]; f000[54 : 63]);as required.(b) For (tiny NOR unf en), the resulting exponent after the unbounded normaliza-tion shift is emin, and all we have to compute is the 53-representative rep53(f 00)of the signi�cand f 00 =< f00 >neg= fRF � 2eRF�emin = f0 � 2eRF�emin+2. The mul-tiplication of f0 = < f0[0 : 56] >neg by 2eRF�emin+2 is a left-shift of f0[0 : 56] bysft den = < sft den[12 : 0] >2 = eRF � emin + 2 positions, where a positive shiftamount sft den > 0 corresponds to an e�ective left-shift and a negative shift amountsft den < 0 corresponds to an e�ective right-shift by jsft denj positions. In the com-putation of rep53(f 00), we di�er between 3 cases depending on the range of sft den:i. sft den � 0: Because we deal with denormalized numbers, we have 0 �sft den < lzii < 56, so that sft den can be represented with 6 bits sft den =< sft den[5 : 0] > = sfta andf00[0 : 63] = (f0[sfta : 56]; 0sfta+7) = (fRF [sfta� 2 : 54]; 0sfta+7)= cls((0; fRF [�1 : 54]; 07); sfta)= f000[0 : 63]:Thus, the 53-representative of f 00 = f 000 = f1 is computed by (see lemma 2.11):rep53(f1)[0 : 54] = (f000[0 : 53]; OR(f000[54 : 63])):Also in this case sftmask[0 : 53] = 154, so that we haverep53(f1)[0 : 53] = f000[0 : 53] AND sftmask[0 : 53]rep53(f1)[54] = OR(f000[0 : 53] AND sftmask[0 : 53]; f000[54 : 63]);as required for case (i).ii. 0 > sft den � �53: Because sft den is negative, the computation of f 00 =< f00[0 : 56+jsft denj] >neg requires a right-shift of (0; fRF [�1 : 54]) by jsft denjpositions: f00[0 : 56+jsft denj] = (0jsft denj+1; fRF [�1 : 54]):Because sft den is in the range [�1 : �64], the two's complement representationsft den[12 : 0] can be split into:sft den = < (1111111000000) >2 + < sft den[5 : 0] >= �64+ < sft den[5 : 0] >;



62 CHAPTER 4. BASIC FP OPERATIONSso that sfta =< sft den[5 : 0] >= 64 � jsft denj � 0. Using a 64-bit cyclicleft-shifter with the shift amount sfta =< sft den[5 : 0] > on f0[0 : 63] =(0; fRF [�1 : 54]; 07), we getf000[0 : 63] = cls((0; fRF [�1 : 54]; 07); sfta)= ((f0[64 � jsft denj : 63]; f0[0 : 64� jsft denj � 1]))= (f0[64� jsft denj : 63]; 0; fRF [�1 : 62� jsft denj])Thus, f000[0 : 53] could di�er from f00[0 : 53] only in the jsft denjmost signi�cantbits, that have to be cleared. The masksftmask[0 : 63] = hdec(sfta)[63 : 0] = (0jsft denj; 1sfta)has exactly zeros in these positions of the signi�cand, so thatrep53(f1)[0 : 53] = f00[0 : 53] = f000[0 : 53] AND sftmask[0 : 53]:The sticky bit is computed from all the remaining bit positions, that are selectedby the inverted mask sftmask[0 : 53] and signi�cand positions [54 : 63], so thatrep53(f 00)[54] = OR(f000[0 : 53] AND sftmask[0 : 53]; f000[54 : 63]);as required for case (ii).iii. �53 > sft den: In this case for the computation of f00, the signi�cand f0[0 : 56] =(0; fRF [�1 : 54]) is right-shifted by more than 53 positions, so that f00[0 : 53] =054 and no signi�cand bit of fRF [�1 : 54] contributes to rep53(f1)[0 : 53]. Onlythe sticky bit in the representative rep53(f1)[54] = OR(fRF [�1 : 54]) is in-uenced. If �53 > sft den � �64, we have sfta = < sft den[5 : 0] > =64 � jsft denj like in case (ii), so that sfta � 10 and sftmask[0 : 53] =hdec(sfta)[63 : 10] = 054. But also if sft den = eRF � emin + 2 < �64,we have sftmask[0 : 53] = 054 by de�nition. Thus,rep53(f1)[0 : 53] = f00[0 : 53] = 054 = f000[0 : 53] AND sftmask[0 : 53]rep53(f 00)[54] = OR(fRF [�1 : 54])= OR(f000[0 : 63])= OR((f000[0 : 53] AND sftmask[0 : 53]) OR f000[54 : 63]);as required for case (iii). This completes the proof of the lemma. 2
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Figure 4.2: Normalization shift implementation in the General rounding unitThe implementation of the normalization shift and the 53-representative computationcorresponding to lemma 4.1 is depicted in �gure 4.2. Additionaly, this �gure includes thecomputation of the sticky bit of the 24-representative rep24(f1)[25] from rep53(f1)[25 :54]according to lemma 2.12. The implementation of the the 'sfta, sftmask and exponent'circuit has to be further speci�ed. This circuit is responsible for the computation of theshift amount sfta[5 : 0], the mask sftmask[0 : 53], the exponent e1 and the incrementedexponent ei1 = e1+1. We consider the biased exponents e1b =< e1[13 : 0] >2= e1+ biasnand ei1b =< ei1[13 : 0] >2= ei1 + biasn, so thate1 = < e1[13 : 0] >2 � biasn and ei1 =< ei1[13 : 0] >2 �biasn:Moreover, the bits ovf1, ovf2a and tiny are computed, that indicate the conditions:ovf1 () (e1 > emax)ovf2a () (e1 = emax)tiny () TINY (sRF ; eRF ; fRF ) () (e0 < emin):The following lemma speci�es how all the outputs of the 'sfta, sftmask and exponent'circuit can be computed from the inputs eRF [12 : 0], lzii[5 : 0], dbl and unf en.



64 CHAPTER 4. BASIC FP OPERATIONSLemma 4.2 After the computation of the intermediate valueshe = < he[13 :6] >2 = <(eRF [12];eRF [12 :6]; 06) >2+<(04;dbl3; 1; 06)> (4.4)hei = < hei[13 :6] >2 = he+ 26 (4.5)hf = < hf[6 :0] > = < eRF [5 :0] > + < lzii[5 :0] > +1 (4.6)mask1 () (hei[13] OR unf en) (4.7)mask0 () (hei[13] NOR(ANDtree(hei[12 :6]))) (4.8)hb = < hb[13 :0] >2= � < hei[13 :6];hf[5 :0] >2 if hf[6]< he[13 :6];hf[5 :0] >2 otherwise, (4.9)the outputs of the 'sfta, sftmask and exponent' circuit can be computed bytiny () � hei[13] if hf[6]he[13] otherwise (4.10)sfta[5 :0] = � lzii[5 :0] if tiny OR unf eneRF [5 :0] otherwise. (4.11)sftmask[0 :53] = ((hdec(sfta)[63 :10] NOR mask1) NOR mask0) (4.12)e1b = < e1[13 :0] >2 = < hc[13 :0] >2 +1 (4.13)ei1b = < ei1[13 :0] >2 = < hc[13 :0] >2 +2 (4.14)ovf1 () ei1[13] AND (ORtree(ei1[12 :11]; (ei1[10 :8] AND dbl))) (4.15)ovf2a () ANDtree(ei1[13 :11]; (ei1[10 :8]�dbl);ei1[7 :0]) (4.16)using the de�nition ofhc[13 :0] = hb[13 :0] AND (tiny NAND unf en):Proof: First, we show some properties of the intermediate values, so that we canthen prove the correctness of the output computations using these properties. Because�emin + 1 =bias = < 04;dbl3; 17 > for single and double precision, we havesft den = < sft den[13 : 0] >2 = eRF � emin + 2= < (eRF [12];eRF [12 : 0]) >2 + < (04;dbl3; 17) > +1= < (eRF [12];eRF [12 : 0]) >2 + < (04;dbl3; 1; 06) > +26= < hei[13 : 6];eRF [5 : 0] >2Based on this one can show, that the bits mask0 and mask1 implement the conditionsmask1 () (hei[13] OR unf en) () ((sft den � 0) OR unf en)mask0 () (hei[13] NOR (ANDtree(hei[12 : 6])))() (hei[13] AND (NOT(ANDtree(hei[12 : 6]))))() (sft den < �64):Exactly these conditions are required to select the proper case in the computation ofsftmask[0 : 53]. The intermediate value hb is de�ned byhb = � < hei[13 : 6];hf[5 : 0] >2 if hf[6]< he[13 : 6];hf[5 : 0] >2 otherwise.



4.1. INTERNAL FORMAT CONVERSIONS 65= < he[13 : 6]; 06 >2 + < hf[6 : 0] >= < hei[13 : 6]; 06 >2 + < 18; 06 >2+ < eRF [5 : 0] > + < lzii[5 : 0] > +1= < hei[13 : 6];eRF [5 : 0] >2 + < 18; lzii[5 : 0] >2 +1= < sft den[13 : 0] >2 + < 18; lzii[5 : 0] >2 +1= sft den� lzii= eRF � emin + 2� lzii:Thus, starting from the de�nition of tiny, we gettiny () (e0(= eRF + 2� lzii) < emin)() (eRF � emin + 2� lzii < 0)() (hb < 0)() � hei[13] if hf[6]he[13] otherwise.Because bin50(eRF � emin + 2) = bin50(sft den) = eRF [5 : 0], the computation formula ofsfta[5 : 0] follows directly from the de�nition of sfta[5 : 0]. Using the conditions mask1and mask0, the de�nition of sftmask[0 : 53] becomessftmask[0 : 53] = 8<: 154 if mask1054 if mask0hdec(sfta)[63 : 10] otherwise: (4.17)One can easily check that this is equivalent tosftmask[0 : 53] = ((hdec(sfta)[63 : 10] NOR mask1) NOR mask0):The bit string hc[13 : 0] can be written as:hc[13 : 0] = hb[13 : 0] AND (tiny NAND unf en)= � hb[13 : 0] if tiny OR unf en014 otherwise:Using < 014 >2= emin� 1+ biasn and hb = eRF � emin+2� lzii = eRF + biasn+1� lzii,we get hc = < hc[13 : 0] >2= � eRF + 1� lzii+ biasn if tiny OR unf enemin � 1 + biasn otherwise= e1 � 1 + biasnso that corresponding to the de�nition of e1b, we get the computation formulae1b = hc+ 1 =< hc[13 : 0] >2 +1The computation formula of ei1b follows directly from the de�nition of the incrementedbiased exponent ei1b = e1b + 1. Because e1b = e1 + biasn and emax + biasn = 2n � 2 =< 03;dbl3; 17; 0 >2 for single and double precision, the condition (e1 � emax) can bewritten as (e1 � emax) () (e1b � 2n � 2)() (ei1b � < 03;dbl3; 18 >2):
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NORFigure 4.3: 'sfta, sftmask and exponent' circuit in the general rounding unit.The condition ovf1 is the 'greater than' case of the above condition and the conditionovf2a is the equality case, so thatovf1 () (< ei1[13 : 0] >2 > < 03;dbl3; 18 >2)() ei1[13] AND (ORtree(ei1[12 :11]; (ei1[10 :8] AND dbl)))ovf2a () (ei1[13 : 0] = (03;dbl3; 18))() ANDtree(ei1[13 : 11]; (ei1[10 : 8]�dbl);ei1[7 : 0])as required by the lemma. 2In this way the 'sfta, sftmask and exponent' circuit can be implemented like depicted in�gure 4.3. In this �gure the mask0,1 and the ovf1,2a signal are implemented accordingto equations 4.8, 4.7 and 4.15, 4.16 respectively. This completes the description of theimplementation of the normalization and representative computations.Signi�cand rounding (2.) In this paragraph, we consider the signi�cand rounding:(s2; e2 + wec; f2) = sig rndmode?s1(s1; e1 + wec; rep53(f1)):Because only the signi�cand is a�ected by this operation, we have s2 = s1 and e2 + wec =e1+wec = e1b� biasn+wec: Therefore, we only focus on the signi�cand in the following.Depending on the bit dbl, we compute the signi�cand rounding at signi�cand position(p � 1) on the p-representative repp(f1) in single (p = 24) or double (p = 53) precision.From the representative computation we get the 53-representative rep53(f1)[�1 : 54] andthe bit rep24(f1)[25], so that we also have the 24-representative byrep24(f1)[�1 : 25] = (rep53(f1)[�1 : 24];rep24(f1)[25]):



4.1. INTERNAL FORMAT CONVERSIONS 67The signi�cand rounding on p-representatives is already described in section 2.5.1. Fol-lowing this description the rounding of the p-representative repp(f1) results either in thetruncated signi�cand ftr = <ftr[�1:52]>neg =< rep53(f1)[�1 : (p� 1)] >neg or theincremented signi�cand finc = <ftri[�1:52]>neg = ftr + 2�p+1 (see de�nition 2.14).Obviously, for both single and double precision these signi�cands can be computed byftr[�1 : 52] = (rep53(f1)[�1 : 23];rep53(f1)[24 : 52] AND dbl)< ftri[�1 : 52] >neg = < (rep53(f1)[�1 : 23];rep53(f1)[24 : 52] OR dbl) >neg +2�52:Moreover, the three least signi�cant bits of the p-representative have to be selected:(l;r; sticky) = repp(f1)[(p�1) :(p+1)]= � rep53(f1)[52 :54] if dbl(rep53(f1)[23 :24];rep24(f1)[25]) otherwiseand the IEEE rounding modemode 2 fRZ;RNE;RI;RMIg encoded by rnd mode[1 : 0]has to be reduced for the use on the positive signi�cand to: (mode?s1) 2 fRZ;RNE;RIgencoded by sr mode[1:0] (according to equations 2.6-2.7 and table 2.3):sr mode[1] = rnd mode[1] ^ (rnd mode[0]
s) (4.18)sr mode[0] = rnd mode[1] ^ rnd mode[0]; (4.19)to implement the rounding increment decision (equation 2.54):rinc = sr mode[1] ^ (r _ sticky) _ sr mode[0] ^ r ^ (l _ sticky): (4.20)Based on rinc, the signi�cand can be rounded according to equation 2.55:f2[�1 : 52] = � ftri[�1 : 52] if rincftr[�1 : 52] otherwise.This results in an implementation of signi�cand rounding like depicted in region (2.) of�gure 4.4. In this region, the rounding decision circuit contains the implementation ofequations 4.18, 4.19 and 4.20. Moreover, a conditional sum incrementer implementationis used for the implementation.Because signi�cand rounding could change the value of the factoring, in the round-ing decision circuit we also compute the condition inx1, that recognizes the signi�candrounding inexactness condition according to lemma 2.17:inx1 () (f2 6= f1) () (f2 6= repp(f1)) () (r OR sticky): (4.21)Post-normalization (3.) The post-normalization shift is the implementation of(s3; e3 + wec; f3) = post norm(s2; e2 +wec; f2)= post norm(s2; e1b � biasn + wec; f2)= � (s2; ei1b � biasn + wec; 1) if f2 = 2(s2; e1b � biasn +wec; f2) otherwise.Because f2 can not become larger than 2, the condition (f2 = 2) is recognized by bitf2[�1], so that the post-normalization shift of the signi�cand can be implemented by asimple OR-gate f3[0 : 52] = (f2[�1] OR f2[0]; f2[1 : 52]):



68 CHAPTER 4. BASIC FP OPERATIONSWe do not compute e3, but the biased exponent e3b =< e3[13 : 0] >2= e3 + biasn, thatcan be selected from the previous computed e1b and ei1b:e3b = � ei1b if f2[�1]e1b otherwise. (4.22)The case (f2 = 2)() f2[�1] is called signi�cand overow and signaled by the bit sigovf.This results in an implementation of the post-normalization shift like depicted in �gure4.4, where region (3.a) includes the post-normalization of the signi�cand and region (3.b)includes the exponent selection according to equation 4.22.Exponent rounding (4.) and packing In this paragraph we describe �rst, how theexception conditions ovf, inx and unf can be recognized and how the wrapping exponentcorrection is added to the exponent. We then describe the exponent rounding followed bythe packing conversion of the rounded result to the packed representation, that is requiredas output of the general rounding unit.Lemma 4.3 With the bitfinop = (zero AND inf AND qnan AND snan); (4.23)(a) the overow exception condition ovf, (b) the inexact exception condition inx and (c)the underow exception condition unf can be computed byovf () (ovf1 OR (ovf2a AND sigovf)) AND finop: (4.24)inx () (inx1 OR ovf) (4.25)unf () (tiny AND (inx OR unf en)): (4.26)Proof: (a) An overow occurs, i� (i) the magnitude of the unbounded rounded resultis larger than xmax and (ii) the rounding input is the representation of a non-zero �nitenumber. A representative number representation is non-zero and �nite, i� it does notrepresent a special value and zero = inf = qnan = snan = 0, so that the conditionfinop = (zero AND inf AND qnan AND snan) is equivalent to part(ii) of the overowcondition. Part (i) of the overow condition can be written asjval(s3; e3; f3)j > xmax = (2� 2�p+1) � 2emax :We �rst assume that no tininess occurs. Thus, the signi�cand f3 =< f3[0 : p�1] >neg isnormalized and we have 1 � f3 � (2� 2�p+1), so thatovf () (jval(s3; e3; f3)j > xmax) AND finop (4.27)() (e3 > emax) AND finop: (4.28)For e1b = e1 + biasn and ei1b = ei1 + biasn we can extract the following formula for e3from equation 4.22 : e3 = e3b � biasn = � ei1 if (f2[�1] = 1)e1 otherwise.Because ei1 = e1 + 1, from (e1 > xmax) it follows that also (ei1 > xmax). Therefore,(e3 > xmax) () (e1 > xmax) OR ((ei1 > xmax) AND (f2[�1] = 1)): (4.29)



4.1. INTERNAL FORMAT CONVERSIONS 69The substitution of the de�nitions ovf1 () (e1 > xmax), ovf2a () (ei1 > xmax) andsigovf () (f2[�1] = 1) in equation 4.29 in combination with equation 4.28 then yieldspart (a) of the lemma for non-tiny values. If tininess occurs, then jval(s3; e3; f3)j < 2eminand e3 = emin, so that ovf = 0, ovf1 = 0 and ovf2a = 0 by the overow de�nitions.Therefore, the overow formula follows also for tiny numbers and the proof of part (a) ofthe lemma is completed.(b) An inexact exception occurs, i� the rounded result di�ers from the exact result. Thiscan be caused by two parts of the rounding procedure: the signi�cand and the exponentrounding. (The normalization shifts do not change the value of the factorings.) Theinexactness caused by signi�cand rounding is already recognized by the condition inx1.The exponent rounding (including exponent wrapping) changes the value of the operand,i� the unbounded rounded result would be larger than xmax. This is exactly the ovfcondition, so that inx () (inx1 OR ovf); as required for part (b) of the lemma.(c) For our choice of the loss-of-accuracy de�nition, the underow exception is de�ned byunf () � tiny if (unf en = 1)tiny AND inx otherwise.Obviously, this is equivalent to part (c) of the lemma. 2Now, we consider the exponent wrapping. Because for unf en = 1, we have unf ()tiny, the trapped underow condition:tunf () (tiny AND unf en) (4.30)signals the case that a trapped underow occurs. Moreover, we de�ne the trapped overowcondition tovf, that indicates the occurance of a trapped overow:tovf () (ovf AND ovf en): (4.31)Based on these de�nitions, the exponent wrapping on e3b can be described by:ew3 = e3b + wec = 8<: < e3[13 : 0] >2 �� if tovf< e3[13 : 0] >2 +� if tunf< e3[13 : 0] >2 otherwise. (4.32)Because the signal tunf is valid ealier than tovf, we de�ne a predicted wrapping exponentcorrection pwec based on tunf and we compute it by a selection using that for single anddouble precision +� =< +alpha[13 : 6] >2= 3 � 2n�2 =< (03;dbl2; 0;dbl2; 06) >2 and�� =< �alpha[13 : 6] >2= �3 � 2n�2 =< (13;dbl; 1;dbl; 0;dbl; 06) >2:pwec =< pwec[13 : 6] >2 = � +� =< +alpha[13 : 6] >2 if tunf�� =< �alpha[13 : 6] >2 otherwise.Lemma 4.4 After the computation of a predicted wrapped exponent pew3 by the additionof the predicted wrapped exponent correction,pew3 =< pew3[13 : 0] >2= e3b + pwec (4.33)and the de�nition of the wrapping exponent condition ewrap:ewrap = (tunf OR tovf) (4.34)the exponent wrapping on e3b can be computed by the selection:ew3 = e3b + wec = � pew3 if ewrape3b otherwise. (4.35)



70 CHAPTER 4. BASIC FP OPERATIONSProof: For tovf = 1, the predicted wrapped exponent correction is pwec = ��, so thatew3 = e3b�� in equation 4.32 and in equation 4.35. In the same way, the identity of thesetwo equations can be shown for the remaining two cases: tunf = 1 and ewrap = 0. 2The exponent rounding is inuenced by the reduced rounding mode (mode ? s) that isencoded by sr mode[1 : 0] according to table 2.3. We already get sr mode[1 : 0] fromthe signi�cand rounding circuit, so that we can compute the conditionrndup () sr mode[1] OR sr mode[0] (4.36)() (mode ? s 2 fRNE;RIg) (4.37)rndup () (mode ? s = RZ) (4.38)Moreover, we de�ne the untrapped overow condition uovf, that indicates the occuranceof an untrapped overow: uovf () (ovf AND ovf en): (4.39)Because (jval(s3; e3+wec; f3)j > xmax), i� an untrapped overow occurs (uovf = 1), theexponent rounding can be described by:(sPF ; ePF ; fPF ) = exp rndmode?s3(s3; e3+wec; f3) (4.40)= 8<: (s3; e1; f1) if uovf AND rndup(s3; emax; fmax) if uovf AND rndup(s3; ew3 � biasn; f3) otherwise. (4.41)This selection of the exponent and the signi�cand for the exponent rounding is computed incombination with the conversion step from the IEEE factoring (sPF ; ePF ; fPF ) to the cor-responding packed representation, that consists of (sPF ;ePF [n�1:0]; fPF [1 :p�1]; 064�n�p).Lemma 4.5 With the de�nition of the conditionsrinf = (uovf AND rndup) (4.42)rmax = (uovf AND rndup) (4.43)we can compute the bits of the packed representation of the rounded result bysPF = s3 (4.44)ePF [10 :1] = ((ew3[10 :1] NOR uovf) NOR f3[0]) (4.45)ePF [0] = ((ew3[0] NOR rinf) NOR (rmax OR f3[0])) (4.46)fPF [1 :52] = ((f3[0 :52] NOR rmax) NOR rinf) (4.47)Proof: The conversion from the unpacked representation to the packed representationcan be computed according to section 2.6.2.2. Thus, the sign and the signi�cand areunchanged, only the hidden bit f3[0] is removed from the representation of the signi�cand.With the use of fmax[1 :p�1] = 1p�1 and f1[1 :p�1] = 0p�1, we getsPF = sUF (4.48)fPF [1 :p�1] = fUF [1 :p�1] (4.49)= 8<: f1[1 :p�1] = 0p�1 if rinffmax[1 :p�1] = 1p�1 if rmaxf3[1 :p�1] otherwise. (4.50)= ((f3[1 :p�1] NOR rmax) NOR rinf) (4.51)



4.1. INTERNAL FORMAT CONVERSIONS 71Because in the packing for single precision only the signi�cand bits fPF [1 :23] are regardedand the bits fPF [24 :52] are ignored, we can compute the packed signi�cand representationfor both precisions by equation 4.51 with p = 53 as stated by the lemma.For the conversion of the exponent, we have to consider the n-bit biased represen-tation of eUF and to integrate the redundant exponent representation for emin, whereemin[n�1:0] = 0n for denormalized numbers and zeros according to equation 2.84. Be-cause after the conditional exponent wrapping and the exponent rounding, the exponentis representable in this n-bit packed format for all cases, it is su�cient for both single anddouble precision to regard only the exponent bits at positions [10 : 0]. For single precisionthe exponent bits at positions [10 : 8] are ignored later.The biased representations of emax and e1 are given by (1n�1; 0) and 1n respectively.For (rinf = 1) =) (f3[0] = 1) and (rmax = 1) =) (f3[0] = 1), we can compute thepacked exponent representation byePF [10 : 0] = � bin100 (ePF + biasn) if f3[0]011 otherwise. (4.52)= 8>><>>: 1n if rinf(1n�1; 0) if rmax011 if f3[0]ew3[10 : 0] otherwise. (4.53)If we separate equation 4.53 into an equation regarding the exponent positions [10 : 1] andan equation regarding exponent position [0], we can simplify these equations toePF [10 :1] = ((ew3[10 :1] NOR uovf) NOR f3[0])ePF [0] = ((ew3[0] NOR rinf) NOR (rmax OR f3[0]))This completes the proof of the lemma. 2
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Figure 4.4: Signi�cand rounding (2.), post-normalization (3.a, 3.b), exponent wrapping(4.a) and exponent rounding (4.b) implementation.Figure 4.4 depicts the implementation of the exponent wrapping (region 4.a), the expo-nent rounding and the computation of the exceptions (region 4.b) corresponding to thedescriptions of this paragraph. In region (4.a) of �gure 4.4 a 5-bit conditional sum adderis used for the implementation.Because only the bit positions [10 : 0] of the unpacked exponent representation arerequired, it su�ces to compute all additions for the exponent computation modulo 210.This is already considered in �gures 4.4 and 4.5, where we only consider ei1[10 :0], e1[10 :0],e3[10 :0], pew3[10 :0], pwec[10 :0], +�[10 :6] and ��[10 :6] instead of ei1[13 :0], e1[13 :0],e3[13 :0], pew3[13 :0], pwec[13 :0], +�[13 :6] and ��[13 :6].The exceptions circuit in region (4.b) of �gure 4.4 implements the exception conditionsovf, inx and unf according to equations 4.23-4.26. Additionaly, in this circuit the bitsrinf, rmax and ewrap are computed. In the previous descriptions we used many inter-mediate conditions from that these bits could be derived. Based on the input bits of theexceptions circuit the computations can be summarized by the following three equations:ewrap = (ovf AND ovf en) OR (tiny AND unf en) (4.54)rmax = (ovf AND ovf en AND (sr mode[1] NOR sr mode[0])) (4.55)rinf = (ovf AND ovf en AND (sr mode[1] OR sr mode[0])) (4.56)Finally, we pack the result representation into the packed format BUSPF [63 :0] for singleand double precision results and get according to equations 2.75-2.80 the following selection
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74 CHAPTER 4. BASIC FP OPERATIONS4.1.3 Gradual Rounding II (gradual result �! packed format)This section describes a dual mode gradual rounding unit, that is able to round andto compress a FP number from the gradual result format BUSGF [72 :0] (section 2.6.5)to the single precision or the double precision packed FP representation BUSPF [63 :0](section 2.6.1). Like for the general rounding the IEEE rounding options are given bythe precision of the destination dbl, the rounding mode rmode[1 :0] and the trap han-dlers unf en and ovf en. The gradual rounding unit outputs the packed representationBUSPF [63 :0] corresponding to the value of the IEEE rounded result and the exceptionags ovf, inx and unf corresponding to the occurance of an overow, inexact or underowexception. In this case the IEEE rounding is computed on the GF factoring:((sGF ; eGF ; fGF );tinc;tinx) = factGF (BUSGF [73 :0]);so that according to corollary 2.21 the rounded result can be speci�ed byBUSPF [63 :0] = pf(ground2((sGF ; eGF + wec; fGF );tinc;tinx)):The only di�erence between this speci�cation with the rounding function ground2,and the speci�cation of the general rounding unit from the previous section with therounding function iround, is the signi�cand rounding according to lemma 2.7 and 2.20.For the signi�cand rounding in the gradual rounding unit, the computation of the roundingdecision rinc from the previous section, has to be substituted by the gradual roundingdecision grinc according to equation 2.60. Moreover, the rounding inexactness could alsobe caused in the previous gradual rounding step, so that the rounding inexact signal inx1has to be substituted by tinx2 according to equation 2.61.All remaining computations are independent of the tag bits. From this point of view,the GF factorings (without tag bits) are a subset of the RF factorings and with the def-inition of fGF [�1] = fGF [53] = fGF [54] = 0 we can interpret a GF factoring input as anormalized RF factoring. Thus, the remaining part of the general rounding implementa-tion from the previous section could be used identically also for the implementation of thegradual rounding unit.Nevertheless, we will consider some additional changes to optimize the gradual round-ing implementation. These optimizations are based on the property that the signi�candsof all non-zero numbers are already normalized in the gradual result format. Not the wholeimplementation will be involved in the optimizations. The implementation of the post-normalization(see �gure 4.5(3.a)), the exponent rounding + exceptions (see �gure 4.5(4.b))and the packing are used from the previous section like depicted in �gure 4.6. Therefore,only the denormalization, gradual rounding and exponent wrapping circuit in this �gurewill be further speci�ed. The computations in this circuit combine the computations ofthe normalization shift (see �gure 4.5 circuit (1.)), the signi�cand rounding (see �gure 4.5circuit (2.)), the exponent part of the post-normalization shift (see �gure 4.5 circuit (3.b))and the exponent wrapping circuit (see �gure 4.5 circuit (4.a)) from the previous section.For the considerations about the normalization shift distance we can assume non-zerooperands like in the previous section. Thus, for the gradual result format we can uselzii = 2, so that in lemma 4.1 and 4.2, the computations of f000, sftmask and hf can beoptimized in the following way:
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76 CHAPTER 4. BASIC FP OPERATIONS
sftmask, hc

AND

F  2 EW  [10:0]3

EW  [10:0]3

PEW  [10:0]3E  [10:0]3

PE
W

I   [10:0]
1

E
  [10:0]
1

PE
W

   [10:0]
1

GFF     [0:52] E     [5:0]GF

1EI  [13:0]
E

I  [10:0]
1

��

��
��

��

��

�� �� ����
����

��

��

��

��

��

������������������������������������������������������������

AND NOR

ORtree ORtree

OR

[0:53] [25:53]

[54]

GRINC

1MUX0

SR
M

O
D

E
[1

:0
]

DBL

OR

[0
:2

3]

MUX 10
[-1] [0]

[24:52] [23:24][52:54][0
:2

3]

[2
4:

52
]

L,R,STICKY

GRINC TINX2

FTRI[-1:52]FTR[-1:52]

R
M

O
D

E
[1

:0
]

[1:52]

REP   (f  )[25]REP   (f  )[0:54]153 24 1 S

CSI(54)

Incrementer

decision
rounding
Gradual

TINX
TINC

AND

TINY UNF_EN

+ALPHA[13:6]

0 1MUX

-ALPHA[13:6]

hc

ipwec

Compound 

adder

Compound 

incrementer

INX1 SR
M

O
D

E
[1

:0
]

HC[10:0]

(14) (11)

MUX MUX

1
EWRAP

0MUX

01 01
SIGOVF

PWEC[10:6] (000001)[0:53] [54:63]F’’’

DBL UNF_ENE     [12:0]GF

MUX1

F     [0:52]

0

GF

11 left-shifter
cyclic

0902

0

SFTMASK[0:53]

UNF_EN
TINY OR

TINY
OVF1

OVF2a

DBL

OVF1,2a

TINY

Figure 4.7: Implementation of the 'denormalization, gradual round and exponent wrapping'circuit in the gradual rounding unit.Lemma 4.7 With the incremented predicted wrapping exponent correctionipwec = pwec+ 1 = <(pwec[13 :6]; 000001)>2the predicted exponents pew1 = e1b + pwec and pewi1 = ei1b + pwec can be computed bypew1 = hc+ ipwecpewi1 = hc+ ipweci + 1using a compound adder. Based on them, the predicted wrapped exponent pew3 can becomputed by the selection pew3 = � pewi1 if sigovfpew1 otherwise.Proof: The equations for pew1 and pewi1 follow directly from hc + 1 = e1b in lemma4.2. Starting from equation 4.33 we getpew3 = e3b + pwec = � ei1b + pwec if sigovfe1b + pwec otherwise = � pewi1 if sigovfpew1 otherwise.as required by the lemma. 2



4.1. INTERNAL FORMAT CONVERSIONS 77

HC[13:0]

RF

(E      [12]., E      [12:6])RFRF (0   , DBL   , 1)4 3

TINY

HB[13]

E      [5:0]RF

[63:10]

HDEC(64)

NOR
MASK0

MASK1

MASK0,1

HEI[13:6]

SFTMASK[0:53]

NOR

MUX
1 0

[5:0][6]

COMPOUND

ADDER(8)

CSA(6)

HF

(111110)

HB[13:6]

HEI HE

[13:6] [13:6]

HB[5:0]

AND

HF[6]

