
To appear in� Proceedings of the

Workshop on Runtime Systems for Parallel Programming �RTSPP�

to be held in conjunction with the

��th International Parallel Processing Symposium �IPPS�����

Geneva� Switzerland� April �����

as Technical Report IR	
�� of the Vrije Universiteit Amsterdam�

February ����

Cooperating Runtime Systems in LiPS

Thomas Setz and Thomas Liefke

Technische Hochschule Darmstadt
Fachbereich Informatik

Alexanderstr� ��
D�����	 Darmstadt

Germany

fthsetz
liefkeg�cdc�informatik�th�darmstadt�de

January
 ���

Abstract� Performing computation using networks of workstations is increasingly becoming an
alternative to using a supercomputer� This approach is motivated by the vast quantities of un�
used idle�time available in workstation networks� Unlike computing on a tightly coupled parallel
computer
 where a �xed number of processor nodes is used within a computation
 the number of
usable nodes in a workstation network is constantly changing over time� Additionally
 workstations
are more frequently subject to outages
 e�g� due to reboots� The question arises how applications

adapting smoothly to this environment
 should be realized�

LiPS
� is a system for distributed computing using idle�cycles in networks of workstations� This

system in its version ��	 is currently used at the Universit�at des Saarlandes in Saarbr�ucken

Germany to perform computationally intensive applications in the �eld of cryptography on a net
of approximately ��� workstations and should be enhanced to work within an environment of
more than ���� machines all over the world within the next years�

In this paper we present the runtime systems of LiPS along with performance measurements taken
with the current LiPS development version ����

� Introduction

The number of machines connected to the Internet is growing by a factor greater than two every year�
It is well known� that the idle�time normally exceeds �� � of the machines� uptime �LLM	�
� Using the
idle�time of these machines for distributed computations has many bene�ts which can be summarized
with� Enormous amount of additional computing power with no or only small additional investments��

Application programmers working in this environment must be provided with a programming system
facilitating the development of distributed applications� This is accomplished by mechanisms shielding
the programmer from the complexity of system�level programming� thus enabling him to concentrate
on solving application�level problems� For example� a heterogeneous environment of di�erent operating

�
Library for Parallel Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�

systems� network protocols� or processor architectures should be hidden from the programmer� Imple�
menting a distributed application is also made more di�cult by frequent changes in the availability of
nodes and networks�

The LiPS system enables users to implement distributed applications in heterogeneous networks of
workstations connecting machines with di�erent processor architectures and Unix� operating system
�avors� The system ensures that only workstations which are considered idle by their owners� are used
within the distributed computations� It does not need enhanced privileges �e�g� root permissions� to
perform its work� The system design allows the completion of distributed computations in spite of
failing nodes or network links although the performance can be compared to non�fault�tolerant systems�

A programming paradigm that is suited to implement distributed computation in a heterogeneous net�
work of workstations is the tuple space based generative communication� as originally used in the Linda�

programming language� After introducing this shared memory paradigm for parallel programming in the
next section� we will explain how this is realized in the LiPS runtime systems� Finally� we will present
performance measurements we have taken with the current LiPS version�

� Generative Communication

In order to implement distributed applications� a programmer must be supplied with primitives enabling
him to create additional processes or tasks� and to exchange messages among them� A conventional pro�
gramming language� when augmented by interprocess communication and process manipulation prim�
itives� is su�cient for implementing distributed algorithms� Interprocess communication �IPC� may be
established accessing the network protocols� using systems like PVM �GS��
� Express �Par��
 or P�
�BL��
� Another approach� which is used throughout this work� is to use higher level paradigms as the
tuple space based generative communication �Gel	�� BCGL	�� Gel		
� These approaches di�er with
respect to usability� e�ciency� and availability on di�erent platforms� While IPC using direct access to
network protocols permits highly e�cient communication� applications implemented using this approach
are rather cumbersome to maintain� The generative communication approach to IPC trades e�ciency
against ease of use� due to the overhead introduced by tuple space management� This overhead may be
kept down to a reasonable amount by analyzing communication patterns at compile�time�

This section describes the tuple space based generative communication paradigm� Using this paradigm
yields elegant solutions for communication patterns typically found in distributed applications�

��� The Tuple Space

The tuple space is an associative� shared memory accessible to all application processes� It is called
associative� as it contains data tuples� which may be retrieved addressable by their contents rather than
by physical addresses� using a pattern�matching mechanism� The implementation of tuple space memory
is hidden from the user and therefore may be realized on a shared�memory machine� a tightly�coupled
parallel computer or on a network of workstations� Data tuples consist of a list of simple data types�
We distinguish active tuples generated with the eval�� operator from passive tuples generated with
out��� Active tuples are used to create new threads of control within a distribute application while
passive tuples are merely used to store data items� A set of operations �in��� rd��� inp��� rdp���
is used to retrieve passive tuples� Both blocking and non�blocking versions of tuple retrieval functions
are available� These operations thus may be used for synchronization and communication tasks� The
tuple extracting operations in�� and inp�� read a data tuple and remove it from the tuple space� If
no tuple is available� the nonblocking operation inp�� immediately returns an error as opposed to the

�
Unix is licensed exclusively through X�Open Company Limited

�
Linda is a registered trademark of Scienti�c Computing Association
 New Haven
 Connecticut

�� The Runtime Systems �

blocking operation in�� which suspends the calling thread until such a tuple is found� The tuple reading
operations rd�� and rdp�� return a data tuple� again in a blocking and nonblocking manner� but do
not extract the tuple from the tuple space� A more elaborate description of the tuple space can be found
in �Set��
�

��� Bene�ts of the Generative Communication

As the tuple space is conceptually separated from an application process� its content is not lost across
thread exits� Data tuples remain available until they are consumed by some other process� which must
not necessarily be around at the time the tuple is created� As a result� interprocess communication is
decoupled in time� As data tuples are identi�ed solely by their contents� and not by any other means
such as senders� or recipients� process�ID� communication is made anonymous�� in that communicating
processes do not need knowledge of their peer�s identity� IPC using the tuple space thus decouples
communicating processes logically and physically� This eases application development when compared
to using a message�passing based paradigm�

As processes in a distributed application have no notion of a peer�s location� migrating processes in the
case that a machine becomes unavailable due to load increase or crash is made easier� A process may still
retrieve messages even when it had to change to a di�erent machine� This mechanism is transparent to
the application programmer as no host addresses are involved� The tuple space communication paradigm
is not tied to a particular programming language� hardware or software environment� It may thus be
used for distributed applications running on a heterogeneous set of workstations� The paradigm also
allows for adapting the number of usable machines� implementing what is called adaptive parallelism�
in �CFGK��� GK��
� Applications may use all available machines� shrink down to the usage of only
one� and switch between these bounds of possibilities very easily� Finally� integrating the tuple space
based generative communication approach into a conventional programming language requires only six
additional operations��

Therefore� tuple space based applications turn out to be an adequate choice for implementing distributed
applications running on networks of workstations�

� The Runtime Systems

The main problem that arises in implementing the runtime systems deals with the question of how to
make the tuple space resilient to faults like machine crashes� Obviously� the solution to this problem is
replication of the tuple space among di�erent machines� This approach is implemented very e�ciently
in the so�called fault�tolerant tuple space machine explained later in this section�

We distinguish two fault�tolerant tuple space machines in our runtime systems� The �rst fault�tolerant
tuple space machine implements the System Tuple Space maintaining data about the system state with
processes called FixServers� The second fault�tolerant tuple space machine maintains the Application
Tuple Space and is implemented with processes called MessageServers� There may exist several appli�
cations concurrently each using a private fault�tolerant tuple space machine� The System Tuple Space
is shared by all applications�

A designated server process called lipsd resides on each machine participating in the LiPS system� The
lipsd processes update and retrieve information from the System Tuple Space� For example� node�state
information� like load of a �the� machine can be read �updated� easily through tuple space operations�
lipsd processes update their own node�state information in the System Tuple Space in �xed intervals�
A machine crash can be detected if this information is not received in time� In this case possible

