
Software Fault�Tolerant Distributed Applications in

LiPS

Thomas Setz

Keywords� hypercomputing� software fault�tolerance� Linda� idle�time� recovery line

Abstract This paper illustrates how software fault�tolerant distributed applica�

tions are implemented within LiPS version ���� a system for distributed computing

using idle�cycles in networks of workstation�

The LiPS system �SR���SR���STea���Set�	�SF�
�ST�
�SL���ST��� employs the tu�

ple space programming paradigm� as originally used in the Linda
� programming

language� Applications implemented using this paradigm easily adapt to changes

in availability as they occur in workstation networks� In LiPS� applications are

enabled to terminate successfully in spite of failing nodes by periodically writing

checkpoints� freezing the state of a computational process� and keeping track of

messages exchanged between checkpoints in a message log� The message log is kept

within the tuple space machine implementing the tuple space and replayed if an

application process recovers� This assumes deterministic behavior of the application

process but allows independent checkpoint generation and alleviates the need for

application�wide synchronization in order to generate sets of consistent checkpoints�

� Overview

Workstation computers are becoming increasingly popular due to their high per�

formance�cost ratio� With increasing numbers of workstations and the advent of

high�speed networks� supercomputer�like aggregate computational power is avail�

able and� as shown in �BLZ���LMMS���Web�	�BMS�	
� can be used to perform

useful computations�

Application programmers working in this environment must be provided with a

programming system facilitating the development of distributed applications� This

is accomplished by mechanisms shielding the programmer from the complexity of

�
Linda is a trademark of Scientic Computing Association�� New Haven� Connecticut

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�

system�level programming� thus enabling him to concentrate on solving application�

level problems� For example� a heterogeneous environment of di�erent operating

systems� network protocols or processor architectures should be hidden from the

programmer� Implementing a distributed application is also made more dicult by

frequent changes in the availability of nodes and networks�

Transparency� meaning hiding the physical implementation of a distributed appli�

cation� is the utmost goal of every distributed programming system�

The LiPS system enables users to implement distributed applications in hetero�

geneous networks of workstations� connecting machines with di�erent processor

architectures and Unix
� operating system �avors� The system ensures that only

workstations which are considered idle by their users are used within the distributed

computations� The system also guarantees successful completion of distributed

computations in spite of failing machines or network links� Within the last years�

LiPS has been used to distribute computations on about �	� workstations con�

nected to the campus network at the University of Saarbr�ucken �Germany� and

will be enhanced to distribute applications on more than ���� machines within the

next years�

This paper presents some basic decisions taken when designing LiPS version ����

This version supports a software�fault�tolerant generative communication paradigm

based on the tuple space� as introduced by the coordination language Linda

�GCCC�	
�

The next chapter contains an introduction to generative communication� a pro�

gramming paradigm suited to implement distributed computations in networks of

workstations� Then� an introduction to the terminology used for coping with fault�

tolerance is given along with the model of software failure patterns used throughout

this paper� Next� the concept of software fault�tolerance is introduced� It permits

grouping software components and strategies into layers thus supplying general dis�

tributed applications with a variety of software fault�tolerance mechanisms� This

section also illustrates di�erent methods to restart single crashed processes within

the application framework and discusses the bene�ts of our approach� The general

�
Unix is licensed exclusively through X�Open Company Limited

�� Related work �

concept of software fault�tolerance is then applied to distributed applications im�

plemented along the generative communication paradigm� Using layer�� software

fault�tolerance enables the user to implement fault�tolerant applications� By relay�

ing all communication activities via the tuple space� a complete log of all messages

exchanged between application processes is available in the tuple space machine�

even while individual application processes are prone to failure� Having access to

a complete history of messages exchanged per process permits recovering applica�

tion processes in a highly ecient manner� but this requires a well�suited system

design� The last section presents the design of our Fault�Tolerant Tuple Space Ma�

chine along with its integration into the LiPS system�

� Related work

There are di�erent approaches to integrate di�erent levels of fault�tolerance into

tuple space based applications� Following �BDE��
� these approaches can be divided

into extensions to the tuple space runtime system �Xu ���LX���CKM���PTHR��

making tuple space fault�tolerant� resilient data and processes �KS���KS��
 mak�

ing tuple space and processes working on it recoverable� and transaction based or

transaction style like language extensions enabling the programmer to de�ne a se�

quence of tuple space operations as an atomic operation which will be evaluated

completely or not at all �BDE���BS��
�

In LiPS version ��� we follow the approach to resilient data and processes� A more

detailed description of the design and the implementation of this concept is given

in �Set�	
�

� Generative Communication

In order to implement distributed applications� a programmer must be supplied

with primitives enabling him to create additional processes or tasks� and to ex�

change messages among them� A conventional programming language� when aug�

mented by inter�process communication and process manipulation primitives� is suf�

�cient for implementing distributed algorithms� Interprocess communication �IPC�

�

may be established accessing the network protocols� using systems like PVM �GS��
�

Express �Par��
 or P� �BL��
� Another approach� which is used throughout this

work� is to use higher level paradigms as the tuple space based generative commu�

nication �Gel�	�BCGL���Gel��
� These approaches di�er with respect to usability�

eciency� and availability on di�erent platforms� While IPC using direct access

to network protocols permits highly ecient communication� applications imple�

mented using this approach are rather cumbersome to maintain� The generative

communication approach to IPC trades eciency against ease of use� due to the

overhead introduced by tuple space management� This overhead may be kept down

to a reasonable amount by analyzing communication patterns at compile�time�

This section describes the tuple space based generative communication paradigm�

Using this paradigm yields elegant solutions for communication patterns typically

found in distributed applications�

��� The Tuple Space

The tuple space is an associative� shared memory accessible to all application pro�

cesses� It is called associative as it contains data tuples which may be retrieved

addressable by their contents rather than by physical addresses� using a pattern�

matching mechanism� The implementation of tuple space memory is hidden from

the user and therefore may be realized on a shared�memory machine� a tightly�

coupled parallel computer� or on a network of workstations� Data tuples consist

of a list of simple data types� We distinguish active tuples generated with the

eval�� operator from passive tuples generated with out��� Active tuples are used

to create new threads of control within a distributed application while passive tu�

ples are merely used to store data items� A set of operations �in��� rd��� inp���

rdp��� is used to retrieve passive tuples� Both blocking and non�blocking versions

of tuple retrieval functions are available� Hence� these operations may be used for

synchronization and communication tasks� The tuple extracting operations in��

and inp�� read a data tuple and remove it from the tuple space� If no tuple is

available� the non�blocking operation inp�� immediately returns an error as op�

posed to the blocking operation in�� which suspends the calling thread until such

�� Generative Communication 	

a tuple is found� The tuple reading operations rd�� and rdp�� return a data tuple�

again in a blocking and non�blocking manner� but do not extract the tuple from

the tuple space� A more elaborate description of the tuple space can be found in

�Set��
�

��� Bene�ts of the Generative Communication

As the tuple space is conceptually separated from an application process� its content

is not lost across thread exits� Data tuples remain available until they are consumed

by some other process� which must not necessarily be around at the time the tuple

is created� As a result� inter�process communication is decoupled in time� As data

tuples are identi�ed solely by their contents� and not by any other means such as

senders� or recipients� process�ID� communication is made �anonymous�� in that

communicating processes do not need knowledge of their peers� identity� IPC using

the tuple space thus decouples communicating processes logically and physically�

This eases application development when compared to using a message�passing

based paradigm�

As processes in a distributed application have no notion of a peer�s location� mi�

grating processes in the case that a machine becomes unavailable due to load in�

crease or crash is made easier� A process may still retrieve messages even when

it has to change to a di�erent machine� This mechanism is transparent to the

application programmer as no host addresses are involved� The tuple space com�

munication paradigm is not tied to a particular programming language� hardware

or software environment� It may thus be used for distributed applications running

on a heterogeneous set of workstations� The paradigm also allows for adapting the

number of usable machines� implementing what is called �adaptive parallelism�

in �CFGK���GK��
� Applications may use all available machines� shrink down to

the usage of only one� and switch between these bounds of possibilities very easily�

Finally� integrating the tuple space based generative communication approach into

a conventional programming language requires only six additional operations��

� Which compares favorably to systems like Express �Par��� sporting about one thousand IPC

primitives�

�

Therefore� tuple space based applications turn out to be an adequate choice for

implementing distributed applications running on networks of workstations�

� Failure Models

Workstation computers are prone to failures� As a consequence� this may lead to

failures in applications implemented using the LiPS system� Several failure patterns

can be distinguished�

� Crash�failures or as called in �SS��
 �fail�stop�processors�� are observed when

a machine halts on an error condition� forcibly terminating all application pro�

cesses local to the processor a�ected�

� Soft�fail�stop�failures are observed when a machine stops on an error� terminat�

ing all local application processes� But there exists storage� possibly residing on

another una�ected machine which remains intact and is accessible�

� Omission�failures are observed when machines sometimes fail to send or receive

messages�

� Byzantine failures� where machine start sending wrong and even contradictory

information as a result of an error�

The LiPS system is able to cope with soft�fail�stop failures� Data that should

remain accessible in spite of machine failures is kept in a storage called repository�

The system further deals with omission�failures as messages are exchanged using

the UDP protocol of the TCP�IP protocol suite�� Handling Byzantine failure is

rather expensive� and these failures are rarely observed in practice� Therefore� we

will not consider Byzantine failures in this work�

� Software Fault�Tolerance

Distributed applications are usually based on fault�tolerance mechanisms provided

by a node operating system� The term �software fault�tolerance�� as introduced

� This protocol implements a �best�e�ort� delivery� Datagram messages may be lost or duplicated

by the underlying network layers�

�� Software Fault�Tolerance �

in �YC��
� is used to subsume methods and software components responsible for

detecting and correcting errors causing a distribute application to crash or hang�

that are not already handled in the underlying operating system� Software fault�

tolerance may be organized in layers � Figure � gives an overview� Layers are

discriminated along the levels of availability and data consistency�

Normally� distributed applications are based on the services delivered by the node

operating system� the so�called level � of software fault�tolerance� If a node crashes�

manual intervention is required to restart the processes which were residing on that

node� Shared data may be lost or left in an inconsistent state�

Layer�� software fault�tolerance is reached by providing for automatic restart of

application processes in the event of a crash� This layer provides for enhanced

application availability� as no manual intervention is required for the entire appli�

cation to complete� Restarted processes still need to re�do their entire computation�

resulting in a complete loss of e�ort spent on the previous run� Abort of a single

process may force the entire application to halt if shared global data is left in an

inconsistent state� thus wasting the entire time spent computing so far�

Layer�� software fault�tolerance requires application processes to create checkpoints

capturing a process�s state� If an application process crashes� it can be restarted

from its latest checkpoint� thereby reducing run time spent as e�ort to reach the

state at crash time� Furthermore� messages sent and received in the interval between

checkpoint generation are kept in a message log� If an application process restarts

from a checkpoint� it will receive the same set of messages it got on its initial run

and therefore will compute the same results again� This requires computations to be

fully determined by received input messages� Restarting processes from an earlier

checkpoint constitutes a backward error recovery strategy� An application process

is said to be in �recovery� state if it has not yet reached the state at crash time� It

is said to be �active� resp� �operational� if its computation proceeds beyond the

crash state� Layer�� software fault�tolerance strategies lead to increased application

process availability� as well as increased message�space consistency�

A distributed application is said to be layer�� software fault�tolerant if data kept in

a �le system are recoverable after a failure� If a process is restored from a checkpoint

�

Software

Fault-

Tolerance

Tolerance

Fault-

Traditional

Highly available processes

Recoverable Filesystem

Checkpointing and Recovery

Crash detection and Restart

Replicated Hardware

Mirroring, Parity check

Layer 4

Layer 3

Layer 2

Layer 1

Operating
System

Hardware

Figure�� Layering of Software Fault�Tolerance Strategies

image� all �les that were open at crash time should be accessible even if the process

was restarted on another machine� Changes made to the �les must be un�done

prior to restarting from a checkpoint� Level�� software fault�tolerance increases

data consistency of applications and increases process availability as processes are

able to migrate to another machine�

Layer�� software fault�tolerance mechanisms are used if an application needs a

very high availability� This is accomplished by replicating several copies of each

application process on di�erent nodes� When a process instance fails� identical

output is available from another instance of this application process� Thus� the

application continues to perform its computation apart from the time it takes to

notice node failure� and to use results produced by another process instance� All

it takes to implement layer�� fault�tolerance is to synchronize replica behavior�

Layer�� software fault�tolerance increases process availability�

� Recovery Design Alternatives on the Application Level

If a process of a distributed application has to be started from its last checkpoint�

the question arises how to treat messages sent or received by the process since its

last checkpoint� If e�g� process X in Figure � crashes� it may be restarted from

�� Recovery Design Alternatives on the Application Level �

checkpoint x� without a�ecting other processes belonging to the application� How�

ever� if process Y crashes at time t � �� after sending message m� it will generate

and re�send message m to process X when restarted from checkpoint y��

2 6 10 12 14 1684

X

Y

Z

x1 x3

y1 y2

z1

m

t

Checkpoint Messages

x2

y1.1

z2 n

Recovery line

Figure�� Recovery

There are two basic alternatives for dealing with this problem� The �rst one� later

referenced as Backward Backward Error Recovery �BBER�� involves undoing all

e�ects caused by a process in the time interval between its last checkpoint and

the time of the crash� To undo the e�ects caused by a failed process on another

active process� the failed process will be rolled back into an earlier state� and the

other process will be restarted from a checkpoint too� Consider process Y failed

after sending message m in the example� The BBER strategy would then require

restarting process X from checkpoint x� to undo the e�ects of re�sending message

m after Y is restarted from checkpoint y�� The second alternative� later referenced

as Backward Forward Error Recovery �BFER�� ensures that a process restarted

from a checkpoint executes the same instructions as on its initial run� However�

e�ects a�ecting other processes are suppressed� Applied to the example� process Y

would be restarted from checkpoint y�� When restarted� Y will again generate and

send m� Duplicate reception of m by X must then be suppressed by some external

means�

��

The BBER may lead to a �domino e�ect�� requiring the restart of other processes

indirectly a�ected by a process abort� If process Z crashes after sending n� X� Y �

and Z would need to be restarted from their respective checkpoints x�� y�� and z��

as they received some messages sent by Z after writing its latest checkpoint image�

Within this context� messages n andm are called �orphan messages�� Orphan mes�

sages may lead to a domino e�ect which possibly a�ects all application processes��

Applying the BBER strategy requires careful scheduling of checkpoints in order to

avoid orphaned messages� In the best case there is no information �ow at the time

all application processes create a checkpoint image� This could be accomplished by

scheduling process Y to write its checkpoint image y��� at time t � ��� At this point

in time� no unreceived messages are present in the system� If process Z would crash

after sending n� restarting processes X and Y from checkpoints x� and y��� would

be sucient to undo all changes made by process Z� which would then be restarted

from checkpoint z�� Checkpoints x�� y��� and z� are said to constitute a �recovery

line�� or �strongly consistent checkpoint�� The drawback is that all processes must

be considered when writing checkpoint images for every single application process�

This requires synchronization among all processes in order to determine whether

it is safe to write a checkpoint image�

Applying a BFER strategy alleviates the need for synchronization prior to taking

checkpoints� Individual processes may write checkpoint images at any time� This

requires keeping the message log in some entity surviving the process crash which

is responsible for supressing orphaned messages and replay of already received

messages�

� Combining Generative Communications and Software

Fault�Tolerance

This section shows how software fault�tolerance mechanisms are added to programs

based on the generative communication paradigm� Applying layer�� methods yields

an acceptable level of fault�tolerant execution for such applications� Application of

� There are more problems with BBER� An in�depth treatment is given in �MN���

�� Combining Generative Communications and Software Fault�Tolerance ��

layer�� strategies to these distributed programs is then examined in greater detail�

As all inter�process communication is done via the tuple space� there is already

a system entity in place to keep the message log for each application process�

una�ected by application process crashes� This lends itself to using the BFER

strategy for process recovery�

u
p
l
e

S
p
a
c

T

eA

B

out("logic", "I", b)

in("logic", "I", &a)

Figure�� IPC using the Tuple Space

On each machine where application processes are to be executed� a system service

program is installed� Its task is to control and to restart application processes in

the event of a machine crash� Thus layer�� software fault�tolerance is reached� The

implementation of these system service processes is described in greater detail in

�Fis��
� Layer�� software fault�tolerance by itself is not sucient for fault�tolerant

execution of applications using the generative communication approach for inter�

process communication as shared data may be left in an inconsistent state�

Layer�� software fault�tolerance adds checkpoints and message logging to the layer�

� software fault�tolerance mechanisms� Applications implemented using the genera�

tive communication approach for IPC are already exchanging messages by adding

and removing data tuples from a global tuple space� as depicted in Figure �� Tuple

space operations are kept in a per�process log� For each process� its checkpoint

image freezes the state of the particular computation performed by the process�

��

Messages sent or received as the checkpoint generation are commonly referred to

as �events� and are also kept in the message log� Figure � shows the message log

after exchanging messages in Figure �� The call to out�� in Process A is uniquely

identi�ed with event number �� We use the BFER in order to re�integrate a crashed

process into an application� It is sucient to restart an application process from its

latest checkpoint image and to supply messages from its message log� In particular�

duplicate output messages may now be identi�ed and are suppressed� When a

process succeeded in taking a checkpoint image� events prior to the checkpoint

event may be discarded from the message log� In Figure�� event � for process A

would no longer be present in process B�s message log as it is already incorporated

into its checkpoint taken at event �� process B would not receive this message again

when restarted from this checkpoint� However� when process A is restarted from

scratch after failing after event 	� the output message generated at event � must

be prevented from reaching the tuple space� as this would create a duplicate tuple�

Processes are said to be in recovery state when their communication is screened by

a message log�

Checkpoint Event

Message

Send or Receive Event

A

B

1 2

1 2 3 4 5

3 4 65 7

Time

Figure�� Message Logging

Distributed applications may need to access large amounts of data kept in �les�

If a machine fails and becomes unavailable� data kept on this machine is lost and

�� The LiPS System ��

may cause the entire application to fail� Layer�� software fault�tolerance addresses

this problem� It ensures that the �le system environment� may be restored when

encountering an error� Layer�� software fault�tolerance may be implemented by

replicating �les accessed by application processes� If a process is to be restarted�

all �les required by the process have to be copied to its working directory prior to

the process restart�

Normally� there is no need for application processes to be highly available� Applying

layer�� software fault�tolerance strategies is not necessary as applications are able

to run to completion if layer�� software fault�tolerance mechanisms are applied�

Replicating individual application processes in order to gain increased availability

would consume additional computing power which could be used by other applica�

tion processes too�

	 The LiPS System

The main problem that arises in implementing a software fault�tolerant system

for applications based on the generative communication paradigm deals with the

question of how to make the tuple space resilient to faults like machine crashes�

Obviously� the solution to this problem is replication of the tuple space among

di�erent machines� This approach is implemented very eciently in the so�called

Fault�Tolerant Tuple Space Machine explained later in this section�

We distinguish two Fault�Tolerant Tuple Space Machines in the LiPS system�

The �rst Fault�Tolerant Tuple Space Machine implements the System Tuple Space

maintaining data about the system state e�g� which machine is idle� The second

Fault�Tolerant Tuple Space Machine maintains the Application Tuple Space� Fig�

ure 	 on page �	 gives an overview�

There may exist several applications concurrently each using a private Fault�Tolerant

Tuple Space Machine� The System Tuple Space is shared by all applications�

� The le system environment of an application consists of all les being accessed by an application

process� Processes are expected to access les present in their working directories� in particular�

no le may be open concurrently by several processes

��

In this section� we �rst introduce the di�erent components of the runtime systems

of LiPS and their cooperation� A more detailed explanation is given in �SL��
� The

design and implementation of the Fault�Tolerant Tuple Space Machine is explained

next� A detailed description is given in �Set��
�

��� The LiPS Runtime Systems

We distinguish two di�erent runtime systems within LiPS� The system runtime

system and the application runtime system� Both are based on a Fault�Tolerant

Tuple Space Machine� The server processes of the Fault�Tolerant Tuple Space Ma�

chine for the system runtime system are called FixServer� those of the application

runtime system�s Fault�Tolerant Tuple Space Machine MessageServer� The relation�

ship between the di�erent runtime systems described above is depicted in Figure 	�

A designated server process called lipsd resides on each machine participating

in the LiPS system� The lipsd processes update and retrieve information from

the System Tuple Space� For example� node�state information� like load of a �the�

machine can be read �updated� easily through tuple space operations� lipsd pro�

cesses update their own node�state information in the System Tuple Space in �xed

intervals� A machine crash can be detected if this information is not received in

time� In this case possible errors due to lost data are repaired� and watchdog mech�

anisms will re�integrate the crashed machine �automagically� immediately after its

recovery� A more detailed description of these mechanisms is given in �SF��
�

Fault�tolerance on application level is implemented with a checkpointing and recov�

ery mechanism integrated into the Fault�Tolerant Tuple Space Machine� A check�

point is correlated to the evaluation of an eval�� operation� recovery is based on

the re�execution of a failed eval�� together with the replay of the message logging

of the �rst execution of eval��� Message logging is provided via the Fault�Tolerant