UNF_EN HB[13]TINY

NAND

E      [5:0]
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4.2. ADDITION/SUBTRACTION 794.2 Addition/Subtraction4.2.1 Addition/Subtraction I (normalized �! representative format)This section describes a FP addition/subtraction unit, that is able to add or to subtracttwo FP numbers given in the normalized representations (section 2.6.3):BUSaNF [69 :0] = (sa;ea[11 :0]; fa[0 :52]; zeroa; infa;qnana; snana) (4.59)BUSbNF [69 :0] = (sb;eb[11 :0]; fb[0 :52]; zerob; infb;qnanb; snanb); (4.60)which represent the factorings (sa; ea; fa) = factNF (BUSaNF [69 :0]) and (sb; eb; fb) =factNF (BUSbNF [69 :0]). The mode, whether the addition or the subtraction should becomputed, is selected by the input bit sop. For the special computation of the sign ofzero results, also the input of the rounding mode by rmode[1 :0] is required.In the case, that both operands have representable values, the exact sum/di�erenceexactadd=sub is de�ned by (section 2.2.4):exactadd=sub = (�1)sa � 2ea � fa+ (�1)sop�sb � 2eb � fb:If (src; erc; frc) is a RF factoring of exactadd=sub for non-zero representable inputs, thenfor the general case of arbitrary input values, a RF factoring of the addition/subtractionIoutput is given by:(sRF ; eRF ; fRF ) = 8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczero(src; erc; frc) otherwise, (4.61)so that the sum output of the addition/subtraction I unit is speci�ed by the correspondingrepresentation in the representative format BUSRF [73 :0] = rf(sRF ; eRF ; fRF ): Moreover,the invalid ag inv should be signaled according to the occurance of an invalid exception.The computations of the special conditions in equation 4.61 are already summarizedin section 2.4.4 by equations 2.20-2.26. We postpone the discussion of the special sign,signi�cand and exponent selections and consider the computation of (src; erc; frc) for theregular case in the following. For this we assume non-zero representable input operands.De�nition 4.1 Let seff = sop�sa�sb. The case that seff = 0 is called e�ective addi-tion and the case that seff = 1 is called e�ective subtraction. For e�ective subtractions,we multiply the signi�cands of both operands by 2. This operation is called the pre-shiftand can be computed by a left-shift of the binary signi�cand representations by one bitposition. The signi�cands fa0 and fb0 that include the conditional pre-shift are de�ned by:fa0 = � 2 � fa if seff = 1fa otherwise fb0 = � 2 � fb if seff = 1fb otherwiseWe de�ne the exponent di�erence � = ea� eb and the sign of the exponent di�erencesdelta () (� < 0). The \large" operand, (sl; el; f l), the signi�cand of the \small"operand, fs, and the exponent e1 are de�ned as follows:(sl; el; f l) = � (sa; ea; fa0) if sdelta = 0(sop� sb; eb; fb0) otherwise fs = � fb0 if sdelta = 0fa0 otherwise.e1 = � el � 1 if seff = 1el otherwise. (4.62)



80 CHAPTER 4. BASIC FP OPERATIONSLemma 4.8 Based on the previous de�nitions, the exact sum can be written asexactadd=sub = (�1)sl � 2e1 � (fl + (�1)seff(fs � 2�j�j)): (4.63)Proof:exactadd=sub = (�1)sa � 2ea � fa+ (�1)sop�sb � 2eb � fb:= � (�1)sa � 2ea � (fa+ (�1)sop�sb�sa(fb � 2eb�ea)) if � � 0(�1)sop�sb � 2eb � (fb+ (�1)sop�sb�sa(fa � 2ea�eb)) otherwise= � (�1)sl � 2el�1 � (fl + (�1)seff(fs � 2�j�j)) if seff = 1(�1)sl � 2el � (fl + (�1)seff(fs � 2�j�j)) otherwise= (�1)sl � 2e1 � (fl + (�1)seff(fs � 2�j�j)): 2The most complex part in the addition/subtraction computation corresponding to equa-tion 4.63 is the computation of the signi�cand sum fsum:fsum = fl+ (�1)seff � fs � 2�j�j:With the de�nition of the absolute signi�cand sum abs fsum = jfsumj, and the sign offsum: sfsum() (fsum < 0), we can write fsum = (�1)sfsum � abs fsum; so thatexactadd=sub = (�1)sl�sfsum � 2e1 � abs fsum: (4.64)In the following lemma it is shown, that the 53-representative of the absolute signi�candsum, rep53(abs fsum), meets the requirements for signi�cands in the representative for-mat:Lemma 4.9 The 53-representative of the absolute signi�cand sum rep53(abs fsum) issmaller than 4 and is either an integral multiple of 2�52 or is larger than or equal to 1, asrequired for signi�cands in the representative format (see section 2.6.4).Proof: The absolute signi�cand sum is de�ned by:abs fsum = jfl + (�1)seff � fs � 2�j�jj: (4.65)We separate the proof for: (a) e�ective additions; and (b) e�ective subtractions. (a) Fore�ective additions, abs fsum = jfl+ fs � 2�j�jj. Because 1 � fl < 2, 1 � fs < 2 and 0 <2�j�j � 1, the absolute signi�cand sum is in the range 1 � abs fsum < 4. Thus, also the53-representative of the absolute signi�cand sum is in the range 1 � rep53(abs fsum) < 4and the proof of case (a) is completed.(b) For e�ective subtractions, abs fsum = jfl� fs � 2�j�jj. Because of the preshifts fland fs are now both in the range [2; 4[ and fl and fs are both multiples of 2�51. Fromthis, it follows directly, that 0 < abs fsum < 4. For the remaining part of the proof, wedi�er between the two cases: (i) j�j � 1; and (ii) j�j > 1.(i) Because j�j � 1, fs � 2�j�j is a multiple of 2�52 and abs fsum is a multiple of 2�52.Thus, also the 53-representative rep53(abs fsum) is a multiple of 2�52 and the lemmafollows for case (i). (ii) Because j�j > 1, (fs � 2�j�j) < 1. Thus, abs fsum > 2� 1 = 1 andalso rep53(abs fsum) > 1. This completes case (b) and the proof of the whole lemma. 2Because of equation 4.64 and lemma 4.9, the value val(sl�sfsum; e1; rep53(abs fsum)) ise1�53-equivalent to exactadd=sub. Thus, (src; erc; frc)=(sl � sfsum; e1; rep53(abs fsum))is a RF factoring of the exact sum exactadd=sub. In the following the computation of thisRF factoring is described.



4.2. ADDITION/SUBTRACTION 81De�nition 4.2 We de�ne the limited absolute exponent di�erence deltalim bydeltalim = � j�j if j�j � 6363 otherwise. (4.66)Because 0 � deltalim � 63, we can use the 6 bit binary representation: deltalim =<deltalim[5 :0]>. Moreover, we de�ne the negated signi�cand fsn = (�1)seff � fs andthe aligned signi�cand fsa = fsn � 2�j�j.Lemma 4.10 The 53-representative of the absolute signi�cand sum rep53(abs fsum) canbe computed by using the limited absolute exponent di�erence deltalim instead of j�j:rep53(abs fsum) = rep53(jfl + (�1)seff � fs � 2�deltalimj): (4.67)Proof: We separate the proof for: (a) the case of j�j � 63; and (b) the case of j�j > 63.(a) For j�j � 63, we have deltalim = j�j, so that the lemma follows directly fromequation 4.65.(b) For j�j > 63, we have fsum > 0 for both e�ective subtractions and additions,so that abs fsum = fsum and rep53(abs fsum) = rep53(fsum). Remember, that thesigni�cand fl is a multiple of 2�53 and fs < 4. Let xh = fl, xl = (�1)seff � fs � 2�j�j,and q = 2j�j�deltalim. We then get abs fsum = xh + xl, xh = k � 2�53 for an integer k,jxlj < 4 � 2�63 < 2�53, andq � xl = (�1)seff � fs � 2�j�j � 2j�j�deltalim= (�1)seff � fs � 2�deltalim= (�1)seff � fs � 2�63;so that also q � jxlj < 2�53. Therefore, lemma 2.16 with p = 53 can be used and we getrep53(xh + xl) = rep53(xh + q � xl). This equation can be written as rep53(abs fsum) =rep53(jfl + (�1)seff � fs � 2�deltalimj); so that the proof of the lemma is completed. 2The computation of rep53(abs fsum) according to lemma 4.10 is partitioned into thefollowing steps:1. computation of the limited absolute exponent di�erence deltalim = <deltalim[5 :0]>,and the sign of the exponent di�erence sdelta.2. operand swapping (computation of sl,el =<el[11 :0]>2,fl =<fl[�2:52]>2neg andfs =<fs[�2:52]>2neg including the preshifts for e�ective subtractions)(fa0[�1:52]; fb0[�1:52]) = � (fa[0 :52]; 0; fb[0 :52]; 0) if seff = 1(0; fa[0 :52]; 0; fb[0 :52]) otherwise (4.68)(sl;el[11 :0]; fl[�2:52]) = � (sb� sop;eb[11 :0]; 0; fb0[�1:52]) if sdelta(sa;ea[11 :0]; 0; fa0[�1:52]) otherwise(4.69)fs[�2:52] = � (0; fa0[�1:52]) if sdelta(0; fb0[�1:52]) otherwise (4.70)3. signi�cand negation of fs for e�ective subtractions. Because fs =< fs[�2:52] >negand fs[�2] = 0, fsn = (�1)sefffs can be computed byfsn = < fsn[�2:52] >2neg (4.71)= � < (fs[�2:52]) >2neg +2�52 if seff< fs[�2:52] >2neg otherwise. (4.72)This equation is implemented by a 55-bit incrementer and a 55-bit mux selection.



82 CHAPTER 4. BASIC FP OPERATIONS4. alignment shift of fsn[�2:52] by deltalim positions (fsa = fsn�2�deltalim). Because0 � deltalim � 63, fsa can be represented by fsa =< fsa[�2 : 115] >2neg andbecause fsn is also represented in the two's complement representation, the �ll bitfsa[�2] has to be shifted in for sign extension:fsa[�2:115] = (fsn[�2]deltalim; fsn[�2:52]; 063�deltalim) (4.73)= rsft(fsn[�2:52]; <deltalim[5 :0]>; fsn[�2]; 0) (4.74)This right shift is implemented with a 55-bit shifter.5. signi�cand addition fsum = fl + fsa:<fsum[�2:115]>2neg=<fl[�2:52]>2neg + <fsa[�2:115] >2negThis addition is partitioned into a lower part and into an upper part:fsum[53 :115] = fsa[53 :115] (4.75)<fsum[�2:52]>2neg = <fl[�2:52]>2neg + <fsa[�2:52] >2neg (4.76)The addition of the upper part is implemented by a 55-bit carry-look-ahead adderimplementation.6. conversion for negative fsum (computation of abs fsum =<abs fsum[�1:115]>neg=jfsumj). Because fsum is negative, i� fsa > fl, in this case deltalim = 0 andabs fsum[53 :115] = fsum[53 :115] = fsa[53 :115] = 063. Thus, only the upper part[�2:52] is involved in the conversionabs fsum[53 :115] = fsum[53 :115] (4.77)<abs fsum[�1:52]>2neg = � <(fsum[�1:52])>2neg +2�52 if fsum[�2]<fsum[�1:52]>2neg otherwise. (4.78)This equation is implemented by a 55 bit incrementer and a 55-bit mux selection.The sign of fsum is given by sfsum = fsum[�2].7. representative computation according to lemma 2.11:frc = < frc[�1 : 54] >neg= < rep53(abs fsum)[�1 : 54] >neg= < (abs fsum[�1 : 53]; Ortree(abs fsum[54 : 115]) >negAmong these steps only the implementation of the �rst step has to be further speci�ed.This is done by the following lemma:Lemma 4.11 With the computation of� = < delta[13 :0] >2 = ea� eb (4.79)= < (0;ea[12 :0]) >2 + < (1;ea[12 :0]) >2 +1 (4.80)j�j = <abs delta[13 :0]> (4.81)= � <delta[13 :0]> +1 if delta[13]<delta[13 :0]> otherwise. (4.82)deltaovf = ORtree(abs delta[13 :6]) (4.83)



4.2. ADDITION/SUBTRACTION 83we get sdelta = delta[13] (4.84)deltalim = <deltalim[5 :0]> (4.85)= < (abs delta[5 : 0] OR deltaovf) > (4.86)Proof: The equations for � = <delta[13 :0]>2 and j�j = <abs delta[13 :0]> area straight-forward implementation of the de�nitions using the properties of two's com-plement numbers. Obviously, in the two's complement representation delta[13 :0], thesign of � is given by sdelta = delta[13]. The bit deltaovf implements the condition(j�j > 63). In equation 4.86, deltalim is set to <111111> = 63 for deltaovf = 1 anddeltalim = <abs delta[5 :0]> = j�j for deltaovf = 0, as required by the de�nition ofdeltalim in equation 4.66. 2The exponent erc = <erc[12 :0]>2 = e1 (equation 4.62) is computed by:erc = <e1[11 :0]>2 (4.87)= � <el[11 :0]>2 �1 if seff = 1<el[11 :0]>2 otherwise. (4.88)This equation is implemented by a 12-bit decrementer and a 12-bit selection mux. The signcomputation implements the equation src = (sl� sfsum). This completes the descriptionof the computation of (src; erc; frc). In the following we will integate this result for theregular case with the special cases results according to equation 4.61 and we will considerthe recognition of the invalid exception.We separate the �nal result selection according to equation 4.61 for the signi�cand, theexponent and the sign of the result. The de�nitions of the special case conditions scqnan,scinf, scx, scy, and sczero are given in equations 2.20-2.24. For the computation ofthe zero condition sczero, we �rst have to detect the condition zerorc of zero resultsfor regular operands. Because the computation of zerorc based on the result of theregular path would be quite slow, we compute this signal directly from the input operands.Obviously,zerorc () seff ^ zerotest ((ea[11 :0]; fa[0 :52]) � (eb[11 :0]; fb[0 :52])) :(4.89)This equation will be implemented in the special cases circuit.Based on the special case conditions we get for the signi�cand:fRF = <fRF [�1:54]>neg= 8>>>>>><>>>>>>:
fqnan =<(0; 101052)>neg if scqnanf1 =<(0; 1054)>neg if scinffa =<(0; fa[0 :52]; 02)>neg if scxfb =<(0; fb[0 :52]; 02)>neg if scyf0 =<(056)>neg if sczerofrc =<frc[�1:54]>neg otherwise.By the de�nition of the special case signi�cand representation fsc[�1:54]fsc[�1:54] = 8>>>><>>>>: (0; 101052) if scqnan(0; 1054) if scinf(0; fa[0 :52]; 02) if scx(0; fb[0 :52]; 02) if scy056 otherwise (4.90)



84 CHAPTER 4. BASIC FP OPERATIONSand the special case conditionspca = scqnan_ scx _ scy _ scinf _ sczero; (4.91)the representation of the signi�cand fRF can be selected byfRF [�1:54] = � fsc[�1:54] if spcafrc[�1:54] otherwise. (4.92)The computations for fsc[�1:54] and spca are implemented in the special cases circuit.Based on the special case conditions, already all four aditional bits of the result rep-resentation are given by zeroRF = sczero, infRF = scinf, snanRF = 0 andqnanRF () qnana _ qnanb _ scqnan: (4.93)For the exponent eRF the selection is even simpler, because for all special value results, wede�ned eRF = emax+1. Because in addition/subtraction for a special value result, at leastone of the input operands has also a special value, and to avoid the distinction betweenthe single and the double precision case, the special exponent representation can be copiedfrom one special input operand for all special value results. We de�ne the conditionnrega () infa _ qnana _ snana: (4.94)If there is at least one special input operand, then a special exponent representation iscopied from the inputs byesc[11 :0] = � ea[11 :0] if nregaeb[11 :0] otherwise, (4.95)so that the exponent eRF of the representative result can be selected by:eRF = <eRF [12 :0]>2 (4.96)= � esc =<(esc[11];esc[11 :0])>2 if spcaerc =<(erc[11];erc[11 :0])>2 otherwise. (4.97)Note, that for zero results the exponent esc is selected, but in this case it does not matterwhich value this exponent has, because zero representations in the representative formatmay contain an arbitrary exponent value.We de�ne the special case sign ssc and the preliminary sign s0RF byssc = 8>><>>: 0 if scqnansa if scxsb if scy(sa ^ infa) _ (sb ^ infb) otherwise (4.98)s0RF = � ssc if spcasrc otherwise. (4.99)Because the rounding mode RMI is encoded by rmode[1 :0] = (11) according to table 2.3,and (sa ^ (sb � sop)) � (sl ^ seff) we then get the sign of the result sRF according toequation 2.15 bysRF = � s0 if sczeros0RF otherwise. (4.100)= � (seff ^ rmode[1] ^ rmode[0]) _ (sl ^ seff) if sczeros0RF otherwise. (4.101)
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Figure 4.10: Structure of the addition/subtraction unit I.In this way, the sum output in the representative format is given by:BUSRF [72 :0] = (sRF ;eRF [12 :0]; fRF [�1:54]; zeroRF ; infRF ;qnanRF ; snanRF )(4.102)The cases for the occurance of an invalid exception are listed in table 2.5. Obviously,the invalid exception occurs, i� the addition/subtraction results in a quiet NaN , wherescqnan = 1, so that inv () scqnan: (4.103)



86 CHAPTER 4. BASIC FP OPERATIONSThis completes the description of the addition/subtraction I implementation which isdepicted in �gure4.10. The only part which is included in this �gure without details isthe special cases circuit. This special cases circuit includes the computations of equations2.20-2.24, 4.89, 4.90-4.91,4.93-4.95, and 4.98.4.2.2 Addition/Subtraction II (normalized �! gradual result format)Like in the previous section also in this section the FP addition/subtraction is computedfrom the inputs of the normalized representations BUSaNF [69 :0] and BUSbNF [69 :0](section 2.6.3), the rounding mode represented by rmode[1 : 0] and the bit sop thatsignals the case of addition or subtraction. But in contrast to the previous implementationwhere a representative of the exact operation result had to be delivered, in this case thegradual rounding function ground1 has to be computed on the exact operation result.After this gradual rounding step the sum/di�erence should be output in the gradualresult format BUSGF [73 :0] (section 2.6.5). Formally, with the notation from the previoussection and with ((sgrc; egrc; fgrc);tinc;tinx) = ground1mode(src; erc; frc), the requiredaddition/subtraction result is based on the following GF factoring (Note, that the roundingcan be computed on the RF factoring (src; erc; frc) instead of a factoring of the exactoperation result according to lemma 2.7):((sGF; eGF; fGF );tincGF;tinxGF )=8>>>>>><>>>>>>:
((0; eqNaN ; fqNaN ); 0; 0) if scqnan((sinf ; e1; f1); 0; 0) if scinf((sa; ea; fa); 0; 0) if scx((sb; eb; fb); 0; 0) if scy((s0; e0; 0); 0; 0) if sczero((sgrc; egrc; fgrc);tinc;tinx) otherwise, (4.104)so that the sum output of the addition/subtraction unit in this section is speci�ed by thecorresponding gradual result representation BUSGF [73 :0] = gf((sGF ; eGF ; fGF );tinc;tinx).The occurance of an invalid exception should be signaled by the bit inv also in this case.The special cases conditions and values in equation 4.104 are identical to that in thespeci�cation of the previous section. In the implementation of this special cases selection,the only di�erence to the previous section is that a representation in the gradual resultformat has 3 bits less in the signi�cand, which have been �lled with zeros in the repre-sentative format. Moreover, the gradual result format requires two additional roundingtags, which have to be zero for special value results. For the special cases selections, thesesmall adjustments are integrated in the implementation depicted in �gure 4.11. Also inthe equations, that are implemented in the special cases circuit, the selections for bit posi-tions [�1] and [53:54] have to be neglected. This already completes the description of thespecial cases computation and we only have to describe the computation of the gradualresult representation of ((sgrc; egrc; fgrc);tinc;tinx) in the following.The computation of the GF factoring ((sgrc; egrc; fgrc);tinc;tinx) can be based onthe computation of the RF factoring (src; erc; frc) from the previous section:(src; erc; frc) = (sl� sfsum; e1; rep53(jfl + (�1)seff � fs � 2�deltalimj);so that((sgrc; egrc; fgrc);tinc;tinx) = ground1mode(src; erc; frc) (4.105)= post norm(sgrnd1mode?s(�(src; erc; frc))):(4.106)



4.2. ADDITION/SUBTRACTION 87The three additional steps of the normalization shift, the rounding computation and thepost-normalization shift could have a large additional delay in a straight-forward imple-mentation. To speed up the computations, we divide the implementation into two parallelpaths that work under di�erent assumptions. The computations in each path can then besimpli�ed and some of the computation steps only have to be considered exclusively in oneof the two paths. Such a 'two path' approach for oating-point addition was �rst describedin [14]. In this description the two paths di�er by the assumptions on the magnitude ofthe exponent di�erence: the far path is de�ned for large exponent di�erences j�j > 1, andthe near path is de�ned for small exponent di�erences j�j � 1.Our partitioning is slightly di�erent. Based on the following de�nition of the pathselection condition is r, we de�ne the 'R'-path (R for Rounding) for is r = 1 and the'N'-path (N like Near, Negation and Normalization) for is r = 0. As will be shown later,the advantage of our approach is that a conventional implementation of a far path canbe used to implement also the 'R'-path, but the implementation of the 'N'-path could besimpli�ed in comparison to a near path implementation.De�nition 4.3 We de�ne the path selection condition is r based on the computation of(src; erc; frc) from the previous section with fsum = fl+ (�1)seff � fs � 2�deltalim:is r () (seff _ (fsum 2 [1; 4[)) ; (4.107)i.e., the results of the 'R'-path have to be valid, if (is r = 1) and the results of the 'N'-pathhave to be valid, if (is r = 0), so that a valid result could be selected by((sgrc; egrc; fgrc);tinc;tinx) = � ((r s; r e; r f);r tinc;r tinx) if is r((n s; n e; n f);n tinc;n tinx) otherwise.Lemma 4.12 For the two paths we get the following properties(a) 'R'-path: is r =) fsum 2 [1; 4[(b) 'N'-path: is r =) seff = 1(c) 'N'-path: is r =) � 2 f�1; 0; 1g(d) 'N'-path: is r =) fsum 2 ]� 2; 1[ AND fsum is an integral multiple of 2�52:Proof: (a) Because one part of the de�nition of is r already includes the conditionfsum 2 [1; 4[, we have to show part (a) only for the case of seff = 0. For this caseof e�ective additions it was already shown in part (a) of the proof of lemma 4.9, thatfsum 2 [1; 4[.Part (b) follows directly from the de�nition of the path selection condition is r.(c) For is r = 1, we have an e�ective subtraction with fsum < 1. In e�ective sub-tractions both signi�cands have been preshifted, so that both fl and fs are in the range[2; 4[. Thus, (fsum < 1) =) (fl � fs � 2�deltalim < 1)=) (fs � 2�deltalim > 1)=) (2�deltalim > 0:25)=) (deltalim < 2)



88 CHAPTER 4. BASIC FP OPERATIONSThis last condition is only ful�lled for exponent di�erences � 2 f�1; 0; 1g, as required bythe lemma.(d) From part (c) we know that for is r = 1, we get e�ective subtractions withdeltalim � 1. Because of the preshifts, the signi�cands fl and fs are both integralmultiples of 2�51, so that the aligned signi�cand fs � 2�deltalim is an integral multiple of2�52. Thus, also the signi�cand sum fsum is an integral multiple of 2�52. Because ingeneral for e�ective subtractions, fsum 2 ]� 2; 4[, and for is r = 1, we have fsum < 1,we also get fsum 2 ]� 2; 1[, as required. 2These properties of the two paths make the following optimizations possible:(a) Because of (a), there can be no negative fsum in the 'R'-path, so that the conversionstep can be avoided in this path. Moreover, we know from (a), that in the 'R'-paththe range of the signi�cand sum fsum consists only of two binades, so that only avery small a normalization shift by at most one position is required in the 'R'-path.(b) Because of (b), we can use seff = 1 in the whole computations of the 'N'-path andoptimize the implementation accordingly.(c) Because of (c), deltalim in the 'N'-path can be determined already from the two leastsigni�cant bits in the two's complement representation of the exponent di�erence.(d) Because of (d), also after the conversion step and the normalization shift, the sig-ni�cand is a multiple of 2�52, so that the rounding computation by the functionground1 does no change on the signi�cand and the rounding can be neglegted in the'N'-path.The additional advantanges of the 'N'-path in our approach in comparison to the 'near'-path from [], are the properties in (b) and in (d). The main structure of our implementationof the addition/subtraction II unit is depicted in �gure 4.11, that uses the results of the'R'-path computations ((r s; r e; r f);r tinc;r tinx), the result of the 'N'-path compu-tations ((n s; n e; n f);n tinc;n tinx) and the condition is r, that decides, which resulthas to be selected according to de�nition 4.3. Moreover, the special case computationsfrom the previous section according to equation 4.104 are adopted for the output in thegradual result format in this �gure.In the following, we describe the implementation of the 'R'-path and the 'N'-pathseparately, after giving a de�nition of some values that will be used in both paths:De�nition 4.4 We de�ne the signi�cand fso (o for one's complement), where the con-ditional two's complement negation from the signi�cand fsn is replaced by a conditionalone's complement negation:fso = <fso[�2:52]>2neg (4.108)= <fs[�2:52] � seff>2neg (4.109)= <fsn[�2:52]>2neg �seff � 2�52 (4.110)= fsn� seff � 2�52 (4.111)and we de�ne the corresponding values that are based on fso instead of fsn:fsoa = <fsoa[�2:115]>2neg (4.112)= <(seffdeltalim; fso[�1:52]; seff63�deltalim)>2neg (4.113)
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Figure 4.11: Structure of the addition/subtraction unit II.
= fso � 2�deltalim + seff � (2�52�deltalim � 2�115) (4.114)= fsn � 2�deltalim � seff � 2�115 (4.115)= fsa� seff � 2�115 (4.116)fosum = <fosum[�2:116]>2neg (4.117)= fl + fsoa (4.118)= fsum� seff � 2�115 (4.119)



90 CHAPTER 4. BASIC FP OPERATIONS'R'-path The computations in the 'R'-path are described on the basis of the adderimplementation from the previous section. As discussed above (see lemma 4.12(a)), wecan use for the 'R'-path: abs fsum = fsum 2 [1; 4[ and sfsum = 0. Based on this, therequired factoring in the 'R'-path ((r s; r e; r f);r tinc;r tinx) can be written as((r s; r e; r f);r tinc;r tinx) = post norm(sgrnd1mode?sl(�(sl; e1; fsum))):(4.120)De�nition 4.5 For f 2 [1; 4[, we de�ne the generalized post-normalization shift bygpost norm(s; e; f) = � (s; e+ 1; f=2) if f 2 [2; 4[(s; e; f) if f 2 [1; 2[ (4.121)Lemma 4.13 In the 'R'-path, the computation of (r s; r e; r f) can be simpli�ed to(r s; r e; r f) = � gpost norm(sl; e1; rndmode?sl;52(fsum)) if fsum 2 [1; 2[gpost norm(sl; e1; rndmode?sl;51(fsum)) if fsum 2 [2; 4[ (4.122)Proof: It follows directly from the de�nition of the gradual rounding function grnd, thatfor zero rounding tags at the input like in (rfsum;tinx;tinc) = grndmode?s;�(fsum; 00)),conventional rounding delivers the same rounded result, so that we also have rfsum =rndmode?s;�(fsum). Moreover, we use for the reduction that fa; fb < (2 � 2�52), so thatfsum 2 [1; (4 � 2�51)]. Because 1 and (4 � 2�51) are integral multiples of 2�51, forfsum 2 [1; (4 � 2�51)] and � � 51, also the rounded result rfsum = rndmode?s;�(fsum)is in the same range, namely rfsum 2 [1; (4 � 2�51)]. In the following we di�er betweenthe two cases: (a) fsum 2 [1; 2[ and (b) fsum 2 [2; 4[.(a) For fsum 2 [1; 2[, the normalization shift can be neglected, so that with de�nitionof the function sgrnd1 we getpost norm(sgrnd1mode?sl(�(sl; e1; fsum))) = post norm(sl; e1; grnd1mode?sl(fsum))and thus (r s; r e; r f) = gpost norm(sl; e1; rndmode?sl;52(fsum)).(b) For fsum 2 [2; 4[, we get �(sl; e1; fsum) = (sl; e1 + 1; fsum=2), so that becauseof fsum � (4� 2�51)]:(r s; r e; r f) = gpost norm(sl; e1 + 1; rndmode?sl;52(fsum=2))= gpost norm(sl; e1; rndmode?sl;51(fsum)) 2



4.2. ADDITION/SUBTRACTION 91De�nition 4.6 Based on the previous lemma and with the de�nition of the signi�candoverow condition cond[2;4[ () fsum 2 [2; 4[; (4.123)we de�ne the rounded signi�cand rnd fsum byrnd fsum = <rnd fsum[�1:52]>neg= � rndmode?sl;51(fsum) if cond[2;4[rndmode?sl;52(fsum) otherwise,so that (r s; r e; r f) = gpost norm(sl; e1; rnd fsum):In the following, the computation of the rounded signi�cand rnd fsum and the roundingfunctions rndmode?sl;52(fsum) and rndmode?sl;51(fsum) are described using the injection-based rounding reduction from section 2.5.2. We denote the additive rounding injectionby inj[1;2[ for fsum 2 [1; 2[ and by inj[2;4[ for fsum 2 [2; 4[. With srmode = mode ? sl,these injections are de�ned byinj[1;2[ = 8<: 0 if srmode = RZ2�53 if srmode = RN2�52 � 2�115 otherwiseinj[2;4[ = 8<: 0 if srmode = RZ2�52 if srmode = RN2�51 � 2�115 otherwise.Based on the injections, we can reduce the previous rounding functions torndsrmode;51(fsum) = rndRZ;51(fsum+ inj[2;4[) (4.124)= rndRZ;51(fosum+ seff � 2�115 + inj[2;4[) (4.125)rndsrmode;52(fsum) = rndRZ;52(fsum+ inj[1;2[) (4.126)= rndRZ;52(fosum+ seff � 2�115 + inj[1;2[): (4.127)According to de�nition 4.4, the signi�cand sum fosum consists of the signi�cands fland fsoa. Thus, fl[�1 : 52] and fsoa[�1 : 115] can be interpreted as a carry-save re-presentation of fosum. We compress this carry-save representation by a half-adder-line with the sum outputs sfosum[�1 : 115] and carry outputs cfosum[�1 : 51], so that<sfosum[�1:115]>neg+<cfosum[�1:51]>neg = <fl[�1:52]>neg+<fsoa[�1:115]>neg ,and fosum = sfosum+ cfosum. After that, we partition the addition offinj =<finj[�1:115]>neg = fsum+ inxX (4.128)= fosum+ seff � 2�115 + injX (4.129)= sfosum+ cfosum+ seff � 2�115 + injX (4.130)into three parts: an upper part with positions [�1 : 51], a mid part including positions[52:53], and a lower part with positions [54:115]. The additions are computed separatelyfor these three parts considering the carries from the lower to the mid part and from themid part to the upper part.The binary representation of the injection constants inj[1;2[ and inj[2;4[ could havenon-zero digits only in positions [52 : 115], which are in the mid part and in the lower



92 CHAPTER 4. BASIC FP OPERATIONSpart, so that the injections can be represented by inj[1;2[ = < inj[1;2[[52 :115]>neg andinj[2;4[ = < inj[2;4[[52 :115]>neg with:inj[1;2[[52 :53] = � 00 if srmode = RZ01 otherwise (4.131)inj[2;4[[52 :53] = 8<: 11 if srmode = RI10 if srmode = RN00 otherwise (4.132)inj[54 :115] = inj[1;2[[54 :115] = inj[2;4[[54 :115] (4.133)= � 160 if srmode = RI060 otherwise. (4.134)Because in the lower part we havelpart = <sfosum[54 :115]>neg +< inj[54 :115]>neg + seff � 2�115< 2�52;there can be at most one carry bit from the lower part into position [53] of the mid part.This carry bit into position [53] is called c53 with c53() (lpart � 2�53):With the consideration of the carry c53 we have in the mid part:mpart = < sfosum[52 :53] >neg + < inj[52 :53] >neg +c53 � 2�53 (4.135)= < (c51; l;r) >neg (4.136)< 2�50 (4.137)Thus, there can also be at most one carry bit from the mid part into position [51] of theupper part. This carry bit into position [51] is called c51 with c51() (mpart � 2�51):The value in the mid part depends on whether fsum 2 [1; 2[ or fsum 2 [2; 4[. There-fore, we compute two di�erent versions of (c51; l;r), namely (c51[1;2[; l[1;2[;r[1;2[) underthe assumption that fsum 2 [1; 2[ (cond[2;4[ = 0) and (c51[2;4[; l[2;4[;r[2;4[) under theassumption that fsum 2 [2; 4[ (cond[2;4[ = 1):<(c51[1;2[; l[1;2[;r[1;2[)>neg = <sfosum[52 :53]>neg+< inj[1;2[[52 :53]>neg+c53�2�53(4.138)<(c51[2;4[; l[2;4[;r[2;4[)>neg = <sfosum[52 :53]>neg+< inj[2;4[[52 :53]>neg+c53�2�53(4.139)Moreover, the upper part of finj in positions [�1:51] can only have either the valueusum = <usum[�1:51]>neg (4.140)= <sfosum[�1:51]>neg +<cfosum[�1:51]>neg (4.141)or the value usumi = <usumi[�1:51]>neg = usum + 2�51, because of equation 4.137.Based on this and with the de�nition of the rounding increment conditionrinc () �(c51[2;4[ ^ cond[2;4[) OR (c51[1;2[ ^ cond[2;4[)� ; (4.142)the required bits of the injected signi�cand finj[�1:52] can be selected byfinj[�1:51] = � usumi[�1:51] if rincusum[�1:51] otherwise (4.143)finj[52] = � l[2;4[ if cond[2;4[l[1;2[ otherwise (4.144)



4.2. ADDITION/SUBTRACTION 93to prepare the injection-based rounding mode reduction for the rounding modes mode 2fRZ;RNU;RI;RMIg.To implement the IEEE rounding mode RNE instead of RNU, we have to consider the'L-bit �x' for the case of a tie according to section 2.3.2, namely, the least signi�cant bitof the rounded signi�cand has to be pulled down for the case, that the rounding operandlies exactly between two consequtive rounding choices in rounding mode RNE. We denotethe condition, that an 'L-bit �x' is required by lfix[2;4[ for cond[2;4[ = 1 and by lfix[1;2[for cond[2;4[ = 0 withlfix[2;4[ () (fsum[52 : 115] = (1; 063)) AND srmode = RNE (4.145)lfix[1;2[ () (fsum[53 : 115] = (1; 062)) AND srmode = RNE (4.146)Thus, we get (substitution of eq. 4.143-4.146 and eq. 4.128 in eq. 4.124-4.127)rndsrmode;51(fsum) = <(finj[�1:50]; finj[51] ^ lfix[2;4[; 0)>neg (4.147)rndsrmode;52(fsum) = <(finj[�1:51]; l[1;2[ ^ lfix[1;2[) >neg: (4.148)According to de�nition 4.6 the rounded signi�cand rnd fsum = <rnd fsum[�1:52]>negcan be written byrnd fsum[�1 : 52] = � (finj[�1:50]; finj[51] ^ lfix[2;4[; 0) if cond[2;4[(finj[�1:51]; l[1;2[ ^ lfix[1;2[) otherwise. (4.149)The following lemma provides the missing details for the implementation of the round-ing decision.Lemma 4.14 Based on the de�nition of the sticky bit:sticky = ORtree(fosum[54 :115] � seff)the signals c53, fsum[51 :53], lfix[1;2[, lfix[2;4[, r tinx and r tinc can be computed by:c53 = (seff ^ sticky) _ ((sticky _ seff) ^ (srmode = RI))<fsum[51 :53]>neg � <sfosum[51 :53]>neg + <cfosum[51]>neg ++(seff ^ sticky) � 2�53 mod 2�50lfix[1;2[ = fsum[53] ^ sticky ^ (srmode = RNE)lfix[2;4[ = fsum[52] ^ fsum[53] ^ sticky ^ (srmode = RNE)r tinx = sticky _ ((cond[2;4[ ^OR(fsum[52 :53])) _ (cond[2;4[ ^ fsum[53]))r tinc = (((finj[51] ^ lfix[2;4[)�fsum[51]) ^ cond[2;4[) __ (((l[1;2[ ^ lfix[1;2[)�fsum[52]) ^ cond[2;4[)Proof: We �rst show, that the sticky-bit has the property:sticky () (fsum[54 :115] = 062) (4.150)() (fsum is integral multiple of 2�53): (4.151)To prove this, we distinguish the two cases: (a) seff = 0; and (b) seff = 1. (a) Forseff = 0, we get fosum = fsum, so that(fsum[54 : 115] = 062)() (fosum[54 : 115] = 062)() sticky:



94 CHAPTER 4. BASIC FP OPERATIONS(b) For seff = 1, we have fosum = fsum� 2�115, so that in this case (fsum[54 : 115] =062)() (fosum[54 : 115] = 162)() sticky; as required. Moreover, we can immediatelyconclude from equation 4.150 that sticky() (<fsum[54 :115]>neg � 2�115):The carry bit c53 signals the condition (lpart � 2�53). By de�nitionlpart = <fosum[54 :115]>neg + < inj[54 :115]>neg +seff � 2�115:The injection bits inj[54 : 115] can only be either (i) 162 for srmode = RI or (ii) 062otherwise. (i) If inj[54 :115] = 162, then(lpart � 2�53)() ((fsum[54 :115] 6= 062) _ seff)() (sticky _ seff):(ii) If inj[54 :115] = 062, then(lpart � 2�53)() ((fosum[54 :115] = 162) ^ seff)() sticky ^ seff;as required.In the equation for <fsum[51 :53]>neg , the carry from the low part into position [53]without considering an injection (inj[54 : 115] = 062) has to be used, namely, in this casec530 = (sticky ^ seff). Thus, we get as required<fsum[51 :53]>neg = <sfosum[51 :53]>neg + <cfosum[51]>neg ++(sticky ^ seff) � 2�53 mod 2�50:The equations for the 'L-bit'-�x conditons are the straight-forward implementation of theirde�nition from equations 4.145-4.146 using sticky() (fsum[54 :115] = 062).The inexactness rounding tag r tinx (equation 2.56) can be written asr tinx = � OR(fsum[52 :115]) if cond[2;4[OR(fsum[53 :115]) otherwise.By the substitution of sticky() (fsum[54 :115] 6= 062)() OR(fsum[54 :115]) we getas requiredr tinx = sticky _ ((cond[2;4[ ^OR(fsum[52 :53])) _ (cond[2;4[ ^ fsum[53])):According to equation 2.57 the increment rounding tag r tinc can be written asr tinx = � (rnd fsum[51] 6= fsum[51]) if cond[2;4[(rnd fsum[52] 6= fsum[52]) otherwise.We get the required form of this equation by the substitution of rnd fsum[51] andrnd fsum[52] according to equation 4.149. 2Lemma 4.15 In the rounding computations, the condition on the range of the signi�candsum cond[2;4[ () (fsum 2 [2; 4[) can be substituted by usum[�1], so that the roundingincrement decision rinc is given byrinc () �(c51[2;4[ ^ usum[�1]) OR (c51[1;2[ ^ usum[�1])� ; (4.152)the rounded signi�cand rnd fsum[�1:52] can be selected byrnd fsum[�1 : 52] = � (finj[�1:50]; finj[51] ^ lfix[2;4[; 0) if usum[�1](finj[�1:51]; l[1;2[ ^ lfix[1;2[) otherwise. (4.153)



4.2. ADDITION/SUBTRACTION 95and the rounding tags tinc and tinx can be computed according tor tinx = sticky _ ((usum[�1] ^OR(fsum[52 :53])) _ (usum[�1] ^ fsum[53]))(4.154)r tinc = (((finj[51] ^ lfix[2;4[)�fsum[51]) ^ usum[�1]) _ (4.155)_ (((l[1;2[ ^ lfix[1;2[)�fsum[52]) ^ usum[�1]): (4.156)Proof: Because usum+ < sfosum[52 : 115] >neg +seff � 2�115 = fsum and because< sfosum[52 : 115] >neg +seff � 2�115 � 2�51, the values of usum and fsum di�er atmost by 2�51 with fsum � usum. Thus, the values usum[�1] and cond[2;4[ di�er, i�seff = 1, fsum[�1 : 51] = (1;052), usum[�1 : 51] = (0;152); usumi[�1 : 51] = (1;052); andsfosum[52 :115] = 164: In this situation, we have usum[�1] = 0 and cond[2;4[ = 1: More-over, it follows, that mpart � 2�51; so that c51[2;4[ = c51[1;2[ = 1, and the incrementedupper sum < usumi[�1:51] >neg= (1;052) is selected for both range conditions: usum[�1]and cond[2;4[. Thus, it also does not matter which of them is chosen for the selection ofrnd fsum[�1:50] for the case that usum[�1] 6= cond[2;4[.We still consider the case usum[�1] 6= cond[2;4[ in the following. Because rinc = 1we have finj[51] = usumi[51] = 0 and because of sfosum[52 : 53] = 12, c53 = 1 andinj[1;2[[52] = 0, we get from equation 4.138, that l[1;2[ = 0. Thus, it follows from equation4.149 that also the selection of rnd fsum[51 : 52] = 02 is independent of the value ofcond[2;4[ and usum[�1].We still have to show, that we also get the same rounding tags for both range detections.From the above we know, that in the case which we have to consider, fsum[51 : 53] = 03.Thus, according to the equation fro r tinx from lemma 4.14 we get in this case r tinx =sticky independent of the value of cond[2;4[ and usum[�1].Because inj[2;4[ < 2�51, inj[1;2[ < 2�52 and finj = fsum+ injX , we have finj[51] =0 = l[1;2[, so that according to the equation from lemma 4.14 also the rounding tagr tinc = 0 does not depend on the value of cond[2;4[ and usum[�1] in this case.Thus, as required, the substitutions of cond[2;4[ by usum[�1] in the equations of thislemma do not change the results of these equations. 2The following lemma integrates the rounding computations according to equations 4.143-4.144,4.153 with the generalized post-normalization shift according to equation 4.122 tocompute the �nal results of the 'R'-path:Lemma 4.16 In the 'R'-path, the signi�cand and exponent bits are given byr f[0 :51] = � rnd fsum[�1:50] if rnd fsum[�1]rnd fsum[0 :51] otherwise.r f[52] = 8<: l0(inc) = usumi[51] ^ lfix[2;4[ if rnd fsum[�1] ^ rincl0(ninc) = usum[51] ^ lfix[2;4[ if rnd fsum[�1] ^ rincl = l[1;2[ ^ lfix[1;2[ if rnd fsum[�1]<r e[11 :0]>2 = � <e1[11 :0]>2 + 1 if rnd fsum[�1]<e1[11 :0]>2 otherwise.Proof: Because rnd fsum 2 [2; 4[, i� rnd fsum[�1], the equation for r f[0 : 51] andr e[11 : 0] are straight-forward implementations of de�nition 4.6 and de�nition 4.5 usingthe previous rounding description from equations 4.143-4.144 and equation 4.153. Becausernd fsum � usum, it follows from rnd fsum[�1] = 0 that also usum[�1] = 0 and, thus,



96 CHAPTER 4. BASIC FP OPERATIONSfor the case of rnd fsum[�1] = 0 we have rnd fsum[52] = (l[1;2[ ^ lfix[1;2[). Therefore,according to equation 4.15r f[52] = � finj[51] ^ lfix[2;4[ if rnd fsum[�1]l[1;2[ ^ lfix[1;2[ if rnd fsum[�1],so that by the substitution of finj[51] with respect to the value of rinc according toequation 4.143, we get the equation for r f[52] from the lemma. 2In the following we summarize the computation steps in the 'R'-path:1.-2. computation of the limited absolute exponent di�erence deltalim, the sign of theexponent di�erence sdelta and the operand swapping like in the previous section.3. signi�cand one's complement negation of fs for e�ective subtractions (equation 4.109):fso[�1:52] = fs[�1:52] � seff:4. alignment shift of fso[�1:52] by deltalim positions (equation 4.113):fsoa[�1:115] = (seffdeltalim; fso[�1:52]; seff63�deltalim) (4.157)= rsft(fso[�1:52]; deltalim; seff; seff) (4.158)5. signi�cand addition: (a) compression of positions [�1:52] by a halfadder line<sfosum[�1:115]>neg+<cfosum[�1:51]>neg = <fl[�1:52]>neg+<fsoa[�1:115]>negand (b) computation of the upper sum usum[�1 : 51] and incremented upper sumusumi[�1:51] by a compound adder (equation 4.141):<usum[�1:51]>neg = <sfosum[�1:51]>neg +<cfosum[�1:51]>neg<usumi[�1:51]>neg = <usum[�1:51]>neg + 2�518. rounding decisions: computation of rinc, r tinx, r tinc, l0(ninc) = usum[51] ^lfix[2;4[, l0(inc) = usumi[51] ^ lfix[2;4[ and l = l[1;2[ ^ lfix[1;2[ in the roundingdecision circuit according to lemma 4.15, lemma 4.14 and equations 4.138-4.139 fromthe inputs sfosum[51 : 53], cfosum[51], seff, sl, sticky, rmode[1 : 0], usum[�1],usum[51] and usumi[51]. This 'rounding decisions' circuit is depicted in detail in�gure 4.14, only for 3 small parts in it, some additional explanations have to begiven:{ the 'inj generation' circuit implements the rounding mode reduction (accordingto equation 2.6-2.6) and the generation of the injection bits: inj[2;4[[52] =inj[1;2[[53] = OR(sr mode[1 :0]), inj[2;4[[53] = sr mode[1] and inj[1;2[[52] = 0.{ the 'Carry lower part' circuit computes the carries from the lower part, c53according to lemma 4.14 with (srmode = RI) () sr mode[1], and c530 =(sticky ^ seff).{ the 'lfix' circuit implements the equations for lfix[2;4[ and lfix[1;2[ accordingto lemma 4.14 with (srmode = RNE)() sr mode[0].
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Figure 4.14: Implementations of the 'rounding decision circuit' in the 'R'-path of theaddition/subtraction unit II.Because of <fosum[�2:52]>2neg = �<fosum[�2:52]>2neg +2�52 = �fsum, we can getthe binary representation of the absolute signi�cand sum abs fsum=<abs fsum[�1:52]>negwith a compound adder, that computes the sum fosum = <fosum[�2:52]>2neg and theincremented sum fosumi = <fosumi[�2:52]>2neg = fosum+ 2�52 by the selectionabs fsum[�1:52] = � fosum[�1:52] if fosumi[�2]fosumi[�1:52] otherwise.In this way, we get the factoring (sl�fosumi[�2]; <el[11 :0]>2�1; <abs fsum[�1:52]>neg),which already has the value of the 'N'-path-result, but according to equation 4.120, westill have to compute an unbounded normalization shift on this factoring.De�nition 4.7 We de�ne the term of an imprecise normalized factoring for factorings(sipn; eipn; fipn), whose signi�cand full�lls the condition fipn 2 [1; 4[. An operation ipnorm,that computes an imprecise normalized factoring (sipn; eipn; fipn) = ipnorm(s; e; f) withval(sipn; eipn; fipn) = val(s; e; f) for an arbitrary non-zero factoring (s; e; f), is called im-precise normalization shift. Note, that if lz is the shift distance of an unbounded normaliza-tion shift, then an imprecise normalization shift uses one of the shift distances flz; lz+1g.Obviously, an unbounded normalization shift � can be partitioned into an imprecisenormalization shift followed by a generalized post-normalization shift:�(s; e; f) = gpost(ipnorm(s; e; f)):
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4.2. ADDITION/SUBTRACTION 101De�nition 4.8 In a Borrow-Save representation, a number is represented by two binarystrings: we call the tupel (a[n1 :n2];b[n1 :n2]) with a positively weigted bit string a[n1 :n2]and a negatively weigted bit string b[n1 :n2] a Borrow-Save representation of the number c,i� c = < a[n1 :n2] >neg � < b[n1 :n2] >neg. To annote that a is the positively weightedbit-string and b is the negatively weighted bit string, we also write a+ and b�. The digits[i] = a[i] � b[i] 2 f�1; 0; 1g are called Borrow-Save digits and we denote the value of astring of Borrow-Save digits [n1 :n2] 2 f�1; 0; 1gn2�n1 by < [n1 :n2] >bs= c. We alsowrite:c = < [n1 :n2] >bs = � a+[n1 :n2]b+[n1 :n2] �bs = �� a[n1];a[n1 + 1]; � � � ;a[n2]b[n1];b[n1 + 1]; � � � ;b[n2] ��bs :For � 2 [n1 : n2], the fraction of a Borrow-Save representation [n1 :n2] 2 f�1; 0; 1gn2�n1at position � is de�ned by:fract�([n1 :n2]) = 2� � n2Xj=�+1 [j] � 2�j= [�+1] � 2�1 + [�+2] � 2�2 + � � �+ [n2] � 2�n2+�:The fraction range of a Borrow-Save representation [n1 :n2] 2 f�1; 0; 1gn2�n1 is de�nedby the interval FRANGE([n1 : n2]) = [a; b], with a = minffract�([n1 : n2])j� 2 [n1 :n2]g and b = maxffract�([n1 :n2])j� 2 [n1 : n2]g. Obviously, for arbitrary Borrow-Saverepresentations [n1 :n2] 2 f�1; 0; 1gn2�n1 , we have FRANGE([n1 :n2]) � ]� 1; 1[.In the following de�nition we introduce the 'P'-carry and the 'N'-carry-recoding that willbe used for the compression of the fraction range in our leading-zero estimation.De�nition 4.9 The 'P'-carry-recoding computes from a Borrow-Save representation B =(a[n1 :n2];b[n1 :n2]), the Borrow-Save representation B0=P (B)=(a0[n1�1:n2];b0[n1�1:n2]),where for all � 2 [n1 :n2]:Carry: a0[�+1] = a[�] ^ b[�] Residual: b0[�] = a[�]� b[�]:The 'N'-carry-recoding computes from a Borrow-Save representation B = (a[n1 :n2];b[n1 :n2]), the Borrow-Save representation B0 = N(B) = (a0[n1�1:n2];b0[n1�1:n2]) where forall � 2 [n1 :n2]:Carry: b0[�+1] = a[�] ^ b[�] Residual: a0[�] = a[�]� b[�]:The following lemma shows some properties of 'P'-carry- and 'N'-carry-recodings:



102 CHAPTER 4. BASIC FP OPERATIONSLemma 4.17 This lemma consists of 4 parts:(a) Both 'P'-carry- and 'N'-carry-recoding do not change the value of a Borrow-Saverepresentation, namely: <B>bs = <P (B)>bs = <N(B)>bs.(b) The 'P'-carry-recoding compresses the fraction range FRANGE(B) � ]a; b[ of aBorrow-Save representation B to FRANGE(P (B)) � ]�1=2 + a=2; b=2[.(c) The 'N'-carry-recoding compresses the fraction range FRANGE(B) � ]a; b[ of aBorrow-Save representation B to FRANGE(N(B)) � ]a=2; 1=2 + b=2[.(d) 'PN'-recoding reduces the fraction range of an arbitrary Borrow-Save representationB to FRANGE(N(P (B))) � ]�3=4; 1=2[.Proof: (a) There are only 4 possible bit combinations for the Borrow-Save digit atposition � by the two bits a[�] and b[�]. These bit combinations encode the 3 possiblevalues of a Borrow-Save digit like summarized in table 4.1. After 'P'-carry-recoding, thisBorrow-Save digit is represented by the carry a0[� � 1] and the residual b0[�], and wecan read o� from table 4.1, that the 'P'-recoding equations exactly full�ll the equationa[�] � b[�] = 2a0[� � 1] � b0[�], so that < B >bs = < P (B) >bs. Accordingly, the 'N'-carry-recoding represents the two bits a[�] and b[�] by the carry b0[��1] and the residuala0[�] and implements the equation a[�]� b[�] = a0[�]� 2b0[�� 1] (see table 4.1), so thatalso < B >bs = < N(B) >bs.(b) With the BS representations B and P (B):B = � a[n1];a[n1+1]; � � � ;a[n2]b[n1];b[n1+1]; � � � ;b[n2] � and P (B) = � a0[n1�1]; a0[n1]; � � � ; a0[n2]0; b0[n1]; � � � ; b0[n2] � ;we obtain by extracting a term from the radix polynomial of P (B) for � 2 [n1 : n2]:fract�(P (B)) = fract�� a0[�+1]; a0[�+2]; � � � ; a0[n2]b0[�+1]; b0[�+2]; � � � ; b0[n2] �= �b0[�+1] � 2�1 + fract�� a0[�+1]; a0[�+2]; � � � ; a0[n2]0; b0[�+2]; � � � ; b0[n2] �= �b0[�+1] � 2�1 + fract�� 0; a[�+2]; � � � ; a[n2]0; b[�+2]; � � � ; b[n2] �= �b0[�+1] � 2�1 + 12fract�+1� a[�+2]; a[�+3]; � � � ; a[n2]b[�+2]; b[�+3]; � � � ; b[n2] � := �b0[�+1] � 2�1 + 12fract�+1(B)Since �b0[�+1] � 2�1 2 f�12 ; 0g and fract�+1(B) �]a; b[, we obtain fract�(P (B)) 2]�1=2 + a=2; b=2[ for all � 2 [n1 : n2], so that FRANGE(P (B)) � ]�1=2 + a=2; b=2[, asrequired. Part (c) can be proven in analogy to part (b).(d) Starting from the fraction range FRANGE(B) � ]� 1; 1[ of an arbitrary Borrow-Save-representation B, the use of part (b) and part (c) of this lemma directly yieldsFRANGE(P (N(B))) � ]�3=4; 1=2[, as required. 2The following lemma describes the application of 'PN'-recoding for the imprecize normal-ization shift of the 'N'-path.



4.2. ADDITION/SUBTRACTION 103Borrow-Save representation 'P'-carry-recoding 'N'-carry-recodinga+[�] b�[�] a+[�]� b�[�] = [�] a0[�� 1] b0[�] b0[�� 1] a0[�]0 1 �1 0 1 1 10 0 0 0 0 0 01 1 0 0 0 0 01 0 1 1 1 0 1Table 4.1: Summary of the cases in the 'P'-carry and the 'N'-carry-recoding.Lemma 4.18 With the computation offsum[�4:52] =  a+fsum[�4:52]b�fsum[�4:52] ! = P �N � fl[�2:52]NOT (fsoa[�2:52]) ��lzp1[5 : 0] = penc�a+fsum[�1:52] � b�fsum[�1:52]�lzp2[5 : 0] = penc�a+fsum[�2:52] � b�fsum[�2:52]�lzp[5 : 0] = � lzp1[5 : 0] if sfsumlzp2[5 : 0] otherwise.in fsum[�1:52] = cls(abs fsum[�1:52]; < lzp[5 :0] >2)< in e[11 :0]>2 = <el[11 :0]>2+<(111111; lzp[5 :0]>2we get the imprecisely normalized factoring(n s; in e; in fsum) = (n s;< in e[11 :0]>2; < in fsum[�1:52] >neg);so that val(n s; in e; in fsum) = val(n s;< el[11 : 0] >2 �1; < abs fsum[�1 : 52] >neg)and in fsum 2 [1; 4[.Proof: Because fsum = < fl[�2:52] >neg�< fsoa[�2:52] >neg and because of lemma4.17 (a), we get <fsum>bs = fsum. For all non-zero fsum 6= 0, the borrow-saverepresentation fsum[�4:52] includes at least one non-zero digit, so that for a k 2 [�4:52],it has the form fsum[�4:52] = (0k+4; fsum[k :52]) with fsum[k] 2 f�1; 1g.By lemma 4.17(d) we obtain the fraction range FRANGE(fsum[�4:52]) � ]�3=4; 1=2[.For the determination of the range of abs fsum from fsum[k :52] and the fraction range,we di�er between the two cases: (a) fsum[k] = 1; and (b) fsum[k] = �1.(a) From fsum[k] = 1 and fractk(fsum[k+1 : 52]) 2] � 3=4; 1=2[, it follows, thatfractk�1(fsum[k : 52]) 2 ]1=2 � 3=8; 1=2 + 1=4[ = ]1=8; 3=4[. Moreover, the fractionrange is also valid for the fraction at position k�1, so that fractk�1(fsum[k :52]) 2]1=8; 3=4[ \ ]� 3=4; 1=2[ =]1=8; 1=2[. Thus, 2k+2 � abs fsum 2]1; 4[. According tolemma 4.12, we assume in the 'N'-path, that fsum < 1. Thus, we de�ne lzp2 =(k + 2) and get for case (a), lzp2 = (k + 2) � 0.(b) Correspondingly, for fsum[k] = �1, we get fractk�1(fsum[k :52]) 2 ]� 12� 38 ;�12+ 14 [\]� 34 ; 12 [ = ]� 34 ;�14 [. Thus, 2k+1 � abs fsum 2]1; 3[. For this case we de�ne lzp1 =(k + 1), so that we can derive from abs fsum < 2, that also this leading zero pre-diction has to be non-negative lzp1 = (k + 1) � 0.



104 CHAPTER 4. BASIC FP OPERATIONSBecause the representation of a Borrow-Save digit by a+[�] and b�[�] is non-zero, i�a+[�] � b�[�] and lzp1; lzp2 � 0, the number lzp2 = k + 2 can be interpreted as thenumber of leading zeros in the string fsum[�2:52], so thatlzp2 =< lzp2[5 : 0] >= <penc(a+[�2:52] � b�[�2:52])>:Accordingly, the number lzp1 = lzp2 � 1 = k + 1 can be recognized as the number ofleading zeros in the string fsum[�1:52], so thatlzp1 =< lzp1[5 : 0] >= k + 1 = <penc(a+[�1:52] � b�[�1:52])>:Obviously, the above case (a) occurs, i� fsum > 0 and the above case (b) occurs,i� fsum < 0. Because in case (a), 2lzp2 � abs fsum 2 ]1; 4[, lzp2 � 0 and abs fsum =<abs fsum[�1:52]>neg , the signi�cand in fsum = 2lzp2 � abs fsum is imprecisely nor-malized and can be represented by in fsum[�1 : 52] and the multiplication of abs fsumby 2lzp2 can be implemented by a left-shift of abs fsum[�1 : 52] by lzp2 positions. Ac-cordingly, in case (b) the signi�cand in fsum = 2lzp1 �abs fsum is imprecisely normalizedand can be represented by in fsum[�1 : 52] and the multiplication of abs fsum by 2lzp1can be implemented by a left-shift of abs fsum[�1:52] by lzp1 positions.The de�nition of the leading zero prediction lzp selects either the lzp2 for case (a)and lzp1 for case (b), so that the left-shift of abs fsum[�1 : 52] by lzp positions exactlycomputes the binary representation of the imprecisely normalized signi�cand in fsum =< in fsum[�1:52]>neg. In this way in fsum = abs fsum � 2lzp.The term lzp is adjusted in the exponent by in e = < in e[11 :0]>2 = el � 1� lzp, sothat in fsum � 2in e = abs fsum � 2el�1, as required by the lemma. 2Based on the results of this lemma, the 'N'-path result is computed from sl, sfsum,in e[11 :0], and in fsum[�1:52] by the �nal generalized post-normalization shift:(n s; n e; n f)= post norm(sl� sfsum; < in e[11 :0]>2; < in fsum[�1:52]>neg))= �(sl�sfsum; < in e[11 :0]>2+1; < in fsum[�1:51]>neg=2) if in fsum[�1](sl�sfsum; < in e[11 :0]>2; < in fsum[0 :52]>neg) otherwise.The incremented exponent is already precomputed with a compound adder during theexponent adjustment from lemma 4.18, so that the post-normalization shift can be realizedby a simple selection depending on the value of in fsum[�1]. Additionaly, we computethe condition is r2 = fosumi[�2] ^ (fosumi[�1] _ fosumi[0]), that will be used for thepath selection. This completes the description of the 'N'-path, a block diagram of whichis depicted in �gure 4.15.Path selection In the following we explain how the general path selection conditionis r is computed from the signals is r1, is r2 and seff. We start from the de�nition ofthe path selection condition according to lemma 4.3:is r () seff _ (fsum 2 [1; 4))() seff _ (fsum 2 [1; 4) under the assumption seff = 1)Because for is r = 0, we have abs delta � 1 according to lemma 4.12, which is signaledby is r1, the above equation can be further extended to:is r () seff _ is r1 _ �fsum 2 [1; 4) under the assumption seff and is r1�



4.2. ADDITION/SUBTRACTION 105Because the assumptions seff = 1 and is r1 are exactly the assumptions, that we useduring the computation of fsum in the 'N'-path, the condition is r2 exactly implementsthe expression �fsum 2 [1; 4) under the assumption seff = 1 and is r1�, so thatis r = seff _ is r1 _ is r2 (4.160)The condition is r1 and the signal seff are computed in the 'R'-path and the conditionis r2 is computed in the 'N'-path. These three parts of the path selection condition arecombined in the 'R'-path like depicted in �gure 4.13, so that the result of the valid pathcan be selected by the combined path selection condition is r like depicted in �gure 4.11.This completes the description of the addition/subtractionII unit.4.2.3 Addition/Subtraction III (normalized �! normalized format)Like in the two previous sections also in this section the FP addition/subtraction is com-puted from the inputs of the normalized representationsBUSaNF [69 :0] andBUSbNF [69 :0](section 2.6.3), the rounding mode represented by rmode[1 : 0] and the bit sop that sig-nals the case of addition or subtraction. But in contrast to the previous implementations,where a representative of the exact operation result or a gradual rounded result had tobe delivered, in this case the addition unit III already has to compute the IEEE factoringrepresentation of the rounded result in the normalized format.Formally, with the notation from equation 2.16 and lemma 2.8 and with(snrc; enrc; fnrc)=nroundmode(src; erc + wec; frc) (4.161)=exp rndmode?src(�(n sig rndmode?src(�(src; erc+wec; frc)))) (4.162)the required addition result is based on the following NF factoring(sNF ; eNF ; fNF ) =8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczero(snrc; enrc; fnrc) otherwise. (4.163)so that the sum output of the addition/subtraction unit III is speci�ed by the corre-sponding representation in the normalized format BUSNF [70 :0] = nf(sNF ; eNF ; fNF ).To compute the exponent wrapping, the inputs of the trap handler enable bits unf enand ovf en are required. Moreover, the occurance of an invalid, inexact, overow andunderow exception should be signaled by the bit inv, inx, ovf and unf, respectively.The computation of the special value results according to equation 4.163 is imple-mented like in the previous section. The only di�erence is that in this section an in�nityresult might also be generated in the regular case because of the exponent rounding. Thus,the special case condition for an in�nity result from the special cases circuit scinf is onlyvalid for spca = 1. We denote this condition by infsc = scinf in this section. Accord-ingly, we de�ne the condition infnrc that signals the case of an in�nity result for theregular case infnrc () (val(snrc; enrc; fnrc) = �1), so that we get the �nal in�nity agby infNF = � infsc if spcainfnrc otherwise. (4.164)



106 CHAPTER 4. BASIC FP OPERATIONSFor the regular case the computations of (snrc; enrc; fnrc) have to be modi�ed in com-parison to the computations of (sgrc; egrc; fgrc) from the previous section. The di�erence inthese computations is that in this section we already have to consider single step roundingat the �nal rounding position vp while integrating the cases for single precision and doubleprecision. Moreover, we also have to consider the exponent wrapping and the exponentrounding.We base the computation of (snrc; enrc; fnrc) on the two-path addition algorithm fromthe previous section with the path selection condition is r. In this section we denote thefactoring output of the R-path (is r = 1) by (r sn; r en; r fn) and the factoring outputof the N-path (is r = 0) by (n sn; n en; n fn), so that the factoring for the regular caseis selected by (snrc; enrc; fnrc) = � (r sn; r en; r fn) if is r(n sn; n en; n fn) otherwise.Moreover, the exceptions are detected seperately for the two paths by (n inx;n unf;n ovf)for is r = 0 and by (r inx;r unf;r ovf) for is r = 1, so that in general the occuranceof the inexact, the underow and the overow exception are signaled by(inx;unf;ovf) = � (r inx;r unf;r ovf) if is r(n inx;n unf;n ovf) otherwise.In this way the main structure of the implementation in this section (see �gure 4.16) isvery similar to that from the previous section (see �gure 4.11). In the following we describethe details of the implementation of the R-path and the implementation of the N-pathseparately.N-path In the N-path we have to compute the representation of the factoring(n sn; n en; n fn) = exp rndmode?src(�(n sig rndmode?src(�(src; erc+wec; frc))));where we can use the condition that is r = 0. We partition the discussion of thesecomputations into two steps: the �rst step with the computation of(n sn1; n en1; n fn1) = �(n sig rndmode?src(�(src; erc; frc))); (4.165)so that we get the �nal result of the N-path by the second computation step of(n sn; n en; n fn) = exp rndmode?src(n sn1; n en1 + wec; n fn1): (4.166)In the �rst computation step, the rounding function n sig rndmode?src di�ers from therounding function sgrnd1mode?src and the second unbounded normalization shift di�ersfrom the post-normalization shift in the previous section. The two rounding functionsonly di�er by the rounding position, which is vp = (p�1)�maxf0; emin�e0rcg in this case.In the previous section, the rounding position was 52 and it was shown, that this roundingfunction does not have any e�ect in the N-path. We will show in the following lemma, thatalso the signi�cand rounding at the variable rounding position vp can be neglected in theN-path. In this way the rounding output is still normalized from the �rst normalizationshift, so that also the second normalization shift is not required. Thus, all computationsfor the �rst step (equation 4.165) are already considered by the N-path implementationfrom the previous section:
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Figure 4.16: Structure of the addition/subtraction unit III.Lemma 4.19 (a) For a �xed precision with �xed p and emin, all exact addition/subtractionresults are integral multiples of 2emin�p+1.(b) If the signi�cand rounding position is variable, namely vp 6= p� 1, then no roundingcomputation is required in the addition/subtraction implementation.(c) In the N-path of the adder III, no implementation of rounding or the second nor-malization shift is required, so that for is r = 0 we have(n sn1; n en1; n fn1) = (n s; n e; n f) = �(src; erc; frc) = �(sl�sfsum; e1; abs fsum):



108 CHAPTER 4. BASIC FP OPERATIONSProof: (a) Because for a �xed p and emin, all operands are integral multiples of 2emin�p+1,also the exact sum and the exact di�erence of these operands are integral multiples of2emin�p+1.(b) The rounding position vp satis�es vp 6= p� 1, i� the exponent e0rc of the roundingoperand is smaller than emin. In this case, the weight of the rounding position vp is2e0rc�p+1 < 2emin�p+1. Because from (a) it follows, that all exact addition/subtractionresults are integral multiples of this rounding position weight, the rounding computationhas no e�ect for the case that vp 6= p� 1.(c) We �rst show, that there is no rounding computation required in the N-path. Forthis proof we distinguish between the cases of single precision and double precision and thecases that the rounding position ful�lls either vp = p� 1 or vp 6= p� 1: For vp 6= p� 1 theproof already follows from part (b). For double precision and vp = p�1, we have vp = 52,so that the setting is like in the previous section and it follows from lemma 4.12(d) thatno rounding computation is required in the N-path in this case. For single precision withp = 24 and vp = p� 1 = 23, the proof of lemma 4.12(d) could be adopted accordingly, sothat also for this case, no rounding computations in the N-path are required. Thus, therounding computations can be neglected in the N-path for all cases. In this way the inputof the second normalization shift in equation 4.165 is still normalized, so that even thesecond normalization shift can be neglected in equation 4.165. In this way we have exactlythe same situation like in the N-path of the previous section, so that we get as required(n sn1; n en1; n fn1)=�(src; erc; frc)=�(sl� sfsum; e1; abs fsum)=(n s; n e; n f): 2Thus, for the computation of (n sn1; n en1; n fn1) = (n s; n e; n f) (equation 4.165),the N-path implementation from the previous section is used. The computation of thesecond part according to equation 4.166, requires the detection of the overow and theunderow exception. In the following lemma we consider both, the exception detectionsand the implementation of the second step (equation 4.166) to compute the factoring(n sn; n en; n fn).Lemma 4.20 In the N-path:(a) no overow can occur: n ovf = 0.(b) exponent rounding has no e�ect., so that (n sn; n en; n fn) = (n s; n e+wec; n f):(c) all results are exact and an inexact exception can not occur: n inx = 0:(d) with the computation of <n tt[11 :0]>2 = <n e[11 :0]>2+<(0;dbl3; 16; 0)>2, theunderow exception can be detected by: n unf() (n tt[11] ^ unf en ^ spca):(e) wec = � +� = < alpha[11 :7] >2 = < (0;dbl2; 0;dbl2) >2 if n unf0 otherwise.Proof: (a) Because we consider non-zero representable input operands in the N-path,the exponent of the \larger" operand el is smaller than or equal to emax. Because in theN-path we have fsum < 1, all results in the N-path have values smaller than 2emax , sothat no overow can occur in the N-path and n ovf = 0.(b) Because all results in the N-path have values smaller than 2emax , the exponentrounding in equation 4.166 becomes the identity function, so that we get the result of theN-path by (n sn; n en; n fn) = (n s; n e+ wec; n f); as required.(c) Because both the signi�cand rounding and the exponent rounding do not changethe value of the result, all results in the N-path are exact, so that n inx = 0.
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110 CHAPTER 4. BASIC FP OPERATIONSR-path In the R-path we have to compute the representation of the NF-factoring(r sn; r en; r fn) = exp rndmode?src(�(n sig rndmode?src(�(src; erc+wec; frc))));where we can use the condition that is r = 1. Like in the description of the N-path, wealso partition the discussion of the R-path computations into two steps: the �rst step withthe computation of(r sn1; r en1; r fn1) = �(n sig rndmode?src(�(src; erc; frc))); (4.167)so that we get the �nal R-path result by the second computation step with(r sn; r en; r fn) = exp rndmode?src(r sn1; r en1 + wec; r fn1): (4.168)First, we deal with the computations for equation 4.167. This formula for the com-putation of (r sn1; r en1; r fn1) and the formula for (r s; r e; r f) in the R-path of theprevious section (equation 4.120) di�er for the signi�cand rounding functions and the sec-ond normalization shift. Let (s0rc; e0rc; f 0rc) = �(src; erc; frc). With the rounding positionvp = (p�1)�maxf0; emin�e0rcg, the above factorings can be written as (see roundingfunction de�nitions 2.16 and 2.9):(r sn1; r en1; r fn1) = �(s0rc; e0rc; rndmode?sl;vp(f 0rc)) (4.169)(r s; r e; r f) = post norm(s0rc; e0rc; rndmode?sl;52(f 0rc)) (4.170)Thus, the only di�erence of the signi�cand rounding functions are the rounding positions:in this section signi�cand rounding at the variable signi�cand position vp is considered,while in the previous section signi�cand rounding at the �xed rounding position 52 wascomputed.The following lemma shows, that for the addition/subtraction implementation, thevariable rounding position vp can be substituted by vp0, a �xed rounding position forsingle precision and a �xed rounding position for double precision, so that the roundingimplementation from the previous section could be adopted either for the single precisionor for the double precision case. As we know from the previous section, that the post-normalization shift in equation 4.170 already normalizes the rounded factoring and wehave a similar rounding computation in equation 4.169, also in equation 4.169 a post-normalization shift will be su�cient to normalize the result instead of an unboundednormalization shift:Lemma 4.21 In the addition/subtraction implementation, the variable rounding positionvp = (p�1)�maxf0; emin�e0rcg can be substituted by vp0 = � 52 if dbl23 otherwise withoutchanging the rounded result, so that(r sn1; r en1; r fn1) = �(s0rc; e0rc; rndmode?sl;vp0(f 0rc)) (4.171)= � post norm(s0rc; e0rc; rndmode?sl;52(f 0rc)) if dblpost norm(s0rc; e0rc; rndmode?sl;23(f 0rc)) otherwise.(4.172)Proof: According to lemma 4.19(b), no rounding computation is required in the adderimplementation for vp 6= p � 1. Therefore, and because vp � p � 1 , we always couldset the rounding position to p� 1 without changing the rounding result. The integrationof the case for single precision (p � 1 = 23) and double precision (p � 1 = 52) exactly



4.2. ADDITION/SUBTRACTION 111yields the rounding position vp0. With the rounding computation at the �xed positionvp0, which is the least signi�cant bit position for single and double precision, also therounding result rndmode?sl;vp0(f 0rc) is in the range [1; 2], so that a post-normalization shiftand an unbounded normalization shift have the same e�ect on the rounded factoring, andwe can replace � by post norm in the lemma. 2Based on this lemma we could apply the implementation of the R-path from the previoussection for the computation of (r sn1; r en1; r fn1) = (r s; r e; r f) in the double precisioncase. Thus, we get for double precision according to lemma 4.13:(r sn1; r en1; r fn1) = � gpost norm(sl; e1; rndmode?sl;52(fsum)) if fsum 2 [1; 2[ ^ dblgpost norm(sl; e1; rndmode?sl;51(fsum)) if fsum 2 [2; 4[ ^ dblAccordingly, lemma 4.13 could also be adopted for p � 1 = 23, so that the singleprecision case could be integrated and we get(r sn1; r en1; r fn1) = 8>><>>: gpost norm(sl; e1; rndmode?sl;52(fsum)) if fsum 2 [1; 2[ ^ dblgpost norm(sl; e1; rndmode?sl;51(fsum)) if fsum 2 [2; 4[ ^ dblgpost norm(sl; e1; rndmode?sl;23(fsum)) if fsum 2 [1; 2[ ^ dblgpost norm(sl; e1; rndmode?sl;22(fsum)) if fsum 2 [2; 4[ ^ dblThe sign and the exponent are constant in the four choices, so that for the followingdiscussion we isolate the signi�cand computation byr frnd = 8>><>>: rndmode?sl;52(fsum) if fsum 2 [1; 2[ ^ dblrndmode?sl;51(fsum) if fsum 2 [2; 4[ ^ dblrndmode?sl;23(fsum) if fsum 2 [1; 2[ ^ dblrndmode?sl;22(fsum) if fsum 2 [2; 4[ ^ dbland have then to compute (r sn1; r en1; r fn1) = gpost norm(sl; e1; r frnd).Because the injection based rounding reduction only depends on the rounding positionand not on the value of the rounding operand, we align the rounding positions for singleprecision and double precision byr frnd = 8>><>>: rndmode?sl;52(fsum) if fsum 2 [1; 2[ ^ dblrndmode?sl;51(fsum) if fsum 2 [2; 4[ ^ dbl229 � rndmode?sl;52(2�29 � fsum) if fsum 2 [1; 2[ ^ dbl229 � rndmode?sl;51(2�29 � fsum) if fsum 2 [2; 4[ ^ dbl (4.173)In the implementation, the multiplication of the rounding operand by 2�29 in the case ofsingle precision is achieved by a conditional left-shift of the representations of both inputsigni�cands by 29 positions for dbl = 0. We denote these aligned operands byfaq =<faq[0 :52]>neg = � fa =<fa[0 :52]>neg if dbl2�29 � fa =<(029; fa[0 :23])>neg otherwise. (4.174)fbq =<fbq[0 :52]>neg = � fb =<fb[0 :52]>neg if dbl2�29 � fb =<(029; fb[0 :23])>neg otherwise. (4.175)Accordingly, we indicate all corresponding values that are computed from faq and fbqinstead of fa and fb by appending a 'q' to their name. With this notation and with the



112 CHAPTER 4. BASIC FP OPERATIONSinputs of faq[0 :52] and fbq[0 :52], the R-path implementation from the previous sectioncomputesfsumq = <fsumq[�1:115]>neg (4.176)= � fsum = <fsum[�1:115]>neg if dbl2�29 � fsum = <(029; fsum[�1:86])>neg otherwise. (4.177)usumq = <usumq[�1 : 51]>neg (4.178)= � usum = <usum[�1 : 51]>neg if dbl2�29 � usum = <(029;usum[�1 : 22])>neg otherwise. (4.179)In equation 4.179 the signal usum[�1], which substitutes the condition fsum 2 [2; 4[according to lemma 4.15, is shifted to position usumq[28] for single precision. Thus, thesignal usum[�1] can be selected byusum[�1] = condq[2;4[ = � usumq[�1] if dblusumq[28] otherwise. (4.180)With the substitution of condq[2;4[ for the condition fsum 2 [2; 4[, equation 4.173 can bewritten as r frnd = 8>><>>: rndmode?sl;52(fsumq) if condq[2;4[ ^ dblrndmode?sl;51(fsumq) if condq[2;4[ ^ dbl229 � rndmode?sl;52(fsumq) if condq[2;4[ ^ dbl229 � rndmode?sl;51(fsumq) if condq[2;4[ ^ dbl (4.181)If the condition cond[2;4[ () fsum 2 [2; 4[ is also substituted by the bit condq[2;4[ inthe modi�ed rounding computations from the previous section, then this R-path imple-mentation computesrnd fsumq = < rnd fsumq[�1:52] >neg (4.182)= � rndmode?sl;52(fsumq) if condq[2;4[rndmode?sl;51(fsumq) if condq[2;4[. (4.183)Obviously, the rounded signi�cand r frnd can then be computed by a conditional leftshift of rnd fsumq[�1:52] by 29 positions for the case of single precision (see eq. 4.181)r frnd = < r frnd[�1:52] >neg (4.184)= � rnd fsumq = < rnd fsumq[�1:52] >neg if dbl229 � rnd fsumq = <(rnd fsumq[28 :52]; 029)>neg otherwise.(4.185)Although, this is already an equation for the required signi�cand r frnd, we would like topostpone the re-alignment-shift by 29 positions in this equation after the computation ofthe generalized post-normalization shift. One can easily read o� from equation 4.185, thatthe rounded signi�cand r frnd is in the range [2; 4[ for the post-normalization conditionpscond () (r frnd 2 [2; 4[) (4.186)() (rnd fsumq[�1] ^ dbl) _ (rnd fsumq[28] ^ dbl): (4.187)Thus, we get for the generalized post-normalization shift,(r sn1; r en1; r fn1) = gpost norm(sl; e1; r frnd) (4.188)= � (sl; e1 + 1; r frnd=2) if pscond(sl; e1; r frnd) otherwise. (4.189)



4.2. ADDITION/SUBTRACTION 113With the preliminary signi�cand r fqr fq = <r fq[0 :52]>neg (4.190)= � rnd fsumq = < rnd fsumq[0 :52] >neg if pscondrnd fsumq=2 = < rnd fsumq[�1:51] >neg otherwise, (4.191)the signi�cand for the factoring (r sn1; r en1; r fn1) can be computed by the followingre-alignment selectionr fn1 = <r fn1[0 :52]>neg (4.192)= � r fq = < r fq[0 :52] >neg if dbl229 � r fq = <(r fq[29 :52]; 029)>neg otherwise, (4.193)Note, that equation 4.191 describes the generalized post-normalization shift of the mod-i�ed R-path implementation from the previous section, where only the control signalrnd fsum[�1] is substituted by the post-normalization condition pscond. In this way thecomputation of the factoring (r sn1; r en1; r fn1) on the basis of the modi�ed R-path im-plementation from the previous section requires only the �ve additional circuits accordingto the equations 4.174, 4.175, 4.180, 4.187 and 4.193. The integration of these additionalcircuits around the R-path implementation from the previous section is depicted in �gure4.18, where the additional circuits are represented by shaded boxes. This completes thedescription of �rst step in the R-path computations according to equation 4.167.In the following we consider the second step of the R-path computations according toequation 4.168. This includes the detection of the exceptions, the exponent rounding andthe exponent wrapping.Lemma 4.22 With the computation of<r tt[11 :0]>2 = <e1[11 :0]>2 +<(0;dbl3; 16; 0)>2<r tti[11 :0]>2 = <r tt[11 :0]>2 + 1the exceptions in the R-path can be detected by:r ovf () (zerotest(e1[11 :0] � (0;dbl3; 17)) ^ spca ^ pscond)r inx () (r tinxq _ r ovf)r unf () � r tti[11] ^ (unf en _ r inx) ^ spca if pscondr tt[11] ^ (unf en _ r inx) ^ spca otherwiseProof: The condition for an overow in the R-path is given byr ovf() (jval(r sn1; r en1; r fn1)j � 2emax+1):Because of the normalized signi�cand r fn1 2 [1; 2[, this overow condition can be writtenas r ovf() (r en1 � emax + 1). Because in the R-path we only have to consider non-zero representable operands, the exponent of the 'larger' operand el and also e1 are smallerthan or equal to emax. Thus, according to equation 4.189, the exponent of the normalizedfactoring r en1 can only become larger than emax, if r en1 = ei1 = emax + 1. Thus,r ovf() (ei1 = emax +1)^ pscond^ spca. Because (ei1 = emax +1)() (e1 = emax)and emax =< (0;dbl3; 17) >2, the equation for r ovf can be written as r ovf ()(zerotest(e1[11 :0] � (0;dbl3; 17)) ^ pscond ^ spca, as required.
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4.2. ADDITION/SUBTRACTION 115R-path is given by r unf() r tiny ^ (unf en _ r inx) ^ spca:The normalized factoring (r sn1; r en1; r fn1) is tiny, namely r tiny = 1, i� r en1 <emin. Because of the exponent selection of r en1 from e1 and ei1 according to equa-tion 4.189 and �emin = <(0;dbl3; 16; 0)>2, so that <r tt[11 :0]>2 = e1� emin and<r tti[11 :0]>2 = ei1�emin, we getr tiny = � r tti[11] if pscondr tt[11] otherwise.Thus, the underow condition for the R-path can be written asr unf() � r tti[11] ^ (unf en _ r inx) ^ spca if pscondr tt[11] ^ (unf en _ r inx) ^ spca otherwise. 2Because the signal pscond is valid rather late, we compute each exception in twoparallel paths: one path under the assumption that pscond = 1 with the signals r ovf[1],r inx[1] and r unf[1] and the other path under the assumption that pscond = 0 withthe signals r ovf[0], r inx[0] and r unf[0]: Obviously, the exception ags can then beselected by:(r ovf;r inx;r unf) = � (r ovf[1];r inx[1];r unf[1]) if pscond(r ovf[0];r inx[0];r unf[0]) otherwise. (4.194)From lemma 4.22 one can easily read o� the following equations for the two paths:r ovf[1] = (zerotest(e1[11 :0] � (0;dbl3; 17)) ^ spca (4.195)r ovf[0] = 0 (4.196)r inx[1] = r tinxq _ r ovf[1] (4.197)r inx[0] = r tinxq (4.198)r unf[1] = r tti[11] ^ (unf en _ r inx[1]) ^ spca (4.199)r unf[0] = r tt[11] ^ (unf en _ r inx[0]) ^ spca (4.200)In the following we describe the computations of the exponent wrapping and the exponentrounding, which are required in the second step according to equation 4.168.We split the computations for the sign, the exponent and the signi�cand. The sign isgiven by r sn1 = sl. With the preselection of the signi�cand result for an untrapped over-ow based on the roundingmode by (Note, that srmode 6= RZ for OR(sr mode[1 :0])=1):r fovf = <r fovf[0 :52]>neg = � f1 = < (1; 052) >neg if OR(sr mode[1 :0])fmax = < (124;dbl29) >neg otherwise.the �nal signi�cand can be selected according to 2.12 byr fn = � r fovf if r ovf ^ ovf enr fn1 otherwise.



116 CHAPTER 4. BASIC FP OPERATIONSFor the exponent computations we predict the wrapping exponent constant based on thesign of the exponent e1.pwec = � +� = < +alpha[11 :7] >2 = < (0;dbl2; 0;dbl2; 06) >2 if e1[11]�� = < �alpha[11 :7] >2 = < (1;dbl; 1;dbl; 0;dbl; 06) >2 otherwise.This prediction can be done due to the fact, that for a positive exponent e1 � 0, alsor en1 � 0, so that no underow can occur and for a negative exponent e1 < 0, we haver en1 � 0, so that no overow can occur. The exponent wrapping constant can then beselected by: wec = � pwec if ((r ovf ^ ovf en) _ (r unf ^ unf en))0 otherwise.The �nal exponent selection including the exponent wrapping and rounding is given byr en = 8>><>>: emax + 1 if r ovf ^ ovf en ^OR(sr mode[1 :0])emax if r ovf ^ ovf en ^NOR(sr mode[1 :0])r e+ pwec if r ovf ^ ovf en _ r unf ^ unf enr e otherwise. (4.201)By the de�nition of r erp = � emax + 1 if OR(sr mode[1 :0])emax otherwise (4.202)r eop = � r erp if ovf en ^ e1[11]r en1 + pwec otherwise (4.203)the exponent selection according to equation 4.201 can be written asr en = � r eop if r ovf _ (r unf ^ unf en)r en1 otherwise (4.204)Because the computation of r en1 is selected from e1 and ei1 depending on the post-normalization shift condition pscond, we also compute the selections of the exponents intwo parallel paths for pscond = 0 and for pscond = 1 like in the computation of theexception conditions. With the convention that the appendix of the letter `i` to a variablename indicates the incremented version of this variable, we get the �nal exponent by thefollowing selectionsew = e1 + pwec ewi = ei1 + pweceop = � r erp if ovf en ^ e1[11]ew otherwise eopi = � r erp if ovf en ^ e1[11]ewi otherwiseen = 8<: eop if r ovf[0]_(r unf[0] ^ unf en)e1 otherwise eni = 8<: eopi if r ovf[1]_(r unf[1] ^ unf en)ei1 otherwiser en = � eni if psconden otherwiseThis completes the description of the second computation step according to equation 4.168.Additionaly, we have to compute the signal infreg, that indicates the case of an in�nityresult in the regular case:infreg () r ovf ^ ovf en ^OR(sr mode[1 :0]):
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Figure 4.19: Exponent and exceptions circuit for the R-path of the addition/subtractionunit III. Shaded boxes had to be added to the R-path implementation of the addi-tion/subtraction unit II.The extensions and changes for the R-path of the addition/subtraction unit III based onthe R-path implementation of the previous section are depicted in �gure 4.18. A moredetailed block diagram of the exponent and exceptions circuit is given in �gure 4.19. Alsoin this �gure the shaded circuits are required in addition to the R-path implementationfrom the previous section. The path selection condition is not changed in this section,so that we can use the same implementation for is r like in the previous section. Thiscompletes the description of the addition/subtraction III unit.
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4.3. MULTIPLICATION 1194.3 Multiplication4.3.1 Multiplication I (normalized �! representative format)Speci�cation. This section describes a FP multiplication unit, that is able to multiplytwo FP numbers given in the normalized representations (section 2.6.3):BUSaNF [69 :0] = (sa;ea[11 :0]; fa[0 :52]; zeroa; infa;qnana; snana) (4.205)BUSbNF [69 :0] = (sb;eb[11 :0]; fb[0 :52]; zerob; infb;qnanb; snanb); (4.206)which represent the factorings (sa; ea; fa) = factNF (BUSaNF [69 :0]) and (sb; eb; fb) =factNF (BUSbNF [69 :0]).In the case, that both operands have representable values, the exact product exactmultis de�ned by (section 2.2.4):exactmult = (�1)sa�sb � 2ea+eb � fa � fb: (4.207)If (src; erc; frc) is a RF factoring of this exact product exactmult for non-zero representableinputs, then for the general case of arbitrary input values, a RF factoring of the requiredproduct is given by (see equation 2.17):(sRF ; eRF ; fRF ) = 8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczero(src; erc; frc) otherwise. (4.208)The product output of the multiplication I unit is then speci�ed by the corresponding rep-resentation in the representative format BUSRF [73 :0] = rf(sRF ; eRF ; fRF ): Moreover, inthe multiplication I unit the invalid ag inv should be signaled according to the occuranceof an invalid exception.Implementation. The computations of the special conditions in equation 4.208 arealready summarized in section 2.4.4 by equations 2.27-2.33. Like in the addition imple-mentations, we select the result from equation 4.61 in two steps by the de�nition of thesign ssc, the exponent esc and the signi�cand fsc for the special case:(ssc; esc; fsc) = 8>>>><>>>>: (0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) otherwise. (4.209)These computations are implemented in the special cases circuit in �gure 4.20. Obviously,according to tables2.6-2.7, an invalid exception occurs for a multiplication, i� the resultis a quiet NaN, in which case we have scqnan = 1. Thus, we already get the invalid agby inv() scqnan: With the de�nition of the special case condition spca byspca () scqnan _ scinf _ scx _ scy _ sczero (4.210)like in the addition implementations, the �nal multiplication result can be selected by(sRF ; eRF ; fRF ) = � (ssc; esc; fsc) if spca(src; erc; frc) otherwise. (4.211)



120 CHAPTER 4. BASIC FP OPERATIONSThis completes the description of the computations for the special cases and the exceptionrecognition.In the following the computation of the RF factoring (src; erc; frc) for the regular caseis described. For this computation we can assume non-zero representable operands.For non-zero operands the signi�cands are normalized with fa; fb 2 [1; 2[, so thatthe product of the signi�cands is in the range fpr = fa � fb 2 [1; 4[. Thus, according tode�nition 2.21, the factoring (src; erc; frc) = (sa�sb; ea+eb; rep53(fpr)) is a RF factoringof exactmult for representable operands. In this way the sign src and the exponent erc forthe regular case can be computed by:src = sa� sb (4.212)erc = <erc[12 :0]>2 = <(0;ea[11 :0]>2 +<(0;eb[11 :0]>2: (4.213)We deal with the computation of the signi�cand frc = rep53(fpr) in the following. Becausethe signi�cands fa and fb are both integral multiples of 2�52, the product fpr = fa �fb 2[1; 4[ is an integral multiple of 2�104 and can be represented by fpr = <fpr[�1:104]>neg .From this representation of the signi�cand product, the 53-representative frc = rep53(fpr)can then easily be generated following lemma 2.11:frc[�1:54] = (fpr[�1:53];ORtree (fpr[54 :104])) : (4.214)The computation of fpr[�1:104] is partitioned into two steps:(A) the computation of a carry-save representation of the product fpr by<fprs[�1:104]>neg +<fprc[�1:104]>neg = <fa[0 :52]>neg �<fb[0 :52]>neg :(4.215)(B) the compression from the carry-save representation of the product to the binaryproduct representation fpr[�1:104] with<fpr[�1:104]>neg = <fprs[�1:104]>neg +<fprc[�1:104]>neg :This equation is implemented by a 106-bit carry-lookahead adder.The computation for step (A) consists of the partial product generation and reduction ofthe signi�cand multiplication and has to be further speci�ed. We consider two di�erentimplementations using a Booth encoded adder tree:In the �rst, full-sized implementation we directly use a 53-bit by 53-bit Booth2 encodedpartial product generation and reduction implementation, which we denote by the functionbtree, to implement equation 4.215 by(fprs[�1:104]; fprc[�1:104]) = btree53;53(fa[0 :52]; fb[0 :52]):This implementation is depicted in �gure 4.21.In the second implementation of the partial product generation and reduction for step(A), we use a half-sized 53-bit by 27-bit Booth2 encoded adder tree, that is able to considertwo additional constants which we denote by the function boothtreepp. In this \half-sized"implementation, the computations of step (A) are implemented in two iterations for doubleprecisio and in one iteration for single precision. For the double precision computationin two iterations, we require the signal iter2, that indicates the case that we are in thesecond iteration. The following lemma describes the underlying partitioning of the partialpartial product formula for the signi�cand product fpr:



4.3. MULTIPLICATION 121Lemma 4.23 With the selection of the signi�cand half fbsel = <fbsel[0 :26]>neg andthe de�nition of the sums pp1, for that we use iter2 = 0, and pp2, for that we useiter2 = 1, according tofbsel[0 :26] = � (fb[27 :52]; 0) if dbl AND iter2fb[0 :26] otherwise. (4.216)pp1 = 26Xi=0 fa ^ fbsel[i] � 2�i (4.217)pp2 = 26Xi=0 fa ^ fbsel[i] � 2�i + 2�27 � pp1 (4.218)the signi�cand product fpr can be selected byfpr = � pp2 if dblpp1 otherwiseProof: The partial product formula for the signi�cand product fpr can be written asfpr = fa � fb = fa �<fb[0 :52]>neg (4.219)= 52Xi=0 fa ^ fb[i] � 2�i (4.220)= 26Xi=0 fa ^ fb[i] � 2�i + 52Xi=27 fa ^ fb[i] � 2�i (4.221)= 26Xi=0 fa ^ fb[i] � 2�i + 2�27 � 26Xi=0 fa ^ fb[i+ 27] � 2�i: (4.222)For double precision we have in the �rst iteration fbsel[0 : 26] = (fb[27 : 52]; 0), so thatpp1 =P26i=0 fa^fb[i+27] �2�i. Thus, because in the second iteration for double precisionwe have fbsel[0 :26] = fb[0 :26], it follows directly from equation 4.222, that fprod = pp2,as required for double precision.Because for single precision fb[27 : 52] = 027 and fbsel[0 : 26] = fb[0 : 26], we getfprod =P26i=0 fa ^ fb[i] � 2�i = pp1, as required for single precision. 2With the de�nition of the feedback operandfdb = � 2�27 � pp1 if dbl AND iter20 otherwise (4.223)the equations from lemma 4.23 for pp1 with iter2 = 0 and for pp2 with iter2 = 1 can bewritten as pp1 = fa � fbsel + fdb (4.224)pp2 = fa � fbsel + fdb (4.225)Because fa � fbsel = <fa[0 :52]>neg � <fbsel[0 :26]>neg is an integral multiple of 2�78,the lower part of the binary representation of pp2 = <pp2[�1:105]>neg could be directlycopied from the lower part of fdb = <fdb[�1:105]>neg bypp2[79:105] = fdb[79 :105]:
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Figure 4.21: Full-sized implementation of the partial product generation and reductionfor multiplication unit I.so that we get the carry-save representation of the signi�cand product fpr with the carry-string fprs[�1:104] and the sum-string fprc[�1:104] byfprs[�1: 104] = � (pps2[�1:78];pps1[52:77]) if dbl(pps1[�1:78]; 026) otherwise. (4.229)fprc[�1:104] = � (ppc2[�1:78];ppc1[52:77]) if dbl(ppc1[�1:78]; 026) otherwise. (4.230)after one iteration for single precision and after two iterations for double precision. Basedon this formula, equation 4.215 for the computation of step (A) is implemented based onthe 'half-sized' adder-tree like depicted in �gure 4.22. In this implementation, the resultsof the adder-tree are saved in the carry-save registers ppregs[�1:78] and ppregc[�1:78]after each iteration. The feedback to the adder tree is split into an upper part consideringpositions [�1 :78] and a lower part considering positions [79 : 104]. The upper part of thefeedback operand fdb[�1:78] is directly input into the adder tree including the right-shiftby 27 positions for double precision. Because the lower part of the feedback in fdbs[79 :104]and fdbc[79 :104] is not changed by the adder tree, it can be directly saved into registersppregs[79 : 104] and ppregc[79 : 104]. In this way, the registers ppregs[�1:104] andppregc[�1:104] contain the carry-save representation of the signi�cand product fpr byfprs[�1:104] and fprs[�1:104] after two iterations for double precision and after oneiteration for single precision.This completes the description of the half-sized implementation for step (A), so thatthe descriptions of both implementations of the multiplication I unit are completed.4.3.2 Multiplication II (normalized �! gradual result format)Speci�cation. Like in the previous section also in this section the FP multiplication iscomputed from the inputs of the normalized representations (section 2.6.3) BUSaNF [69 :0]and BUSbNF [69 :0]. Because some rounding computations have to be considered in thissection, also the input of the rounding mode, represented by rmode[1 :0], is required.In this section, the exact multiplication result according to equation 4.207 has to berounded by the general rounding function ground1. After this gradual rounding step the
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Figure 4.22: Half-sized implementation of the partial product generation and reductionfor multiplication unit I.product should be output in the gradual result format BUSGF [73 :0] (section 2.6.5). Ac-cording to equation 4.207, a factoring of the exact product is given by (sex; eex; fpr) =(sa� sb; ea+ eb; fa � fb) for non-zero representable operands. With the gradual roundedproduct ((sgrc; egrc; fgrc);tinc;tinx) = ground1(sex; eex; fpr) and the following GF fac-toring of the result for the case of arbitrary IEEE operands((sGF; eGF; fGF );tincGF;tinxGF )=8>>>>>><>>>>>>:
((0; eqNaN ; fqNaN ); 0; 0) if scqnan((sinf ; e1; f1); 0; 0) if scinf((sa; ea; fa); 0; 0) if scx((sb; eb; fb); 0; 0) if scy((s0; e0; 0); 0; 0) if sczero((sgrc; egrc; fgrc);tinc;tinx) otherwise, (4.231)the product output of the multiplication unit II is speci�ed by the gradual result rep-resentation BUSGF [73 :0] = gf((sGF ; eGF ; fGF );tincGF ;tinxGF ). The occurance of aninvalid exception should be signaled by the bit inv also in this section.Implementation. The special cases conditions and values in equation 4.231 are identicalto that in the speci�cation of the previous section. In the implementation of this specialcases selection, the only di�erence to the previous section is that a representation inthe gradual result format has 3 bits less in the signi�cand, which have been �lled withzeros in the representative format. Moreover, the gradual result format requires twoadditional rounding tags, which have to be zero for special value results. For the specialcases selections, these small adjustments are integrated in the implementation depicted in�gure 4.23. Also in the equations, that are implemented in the special cases circuit, theselections for bit positions [�1] and [53:54] have to be neglected.
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126 CHAPTER 4. BASIC FP OPERATIONSWith srmode = mode ? sex and the de�nition of the rounded signi�cand productfprnd = � rndsrmode;51(fpr) if fpr 2 [2; 4[rndsrmode;52(fpr) if fpr 2 [1; 2[ (4.235)the regular case factoring can be written as (sgrc; egrc; fgrc) = gpost norm(sex; eex; fprnd).From fpr 2 [1; 4�2�51] it follows, that also the rounded signi�cand product is in therange fprnd 2 [1; 4�2�51] and can be represented by fprnd = <fprnd[�1:104]>neg.With the de�nition of the post-normalization condition pscondpscond () (fprnd 2 [2; 4[) () fprnd[�1]; (4.236)the generalized post-normalization shift (de�nition 4.121) can be written as(sgrc; egrc; fgrc) = � (sex; eex + 1; fprnd=2) if pscond(sex; eex; fprnd) otherwise. (4.237)The exponents eex = < eex[12 :0] >2 = < (0;ea[11 :0]) >2 + < (0;eb[11 :0]) >2 andeex + 1 = < eiex[12 :0] >2 are computed by a 13-bit compound adder, so that accordingto equation 4.237, we get the exponent for the regular case egrc = < egrc[12 :0] >2 by aselection depending on pscond. This exponent computation and the computations of thesign sgrc = sa� sb are included in the block diagram in �gure 4.23.In the following we deal with the computation of the rounded signi�cand productfprnd. The rounding computations are based on the injection-based rounding reduction(see section []) like it is used in the R-path of the addition units II and III. With the use ofthe rounding injections from equations 4.124-4.124, we get for srmode 2 fRZ;RNU;RIgfprnd0 = � rndsrmode;51(fpr) = rndRZ;51(fpr + inj[2;4[) if fpr 2 [2; 4[rndsrmode;52(fpr) = rndRZ;52(fpr + inj[1;2[) otherwise. (4.238)Finally, to compute fprnd from fprnd0 by implementing RNE instead of RNU, we willhave to consider the L-bit �x.De�nition 4.10 We de�ne the injected signi�cand product finpr = fpr + inj[1;2[, thatalready contains the rounding injection for the case that fpr 2 [1; 2[. The injection cor-rection injcor is de�ned byinjcor = inj[2;4[ � inj[1;2[ (4.239)= 8<: 2�52 if srmode = RI2�53 if srmode = RN0 otherwise. (4.240)We de�ne the corrected signi�cand product by fcorpr = finpr + injcor = fpr + inj[2;4[.With these de�nitions, equation 4.238 can be written asfprnd0 = � rndsrmode;51(fpr) = rndRZ;51(finpr + injcor) if fpr 2 [2; 4[rndsrmode;52(fpr) = rndRZ;52(finpr) otherwise. (4.241)Like in the previous section, the computations for the signi�cand product are parti-tioned into two steps:
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Figure 4.24: Full-sized implementation of the partial product generation and reductionwith rounding injection for multiplication unit II.(A) computation of a carry-save representation of the injected signi�cand product finpr =fa � fb+ inj[1;2[ with sum-string finprs[�1 :104] and carry-string finprc[�1 :104].This computation corresponds to the 'injected partial product generation & reduc-tion' circuit in �gure 4.23.(B) compression and gradual rounding from the carry-save representation of the injectedsigni�cand product with the bit-strings finprs[�1:104] and finprc[�1:104] to therounded signi�cand product fprnd = <fprnd[�1:52]>neg and the rounding tagstinx and tinc. In combination with the generalized post-normalization shift forthe signi�cand according to equation 4.237, these computations correspond to the'compression & gradual rounding circuit' in �gure 4.23.(A) The only di�erence in the implementations of step (A) in this section from thepartial product generation and reduction implementations in the previous section is theaddition of the rounding injection constant inj[1;2[.For the full-sized adder tree implementation, we use the binary 106-bit representationof the injection inj[1;2[. (Note, that srmode = RNE for sr mode[0] = 1 and srmode = RIfor sr mode[1] = 1.)inj[1;2[ = < inj12[�1:104]>neg (4.242)= <(054; sr mode[0] _ sr mode[1]; sr mode[1]51)>neg (4.243)We replace the function btree53;53 from the previous section by btreep53;53 to add theinjection to the signi�cand product according to finpr = fpr+ inj[1;2[ by(finprs[�1:104]; finprc[�1:104]) = btreep53;53(fa[0 :52]; fb[0 :52]; inj12[�1:104]):This full-sized implementation of step (A) is depicted in �gure 4.24. In this �gure, the'INJ generation' circuit contains the implementation of equation 4.243 and the roundingmode reduction according to equation 2.6-2.7.For the half-sized adder tree implementation of step (A), we modify the feedbackoperand fdb from the previous section to add the rounding injection inj[1;2[ in the �rstiteration for both, single and double precision. This can easily be done, because in the�rst iteration we have fdb = 0. Note, that because the result of the �rst iteration is added