� Which compares favorably to systems like Express �Par��� sporting about one thousand IPC primitives�

�

errors due to lost data are repaired� and watchdog mechanisms will re�integrate the crashed machine
automagically� immediately after its recovery�

Fault�tolerance on application level is implemented with a checkpointing and recovery mechanism inte�
grated into the fault�tolerant tuple space machine� A checkpoint is correlated to the evaluation of an
eval�� operation� recovery is based on the re�execution of a failed eval�� together with the replay of
the message logging of the �rst execution of eval��� Message logging is provided via the fault�tolerant
tuple space machine�

A tracing tool ala syslog��� in co�operation with a virtual console process allows an easy level�based
tracing of the LiPS�System Runtime System and Application Runtime System behavior�

The relationship between the di�erent runtime systems described above is depicted in Figure ��

lipsdc

lipsdlipsd lipsdlipsd lipsdlipsd

master client
Application

MsgServer

MsgServer

ApplicationApplication

MsgServerMsgServer
MsgServer

client
Application

client master
Application

Application 1 Application 2

Tuple Space 2

Application

level

LiPS-System Runtime System with LiPS-Application Runtime System

R
u

n
tim

e S
ystem

A
pplicationTuple Space 1

Application

A
pplication

System
Tuple Space

FixServer

FixServer

FixServer

Fault-Tolerant Tuple Space MachineFTTM

UDP communication Processes residing on the same machineTuple space access

L
iP

S
-S

ystem
 R

u
n

tim
e S

ystem

FTTM

FTTMFTTM

Figure �� The di�erent levels of the LiPS runtime systems

In this section we �rst introduce the design of the fault�tolerant tuple space machine being the basis
for the LiPS�System Runtime System as well as for the Application Runtime System� In the following
subsections we �rst explain the lipsd process in more detail and introduce a tool �lipsdc� the lipsd

controller� to display the current state of the system con�guration� Finally we describe the tracing
facilities�

�� The Runtime Systems �

��� The Fault�Tolerant Tuple Space Machine

The Fault�Tolerant Tuple Space Machine replicates the content of the tuple space among several ma�
chines� If a machine that a MessageServer �FixServer� resides on crashes� the data are still available
on the replicas� An additionally started server process joining the Fault�Tolerant Tuple Space Ma�
chine will be initialized with the data of an old replica� This feature makes the Fault�Tolerant Tuple
Space Machine N Fault�Tolerant� In the Fault�Tolerant Tuple Space Machine every tuple is tagged
with a unique ID �Sequence Number� as a result of the protocol used to replicate data across the
di�erent machines� This unique ID is used to speed up replication of events among the di�erent
servers� The protocols used in the Fault�Tolerant Tuple Space Machine are based on those given in
�ADM���� ADKM��a� ADKM��b� AAD��� Kei��
� An in�depth description of the protocol used and
its implementation is given in �Set��� Set��
�

As depicted in Figure �� the tuple space is managed by several MessageServers residing on di�erent

Tuple Space

Ethernet

Message Server

Client (Application)

Logical

Token

Ring

Request

Reply

Figure �� Processes of the Tuple Space Machine

machines� MessageServers must reside in the same broadcast domain� The broadcast facility is utilized
to replicate messages very e�ciently among the di�erent servers� An additional token circulating among
the servers schedules the permission to use the broadcast facility � avoiding Ethernet saturation because
of collisions� The circulating Token ships additional data enabling among other things �ow control
between the replicas� Additionally� each broadcast message �tuple� is tagged in sequence with a unique
ID� This procedure establishes a linear order among the tuples of the Fault�Tolerant Tuple Space Machine
and speeds up replication��

� If a broadcast message was not received on a replica this circumstance is easily obtained
 as there is a gap in
the sequence of received messages� In this case a retransmission could be requested immediately�

�

As shown in Figure �� an application process sends requests to the MessageServer which is assigned to it�
A request can either contain a tuple or a template� In the following� we �rst explain how MessageServers
process a tuple� and second how templates are processed�

As the MessageServers share the same broadcast domain� a MessageServer is able to broadcast the tuple
and hence replicate it on multiple MessageServers with only one physical operation� At any time only
one MessageServer may broadcast a tuple� namely the MessageServer holding the token message� After a
MessageServer has �nished broadcasting messages �tuples�� it sends the token to the next MessageServer�
With respect to this token transfer� the MessageServers form a logical ring� Messages being broadcast
are tagged with a unique sequence number� The sequence number of the last broadcast message of
a MessageServer is sent within the token� The next MessageServer intending to broadcast knows the
sequence number of the last broadcast message and continues the sequence� thereby establishing a total
order on the messages broadcast� Within one token rotation several tuples may be broadcast by each
MessageServer�

If a MessageServer receives a template� it �rst tries for a match on its local tuple space� If no tuple
matching the template is found� the MessageServer noti�es the requesting application process �NACK��
Otherwise� if the MessageServer �nds a match� it must �rst synchronize with the other MessageServers�
In order to notify the other MessageServers of the tuple access� it is su�cient to send the sequence
number �� bytes�� the application process accessing the tuple and the event number in its message
logging �� bytes� as well as the type of access �� byte� to identify the operation to the replicas� These
items of access information now are added to the circulating token� The size of the token then determines
the number of reading and extracting tuple space operations which may be replicated within one token
rotation�

��� The LiPS Daemon lipsd

A system server process called lipsd resides on each machine in a LiPS installation� This process
gives the LiPS system access to the machine and is responsible to obey the idle�time restrictions for
the machine this particular lipsd is residing on� Furthermore� the lipsd processes provide services
such as starting and controlling application processes� Each lipsd updates the node state information
of its machine held in the System Tuple Space within a given time� If a lipsd fails to update this
information within the given period of time� the machine it resides on is assumed to have crashed� In
this case� all other lipsd processes are informed of the crash of the machine� and possibly corrupted
data in the System Tuple Space are repaired� Additionally� all application processes residing on that
machine are scheduled to be restarted on another machine� Informing all lipsd processes of this event
is realized with a signal indicator shipped with every tuple space operation� As every lipsd updates its
node�state information periodically� it will receive the signal indicator soon after the crash of a machine�
On receipt of the signal indicator� the lipsd process triggers appropriate signal handler functions� The
��rst� lipsd� �nding himself in the signal handler� will repair possibly corrupted data structures �lost
tuple� and if necessary will schedule lost application processes to be restarted� All other lipsd processes
only update their locally cached data� The ��rst� lipsdmentioned above is identi�ed with the help of an
automatically �Fault�Tolerant Tuple Space Machine� generated tuple which will be destructively read
�inp��� by the ��rst� lipsd and is not available to the other lipsd processes �inp�� returns an error��
Within the lipsd process all destructive read operations �in��� inp��� are immediately followed by
a tuple generating operation �out���� This eases the restoring of corrupted data after a crash as the
Fault�Tolerant Tuple Space Machine simply re�injects the tuple into the System Tuple Space if the last
tuple space operation of a crashed lipsd has been a destructive read� These mechanisms enables us to
handle recursive crashes of lipsd processes��

As already mentioned� each lipsd process maintains a tuple for its machine in the System Tuple Space
which contains the node state information� This information is based on the node�s status �running�

� i�e�
 if a lipsd crashes while it was recovering the data for a formerly crashed lipsd�

�� The Runtime Systems �

idle etc��� number of users� load average� number of application processes and the time of the last
update of this tuple� This information is considered when starting new application processes to achieve
a well�balanced process and load distribution� In order to detect failing application processes� the System
Tuple Space holds a table for each running application process� When this information gets updated by a
lipsd� this old table is compared with the new information� The processes which are marked as running
within the old table but marked as non�running in the new one� need to be restarted by a MessageServer�
These data are periodically read by the applications Fault�Tolerant Tuple Space Machine which then in
turn is able to request a restart of crashed application processes�

As the lipsd processes are permanently running on all machines in a LiPS installation� in particular
even if a machine is unavailable to run a LiPS application process due to idle�time restrictions� they are
implemented such that they cause minimal overhead for the machine� In the �rst place� the runtime and
memory requirements are minimized� As the LiPS system was used in relatively fast networks so far�
the network overhead was not optimized yet� When using LiPS in a huge installation or in wide�area
networks� more attention must be payed to reducing the communication tra�c�

��� The LiPS Daemon Controller lipsdc

The lipsdc tool can be used for two purposes� on one hand it is the means to initialize the global
data structures of the LiPS�System Runtime System in the System Tuple Space during the start�up
of a LiPS con�guration� On the other hand� it enables the administrator of a LiPS installation to
interactively change the con�guration during runtime and provides users with the information about
their application processes in the LiPS system�

If used during the start�up of a LiPS con�guration� a number of global tables are created in the form
of tuples in the System Tuple Space� Moreover� a con�guration �le is read containing entries for each
machine becoming a member of the LiPS installation such as the machine architecture or a speci�cation
of what it means for that machine to be idle� Finally� several con�guration �les are created and updated
resp� which have to be copied together with the lipsd binary to all machines taking part in the newly
set�up LiPS installation� These �les hold data about the FixServers� ports� the process IDs for the
di�erent lipsd processes and give information on the trace levels for the di�erent modules constituting
the lipsdc process�

In the interactive mode� the lipsdc allows to display and change the current LiPS con�guration such
as request the load state of each machine� add or remove machines in the installation� change the
speci�cation about idle�time restrictions� or display all application processes including information about
the user to which each process belongs or which machine each process is distributed on within the
network�

��� Tracing LiPS

It is very di�cult to follow the execution of a program in a distributed environment due to the fact
that there are actions taking place concurrently in di�erent processes possibly residing on di�erent
processors� The LiPS runtime systems provide the user with a facility to trace the output of the system
and the applications running within it in a �one� terminal or�and a �one� �le� The same mechanism is
applicable to the LiPS system itself�

Tracing is based on a syslog����like macro call in the source code� Depending on the actual tracing level
of the module� the macro output is redirected to a virtual console� identi�ed by an Internet address
and a port on which the console process is listening� or discarded� The tracing levels of the di�erent
modules are de�ned in a �le� The content of this �le is reread on receipt of a signal �SIGTRAP� and
the behavior of the tracing tool changes according to the newly read con�guration� In other words� the
tracing behavior of LiPS applications as well as the LiPS system itself is �at runtime� adjustable on a

	

per�module basis� Additionally� it is possible to disable tracing with the same mechanisms to gain full
performance� and to switch between these bounds of possibilities very easily�

Besides simple displaying of this tracing information in lines� it can also be used for pro�ling the
distributed programs� As the output can optionally be generated in the PICL format �Portable In�
strumented Communication Library� �GHPW��
� a pro�ler compatible with this format can be easily
integrated with LiPS�

� Performance

In this section we present some runtime measurements for tuple space operations with a number of
application processes concurrently accessing the tuple space� The test is based on the benchmark given
in �Mat��
� In this report the tests were performed using PVM Version ������ p�� TCGMSG and SCA
Linda on a network of IBM RS����� model ��� workstations under the operating system AIX ����
In those measurements� the best benchmark timing of di�erent tests suites was used to compare the
di�erent systems because the network on which the tests were made was concurrently used by other users
and therefore� the test conditions were not equal� Our tests were made within another environment and
for this reason� the timings presented here are not really comparable to the timings taken from �Mat��
�
Anyway� the timings presented here show� that the timings are in the same order of magnitude� Keeping
in mind that we are comparing a �fault�tolerant design� with non fault�tolerant ones� this is an impressive
result�

In this section we �rst describe the test environment used and give the skeleton code for the ping�pong
test performed� Then we show the timing for one ping�pong operation using � to � MessageServer
processes and up to �� clients�

��� Our Test Environment

In our tests� the MessageServers resided on Sun SPARCstation ���s with ��	 MB main memory under
the operating system SunOS ������ The replication of messages was done in a �� Mb�s fast Ethernet�
The connection to the machines on which the application processes were residing was made via an ATM�
LAN concentrator with an ATM switch having a theoretical bandwidth of ��� Mb�s� The machines on
which the application processes were residing were Sun SPARCstations SLC and ELC resp� with a
main memory of ����� MB under the operating system SunOS ������

��� Ping�Pong Test

In the ping�pong test� the time needed by an application process to write a tuple into the tuple space
and read the same tuple afterwards is measured� The loop in which those operations are executed is the
following�

for �iters � iterations� iters		 � �

t� � wtime���

out��ping�� �al�� buffer� buffer�size��

in��ping�� �AL�� buffer� �buffer�size��

�tp � wtime���

�tp�� 	� �t� � twtime��

�

�� Performance �

The function wtime�� calculates the time before and after an in�� � out�� sequence� The average time
for one iteration is calculated and the best results are taken �� The tests have been executed using tuples
each with a size of 	�� bytes� The size of a tuple is determined by the array buffer� the size of which
is speci�ed in buffer size�

��� Results

The runtime for a di�erent number of application processes and a di�erent number of MessageServers is
given in Figure � whereas Table � shows the runtime of one application process and one MessageServer�

0

20

40

60

80

100

120

140

160

5 10 15 20 25

Pi
ng

/P
on

g
T

im
e

in
 M

ill
is

ec
on

ds

Number of Application Processes

1 Messageserver
2 Messageservers
3 Messageservers

Figure �� Runtime of the Ping�Pong test for tuple space operations with � � �� application processes

In the last case� both the MessageServer and the application process resided on Sun SPARCstation ���s�

As mentioned earlier� no absolute test results can be obtained from the di�erent test environments�
However� the tests show that the approach presented in this paper achieves comparable results of the
same order� Thus� a similarly e�cient communication is realized for fault�tolerant applications�

System Name Runtime fault�tolerant

LiPS ��� ms yes
TCGMSG ��	 ms no
P� ��	 ms no
PVM ��� ms no
SCALinda 	�� ms no

Table �� Runtime for one application process and one MessageServer

� In the example twtime stands for the correction of the duration of a wtime�� call�

��

� Conclusion and Summary

LiPS is a system using the idle�time in a heterogeneous network of workstations for distributed ap�
plications� LiPS provides its users with the tuple space based generative communication paradigm of
distributed computing� The former version of LiPS has proven to work within an environment of about
��� machines� The main problem arising while designing a Runtime System within this environment is
dealing with faults caused by crashing machines or transient network errors� The design for Version ���
takes this into account and provides mechanisms to tolerate such faults�

The design is based on a Fault�Tolerant Tuple Space Machine being able to maintain the shared memory
in spite of crashing machines� A dedicated process resides on each node participating in the LiPS system�
the so called lipsd� building the interface from the LiPS�System to the machine� lipsd processes
communicate through a private tuple space called System Tuple Space� The System Tuple Space is
realized with a Fault�Tolerant Tuple Space Machine� The server processes running the System Tuple
Space are called FixServer� FixServer� and lipsd�processes constitute the LiPS�System Runtime System
providing services to the Application Runtime System�

The Application Runtime System is also based on a Fault�Tolerant Tuple Space Machine� To di�eren�
tiate the application processes from the system processes� the servers for the Applications Tuple Space
Machine are called MessageServers�

The recognition of crashed machines �or unavailable intermediate networks� is based on a timeout for
periodic updates of a node�s state �lipsd� in the System Tuple Space� In case of a machine crash�
application processes which resided on the crashed machine are easily detected and their restart is
scheduled� Propagation of these data is triggered through a signal mechanism added to the tuple space
operations�

Fault�tolerance on application level is based on checkpoints and message logging� Both mechanisms are
integrated into the Fault�Tolerant Tuple Space Machine�

The performance measurements show that the LiPS runtime systems are favorably comparable with
similar systems� and additionally provides fault�tolerance�

Bibliography

�AAD�	� Amir Y�
 Amir O�
 and Dolev D� A Highly Available Application in the Transis Environment� In
Proceedings of the Hardware and Software Architectures for Fault Tolerance� LNCS ���
 � ���	�

�ADKM��a� Amir Y�
 Dolev D�
 Kramer S�
 and Malki D� Membership algorithms for multicast communication
groups� In Intl� Workshop on Distributed Algorithms proceedings �WDAG���
 �� �����

�ADKM��b� Amir Y�
 Dolev D�
 Kramer S�
 and Malki D� Transis� A communication sub�system for high�
availability� In Annual International Symposium on Principles of Distributed Computing
 �����

�ADM��	� Amir Y�
 Dolev P�
 Melliar�Smith P�
 Agarwal D�
 and Ciarfella P� Fast Message Ordering and
Membership using a Logical Token�Passing Ring� In 	
th International Conference on Distributed
Computing Systems �ICDCS�
 number �	 in IEEE
 pages �������
 Pittsburgh
 � ���	�

�BCGL�� Bjornson R�
 Carriero N�
 Gelernter D�
 and Leichter J� Linda the Portable Parallel� Technical Report
YALEU�DCS�TR����
 Yale University
 Department of Computer Science
 New Haven
 � ����

�BL��� Butler R� and Lusk E� Users Guide to the p� Parallel Programming System� Technical Report ANL�
����
 Argonne National Laboratory
 � �����

�CFGK��� Carriero N�
 Freeman E�
 Gelernter D�
 and Kaminsky D� Adaptive Parallelism and Piranha� Tech�
nical Report YALEAU�DCS
 Yale University Department of Computer Science
 � �����

�Gel��� Gelernter D� Generative Communication in Linda� ACM Transactions on Programming Languages and
Systems
 ����������
 January �����

�Gel��� Gelernter D� Getting the Job Done� Byte
 �� �����

�GHPW��� Geist G�A�
 Heath B�W�
 and Peyton W� and Worley P�H� PICL a Portable Instrumented Commu�
nication Library� ORNL�TM����	�
 C�Reference Manual edition
 �����

�� Conclusion and Summary ��

�GK��� Gelernter D� and Kaminsky D� Supercomputing out of Recycled Garbage� Preliminary Experience with
Piranha� Sixth ACM International Conference on Supercomputing
 July �����

�GS��� Geist G� A� and Sunderam V� S� The PVM System� Supercomputer level concurrent computation on a
heterogenous network of workstations� In Proceedings of the Sixth IEEE Distributed Memory Computing
Conference
 	 �����

�Kei��� Idi Keidar� A Highly Available Paradigm for Consistent Object Replication� Master thesis
 Hebrew
University of Jerusalem
 Institute of Computer Science
 � �����

�LLM�� Litzkow M�J�
 Livny M�
 and Mutka M�W� CONDOR � A Hunter of idle Workstations� Technical
Report 	�
 University of Wisconsin � Dept� of Computer Science
 Madison
 December ����

�Mat��� Mattson T�G� Programming Environments for Parallel and Distributed Computing� A Comparison of
p�
 PVM
 Linda and TCGMSG� ftp Server� ftp�cs�yale�edu
 �����

�Par��� ParaSoft Corporation
 CA� Express C Reference Guide Version
��
 �����
�Set��� Setz T� LiPS Manual Version ���
 �� ����� Universit�at des Saarlandes
 Fachbereich Informatik

Lehrstuhl Prof� Buchmann�
�Set��� Setz T� Integration von Mechanismen zur Unterstutzung der Fehlertoleranz in LiPS� PhD Thesis

Universit�at des Saarlandes
 � ����� Fachbereich Informatik�

This article was processed using the LATEX macro package with LLNCS style