Tuple Space Machine�

�
�
T
h
e
L
iP
S
S
y
stem

�	

lipsdc

lipsdlipsd lipsdlipsd lipsdlipsd

master client
Application

MsgServer

MsgServer

ApplicationApplication

MsgServerMsgServer
MsgServer

client
Application

client master
Application

Application 1 Application 2

Tuple Space 2

Application

level

LiPS-System Runtime System with LiPS-Application Runtime System

R
untim

e S
ystem

A
pplicationTuple Space 1
Application

A
pplication

System
Tuple Space

FixServer

FixServer

FixServer

Fault-Tolerant Tuple Space MachineFTTM

UDP communication Processes residing on the same machineTuple space access

L
iP

S
-S

ystem
 R

untim
e S

ystem

FTTM

FTTMFTTM

F
ig
u
r
e
�
�
T
h
e
d
i�
eren

t
lev

els
o
f
th
e
L
iP
S
ru
n
tim

e
sy
stem

s

��

��� The Fault�Tolerant Tuple Space Machine

The Fault�Tolerant Tuple Space Machine replicates the content of the tuple space

among several machines� If a machine that a MessageServer �FixServer� resides on

crashes� the data are still available on the replicas� An additionally started server

process joining the Fault�Tolerant Tuple Space Machine will be initialized with the

data of an old replica� This feature makes the Fault�Tolerant Tuple Space Machine

N fault�tolerant� In the Fault�Tolerant Tuple Space Machine every tuple is tagged

with a unique ID �Sequence Number� as a result of the protocol used to replicate

data across the di�erent machines� This unique ID is used to speed up replication of

events among the di�erent servers� The protocols used in the Fault�Tolerant Tuple

Space Machine are based on those given in �ADM���
� An in�depth description of

the protocols used and their implementation is given in �Set���Set�	
�

As depicted in Figure �� the tuple space is managed by several MessageServers

Tuple Space

Ethernet

Message Server

Client (Application)

Logical

Token

Ring

Request

Reply

Figure�� Processes of the Tuple Space Machine

residing on di�erent machines� MessageServers must reside in the same broadcast

domain� The broadcast facility is utilized to replicate messages very eciently

among the di�erent servers� An additional token circulating among the servers

�� The LiPS System ��

schedules the permission to use the broadcast facility � avoiding Ethernet saturation

due to collisions� The circulating token ships additional data enabling� among other

things� �ow control between the replicas� Additionally� each broadcast message

�tuple� is tagged in sequence with a unique ID� This procedure establishes a linear

order among the tuples of the Fault�Tolerant Tuple Space Machine and speeds up

replication��

As shown in Figure �� an application process sends requests to the MessageServer

which is assigned to it� A request can either contain a tuple or a template� In

the following� we �rst explain how MessageServers process a tuple� and second

how templates are processed� As the MessageServers share the same broadcast

domain� a MessageServer is able to broadcast the tuple and hence replicate it

on multiple MessageServers with only one physical operation� At any time only

one MessageServer may broadcast a tuple� namely the MessageServer holding the

token message� After a MessageServer has �nished broadcasting messages �tuples��

it sends the token to the next MessageServer� With respect to this token transfer�

the MessageServers form a logical ring� Messages being broadcast are tagged with

a unique sequence number� The sequence number of the last broadcast message

of a MessageServer is sent within the token� The next MessageServer intending to

broadcast knows the sequence number of the last broadcast message and continues

the sequence� thereby establishing a total order on the messages broadcast� Within

one token rotation several tuples may be broadcast by each MessageServer�

If a MessageServer receives a template� it �rst tries for a match on its local tuple

space� If no tuple matching the template is found� the MessageServer noti�es the

requesting application process �NACK�� Otherwise� if the MessageServer �nds a

match� it must �rst synchronize with the other MessageServers� In order to notify

the other MessageServers of the tuple access� it is sucient to send the sequence

number �� bytes�� the application process accessing the tuple and the event number

in its message logging �� bytes� as well as the type of access �� byte� to identify

� If a broadcast message was not received on a replica� this circumstance is easily obtained as

there is a gap in the sequence of received messages� In this case� a retransmission could be

requested immediately�

��

the operation to the replicas� These items of access information now are added to

the circulating token� The size of the token then determines the number of reading

and extracting tuple space operations which may be replicated within one token

rotation�

 Summary

This paper addressed the basic design decisions made when building version ���

of the LiPS system for implementing fault�tolerant applications in networks of

workstations� The system is currently being used at the University of the Saar�

land at Saarbr�ucken� Germany and enables programmers to implement distributed

applications using the idle�time of networked workstations�

As the application uses the tuple space for inter�process communication� applica�

tions are able to adapt smoothly to the workstation environment� The integration

of mechanisms to add some level of software fault�tolerance handles failures like the

reboot of a machine� Application processes may be recovered very eciently using

a recovery strategy based on resilient processes and resilient data� The advantage

of this strategy is that application processes are independent both in the choice of

when to take a checkpoint and when to recover from a checkpoint� This enables

exhaustive usage of idle�time present in a workstation network as processes may

be migrated to other idle machines in the event the processor they are running on

becomes busy� The migration of a process can be based on the mechanisms used

to guarantee fault�tolerance� This enables the system to rapidly and easily adapt

to changes in machine usability such as those occurring during the daytime�

The above design buys eciency from the implementation of a Fault�Tolerant Tuple

Space Machine� replicating the content of the tuple space among di�erent machines�

The LiPS system distinguishes between two runtime systems both based on the

Fault�Tolerant Tuple Space Machine� The �rst runtime system� the so�called sys�

tem runtime system� provides the applications with software fault�tolerance of level

� based on a watchdog mechanism� The second runtime system� the so�called ap�

plication runtime system� provides the application with software fault�tolerance of

level � based on checkpointing and message logging� The advantage of this strategy

	� Summary ��

is that application processes are independent in taking a checkpoint� In particular�

there is no need to do any synchronization with other application processes when

generating a checkpoint�

References

�ADM���� Amir Y�� Dolev P�� Melliar�Smith P�� Agarwal D�� and Ciarfella P� Fast Message
Ordering and Membership using a Logical Token�Passing Ring� In ��th International
Conference on Distributed Computing Systems �ICDCS�� number �� in IEEE� pages 		��
	
�� Pittsburgh� 	 �����

�BCGL��� Bjornson R�� Carriero N�� Gelernter D�� and Leichter J� Linda the Portable Paral�
lel� Technical Report YALEU�DCS�TR�	��� Yale University� Department of Computer
Science� New Haven� � �����

�BDE��� Bakken D� E� Supporting Fault�Tolerant Parallel Programming in Linda� PhD thesis�
The University of Arizona�
 ����� Department of Computer Science�

�BL��� Butler R� and Lusk E� Users Guide to the p� Parallel Programming System� Technical
Report ANL������� Argonne National Laboratory� 	 �����

�BLZ��� Buchmann J�� Loho J�� and Zayer J� An Implementation of the General Number Field
Sieve� In Proceedings of Crypto���� Heidelberg� August ����� Springer Verlag�

�BMS�	� Buchmann J�� M�uller V�� and Shoup V� Distributed Computation of the Number of
Points on an Elliptic Curve over a Finite Prime Field� Technical report� Universit�at des
Saarlandes� SFB ��� TP D	� ����	� ���	�

�BS��� Bakken D� E� and Schlichting R�D� Supporting Fault�Tolerant Parallel Programming
in Linda� Technical Report ������ Department of Computer Science� The University of
Arizona�
 �����

�CFGK��� Carriero N�� Freeman E�� Gelernter D�� and Kaminsky D� Adaptive Parallelism and
Piranha� Technical Report YALEAU�DCS� Yale University Department of Computer
Science� � �����

�CKM��� Chiba S�� Kato K�� and Masuda T� Exploiting a weak concistency to implement dis�
tributed tuple space� In Proceedings of the ��th International Conference on Distributed
Computing Systems�
 �����

�Fis�
� Fischer J� Software Fehlertoleranz vom Level � in LiPS� Diplomarbeit� Universit�at des
Saarlandes� ���
� Fachbereich Informatik� Lehrstuhl Prof� Buchmann�

�GCCC�	� Gelernter D�� Carriero N�� Chang S�� and Chandran S� Parallel Programming in Linda�
IEEE Transactions on Computer� ���	�

�Gel�	� Gelernter D� Generative Communication in Linda� ACM Transactions on Programming
Languages and Systems� ������������ January ���	�

�Gel��� Gelernter D� Getting the Job Done� Byte� �� �����

�GK��� Gelernter D� and Kaminsky D� Supercomputing out of Recycled Garbage� Preliminary
Experience with Piranha� Sixth ACM International Conference on Supercomputing� July
�����

�GS��� Geist G� A� and Sunderam V� S� The PVM System� Supercomputer level concurrent
computation on a heterogenous network of workstations� In Proceedings of the Sixth IEEE
Distributed Memory Computing Conference� � �����

�KS��� Kambhatla S� Recovery with limited replay� Fault�tolerant processes in Linda� Technical
Report CS�E ������� Department of Computer Science� The Oregon Graduate Institute�
� �����

�KS��� Kambhatla S� Replication issues for a distributed and highly available Linda tuple�space�
Master thesis� Oregon Graduate Institute� Department of Computer Science� Beaverton�
Oregon� � �����

�LMMS��� Lehmann F�� Maurer M�� M�uller V�� and Shoup V� Counting the Number of Points
on Elliptic Curves over Finite Fields of Characteristic greater than three� In Proceedings
of ANTS I� �����

��

�LX��� Liskov B� and Xu A� A design for a fault�tolerant� distributed implementation of Linda�
In Proceedings of the Nineteenth International Symposium on Fault�Tolerant Computing�

 �����

�MN��� Mukesh Singhal and Niranjan Shivaratri� Advanced Concepts in Operating Systems� Series
in Computer Science� Mc Graw Hill� �����

�Par��� ParaSoft Corporation� CA� Express C Reference Guide Version �	
� �����
�PTHR��� Patterson L� I�� Turner R� S�� Hyatt R�M�� and Reilly K� D� Construction of a fault�

tolerant distributed tuple�space� In Proceedings of the ���� Symposium on Applied Com�
puting� ACM�SIGAPP� � �����

�Set�	� Setz T� LiPS Manual Version �	�� �� ���	� Universit�at des Saarlandes� Fachbereich
Informatik� Lehrstuhl Prof� Buchmann�

�Set�
� Setz T� Integration von Mechanismen zur Unterst�utzung der Fehlertoleranz in LiPS� PhD
Thesis� Universit�at des Saarlandes� � ���
� Fachbereich Informatik�

�SF�
� Setz T� and Fischer J� Software Fehlertoleranz vom Level Eins in LiPS� In Clemens H�
Cap� editor� Proceedings of SIWORK��� Workstations and their applications� pages ����
���� Universit�at Z�urich� Institut f�ur Informatik� May ���
� vdf Hochschulverlag AG an
der ETH Z�urich�

�SL��� Setz T� and Liefke T� The LiPS Runtime Systems based on Fault�Tolerant Tuple Space
Machines� In Proceedings of the Workshop on Runtime Systems for Parallel Programming
�RTSPP�� ��th International Parallel Processing Symposium �IPPS����� Geneva� Switzer�
land� April ����� Appeared as Technical Report� Vrije Universiteit Amsterdam� Faculteit
der Wiskunde en Informatica� No� IR����� februari �����

�SR��� Setz T� and Roth R� LiPS� a System for Distributed Processing onWorkstations� Technical
Report SFB ��� TP D	� Universit�at des Saarlandes� December �����

�SR��� Setz T� and Roth R� Distributed Processing with lips� In ALCOM� Saarbr�ucken� August
�����

�SS��� Schlichting R�D� and Schneider F�B� Fail Stop Processors� An Approach to Designing Fault
Tolerant Computing Systems� ACM Transactions on Computing Systems� �������������
� �����

�ST�
� Setz T� and Tews M� Heterogenes checkpointing in LiPS� In Clemens H� Cap� editor�
Proceedings of SIWORK��� Workstations and their applications� pages �	���� Universit�at
Z�urich� Institut f�ur Informatik� May ���
� vdf Hochschulverlag AG an der ETH Z�urich�

�ST��� Setz T� Integration von Softwarefehlertoleranz in mit LiPS verteilten Anwendungen�
In D� Tavangarian� editor� Proceedings ARCS��� Architektur von Rechensystemen� ��	
ITG�GI�Fachtagung� Rostock� Germany� pages �������� Universit�at Rostock� � ��� VDE�
Verlag�

�STea��� Setz T�� Tews M�� and et al� The LiPS Development System� �� ����� Universit�at des
Saarlandes� Fachbereich Informatik� Lehrstuhl Prof� Buchmann�

�Web�	� Weber D� An Implementation of the Number Field Sieve to Compute Discrete Logarithms
mod p� In Advances in Cryptology Eurocrypt ��� pp� �	���	� � ���	�

�Xu ��� Xu A� A Fault Tolerant Network Kernel for Linda� Master thesis� MIT� Laboratory for
Computer Science� Cambridge� � �����

�YC��� Yennun H� and Chandra K� Software Implemented Fault Tolerance� Technologies and
Experiences� In Proc	 of ��rd IEEE Conference on Fault Tolerant Computing Systems
�FTCS�� pages ���� �����

