
VCG

Visualization of Compiler Graphs

User Documentation V�����

Georg Sander
sander�cs�uni�sb�de

Universit�at des Saarlandes
����� Saarbr�ucken

Germany

Feb� �� ���	

Copyright notice
 c���������	 by I� Lemke� G� Sander and the Compare Consortium

This work is supported by the ESPRIT project ���� Compare� We thank the Compare Consortium for the per�
mission to distribute this software and this documentation freely� You can redistribute them under the terms of the
GNU General Public License as published by the Free Software Foundation� version � of the License� The members
of the Compare Consortium are ACE Associated Computer Experts bv� GMD Forschungsstelle an der Univer�
sit�at Karlsruhe� Harlequin Limited� INRIA� STERIA� Stichting Mathematisch Centrum 	CWI
� and Universit�at des
Saarlandes�

The Compare Consortium will neither assume responsibility for any damages caused by the use of its products� nor
accept warranty or update claims� This product is distributed in the hope that it will be useful� but WITHOUT ANY
WARRANTY� without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE� See the GNU General Public License for more details�

The information contained in this document is subject to change without notice�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Acronym

https://core.ac.uk/display/196651275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CONTENTS �

Contents

� Introduction �

� Overview of the Layout Phases �

�� Parsing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
� Folding � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
�� Assignment of Ranks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�� Reduction of Crossings � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�	 Calculation of Coordinates � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� Bending of Edges � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� Drawing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Graph Description Language ��

��� Graph Attributes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� Node Attributes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
��� Edge Attributes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� Grammar of GDL � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��	 Colors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Further Remarks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Examples of GDL Speci�cations ��
��� A Cyclic Graph � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� A Control Flow Graph � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The E�ect of the Layout Algorithms � � � � � � � � � � � � � � � � � � � � � � � ��
��� Tree Layouts � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��	 The Combination of Features � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Usage of the VCG tool ��

	�� Starting the Tool � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	� The Graph Window � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	�� Folding � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
	�� Positioning � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
	�	 Node Information � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
	�� Scaling � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
	�� Layout Parameters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		
	�� View Parameters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
	�� File Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
	��� The File Selector Box � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	��� Animations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	�� Keyboard Commands � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	��� Speedup the Layout � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	 Experiences 	�



LIST OF TABLES 


 Related Work 		

� Conclusions 	


List of Tables

� Graph Attributes� Part � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
 Graph Attributes� Part  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
� Node Attributes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� Edge Attributes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
	 Color Codes of the Default Color Map � � � � � � � � � � � � � � � � � � � � � � �
� The ISO Latin � Character Set � � � � � � � � � � � � � � � � � � � � � � � � � � �
� Menu Items � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� Key Commands in the Graph Window � � � � � � � � � � � � � � � � � � � � � � ��
� Key Commands in the Layout Dialog Box � � � � � � � � � � � � � � � � � � � � �
�� Key Commands in the View Dialog Box � � � � � � � � � � � � � � � � � � � � � �
�� Key Commands in the Edge Class Selection Dialog Box � � � � � � � � � � � � ��
� Key Commands in the Export Dialog Box � � � � � � � � � � � � � � � � � � � � ��
�� Key Commands in the File Selector Box � � � � � � � � � � � � � � � � � � � � � ��
�� Key Commands in the Title Selector Box and Follow Edge History Box � � � ��
�	 Statistics
 Times for Loading and Positioning � � � � � � � � � � � � � � � � � � ��

List of Figures

� Hiding of Edges and their Region � � � � � � � � � � � � � � � � � � � � � � � � � �
 Folding a Subtree � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� Folding a Subtree until a Node � � � � � � � � � � � � � � � � � � � � � � � � � � �
� Downward Laid Out Trees and Structural Trees � � � � � � � � � � � � � � � � � �
	 Displayed Window and Virtual Window � � � � � � � � � � � � � � � � � � � � � ��
� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� Example  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�� Example 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
�� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� normal without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�	 normal with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� minbackward without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� minbackward with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� maxdepth with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� maxdepthslow without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � ��



LIST OF FIGURES �

� maxdepthslow with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� mindepth without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
 mindepth with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� mindepthslow without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � ��
� mindepthslow with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	 maxdegree without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� maxdegree with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� mindegree without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� mindegree with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
� minindegree without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� minindegree with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� maxindegree without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � �
� minoutdegree without �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � �
�� maxindegree with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�� minoutdegree with �ne tuning � � � � � � � � � � � � � � � � � � � � � � � � � � �
�	 Example ��
 Layout algorithm maxdepth � � � � � � � � � � � � � � � � � � � � � ��
�� Example ��
 Layout algorithm tree� treefactor���� � � � � � � � � � � � � ��
�� Example ��
 Layout algorithm tree� smanhattan edges � � � � � � � � � � � �	
�� Example �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� The Graph Window � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� The Edge Class Menu of an Example � � � � � � � � � � � � � � � � � � � � � � � 	�
�� The Follow Edge History Box � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
� The Layout Parameter Box � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� Normal Flat View � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		
�� Polar Fisheye View � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�	 Cartesian Fisheye View � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� The View Parameter Box � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� The Export Box � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� The File Selector Box � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��



� INTRODUCTION �

� Introduction

Visualization allows better understanding of the intermediate representations �IRs� used in
compilers� Many parts of the IR are trees or graphs� e�g�� the syntax tree� the control �ow
graph� the call graph or the data dependence graph �WiMa��� A simple textual visualization
of trees and graphs is often too confusing or unreadable� A special visualization tool that
shows trees and graphs in a natural way is more helpful� It allows powerful debugging of
internals of the compiler and the examination of the e�ect of engines on the IR�

In the early phases of the project Compare� the Edge tool �PaTi��� was used for this
purpose� This tool has the advantage to be easily adaptable by reading a graph speci�cation
from a �le that can be used as interface format between engines �compiler phases� and the
tool� Further� the tool can be used for postmortem debugging� which is important if the
compiler graphs are such large that the online debugging would slow down the compiler to
an unreasonable degree�

However� the Edge tool is very slow on typical IR graphs �e�g�� visualization of a syntax
tree of a CLaX program of �� lines needed more than � minutes on a Sun Sparc ELC�� and
the layout is sometimes a little bit strange for the graphs used in compilers� Furthermore� it is
only possible in a limited way to show condensations of graphs� that often help to understand
algorithms in compiler construction� To overcome these de�ciencies� a new visualization tool is
implemented� theVCG tool� It combines the advantages of the Edge tool �easy adaptability�
with reasonable speed �a few seconds for the same example as above� and new concepts of
graph approximations� Therefore� we de�ne a language that describes graphs and the layout
of their nodes and edges �GDL � graph description language�� The core of this language is
compatible to the input speci�cation language of the Edge tool� to allow interchangeability�
Additionally� some extensions are implemented �colors� edge classes and priorities� splines�
graph folding for path approximations�� but also some layout description limits are introduced
to speed up runtime� If no layout is given in the graph speci�cation� the tool computes a
appropriate one� With respect to �readability� of the graph the following criteria are used


�� Place the vertices �nodes� in a hierarchy of layers

� Place the nodes without overlapping

�� Avoid crossings of lines �edges�

�� Keep edges short and straight

	� Favor a balanced placement

�� Position related nodes close together

In the following sections� we �rst give an overview of the phases during the calculation of
the layout� Next� we de�ne the graph description language and show some examples� Then�
we explain the usage of the VCG tool� The remaining sections describe some experiences�
and statistics concerning speed and applicability� The details of the algorithms used in the
VCG tool are not described here� There exists a technical report that explains these algo�
rithms �see �Sa��� �Sa�	���



� OVERVIEW OF THE LAYOUT PHASES 	

� Overview of the Layout Phases

The task of the VCG tool is to parse a graph speci�cation� to assign horizontal and vertical
positions to each node� if necessary� and to �nd polygon segments or splines for the edges
such that they do not overlap with nodes� and �nally� to draw the resulting picture in a
window� The speci�cation that is given as input to the VCG tool is a readable ASCII text�
The output window can be used to browse through the graph� to shrink or enlarge the graph�
to fold parts of the graph and to export a bitmap of the graph or a PostScript �le� Graph
folding results potentially in a relayout of the graph� The layout of the graph can be in�uenced
in a wide range by attributes of edges� nodes and graphs� or by di�erent variations of the
layout algorithm� Because graph layout and drawing is a rather complex process� the tool
gives messages in form of a single character to indicate its state�

��� Parsing

The �rst phase of the tool is to parse the speci�cation and to construct internal data structures
representing the graph� The speci�cation may contain attributes denoting initially folded parts
of the graph� This phase is indicated by the message character �a��

��� Folding

This phase is executed as start of each relayout� i�e� after the start of the tool� or whenever
a folding operation was selected by the user� It is indicated by the message character �f��
Folding of a graph allows to inspect the graph in a more compact way
 Unimportant parts are
hidden while important parts are shown in detail� To fold parts of the graph also improves
the performance of the tool because the folded parts need not to be laid out� Examples
are
 fold the procedure parts of a syntax tree� hide annotations of a graph �e�g�� syntax tree
attributes�� display approximations of paths in a graph� show the condensation to strongly
connected regions� etc� There are � general methods to fold the visualized graph


� folding of complete subgraphs� The GDL speci�cation allows to partition the
graph statically into nested subgraphs� �Statically means
 there is no way to change
this partitioning interactively�� See section ���� attribute folding� Subgraphs can be
visualized explicitly� i�e all nodes are drawn� or in a compressed manner by displaying
only one summary node for the whole graph�

� hiding of edges� The edges of the graph can be statically partitioned into classes�
Edge classes are speci�ed by numbers ��� � � � � �� Every class can separately be hidden�
In this case� all edges of this class are not laid out and not drawn� �Note that edges
with the linestyle invisible are laid out� even if they are not drawn� See section �����
Additionally� all nodes that are only reachable by edges currently hidden are not drawn�
i�e� all nodes whose incoming and outgoing edges are hidden become invisible� too� See
section ���� attribute hidden� However� nodes without any incoming or outgoing edge
are drawn �but see also section ���� attribute ignore�singles�� This method allows
to hide regions of the graph that are only connected by edges of a certain class� See the



� OVERVIEW OF THE LAYOUT PHASES �

k

class k  is hidden

Graph       Part of

class k
Graph       

k

Figure �
 Hiding of Edges and their Region
The annotation �dark grey box� is a graph where all edges are in class k while the main graph is

connected via class j �j �� k�� The bold edges of class k connect the annotation with the main graph�

thus after hiding with respect to class k� the annotation is invisible� Other nodes �e�g�� the grey node�

in the main graph are unchanged even if there are edges from the invisible annotations to these nodes�

Figure 
 Folding a Subtree

The striped subtree is folded to the black summary node�

sketch in �gure �� Note that the hiding of edges may change the layout of a graph very
much� if certain variations of the layout algorithms are selected �variation maxdegree

� � �minoutdegree��

� folding of connected regions� While subgraphs allow statically to specify regions
that can be folded to one node� we can also use the class concept of edges to fold



� OVERVIEW OF THE LAYOUT PHASES �

Figure �
 Folding a Subtree until a Node

The striped region is folded to the black summary node�

dynamically speci�ed regions �dynamically � interactively speci�ed�� The connected
region of a start node n with respect to an edge class k is the set of nodes which are
reachable from n by edges of classes less or equal than k� It is possible to fold a connected
region of n into one node� It is also possible to select a node m inside the region of n
where the folding stops
 in this case� the connected region of n without the connected
region of m is folded� or� with other words� the folding of the region of n stops at the
predecessors of m� This method can be used to visualize approximated path�

A simple example is a tree where all edges have the same class� Folding a node n is
folding the whole subtree starting from n into one summary node �see �gure �� Folding
n until m �where m is in the subtree of n� is folding the path from n to m and all
subtrees along this path except the subtree that starts from m �see �gure ���

Note that nested foldings are possible� Folding regions or subgraphs may interfere with
hiding of edges� In this case� �rst the summary node of the folded region or subgraph is
calculated� and then the hiding of edges is performed�

��� Assignment of Ranks

After folding� all visible nodes are determined� If all visible nodes are speci�ed by the user
with valid coordinates� the graph is drawn immediately� However� if the coordinates of at least
one node is missing� an appropriate layout must be calculated� The �rst pass places the nodes
into discrete ranks� All nodes of the same rank will appear at the same vertical position� The
partitioning of the graph into levels of nodes of the same rank is indicated by the message
character �p��

There are many possibilities to assign the rank� The normal method is to calculate a
spanning tree by determing the strongly connected components of the graph� All edges



� OVERVIEW OF THE LAYOUT PHASES �

should be oriented top down� A heuristics tries to �nd a minimal set of edges which cannot
be oriented top down� This is necessary in cycles of the graph� A faster method is to calculate
the spanning tree of a graph by depth �rst search �DFS�� However� the order the nodes are
visited in in�uences heavily the layout� The initial order of the nodes is the order given by
the speci�cation of the graph� Thus we have implemented various versions of such methods


� dfs
 Calculate the spanning tree by one single DFS traversal� This is the fastest method�
but the quality of the result depends heavily on the initial order of the nodes in the
speci�cation� and might be poor for some graphs�

� maxdepth
 Calculate the spanning tree by DFS with the initial order and with the
reverted initial order� and take the deeper spanning tree� This results in more levels� i�e�
the graph is larger in y�direction�

� mindepth
 Take the �atter spanning tree of both DFS� This results in less levels� i�e�
more nodes at same levels� and the graph is larger in x�direction�

� maxdepthslow� mindepthslow
 While the previous algorithms are fast heuristics to
increase or decrease the depth of the layout� these algorithms really calculate a good
order to get a maximal or minimal spanning tree� The disadvantage is� that they are
rather slow� Warning
 a minimal spanning tree does not necessarily mean that the depth
of the layout is minimal� However� it is a good hint to get a �at layout� See the examples
in section ����

� maxdegree� mindegree� etc�
 We can also presort the nodes by di�erent criteria before
DFS such that the nodes are scheduled in a di�erent order� Possible criterias are the
number of incoming edges� the number of outgoing edges� and the number of edges at
all on a node� The sorting of nodes may have various e�ects and can sometimes be used
as a fast replacement of maxdepthslow or mindepthslow�

� minbackward
 Instead of calculating strongly connected components� we can also per�
form topological sorting to assign ranks to the nodes� This is much faster� if the graph
is already known to be acyclic�

� tree
 This method works only� if the graph is a forest of downward laid out trees� i�e�
each node at rank l has at most one adjacent edge coming from a node of an upper
rank k � l to it� A node may have edges pointing to nodes at the same level� and many
adjacent edges coming from nodes of lower ranks k � l� and the direction of the edges
can be arbitrary� but the picture of the layout �if the arrow heads are ignored� must be a
tree �see �gure ��� The assignment of ranks is done by DFS� Then� the graph is checked
whether it is a forest of downward laid out trees� If this is not the case� the standard
layout is used as fallback solution� As advantage of this method� crossing reduction �see
next section� is not necessary for downward laid out trees� and a very fast positioning
algorithm can be used�

A further possibility to in�uence the layout are the priorities of edges� During the calcu�
lation of the spanning tree� edges of higher priority are preferred� After the partitioning� a



� OVERVIEW OF THE LAYOUT PHASES �

Structurally� this is not a tree �e�g��
many edges point to the node �D��� But
the layout has the shape of a tree� thus
it is a downward laid out tree�

Structurally� this is a tree� But the lay�
out is not a downward laid out tree be�
cause of the edges at the nodes �B� and
�C��

Figure �
 Downward Laid Out Trees and Structural Trees

�ne tuning phase tries to improve the ranks in order to avoid very long edges� Remaining too
long edges are split into small edges and dummy nodes�

��� Reduction of Crossings

The next pass calculates a good order of the nodes within levels to avoid edge crossings� This
pass is not necessary� if the method for downward laid out trees is used� The �rst step is to
unmerge connected components of the graph and to handle each component separately� The
message character �u� indicates this�

The crossing reduction algorithm calculates the weights of the nodes dependent on the
possible crossings� and reorders the nodes of a level according to these weights� Because
the ordering of nodes within one level in�uences the weights of the adjacent levels� this is
performed iteratively until no improvement is anymore recognized� This is the phase � of the
crossing reduction� indicated by the message character �b��

What happens� if the weights of some nodes are equal � Then� the selected order of these
nodes is arbitrary� In order to improve the layout further� a permutation of these nodes is
tried� Sometimes� a permutation allows further to reduce the crossings� This is the phase  of
the crossing reduction� indicated by the message character �B��

However� the �nal result need not to be optimal� The crossing reduction is only a heuristics�
A local optimization phase follows �message character �l���

There are four possibilities to calculate weights for crossing heuristics� The default
weights are the barycenter weights �STM���� while the mediancenter weights �GNV��� are
sometimes more appropriate� especially if the average degree �number of edges� at the nodes is



� OVERVIEW OF THE LAYOUT PHASES ��

small� The barymedian weights are the combination of barycenter and mediancenter� where
barycenter has the �rst priority and mediancenter is only used for those nodes where the
barycenter weights are equal� Conversely� the medianbary weights are the combination of
barycenter and mediancenter� where mediancenter has the �rst priority�

��� Calculation of Coordinates

After partitioning of nodes into levels and ordering of the nodes within the levels� we can
assign coordinates to the nodes� Here� the nodes can be aligned at the bottom or at the top
of a level or centered at a level� and there is a minimal distance between the levels �yspace��
This in�uences the y�coordinates� The x�coordinate must be calculated such that there is a
minimum distance between the nodes �xspace� and a minimal distance between the bend
points of edges �xlspace�� Further� the layout must be balanced� such that the edges are
short and straight�

To achieve this� either a special method for downward laid out trees is used �message
character �T��� or� two general iteration phases are performed
 The �rst phase simulates a
physical pendulum� The nodes are the balls and the edges are the strings� The balls hanging
on the strings pendel� i�e� the nodes move inside their level and in�uence the neighbored
nodes� until the layout is sparse enough such that each node has space to be placed on a good
position� This phase is indicated by the message character �m��

Next� the nodes are centered with respect to their edges� This phase simulates a rubber�
band network
 The edges pull on a node with a power proportional to their length� As e�ect�
the node moves to a position such that the sum of the forces of its edges is zero� Then� the
length of the edges is balanced� The message character �c� indicates this phase�

An optional �ne tuning phase tries to recognize long edges and tries to position these
edges by long line segments with gradient �� degree� This is useful for the orthogonal layout
methods� The message character �S� indicates this phase�

Unfortunately� both physical simulations need not to be convergent� i�e� it may happen
that they are iterated in�nitely often without resulting in a stable layout� These cases are
seldom� To prevent in�nite execution� the number of iterations is arti�cially restricted� The
running in such a �timeout� situation is indicated by the message character �t��

��� Bending of Edges

If a graph contains nodes with di�erent sizes� it might happen that an edge starting at a very
small node is drawn through a neighbored large node� To avoid this situation� we allow that
edges are bend at certain points� Also� if an orthogonal layout method is selected� the edges
are bend such that only orthogonal line segments exist� These bendings are calculated in an
iterative phase indicated by the message character �e��

��� Drawing

Finally� the graph is drawn in a window� or it is exported into a �le� Edges can be drawn
as polygon segments or optionally as splines� The drawing of splines is very slow� thus it is
indicated by the character �d��



� GRAPH DESCRIPTION LANGUAGE ��

The exporting into PostScript or into bitmap formats �PBM and PPM� is also possible
and is indicated by further message characters�

� Graph Description Language

The graph description language is very similar to GRL de�ned in �MaPa���� A speci�cation
describes a graph that consists of subgraphs� nodes� and edges� Subgraphs are parts of a
graph that may be folded to one node during visualization or may be drawn explicitly� These
may have attributes that specify details of the graph�s appearance on the screen like labels�
colors� sizes etc� The following shows an overview of the format of a GDL description


graph� f

� general graph attributes �
� list of nodes or subgraphs �
� list of edges �

g

where nodes and edges are speci�ed by

node� f
title� � node title �
� node attributes �

g

and

edge� f
sourcename� � title of source node �
targetname� � title of target node �
� edge attributes �

g

There are some special kinds of edges


back edges These edges are not laid out in the normal orientation� but are reverted� For
instance� if the layout algorithm tries to give all normal edges a top down orientation�
it tries to give the back edges a bottom up orientation� If a graph contains a cycle� not
all edges can have the same orientation
 Some edges must be reverted� In this case� the
layout algorithm prefers back edges before selecting any other edge to be reverted�

near edges These special edges are laid out such that their source and target node are
directly neighbored at the same level� Near edges are drawn as short horizontal lines
which are not crossed by other edges or nodes� Invisible near edges can be used to
group nodes at a level together� A node can have maximal two near edges� whose one
is positioned to the left and the other is positioned to the right� �Other restrictions�
originated by the use of anchor points� are explained later��



� GRAPH DESCRIPTION LANGUAGE �

bent near edges These special edges consist of a horizontal part� a bend point and a vertical
part� If an edge label is drawn� it is placed just at the bend point� Implemented is such
an edge by the combination of a near edge and a normal edge�

Beside that� back edges� near edges and bent near edges are normal edges� Back edges are
speci�ed by

backedge� f

sourcename� � title of source node �
targetname� � title of target node �
� edge attributes �

g

Near edges are speci�ed by

nearedge� f
sourcename� � title of source node �
targetname� � title of target node �
� edge attributes �

g

Bent near edges are speci�ed by

bentnearedge� f
sourcename� � title of source node �
targetname� � title of target node �
� edge attributes �

g

Attributes are speci�ed in the form

� attribute keyword � � � attribute value �

The order of attributes is irrelevant� Most attributes are optional� It is possible to specify
default values of all nodes or edges in the attribute section of a graph by

node�� attribute keyword � � � attribute value �

or

edge�� attribute keyword � � � attribute value �

These default attribute values are valid for all nodes and edges �even back edges� near edges
and bent near edges� where the corresponding attribute is not set explicitly� Regions of nodes
and edges can be folded �see section ��� As result� a summary node is displayed for all
nodes of a region� and edges to this summary node are displayed for sets of edges to nodes of
the region� It is possible to specify the attributes for such nodes and edges that are originated
by a folding operation� This allows to give the folded regions a di�erent appearance than the



� GRAPH DESCRIPTION LANGUAGE ��

normal nodes and edges� The attributes for such summary nodes or replacement edges are
speci�ed by

foldnode�� attribute keyword � � � attribute value �

or

foldedge�� attribute keyword � � � attribute value �

The order of subgraphs� nodes� and edges may in�uence the �nal layout� because the �rst
node is scheduled �rst� Strings must be enclosed in quote marks and may contain the normal
C escapes �e�g�� 	
� 	n� 	f� � � � �� Integers are sequences of digits� Floating point numbers
consist of a sequence of digits� followed by a dot ��� and a sequence of digits� C style comments
��� ��� and C�� style comments ���� are allowed�

��� Graph Attributes

The graph information is delimited by the keywords graph�  and �� The complete list of
attributes with their types and default values is shown in the tables � and �

title speci�es the name �a string� associated with the graph� The default name of a subgraph
is the name of the outer graph� and the name of the outmost graph is the name of the
speci�cation input �le� The name of a graph is used to identify this graph� e�g�� if we
want to express that an edge points to a subgraph� Such edges point to the root of the
graph� i�e� the �rst node of the graph or the root of the �rst subgraph in the graph� if
the subgraph is visualized explicitly�

label the text displayed inside the node� when the graph is folded to a node� If no label is
speci�ed then the title of the graph will be used� Note that this text may contain control
characters like NEWLINE that in�uences the size of the node� See section ��� for more
details�

info�� info�� info� combines additional text labels with a node or a folded graph� info��
info� info� can be selected from the menu interactively� The corresponding text labels
can be shown by mouse clicks on nodes�

color speci�es the background color for the outermost graph� or the color of the summary
node for subgraphs� Colors are black� blue� red� green� yellow� magenta� cyan� white�
darkgrey� darkblue� darkred� darkgreen� darkyellow� darkmagenta� darkcyan� gold�
lightgrey� lightblue� lightred� lightgreen� lightyellow� lightmagenta� light�
cyan� lilac� turquoise� aquamarine� khaki� purple� yellowgreen� pink� orange and
orchid� If more than these default colors are needed� a color map with maximal 	�
entries can be used� The �rst � entries correspond to the colors just listed� A color
of the color map can selected by the color map index� an integer� for instance red has
index � green has index �� etc� See section ��	 for more details�

textcolor is the color for the label text of summary nodes�



� GRAPH DESCRIPTION LANGUAGE ��

attribute name attribute type default value

title string �le name � name of outer graph
label string string of the title
info� string empty string
info string empty string
info� string empty string
color black� white� red� � � � white for background

white or transparent for
summary nodes

textcolor black� white� red� � � � black for summary nodes�
bordercolor black� white� red� � � � textcolor for summary nodes�
width int width of root screen � ���

width of the label for subgraphs
height int height of root screen � ���

height of the label for subgraphs
borderwidth int 
x int � � unspeci�ed for subgraphs
y int � � unspeci�ed for subgraphs
folding int �
shrink int �
stretch int �
textmode center� � � � center
shape box� rhomb� � � � box
vertical order int unspeci�ed for subgraphs
horizontal order int unspeci�ed for subgraphs
xmax int width of root screen � ��
ymax int height of root screen � ��
xbase int 	
ybase int 	
xspace int �
xlspace int �

�xspace if polygons are used

�xspace if splines are used

yspace int ��
xraster int �
xlraster int �
yraster int �
hidden int none
classname int 
 string �� �� � � �
infoname int 
 string �� �� or �
colorentry int 
 int triple default color map

Table �
 Graph Attributes� Part �



� GRAPH DESCRIPTION LANGUAGE �	

attribute name attribute type default value

layoutalgorithm maxdepth� mindepth� normal
minbackward� � � �

layout downfactor int �
layout upfactor int �
layout nearfactor int �
layout splinefactor int ��
late edge labels yes� no no
display edge labels yes� no no
dirty edge labels yes� no no
�netuning yes� no yes
ignore singles yes� no no
straight phase yes� no no
priority phase yes� no no
manhattan edges yes� no no
smanhattan edges yes� no no
near edges yes� no yes
orientation top to bottom� � � � top to bottom
node alignment top� bottom� center center
port sharing yes� no yes
arrow mode �xed� free �xed
spreadlevel int �
treefactor �oat ��	
crossing phase yes� no yes
crossing optimization yes� no yes
crossing weight bary� median bary

barymedian� medianbary
view c�sh� p�sh� fc�sh� fp�sh normal view
edges yes� no yes
nodes yes� no yes
splines yes� no no
bmax int ���
cmax int in�nite
cmin int �
pmax int ���
pmin int �
rmax int ���
rmin int �
smax int ���

Table 
 Graph Attributes� Part 



� GRAPH DESCRIPTION LANGUAGE ��

bordercolor is the color of the summary node�s border� Default color is the textcolor�

width� height are width and height of the displayed part of the window of the outermost
graph in pixels� or width and height of the summary node of inner subgraphs�

borderwidth speci�es the thickness of the summary node�s border in pixels�

x� y are the x�position and y�position of the graph�s window in pixels� relatively to the root
screen� if it is the outermost graph� The origin of the window is upper� left hand� For
inner subgraphs� it is the position of the folded summary node� The position can also
be speci�ed in the form loc� fx�int y�intg�

folding of a subgraph is �� if the subgraph is fused� and �� if the subgraph is visualized
explicitly� There are commands to unfold such summary nodes� see section 	�

shrink� stretch gives the shrinking and stretching factor for the graph�s representation �de�
fault is �� ��� ��stretch�shrink� � ���� is the scaling of the graph in percentage� e�g��
�stretch�shrink� � ����� or ��� or ����� � � � is normal size� �stretch�shrink� � ����
is half size� �stretch�shrink� � ���� is double size� For subgraphs� it is also the scaling
factor of the summary node� The scaling factor can also be speci�ed by scaling� �oat
�here� scaling ��� means normal size��

textmode speci�es the adjustment of the text within the border of a summary node� The
possibilities are center� left�justify and right�justify�

shape can be speci�ed for subgraphs only� It is the shape of the subgraph summary node
that appears if the subgraph is folded
 box� rhomb� ellipse� and triangle�

vertical order is the level position �rank� of the summary node of an inner subgraph� if this
subgraph is folded� We can also specify level� int� The level is only recognized� if an
automatical layout is calculated� See sections �� and ��� for more details�

horizontal order is the horizontal position of the summary node within a level� The nodes
which are speci�ed with horizontal positions are ordered according to these positions
within the levels� The nodes which do not have this attribute are inserted into this
ordering by the crossing reduction mechanism �see section ���� Note that connected
components are handled separately� thus it is not possible to intermix such components
by specifying a horizontal order�
If the algorithm for downward laid out trees is used� the horizontal order in�uences only
the order of the child nodes at a node� but not the order of the whole level�

xmax� ymax specify the maximal size of the virtual window that is used to display the
graph �see �gure 	�� This is usually larger than the displayed part� thus the width and
height of the displayed part cannot be greater than xmax and ymax� Only those parts
of the graph are drawn that are inside the virtual window� The virtual window can be
moved over the potential in�nite system of coordinates by special positioning commands�



� GRAPH DESCRIPTION LANGUAGE ��

displayed

window

s
c
r
o
l
l
b
a
r

virtual window

of the

movements of the
virtual window

movements

virtual window

s c r o l l b a r

h
e
i
g

t
h

width

xmax

x
a
m
y

Figure 	
 Displayed Window and Virtual Window

Therefore the graph may be larger than the virtual window� It is recommended to set
xmax� ymax not larger than the root screen to get a good performance�

xbase� ybase specify the horizontal and vertical o�set between the graph�s window and the
upper� left hand corner of the graph� i�e� the position of the origin of the system of
coordinates relatively to the upper� left hand corner of the virtual window�

xspace� yspace the minimum horizontal and vertical distance between nodes�

xlspace is the horizontal distance between lines at the points where they cross the levels�
�At these points� dummy nodes are used� In fact� this is the horizontal distance between
dummy nodes�� It is recommended to set xlspace to a larger value� if splines are used
to draw edges� to prevent sharp bendings�

xraster� yraster speci�es the raster distance for the position of the nodes� The center of a
node is aligned to this raster�

xlraster is the horizontal raster for the positions of the line control points �the dummy
nodes�� It should be a divisor of xraster�

hidden speci�es the classes of edges that are hidden� See section � and section ��� Edges
that are within such a class are not laid out nor drawn� Nodes that are only reachable
�forward or backward� by edges of an hidden class are not drawn� However� nodes that



� GRAPH DESCRIPTION LANGUAGE ��

are not reachable at all are drawn� �But see attribute ignore�singles�� Speci�cation
of classes of hidden edges allows to hide parts of a graph� e�g�� annotations of a syntax
tree� This attribute is only allowed at the outermost level� More than one settings
are possible to specify exactly the set of classes that are hidden� Note the important
di�erence between hiding of edges and the edge line style invisible �see section �����
Hidden edges are not existent in the layout� Edges with line style invisible are existent
in the layout� they need space and may produce crossings and in�uence the layout� but
you cannot see them�

classname allows to introduce names for the edge classes� The names are used in the menus�

infoname allows to introduce names for the additional text labels� The names are used in
the menus�

colorentry allows to �ll the color map� A color is a triplet of integer values for the
red�green�blue�part� Each integer is between � �o�� and 		 �on�� e�g�� � � � is black
and 		 		 		 is white� For instance colorentry �� � �� ��� ��� sets the map
entry �	 to steel blue� This color can be used by specifying just the number �	� See
section ��	 for more details�

layoutalgorithm chooses di�erent graph layout algorithms Possibilities are maxdepth�
mindepth� maxdepthslow� mindepthslow� maxdegree� mindegree� maxindegree�
minindegree� maxoutdegree� minoutdegree� minbackward� dfs and tree� The default
algorithm tries to give all edges the same orientation and is based on the calculation
of strongly connected components� The algorithms that are based on depth �rst search
are faster� While the simple dfs does not enforce additionally constraints� the algorithm
maxdepth tries to increase the depth of the layout and the algorithm mindepth tries
to increase the wide of the layout� These algorithms are fast heuristics� If they are not
appropriate� the algorithms maxdepthslow or mindepthslow also increase the depth or
wide� but they are very slow�

The algorithm maxindegree lays out the nodes by scheduling the nodes with the
maximum of incoming edges �rst� and minindegree lays out the nodes by schedul�
ing the nodes with the minimum of incoming edges �rst� In the same manner work
the algorithms maxoutdegree and minoutdegree for outgoing edges� and maxdegree

and mindegree for the sum of incoming and outgoing edges� These algorithms may
have various e�ects� and can sometimes be used as replacements of maxdepthslow or
mindepthslow�

The algorithm minbackward can be used if the graph is acyclic� See section �� for
details�

The algorithm tree is a specialized method for downward laid out trees �see section ����
It is much faster on such tree�like graphs and results in a balanced layout�

layout downfactor� layout upfactor� layout nearfactor The layout algorithm parti�
tions the set of edges into edges pointing upward� edges pointing downward� and edges
pointing sidewards� The last type of edges is also called near edges�



� GRAPH DESCRIPTION LANGUAGE ��

If the layout�downfactor is large compared to the layout�upfactor and the
layout�nearfactor� then the positions of the nodes is mainly determined by
the edges pointing downwards� If the layout�upfactor is large compared to the
layout�downfactor and the layout�nearfactor� then the positions of the nodes is
mainly determined by the edges pointing upwards� If the layout�nearfactor is large�
then the positions of the nodes is mainly determined by the edges pointing sidewards�
These attributes have no e�ect� if the method for downward laid out trees is used�

late edge labels yes means that the graph is �rst partitioned and then� labels are intro�
duced� The default algorithm �rst creates labels and then partitions the graph �see
section ���� which yield a more compact layout� but may have more crossings�

display edge labels yes means display labels and no means don�t display edge labels�

dirty edge labels yes enforces a fast layout of edge labels� which may very ugly because
several labels may be drawn at the same place� Dirty edge labels cannot be used if
splines are used�

�netuning no switches the �ne tuning phase of the graph layout algorithm o�� while it is
on as default �see section ���� The �ne tuning phase tries to give all edges the same
length�

ignore singles yes hides all nodes which would appear single and unconnected from the
remaining graph� Such nodes have no edge at all and are sometimes very ugly� Default
is to show all nodes�

straight phase yes initiates an additional phase that tries to avoid bendings in long edges�
Long edges are laid out by long straight vertical lines with gradient �� degree� Thus� this
phase is not very appropriate for normal layout� but it is recommended� if an orthogonal
layout is selected �see manhattan�edges��

priority phase yes replaces the normal pendulum method by a specialized method
 It forces
straight long edges with �� degree� just as the straight phase� In fact� the straight phase
is a �ne tune phase of the priority method� This phase is also recommended� if an
orthogonal layout is selected �see manhattan�edges��

manhattan edges yes switches the orthogonal layout on� Orthogonal layout �or manhattan
layout� means that all edges consist of line segments with gradient � or �� degree�
Vertical edge segments might by shared by several edges� while horizontal edge segments
are never shared� This results in very aesthetical layouts just for �owcharts� If the
orthogonal layout is used� then the priority phase and straight phase should be used�
Thus� these both phases are switched on� too� unless priority layout and straight line
tuning are switched o� explicitly�

smanhattan edges yes switches a specialized orthogonal layout on
 Here� all horizontal
edge segments between two levels share the same horizontal line� i�e� not only vertical
edge segments are shared� but horizontal edge segments are shared by several edges� too�



� GRAPH DESCRIPTION LANGUAGE �

This looks nice for trees but might be too confusing in general� because the location of
an edge might be ambiguously�

near edges no suppresses near edges and bent near edges in the graph layout�

orientation speci�es the orientation of the graph
 top�to�bottom� bottom�to�top�
left�to�right or right�to�left� Note
 the normal orientation is top�to�bottom�
All explanations here are given relatively to the normal orientation� i�e�� e�g�� if the
orientation is left to right� the attribute xlspace is not the horizontal but the vertical
distance between lines� etc�

node alignment speci�ed the vertical alignment of nodes at the horizontal reference line of
the levels� If top is speci�ed� the tops of all nodes of a level have the same y�coordinate�
on bottom� the bottoms have the same y�coordinate� on center the nodes are centered
at the levels�

port sharing no suppresses the sharing of ports of edges at the nodes� Normally� if multiple
edges are adjacent to the same node� and the arrow head of all these edges has the
same visual appearance �color� size� etc��� then these edges may share a port at a node�
i�e� only one arrow head is draw� and all edges are incoming into this arrow head� This
allows to have many edges adjacent to one node without getting confused by too many
arrow heads� If no port sharing is used� each edge has its own port� i�e� its own place
where it is adjacent to the node�

arrow mode fixed �default� should be used� if port sharing is used� because then� only a
�xed set of rotations for the arrow heads are used� If the arrow mode is free� then
each arrow head is rotated individually to each edge� But this can yield to a black spot�
where nothing is recognizable� if port sharing is used� since all these di�erently rotated
arrow heads are drawn at the same place� If the arrow mode is fixed� then the arrow
head is rotated only in steps of �	 degree� and only one arrow head occurs at each port�

treefactor The algorithm tree for downward laid out trees tries to produce a medium dense�
balanced tree�like layout� If the tree factor is greater than ��	� the tree edges are spread�
i�e� they get a larger gradient� This may improve the readability of the tree�
Note
 it is not obvious whether spreading results in a more dense or wide layout� For a
tree� there is a tree factor such that the whole tree is minimal wide�

spreadlevel This parameter only in�uences the algorithm tree� too� For large� balanced
trees� spreading of the uppermost nodes would enlarge the width of the tree too much�
such that the tree does not �t anymore in a window� Thus� the spreadlevel speci�es the
minimal level �rank� where nodes are spread� Nodes of levels upper than spreadlevel are
not spread�

crossing weight speci�es the weight that is used for the crossing reduction
 bary �default��
median� barymedian or medianbary� See section ��� We cannot give a general rec�
ommendation� which is the best method� For graphs with very large average degree
of edges �number of incoming and outgoing edges at a node�� the weight bary is the



� GRAPH DESCRIPTION LANGUAGE �

fastest method� With the weights barymedian and medianbary� equal weights of dif�
ferent nodes are not very probable� thus the crossing reduction phase  might be very
fast�

crossing phase� is the most time consuming phase of the crossing reduction �see section
���� In this phase� the nodes that happen to have equal crossing weights are permuted�
By specifying no� this phase is suppressed�

crossing optimization is a postprocessing phase after the normal crossing reduction
 we
try to optimize locally� by exchanging pairs of nodes to reduce the crossings� Although
this phase is not very time consuming� it can be suppressed by specifying no�

view allows to select the �sheye views �see section 	���� Because of the �xed size of the
window that shows the graph� we normally can only see a small amount of a large
graph� If we shrink the graph such that it �ts into the window� we cannot recognize
any detail anymore� Fisheye views are coordinate transformations
 the view onto the
graph is distort� to overcome this usage de�ciency� The polar �sheye is easy to explain

assume a projection of the plane that contains the graph picture onto a spheric ball� If
we now look onto this ball in � D� we have a polar �sheye view� There is a focus point
which is magni�ed such that we see all details� Parts of the plane that are far away
from the focus point are demagni�ed very much� Cartesian �sheye have a similar e�ect�
only the formula for the coordinate transformation is di�erent� Selecting cfish means
the cartesian �sheye is used which demagni�es such that the whole graph is visible �self
adaptable cartesian �sheye�� With fcfish� the cartesian �sheye shows the region of a
�xed radius around the focus point ��xed radius cartesian �sheye�� This region might
be smaller than the whole graph� but the demagni�cation needed to show this region
in the window is also not so large� thus more details are recognizable� With pfish the
self adaptable polar �sheye is selected that shows the whole graph� and with fpfish

the �xed radius polar �sheye is selected�

edges no suppresses the drawing of edges�

nodes no suppresses the drawing of nodes�

splines speci�es whether splines are used to draw edges �yes or no�� As default� polygon
segments are used to draw edges� because this is much faster� Note that the spline
drawing routine is not fully validated� and is very slow� Its use is mainly to prepare high
quality PostScript output for very small graphs�

layout splinefactor determines the bending at splines� The factor ��� indicates a very sharp
bending� a factor � indicates a very �at bending� Useful values are �� � � ����

cmin set the minimal number of iterations that are done for the crossing reduction with the
crossing weights� The normal method stops if two consecutive checks does not reduce the
number of crossings anymore� However� this increasing of the number of crossings might
be locally� such that after some more iterations� the crossing number might decrease
much more�



� GRAPH DESCRIPTION LANGUAGE 

cmax set the maximal number of interactions for crossing reduction� This is helpful for
speedup the layout process� See section 	����

pmin set the minimal number of iterations that is done with the pendulum method� Similar
to the crossing reduction� this method stops if the �imbalancement weight� does not de�
creases anymore� However� the increasing of the imbalancement weight might be locally�
such that after some more iterations� the imbalancement weight might decrease much
more�

pmax set the maximal number of iterations of the pendulum method� This is helpful for
speedup the layout process�

rmin set the minimal number of iterations that is done with the rubberband method� This
is similar as for the pendulum method�

rmax set the maximal number of iterations of the rubberband method� This is helpful for
speedup the layout process�

smax set the maximal number of iterations of the straight line recognition phase �useful only�
if the straight line recognition phase is switched on� see attribute straight�phase��

bmax set the maximal number of iterations that are done for the reduction of edge bendings�

Note
 the attributes xmax� ymax� xbase� ybase� xspace� yspace� xlspace� xraster� yraster�
xlraster� hidden� classname� infoname� colorentry� layoutalgorithm� layout downfactor� lay�
out upfactor� layout nearfactor� late edge labels� display edge labels� dirty edge labels� �ne�
tuning� ignore singles� straight phase� priority phase� manhattan edges� smanhattan edges�
near edges� orientation� node alignment� port sharing� arrow mode� treefactor� spreadlevel�
crossing weight� crossing phase� crossing optimization� view� edges� nodes� splines� layout �
splinefactor� cmin� cmax� pmin� pmax� rmin� rmax� and smax can only be speci�ed for the
outermost graph� They in�uence the whole layout of all subgraphs� or change the general
usage mode of the VCG tool�

��� Node Attributes

Node speci�cations occur as parts of graph speci�cations� The node information is delimited
by the keywords node�  and �� At least� every node has to contain a title� other attributes
are optional� It is possible to specify default attribute values of nodes for every subgraph by
node�� attribute keyword � � � attribute value � � The complete list of attributes with their
types and default values is shown in table ��

title the unique string identifying the node� This attribute is mandatory�

label the text displayed inside the node� If no label is speci�ed then the title of the node will
be used� Note that this text may contain control characters like NEWLINE that in�uences
the size of the node�



� GRAPH DESCRIPTION LANGUAGE �

attribute name attribute type default value

title string mandatory
label string string of the title
loc x int none
loc y int none
vertical order int unspeci�ed
horizontal order int unspeci�ed
width int width of the label
height int height of the label
shrink int �
stretch int �
folding int none
shape box� rhomb� � � � box
textmode center� left justify� right justify center
borderwidth int 
color black� white� red� � � � white or transparent
textcolor black� white� red� � � � black
bordercolor black� white� red� � � � textcolor
info� string empty string
info string empty string
info� string empty string

Table �
 Node Attributes

loc is the location as x� y position relatively to the system of coordinates of the graph�
Locations are speci�ed in the form loc�  x� xpos y� ypos �� The locations of nodes
are only valid� if the whole graph is fully speci�ed with locations and no part is folded�
The layout algorithm of the tool calculates appropriate x� y positions� if at least one
node that must be drawn �i�e�� is not hidden by folding or edge classes� does not have
�xed speci�ed locations�

vertical order is the level position �rank� of the node� We can also specify level� int�
Level speci�cations are only valid� if the layout is calculated� i�e� if at least one node
does not have a �xed location speci�cation� The layout algorithm partitioned all nodes
into levels � � � �maxlevel� Nodes at the level � are on the upper corner� The algorithm
is able to calculate appropriate levels for the nodes automatically� if no �xed levels are
given �see sections ���� Speci�cations of levels are additional constraints� that may be
ignored� if they are in con�ict with near edge speci�cations� See section ��� for more
details�

horizontal order is the horizontal position of the node within a level� The nodes which are
speci�ed with horizontal positions are ordered according to these positions within the
levels� The nodes which do not have this attribute are inserted into this ordering by the
crossing reduction mechanism �see section ���� Note that connected components are
handled separately� thus it is not possible to intermix such components by specifying a