128 CHAPTER 4. BASIC FP OPERATIONSin the second iteration weighted by 2�27, the injection 227 � inj[1;2[ has to be added in the�rst iteration for double precision. In this way, we de�ne the injection feedback byfdbinj = <fdbinj[�1:78]>neg (4.244)= � 227 � inj[1;2[ if dblinj[1;2[ otherwise. (4.245)= � <(027; sr mode[0] _ sr mode[1]; sr mode[1]52)>neg if dbl<(054; sr mode[0] _ sr mode[1]; sr mode[1]25)>neg otherwise.(4.246)Integrated with the previous feedback operand fdb, we de�ne the modi�ed feedbackoperand fdb0 and the modi�ed partial sums pp10 and pp20 byfdb0 = 8<: fdbinj if iter22�27 � pp10 if dbl AND iter20 otherwisepp10 = fa � fbsel+ fdb0pp20 = fa � fbsel+ fdb0Lemma 4.24 Based on the previous de�nitions, we get the injected signi�cand productby finpr = fpr + inj[1;2[ = � pp20 if dblpp10 otherwise. (4.247)after one iteration for single precision and after two iterations for double precision.Proof: For single precision, fdbinj = inj[1;2[, so that pp10 = pp1+inj[1;2[ = fpr+inj[1;2[,as required. For double precision, we have fdbinj = 227 � inj[1;2[, so thatpp20 = fa � fbsel + 2�27 � pp10= fa � fbsel + 2�27 � pp1 + 2�27 � 227 � inj[1;2[= fpr + inj[1;2[and the proof of the lemma is completed. 2Thus, starting from the half-sized adder tree implementation from the previous section,only the feedback operand fdb has to be changed to fdb0 and the carry-save representationsof fdb0 and finpr have to be considered for the implementation of step (A). This half -sizedimplementation of step (A) is depicted in �gure 4.25. The injection feedback accordingto equation 4.246 is generated in the 'INJ generation' circuit, which also includes therounding mode reduction according to equations 2.6-2.7. This completes the descriptionof the two implementations (full-sized and half-sized) for step (A).(B) For the computation of step (B) of the signi�cand multiplication rounding, we �rstconsider the computation of fprnd0, so that with the additional computation of the L-bit�x, we will then get the rounded signi�cand product fprnd.According to equation 4.241, the computation of fprnd0 = <fprnd0[�1:52]>neg de-pends on finpr = <finpr[�1:104]>neg and fcorpr = <fcorpr[�1:104]>neg . Sincefprnd0 = � rndRZ;51(fcorpr) = <fcorpr[�1:51]>neg if fpr 2 [2; 4[rndRZ;52(finpr) = <finpr[�1:52]>neg otherwise.
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Figure 4.25: Half-sized implementation of the partial product generation and reductionwith rounding injection for multiplication unit II.only the bit strings finpr[�1:52] and fcorpr[�1:51] have to be considered.As input for the computations, we get a carry-save representation of the injectedsigni�cand product finpr from step (A) with the sum string finprs[�1:104] and thecarry-string finprc[�1:104]. We compress the the bit positions [�1 : 52] of this carry-save representation by a half-adder line to the carry-save representation with sum-stringxsum[�1:52] and carry-string xcarry[�1:51], so that<xsum[�1:52]>neg+<xcarry[�1:51]>neg = <finprs[�1:52]>neg+<finprc[�1:52]>neg :Moreover, the bit positions [53 : 104] of the carry-save representation of finpr are com-pressed by a carry-look-ahead adder to the binary representation (c52; finprs[53 : 104])according to<(c52; finpr[53 :104])>neg= <finprs[53 :104]>neg +<finprc[53 :104]>negIn this sum, the bit c52 is generated as a carry bit into position [52].Based on these compressed representations, we partition the computations for finprand fcorpr into an upper part considering bit positions [�1:51] and a lower part consid-ering bit positions [52:104].For the computation of finpr, the lower part consists oflpart12 = <xsum[52]>neg +<(c52; finpr[53 :104])>neg (4.248)= <(rc12; finpr[52 :104])>neg : (4.249)



130 CHAPTER 4. BASIC FP OPERATIONSThus, the bit finpr[52] and the carry bit rc12 (rounding carry for fpr 2 [1; 2[) intoposition [51] can be computed by a half-adder according to<(rc12; finpr[52])> = <xsum[52]> + <c52> : (4.250)For the computation of fcorpr = finpr+ injcor, we additionaly have to consider theinjection correction injcor. According to equation 4.240, we have for the injection cor-rection injcor � 2�52, and injcor can be represented by injcor = < injcor[52 :53]>neg .Thus, the lower part of fcorpr consists oflpart24 = <xsum[52]>neg +<(c52; f inpr[53 :104])>neg +< injcor[52 :53]>neg= <(rc24; fcorpr[52 :104])>negBecause injcor � 2�52, we can add the tail < (finpr[53 : 104]) >neg with the injectioncorrection by<(cc52; fcorpr[53 :104])>neg= <finpr[53 :104]>neg +< injcor[52 :53]>negIn this addition, the carry bit cc52 (correction carry into position [52]) is generated. Usingthe de�nition of the injection correction and the encoding for the reduced rounding modesaccording to table 2.3, the condition for the correction carry cc52 can be written ascc52 = sr mode[1] _ sr mode[0] ^ finpr[53]: (4.251)Thus, the bits fcorpr[52] and rc24, which is the carry from the lower part of fcorpr intobit position [51], can be computed by a full-adder according to<(rc24; fcorpr[52])> = < xsum[52] >+< c52 >+< cc52 >: (4.252)The upper part of finpr and fcorpr consists of<finpr[�1:51]>neg = < xsum[�1:51] >neg +< xcarry[�1:51] >neg + rc12 � 2�51<fcorpr[�1:51]>neg = < xsum[�1:51] >neg +< xcarry[�1:51] >neg + rc24 � 2�51With the de�nition of the upper product upr and the incremented upper product upri byupr = < upr[�1:51] >neg (4.253)= < xsum[�1:51] >neg +< xcarry[�1:51] >neg (4.254)upri = < upri[�1:51] >neg (4.255)= upr + 2�51; (4.256)the upper parts of finpr and fcorpr both can only have either the value upr or the valueupri. Obviously, only the carry, which is generated from the lower part into position [51],is di�ering in the upper parts for finpr and fcorpr. Thus, if we select the proper carrybit into position [51] depending on whether fpr 2 [1; 2[ or fpr 2 [2; 4[ byrcarry51 = � rc24 if fpr 2 [2; 4[rc12 otherwise, (4.257)the upper part of the signi�cand product fprnd0 can by selected by<fprnd0[�1:51]>neg = � upri = <upri[�1:51]>neg if rcarry51upr = <upr[�1:51]>neg otherwise (4.258)



4.3. MULTIPLICATION 131Additionaly, the bit fprnd0[52] is required for fpr 2 [1; 2[. In this case, we have fprnd0[52] =finpr[52], which we already computed before, so thatfprnd0[52] = � 0 if fpr 2 [2; 4[finpr[52] otherwise. (4.259)This completes the computation of fprnd0. To get the rounded signi�cand product fprnd,we additionaly have to implement the L-bit �x. In contrast to the L-bit �x implementationfor the addition II unit, we have to consider that the injected signi�cand product fprnd =fpr + inj[1;2[ contains the rounding injection inj[1;2[ = 2�53 for srmode = RN . In thisway, the conditions for the L-bit �x are given bylfix[1;2[ = sr mode[0] ^ finpr[53] ^OR(finpr[54 :104])lfix[2;4[ = sr mode[0] ^ finpr[52] ^ finpr[53] ^OR(finpr[54 :104]);so that the rounded signi�cand product fprnd = <fprnd[�1:52]>neg can be computedby fprnd[�1:52] = � (fprnd0[�1:50]; fprnd0[51] ^ lfix[2;4[; 0) if fpr 2 [2; 4[(fprnd0[�1:51]; fprnd0[52] ^ lfix[1;2[) otherwise.In this selection, only the bits in positions [51 : 52] are di�ering and have to be selected.We denote the least signi�cant bit of the signi�cand by l24 for the case that fpr 2 [2; 4[and by l12 for the case that fpr 2 [1; 2[ according to (Note, that for fpr 2 [1; 2[, we havefprnd0[52] = finpr[52]) l24 = fprnd0[51] ^ lfix[2;4[ (4.260)l12 = finpr[52] ^ lfix[1;2[; (4.261)so that equation 4.260 can be written asfprnd[�1:52] = � (fprnd0[�1:50]; l24; 0) if fpr 2 [2; 4[(fprnd0[�1:51]; l12) otherwise. (4.262)In the description of the rounding computations, the condition fpr 2 [2; 4[ is used to choosethe proper rounding injection and to choose either rndRZ;51(fcorpr) or rndRZ;52(finpr)as the rounded result fprnd0. Because we only deal with the injected signi�cand products,we do not have a signal, that exactly implements the condition fpr 2 [2; 4[. The followinglemma shows, that the bit upr[�1] can be used to substitute the condition fpr 2 [2; 4[.The bit upr[�1] does not always agree with the condition fpr 2 [2; 4[, but it will be shown,that in every case, where upr[�1] fails to predict the condition fpr 2 [2; 4[ correctly, it doesnot matter which rounding injection is chosen, because in these cases rndRZ;51(fcorpr) =rndRZ;52(finpr).Lemma 4.25 For the rounding computation according to equation 4.238, the conditionfpr 2 [2; 4[ can be substituted by the signal upr[�1], so thatfprnd0 = � rndRZ;51(fcorpr) if upr[�1]rndRZ;52(finpr) otherwise.



132 CHAPTER 4. BASIC FP OPERATIONSProof: We only have to consider the cases where upr[�1] 6= (fpr 2 [2; 4[). In thefollowing, we distinguish between: (a) upr[�1] = 0; and (b) upr[�1] = 1.(a) For upr[�1] = 0, we have to consider the case, that (fpr 2 [2; 4[). Because fpr � 2and finpr = fpr + inj[1;2[ = upr + lpart12, we havefinpr 2 [2; upr + lpart12]; (4.263)where lpart12 < 3 � 2�52 according to equation 4.248. Since upr[�1] = 0, it followsthat upr = <upr[�1:51]>neg � 2� 2�51. Since upr + lpart12 � exact � 2, we haveupr > 2� 3 � 2�52. Thus, upr = <upr[�1:51]>neg = 2� 2�51 and equation 4.263 yieldsfinpr 2 [2; 2 + 2�52[:The injection correction satis�es 0 � injcor � 2�52, thereforefcorpr = finpr+ injcor 2 [2; 2 + 2�51[:For these ranges of finpr and fcorpr, it follows, thatrndRZ;51(fcorpr) = rndRZ;52(finpr) = 2:Thus, it does not matter which rounding injection is chosen in this case and fprnd0 = 2independent of the selection value.(b) For upr[�1] = 1, we only have to consider the case, that fpr < 2. Since inj[1;2[ 2[0; 2�52[, it follows that finpr = fpr + inj[1;2[ < 2 + 2�52. Since upr[�1] = 1 andfinpr = upr + lpart12, we have finpr � 2, so thatfinpr 2 [2; 2 + 2�52[:The proof now follows the proof of case (a). 2By the use of this lemma, equations 4.257 and 4.259 are implemented byrcarry51 = � rc24 if upr[�1]rc12 otherwise,fprnd0[52] = � 0 if upr[�1]finpr[52] otherwise.This completes the description of the rounded signi�cand product fprnd. Additionaly, forstep (B) we have to compute the rounding tags for the rounding inexactness tinx and forthe rounding increment tinc.The conditions for the rounding tags tinx and tinc are given by:tinx = � fpr[52] _ORtree(fpr[53 :104]) if upr[�1]ORtree(fpr[53 :104]) otherwise.tinc = � fprnd[51]�fpr[51] if upr[�1]fprnd[52]�fpr[52] otherwise.The following lemma provides the equations for the implementation of the rounding tagsbased on the injected signi�cand product finpr. Moreover, this lemma proposes how thecomputation of the lfix-bits can be based on signals from the rounding tag computationto share hardware.



4.3. MULTIPLICATION 133Lemma 4.26 With the de�nition offprRN [51 :53] = <(xsum[51] � xcarry[51] � rc12; finpr[52 :53])>neg � 2�53 mod 2�50tincRN = � fprRN [51]� (fprnd0[51] ^ lfix[2;4[ if upr[�1]fprRN [52]� fprnd0[52] ^ lfix[1;2[ otherwise.sticky2 = ORtree(finpr[53 :104] � sr mode[1])the rounding tags can be computed bytinx = ((sr mode[0]� fpr[52]) ^ upr[�1]) _ sticky2tinc = (sr mode[0]^tincRN )^(sr mode[1]^tinx):Moreover, based on the signal sticky2, the lfix-bits can be written as:lfix[1;2[ = sr mode[0] ^ finpr[53] ^ sticky2lfix[2;4[ = sr mode[0] ^ finpr[52] ^ finpr[53] ^ sticky2;Proof: In order to proof the equations for the rounding tags and the lfix-bits, we�rst show some properties of the signals fprRN [51 : 53] and sticky2, namely, that (a)sticky2 = ORtree(fpr[53 :104]) and that (b) in the rounding mode srmode = RNE, wehave fprRN [51 :53] = fpr[51 :53]:(a) Keeping in mind, that finpr = fpr + inj[1;2[, we distinguish for the proof betweenthe two cases: (i) the rounding mode srmode 2 fRZ;RNEg; and (ii) the roundingmode srmode = RI.(i) For srmode 2 fRZ;RNEg, we have sr mode[1] = 0 and inj[1;2[[53 : 104] = 052,so that fpr[53 :104] = finpr[53 :104] � sr mode[1] and (a) follows immediately.(ii) For srmode = RI, we have sr mode[1] = 1 and inj[1;2[[53 :104] = 152. Thus,(fpr[53 :104] = 052) () (finpr[53 :104] = 152)(fpr[53 :104] = 052) () ((finpr[53 :104] � sr mode[1]) = 052)ORtree(fpr[53 :104]) () ORtree(finpr[53 :104] � sr mode[1]);as required.(b) In the rounding mode srmode = RNE, we have for the rounding injection con-stant inj[1;2[ = 2�53. Thus, <fpr[�1:53]>neg = <finpr[�1:53]>neg � 2�53, andtherefore <fpr[51 :53]>neg = <finpr[51 :53]>neg � 2�53 mod 2�50:Property (b) follows then from finpr[51] = xsum[52]� xcarry[52]� rc12.The equations for tinx and the lfix-bits follow immediately from property (a). In theproof of the equation for tinc, we distinguish between the three cases: (i) srmode = RZ;(ii) srmode = RNE; and (iii) srmode = RI.(i) In the rounding mode srmode = RZ, a rounding increment never occurs.(iii) It follows from the IEEE rounding de�nition, that in the rounding mode srmode =RI, a rounding increment occurs, i� the result is inexact, where (tinx = 1).



134 CHAPTER 4. BASIC FP OPERATIONS(ii) In the rounding mode srmode = RNE, we implement equation 4.264 for tinc. Us-ing property (b) and the equations for fprnd[51] = fprnd0[51]^lfix[2;4[ and fprnd[52] =fprnd0[52]^lfix[1;2[, we get in the rounding mode srmode = RNE, that tinc = tincRN .We join the three cases (i)-(iii) for the three rounding modes to the following generalequation for tinc: tinc = � tinx if srmode = RItincRN if srmode = RNEBecause the rounding mode srmode = RI is signaled by sr mode[1] = 1 and the roundingmode srmode = RNE by sr mode[0] = 1, it is obvious, that this is equivalent to theequation, that we have to prove for tinc. 2In this way, the description of the implementation of part (B) with the rounded sig-ni�cand product fprnd and the rounding tags tinx and tinc is completed. Based onthis, the signi�cand fgrc = <fgrc[0 :52]>neg for the regular case can be selected fromfprnd = <fprnd[�1:52]>neg by the generalized post-normalization shift for the signi�-cand according to equation 4.237. In the following, we summarize the computation stepsfor the computation of part (B) of the signi�cand multiplication and rounding and thegeneralized post-normalization shift:1. compression of positions [�1 : 52] of the carry-save representation of fprnd by ahalf-adder line according to<xsum[�1:52]>neg+<xcarry[�1:51]>neg = <finprs[�1:52]>neg+<finprc[�1:52]>neg :addition of bit positions [53 : 104] of the carry-save representation of fprnd by a52-bit carry-lookahead adder according to:<(c52; finpr[53 :104])>neg= <finprs[53 :104]>neg +<finprc[53 :104]>neg :2. computation of the upper product upr = < upr[�1:51] >neg (equation 4.254) andthe incremented upper product upri = < upri[�1:51] >neg (equation 4.256) by a53-bit compound adder that computes< upr[�1:51] >neg = < xsum[�1:51] >neg +< xcarry[�1:51] >neg< upri[�1:51] >neg = < upr[�1:51] >neg + 2�51;3. After the computation of the correction carry cc52 into position [52] (equation4.251), the rounding carries into position 51 are computed: rc12 for the case fpr 2[1; 2[ by a half-adder according to equation 4.250 and rc24 for the case fpr 2 [2; 4[by a full-adder according to equation 4.252. The proper rounding carry rcarry51into position [51] is then selected according to equation 4.264:cc52 = sr mode[1] _ sr mode[0] ^ finpr[53]<(rc12; finpr[52])> = <xsum[52]> + <c52><(rc24; fcorpr[52])> = < xsum[52] >+< c52 >+< cc52 >:rcarry51 = � rc24 if upr[�1]rc12 otherwise,
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136 CHAPTER 4. BASIC FP OPERATIONSand for position [52] byfgrc[0 : 51] = � l24 if fprnd0[�1]l12 otherwiseThe implementation of these steps is depicted in the block diagram in �gure 4.26. In this�gure, the 'rounding decisions' circuit contains the implementation of steps 3 and 5.In this way, the description of the multiplication unit II is completed.4.3.3 Multiplication III (normalized �! normalized format)Speci�cation. Like in the previous section also in this section, the FP multiplica-tion is computed from the inputs of the normalized representations BUSaNF [69 :0] andBUSbNF [69 :0] (section 2.6.3). Because IEEE rounding has to be considered in this sec-tion, also the bit dbl, that signals the case of single precision (dbl = 0) or double precision(dbl = 1), the input of the rounding mode, represented by rmode[1 :0], and the underowand overow enable bits unf en and ovf en are required.In this section, the exact multiplication result according to equation 4.207 has tobe rounded by the rounding function nround, that computes the NF factoring of theIEEE rounded result. After this rounding computation the product should be outputin the normalized format BUSNF [69 :0] (section 2.6.3). According to equation 4.207, afactoring of the exact product is given by (spr; epr; fpr) = (sa � sb; ea + eb; fa � fb) fornon-zero representable operands. With the NF factoring of the IEEE result for non-zero representable operands (snrc; enrc; fnrc) = nround(sex; eex + wec; fpr) including theexponent wrapping constant wec according to equation 2.14 and the following NF factoringof the result for the general case of arbitrary operands according to equation 2.16:(sNF; eNF; fNF )=8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczero(snrc; enrc; fnrc) otherwise, (4.264)the product output of the multiplication unit III is speci�ed by the corresponding repre-sentation in the normalized format BUSNF [69 :0] = nf(sNF ; eNF ; fNF ). In this section,the occurance of an invalid, inexact, overow and underow exception should be signaledby the bits inv, inx, ovf and unf, respectively.Implementation. The special cases conditions and values in equation 4.264 are identicalto that in the speci�cation of the two previous sections. In the implementation of thisspecial cases selection, the only di�erence is that in this case a representation in thenormalized format is required. Because all special cases results are exact, just the tworounding tags have to be neglected from the special cases implementation of the previoussection. For the special cases selections, these small adjustments are integrated in theimplementation depicted in �gure 4.27. This already completes the description of thespecial cases computation and we only have to describe the computation of (snrc; enrc; fnrc)for non-zero representable operands in the following.
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Figure 4.27: Block digram of the multiplication unit III.According to lemma 2.8, the rounding function nround can be composed of the foursteps of an unbounded normalization shift, normalized signi�cand rounding, another un-bounded normalization shift and exponent rounding:(snrc; enrc; fnrc) = nround(spr; epr + wec; fpr) (4.265)= exp rndmode?spr(�(n sig rndmode?spr(�(spr; epr + wec; fpr)))):(4.266)Like in the addition computations II and III, we partition the discussion of the roundingcomputations into two steps. After the computation of a �rst step according to(snr1; enr1 + wec; fnr1) = �(n sig rndmode?spr(�(spr; epr + wec; fpr))); (4.267)the �nal result can obviously be computed by the exponent rounding(snrc; enrc; fnrc) = exp rndmode?spr(snr1; enr1 + wec; fnr1): (4.268)



138 CHAPTER 4. BASIC FP OPERATIONSBecause for both, single and double precision, fa; fb 2 [1; 2�2�52], the exact signi�candproduct is in the range fpr = fa � fb 2 [1; 4�2�51]. Thus, with the de�nition of nor-malized signi�cand rounding by n sig rndsrmode(s; e; f) = (s; e; rndsrmode;vp(f)) and thevariable rounding position vp = p� 1�maxf0; emin � eg according to de�nition 2.9, thenormalization shift can be simpli�ed and combined with the rounding separately for thetwo cases: fpr 2 [1; 2[ and fpr 2 [2; 4[ by(snr1; enr1; fnr1) = �(n sig rndmode?spr(�(spr; epr; fpr))) (4.269)= � �(n sig rndmode?spr(�(spr; epr; fpr))) if fpr 2 [1; 2[�(n sig rndmode?spr(�(spr; epr; fpr))) if fpr 2 [2; 4[ (4.270)= � �(spr; epr; rndmode?spr;vp1(fpr)) if fpr 2 [1; 2[�(spr; epr + 1; rndmode?spr;vp2(fpr=2)) if fpr 2 [2; 4[, (4.271)where according to de�nition 2.9, the variable rounding positions vp1; vp2 are given byvp1 = p�1�maxf0; emin�(epr+wec)g (4.272)vp2 = p�1�maxf0; emin�(epr+wec+1)g: (4.273)In the above formulae, the rounding positions vp1 and vp2 could be in a very largerange, namely because oating-point results x 2 FPn;p could even have the magnitude22emin�2p+2 (see section 2.4.2), the variable signi�cand rounding positions could be inthe range vp1; vp2 2 [emin�p�1 :p�1]. Based on the fact, that the signi�cand productfpr is smaller than 4, the signi�cand rounding can be simpli�ed for rounding positionsvp1; vp2 < �2. In these cases we know for sure, that the rounding operand has a mag-nitude smaller than half of the smallest representable number, so that in these cases therounded result has to be selected between �0 or �xmin. By a separate selection for thesesmall results, the ranges for the variable rounding positions in the remaining cases is re-duced to [�2:p�1] and the range of the rounded signi�cands is limited to [0; 4]. For thesereasons, the rounding computations and the computation of the unbounded normalizationshift can be simpli�ed. This will be further discussed after the next lemma.Lemma 4.27 With the de�nition of the condition winzig, that detects results with verysmall exponents bywinzig () (epr +wec � emin � 3� p+ 1)() (epr � emin � 3� p+ 1) AND unf enthe rounded result can be selected by(snr1;enr1+wec;fnr1) =8>><>>:(spr; emin � p+ 1; 0) if winzig ^ sr mode[1](spr; emin � p+ 1; 1) if winzig ^ sr mode[1]�(spr; epr+wec;rndmode?spr ;vp1(fpr)) if winzig ^ fpr 2 [1; 2[�(spr; epr+1+wec; rndmode?spr ;vp2(fpr2 )) if winzig ^ fpr 2 [2; 4[.Proof: For the proof we distinguish between the cases: (a) winzig = 1; and (b)winzig = 0.(a) For winzig = 1, we have (epr+wec � emin�3�p+1), so that because of fpr < 4,the magnitude of the exact product val(0; epr+wec; fpr) is smaller than xmin=2 = 2emin�p.Because we deal with non-zero operands, also the exact product is non-zero, so that themagnitude of the exact product is in the range 0 < val(0; epr + wec; fpr) < xmin=2.



4.3. MULTIPLICATION 139Thus, the nearest representable numbers to the exact product are 0 = val(spr; e0; 0) and(�1)sprxmin = val(spr; emin � p+1; 1), so that according to the IEEE rounding de�nitionin section 2.3.1 the exact product is rounded to (spr; emin � p + 1; 0) in rounding modesrmode 2 fRZ;RNEg and to (spr; emin � p + 1; 1) in rounding mode srmode = RI.Because the rounding mode RI is signaled by the bit sr mode[1], this agrees with the�rst two lines of the rounding formula in this lemma.(b) For winzig = 0, the rounding equations are copied identically from equation 4.271.For winzig = 0, we have epr+wec � emin�2�p+1. From this condition on the exponentepr + wec, it follows, that the variable rounding positions vp1 and vp2 are limited to theranges vp10 2 [�2 : p�1] and vp20 2 [�1 : p�1]. These conditions can be used for therounding implementation. 2Because the above selection of the rounded result is simple for winzig = 1, we focuson the computation of the cases for winzig = 0 in the following. For this purpose, weintroduce the notation:fprnd12 = rndmode?spr ;vp10(fpr) (4.274)fprnd24 = rndmode?spr ;vp20(fpr=2)) (4.275)(sprnd; eprnd; fprnd) = � �(spr; epr; fprnd12) if fpr 2 [1; 2[�(spr; epr + 1; fprnd24) if fpr 2 [2; 4[. (4.276)With this notation the result of �rst step (equation 4.267) can be written as:(snr1;enr1+wec;fnr1) = � (spr; emin � p+ 1; <sr mode[1]>) if winzig(spr; eprnd+wec; fprnd) otherwise. (4.277)Because in the rounding computations for fprnd we can use that winzig = 0, the rangesof the variable rounding positions vp1 and vp2 for the computation of fprnd are limitedto vp1 2 [�2:p�1] and vp2 2 [�1:p�1] according to the proof of case (b) in the previouslemma. To indicate that we only have to consider these limited rounding position ranges,we write vp10 and vp20 for the rounding positions with limited ranges and have vp10 = vp1for vp1 2 [�2:p�1] and vp20 = vp2 for vp2 2 [�1:p�1]. From fpr 2 [1; 4[ and fromthe ranges of the variable rounding positions vp10 and vp20, it follows that the roundedsigni�cands fprnd12 and fprnd24 are bounded by fprnd12 2 [0; 4] and fprnd24 2 [0; 2],and thus, they can be represented according to fprnd12 = <fprnd12[�2:52]>neg andfprnd24 = <fprnd24[�1:52]>neg.The selection and computations in the two cases of equation 4.276 can be simpli�edby selecting the upper choice only for fprnd12 2 [0; 2[ and the other choice for all othercases. In this way, the selection condition is based on the rounded signi�cand valuefprnd12 instead of the value of the unrounded signi�cand product fpr. The followinglemma shows, that we do not make a mistake by this substitution, but that the newranges, for that we consider fprnd12 and fprnd24, allow to simplify the normalizationshifts, that are required after the rounding.Lemma 4.28 Equation 4.276 can be simpli�ed to(sprnd; eprnd; fprnd) = � (spr; epr; fprnd12) if fprnd12 < 2post norm(spr; epr + 1; fprnd24) otherwise.Proof: We divide the proof of the lemma into two steps: In step (a) we show, that thevalues on both sides in the equation of the lemma are the same. Then, we show in step



140 CHAPTER 4. BASIC FP OPERATIONS(b), that the unbounded normalization shifts from equation 4.276 can be replaced by apost-normalization shift respectively by no shift for the two cases.(a) The normalization shifts do not change the values of the factorings. Thus, we onlyhave to show the equality of the selected valuesval(spr; eprnd; fprnd) = � val(spr; epr; fprnd12) if fpr 2 [1; 2[val(spr; epr + 1; fprnd24) otherwise.= � val(spr; epr; fprnd12) if fprnd12 < 2val(spr; epr + 1; fprnd24) otherwise.Because the equality is obvious, if the conditions (fprnd12 < 2) and (fpr 2 [1; 2[) havethe same value, we only have to consider the cases, where: (a.i) (fprnd12 � 2) and(fpr 2 [1; 2[); and (a.ii) (fprnd12 < 2) and (fpr 2 [2; 4[). Thus, to show the aboveequality, it su�ces to show that fprnd24 = fprnd12=2 in the cases (a.i) and (a.ii).(a.i) In the computation of fprnd12, we have to consider the rounding positions vp10 2[�2:p�1] and in the computation of fprnd24, we have to consider the rounding positionsvp20 2 [�1 : p�1]. For rounding positions vp10 2 [�1 : p�1], it follows from (fpr 2 [1; 2[),that (fprnd12 � 2). Thus, in case (a.i) we either have fprnd12 = 2, or vp10 = �2 andthus fprnd12 = 4 (in this case vp20 = �1).From the de�nitions of the variable rounding positions vp10 and vp20 (see equations4.272-4.273), it follows that vp20 2 fvp10; vp10+1g, so that we always have vp20 � vp10+1.The rounded signi�cand fprnd12 can be written as a rounding function of fpr=2 withrounding position vp10 + 1:fprnd12 = rndsrmode;vp10(fpr) = 2 � rndsrmode;vp10+1(fpr=2):Thus, because of vp20 � vp10 + 1, the computation of the rounded signi�cand fprnd24 =rndsrmode;vp20(fpr=2) can be interpreted as a second gradual rounding step on the sig-ni�cand fprnd12=2 at the rounding position vp20. We now consider fprnd12 = 2 andfprnd12 = 4, which are the two possible values of fprnd12 for case (a.i). Becausefprnd12=2 = 1 is already a multiple of 2�vp20 for vp20 2 [0 :p�1], we get in this case also forthe second gradual rounding step fprnd24 = 1 = fprnd12=2, and because fprnd12=2 = 2is already a multiple of 2�vp20 for vp20 = �1, we get in this case also for the second gradualrounding step fprnd24 = 2 = fprnd12=2. This completes the proof of case (a.i)(a.ii) In the computation of fprnd12, the rounding position could be in the range vp10 2[�2 : p�1]. Because we assume fpr 2 [2; 4[, the rounded signi�cand fprnd12 can notbecome smaller than 2 for the rounding positions vp10 2 [�1:p�1]. Only for the roundingposition vp10 = �2, the signi�cand fprnd12 could become smaller than 2, and the onlypossible case for this is fprnd12 = 0. For vp10 = �2, we have vp20 = �1 and it followsfrom 0 = fprnd12 = rndsrmode;�2(fpr) = 2 � rndsrmode;�1(fpr=2) = 2 � fprnd24 = 0;that also in case (a.ii) we have fprnd12=2 = fprnd24, as required.(b) For the proof of part (b) we distinguish between the two cases: (b.i) fprnd12 < 2;and (b.ii) fprnd12 � 2.(b.i) For fprnd12 < 2, the upper choice is selected. For this choice, we have to considerthe rounding positions vp10 2 [�2:p�1] in the computation of fprnd12. For roundingpositions vp10 � 0, it follows from fpr 2 [1; 4[, that fprnd12 � 1, so that the resultingfactoring is already normalized in these cases and the additional normalization shift can



4.3. MULTIPLICATION 141be neglected. For the remaining rounding positions vp10 2 f�1;�2g, it follows fromfpr 2 [1; 4[, that fprnd12 2 f0; 2; 4g. Among these cases, only for the result 0, thecondition for case (b.i) is given and the upper choice is selected. Because the unboundednormalization shift is de�ned to compute the identity function for factorings of zero, thenormalization shift can be neglected for all rounding positions, that have to be considered.(b.ii) For fprnd12 � 2, the factoring (spr; epr+1; fprnd24) is selected. For this choice, wehave to consider the rounding positions vp20 2 [�1 :p�1] in the computation of fprnd24.From this range of rounding positions with fpr=2 2 [0:5; 2[, it follows that fprnd24 � 2 andbecause fprnd12=2 � 1, it follows that fprnd24 2 [1; 2]. Because a post-normalizationshift (see de�nition 2.11) normalizes factorings with signi�cands in the range [1; 2], apost-normalization shift su�ces to normalize the factoring (spr; epr +1; fprnd24), so thatthe unbounded normalization shift can be replaced by a post-normalization shift in thecase (b.ii). Thus, the conclusion of step (a), case (b.i) and case (b.ii) is, that(sprnd; eprnd; fprnd) = � (spr; epr; fprnd12) if fprnd12 < 2post norm(spr; epr + 1; fprnd24) otherwise,as required by the lemma. 2De�nition 4.11 We de�ne two signi�cand overow conditions cfovf1 and cfovf2:cfovf1 () (fprnd12 � 2)() fprnd12[�2] _ fprnd12[�1]cfovf2 () (fprnd24 = 2)() fprnd24[�1]With this de�nition of the signi�cand overow conditions cfovf1 and cfovf2 and withthe de�nition of the post-normalization shift (see equation 2.11), the equation from lemma4.28 can obviously be written as(sprnd; eprnd; fprnd) = 8<: (spr; epr; fprnd12) if cfovf1(spr; epr + 1; fprnd24) if cfovf1 AND cfovf2(spr; epr + 2; 1) if cfovf1 AND cfovf2 (4.278)Lemma 4.29 For exponents epr +wec � emin, the condition cfovf2 can not be ful�lled:(epr + wec � emin) =) cfovf2:Proof: From (epr + wec � emin) it follows, that the variable rounding positions vp1and vp2 are �xed to vp1 = vp2 = p � 1. Because fa; fb � 2 � 2�p+1 and thus fpr=2 <2� 2�p+1, it follows from the rounding position vp2 = p� 1, that the rounded signi�candfprnd24 < 2. Therefore, we get as required cfovf2 = 0. 2We postpone a detailed description of the rounding implementations for fprnd12 andfprnd24, and consider the description of the exponent rounding and the exponent wrap-ping according to the second computation step from equation 4.268 in the following. Be-cause the conditions winzig and ovf can not both be ful�lled at the same time and noexponent wrapping is required for unf en = 0, the exponent rounding selection from



142 CHAPTER 4. BASIC FP OPERATIONSequation 4.268 can be written in combination with the de�nition of exponent rounding(see equation 2.12) and with equation 4.277 as(snrc;enrc;fnrc) =8>><>>: (spr; emax; fmax) if ovf ^ ovf en ^ or(sr mode[1 :0])(spr; e1; f1) if ovf ^ ovf en ^ or(sr mode[1 :0])(spr; emin�p+1; <sr mode[1]>) if winzig(spr; eprnd+wec; fprnd) otherwise. (4.279)We integrate the selection of the �xmax and �1 results with the selection of the �0 and�xmin results in the factoring (spr; esel; fsel) by the selection:(spr; esel; fsel)=8<: (spr; emax; fmax) if winzig ^ or(sr mode[1 :0])(spr; e1; f1) if winzig ^ or(sr mode[1 :0])(spr; emin � p+ 1; <sr mode[1]>) if winzigso that the factoring (snrc;enrc;fnrc) can be selected by:(snrc; enrc; fnrc) = � (spr; esel; fsel) if winzig OR (ovf ^ ovf en)(spr; eprnd+wec; fprnd) otherwise. (4.280)This already describes, how the signi�cand fnrc is selected. For the computation of theexponent we additionaly have to consider the implementation of the exponent wrapping.For the computation of the exponent wrapping, we predict the wrapping exponentconstant wec by the sign of the exponent epr = <epr[12 :0]>2 (which is epr[12]) similarto the computation in the addition unit III according topwec = � +� if epr[12]�� otherwise.so that with the de�nition of the condition ewrap, that signals the requirement for ex-ponent wrapping byewrap () (unf ^ unf en) OR (ovf ^ ovf en); (4.281)the exponent wrapping can be included into equation 4.278 byeprnd+wec = 8>>>><>>>>: epr if ewrap AND cfovf1epr + 1 if ewrap AND cfovf1 AND cfovf2epr + 2 if ewrap AND cfovf1 AND cfovf2epr + pwec if ewrap AND cfovf1epr + 1 + pwec if ewrap AND cfovf1 (4.282)Note, that the exponent epr + 2 + pwec does not have to be considered in this equation,because epr + wec � emin for ewrap = 1 (see corollary 2.10) and because of lemma4.29. Based on the equations 4.280 and 4.282 the computation of the exponent enrc isimplemented by the following six selections:eopi = � esel if (winzig _ ovf en)ewi = epr + 1 + pwec otherwiseeci = � eprii = epr + 2 if cfovf2epri = epr + 1 otherwise



4.3. MULTIPLICATION 143eni = � eopi if (winzig _ ovf[1] _ (unf[1] ^ unf en))eci otherwiseeop = � esel if (winzig _ ovf en)ew = epr + pwec otherwiseen = � eop if (winzig _ ovf[0] _ (unf[0] ^ unf en))epr otherwiseenrc = � eni if cfovf1en otherwise,where ovf[1] and unf[1] indicate the case of an overow resp. underow under theassumption that cfovf1 = 1 and ovf[0] and unf[0] indicate the case of an overow resp.underow under the assumption that cfovf1 = 0.Because the exponent eni is selected only for cfovf1 = 1, we assume in the selectionfor eni that cfovf1 = 1. Therefore, we use the signals unf[1] and ovf[1] instead of unfand ovf in this selection. Accordingly, we use unf[0] and ovf[0] instead of unf and ovfin the selection for en. The condition in the seletions for eop and eopi is based onovf ^ ovf en _ ewrap() ovf _ (unf ^ unf en):This completes the description of the selections for the exponent enrc.In the following, we consider the rounding implementation for the rounded signif-cands fprnd12 and fprnd24. The computation of fprnd12 and fprnd24 is based on theinjection-based rounding mode reduction (see section 2.5.2). To be able to use injection-based rounding, we have to consider the rounding modes RZ;RNU;RI �rst and to correctthe rounded result in the case of the rounding mode RNE by the additional L-bit �x atthe least signi�cant bit position of the signi�cand (see section 2.3.2).For the rounding of a signi�cand, which is an integral multiple of 2�105, at a bit positionvp < 105 in the rounding mode srmode 2 fRZ;RNU;RIg, the rounding injection injvpis de�ned by injvp = < injvp[�2 : 105] >2neg= 8<: 0 if srmode = RZ2�vp�1 if srmode = RNU2�vp � 2�105 if srmode = RIso that according to lemma 2.18 for srmode 2 fRZ;RNU;RIg, the injection-based round-ing of a signi�cand f at the position vp can be written asrndsrmode;vp(f) = rndRZ;vp(f + injvp):For our rounding computations we have to generate the injections injvp10 and injvp20according to rounding positions vp10 and vp20. We denote the injected signi�cands byfinj12 = fpr+ injvp10finj24 = fpr+ injvp20 :By the truncation of finj12 and finj24 after bit position vp10 resp. vp20, we get therounded signi�cands, that consider the rounding modes srmode 2 fRZ;RNU;RIg:fprnd120 = rndRZ;vp10(finj12)fprnd240 = rndRZ;vp20(finj24):



144 CHAPTER 4. BASIC FP OPERATIONSWe then get the required rounded signi�cands fprnd12 and fprnd24 from fprnd120 andfprnd240 by an additional L-bit-�x for the rounding mode RNE at signi�cand positionvp10 resp. vp20. Because we only have to consider fprnd12 < 8 and fpr is an integralmultiple of 2�104 for both single and double precision, it su�ces to consider the bit posi-tions [�2:104] in the binary representations of the values injvp10 and finj12, and becausewe only have to consider fprnd24 < 4 and fpr=2 is an integral multiple of 2�105 for bothsingle and double precision, it su�ces to consider the bit positions [�1:105] in the binaryrepresentations of the values injvp20 and finj24.Based on the above notations we overview the computation steps, that are requiredfor the computation of fprnd12 and fprnd24 in the signi�cand path:(A) By the partial product generation and reduction, a carry-save representation of theexact signi�cand product fpr is computed. Because in this case no rounding injectionis added during the reduction, we can use the implementations of step (A) from themultiplication unit I (both, the half-sized version, which is depicted in �gure 4.22,and the full-sized version, which is depicted in �gure 4.21).(B) Step (B) contains the compression, the IEEE rounding and post-normalization shiftof the signi�cand product fpr from one of its carry-save representations that we getfrom step (A). The rounding for the computation of fprnd12 and fprnd24 in therounding modes srmode 2 fRZ;RNE;RIg is computed in two steps:(I) Computation of fprnd120 and fprnd240 considering the roundingmodes srmode 2fRZ;RNU;RIg by injection-based rounding with the steps:(1) Generation of the injections injvp10 and injvp20 and addition with the carry-save representation of fpr by a full-adder line and a carry-look-ahead adderthat implement:finj12 = < finj12[�2:105] >neg = fpr + injvp10 (4.283)finj24 = < finj24[�1:105] >neg = fpr + injvp20 : (4.284)(2) Truncation of finj12 after bit position vp10 and of finj24 after bit positionvp20. Because the truncation position is not �xed in this case, the trunca-tion is more complicated to be computed than in the previous section andhas to be considered separately.fprnd120 = rndRZ;vp10(finj12) (4.285)= < finj12[�2:vp10] >neg (4.286)fprnd240 = rndRZ;vp20(finj24) (4.287)= < finj24[�1:vp10] >neg (4.288)(II) Computation of the rounded signi�cands fprnd12 and fprnd24, that considerthe rounding modes srmode 2 fRZ;RNE;RIg from fprnd120 and fprnd240,that considered the rounding modes srmode 2 fRZ;RNU;RIg by implement-ing the L-bit-�x for the rounding mode RNE.The signi�cand position of the L-bit is vp10 resp. vp20. This bit has to be pulleddown if the L-bit-�x condition is ful�lled, namely i� the number lies exactlybetween two representable rounding results. Because in this case the injected
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Figure 4.28: Generation of the injections for the variable rounding position vp 2 [�2:51].signi�cands already contain the injections 2�vp10�1 resp. 2�vp20�1, the L-bit-�xconditions are given by:lfix12 = sr mode[0] AND (finj12[vp10+1:104] = 0104�vp10)lfix24 = sr mode[0] AND (finj24[vp20+1:105] = 0105�vp20):Because step (A) is implemented like in the multiplication unit I, no implementation detailshave to be added for this step. The missing implementation details for the computationstep (B) are described in the following:(B) For the implementation of step (B.I.1), the generation of the rounding injectionsinjvp10 and injvp20 has to be described. The binary representations of these injections arecomposed from two parts, a �xed mask that accounts for results with values of normalizednumbers from NORn;p, in which case the signi�cand has to be rounded at the positionp�1, and a variable mask, that is adjusted corresponding to the variable rounding positionfor results with values of denormalized numbers from DEN n;p. Moreover, we distinguishbetween a �xed injection mask for the rounding mode RNU , which we call fixmask0,and a �xed injection for the rounding mode RI, which we call fixmask1. For the cases,where the signi�cand rounding position is di�erent from p� 1, the binary representationsof the rounding injections is generated with the help of a decoder for the rounding modeRI and a half-decoder for the rounding mode RNU . These decoders account for thecorrecting terms maxf0; emin � (epr + wec)g and maxf0; emin � (epr + wec + 1)g in theequations of the rounding positions vp10 and vp20. For the rounding modes RNU and RIthe generation of these variable rounding injections is illustrated in �gure 4.28 consideringa variable rounding position vp 2 [�2 : 51]. Moreover, this �gure depicts how the masksthat are used to generate the binary representations of the injections could also be used forthe truncation and L-bit-�x computations, that are required in steps (B.I.2) and (B.II).A formal description of the injection generations for injvp10 and injvp20 is given bythe following lemma. In this lemma, several di�erent masks are de�ned. In general, weappend a 000 to the names of masks, that are used to generate injections for the rounding



146 CHAPTER 4. BASIC FP OPERATIONSmode RNU . To the names of the corresponding masks for the rounding mode RI, weappend a 010:Lemma 4.30 With the conditionvrtiny () (epr + 1� emin < 0) ^ unf enand the computation offixmask0[�2:53] = (026;dbl; 028;dbl)fixmask1[�2:53] = (026;dbl29; 1)varterm = <varterm[12 :0]>2= � emin � epr � 1 if dblemin � epr � 1 + 29 otherwise.varmask0[�2:52] = deco(varterm[5 :0])[55 :1]varmask1[�2:52] = hdec(varterm[5 :0])[55 :1]mask0vp10 [�2:53] = � (varmask0[�2:52]; 0) if vrtinyfixmask0[�2:53] otherwise.mask0vp20 [�1:53] = � varmask0[�2:52] if vrtinyfixmask0[�1:53] otherwise.mask1vp10 [�2:53] = � (varmask1[�2:52]; 1) if vrtinyfixmask1[�2:53] otherwise.mask1vp20 [�1:53] = � varmask1[�2:52] if vrtinyfixmask1[�1:53] otherwise.the rounding injections can be generated byinjvp10 [�2:105] = 8<: (mask1vp10 [�2:53]; 152) if sr mode[1](mask0vp10 [�2:53]; 052) if sr mode[0]0108 otherwise.injvp20 [�2:105] = 8<: (0;mask1vp20 [�1:53]; 152) if sr mode[1](0;mask0vp20 [�1:53]; 052) if sr mode[0]0108 otherwise.Proof: Based on the value of the condition vrtiny, the de�nitions of the variablerounding positions vp10 and vp20 can be split intovp10 = � p� 1� emin + epr if vrtinyp� 1 otherwisevp20 = � p� 1� emin + epr + 1 if vrtinyp� 1 otherwise,so that the injections can be generated separately in a �xed part considering roundingposition p� 1 for the case vrtiny = 0 and in a variable part for the case vrtiny = 1. Inthis way we use in particular, that for the case vrtiny = 0, we have vp10 = vp20 = p� 1.In the following we proove the lemma separately for the three rounding modes RZ, RNUand RI:



4.3. MULTIPLICATION 147In the rounding mode RZ, the injections are de�ned to be injvp10 = injvp20 = 0 forboth the �xed and the variable case. Because the rounding mode RZ is encoded withsr mode[0] = sr mode[1] = 0, we get by the selection from the lemmainjvp10 [�2:105] = injvp20 [�2:105] = 0108;as required by the de�nition for the rounding mode RZ.In the rounding mode RNU , the injections are de�ned byinjvp10 = 2�vp10�1= < injvp10 [�2:105]>neg= <(0vp10+3; 1; 0104�vp10 )>neg (4.289)injvp20 = 2�vp20�1= < injvp20 [�2:105]>neg= <(0vp20+3; 1; 0104�vp20 )>neg: (4.290)We distinguish between the cases: (a) vrtiny = 0 and (b) vrtiny = 1:(a) For vrtiny = 0, we have vp10=vp20=p�1, so that by de�nition injvp10 [�2:105] =injvp20 [�2:105] = (0p+2; 1; 0105�p). Because the rounding mode RNU is encoded bysr mode[0] = 1, by the selection from the lemmainjvp10 [�2:105] = injvp20 [�2:105] = (fixmask0[�2:53]; 052)= � (055; 1; 052) if dbl(026; 1; 081) otherwise= (0p+2; 1; 0105�p)This agrees with the de�nition.(b) For vrtiny = 1, we have vp10 = p� 1� emin+ epr 2 [�2 : p� 2] and vp20 =p�1�emin+epr+1 2 [�2:p�2], so that vp2 = vp1+1. The di�erence of the �xed roundingposition p� 1 and the rounding position vp10 is given byp� 1� vp10 = emin � epr= � varterm+ 1 if dblvarterm� 28 otherwise.From the above range of the rounding position vp10, it follows, that the value varterm is inthe range varterm 2 [0 :53], so that it can be represented by varterm = <varterm[5 :0]>.Because vp20 � 51, we can write starting from the de�nitioninjvp10 [�2:105] = (0vp10+3; 1; 0104�vp10 )= (0vp10+3; 1; 051�vp10 ; 053)= � (0vp10+3; 1; 0p�2�vp10 ; 053) if dbl(0vp10+3; 1; 0p�2�vp10+29; 053) otherwise= (054�varterm; 1; 0varterm; 053)= (deco(varterm[5 :0])[54 : 0]; 053)= (varmask0[�2:52]; 053)= (mask0vp10 [�2:53]; 052)



148 CHAPTER 4. BASIC FP OPERATIONSas required by the lemma for the injection representation injvp10 [�2:105].Because in case (b) we have vp20 = vp10+1, we can write for the injection representationinjvp20 [�2:105] starting from the de�nitioninjvp20 [�2:105] = (0vp20+3; 1; 0104�vp20 )= (0; 0vp20+2; 1; 0104�vp20 )= (0; 0vp10+3; 1; 0103�vp10 )= (0;varmask0[�2:52]; 052)= (0;mask0vp20 [�1:53]; 052):This agrees with the selection according to the lemma for this case. In this way, the prooffor the rounding mode RNU is completed.In the rounding mode RI, the injections are de�ned byinjvp10 = 2�vp10 � 2�105= < injvp10 [�2:105]>neg= <(0vp10+3; 1; 1104�vp10 )>neg (4.291)injvp20 = 2�vp20 � 2�105= < injvp20 [�2:105]>neg= <(0vp20+3; 1; 1104�vp20 )>neg: (4.292)We compare the injections in the rounding mode RNU (see equations 4.289 and 4.290)and in the rounding mode RI (see equations 4.291 and 4.292). In the rounding modeRNU , the binary representation of the injection injvp[�2 :105] only contains a single bitthat is one, namely injvp[vp+1] = 1. In the representation of an injection for the roundingmode RI, exactly the bits injvp[vp+1 : 105] are all ones. Thus, to get the equations for theinjections in the rounding mode RI from the equations for the injections in the roundingmode RNU , only the bits injvp[vp+2 : 105] which are zero in the rounding mode RNU ,have to be inverted for the rounding mode RI. This can easily be checked in the equationsfor mask0vp10 , mask0vp20 and mask1vp10 , mask1vp20 , so that the proof of the lemma iscompleted. 2In the following we describe the implementation of the truncations according to step(B.I.2) and the implementation of the L-bit-�x according to step (B.II). The computationof the truncations according to equations 4.285-4.288 is based on the masksmask1vp10 [�2:52]and mask1vp20 [�1:52], that have exactly ones in the positions that are relevant in thetruncated signi�cands. For the L-bit-�x we compute the masks lpdmask12[�2 : 52] andlpdmask24[�1 : 52], that have in their L-bits lpdmask12[vp10] resp. lpdmask24[vp20]the value of the L-bit-�x condition lfix12 resp. lfix24, and that have zeros in all otherpositions.For the computations of the masks lpdmask12[�2 : 52] and lpdmask24[�1 : 52], themasks mask1vp10 and mask0vp20 , that were involved in the rounding injection generationfor the rounding mode RI, are used to select the proper L-bit position and to truncate theinjected signi�cands after bit positions vp10 resp. vp20 according to equations 4.285-4.288.To detect the L-bit �x condition for the rounding position vp10 according to equation4.289, the condition sticky120[vp10] () (finj12[vp10+1 : 104] = 0104�vp10 ) is required.Accordingly, for the L-bit �x at the rounding position vp20 (see equation 4.289), thecondition sticky240[vp20]() (finj24[vp20+1:105] = 0105�vp20) is required. Because these



4.3. MULTIPLICATION 149bits are only required for the L-bit-�x in the rounding mode RNU , where sr mode[0] = 1and sr mode[1] = 0, we can also use the sticky bitssticky12[vp10] () (finj12[vp10+1:104] = sr mode[1]104�vp10 ) (4.293)sticky24[vp20] () (finj24[vp20+1:105] = sr mode[1]105�vp20 ) (4.294)for the computation of the L-bit-�x condition. The use of the bits sticky12[vp10] andsticky24[vp20] has the advantage, that these bits are also required for the detection ofthe inexact exception in all three reduced rounding modes.Because the variable rounding positions vp10 and vp20 have to be considered in theranges vp10 2 [�2 : 52] and vp20 2 [�1 : 52], the sticky-bit strings sticky12[�2:52] andsticky24[�1:52] are required for the computation of the L-bit �x conditions. For the com-putation of the inexact conditions we additionaly require sticky12[53] and sticky24[53].We compute the sticky-bits sticky12[vp10] and sticky24[vp20] using the techniquefrom [4] for detecting the condition 0A + B = K 0. In contrast to a straight-forwardimplementation of equations 4.293-4.294, that include the computation the binary rep-resentation of finj12[vp10 +1 : 104] resp. finj24[vp20 + 1 : 105], with the techniquefrom [4], the sticky-bits can be directly computed from the carry-save representationof finj12 resp. finj24 without requiring a carry-propagate addition. This allows tocompute the sticky-bits sticky12[vp10] and sticky24[vp20] in parallel to the compres-sions of finj12 and finj24 from the carry-save representations to the binary repre-sentations. The details of these sticky-bit computations are described by the followinglemma. In this lemma, we denote a carry-save representation of finj12 by the bit-stringsfinj12c[�2:104] and finj12s[�2:104], and a carry-save representation of finj24 by thebit-strings finj24c[�1:105] and finj24s[�1:105].



150 CHAPTER 4. BASIC FP OPERATIONSLemma 4.31 With the computation ofp12[�2:104] = (finj12c[�2:104] � finj12s[�2:104])g12[�2:104] = (finj12c[�2:104] ^ finj12s[�2:104])v12[�2:105] = ((p12[�2:104] ^ sr mode[1]) _ g12[�2:104]; 0)w12[�2:104] = (p12[�2:104] � sr mode[1])cssticky12[�2:104] = w12[�2:104]�v12[�1:105]p24[�1:105] = (finj24c[�1:105] � finj24s[�1:105])g24[�1:105] = (finj24c[�1:105] ^ finj24s[�1:105])v24[�1:106] = ((p24[�1:105] ^ sr mode[1]) _ g24[�1:105]; 0)w24[�1:105] = (p24[�1:105] � sr mode[1])cssticky24[�1:105] = w24[�1:105]�v24[0 :106]we get for each vp10 2 [�2:104] and vp20 2 [�1:105]andtree(cssticky12[vp10+1:104]) () (finj12[vp10+1:104] = sr mode[1]104�vp10 )andtree(cssticky24[vp20+1:105]) () (finj24[vp20+1:105] = sr mode[1]105�vp20 )so that the sticky-bits sticky12[vp10] and sticky24[vp20] can be computed bysticky12[vp10] = andtree(cssticky12[vp10+1:104])sticky24[vp20] = andtree(cssticky24[vp20+1:105])Proof: The proof can be found in [4] by setting ki = sr mode[1] for i 2 [�2 : 105],a[�2 : 104] = finj12c[�2 : 104] resp. a[�1 : 105] = finj12c[�1 : 105], and b[�2 : 104] =finj12s[�2:104] resp. b[�1:105] = finj24s[�1:105]. 2In this lemma only the computations for each single sticky-bit sticky12[vp10] andsticky24[vp20] are described. The computation of the whole sticky-bit string sticky12[�2:53]is implemented by the use of the parallel-pre�x andsymb-function ppand, that com-putes from an input string input[n1 : n2] in its nth output ppand(input[n1 : n2])[n] =andtree(input[n :n2]), so that according to the previous lemma we get ppand(cssticky12[�2:104])[vp10 +1] = sticky12[vp10] and, thus, ppand(cssticky12[�2 : 104])[�1 : 54] =sticky12[�2:53]. Accordingly, the sticky-bit string sticky24[�1:52] is computed bysticky24[�1:53] = ppand(cssticky24[�1:105])[0 :54]: This completes the description ofthe implementation for the sticky-bit strings sticky12[�2:53] and sticky24[�1:52].Based on the sticky-bit strings sticky12[�2:53] and sticky24[�1:53] and the masksmask1vp10 [�2:53] and mask1vp20 [�1:53] from the generation of the injections in the pre-vious lemma, the following lemma describes the computation of the truncation and thecomputation of the L-bit-�x.Lemma 4.32 (a) The truncations according to equations 4.285-4.288 can be computed byfprnd120[�2:52] = finj12[�2:52] AND mask1vp10 [�2:52]fprnd240[�1:52] = finj24[�1:52] AND mask1vp20 [�1:52]:(b) With the detection of the L-bit �x conditions by the maskslpdmask12[�2:52] = sr mode[0] AND mask1vp10 [�1:53] AND sticky12[�2:52]lpdmask24[�1:52] = sr mode[0] AND mask1vp20 [0 :53] AND sticky24[�1:52];



4.3. MULTIPLICATION 151the combination of the truncation and the L-bit-�x can be computed byfprnd12[�2:52] = fprnd120[�2:52] AND lpdmask12[�2:52]= finj12[�2:52] AND mask1vp10 [�2:52] AND lpdmask12[�2:52]fprnd24[�1:52] = fprnd240[�1:52] AND lpdmask24[�1:52]= finj24[�1:52] AND mask1vp20 [�1:52] AND lpdmask24[�1:52]:Proof: (a) It follows from equation 4.291 in the previous lemma, that:mask1vp10 [�2:52] = (0vp10+3; 152�vp10):According to this equation the bit string mask1vp10 [�2 :52] has exactly zeros in the posi-tions [�2:vp10]. Thus, starting from equations 4.285-4.286, we getfprnd120 = <fprnd120[�2:52]>neg= rndRZ;vp10(finj12)= <finj12[�2:vp10]>neg= <(finj12[�2:52] AND mask1vp10 [�2:52])>neg;so that as requiredfprnd120[�2:52] = finj120[�2:52] AND mask1vp10 [�2:52]:The equation for fprnd240[�1:52] can be shown analogously.(b) According to equation 4.289, the L-bit �x condition for the rounding position vp10is given by: lfix12 = sr mode[0] AND ortree(finj12[vp10+1:105])= sr mode[0] AND sticky12[vp10])Considering only the valid positions [�2:vp10] of the truncated signi�cand fprnd120[�2:52],the bit string lsel12[�2 : 52] = mask1vp10 [�1 : 53] masks the L-bit position vp10 bylsel12[�2:vp10 � 1] = 0vp10+2 and lsel12[vp10] = 1. Becauselpdmask12[�2:52] = sr mode[0] AND lsel12[�2:52] AND sticky12[�2:52];it follows from the above, that lpdmask12[�2 : vp10] = (0vp10+2; lfix12). Because therounded signi�cand fprnd120[vp10+1:52] is already truncated with fprnd120[vp10+1:52] =052�vp10 , we getfprnd12[�2:52] = finj12[�2:52] AND mask1vp10 [�2:52] AND lpdmask12[�2:52]= fprnd120[�2:52] AND AND lpdmask12[�2:52]= (fprnd12[�2:vp10�1]; fprnd12[vp10] ^ lfix12; 052�vp10 )This equation agrees with the de�nition of the L-bit-�x for the computation of the roundedsigni�cand fprnd12 from the signi�cand fprnd120. The equations for the computation offprnd24[�2:52] can be shown analogously. 2This completes the descriptions of the equations for the implementation of step (B), thus,leaving the description of the exception detections. The detection of the invalid exceptioninv was already included in the special cases computations. The detections of the inexact,the underow and the overow exceptions inx, unf and ovf are described in the followinglemma.



152 CHAPTER 4. BASIC FP OPERATIONSLemma 4.33 With the de�nition of (note, that tiny1 was already used in the computa-tion of vrtiny in lemma 4.30) :large0 () (emax � epr < 0)large1 () (emax � (epr + 1) < 0)rmask12[�1:53] () (mask1vp10 [�2];mask1vp10 [�1:52] AND mask1vp10 [�2:53])rmask24[0 :53] () (mask1vp20 [�1];mask1vp10 [0 :52] AND mask1vp10 [�1:53])inx12 () ortree(rmask12[�1:53] AND sticky12[�1:53]) OR(sr mode[1] _ sr mode[0]) � ortree(rmask12[�1:53] ^ finj12[�1:53])inx24 () ortree(rmask24[0 :53] AND sticky24[0 :53]) OR(sr mode[1] _ sr mode[0]) � ortree(rmask24[�1:53] ^ finj24[�1:53])tiny0 () (epr � emin < 0)tiny1 () (epr + 1� emin < 0)tiny2 () (epr + 2� emin < 0);the overow, the inexact and the underow exception can be detected byovf = � spca ^winzig ^ large1 cfovf1spca ^winzig ^ large0 otherwiseinx = �spca ^ (winzig _ inx24) _ ovf) if cfovf1spca ^ (winzig _ inx12) _ ovf) otherwiseunf = �spca ^ (inx24 _ unf en) ^ ((tiny2 ^ cfovf2) _ (tiny1 ^ cfovf2)) if cfovf1spca ^ (inx12 _ unf en) ^ tiny0 otherwise.Proof: In this multiplication unit the overow condition can be written asovf() spca ^winzig ^ (jval(spr; eprnd; fprnd)j � 2emax+1:)An overow could only occur for results with very large exponents where epr+2 � eprnd >>emin. Because of corollary 2.10 we then also have epr +wec > emin. Thus, it follows fromlemma 4.29, that ovf =) cfovf2 and we do not have to consider the case cfovf2 = 1in the overow detection. In this way we get according to equation 4.278, where we onlyhave to consider fprnd12 < 2 and fprnd24 < 2:(jval(spr; eprnd; fprnd)j � 2emax+1) () � ((epr+1 > emax) cfovf1(epr > emax) otherwise() � large1 cfovf1large0 otherwise.In this way we get the equation for ovf from the lemma.Because all special cases results with (spca = 1) are exact, the condition for an inexactexception (see section 2.4) can be written asinx () (spca ^ rndinx) _ ovf) (4.295)where the bit rndinx signals the signi�cand rounding inexactness, namely the case, thatsigni�cand rounding changes the value of the signi�cand product.According to the use of rndinx in equation 4.295, we can assume for the computationof rndinx that spca = 0 and that no overow occurs. Thus, according to equation



4.3. MULTIPLICATION 1534.279 and equation 4.278 we have to consider the following three cases for the detection ofrndinx: (a) (winzig = 1); (b) (winzig ^ cfovf1 = 1); and (c) (winzig ^ cfovf1 = 1).Because only non-zero signi�cand products have to be considered for (winzig = 1), itis obvious that we have rndinx = 1 in case (a). For the rounding inexactness conditionsin the cases (b) and (c) we use equation 2.51 regarding the (vp10+1)-representative of fpr,that relates to the computation of fprnd12 (case (b)), and the (vp20 + 1)-representativeof fpr=2, that relates to the computation of fprnd24 (case(c)). In this way we getrndinx = � winzig _ ortree(fpr[vp20 :104]) if cfovf1winzig _ ortree(fpr[vp10+1:104]) otherwise. (4.296)Because we do not compute a representation of the exact signi�cand product fpr, theabove equation has to be computed from the injected signi�cand products finj12 andfinj24. By considering the injections that are included in the injected signi�cands in therounding modes RNU and RI, the above ortree-conditions can be computed based onthe representations of the injected signi�cands byortree(fpr[vp10+1:104]) =8<:ortree(finj12[vp10+1]; finj12[vp10+2:104]) if sr mode[1]ortree(finj12[vp10+1]; finj12[vp10+2:104]) if sr mode[0]ortree(finj12[vp10+1:104]) otherwise.= (sr mode[1] _ sr mode[0])� (finj12[vp10+1])_ ortree(sr mode[1]� finj12[vp10+2:104])= (sr mode[1] _ sr mode[0])� (finj12[vp10+1])_ sticky12[vp10+1]) (4.297)
ortree(fpr[vp20 :104]) = 8<:ortree(finj24[vp20+1]; finj24[vp20+2:105]) if sr mode[1]ortree(finj24[vp20+1]; finj24[vp20+2:105]) if sr mode[0]ortree(finj24[vp20+1:05]) otherwise.= (sr mode[1] _ sr mode[0])� (finj24[vp20+1])_ ortree(sr mode[1]� finj24[vp20+2:105])= (sr mode[1] _ sr mode[0])� (finj24[vp20+1])_ sticky24[vp20+1] (4.298)For the computations in equation 4.297, we have to select the bit finj12[vp10+1] fromthe bit string finj12[�2 : 52] and to select the bit sticky12[vp10+1] from the bit stringsticky12[�2 :52]. For this purpose we require a mask, that exactly has a one in positionvp10 + 1 and zeros in all other positions. This is exactly the case forrmask12[�1:53] = (mask1vp10 [�2];mask1vp10 [�1:52] AND mask1vp10 [�2:51])= (0vp10+2; 153�vp10) AND (1vp10+3; 052�vp10)= (0vp10+2; 1; 052�vp10 ):Thus, we getfinj12[vp10+1] = ortree(rmask12[�1:53] AND finj12[�2:52])sticky12[vp10+1] = ortree(rmask12[�1:53] AND sticky12[�2:52])



154 CHAPTER 4. BASIC FP OPERATIONSand equation 4.297 can be written as:ortree(fpr[vp10+1:104]) = ortree(rmask12[�1:53] AND sticky12[�2:52]) OR(sr mode[1] _ sr mode[0]) � ortree(rmask12[�1:53] ^ finj12[�2:52])= inx12It can be shown analogously, that equation 4.298 can be computed byortree(fpr[vp20 :104]) = ortree(rmask24[0 :53] AND sticky24[�1:52]) OR(sr mode[1] _ sr mode[0]) � ortree(rmask24[0 :53] ^ finj24[�1:52])= inx24The substitution of rndinx in equation 4.295 according to equation 4.296 and the substi-tution of ortree(fpr[vp10+1 : 104]) and ortree(fpr[vp20 : 104]) by inx12 resp. inx24according to the previous two equations then yield the equation for inx from the lemma.For the multiplication unit the condition for an underow exception is de�ned by (thefunction TINY is de�ned in de�nition 2.10):unf = � spca ^ TINY (spr; eprnd; fprnd) if unf enspca ^ rndinx ^ TINY (spr; eprnd; fprnd) otherwise.= spca ^ (rndinx _ unf en) ^ TINY (spr; eprnd; fprnd)= � spca ^ (inx24 _ unf en) ^ TINY (spr; epr + 1; fprnd24) if cfovf1spca ^ (inx12 _ unf en) ^ TINY (spr; epr; fprnd12) otherwiseBecause for cfovf1 = 0 the rounded signi�cand fprnd12 is smaller than 2, we getTINY (spr; epr; fprnd12) () (epr < emin)() tiny0Because fprnd24 < 2 for cfovf2 = 0 and fprnd24 = 2 for cfovf2 = 0, we get for thefunctionTINY (spr; epr + 1; fprnd24) () � (epr + 2 < emin) if cfovf2(epr + 1 < emin) otherwise() ((tiny2 ^ cfovf2) _ (tiny1 ^ cfovf2))With the substitution of TINY (spr; epr; fprnd12) and TINY (spr; epr + 1; fprnd24) inequation 4.299 according to the previous equations, we get the equation for unf from thelemma. 2This lemma completes the description of the computations for the exception ags, sothat the description of the whole multiplication unit III is completed.Figure 4.27 depicts the main structure of the multiplication unit III, �gure 4.29 depictsa detailed block diagram of the implementation of step (B) and a detailed block diagramof the exceptions and exponent computations is given in �gure 4.30.
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4.4. DIVISION 1574.4 DivisionIn this section the implementations of the oating-point division are described. Like inthe previous sections for the addition and the multiplication implementations, also for thedivision, the descriptions are separated into three subsections for the microarchitecturesI, II and III. For the division implementations the main details have to be describedabout the computation of the signi�cand quotient. Because a very similar signi�candquotient implementation is used for all three microarchitectures, we will only describe itonce for the implementation for microarchitecture I. For the other two microarchitectureswe will only describe the small adjustments, that are required. The implementation ofthe signi�cand quotient uses an initial approximation for the reciprocal of the divisor.Because the description of our implementation of this initial reciprocal approximation(see also [36, 39]) is quite complex, we describe it separately in the next subsection inpreparation for the division implementations.4.4.1 Initial Reciprocal ApproximationThe circuit for the reciprocal approximation should approximate the reciprocal of a normal-ized input signi�cand y = <y[0 :52]>neg 2 [1; 2[. We denote the approximated reciprocalby arecip(y) � 1=y and de�ne the approximation error by err(y) = 1=y � arezip(y). Forthe approximated reciprocal result arezip(y) the computation has to guarantuee an upperbound on the absolute approximation error jerr(y)j. In particular, for the implementationsof the FP division, we will require initial reciprocal approximations with absolute approx-imation errors that are bounded by jerr(y)j < 2�8, jerr(y)j < 2�15 and jerr(y)j < 2�28respectively.In literature the initial reciprocal approximations fall into two groups: The constantapproximation [13, 18, 35, 6, 5, 15, 42] is easy to implement in 1 clock cycle by a simplelookup table, but due to the huge cost it is limited to small accuracies (� 2�16). Thelinear [18, 35] and modi�ed linear [18] approximation approaches can achieve even twicethe accuracy of constant approximations at nearly the same cost, but the implementationscorresponding to [7, 18, 35] require about 3 clock cycles for an approximation: one lookupand decode cycle, one cycle for the adder tree of the full-size multiplication and one clockcycle for the carry-propagate addition of this multiplication.We present a faster linear approximation implementation for the reciprocal. A descrip-tion of this implementation can also be found in [36, 39]. In comparison to the previouslinear reciprocal approximation implementations from literature, our implementation isaccelerated by the use of the following new ideas:1. a linear approximation formula, that reduces the widths of table lookup inputs andmultiplication operands for a given approximation accuracy.2. the use of a speci�c small Booth multiplier (with less than 8 partial products in theimplementation for jerr(y)j < 2�28) for the computation of the linear approximationformula.3. a fast redundant compression from carry-save representations to redundant Booth-Digit representations, a redundant format, that can directly be fed into the largeBooth multiplier of the FP multiplication unit. This fast partial compression avoidsthe slow carry propagate addition step in the multiplication of the linear approxi-mation formula.



158 CHAPTER 4. BASIC FP OPERATIONSFor the description of the implementations, we �rst develop the linear approximationformula for the approximation of the reciprocal. We then introduce the new intermediateformat, the redundant Booth-Digit (redBD) representation, in that the reciprocal approx-imation should be output. Based on the approximation formula, we �nally describe theimplementation of the computations from the binary representation of the input y[0 : 52]to the redundant Booth-Digit representation of the approximated reciprocal arecip(y) fora given appoximation accuracy. In particular we consider the implementations for thethree target accuracies that will be required for the implementations of the oating-pointdivisions.4.4.1.1 Approximation formulaWe consider a linear approximation formula for the reciprocal. The linear and the constantparameter of this linear approximation are not �xed for the whole range of y, but therange of y is partitioned into 2m subintervalls and for each of these subintervalls a speci�ca linear approximation arezipp(y) with an appropriate linear and an appropriate constantparameter is used to approximate the reciprocal function.We consider the 2m equidistant subintervalls [p; p+2�m[ with p2f2m;� � �; 2m+1�1g=2m.Because y2 [1; 2�2�52], one of these intervals contains y 2 [p; p + 2�m[. We get theleft endpoint of this interval by p = <y[0 :m]>neg and we get the right endpoint by<y[0 :m]>neg +2�m. The linear approximation formula for the interval [p; p + 2�m[ canbe written as arezipp(y) = C0p +C1p � (y � p)with the constant parameter C0p and the linear parameter C0p. For the approximationformulae in the 2m di�erent intervals, we require 2m di�erent constants C0p and 2mdi�erent constants C1p. In the implementation we will get these constants by a tablelookup from a ROM for C0p and from a ROM for C1p. Because y 2 [1; 2[ is normalizedand we always have y[0] = 1, the ROMs with the 2m entries for C0p and C1p can beaddressed by y[1 :m], where m is the input width of the table lookup ROMs.In this way the delay for the implementation of the linear approximation formula canbe mainly inuenced by the following parameters:� the input width m of the lookup tables, because it determines the delay of the ROMtables.� the widths of the multiplication operands within the linear approximation formula,that inuence the delay and the cost of the additional small multiplier.We consider the linear approximation formula with the focus to minimize these parametersfor a given accuracy in the follwing lemma.Lemma 4.34 For y 2 [p; p+2�m[ with p 2 f2m; � � � ; 2m+1�1g=2m, the reciprocal approx-imation of f(y) = 1=y by the linear functionarecipp(y) = rndRZ;wr(C0p � C1p � rndRZ;wy(y � p))with C1p = rndRNE;wc1� 1(p+ 2�m�1)2�C0p = rndRNE;wc0� 1p+ 2�m�1 + 2�2m�3 + 2�m�1 � C1p�



4.4. DIVISION 159results in the approximation errorjerr(y)j = j1=y � arecipp(y)j < 2�2m�3 + 2�wc1�m�2 + 2�wc0�1 + 2�wy + 2�wr:Proof: Taylor approximation of degree 1 of the function f(y) = 1=y developed at themidpoint p+ 2�m�1 of the interval [p; p+ 2�m[ yields the linear approximation formulartaylor(y) = f(p+ 2�m�1) + f 0(p+ 2�m�1) � �y � (p+ 2�m�1)�= 1p+ 2�m�1 � 1(p+ 2�m�1)2 � �y � (p+ 2�m�1)� :Using the Lagrange error formula, the approximation error errortaylor = 1=y � rtaylor(y)in the interval [p; p+ 2�m[ is bounded byjerrortaylorj � ����f 00(p+ 2�m�1)2 � �2���� with � 2 [�2�m�1; 2�m�1):As f 00(y) = 2y3 and y 2 [1; 2) we havejerrortaylorj � 2�2m�2:The 2nd derivative of 1=y is positive for y 2 [1; 2) and rtaylor(y) describes a tangent ofthe graph of 1=y. Therefore, errortaylor can not become negative. By adding half of themaximum error in the approximation formular1(y) = rtaylor(y) + 2�2m�3we halve the absolute error jerror1j = j1=y � r1(y)j � 2�2m�3:In jerror1j only the approximation error, produced by the linear approximation usingin�nite precision numbers, is considered. We have to consider the additional inuence ofthe discretization errors by using �nite precision numbers.First, we discretize the derivative C1p = rndRNE;wc1 � 1(p+2�m�1)2� at position wc1 andbring then the linear term in r1(y) to the form of the linear term in arezipp(y):r2(y) = 1p+ 2�m�1 + 2�2m�3 + 2�m�1 � C1p � C1p � (y � p):Because jy � (p + 2�m�1)j � 2�m�1, and because the rounding function rndRNE;wc1produces a discretization error smaller than or equal to 2�wc1�1, we get the error boundjerror2j = j1=y � r2(y)j � 2�2m�3 + 2�wc1�m�2:Discretizing the constant part at position wc0:C0p = rndRNE;wc0� 1p+ 2�m�1 � 2�2m�3 + 2�m�1 � C1p�and the linear factor (y � p) at position wy by rndRZ;wy(y � p) yieldsr3(y) = C0p + C1p � rndRZ;wy(y � p):



160 CHAPTER 4. BASIC FP OPERATIONSBecause the rounding function rndRZ;wy produces a discretization error smaller than 2�wy,the error bound increases tojerror3j = j1=y � r3(y)j < 2�2m�3 + 2�wc1�m�2 + 2�wc0�1 + 2�wy:The linear approximation formula arecipp(y) = rndRZ;wr(r3(y)) contains then the �nalapproximation error, that is bounded byjerr(y)j = j1=y � arecipp(y)j < 2�2m�3 + 2�wc1�m�2 + 2�wc0�1 + 2�wy + 2�wr: 2Corollary 4.35 For the implementation of the reciprocal approximation we will use thelinear approximation formula from lemma 4.34 with wc1 = m + 2,wy = 2m + 6, wc0 =2m+ 5 and wr = 2m+ 5, so that we get:arecipp(y) = rndRZ;2m+5(C0p � C1p � rndRZ;2m+6(y � p))C1p = rndRNE;m+2� 1(p+ 2�m�1)2�C0p = rndRNE;2m+5� 1p+ 2�m�1 + 2�2m�3 + 2�m�1 � C1p�This approximation formula results in an absolute error jerr(y)j < 2�2m�2:Because rndRZ;wy(y�p) < 2�m and jC1pj < 1, the binary representation of rndRZ;wy(y�p)contains wy�m = m+6 non-zero positions and the binary representation of �C1p containswc1 = m + 2 non-zero positions. For 0:5 � C0p < 1, the most signi�cant bit of C0p inthe position with weight 2�1 is always a 1. Therefore, only wc0� 1 = 2m+4 bits have tobe saved in a lookup table entry for C0p. In this way a straightforward implementationof the linear approximation formula according to corollary 4.35 requires a m-bit-in lookuptable for C0p with a bit width of 2m+4 and a m-bit-in lookup table for �C1p with a bitwidth of m + 2. A (m + 2)-bit by (m + 6)-bit multiplication is required to compute themultiplication of this linear approximation formula.For the three target accuracies of the reciprocal approximation, that we will requirefor the implementations of the oating-point division, we consider the linear reciprocalapproximation formula from corollary 4.35 with m = 13 to get jerr(y)j < 2�28, withm = 7 to get jerr(y)j < 2�16 and with m = 3 to get jerr(y)j < 2�8.For these three cases we de�ne the linear approximation equations (note, that in theseequations p = < y[0 :m] >neg and that y � p = < y[m+1 :52] >neg)arecip28(y) = rndRZ;31(C0 28p � C1 28p � rndRZ;32(y � p)) (4.299)arecip16(y) = rndRZ;19(C0 16p � C1 16p � rndRZ;20(y � p)) (4.300)arecip08(y) = rndRZ;11(C0 08p � C1 08p � rndRZ;12(y � p)); (4.301)where the constants are de�ned by:C0 28p = rndRNE;31 � 1p+2�14+2�29+2�14 �C1 28p� C1 28p = rndRNE;15 � 1(p+2�14)2�C0 16p = rndRNE;19 � 1p+2�8+2�17+2�8 �C1 16p� C1 16p = rndRNE;9 � 1(p+2�8)2�C0 08p = rndRNE;11 � 1p+2�4+2�9+2�4 �C1 08p� C1 08p = rndRNE;5 � 1(p+2�4)2� :



4.4. DIVISION 161non-zero bit positions in the representations offunction m jerr(y)j < COp �C1p rndRZ;wy(y � p) areciparecip28 13 2�28 c0p[1 :31] c1p[1 :15] y[14 :32] arecip28[0 :32]arecip16 7 2�16 c0p[1 :19] c1p[1 :9] y[8 :20] arecip16[0 :20]arecip08 3 2�8 c0p[1 :11] c1p[1 :5] y[4 :12] arecip08[0 :12]Table 4.2: Bit positions of the operands in the linear reciprocal approximation formulaefor the functions arecip28, arecip16 and arecip08.The computation of arecip28(y) requires a 15-bit by 19-bit multiplication and an additionwith a 31-bit value, the computation of arecip16(y) requires a 9-bit by 15-bit multipli-cation and an addition with a 19-bit value, and the computation of arecip08(y) requiresa 5-bit by 9-bit multiplication and an addition with a 11-bit value. The required bitpositions for these computations are listed in table 4.2. We postpone a detailed descrip-tion of the implementation and introduce the intermediate format, in that the reciprocalapproximation should be represented in the following section.4.4.1.2 Redundant Booth-Digit RepresentationsFor the de�nition of redundant Booth-digit representations we shortly review Booth re-coding. Following the descriptions of [3, 30] a number b = <b[m�1:0]> is recodedin Booth-2 recoding as suggested in Fig. 4.31. With b[m+ 1] = b[m] = b[�1] = 0 andm0 = d(m+ 1)=2e one writesb = <b[m�1:0]> (4.302)= 2b� b = 2<b[m�1:0]> �<b[m�1:0]> (4.303)= Xm0�1j=0 B2j � 4j (4.304)where B2j = 2b[2j] + b[2j � 1]� 2b[2j + 1]� b[2j] (4.305)= �2b[2j + 1] + b[2j] + b[2j � 1]: (4.306)For 0 � j � m0 � 1 this equation computes the Booth-digits B2j 2 f�2;�1; 0; 1; 2g forthe number b = <b[m�1:0]>. The Booth-digits B2j of a number are not unique andnot only the set of values according to equation 4.306, but each set of values B2j 2f�2;�1; 0; 1; 2g that ful�lls equation 4.304, is de�ning a set of Booth-digits for the numberb. A string of Booth digits (B2j)0�j�m0�1, that ful�lls equation 4.304, is called a Boothdigit representation of the number b.According to equation 4.306 each Booth digit B2j can be computed from three con-secutive bits (b[2j + 1];b[2j];b[2j � 1]) of the binary representation of the number b =<b[m�1:0]>. For an arbitrary string of tripels (rb3j ;rb2j ;rb1j)0�j�m0�1, we de�nethe corresponding Booth digits byB2j = �2rb3j + rb2j + rb1j : (4.307)The Booth digits B2j that are computed according to this equation represent the numberb = Pm0�1j=0 B2j � 4j = Pm0�1j=0 (�2rb3j + rb2j + rb1j) � 4j . In this way the number b is
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- <B[m-1:0]> Figure 4.31: Booth digits B2jalso represented by the string of tripels (rb3j ;rb2j ;rb1j)0�j�m0�1. We de�ne, that thestring of tripels (rb3j ;rb2j ;rb1j)0�j�m0�1 is called a redundant Booth-digit representationof b, i� b =Pm0�1j=0 (�2rb3j + rb2j + rb1j) � 4j .Note, that because also the string of tripels (b[2j + 1];b[2j];b[2j � 1])0�j�m0�1 isa redundant Booth-digit representation of b according to equations 4.304 and 4.306, abinary representation of a number can be easily converted into a redundant Booth-digitrepresentation of the number. We denote this conversion from the binary representation ofthe number b to a redundant Booth-digit representation of the number b by the operationredBD with (b[2j + 1];b[2j];b[2j � 1])0�j�m0�1 = redBD(b[m�1:0]):Multiplier with Input of Redundant Booth-Digit Representation. In an or-dinary implementation of a multiplier that uses Booth recoding, the binary input ofone of the operands is encoded by Booth encoders (we call this the second operandand denote it by b = <b[m�1:0]>). Each of these Booth encoders computes a sign-magnitude representation of one Booth digit and gets as input the three consecutivebits (b[2j + 1];b[2j];b[2j � 1]) from that a Booth digit is originally computed accord-ing to equation 4.306. We change the speci�cation of the multiplier, so that as thesecond operand not the binary representation of the number b, but the set of tripels(b[2j + 1];b[2j];b[2j � 1]) has to be input. (This change can easily be realized, be-cause these are exactly the inputs of the Booth encoders). Thus, to multiply a numbera by b, not the binary representation of b, but the redundant Booth digit representation(b[2j + 1];b[2j];b[2j � 1])0�j�m0�1 is required as input of the new multiplier. Becausein equations 4.306 and 4.307 the weights of the bits in (b[2j + 1];b[2j];b[2j � 1]) and(rb3j ;rb2j ;rb1j) correspond to each other, it does not change the value of the secondoperand if the redundant Booth-digit representation (b[2j + 1];b[2j];b[2j � 1])0�j�m0�1is replaced by an arbitrary Booth-digit representation (rb3j ;rb2j ;rb1j)0�j�m0�1 of thenumber b. In this way we get a multiplier, that multiplies a number a = <a[k�1:0]>,that is given in the binary representation a[k�1 : 0], with a number b that is given by aan arbitrary redundant Booth-digit representation.Compression from Carry-Save to Redundant Booth-Digit representations. Thefollowing lemma describes how a number can be converted from carry-save to redundantBooth-digit representation. This technique will help us to avoid the carry-propagate ad-dition in the implementation of the multiplication for the linear reciprocal approximation.Lemma 4.36 Let the compression injection compinj be de�ned by compinj =Pm0�1j=0 2 �4j. Then, from a carry-save representation of b + compinj, a redundant Booth-digit rep-
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(b)(a)Figure 4.33: Structure of the reciprocal approximation implementation for the computa-tion of: (a) arecip160(y) with m = 7 and arecip080(y) with m = 3; (b) for arecip2800(y).so that the string of tripels (s[2j + 1]; s[2j];c[2j])0�j�m0�1 is a redundant Booth-digitrepresentation of b. Thus, a partial compression from a carry-save representation of b +compinj to a redundant Booth-digit representation of b can be implemented by a line of2-bit adders with inverted most signi�cand sum bit outputs like depicted in �gure 4.32.24.4.1.3 ImplementationIn this section the implementations of the three initial reciprocal approximations that im-plement the equations for arecip28, arecip16 and arecip08 (see equations 4.299-4.301)are described. These implementations have to compute a multiplication of C1p andrndRZ;wy(y�p). For this multiplication we use Booth encoding. Because we read oneof the operands from a ROM and this operand is not required for anything else thanthis multiplication, we already save this multiplicand in its Booth encoded form in theROM. Because in this way the Booth encoders for the multiplication are not required,this technique saves cost and delay for this multiplication. In [36, 39], we encode thisoperand even by Booth3 recoding, which further accelerates the computations, but tosimplify the description in this work, here only Booth2 recoding is used. The multiplica-tion of C1p=<c1p[1 :m+2]>neg and rndRZ;wy(y�p)=<y[m+1:2m+6]>neg results in apositive product, that can be written aslinterm = C1p � rndRZ;wy(y � p)= <c1p[1 : m+2]>neg �<y[m+1 :2m+6]>neg= <linterm[m+1:3m+8]>neg:



4.4. DIVISION 165To compute arecip(y), we have to consider the di�erence C0p� linterm, and we only havethe carry-save representation oflinterm = lintermc+ linterms= <lintermc[m+1:3m+8]>neg +<linterms[m+1:3m+8]>neg :Because the computation of the bit positions [0 :m+5] of the binary representation ofarecip(y) includes a truncation after the bit position [m+5] with an truncation errorbounded by 2�(m+5) and the truncation error of the truncation of a carry-save represen-tation after bit position [m+6] is also at most 2�(m+5), we can also consider the positions[0 :m+6] of the carry-save representation of arecip(y) to achieve the same absolute er-ror bounds according to corollary 4.35 (we denote the corresponding approximation byarecip0(y)). By the use of two's complement number representations we get:arecip0(y) = < (01;c0p[2 :2m+6]) >2neg �� < lintermc[m+1:2m+6] >2neg �< linterms[m+1:2m+6]) >2neg= < (01;c0p[2 :2m+6]) >2neg +< (1m+1; lintermc[m+1:2m+6]) >2neg ++ < (1m+1; linterms[m+1:2m+6]) >2neg + 2 � 2�2m�6We store the binary representation of CC0p = C0p+2 �2�2m�6+compinj in the ROM forthe constant parameter. If we compress the inverted carry-save representation of lintermwith the bit strings (1m+1; lintermc[m+1:2m+6]) and (1m+1; linterms[m+1:2m+6])and the binary representation of CC0p = <cc0p[0 :2m+6]>neg by a full-adder-line, weget a carry-save representation of arecip0(y) + compinj. A redundant Booth-Digit repre-sentation of arecip0(y) can then easily be computed by the partial compression techniquefrom the previous section according to lemma 4.36.In this way, the reciprocal approximation is implemented in the following steps:� Table lookup of the binary representation of CC0p = <cc0p[0 :2m+6]>neg and theBooth2 encoded representation of C1p from two ROMs with the input of y[1 :m].� Multiplication of the Booth2 encoded representation of C1p and y[m+1:2m+6] byselection logics and the partial product reduction with an adder tree.� Addition of the carry-save representation from the output of the adder tree with thebinary representation of CC0p by a full-adder line.� Partial compression of the carry-save representation from the output of the full-adder line to a redundant Booth-digit representation of the reciprocal approximationaccording to lemma 4.36.Figure 4.33(a) depicts the structure of the implementations for the redundant Booth-Digitrepresentations of arecip160(y) and arecip080(y). In the case of single precision, not theapproximation arecip280, but arecip2800(y) = arecip280(y)�dbl � 2�28 will be required toguarantuee a positive error 0 < (arecip0028(y) � 1=y) = (err(y) � 2�28) < 2�27 in singleprecision. For this reason, the implementation of arecip0028 is slightly changed (see �gure4.33(b)). Note, that for double precision, we have arecip2800(y) = arecip280(y).



166 CHAPTER 4. BASIC FP OPERATIONS4.4.2 Division I (normalized �! representative format)Speci�cation. This section describes a FP division implementation, that is able todivide two FP numbers given in the normalized representations (section 2.6.3):BUSaNF [69 :0] = (sa;ea[11 :0]; fa[0 :52]; zeroa; infa;qnana; snana) (4.308)BUSbNF [69 :0] = (sb;eb[11 :0]; fb[0 :52]; zerob; infb;qnanb; snanb); (4.309)which represent the factorings (sa; ea; fa) = factNF (BUSaNF [69 :0]) and (sb; eb; fb) =factNF (BUSbNF [69 :0]). Additionaly, we get as input the bit dbl, which signals the caseof double precision by dbl = 1, and an active bit isdiv = 1, that signals the case, thatthe operation which is actually perfomed is a division.In the case, that both operands have representable values and the second operand isnon-zero with zerob = 0, the exact quotient exactdiv is de�ned by (section 2.2.4):exactdiv = (�1)sa�sb � 2ea�eb � fa � 1=fb: (4.310)If (src; erc; frc) is a RF factoring of this exact quotient exactdiv for non-zero representableinputs, then for the general case of arbitrary input values, a RF factoring of the requiredquotient is given by (see equation 2.17):(sRF ; eRF ; fRF ) = 8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczero(src; erc; frc) otherwise. (4.311)

The quotient output of the division I implementation is then speci�ed by the correspondingrepresentation in the representative format BUSRF [73 :0] = rf(sRF ; eRF ; fRF ): Moreover,in the the division I implementation the exception ags inv and dvz should be signaledaccording to the occurance of an invalid exception and the occurance of a division by zero,respectively.Implementation. Because we will consider a multiplicative implementation of the sig-ni�cand quotient that shares the �xed-point multiplier with the FP multiplication imple-mentation, the whole division I implementation will be integrated into the multiplicationunit I.The equations for the special conditions in equation 4.311 are already summarized insection 2.4.4 by equations 2.34-2.40. Among these equations, only the equations for theconditions scinf and sczero di�er from the equations 2.27-2.33 for the special conditionsfor FP multiplication. Thus, we change the computations of these two signals in thespecial cases circuit according to:scinf = � scqnan ^ scx ^ scy ^ (infa _ zerob) if isdivscqnan ^ scx ^ scy ^ (infa _ infb) otherwise (4.312)sczero = � scqnan ^ scx ^ scy ^ (infb _ zeroa) if isdiv(zeroa ^ zerob) _ (scqnan _ scx _ scy) otherwise. (4.313)



4.4. DIVISION 167Based on the selection of the special cases results in the special cases circuit of the multi-plication unit according to(ssc; esc; fsc) = 8>>>><>>>>: (0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) otherwise, (4.314)we get the �nal division result also by the selection(sRF ; eRF ; fRF ) = � (ssc; esc; fsc) if spca(src; erc; frc) otherwise. (4.315)Like for multiplications, also for divisions the invalid ag is given by dvz () scqnan(compare tables 2.8 and 2.9), so that the implementation for inv from the multiplicationunit does not have to be changed. The case of a division by zero can only occur fordivisions with zeroa = 0 and zerob = 1. Thus, the ag dvz is computed in the specialcases circuit of the multiplication unit bydvz = isdiv ^ zeroa ^ zerob:This already completes of the description of the computations for the special cases andthe detection of the exceptions.In the following the computation of the RF factoring (src; erc; frc) for divisions of non-zero representable operands (regular case) is described. According to equation 4.310, forthe regular case the exact quotient can be written asexactdiv = (�1)sa�sb � 2ea�eb � fa � 1=fb= (�1)sa�sb � 2ea�eb�1 � 2 � fa � 1=fb:Because the signi�cands fa and fb were extracted from normalized representations andbecause the operands are non-zero in the regular case, we have fa 2 [1; 2[ and fb 2 [1; 2[.From this it follows that the quotient 2 � fa � 1=fb is in the range ]1; 4[. In this way, thefactoring (sa� sb; ea� eb� 1; rep53(2 � fa � 1=fb) ful�lls the requirements of RF factoringsaccording to de�nition 2.21 and a RF factoring of the exact quotient exactdiv is given by:(src; erc; frc) = (sa� sb; ea� eb� 1; repp(2 � fa � 1=fb)):The computation of this factoring is described in the following separately for the sign, theexponent and the signi�cand.The computation of src according to equation 4.316 is identical to the sign computationfrom the multiplication unit I, so that the sign computation of the multiplication I unitcan be used unchanged also for the division I implementation.With the 13-bit wide representations of the exponents ea = <(ea[11];ea[11 : 0])>2and eb = <(eb[11];eb[11 : 0])>2. we exactly get the exponent erc for divisions (whereisdiv = 1) as required according to equation 4.316 byerc = ea� eb� 1= <(ea[11];ea[11 : 0])>2 +<(eb[11]� isdiv;eb[11 : 0]� isdiv)>2
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Figure 4.34: Structure of the integrated multiplication/division unit I.and the exponent erc for multiplications (where isdiv = 0) as required according to equa-tion 4.213 byerc = <(ea[11];ea[11 : 0])>2 +<(eb[11]� isdiv;eb[11 : 0]� isdiv)>2= ea+ eb:Thus, the exponent implementation from the multiplication I unit can be adopted to beusable for both the division I and the multiplication I implementation, if we replace the



4.4. DIVISION 169second input (eb[11];eb[11 : 0]) of the exponent addition from the multiplication unit Iby (eb[11] � isdiv;eb[11 : 0] � isdiv). This implementation for the exponent is depictedin �gure 4.34 completing the description of the exponent computations and leaving thedescription for the computations of the signi�cand frc.The signi�cand frc = rep53(2 � fa � 1=fb) is computed in two steps:1. We �rst compute an approximation aquot � (2 � fa � 1=fb) with an approximationerror errquot = (2fa=fb�aquot) in the range 0 � errquot < 2�p. Note, that in thiscase the signed value of the error and not only the absolute value has to be bounded.2. in the second step, the 53-representative frc = rep53(2 � fa � 1=fb) is computed fromthe approximation aquot.The implementation of these two steps is described in the following two subsection:4.4.2.1 Approximation of the quotient (step 1.)In this subsubsection we describe how to compute the approximation of the quotientaquot � (2 �fa=fb). We extract the problem of �nding an approximation for the reciprocalof a signi�cand fb �rst. By the multication of the approximated reciprocal with 2 � fa wewill then get the approximation aquot � (2 � fa=fb) of the quotient.For the approximation of the reciprocal 1=fb we use the Newton-Raphson iterationwith an initial approximation of 1=fb that is computed with the implementations fromsection 4.4.1. Because we can assume the signi�cand fb to be normalized fb 2 [1; 2[,the reciprocal 1=fb is known to be in the range ]0:5; 1]. From an approximation xi ofthe reciprocal x = 1=fb, the Newton-Raphson algorithm iteratively determines a betterapproximation xi+1 by the equation:xi+1 = xi(2� fb � xi): (4.316)We de�ne the approximation error after the iteration i by �i = 1=fb � xi. After theiteration i+ 1, we then get the approximation error�i+1 = 1=fb� xi+1= 1=fb� (xi(2� fb � xi))= fb( 1fb2 � 2xifb + xi2)= fb( 1fb � xi)2= fb � �i2;so that because of fb 2 [1; 2[, we get�i2 � �i+1 < 2 � �i2:Thus, starting with an accurate initial reciprocal approximation, the approximation errorconverges quadratically with the number i of iterations.According to equation 4.316 the following two dependent multiplications are requiredfor the computation of each Newton-Raphson iteration:yi = fb � xixi+1 = xi � (2� yi)



170 CHAPTER 4. BASIC FP OPERATIONSIn an exact computation the number of signi�cant bit positions increases after each ofthese multiplications, so that already after a few iterations, we would have to handle verylong operands and require a very large multiplier. To avoid this problem, we limit thenumber of signi�cant bit positions and truncate each product after a �xed bit positionwdiv with wdiv � p. Thus, we considery0i = rndRZ;wdiv(fb � x0i) (4.317)x0i+1 = rndRZ;wdiv(x0i � (2� y0i)) (4.318)where the values x0i+1, x0i, y0i and fb can be represented in a binary representation withbit positions [0 :wdiv]. For y0i < 2, the di�erence in equation 4.318 can be written as(2� y0i) = 2�<y0i[0 :wdiv]>neg= <y0i[0 :wdiv]>neg + 2wdiv:We simplify the computation of this di�erence by neglecting the addition of the 2wdiv andonly compute the approximationx00i+1 = rndRZ;wdiv(x00i �<y0i[0 :wdiv]>neg):In the analysis of the approximation error for x00i+1, which we denote by �00i+1 = 1=fb�x00i+1,we now additionaly have to consider the errors due to the product truncations and dueto the lazy computation of the di�erence (2 � y0i). Each product truncation produces adiscretization error in the range [0; 2�wdiv [, so that because of x0i � 1 we gety0i + 2�wdiv > yi � y0i(2� y0i � 2�wdiv) < (2 � yi) � (2� y0i)<y0i[0 :wdiv]>neg < (2 � yi) � <y0i[0 :wdiv]>neg + 2�wdivx00i � (<y0i[0 :wdiv]>neg) < xi � (2� yi) � x00i � (<y0i[0 :wdiv]>neg + 2�wdiv)x00i+1 < xi+1 < x00i+1 + 2�wdivNote, that in the above error analysis of one iteration step, we consider xi = x0i = x00i and�i = �0i = delta00i . Thus, we get for the approximation error �00i+1 = 1=fb � x00i+1 after oneiteration step: xi+1 > x00i+1 > xi+1 � 2�wdiv1=fb� xi+1 < 1=fb� x00i+1 < 1=fb� xi+1 + 2�wdiv�i+1 < �00i+1 < �i+1 + 2�wdivfb � �2i < �00i+1 < fb � �2i + 2�wdiv�2i < �00i+1 < 2 � �2i + 2�wdivFor the approximation of the signi�cand quotient, we have to multiply a reciprocal approx-imation x00i by (2fa): aquoti = 2fa�x00i . Because 2fa 2 [2; 4[, in this way the approximationerror for the quotient approximation errquoti = 2fa=fb� aquoti is in the range2 � �i < errquoti < 4 � �i (4.319)2 � �2i�1 < errquoti < 8 � �2i�1 + 4 � 2wdiv (4.320)2 � �4i�2 < errquoti < 16 � �4i�2 + 12 � 2wdiv (4.321)2 � �8i�3 < errquoti < 32 � �8i�3 + 28 � 2wdiv (4.322)



4.4. DIVISION 171requirements for ful�lled forprecision i errquoti < j�0j < wdiv � x0 = wdiv =double 3 2�53 2�61=8 58 arecip080 58single 2 2�24 2�29=4 29 arecip080 58double 2 2�53 2�59=4 57 arecip160 58single 1 2�24 2�14 28 arecip160 58double 1 2�53 2�28 56 arecip2800 58single 0 2�24 2�26 32 arecip2800 58Table 4.3: Requirements on the initial reciprocal approximations using the Newton-Raphson iteration with i 2 f1; 2; 3g iterations in double precision and i 2 f0; 1; 2g it-erations in single precision.For the computation of the p-representative in step 2, we require an approximation ofthe quotient aquoti in the range 0 < errquoti < 2�p. We are interested in approximationsthat are computed after i 2 f0; 1; 2; 3g and have to know the initial approximation error �0,that is required for the initial reciprocal approximation. Because for i > 0, we know thaterrquoti > 0, we only have to consider the upper bound on the absolute initial approxima-tion error �0 for i > 0. To get into the target range for errquoti, the truncation positionwdiv has to ful�ll wdiv � p + 5 for i = 3 (see equation 4.322). To ful�ll this conditionfor single and double precision, we set wdiv = 58 in the following. The requirements forthe initial reciprocal approximations are listed in table 4.3. Thus, the initial reciprocalapproximation arecip080(fb) can be used for the computation of an appropriate quotientapproximation aquoti after i = 2 iterations for single precision and after i = 3 iterationsfor double precision. The initial reciprocal approximation arecip160(fb) can be used forthe computation of an appropriate quotient approximation aquoti after i = 1 iterationfor single precision and after i = 2 iterations for double precision. The initial reciprocalapproximation arecip2800(fb) can be used for the computation of an appropriate quotientapproximation aquoti after i = 0 iterations for single precision and after i = 1 iterationfor double precision. Note, that the use of arecip2800 instead of arecip280 guarantuees apositive error err2800 > 0, so that also for this case the lower bound on the approximationerror aquot0 ful�lls the requirements for the computation of the representative in step 2.4.4.2.2 Computation of the p-representative for frc (step 2.)From the quotient approximations in the previous section we get0 < errquoti = 2fa=fb� aquoti < 2�paquoti < 2fa=fb < aquoti + 2�pThus,rndRZ;p(aquoti) < aquoti < 2fa=fb < aquoti + 2�p < rndRZ;p(aquoti) + 2�p+1:In other words, E = rndRZ;p(aquoti)



172 CHAPTER 4. BASIC FP OPERATIONSis an approximation of q = 2fa=fb, and the exact quotient lies in the open interval(E;E + 2�p+1). Moreover, we haverepp(2fa=fb) = 8<: E + 2�(p+1) if 2fa=fb < E + 2�pE + 2�(p) if 2fa=fb = E + 2�pE + 3 � 2�(p+1) if 2fa=fb > E + 2�pFor any relation � 2 f<;=; >g we have2fa=fb � E + 2�p () 0 � fb � (E + 2�p)� fa:Thus, with the computation of g = fb � (E + 2�p)� fa and the conditionsrepzero () (g = 0)repneg () (g > 0)the representative frc = repp(2fa=fb) can be selected byrepp(2fa=fb) = 8<: E + 2�(p+1) if repzero ^ repnegE + 2�(p) if repzero ^ repnegE + 3 � 2�(p+1) if repzero ^ repnegFor this computation of repp(2fa=fb), we de�ne the representative increment repinc:repinc = < repinc[�2 : 54] >neg= 8<: E + 2�(p+1) if repzero^ repnegE + 2�(p) if repzero^ repnegE + 3 � 2�(p+1) if repzero^ repneg= < (000; 023; (repzero _ repneg) ^ (dbl); (repzero _ repneg) ^ (dbl);; 027; (repzero _ repneg) ^ dbl; (repzero _ repneg) ^ dbl) >neg;so that repp(2fa=fb) = E+ repinc. The value g = fb � (E+2�p)� fa is computed in twosteps. We �rst compute Eb = E + 2�(p)Then we compute g = Eb � fb � fa. Again, we de�ne an additive constant, that selectsthe additive operands also including the case of the representative byrepinj = < repinc[�2 : 117] >neg= 8>><>>: 2�p if quostep1�fa if quostep3repinc if quostep40 otherwise.Thus, we get for quostep1 = 1: Eb = E + repinj (4.323)we get for quostep3 = 1: g = Eb � fb+ repinj (4.324)



4.4. DIVISION 173signi�cand quotient sequenceimplementation versionstep computation control signals i ii iii iv v viinit � 1=fb x000 = arecip(fb) inra,xace,xbce 1 1 1 1 1 1Newton 1a y0i = x00i � fb xadoe, fbdoe, dbl 2; 8 2; 6 2 2 � �Newton 1b " xadoe; fbdoe;dbl;2nd 3; 9 � 3 � � �Newton 1c " yce 4; 10 3; 7 4 3 � �Newton 2a x00i+1 = x00i � yi xadoe, ybdoe, dbl 5; 11 4; 8 5 4 � �Newton 2b " xadoe; ybdoe;dbl;2nd 6; 12 � 6 � � �Newton 2c " xace 7; 13 5; 9 7 5 � �Quot 1a Eb = fa � 2x00i+1+repinj fadoe; xbdoe;dbl;quostep1 14 10 8 6 2 2Quot 2a g = Eb � fb+repinj fadoe; xbdoe;dbl;ece 15 11 9 7 3 3Quot 3a g = Eb � fb+repinj Eadoe; fbdoe;dbl;ece;quostep3 16 12 10 8 4 4Rep Sel a frc = E � 1+repinj fadoe; obdoe;dbl;quostep4 17 13 11 9 5 5Rep Sel c " - 18 14 12 10 6 6Table 4.4: Computation steps in the six di�erent implementations for the computation ofthe signi�cand quotient representative in single precision.and we get for quostep4 = 1:frc = repp(2fa=fb) = E � 1 + repinj: (4.325)After this last step the path for the computation of frc for the multiplication contains alsothe signi�cand frc for the quotient result. To control the steps of the division we de�ne thecontrol signals xace, xbce, ece, yce, inra, Eadoe, fadoe, xadoe, xbdoe, ybdoe, obdoeand fbdoe that inuence the computation paths by controlling drivers and register clockslike depicted in �gure 4.34. The changed implementations of the partial product generationand reduction are depicted in �gure 4.35(full-sized adder tree) and in �gure 4.36(half-sizedadder tree). The computation steps including the required values for the control signals aresummarized in table 4.4 (single precision) and table 4.5 (double precision) for the six cases:(i) use of arecip080(fb) and half-sized adder tree; (ii) use of arecip080(fb) and full-sizedadder tree; (iii) use of arecip160(fb) and half-sized adder tree; (iv) use of arecip160(fb)and full-sized adder tree; (v) use of arecip2800fb) and half-sized adder tree; (vi) use ofarecip2800(fb) and full-sized adder tree. Note, that for multiplications, where isdiv = 0,the implementations of the RF factoring (src; erc; frc) are not changed. This completesthe description of the integrated multiplication/division I implementations.



174 CHAPTER 4. BASIC FP OPERATIONSsigni�cand quotient sequenceimplementation versionstep computation control signals i ii iii iv v viinit � 1=fb x000 = arecip(fb) inra,xace 1 1 1 1 1 1Newton1a y0i = x00i �fb xadoe,fbdoe,dbl 2; 8; 14 2; 6; 10 2; 8 2; 6 2 2Newton1b " xadoe; fbdoe;dbl;2nd 3; 9; 15 � 3; 9 � 3 �Newton1c " yce 4; 10; 16 3; 7; 11 4; 10 3; 7 4 3Newton2a x00i+1 = x00i � yi xadoe,ybdoe,dbl 5; 11; 17 4; 8; 12 5; 11 4; 8 5 4Newton2b " xadoe; ybdoe;dbl;2nd 6; 12; 18 � 6; 12 � 6 �Newton2c " xace 7; 13; 19 5; 9; 13 7; 13 5; 9 7 5Quot 1a Eb = fa � 2x00i+1+repinj fadoe; xbdoe;dbl;quostep1 20 14 14 10 8 6Quot 1b E = fa � 2x00i+1 fadoe; xbdoe;dbl;2nd;quostep1 21 � 15 � 9 �Quot 2a g = Eb � fb+repinj fadoe; xbdoe;dbl;ece 22 15 16 11 10 7Quot 2b g = Eb � fb+repinj fadoe; xbdoe;dbl; 2nd 23 � 17 � 11 �Quot 3a g = Eb � fb+repinj Eadoe; fbdoe;dbl;ece;quostep3 24 16 18 12 12 8Quot 3b g = Eb � fb+repinj Eadoe; obdoe;dbl;2nd;quostep3 25 � 19 � 13 �Rep Sel a frc = E � 1+repinj fadoe; obdoe;dbl;quostep4 26 17 20 13 14 9Rep Sel b " fadoe; obdoe;dbl;2nd;quostep4 27 � 21 � 15 �Rep Sel c " - 28 18 22 14 16 10Table 4.5: Computation steps in the six di�erent implementations for the computation ofthe signi�cand quotient representative in double precision.4.4.3 Division II (normalized �! gradual result format)Speci�cation. This section describes a FP division implementation, that is able todivide two FP numbers given in the normalized representations (section 2.6.3):BUSaNF [69 :0] = (sa;ea[11 :0]; fa[0 :52]; zeroa; infa;qnana; snana)BUSbNF [69 :0] = (sb;eb[11 :0]; fb[0 :52]; zerob; infb;qnanb; snanb);which represent the factorings (sa; ea; fa) = factNF (BUSaNF [69 :0]) and (sb; eb; fb) =factNF (BUSbNF [69 :0]). Additionaly, we get as input the bit dbl, which signals the caseof double precision by dbl = 1, and an active bit isdiv = 1, that signals the case, thatthe operation which is actually perfomed is a division.In this section, the exact division result according to equation 4.310 has to be roundedby the general rounding function ground1. After this gradual rounding step the quotient
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Figure 4.35: Implementation of the full-sized partial product generation and reductionincluding representative test and injection generation for integrated multiplication/divisionI/III implementation.

AND

AND

�� ��
�� ��

��
��

��

MUX 10

FB[0:58]

& Reduction (59x30)
Partial Product Generation (Booth2)

DBL AND ITER2

FPRC[-2:116]

PPS[-2:87] PPC[-2:87]

PPREGS[-2:117]
PPREGC[-2:117]

[-1:57]
[58:87][-1:57]

[88:117]

[58:87]

[88:117]

DBL AND ITER2

FDBS[88:117] FDBC[88:117]

[58:87]

FPRS[-2:116]

FPR[-1:116] FPR[-2]

REPINJ[-2:87]

repres. injection
generations

FD
B

C
[2

9:
87

]

31
0

FD
B

S[
29

:8
7]

4/2 adder line (90)

full adder line (90)

DBL

ITER2
AND

redBD(FA[0:29]) redBD((FA[30:59],0))

redBD(FASEL[0:29])

[-1:87] [-1:87]0 0

IS_ZERO
(118)

QUOSTEP1,3,4
DBL,ISDIV
FA[0:52]

R
E

PZ
E

R
O

R
E

PN
E

G

Figure 4.36: Implementation of the half-sized partial product generation and reductionincluding representative test and injection generation integrated multiplication/divisionI/III implementation.



176 CHAPTER 4. BASIC FP OPERATIONSshould be output in the gradual result format BUSGF [73 :0] (section 2.6.5). Accordingto equation 4.316, a RF factoring of the exact product is given by (src; erc; frc) = (sa �sb; ea � eb � 1; repp(2fa � fb)) for non-zero representable operands. With the gradualrounded product ((sgrc; egrc; fgrc);tinc;tinx) = ground1(src; erc; frc) and the followingGF factoring of the result for the case of arbitrary IEEE operands((sGF; eGF; fGF );tincGF;tinxGF )=8>>>>>><>>>>>>:
((0; eqNaN ; fqNaN ); 0; 0) if scqnan((sinf ; e1; f1); 0; 0) if scinf((sa; ea; fa); 0; 0) if scx((sb; eb; fb); 0; 0) if scy((s0; e0; 0); 0; 0) if sczero((sgrc; egrc; fgrc);tinc;tinx) otherwise, (4.326)the quotient output of the division II implementation is speci�ed by the gradual resultrepresentation BUSGF [73 :0] = gf((sGF ; eGF ; fGF );tincGF ;tinxGF ). The occurance ofan invalid exception or a division by zero should be signaled by the bit inv and the bitdvz also in this section.Implementation. Like the division I implementation is integrated into the multiplica-tion I unit, we will integrate the implementation of the division II into the multiplicationII unit. The changes for the special cases are the same like in the previous section for theintegrated multiplication/division I implementation.Thus, we only have to consider the computations for the regular case. The imple-mentation of the GF factoring of the quotient in this section is just a combination ofthe computation of the RF factoring of the quotient from the previous section and theimplementaton of the gradual rounding function ground1 from the multiplication II. Thecomputation of the signi�cand quotient is implemented like in the previous section. Bysetting the rounding injections to zero during the signi�cand quotient computations bya signal injsel = 0 we get in the multiplication II implementation fpr = finj12. Thusthe binary pruduct output finj[0 : 116] of the Compression & gradual rounding circuitcan be used for the computation of the signi�cand quotient like in the previous section.For the gradual rounding implementation in the last cycle the rounding injection has tobe activated again by injsel = 0, so that we get as output of the last cycle fgrc insteadof frc. The integrated implementation of the multiplication/division implementation isdepicted in �gure 4.37, where the implementation of the partial product generation & andreduction has to be adopted according to �gure 4.38 for the use of a full-sized adder treeand according to �gure 4.39 for the use of a half-sized adder tree. This already completesthe description of the integrated multiplication/division II implementations.4.4.4 Division III (normalized �! normalized format)Speci�cation. Like in the previous section also in this section, the FP division is com-puted from the inputs of the normalized representationsBUSaNF [69 :0] andBUSbNF [69 :0](section 2.6.3). Because IEEE rounding has to be considered in this section, also the bitdbl, that signals the case of single precision (dbl = 0) or double precision (dbl = 1), theinput of the rounding mode, represented by rmode[1 :0], and the underow and overowenable bits unf en and ovf en are required.In this section, the exact division result according to equation 4.310 has to be roundedby the rounding function nround, that computes the NF factoring of the IEEE roundedresult. After this rounding computation the quotient should be output in the normalized
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Figure 4.37: Structure of the integrated multiplication/division unit II.
format BUSNF [69 :0] (section 2.6.3). According to equation 4.316, a RF factoring ofthe exact product is given by (src; erc; frc) = (sa � sb; ea � eb � 1; repp(2fa � fb)) fornon-zero representable operands. With the NF factoring of the IEEE result for non-zero representable operands (snrc; enrc; fnrc) = nround(src; erc + wec; frc) including theexponent wrapping constant wec according to equation 2.14 and the following NF factoring



178 CHAPTER 4. BASIC FP OPERATIONS

0

FB[0:58] redBD(FA[0:58])

Partial Product Generation (Booth2)
& Reduction (59x59)

FPRS[-1:116] FPRC[-1:116]0 0

INJ
generation

SRMODE[1:0]

4/2 adder line (119)

FINPRS’[-2:116] FINPRC’[-2:116]

RMODE[1:0]SA,SB FPR[-2]

REPINJ[-2:116]

FPR[-1:116]

repres. injection
generation

IS_ZERO
(118)

FA[0:52]
DBL,ISDIV
QUOSTEP1.3,4

R
E

PZ
E

R
O

R
E

PN
E

G

IN
J12[-1:116]

INJSEL

AND

Figure 4.38: Implementation of the half-sized partial product generation and reductionincluding representative test and injection generation for integrated multiplication/divisionII implementation.of the result for the general case of arbitrary operands according to equation 2.16:(sNF; eNF; fNF )=8>>>>>><>>>>>>:
(0; eqNaN ; fqNaN ) if scqnan(sinf ; e1; f1) if scinf(sa; ea; fa) if scx(sb; eb; fb) if scy(s0; e0; 0) if sczero(snrc; enrc; fnrc) otherwise, (4.327)the quotient output of the division III implementation is speci�ed by the correspondingrepresentation in the normalized format BUSNF [69 :0] = nf(sNF ; eNF ; fNF ). In thissection, the occurance of an invalid, inexact, overow, underow exception should besignaled by the bits inv, inx, ovf, unf and dvz, respectively.Implementation. In an analogous way like in the two previous sections, in this sectionthe implementation of the division III is integrated into the multiplication III unit. Like inthe previous section for the special cases computations only the implementation of scinf,sczero and dvz the have to be changed according to equations 4.312,4.313 and 4.316.The computations for the regular case are implemented in two steps. First, the RFfactoring (src; erc; frc) is computed like in the integrated division/multiplication I im-plementation, then the rounding hardware from the multiplication unit III computes thenormalized IEEE rounding function nround from this RF factoring. To get the binary rep-resentation of the product, we have to set sr mode[1 :0] = 00 during the computation ofthe signi�cand quotient, so that the rounding injection is zero and we get fpr = finj12.Based on this product output, the signi�cand quotient implementation from the divi-sion I implementation is integrated into the multiplication unit III like depicted in �gure4.40. Because the partial product generation and reduction implementation of the mul-tiplication unit III and I are the same, they are changed identically for the integrateddivision/multiplication implementations III and I. The implementation using a full-sizedadder tree is depicted in �gure 4.35 and the implementation using a half-sized adder treeis depicted in �gure 4.36. During the last two cycles the cleared value of the rounding
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Figure 4.40: Structure of the integrated multiplication/division unit III.



Chapter 5EvaluationIn this section we quantitatively analyze the FP designs that have been described in theprevious sections. For the analysis we use the formal hardware model from [22]. Based ona speci�cation of the FPU designs at gate level, we compute the costs of the designs bycounting the gates, that are used in the designs, and by weighting them for a particular,but typical technology [24] (see table 5.1). For any other technology the relative costs ofthe basic circuits could be changed by the corresponding parameters in the cost formulae.The cost for the FP designs are listed table 5.4. These costs also contain the cost of thepipelined RISC architecture from [23] in that the FP designs are integrated.The performance of the FP implementations mainly depend on two factors. On theone hand the maximum delay within one cycle of a FP implementations determines theminimum cycle time that would be possible with this FP implementation. We will considerthe performance of the FP implementations integrated into a pipelined RISC architecturefrom [23]. In this setting, a di�erence between the FP implementations regarding the cycletime only becomes visible, if the FP implementations lie on the critical path and the cycletime of the FP implementation exeeds the cycle time of the microprocessor. This is notthe case for any of our FPU designs for the chosen pipelined RISC processor from [23].Thus, integrated into the microprocessor the performance is measured by the aver-age number of cycles per instructions, that the microprocessor achieves with this FPimplementation on an average FP workload. To analyze the performance in this way,we consider a pipelined RISC processor design from [23] as a basis. This design alreadyincludes the implementation of pipelining, forwarding, interrupt handling, and a result-shift register [23]. Corresponding to this architecture a trace driven run-time simulatorwas implemented, so that with the input of the latency and restart-time set of the FPU,the average number of clock cycles that are needed per instruction (CPI) could be simu-lated. The latencies and restart-times of our proposed FP implementations are listed intable 5.2. For the runtime-simulations, we consider the benchmarks from the SPECfp92oating-point benchmark suite, because traces using the MIPS R3000 instruction set werealready available for them [17].The results of the analysis are depicted in �gure 5.1, where the costs in terms of kG(kilo gates) are displayed against the performances in terms of CPI (cycles per instruction).We separate the results for the three di�erent rounding architectures in three �gures. Inthe topmost �gure, the results for the FP units using rounding architecture I with a sharedgeneral rounder are depicted, the �gure in the middle depicts the results for the FP unitsusing rounding architecture II with a gradual rounder and in the �gure on the bottom theresults for the FP units using rounding architecture III with variable position rounding181
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Motorola Not NandNor AndOr F lip�flop XorXnor Mux 3� statedriverdelay 1 1 2 2 4 2 2cost 1 2 2 4 8 3 5Table 5.1: relative delay and cost of basic gates for the Motorola technology from [24].

FPU division multiplication add/sub conv comparedouble single double singleGen rnd I, full, NR28 13/8 9/4 5 5 5 3 1Gen rnd I, full, NR16 17/12 13/8 5 5 5 3 1Gen rnd I, full, NR8 21/16 17/12 5 5 5 3 1Gen rnd I, half, NR28 19/14 9/4 6/2 5 5 3 1Gen rnd I, half, NR16 25/20 15/10 6/2 5 5 3 1Gen rnd I, half, NR8 31/26 21/16 6/2 5 5 3 1Grad rnd II, full, NR28 12/8 8/4 4 4 4 3 1Grad rnd II, full, NR16 16/12 12/8 4 4 4 3 1Grad rnd II, full, NR8 20/16 16/12 4 4 4 3 1Grad rnd II, half, NR28 18/14 8/4 5/2 4 4 3 1Grad rnd II, half, NR16 24/20 14/10 5/2 4 4 3 1Grad rnd II, half, NR8 30/26 20/16 5/2 4 4 3 1Var rnd III, full, NR28 10/8 6/4 2 2 2 3 1Var rnd III, full, NR16 14/12 10/8 2 2 2 3 1Var rnd III, full, NR8 18/16 14/12 2 2 2 3 1Var rnd III, half, NR28 16/14 6/4 3/2 2 2 3 1Var rnd III, half, NR16 22/20 12/10 3/2 2 2 3 1Var rnd III, half, NR8 28/26 18/16 3/2 2 2 3 1Table 5.2: Latencies/restart-times of the FP units for single precision and double precisionoperations. If there is only one entry, this corresponds to the latency and the operation isfully pipelined.
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184 CHAPTER 5. EVALUATIONVersion Gen rnd I Grad rnd II Var pos rnd IIINewton-Raphson 8, full tree 1:769 CPI 1:667 CPI 1:466 CPINewton-Raphson 16, full tree 1:723 CPI 1:620 CPI 1:419 CPINewton-Raphson 28, full tree 1:676 CPI 1:574 CPI 1:3722 CPINewton-Raphson 8, half tree 1:901 CPI 1:817 CPI 1:613 CPINewton-Raphson 16, half tree 1:830 CPI 1:746 CPI 1:542 CPINewton-Raphson 28, half tree 1:760 CPI 1:676 CPI 1:472 CPITable 5.3: Performance (cycles per instruction in runtime simulations on traces of theSPEC92fp benchmarks) of the di�erent FP units integrated into a pipelined RISC proces-sor. Version Gen rnd I Grad rnd II Var pos rnd IIINewton-Raphson 8, full tree 134641 142988 161274Newton-Raphson 16, full tree 136796 145143 163429Newton-Raphson 28, full tree 266769 275116 293402Newton-Raphson 8, half tree 114479 121334 141112Newton-Raphson 16, half tree 116634 123489 143267Newton-Raphson 28, half tree 246607 253462 273240Table 5.4: Cost (gate count) of the di�erent FP units integrated into a pipelined RISCprocessor.are depicted. In each �gure, the result of a FPU version, that uses a full-sized addertree,is connected with the corresponding FPU version, that uses a half-sized adder-tree, by aline, where the full-sized version is always faster and more expensive than the half-sizedversion. The maximum di�erence between two connected FPU results is 0:1 CPI andabout 20 kG. In this way, the choice of the multiplier options has only a small e�ecton the performance and small e�ect on the cost. Comparing all di�erent FPU versionswithin a particular rounding architecture, the situation is similar in the di�erent �gures.The maximum di�erence of the CPI is 0:24, so that a moderate speed-up can be achievedby using a fast divider and multiplication implementation. But the use of a fast dividerincreases the cost to a large extent by up to 132 kG, so that a fast divider version mightbe too expensive. Comparing the di�erent rounding architectures, the best performancewith relatively small additional cost is provided by the variable position rounding FPUsusing rounding architecture III. In this way, the choice of the rounding architecture hasthe largest impact on the design quality, di�ering by about 0:3 CPI among the di�erentarchitectures, but only by about 26 kG in cost.In general the use of rounding architecture III, that uses dedicated rounding imple-mentations for each functional unit seems to be the best choice in IEEE compliant FPimplementations.



Bibliography[1] Al-Twaijry, H. Area and Performance Optimized CMOS Multipliers. PhD thesis,Stanford University, August 1997.[2] Anderson, S.W. and Earle, J.G. and Goldschmidt, R.E. and Powers, D.M. The IBMsystem 360 model 91: Floating-point unit. IBM J. Res. Dev., 11:34{53, January 1967.[3] Bewick, G.W. Fast Multiplication: Algorithms and Implementation. PhD thesis,Stanford University, March 1994.[4] Cortadella, J. and Llaberia, J.M Evaluation of A+B = K Conditions without CarryPropagation IEEE Trans. on Computers, vol. 41, pp. 1484-1488, November, 1992.[5] Das Sarma, D. and Matula, D. W. Measuring the Accuracy of ROM Reciprocal Tables.IEEE Trans. on Computers, vol. 43, pp. 932-940, August, 1994.[6] Das Sarma, D. and Matula, D. Faithful Bipartite ROM Reciprocal Tables, In Pro-ceedings of the 12th Symposium on Computer Arithmetic, vol. 12, pp.17-28, IEEE,1995.[7] Das Sarma, D. and Matula, D. Faithful Interpolation in Reciprocal Tables, In Pro-ceedings of the 13th Symposium on Computer Arithmetic, vol. 13, pp. 82-91, IEEE,1997.[8] Daumas, M. and Matula, D.W. Recoders for partial compression and rounding.Technical Report 97-01, Laboratoire de l'Informatique du Paralllisme, Lyon, France,1997.[9] Even, G. and Mueller, S.M. and Seidel, S.M. A Dual Mode IEEE multiplier. In Pro-ceedings of the 2nd IEEE International Conference on Innovative Systems in Silicon,pages 282{289. IEEE, 1997.[10] Even, G. and Paul, W.J. On the design of IEEE compliant oating point units. InProceedings of the 13th Symposium on Computer Arithmetic, volume 13, pages 54{63.IEEE, 1997.[11] Even, G. and Seidel, P.M. A comparison of three rounding algorithms for IEEEoating-point multiplication. In Proceedings of the 14th IEEE Symposium on Com-puter Arithmetic, pages 225-232, April 1999.[12] Even, G. and Seidel, P.M. A comparison of three rounding algorithms for IEEEoating-point multiplication. to be published in Special Issue on Computer Arith-metic, IEEE Trans. on Computers, July 2000.185



186 BIBLIOGRAPHY[13] Fowler, D.W. and Smith, J.E. An accurate, high speed implementation of divisionby reciprocal approximation. In Proceedings of the 9th Symposium on ComputerArithmetic, volume 9, pages 60{67. IEEE, September 1989.[14] Farmwald, M. P. On the design of high performance digital arithmetic units, PhDthesis, Stanford Univ., August, 1981.[15] Ferrari, D. A division method using a parallel multiplier, IEEE Trans. Electr. Com-put., vol. EC-16, pp. 224-226, 1967.[16] Hennessy, J.L. and Patterson, D.A. Computer Architecture: A Quantitative Approach.Morgan Kaufmann Publishers, INC., San Mateo, CA, 2nd edition, 1996.[17] Hill, M. SPEC92 Traces for MIPS R2000/3000. University of Winconsin,ftp://ftp.cs.newcastle.edu.au/pub/r3000-traces/din', 1995.[18] Ito, M. and Takagi, N. and Yajima, S. E�cient Initial Approximation and FastConverging Methods for Division and Square Root", In Proceedings of the 12th Sym-posium on Computer Arithmetic, vol. 12, pp. 2-9, IEEE, 1995.[19] IEEE standard for binary oating-point arithmetic. ANSI/IEEE754-1985, New York,1985.[20] Kane, G. and Heinrich, J. MIPS RISC Architecture. Prentice Hall, 1992.[21] Lee, C. Multistep gradual rounding. IEEE Transactions on Computers, 32(4):595{600, April 1989.[22] M�uller, S.M. and Paul,W.J. The Complexity of Simple Computer Architectures. Lec-ture Notes in Computer Science 995. Springer, 1995.[23] M�uller,S.M. and Paul,W.J. The Complexity of Correctness of Computer Architectures.Springer, 2000, Draft.[24] Nakata, C. and Brock,J. H4C Series: Design Reference Guide. CAD, 0.7 MicronLeff . Motorola Ltd., 1993. Preliminary.[25] Nielsen, A.M. and Matula, D.W. and Lyu, C.N. and Even, G. Pipelined packet-forwarding oating point: II. an adder. In Proceedings 13th Symposium on ComputerArithmetic, pages 148{155, Asilomar, California, July 6-9 1997.[26] Oberman, S.F. Design Issues in High Performance Floating Point Arithmetic Units.PhD thesis, Stanford University, January 1997.[27] Oberman, S.F. and Al-Twaijry, H. and Flynn, M.J. The SNAP project: Design ofoating point arithmetic units. In Proceedings of the 13th Symposium on ComputerArithmetic, volume 13, pages 156{165. IEEE, 1997.[28] Oberman, S.F. and Flynn,M.J. Fast IEEE rounding for division by functional itera-tion. Technical Report CSL-TR-96-700, Stanford University, July 1996.[29] Intel Corporation Pentium Processor Family Developer's Manual Volume 1: PentiumProcessors, 1995.



BIBLIOGRAPHY 187[30] Paul,W.J. and Seidel,P.M. The complexity of Booth recoding. In Proceedings of the3rd conference on Real Numbers and Computers RNC3, pages 199-218, Paris, France,April 1998.[31] Quach, N. and Flynn, M. Design and implementation of the SNAP oating-pointadder. Technical Report CSL-TR-91-501, Stanford University, December 1991.[32] Quach, N. and Flynn, M.J. An improved algorithm for high-speed oating-pointaddition. Technical Report CSL-TR-90-442, Stanford University, August 1990.[33] Quach, N. and Takagi, N. and Flynn, M. On fast IEEE rounding. Technical ReportCSL-TR-91-459, Stanford University, January 1991.[34] Santoro, M.R. and Bewick, G. and Horowitz, M.A. Rounding algorithms for IEEEmultipliers. In Proceedings 9th Symposium on Computer Arithmetic, pages 176{183,1989.[35] Schulte, M.J. and Omar, J. and Swartzlander, E.E., Optimal Initial Approximationsfor the Newton-Raphson Division Algorithm", Computing, vol. 53, pp. 233-242,August, 1994.[36] Seidel, P.-M. High-speed redundant reciprocal approximation. In Proceedings of the3rd conference on Real Numbers and Computers RNC3, pages 219-229, Paris, France,April 1998.[37] Seidel, P.-M. How to half the latency of IEEE compliant oating-point multiplication.In Proceedings of the 24th Euromicro Conference, volume 24, pages 329-332. IEEE,1998.[38] Seidel, P.-M. On the architecture of IEEE compliant oating-point units. to appearin, Proceedings of the IASTED Conference of Applied Informatics 2000, February2000.[39] Seidel, P.-M. High-speed redundant reciprocal approximation. INTEGRATION, theVLSI journal 28 (1999), pp. 1-12.[40] Seidel, P.-M. and Even, G. How many logic levels does oating-point addition require?In Proceedings of the IEEE International Conference on Circuit Design (ICCD98),pages 142-149, October 1998.[41] Siemens M�unchen. VENUS-S Semi-Custom Design System: Zellkatalog, 1988.[42] Wong, D. and Flynn, M. Fast Division Using Accurate Quotient Approximations toReduce the Number of Iterations, IEEE Trans. on Computers, vol. 41, pp. 981-995,August, 1992.[43] Soderquist, P. and Leeser, M.. Floating-point division and square root: Choosingthe right implementation. Technical Report EE-CEG-95-3, Cornell University, April1995.[44] Yu, R.K. and Zyner, G.B. 167 MHz Radix-4 oating point multiplier. Proceedings12th Symposium on Computer Arithmetic, 12:149{154, 1995.[45] Zyner, G. Circuitry for rounding in a oating point multiplier. U.S. patent 5150319,1992.



188 BIBLIOGRAPHY