� GRAPH DESCRIPTION LANGUAGE �

horizontal order�
If the algorithm for downward laid out trees is used� the horizontal order in�uences only
the order of the child nodes at a node� but not the order of the whole level�

width� height is the width and height of a node including the border� If no value �in pixels�
is given then width and height are calculated from the size of the label�

shrink� stretch gives the shrinking and stretching factor of the node� The values of the
attributes width� height� borderwidth and the size of the label text is scaled by
��stretch�shrink� � ���� percent� Note that the actual scale value is determined by the
scale value of a node relatively to a scale value of the graph� i�e� if �stretch�shrink� �
���� for the graph and �stretch�shrink� � ���� for the node of the graph� then the
node is scaled by the factor � compared to the normal size� The scale value can also be
speci�ed by scaling� �oat�

folding speci�es the default folding of the nodes� The folding k �with k � �� means that the
graph part that is reachable via edges of a class less or equal to k is folded and displayed
as one node� There are commands to unfold such summary nodes� see section 	� If no
folding is speci�ed for a node� then the node may be folded if it is in the region of
another node that starts the folding� If folding � is speci�ed� then the node is never
folded� In this case the folding stops at the predecessors of this node� if it is reachable
from another folding node� The summary node inherits some attributes from the original
node which starts the folding �all color attributes� textmode and label� but not the
location�� A folded region may contain folded regions with smaller folding class values
�nested foldings�� If there is more than one node that start the folding of the same region
�this implies that the folding class values are equal� then the attributes are inherited
by one of these nodes nondeterministically �see section ��� If foldnode attributes are
speci�ed� then the summary node attributes are inherited from these attributes�

shape speci�es the visual appearance of a node
 box� rhomb� ellipse� and triangle� The
drawing of ellipses is much slower than the drawing of the other shapes�

textmode speci�es the adjustment of the text within the border of a node� The possibilities
are center� left�justify and right�justify�

borderwidth speci�es the thickness of the node�s border in pixels�

color is the background color of the node� If none is given� the node is white� For the possi�
bilities� see the attribute color for graphs �section �����

textcolor is the color for the label text�

bordercolor is the color of the border� Default color is the textcolor�

info�� info�� info� combines additional text labels with a node or a folded graph� info��
info� info� can be selected from the menu� The corresponding text labels can be shown
by mouse clicks on nodes�



� GRAPH DESCRIPTION LANGUAGE 	

��� Edge Attributes

Edge speci�cations also occur as parts of graph speci�cations� The edge information is de�
limited by the keywords edge�  and �� The attributes sourcename and targetname are
mandatory� They specify the source and target node of the edge� It is possible to specify
default attribute values of edges for every subgraph by edge�� attribute keyword � � � at�
tribute value � � The position of the edge is determined by the position of its nodes� Thus�
there is no way to specify �x� y� positions of the edge� The complete list of attributes with
their types and default values is shown in table ��

attribute name attribute type default value

sourcename string mandatory
targetname string mandatory
label string no label
linestyle continuous� dashed� dotted� invisible continuous
thickness int 
class int �
color black� white� red� � � � black
textcolor black� white� red� � � � color
arrowcolor black� white� red� � � � color
backarrowcolor black� white� red� � � � color
arrowsize int ��
backarrowsize int �
arrowsstyle solid� line� none solid
backarrowsstyle solid� line� none none
priority int �
anchor int none
horizontal order int unspeci�ed

Table �
 Edge Attributes

sourcename is the title of the source node of the edge�

targetname is the title of the target node of the edge�

label speci�es the label of the edge� It is drawn if display�edge�labels is set to yes�

linestyle speci�es the style the edge is drawn� Possibilities are


� continuous a solid line is drawn � � �

� dashed the edge consists of single dashes � � � � �

� dotted the edge is made of single dots � � � � �

� invisible the edge is not drawn� The attributes of its shape �color� thickness� are
ignored�



� GRAPH DESCRIPTION LANGUAGE �

To draw a dashed or dotted line needs more time than solid lines�

thickness is the thickness of an edge�

class speci�es the folding class of the edge� Nodes reachable by edges of a class less or equal
to a constant k specify folding regions of k� See the node attribute folding �section ���
and the folding commands �section 	��

arrowstyle� backarrowstyle Each edge has two arrow heads
 the one appears at the target
node �the normal arrow head�� the other appears at the source node �the backarrow
head�� Normal edges only have the normal solid arrow head� while the backarrow head
is not drawn� i�e� it is none� Arrowstyle is the style of the normal arrow head� and
backarrowstyle is the style of the backarrow head� Styles are none� i�e� no arrow head�
solid� and line�

arrowsize� backarrowsize The arrow head is a right�angled� isosceles triangle and the
cathetuses have length arrowsize�

color is the color of the edge� For the possibilities� see the attribute color for graphs �sec�
tion ����

textcolor is the color of the label of the edge�

arrowcolor� backarrowcolor is the color of the arrow head and of the backarrow head�

priority The positions of the nodes are mainly determined by the incoming and outgoing
edges� One can think of rubberbands instead of edges that pull a node into its position�
The priority of an edges corresponds to the strength of the rubberband�

anchor An anchor point describes the vertical position in a node where an edge goes out�
This is useful� if node labels are several lines long� and outgoing edges are related to
label lines� �E�g�� this allows a nice visualization of structs containing pointers as �elds��

horizontal order is the horizontal position the edge� This is of interest only if the edge
crosses several levels because it speci�es the point where the edge crosses the level�
within a level� The nodes which are speci�ed with horizontal positions are ordered
according to these positions within a level� The horizontal position of a long edge that
crosses the level speci�es between which two node of that level the edge has to be
drawn� Other edges which do not have this attribute are inserted into this ordering by
the crossing reduction mechanism �see section ���� Note that connected components
are handled separately� thus it is not possible to intermix such components by specifying
a horizontal order�

��� Grammar of GDL

Now we give the grammar of GDL in EBNF �Extended Bacchus Naur Form�� Terminals are
enclosed in  double quotes!� nonterminals are written italic� �nite iteration is speci�ed by
�� � � ��� Note that C style comments ��� ��� and C�� style comments ���� are allowed�



� GRAPH DESCRIPTION LANGUAGE �

graph 
  graph� f! �graph entry��  g!
graph entry 
 graph attribute

j node defaults
j edge defaults
j foldnode defaults
j foldedge defaults
j graph
j node
j edge
j backedge
j nearedge
j bentnearedge

graph attribute 
 graph attribute name  
! attribute value
graph attribute name 
 any attribute shown in table � and 
node defaults 
  node!node attribute
edge defaults 
  edge!edge attribute
foldnode defaults 
  foldnode!node attribute
foldedge defaults 
  foldedge!edge attribute
node 
  node� f! 	node attribute
�  g!
edge 
  edge� f! 	edge attribute
�  g!
backedge 
  backedge� f! 	edge attribute
�  g!
nearedge 
  nearedge� f! 	edge attribute
�  g!
bentnearedge 
  bentnearedge� f! 	edge attribute
�  g!
node attribute 
 node attribute name  �! attribute value
edge attribute 
 edge attribute name  �! attribute value
node attribute name 
 any attribute shown in table �
edge attribute name 
 any attribute shown in table �
attribute value 
 integer value

j �oat value
j string value
j enum value

integer value 
 any integer constant in C style
�oat value 
 any �oat constant in C style
string value 
  
! 	character
�  
!
enum value 
 any possible constant value shown in tables � � � � � �
character 
 any printable ASCII character

��� Colors

The VCG tool has a color map of 	� colors� where 	� of these are free available� The �rst
� colors �index � � ��� of the color map are the default colors� These colors can be speci�ed
by name� all other colors are speci�ed by their color map index number� The color map is
changed by specifying a sequence of colorentry attributes� for instance



� GRAPH DESCRIPTION LANGUAGE �

colorentry �� � ��� ��� ��� �� khaki ��

colorentry �� � ��� ��� ��� �� AliceBlue ��

colorentry �� � ��� �� �� �� indian red ��

introduce the colors �khaki�� �AliceBlue� and �indian red� with the color index �� �� and ���
If we want to use blue� which is a default color� we can specify color� blue or color� �� If
we want to use khaki as a color of a node� we cannot specify color� khaki since this name
�khaki� is unknown for the VCG tool� Instead� we specify color� ���
More tricky� we can even overwrite the default colors� If we specify

colorentry � � ��� ��� ��� �� khaki ��

colorentry � � ��� ��� ��� �� AliceBlue ��

colorentry � � ��� �� �� �� indian red ��

then the default colors blue� red and green are overwritten by khaki� AliceBlue and indian red�
If we now specify color� blue� then the color khaki will appear� Table 	 shows the default
color map�

white �� blue �� red � green ��
yellow �� magenta �	 cyan �� darkgrey ��
darkblue �� darkred �� darkgreen �� darkyellow ��
darkmagenta � darkcyan �� gold �� lightgrey �	
lightblue �� lightred �� lightgreen �� lightyellow ��
lightmagenta � lightcyan � lilac  turquoise �
aquamarine � khaki 	 purple � yellowgreen �
pink � orange � orchid �� black ��

Table 	
 Color Codes of the Default Color Map

��� Further Remarks

A few important restrictions should be considered� All titles of graphs and nodes must be
unique� In order to decide which are the source and the target node of an edge� this restriction
is very important�

A node can only be touched by  near edges� If more than  near edges are speci�ed to
touch the node� the remaining near edges are converted into normal edges� A node that has
anchored edges can have only maximal � near edge� Further� if anchored edges occur� the
orientation is always top�to�bottom�

It is possible to change the colors or underline during the output of text� e�g�� drawing
of labels or info �elds� This is controlled by special characters in the corresponding string



� GRAPH DESCRIPTION LANGUAGE �

Table �
 The ISO Latin � Character Set

values� Note
 the ASCII value of the control characters depends on the operating system and
the C compiler� The following control characters are allowed


Newline �corresponds to the C sequence 
	n
� mostly implemented by ASCII code ���
continue drawing text at the beginning of the next line�

Tabular �C sequence 
	t
� ASCII code �� draw � space characters�

Beep �C sequence 
	a
� ASCII code �� produce an audible or visible alert �equivalent to
printf�
	a
���� The position for the next character to be drawn is not changed�

Backspace �C sequence 
	b
� ASCII code �� go one character back and continue drawing
at that place�

Formfeed �C sequence 
	f
� ASCII code �� This occurs with an additional parameter �the
next few characters� and changes the actual form of output�



� EXAMPLES OF GDL SPECIFICATIONS ��

	fu �ASCII codes � ���� starts underlining�
	fb �ASCII codes � ��� starts bold typeface�
	fB �ASCII codes � ��� starts very bold typeface�
	fn �ASCII codes � ���� stops underlining and bold typefaces� i�e� set to normal
typeface�
	fi��� �ASCII codes � ��	 �� �� ��� prints the ISO character ��
	fi��� �ASCII codes � ��	 	� 	� 	�� prints the ISO character � �the German "��
	fi��� �ASCII codes � ��	 	� 	� 	�� prints the ISO character 	 �the German �u��
See table � for the ISO Latin � character set�
	f�� �ASCII codes � �� ��� sets the color to white �or� to the color that currently has
index � in the color table��
	f�� �ASCII codes � 	� ��� sets the color to black �or� to the color that currently has
index �� in the color table�� By this way� it is possible to access to the �rst �� colors of
the map� See table 	 for the default color map�

The level of nodes �also
 summary nodes of subgraphs� is only recognized� if the whole
graph is laid out automatically� i�e� if at least one node has no speci�ed location� Normally� all
nodes of level � form the uppermost layer� nodes of other levels form the next layer top down�
The level speci�cation may be in con�ict with a near edge speci�cation� because the source
and target node of a near edge must have the same level� In this case� the level speci�cation
of source or target node of the near edge is ignored�

� Examples of GDL Speci�cations

Here we give some GDL speci�cations with the displayed graphs�

��� A Cyclic Graph

Example � is a small cyclic graph without labels� The title is displayed in the nodes�

Example ��

graph� f
�� list of nodes ��
node� f title� �A� g node� f title� �B� g node� f title� �C� g
node� f title� �D� g node� f title� �E� g
�� list of edges ��
edge� f thickness� � sourcename� �A� targetname� �B� g
edge� f thickness� � sourcename� �A� targetname� �C� g
edge� f thickness� � sourcename� �C� targetname� �D� g
edge� f thickness� � sourcename� �D� targetname� �E� g
edge� f thickness� � sourcename� �D� targetname� �A� g

g



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure �
 Example � Figure �
 Example  Figure �
 Example �

The VCG tool tries to give all edges the same orientation� But since the graph is cyclic� one
edge must be reverted �edge D�A�� We can also select� which edge should be reverted� by
specifying a back edge �edge C�D in example �� �

Example ��

graph� f
�� list of nodes ��
node� f title� �A� g node� f title� �B� g node� f title� �C� g
node� f title� �D� g node� f title� �E� g
�� list of edges ��
edge� f thickness� � sourcename� �A� targetname� �B� g
edge� f thickness� � sourcename� �A� targetname� �C� g
backedge�f thickness� � sourcename� �C� targetname� �D� g
edge� f thickness� � sourcename� �D� targetname� �E� g
edge� f thickness� � sourcename� �D� targetname� �A� g

g

Again� the most of the edges have the same orientation� The tool selects the node D as topmost
node now� The same cyclic graph looks completely di�erent� if we add some near edges� The
nodes connected by near edges are drawn at the same level �example ���

Example ��

graph� f
�� list of nodes ��
node� f title� �A� g node� f title� �B� g node� f title� �C� g
node� f title� �D� g node� f title� �E� g
�� list of edges ��
nearedge� f thickness� � sourcename� �A� targetname� �B� g
nearedge� f thickness� � sourcename� �A� targetname� �C� g
backedge� f thickness� � sourcename� �C� targetname� �D� g
nearedge� f thickness� � sourcename� �D� targetname� �E� g
edge� f thickness� � sourcename� �D� targetname� �A� g

g



� EXAMPLES OF GDL SPECIFICATIONS �

In some situations� we want to have edges that are horizontally anchored� but the target nodes
should not be at the same level� Such edges must have a bend point� Here� we can use bent
near edges �A�B and D�E in example ���

Example ��

graph� f
�� list of nodes ��
node� f title� �A� g node� f title� �B� g node� f title� �C� g
node� f title� �D� g node� f title� �E� g
�� list of edges ��
bentnearedge� f thickness� � sourcename� �A� targetname� �B� g
nearedge� f thickness� � sourcename� �A� targetname� �C� g
backedge� f thickness� � sourcename� �C� targetname� �D� g
bentnearedge� f thickness� � sourcename� �D� targetname� �E� g
edge� f thickness� � sourcename� �D� targetname� �A� g

g

In order to indicate that node !D! represents a struct with two �elds� whose �rst points to
!E! and second points to !A!� we can use the attribute anchor for the speci�cation of the
edges �example 	��

Figure �
 Example � Figure ��
 Example 	

Example ��

graph� f
�� list of nodes ��
node� f title� �A� g node� f title� �B� g node� f title� �C� g
node� f title� �D� label� �Field��nField��� g node� f title� �E� g
�� list of edges ��
bentnearedge� f thickness� � sourcename� �A� targetname� �B� g
nearedge� f thickness� � sourcename� �A� targetname� �C� g
backedge� f thickness� � sourcename� �C� targetname� �D� g
edge� f thickness� � sourcename� �D� targetname� �E� anchor� � g
edge� f thickness� � sourcename� �D� targetname� �A� anchor� � g

g



� EXAMPLES OF GDL SPECIFICATIONS ��

��� A Control Flow Graph

Example � is a control �ow graph of a procedural program� The nodes contain the text
of statements as labels� Not all edges have labels� The displayed program �in the pseudo
language CLaX� consists of a procedure test and a main routine


PROCEDURE test	 VAR b � INTEGER� c � INTEGER
�
BEGIN
b �� c � ��

END

BEGIN �� main routine of a nonsense program ��
x �� ��
WHILE 	x � �
 DO
x �� ��
test 	 x� � 
�
x �� ��

OD�
WHILE 	x � �
 DO
x �� �
x �� ��
test 	 x� � 
�

OD�
WHILE 	x � �
 DO
x �� ��
IF 	x � �
 THEN x �� �� ELSE test 	 x� � 
�
FI�

OD�
END�

Example 	�

graph� f title� �CFG GRAPH�
splines� yes
layoutalgorithm� dfs �netuning� no
display edge labels� yes
yspace� ��
node� f title����� label� �test b �� test c � �� g
node� f title����� label� �Exit� g
node� f title����� label� �test	x��
� g
node� f title����� label� �x �� �� g
node� f title���� label� �x � �� g
node� f title����� label� �x �� �� g
node� f title����� label� �x � �� g
node� f title����� label� �test	x��
� g
node� f title����� label� �x �� �� g
node� f title���� label� �x �� � g
node� f title���� label� �x � �� g
node� f title���� label� �x �� �� g
node� f title���� label� �test	x� �
� g
node� f title���� label� �x �� �� g
node� f title��� label� �x � �� g
node� f title���� label� �x �� �� g
node� f title���� label� �Start� g
node� f title���� label� �Exit point�ntest� g
node� f title���� label� �Entry point�ntest� g
edge� f thickness�  sourcename����� targetname���� g
edge� f thickness�  sourcename���� targetname����� g
edge� f thickness�  sourcename����� targetname����� label� �false� g



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure ��
 Example �

edge� f thickness�  sourcename���� targetname����� label� �false� g
edge� f thickness�  sourcename����� targetname����� label� �back� g
edge� f thickness�  sourcename����� targetname����� label� �back� g
edge� f thickness�  sourcename����� targetname���� g
edge� f thickness�  sourcename���� targetname����� label� �false� g
edge� f thickness�  sourcename���� targetname����� label� �true� g
edge� f thickness�  sourcename����� targetname����� label� �true� g
edge� f thickness�  sourcename��� targetname���� label� �false� g
edge� f thickness�  sourcename����� targetname���� label� �back� g
edge� f thickness�  sourcename����� targetname����� g
edge� f thickness�  sourcename���� targetname����� g
edge� f thickness�  sourcename���� targetname���� label� �true� g
edge� f thickness�  sourcename���� targetname��� g
edge� f thickness�  sourcename���� targetname��� label� �back� g
edge� f thickness�  sourcename���� targetname���� g
edge� f thickness�  sourcename���� targetname���� g
edge� f thickness�  sourcename��� targetname���� label� �true� g
edge� f thickness�  sourcename���� targetname���� g

g



� EXAMPLES OF GDL SPECIFICATIONS �	

This previous example was a very simple translation into a control �ow graph� The start�
exit and branch nodes can be better recognized if we use di�erent shapes for them� The edges
that close a cycle can be speci�ed as back edges� in order to see the uniform �ow of the other
edges� The decision edges should be anchored left and right to the branch nodes� thus� we
use bent near edges� The result is example ��

Figure �
 Example �

Example 
�

graph� f title� �CFG GRAPH�
layoutalgorithm� dfs
�netuning� no
display edge labels� yes
yspace� ��
node� f title����� label� �test b �� test c � �� g
node� f title����� label� �Exit� shape� ellipse g
node� f title����� label� �test	x��
� g
node� f title����� label� �x �� �� g
node� f title���� label� �x � �� shape� rhomb g
node� f title����� label� �x �� �� g
node� f title����� label� �x � �� shape� rhomb g
node� f title����� label� �test	x��
� g
node� f title����� label� �x �� �� g
node� f title���� label� �x �� � g
node� f title���� label� �x � �� shape� rhomb g
node� f title���� label� �x �� �� g
node� f title���� label� �test	x� �
� g
node� f title���� label� �x �� �� g
node� f title��� label� �x � �� shape� rhomb g



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure ��
 Example �

node� f title���� label� �x �� �� g
node� f title���� label� �Start� shape� ellipse g
node� f title���� label� �Exit point�ntest� shape� ellipse g
node� f title���� label� �Entry point�ntest� shape� ellipse g
edge� f thickness�  sourcename����� targetname���� g
edge� f thickness�  sourcename���� targetname����� g
bentnearedge� f thickness�  sourcename����� targetname����� label� �false� g
bentnearedge� f thickness�  sourcename���� targetname����� label� �false� g
backedge� f thickness�  sourcename����� targetname����� label� �back� g
backedge� f thickness�  sourcename����� targetname����� label� �back� g
edge� f thickness�  sourcename����� targetname���� g
bentnearedge� f thickness�  sourcename���� targetname����� label� �false� g
bentnearedge� f thickness�  sourcename���� targetname����� label� �true� g
bentnearedge� f thickness�  sourcename����� targetname����� label� �true� g
bentnearedge� f thickness�  sourcename��� targetname���� label� �false� g
backedge� f thickness�  sourcename����� targetname���� label� �back� g
edge� f thickness�  sourcename����� targetname����� g
edge� f thickness�  sourcename���� targetname����� g
bentnearedge� f thickness�  sourcename���� targetname���� label� �true� g
edge� f thickness�  sourcename���� targetname��� g
backedge� f thickness�  sourcename���� targetname��� label� �back� g
edge� f thickness�  sourcename���� targetname���� g
edge� f thickness�  sourcename���� targetname���� g
bentnearedge� f thickness�  sourcename��� targetname���� label� �true� g
edge� f thickness�  sourcename���� targetname���� g

g

If we use the orthogonal layout� the graph looks like a typical �owchart� Here� the down�
factor should be large while the nearfactor and the upfactor must be zero� The result is
example ��



� EXAMPLES OF GDL SPECIFICATIONS ��

Example ��

graph� f title� �CFG GRAPH�
manhattan edges� yes
layoutalgorithm� dfs
�netuning� no
display edge labels� yes
layout downfactor� ���
layout upfactor� �
layout nearfactor� �
xlspace� ��
yspace� ��
� � � nodes and edges as in example � � � �

g

��� The E	ect of the Layout Algorithms

The following sequence of pictures shows several times the same graph visualized by di�erent
layout algorithms� The graph is cyclic� thus it depends on the personal taste which layout is
the best� Of course� the algorithm tree is not applicable� If the graph is acyclic� the default
layout algorithm or the layout algorithm minbackward are the most appropriate in nearly
all cases� Very often� the main problem is to select the nodes that appear at the top level
of the graph� The layout algorithm looks for candidates that have no incoming edges but at
least one outgoing edge� If such a node does not exist � as in example � � the algorithms
mindegree� � � � � maxoutdegree are helpful�

The �ne tuning phase eliminates long edges� The tuned graph is more compact� The tuned
graph created by maxdepthslow need not to be maximal deep because the �ne tuning may
have reduced the deep better with another variant of the layout algorithm� The tuned graph
created by mindepthslow need not to be minimal deep� too� All these partitioning algorithms
are only heuristics�

Example ��

graph� f
xspace� ��
node� f title� �A� label� �Start of all� g
node� f title� �B� g node� f title� �C� g node� f title� �D� g
node� f title� �E� g
node� f title� �F� g node� f title� �G� g node� f title� �H� g
node� f title� �I� g node� f title� �J� g node� f title� �K� g
edge� f thickness� � sourcename� �A� targetname� �B� g
edge� f thickness� � sourcename� �A� targetname� �C� g
edge� f thickness� � sourcename� �A� targetname� �D� g
edge� f thickness� � sourcename� �A� targetname� �E� g
edge� f thickness� � sourcename� �A� targetname� �F� g
edge� f thickness� � sourcename� �A� targetname� �J� g
edge� f thickness� � sourcename� �B� targetname� �D� g
edge� f thickness� � sourcename� �C� targetname� �E� g
edge� f thickness� � sourcename� �D� targetname� �F� g
edge� f thickness� � sourcename� �F� targetname� �K� g
edge� f thickness� � sourcename� �J� targetname� �K� g
edge� f thickness� � sourcename� �A� targetname� �G� g
edge� f thickness� � sourcename� �G� targetname� �H� g
edge� f thickness� � sourcename� �H� targetname� �I� g
edge� f thickness� � sourcename� �I� targetname� �A� g

g



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure ��
 normal without �ne tuning

The normal layout algorithm breaks the cycle
such that only one reverted edge is necessary�

Figure �	
 normal with �ne tuning

Compared to the previous layout� the �ne tun�
ing phase has balanced the position of the
node J� The long edge I��Start will not be
balanced since this would create additional re�
verted edges�

Figure ��
 minbackward
without �ne tuning

This is nearly the same pic�
ture as for normal� Again�
only one reverted edge is
necessary� The layout al�
gorithm maxdepth without
�ne tuning results in the
same picture�

Figure ��
 minbackward
with �ne tuning

Compared to the previ�
ous layout� the �ne tun�
ing phase has partially
eliminated the long edge
I��Start and has again
balanced the position of
node J�

Figure ��
 maxdepth
with �ne tuning

The long edge I��Start is
now fully eliminated� Here�
the �ne tuning phase is al�
lowed to revert additional
edges�



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure ��
 maxdepthslow without �ne
tuning

This layout with depth 	 is in fact maximal
deep� compared to all other variants�

Figure �
 maxdepthslow with �ne
tuning

The �ne tuning phase eliminates the long edge
Start��G� Thus� the layout is not anymore
maximal deep
 Fine tuning destroys the prop�
erty to be maximal deep�

Figure �
 mindepth without �ne tuning

The layout algorithms dfs and minindegree

happen to result in the same picture�

Figure 
 mindepth with �ne tuning

Compared to the previous layout� the long
edges I��Start is eliminated� In fact� this is
the layout with the minimal depth�



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure �
 mindepthslow without �ne
tuning

Graphs that are minimal deep tend to have
many nodes at the top level� Compared to all
untuned graphs� this layout is minimal deep�
However note� that the algorithm mindepth

with �ne tuning is able to produce a �atter
layout�

Figure �
 mindepthslow with �ne
tuning

The long edges G��H and Start��B are elim�
inated� Note that the �ne tuning phase of al�
gorithm mindepth happens to reduce the deep
while here� this is not possible� Thus� com�
pared to all �ne tuned graphs� mindepthslow
does not produce the �attest layout�

Figure 	
 maxdegree without �ne tuning

The node Start has the most adjacent edges�
Thus it is selected as start node of the span�
ning tree� i�e� it appears at the topmost level�

Figure �
 maxdegree with �ne tuning

Compared to the previous picture� the long
edge I��Start is eliminated� This is also a
layout with minimal depth�



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure �
 mindegree without �ne tuning

The candidates for start nodes of the spanning
tree are the nodes B� C� G� H� I and J be�
cause they have the minimal degree �� From
these nodes� B� C and G happened to be se�
lected� Note
 the nodes E and K �also degree
�� are no candidates of start nodes because
they do not have outgoing edges�

Figure �
 mindegree with �ne tuning

The long edges Start��B and Start C are
eliminated� This changes the structure of the
layout completely�

Figure �
 minindegree without �ne
tuning

The candidates for start nodes are Start� B�

C� G� H� I and J� from which Start was se�
lected� The algorithm maxoutdegree results in
the same picture�

Figure ��
 minindegree with �ne tuning

The long edge I��Start is eliminated� This is
again a layout with minimal depth�



� EXAMPLES OF GDL SPECIFICATIONS �

Figure ��
 maxindegree without �ne
tuning

This time� the candidates are D and F� from
which F was selected as start node resulting in
the spanning tree F��K� Because K has no out�
going edges� this component of the spanning
tree cannot be larger� Thus� a second com�
ponent of the spanning tree is needed� which
starts at D and is D since it has no outgoing
edges to not yet scheduled nodes� A third com�
ponent starts at G which is one of the not yet
scheduled nodes with maximal indegree�

Figure �
 minoutdegree without �ne
tuning

The nodes E and K with minimal outdegree
 cannot be start nodes� because start nodes
must have at least one successor� Otherwise�
they would create one�node components of the
spanning tree� The useful candidates are all
other nodes except Start� from which B� C

and G happened to be selected�

Figure ��
 maxindegree with �ne tuning

F is again start node of one component of
the spanning tree� Compared to the previous
example� the long edges Start��G� B��D and
Start D are eliminated�

Figure ��
 minoutdegree with �ne
tuning

The long edges Start��G� Start��B and
Start��C are eliminated�



� EXAMPLES OF GDL SPECIFICATIONS ��

��� Tree Layouts

The following example shows a typed syntax tree� This tree can either be laid out by the
specialized algorithm for downward laid out trees� or by the normal algorithms using cross�
ing reduction and rubberband methods� The layout of a tree is quite strange� if the lay�
out downfactor is not used� The incoming edges draw the nodes too much into the direction of
of the parent node� The nicest layout is produced by the specialized tree algorithm with a tree
factor of ���� If an orthogonal layout is needed� the attribute smanhattan�edges can be used�
For trees� it is more appropriate than the normal manhattan layout with manhattan�edges�

Positioning by the rubberband method�

The layout downfactor� layout upfactor

and layout nearfactor are �� The nodes

are pulled in direction of their parent

nodes�

Positioning by the rubberband method�

The layout downfactor is �� The lay�

out upfactor and layout nearfactor are

�� The nodes are not anymore pulled in

direction of their parent nodes�

Figure �	
 Example ��
 Layout algorithm maxdepth

Example ���

graph� f
title� �typed syntax tree�
node� f title� �������� label� �Identi�er�ntst� 	�
� g
node� f title� ������� label� �Identi�er�nx 	�
� g
node� f title� �������� label� �INTEGER� g
node� f title� ������� label� �VarDecl� g
� � �

node� f title� �T�� label� �no type� g
node� f title� �T�� label� �no type� g
node� f title� �T�� label� �int� g
� � �

edge� f sourcename� ������� targetname� ������� g
edge� f sourcename� ������� targetname� �������� g
� � �

nearedge� f sourcename� �������� targetname� �T�� linestyle� dotted g
nearedge� f sourcename� ������� targetname� �T�� linestyle� dotted g



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure ��
 Example ��
 Layout algorithm tree� treefactor����

nearedge� f sourcename� �������� targetname� �T�� linestyle� dotted g
� � �

g

��� The Combination of Features

The following example is taken from �GKNV��� and shows the dependencies of di�erent shell
programs� To visualize it� a combination of features of the VCG tool is used� There is a time
scale that should indicate the origin of the programs� The shells themselves are nodes that
must be placed at the same rank as their birth dates� We use the attribute vertical�order
to set the nodes to these positions� Furthermore� we want to have the time axis at the left
side of the shell dependence graph� This is achieved by the attribute horizontal�order at
some of the nodes� However� this attribute only works if the graph is connected� Thus� we
create three invisible edges to make the graph connected�

Invisible edges� as all other edges� in�uence the positions of the nodes as they would pull
their adjacent nodes together� To avoid this e�ect for the invisible edges� we set the priority
of the invisible edges to zero and the priority of the visible edges to ���� There are many
possibilities to change the priority
 we can set the attribute priority� but we can also set
the layout factors downfactor� upfactor and nearfactor� The real priority of a downward



� EXAMPLES OF GDL SPECIFICATIONS �	

Figure ��
 Example ��
 Layout algorithm tree� smanhattan edges

edge is the product downfactor � priority�
We want to have the shell Bourne left to the shell Mashey and csh right to Mashey� Thus

we also give the nodes at level  a horizontal order� However� csh is on level �� and only its
edge crosses level � Thus we set the attribute horizontal�order for this edge� too� and now
this edge is drawn to the right of Mashey�

To reduce the amount of speci�cation� we use default attribute speci�cations for the height�
width and borderwidth of nodes and for the style of edges� To di�erentiate� we use ellipses
for the di�erent variations of the KornShell� triangles for C�Shells and a rhomb for tcl� The
graph is acyclic� thus the layout algorithm minbackward is used� Edges are drawn by splines�

Example ���

graph� f
title� �shells�
splines� yes
layoutalgorithm� minbackward
layout nearfactor� �
layout downfactor� ���
layout upfactor� ���

�� First the time scale



� EXAMPLES OF GDL SPECIFICATIONS ��

Figure ��
 Example ��

node�height� ��
node�width� ��
node�borderwidth� �
edge�linestyle� dashed

node� f title� ������ vertical order� � horizontal order� � g
node� f title� ������ vertical order� � horizontal order� � g
node� f title� ������ vertical order� � g
node� f title� ������ vertical order�  g



� EXAMPLES OF GDL SPECIFICATIONS ��

node� f title� ������ vertical order� � horizontal order� � g
node� f title� ����� vertical order� � g
node� f title� ������ vertical order� � g
node� f title� ������ vertical order� � g
node� f title� ������ vertical order� � g
node� f title� �future�vertical order� �� horizontal order� � g

edge� f sourcename� ������ targetname� ������ g
edge� f sourcename� ������ targetname� ������ g
edge� f sourcename� ������ targetname� ������ g
edge� f sourcename� ������ targetname� ������ g
edge� f sourcename� ������ targetname� ����� g
edge� f sourcename� ����� targetname� ������ g
edge� f sourcename� ������ targetname� ������ g
edge� f sourcename� ������ targetname� ������ g
edge� f sourcename� ������ targetname� �future�g

�� We need some invisible edge to make the graph fully connected�
�� Otherwise� the horizontal order attribute would not work�

edge� f sourcename� �ksh�i� targetname� �Perl� linestyle� invisible priority� � g
edge� f sourcename� �tcsh� targetname� �tcl� linestyle� invisible priority� � g
nearedge� f sourcename� ������ targetname� �rc� linestyle� invisible g
nearedge� f sourcename� �rc� targetname� �Perl� linestyle� invisible g

�� Now the shells themselves
�� Note� the default value �� means� no default

node�height� ��
node�width� ��
node�borderwidth� �
edge�linestyle� solid
node� f title� �Thompson� vertical order� � horizontal order� � g
node� f title� �Mashey� vertical order� � horizontal order� � g
node� f title� �Bourne� vertical order� � horizontal order� � g
node� f title� �Formshell� vertical order� � g
node� f title� �csh� vertical order� � shape� triangle g
node� f title� �esh� vertical order�  horizontal order� � g
node� f title� �vsh� vertical order�  g
node� f title� �ksh� vertical order� � horizontal order� � shape� ellipse g
node� f title� �System�V� vertical order� � horizontal order� � g
node� f title� �v�sh� vertical order� � g
node� f title� �tcsh� vertical order� � shape� triangle g
node� f title� �ksh�i� vertical order� � shape� ellipse g
node� f title� �KornShell� vertical order� � shape� ellipse g
node� f title� �Perl� vertical order� � g
node� f title� �rc� vertical order� � g
node� f title� �tcl� vertical order� � shape� rhomb g
node� f title� �Bash� vertical order� � g
node� f title� �POSIX� vertical order� �� horizontal order� � g
node� f title� �ksh�POSIX� vertical order� �� horizontal order� � shape� ellipse g

edge� f sourcename� �Thompson� targetname� �Mashey� g
edge� f sourcename� �Thompson� targetname� �Bourne� g
edge� f sourcename� �Thompson� targetname� �csh� horizontal order�  g
edge� f sourcename� �Bourne� targetname� �ksh� g
edge� f sourcename� �Bourne� targetname� �esh� g
edge� f sourcename� �Bourne� targetname� �vsh� g
edge� f sourcename� �Bourne� targetname� �System�V� g
edge� f sourcename� �Bourne� targetname� �v�sh� g
edge� f sourcename� �Bourne� targetname� �Formshell� g
edge� f sourcename� �Bourne� targetname� �Bash� g



� USAGE OF THE VCG TOOL ��

edge� f sourcename� �csh� targetname� �tcsh� g
edge� f sourcename� �csh� targetname� �ksh� g
edge� f sourcename� �Formshell� targetname� �ksh� horizontal order�  g
edge� f sourcename� �esh� targetname� �ksh� g
edge� f sourcename� �vsh� targetname� �ksh� g
edge� f sourcename� �ksh� targetname� �ksh�i� g
edge� f sourcename� �System�V� targetname� �POSIX� g
edge� f sourcename� �v�sh� targetname� �rc� g
edge� f sourcename� �ksh�i� targetname� �KornShell� g
edge� f sourcename� �ksh�i� targetname� �Bash� g
edge� f sourcename� �KornShell� targetname� �Bash� g
edge� f sourcename� �KornShell� targetname� �POSIX� g
edge� f sourcename� �KornShell� targetname� �ksh�POSIX�g

g

� Usage of the VCG tool

The usage of the VCG tool is very simple� It is designed as an auxiliary tool that works
in combination with programs that provide automatically the input of the tool� Thus� the
possibilities to change the visualized graph interactively are very limited� The interactive
commands are concentrated to improve the readability of existing graphs� i�e� to show impor�
tant parts and hide other parts�

��� Starting the Tool

The invocation of the VCG tool is


xvcg ��lename�

If the optional parameter �lename is set to  �!� the input �le is �stdin�� If �lename is not
speci�ed� the tool asks for the �lename containing the graph description in GDL� If multiple
graph speci�cations should be visualized sequentially� the tool is invoked by

xvcg �multi �lename� �lename� �lename� � � �

Instead of terminating the tool after the visualization of �lename�� the tool is automatically
reinvoked to visualize �lename�� �lename�� etc� The command  xvcg �h! prints an explanation
of the usage on the screen� Other options of the tool are explained in the manual page� After
reading the input� the visualization layout is calculated with the parameters given in the GDL
�le� The graph is drawn in a X�� window �Pet���� Interactive commands are entered by a
mouse menu �pull down menu using the left or right mouse button�� A summary of commands
is shown in table ��

��� The Graph Window

The graph window consists of a drawing area where the graph appears� a text area be�
low where the messages are printed� 	 scrollbars and a small button �right� below the right
scrollbar�� The menu becomes visible on a mouse click into the drawing area� as shown in
�gure ���



� USAGE OF THE VCG TOOL ��

Item Description

Fold Subgraph fold a subgraph to a summary node
Unfold Subgraph unfold a subgraph
Expose�Hide Edges hide or expose edges and their regions
Fold Region fold a region of class k
Unfold Region unfold a region
Scroll scroll the virtual window
Node Information show the info�� info� or info� text� the label

or layout attributes of a node�
Position position the virtual window absolutely
Pick Position position the virtual window accordingly to mouse position
Center Node position the virtual window to center a node
Follow Edge center the node at the end of an edge in the window
Ruler switch position rulers on or o�
Layout change the layout parameters of the graph
View change the view parameters
Scale set �shrink�stretch� factor for magni�cation
File store the graph in VCG� PBM� PPM or PostScript format�

load a new �le� or reload the actual �le again
Quit exit the tool

Table �
 Menu Items

As described in section ���� the displayed window shows a part of the virtual window that
contains the actually drawn part of the graph �see �gure 	�� Parts that are not inside the
virtual window are not drawn because of performance reasons� The displayed window can be
closed or opened� but cannot be larger than the virtual window� The �rst left scrollbar is used
to position the virtual window to a y�coordinate� i�e� to move the window vertically through
the system of coordinates� The second left scrollbar is used to scroll the displayed window
vertically through the virtual window� i�e� to �ne tune the vertical position of the visible part
of the graph�

The �rst lower scrollbar is used to position the virtual window to a x�coordinate� i�e� to
move the window horizontally through the system of coordinates� The second lower scrollbar
is used to scroll the displayed window horizontally through the virtual window� i�e� to �ne
tune the horizontal position of the visible part of the graph�

Note
 if the virtual window is positioned� this causes a redrawing of a part of the graph�
If the visible window is scrolled through the virtual window� this causes refresh of the visible
window� which is usually a much faster operation� because of a graphic bu�er�

The right scrollbar is used to set the scaling of the graph� If the scrollthumb is in the
middle of the scrollbar� the scaling is ���#� i�e� it is normal size� The small buttons at the
beginning and end of each scrollbar can be used to increment or decrement the scrollbar value
in �ne grained steps� The amount of increment or decrement depends on the selected mouse
button used to push onto the scrollbar buttons� The small button below the right scrollbar is
used to set an appropriate scaling such that the whole graph is completely visible� For large



� USAGE OF THE VCG TOOL 	�

Figure ��
 The Graph Window

graphs� this will set a large demagni�cation such that no details are anymore visible�

��� Folding

As already mentioned� the graph can be partitioned into nested subgraphs� that can be folded
by selecting one of their nodes� and unfolded by selecting the summary node of a subgraph�
Further� a class of edges can be hidden� which also hides the region of nodes only reachable
by edges of this class� Finally� a connected region can be folded dynamically by selecting
the start nodes and the end node of a region and an edge class k� All nodes reachable from
the start nodes by edges of classes less or equal then k up to �and unless� the end nodes are
condensed into one summary node� Nested foldings are possible� To activate the di�erent
folding methods� the following items are in the mouse menu


� Fold Subgraph
 After selection of this item� an arbitrary node of the subgraph to be
folded must be selected� The corresponding subgraph is folded�

� Unfold Subgraph
 The summary node of a subgraph must be selected to show this
subgraph explicitly�

� Expose�Hide Edges
 A dialog box of all edge classes appears �see �gure �� for an
example�� There is at least the default edge class  �!� The edge classes are shown by



� USAGE OF THE VCG TOOL 	�

Figure ��
 The Edge Class Menu of an Example
The text of the edge classes is speci�ed in this example graph and changes with each new graph �see

attribute classname��

numbers� or by the names that are assigned to the classes in the speci�cation �see
attribute classname�� The classes currently exposed are highlighted� Here� the classes
to hide and the classes to expose can be selected� As at all dialog boxes� the selection
of the  Okay! button causes the relayout� while the selection of the  Cancel! button
cancels this operation�

� Fold Region
 An edge class must be selected from the submenu� First� nodes are
selected by the left mouse button where the following  Fold Region! operation stops�
This corresponds to the folding attribute value � of nodes� After pressing the right
mouse button� nodes can be marked where the folding process starts� The connected
region of this class is folded until the foldstops are reached �if there are any��

� Unfold Region
 After selection of a summary node� the corresponding connected region
is unfolded�

��� Positioning

The displayed window can be scrolled through the virtual window by scrollbars� The virtual
window can be positioned over the potential in�nite system of coordinates of the graph by
scrollbars� too� If the �sheye view is selected �see section 	���� the positioning moves the focus
point instead of the virtual window� Additionally� there is the item Scroll in the mouse menu�
which opens a submenu with

� left� right� up� down
 move the virtual window �or focus point� � pixels to the cor�
responding direction�

� lleft� rright� uup� ddown
 move the virtual window �or focus point� 	� pixels to the
corresponding direction�



� USAGE OF THE VCG TOOL 	

� llleft� rrright� uuup� dddown
 move the virtual window �or focus point� one screensize
to the corresponding direction� The screensize is given by the attributes width and
height of the outermost graph �see section �����

� origin move the virtual window to the position ������ or move the focus point to the
center of the graph�

Additionally� there is the item Position in the mouse menu that allows to change the
absolute position of the virtual window� and the item Pick Position which allows to select
the new origin of the coordinate system by mouse picks� the item Center Node which centers
a node whose title was entered in the virtual window� and the item Follow Edge that allows
to follow an edge to its start or end point�

The operation Pick Position has two modes
 New origins �focus points for �sheye views�
see 	��� can be selected continuously by short left mouse clicks� This operation continues until
a right mouse button is selected� This is helpful to browse through the graph with �sheye
view� e�g�� to move the focus point over all points of interest� However� if the left mouse button
is pressed� hold and drawn over the window� a rubberband appears� In this case� not only
the origin is set but also a scaling is calculated such that just the region of the rubberband is
magni�ed to �t into the window� Selecting regions by this way does not continue as for the
short mouse clicks� It stops directly�

Figure ��
 The Follow Edge History Box

The operation Follow edge works as follows
 �rst one node must be selected by the
mouse� then one edge that starts or ends at this node is chosen by mouse button clicks� The
other end point of the edge is centered� Now� an edge of the end point can be selected by
button clicks to center a new end point� etc� The operation stops if the right mouse button is



� USAGE OF THE VCG TOOL 	�

selected at the end point� This method is also helpful to browse through the graph� However�
how the �nd the way back to a node where the operation has been started � To support this�
a history is implemented� By pressing the key �h� during the Follow edge operation� the
history dialog box appears �see �g� ��� and shows all nodes that have been centered during
the Follow edge operation� Selecting a node using the button  Select Node! browses back
and centers this node �or sets the focus point to it�� touching the button  Next Edge! allows
to select the next edge to follow� and touching the button  Follow Edge! allows to follow the
edge�

The selection of the menu item Ruler gives a hint of the current position of the virtual
window
 Horizontal and vertical rulers are switched on or o� at the margins of the displayed
window to display the coordinates� Of course� this does not work for �sheye views� since the
coordinate system is distort�

��� Node Information

This submenu contains several points that allow to see more information about the nodes and
the graph�

� Info �� Info �� Info �
 The name of these items can be selected as attribute infoname
in the speci�cation� otherwise the item numbers  �!�  !� and  �! appear� After the
selection of nodes� their info �elds are displayed� The info �elds can be used to provide
the nodes with additional textual information that would be too large as labels of the
nodes�

� Layout Attributes
 After the selection of nodes� their layout attributes are shown�
This includes the attributes of the speci�cation� but also the calculated position� If a
horizontal or vertical order was speci�ed� it may happen that this order was corrected�
because a level was not possible for a node or the layout algorithm failed to validate
the speci�ed horizontal orders� In this case� we see for instance the entry � �� � which
means that the order was speci�ed to be �� but was corrected by the layout algorithm
to the value 	�

� Label of Node displays the label of a node in normal size� This is useful� if the graph
is shrunken very much� such that the label text is not readable because it is too small�

� Statistics shows the statistics of the graph� which includes the size of the graph� the
number of nodes and edges� the number of crossings etc�

��� Scaling

Additionally to the right scrollbar� the submenu Scale is used to scale the current visualization
up and down� It sets the global values of stretch and shrink




� USAGE OF THE VCG TOOL 	�

Item New stretch New shrink

normal � �
��� # stretch $ � shrink
�� # stretch $  shrink
�	� # stretch $ � shrink $ 
�� # stretch $ � shrink $ ��
�� # stretch $ � shrink $ ��
�� # stretch $ � shrink $ ��
�� # stretch $ � shrink $ ��
	� # stretch shrink $ 
	 # stretch shrink $ �

Figure �
 The Layout Parameter Box



� USAGE OF THE VCG TOOL 		

��� Layout Parameters

After the selection of the menu item Layout� a dialog box appears �see �g� ��� Here� we can
select the way and whether edge labels are drawn� the orientation of the graph �see attribute
orientation�� the crossing reduction method �barycenter weights if the degree of the nodes
is high� mediancenter weights if the degree is small� or one of the hybrid methods barymedian
or medianbary� the crossing reduction phase  or the local optimization phase can also be
switched on or o��� the node alignment �see attribute node�alignment�� the mode for the
arrow heads �see attribute port�sharing and arrow�mode� and the layout algorithm� The
attribute late�edge�labels corresponds to the selection of the point  Adding labels ��� after
partitioning!� Further� we have access to all layout factors by some scrollbars
 for instance�
if the graph is too dense� we set xspace and yspace� if splines are too sharp� we reduce
the spline factor and increase xlspace� if the layout iteration phases run into timeouts� we
increase the maximal number of iterations� etc�

The layout parameters become valid� if the dialog box is closed by selecting the  Okay!
button� This yield a relayout of the graph� On button  Cancel!� the old parameters remain
valid�

Figure ��
 Normal Flat View



� USAGE OF THE VCG TOOL 	�

��
 View Parameters

After the layout� we have a view onto the graph� The  view! is the way how the graph
appears
 Normally� it appears in the window that realizes a �at coordinate system with linear
scale �see �g� ���� Unfortunately� large graphs do not �t well into a small window such that
the normal view either shows the full graph demagni�ed such that no details are visible� or it
shows a small region in an appropriate magni�cation such that the node labels are readable�
But then� only a part of the graph is visible and the structure of the whole graph and the
relations between this part and the remaining graph is not recognizable�

The idea of a solution of this con�ict is to distort the coordinate system� The main point
of interest is the focus point� It is magni�ed such that its label is readable� Parts far away
from the focus point are demagni�ed� Thus� the whole graph or at least a very large part is
visible�

Figure ��
 Polar Fisheye View

This mechanism has similarities with the �sheye camera lenses in the photography� The
polar �sheye view ��g� ��� is a coordinate transformation where the plane of the normal
coordinate system is projected onto a spheric ball� If we look onto this ball in � D� we have
a polar �sheye view� The point most near to us looks very large� it is the focus point� It
appears in the magni�cation that is currently valid due to the right scrollbar setting or one
of the scaling operations� Points near the border of the visible half of the ball are shown
very small� A polar �sheye view has also disadvantages
 it distorts the graph� thus distances



� USAGE OF THE VCG TOOL 	�

between the nodes� angles between the edge segments� and even straightness of lines are not
anymore recognizable� Since the drawing of lines is optimized� it may even happen that we
see a crossing of lines when there is no crossing in the plane view� But these cases are very
seldom�

Figure �	
 Cartesian Fisheye View

The cartesian �sheye view ��g� �	� is a similar projection� The polar �sheye is a transfor�
mation of the polar coordinate system� while the cartesian �sheye is a transformation of the
cartesian coordinate system� The advantage is
 in a polar view� horizontal and vertical lines
do not appear orthogonal� they seem to be bend� In a cartesian view� they are still drawn as
parallel horizontal and vertical lines� Since important forms of nodes and also the orthogonal
layout �see attribute manhattan�edges� contain many orthogonal lines� this improves the
readability�

The browsing through a �sheye view is the moving of the focus point� This can be done
by the command Pick Position and the various other positioning operations that allow to
set the origin in the �at view� We have two di�erent modes for �sheye views


Self adaptable �sheyes The whole graph is visible The distortion scale of the �sheye is
automatically adapted to the actual �sheye� such that the graph just �ts into the win�
dow� The position where the focus point appears in the window is calculated from the
position of the focus point in the graph� i�e�� e�g�� if the focus is set to the upper left



� USAGE OF THE VCG TOOL 	�

Figure ��
 The View Parameter Box

corner of the graph� it will also appear in the upper left corner of the window� This
helps to keep the orientation when browsing through the graph�

Fisheyes with a �xed radius If the graph is even too large for a self adaptable �sheye�
this mode may be useful� Here� not the whole graph is visible but only a region of a
�xed radius around the focus point� In this case� the focus point is always centered in
the graph window�

The view parameters can be selected by a dialog box ��g� ���� Here� not only the mode
of the �sheye can be chosen� but also whether edges or nodes generally should appear� or
whether splines should be used to draw edges�

��� File Operations

There is a submenu with the following items


� Save to File writes the graph with all calculated layout parameters into a �le� The
result is a valid GDL speci�cation that can be read by the VCG tool�

� Export Part
 after selecting a region to be exported� an image is saved in monochro�
matic PBM�P� format� colored PPM�P� format� or PostScript� For PostScript� multiple
page output up to 	 pages is possible� too� Note
 if we use splines� it is only possible
to export the whole graph�

� Export Graph
 The whole graph is exported� just similar as above�

� Load
 a new GDL��le is read and the described graph is displayed�

� Reload
 the actual GDL��le is read again and the described graph is displayed� This
does not work if the actual �le is �stdin��

To export an image� it is useful �rst to shrink the graph to a size that the part to export
is completely visible� With a rectangular rubberband� this part is selected� Hint
 If a corner



� USAGE OF THE VCG TOOL 	�

of the part is too close to the corner of the window� it is more comfortable to open the
rubberband at the opposite corner and to draw it over to corner of the window� The selection
by rubberband is not necessary� if the whole graph is exported�

Figure ��
 The Export Box

Now� a dialog box is opened that allows to select the format� scaling� size and position of
the image �see �gure ���� Basically� this export mechanism is designed to create �les that can
be printed� PBM and PPM are bitmap formats that often create rather large �les� �Example

A din A� page at ��� dpi needs in PBM format nearly � MB� and in PPM about � MB��
However� there are many printer drivers for PBM and PPM format in the world� PBM is a
monochromatic format �b�w� and PPM is a color format� PostScript is an image description
language that can be used to create colored images� grey scaled images and monochromatic
images� PostScript images can be split into many pages� such that it is possible to dispatch
a very large graph onto several pages� in order to avoid that the labels of nodes becomes
unreadable small�

After selecting the format� the paper size and orientation� and perhaps the number of
PostScript pages� the size and position of the images must be selected� For the bitmap
formats� the dpi�factor of the printer must be selected �rst� because the size depend on this
factor� The factors x�dpi and y�dpi are independent of each other� such that it is possible
to distort the images with these factors� This is necessary for printing with the usual ��dot
printers� which often have di�erent horizontal and vertical resolutions� Next� we prefer to



� USAGE OF THE VCG TOOL ��

select the buttons  Scaling
 ���#! if the image should be normal size� or  Maxspect!� if
the image should be maximal large� The scrollbars  Scaling!�  Width! and  Height! are
combined scrollbars� Changing one of them in�uences the others� to preserve the aspect ratio�
The image is maximal wide� if the scrollthumb is at the right side of the bar labeled with
 Width!� and maximal heigh� if the scrollthumb is at the right side of the bar labeled with
 Height!�

To position the image on the paper� we move the small rectangular that has diagonals
within the panner� or select one of the buttons  Center!�  Center width! and  Center height!�
On PostScript multipage output� the position cannot be changed�

���� The File Selector Box

On all �le operation� a �le selector box appears to help the selection of a �le name �see
�gure ���� Additionally to the �le name� a �le info is shown that may be the size of the �le�
the access mode� the creation date� the owner or the group� The �le entries in the box can
be sorted by names� or by this �le info� and can be preselected by di�erent name extensions
like ��vcg� ��ps etc� The directories are always shown as �le entries� where ��� indicates the
actual directory and ���� indicates the parent directory� To switch into a directory� a double
mouse click on the corresponding entry is necessary� Alternately� a path can be speci�ed�
which becomes valid if the button  Rescan! is selected to reread the �le name entries�

Figure ��
 The File Selector Box



� USAGE OF THE VCG TOOL ��

To scroll through the list of �le name entries� a scrollbar and the buttons  next! and
 prev! are available� An entry is selected as �le name on a double mouse click on it� The
�le name becomes valid if the dialog box is closed by the button  Okay!� Note that the �le
selector box is immediately reopened� if the �le name was not appropriate� e�g�� if we try to
read a nonexisting �le or to write to an existing �le�

normal commands

q quit the tool
r show or hide the ruler
f load another �le
g reload the same �le
l change layout
v change view

� � � �� hide�expose the corresponding edge class
i show the info �eld � of nodes
I show the info �eld  of nodes
j show the info �eld � of nodes

position commands

a
d �arrow keys� c scroll to the left�right�up�down

b
o go to the origin �����
P enter a position by coordinates
p pick a position by the mouse
n position such that a node is centered
e follow an edge

scaling commands

� or � stretch
� or shrink

� 	null
 set the scale factor to normal

Table �
 Key Commands in the Graph Window

���� Animations

On some computer systems� there is a simple possibility to implement animations
 The
signal USRSIG� �on SunOs
 UNIX software signal ��� e�g�� kill ���� causes the tool to
reload the actual GDL��le� An engine �or some other program� can continuously produce
GDL�speci�cations into a �le while VCG visualizes in parallel according to this �le� When
the engine has produced one instance of output� it sends the signal USRSIG� to the tool�
The tool then displays the new instance of the graph� Depending on the option used to start
VCG� the tool indicates the completion of the visualization of a reload by touching its input



� USAGE OF THE VCG TOOL �

l switch edge labels on or o�
d switch dirty edge labels on or o�
s set slow and nice layout
n set normal layout
m set medium layout
f set fast and ugly layout
o optimze crossing phase 
� set top to bottom orientation
 set bottom to top orientation
� set left to right orientation
� set right to left orientation
� set node alignment to top
� set node alignment to center
� set node alignment to bottom

RETURN quit the dialog box
ESC cancel the dialog box

Table �
 Key Commands in the Layout Dialog Box

v select normal view
c select cartesian view
p select polar view
e switch edges on or o�
n switch nodes on or o�
s switch splines on or o�
f switch �xed radius on of o�

RETURN quit the dialog box
ESC cancel the dialog box

Table ��
 Key Commands in the View Dialog Box

�le to create a new time stamp� or by sending signal USRSIG� to the caller� The signal
USRSIG �on SunOs
 UNIX software signal ��� causes the tool to close its main window�
It is recommended to use this simple animation mechanism only if the engine produces a
GDL�description with �xed layout �i�e� all nodes have attributes loc��

���� Keyboard Commands

The most used commands are available on key press� Which commands are available depends
on the window�dialog box that is currently open� If it is not ambiguous� the uppercase and
lowercase keys have the same functionality� Only the pairs I�i and P�p must be distinguished



� USAGE OF THE VCG TOOL ��

� switch edge class � on or o�
 switch edge class  on or o�
� switch edge class � on or o�
� switch edge class � on or o�
	 switch edge class 	 on or o�
� switch edge class � on or o�
� switch edge class � on or o�
� switch edge class � on or o�
� switch edge class � on or o�

RETURN quit the dialog box
ESC cancel the dialog box

Table ��
 Key Commands in the Edge Class Selection Dialog Box

� PBM output format
 PPM output format
� PostScript output format
f full color
g greyscale
b black and white
l orientation
 landscape
p orientation
 portrait
s scaling
 ��� #
m scaling
 maxspect
c center the position
q quit the dialog box

RETURN quit the dialog box
ESC cancel the dialog box

Table �
 Key Commands in the Export Dialog Box

on the graph window� During the selection of nodes� all key commands are switched o� except
q� a� b� c� d �arrows�� o� �� � and �� See the tables �� �� ��� ��� �� ��� and ���

���� Speedup the Layout

The VCG tool was designed to explore large graphs� However� the layout of large graphs
needs a lot of time� Thus� there are many possibilities to speedup the layout algorithm
 the
graph can be folded� iterations can be limited� and time limits can be speci�ed�

The �rst step to visualize a large graph is to select the parts of the graph that are currently
not of interest� We specify these parts as initially folded� Folding makes the remaining visible



� USAGE OF THE VCG TOOL ��

s additional info
 size
m additional info
 mode
d additional info
 date
o additional info
 owner
g additional info
 group
u order of entries
 unsorted
b order of entries
 sorted by name
i order of entries
 sorted by info
a entry selection
 all
v entry selection
 ��vcg

� or p scroll entry list up
� or n scroll entry list down

r rescan entry list
q quit the dialog box

RETURN quit the dialog box
ESC cancel the dialog box

Table ��
 Key Commands in the File Selector Box

t show titles
l show labels
� show info �elds �
 show info �elds 
� show info �elds �
c show coordinates

� or p scroll entry list up
� or n scroll entry list down

a apply current selection
q quit the dialog box

RETURN quit the dialog box
ESC cancel the dialog box

Table ��
 Key Commands in the Title Selector Box and Follow Edge History Box

graph smaller� thus the layout can be calculated faster and the quality of the layout is better� It
is of course useful �rst to try the fast algorithms �dfs� minbackward� tree�� then the medium
fast methods �normal� mindepth� maxdepth� � � �� before the slow methods �mindepthslow�
maxdepthslow��

If the VCG tool is still too slow� we must omit some phases or limit the iteration factors�
This decreases the quality of the layout
 the picture will be more ugly� First� we should try



� EXPERIENCES �	

to skip the crossing reduction phase  �option �nocopt�� attribute crossing�phase��� It
probably takes the most time� which we can recognize if the message character �B� appears
a long time� Next� we should try to limit the iterations for the crossing reduction �option
�cmax� attribute cmax� or try to select another crossing weight �option �bary� etc�� attribute
crossing�weight�� Normally� it is not necessary to switch o� the local crossing optimization�
because this step is very fast and e�ective�

If the graph is very unbalanced� then the pendulum method probably needs a lot of time�
We can recognize this if the message character �m� appears a long time� In this case� we
limit the iterations for the crossing reduction �option �pmax� attribute pmax�� If the message
character �S� does not disappear immediately after the pendulum method� then we limit the
straight line �ne tuning phase instead �option �smax� attribute smax��

The other parameters normally need not to be changed� because the corresponding phases
are very fast� In particular� bending reduction improves the layout quality much and is so
fast� such that the option �bmax is needed very seldom� Further� the fast mode �option �f�
should be avoided� because it reduces the iteration limits so much that the result is very ugly�
The drawing of splines is very slow� Thus it should be avoided on large graphs�

If we don�t want to deal with the exact iteration limits� we can set a time limit �option
�timelimit�� If the time limit is exceeded� the fastest possible mode for the actual iteration
phase is switched on� The time limit does not mean that the layout really needs so much time

The layout may be faster� because the graph structure is very simple� but more often� it will
be slower� because even the fastest possible methods already exceed the time limit� The time
limit is only a hint for the VCG tool� Another problem
 the time limit is real time� thus the
result of the layout with time limit depends on the load of the computer� Thus� given a time
limit� two identical trys need not to give identical results�

� Experiences

Compiler graphs are usually a rather large network of interwoven graphs� Often� there is one
base graph and a lot of subgraphs that are annotations of the base graph� Not all aspects of a
compiler graph are of interest at the same time
 either an overview of the graph is needed� or
some details are inspected� In the �rst case� the graph must be laid out completely and nice�
i�e� edges must be straight� nodes must be centered� etc� The user normally has shrunken
the graph very much� But in the �rst case� not all nodes must be drawn� large parts like
annotations can be folded� because only the main structure is of interest� In the second case�
the readability of the complete layout is not important� The layout may be ugly� but the user
only looks at small regions� and has stretched the graph to see the details� The VCG tool
provides reasonable facilities to support both situations� it can even combine both situations
using �sheye views� The layout algorithm can be controlled to be fast and ugly� or slow and
nice� Folding allows to reduce the number of information seen at the same time� If the user
looks at details� there are possibilities to �nd nodes and edges that are currently not in the
window� The user can in�uence the structure of the interwoven graphs by near edges� anchor
points and priorities� Nevertheless� visualization of large graphs is a di%cult task and needs
a lot of time�



� RELATED WORK ��

Table �	 shows the performance of the VCG tool on a Sun Sparc ELC� The  Time for
Loading! includes the start of the tool� loading of the speci�cation� automatical layout and
drawing� The measurements are done by hand� The speed is reasonable�

The examples are


� Graph � shows a LR deterministic automaton produced by the TrafoLa parser generator
�see �HeSa�����

� Graph  is a larger LR deterministic automaton�

� Graph � is an all graph� i�e� all nodes are connected pairwise�

� Tree � is a syntax tree of a CLaX program �normal layout� not specialized tree layout��

� Tree  is a syntax tree with annotations �normal layout� not specialized tree layout��

� Tree � is a large syntax tree with annotations �normal layout� not specialized tree
layout��

� Tree � is a binary tree of level � �normal layout� not specialized tree layout��

Example jNodesj jEdgesj Time for Loading 	sec�
 Time for Positioning 	sec�


Graph � � �	 � �
Graph  ��� �� � $
Graph � � ���  ��	
Tree � �	� �	� �	 $
Tree  ��� ��� �� �
Tree � ��� �� � �
Tree � ���	 ���� �� $

Table �	
 Statistics
 Times for Loading and Positioning
� means �not measurable�� i�e� less than � sec�

� Related Work

During the work in the project Compare� we tested some visualization tools and algorithms�
Each of these tools has certain advantages and disadvantages� but none of these tools combined
speed on large graphs with an appropriate folding mechanism� Nevertheless� these excellent
tools gave us many inspirations�

We mentioned already the Edge tool �see �PaTi���� �MaPa����� that has the most common
features with theVCG tool� Another visualization tool that works similar than theVCG tool
or the Edge tool is daVinci �see �FrWe����� This X�� tool reads a speci�cation of a graph
written in the style of a functional language� The DAG tool and the DOT tool are described
in �GNV���� �GKNV��� and �KoEl���� They allow the production of high quality graphs
for printing� The GraphEd �see �Hi���� is a graph editor that includes a large collection of



� CONCLUSIONS ��

algorithm to create� analyze and lay out graphs interactively� D�ABDUCTOR is described
in �Mis���� This tool is very powerful for the visualization of compound graphs�

	 Conclusions

VCG is a tool that allows to visualize complex graphs in a compact way and in good per�
formance� It can be used to show the compiler functionality to prepare presentations and to
help on compiler debugging� The GDL speci�cation language of the tool is general such that
the tool can be adapted to many applications�

The tool is intended to be used in combination with a program system that produces
graphs� It is not an interactive graph editor� The algorithms to lay out the graph are rather
simple and use heuristics� but they are very fast� Thus� the visualization of a graph may di�er
from the intuition� but these cases were seldom in our experiences� The layout algorithms can
still be improved �see �BET����� Usually� the readability of large graphs is improved by the
layout algorithm� We believe that the tool is a good compromise between performance and
legibility of the visualization�

There is a mailing list vcg�users�cs�uni�sb�de that distributes mail to all users of the VCG

tool� If you want to be added to this list� please send a request to sander�cs�uni�sb�de� Then� you

will be informed about bugs and new versions of the tool�

References

�BET��� Di Battista� G�� Eades� P�� Tamassia� R�� Tollis I� G�
  Algorithms for Draw�
ing Graphs
 an Annotated Bibliography!� Computational Geometry
 Theory and
Applications� no� �� pp� �	�� available via ftp from ftp�cs�brown�edu� �le
�pub�papers�compgeo�gdbiblio�tex�Z� ����

�FrWe��� Fr�ohlich� Michael� Werner� Mattias
 Das interaktive Graph Visualisierungssytem
daVinci V��� technical report �in German�� University of Bremen� Germany�
Fachbereich Mathematik und Informatik ����

�GKNV��� Gansner� Emden R�� Koutso�os� Eleftherios� North� Stephen C�� Vo� Kiem�Phong

A Technique for Drawing Directed Graphs� IEEE Transactions on Software En�
gineering� Vol� ��� No� �� pp� ������ March� ����

�GNV��� Gansner� Emden R�� North� Stephen C�� Vo� Kiem�Phong
 DAG � A program that
draws directed graphs� Software � Practice and Experience� Vol� ��� No� �� pp�
��������� ����

�HeSa��� Heckmann� Reinhold� Sander� Georg
 Trafola�H Reference Manual�
in Ho�mann� Berthold� Krieg�Br�uckner� Bernd� Editors
 Program Development
by Speci�cation and Transformation� Lecture Notes in Computer Science ���� pp�
�	����� Springer Verlag ����



REFERENCES ��

�Hi��� Himsolt� Michael
  Konzeption und Implementierung von Grapheditoren!� Disser�
tation �in German�� Universitaet Passau� Germany� ���� published with Berichte
aus der Informatik� Verlag Shaker� Aachen ����

�KoEl��� Koutso�os� Eleftherios� North� Stephen C�
 Drawing graphs with dot� technical
report� AT&T Bell Laboratories� Murray Hill NJ� ���

�MaPa��� Manke� Stefan� Paulisch� Frances Newbery
 Graph Representation Language
 Ref�
erence Manual� ����

�Mis��� Misue Kazuo
 D�ABDUCTOR ��� User Manual� Institute for Social Information
Science� Fujitsu Laboratories Ltd� ����

�PaTi��� Paulisch� Frances Newbery� Tichy� W� F�
  EDGE
 An Extendible Graph Editor!�
Software� Practice & Experience� vol� �� no� S�� pp������� ����

�Sa��� Sander� Georg
 Graph Layout throught the VCG Tool� technical report A������
Universit!at des Saarlandes� FB �� Informatik� ���� available via ftp from
ftp�cs�uni�sb�de� �le �pub�graphics�vcg�doc�tr�A������ps�gz

�Sa�	� Sander� Georg
 Graph Layout throught the VCG Tool�
in Tamassia� Roberto� Tollis� Ioannis G�� Editors
 Graph Drawing� DIMACS In�
ternational Workshop GD���� Lecture Notes in Computer Science ���� pp� ���
��	� Springer Verlag ���	

�STM��� Sugiyama� Kozo� Tagawa� Shojiro� Toda� Mitsuhiko
 Methods for visual under�
standing of hierarchical system structures� IEEE Transactions on Systems� Man�
and Cybernetics SMC���� No� � pp� �����	� Feb� ����

�SPG��� SunView Programmer�s Guide �Revision A of �� February �����

�WiMa�� Wilhelm� Reinhard� Maurer� Dieter
 �Ubersetzerbau
 Theory� Konstruktion�
Generierung� Springer Verlag ���

�Pet��� Peterson� Chris D�
 X�� Athena Widget Set � C Language Interface �Revision
notes to X�� R	� �����



Index

��dot printer� 	�

acyclic� �� ��� ��� �	
alert� �
alignment� �
anchor� �� �
anchor point� ��� �
animation� ��
annotation� 	� ��
aquamarine� ��� �
arrow color� �
arrow head� �� �
arrow mode� �
arrow size� �
arrow style� �
attribute� ��� �
attribute order� �
attribute value� �
attribute value� default� �� �	

backarrow color� �
backarrow size� �
backarrow style� �
backedge� ��� ��� �	
background color� ��� �
backspace� �
bary� �� �	
barycenter� �� �� 		
barymedian� �� �� 		
beep� �
bend point� ��� �
bending reduction� � �	
bentnearedge� �� �� �	
bitmap� 	� ��� 	�
black� ��� �
blue� ��� �
bmax� 
bold� �
bordercolor� ��� �
borderwidth� ��� �
bottom� �
bottom to top� �

bottom up� ��
box� ��� �

C escape� ��
call graph� �
cartesian �sheye� �� 	�
center� �� ��
center height� ��
center node� 	
center width� ��
c�sh� �
character set� �
class� 	� �� ��� �� �� 	�� 	�
class name� ��� 	�
CLaX� �� ��
cmax� � �	
cmin� �
color� ��� �� �� �� ��
color entry� ��� �
color index� �
color map� ��� ��� �
comment� ��� �
compiler� �
connected component� �� �
continuous� �
control character� ��� �
control �ow graph� �� ��
coordinate� �� ��
coordinate system� ��� 	�� 	�
coordinate transformation� �� 	�
crossing� �
crossing optimization� �
crossing phase�� �
crossing phase� �� �� 		� �	
crossing reduction� �� �� �	
crossing reduction method� 		
crossing weight� �� �� �	
cyan� ��� �
cycle� �� ��� ��� �	� ��

D�ABDUCTOR� ��
DAG tool� ��

��



INDEX ��

darkblue� ��� �
darkcyan� ��� �
darkgreen� ��� �
darkgrey� ��� �
darkmagenta� ��� �
darkred� ��� �
darkyellow� ��� �
dashed� �
data dependence graph� �
daVinci tool� ��
default attribute value� �� �	
depth �rst search� �� ��
dfs� �� ��� ��� ��
dirty edge labels� ��
display edge labels� ��
displayed window� ��� ��
DOT tool� ��
dotted� �
downfactor� ��� ��� �	
downward laid out tree� �� ��� �� ��
dummy node� �� ��

edge� ��� 	
edge attribute� 	
edge class� 	� �� ��� �� �� 	�� 	�
edge color� �
edge label� ��� 	� ��� 		
edge label color� �
edge priority� �� �
edge thickness� �
Edge tool� �� ��
edges� �� 	�
ellipse� ��� �
export graph� 	�
export part� 	�
expose edges� 	�

fast mode� �	
fc�sh� �
�le info� ��
�le selector box� ��
�ne tuning phase� �� ��� ��� ��
�sheye� �� 	�
�sheye with �xed radius� �� 	�

�sheye� self adaptable� �� 	�
�xed� �
�oat� ��
�owchart� ��
focus point� �� 	�
fold region� �� �� �� 	�� 	�
fold subgraph� 	� 	�
foldedge� ��
folding� 	� �� ��� �� 	�� ��
foldnode� ��� �
follow edge� 	
follow edge history� 	�
formfeed� �
free� �

GDL� �� ��� �
gold� ��� �
grammar of GDL� �
graph� ��� ��
graph attribute� ��
graph description language� �� ��
graph label� ��
graph title� ��
graph window� ��
GraphEd� ��
green� ��� �
GRL� ��

height� ��� �� ��
help explanation� ��
hidden� 	� ��
hide edges� 	� �� 	�� 	�
hide region� 	
horizontal order� ��� �� �� ��� 	�

ignore singles� ��
info name� ��
info�� ��� �� 	�
info� ��� �� 	�
info�� ��� �� 	�
input �le� ��
integer� ��
intermediate representation� �
invisible� 	� ��� �� ��
IR� �



INDEX ��

iteration� �� 		� �	

keyboard command� �
khaki� ��� �

label� ��� ��� � 	� ��� 	�
late edge labels� ��� 		
layout algorithm� 	� ��� ��
layout attribute� 	�
layout criteria� �
layout factors� 		
layout parameter� 		
layout phase� 	
layout spline factor� �
layoutdownfactor� ��� ��� �	
layoutnearfactor� ��� ��� �	
layoutupfactor� ��� ��� �	
left justify� ��� �
left to right� �
level� �� ��� ��� �� �� ��� ��� 	�
lightblue� ��� �
lightcyan� ��� �
lightgreen� ��� �
lightgrey� ��� �
lightmagenta� ��� �
lightred� ��� �
lightyellow� ��� �
lilac� ��� �
line� �
line style� ��� �
load� 	�
loc� ��� �� �
local crossing optimization� �� �� 		� �	

magenta� ��� �
manhattan edges� ��� ��� ��
manhattan layout� ��� �
manual page� ��
maxdegree� �� ��� ��
maxdepth� �� ��� ��� ��
maxdepthslow� �� ��� ��� ��� ��
maxindegree� �� ��� �
maxoutdegree� �� ��� ��� ��
maxspect� ��
median� �

medianbary� �� �� 		
mediancenter� �� �� 		
message character� 	� �� ����� �	
minbackward� �� ��� ��� ��� �	� ��
mindegree� �� ��� ��� ��
mindepth� �� ��� ��� ��
mindepthslow� �� ��� ��� ��� ��
minindegree� �� ��� ��
minoutdegree� �� ��� �
mouse button� ��
mouse click� ��� �� ��
multipage� ��
multiple input �les� ��

nearedge� ��� �� �� ��� ��
nearfactor� ��� ��� �	
nested graph� 	
newline� �
node� ��� 
node alignment� �
node attribute� 
node information� 	�
node label� � ��� 	�
node title� 
nodes� �� 	�
none� �
number of crossings� 	�
number of edges� 	�
number of nodes� 	�

orange� ��� �
orchid� ��� �
orientation� �� 		� 	�
orthogonal layout� ��� ��� �� ��� 	�
outermost graph� 

panner� ��
paper format� 	�
paper size� 	�
parsing� 	
PBM format� 	�
pendulum method� ��� ��� � �	
pick position� 	� 	�
pink� ��� �
pmax� � �	



INDEX �

pmin� 
polar �sheye� �� 	�
polygon segment� ��
port sharing� �
position� 	
positioning� ��� 	�
PostScript� 	� ��� 	�
PPM format� 	�
priority� �� �� ��
priority phase� ��
pull down menu� ��
purple� ��� �

rank� �� ��� �� �� ��
red� ��� �
redraw� ��
refresh� ��
region� �� �� �� 	�
reload� 	�
replacement edge� ��
rescan� ��
rhomb� ��� �
right justify� ��� �
right to left� �
rmax� 
rmin� 
root screen� ��
rubberband� 	� 	�
rubberband method� ��� � ��
ruler� 	�

save to �le� 	�
scaling� ��� �� ��� 	�� ��
scrollbar� ��� 	�
scrolling� ��� 	�
self adaptable �sheye� �� 	�
shape� ��� �� �	
shrink� ��� �� 	�
single nodes� ��
smanhattan edges� �� ��
smax� � �	
solid� �
sourcename� 	
spanning tree� �� ��

speci�cation� 	
speedup� ��
spline� ��� �� �	� 	�� �	
spline factor� �
spread level� �
statistics� 	�
stdin� ��
straight line phase� ��� ��� � �	
straight phase� ��
stretch� ��� �� 	�
string� ��
strongly connected component� �� ��
subgraph� 	� ��� 	�
summary node� 	� �� �� �� 	�
syntax tree� �

tabular� �
targetname� 	
textcolor� ��� �� �
textmode� ��� �
thickness� �
time limit� �	
timeout� ��
title� ��� 
top� �
top down� ��
top to bottom� �� �
tree� �� ��� �� ��� ��� ��
tree factor� �� ��
triangle� ��� �
turquoise� ��� �

underline� �
unfold region� 	�
unfold subgraph� 	�
UNIX software signal� ��
upfactor� ��� ��� �	
usage� ��
USRSIG�� ��
USRSIG� ��

VCG tool� �
vertical order� ��� �� ��� 	�
view� �� 	�
virtual window� ��� ��



INDEX ��

white� ��� �
width� ��� �� ��
window� ��

x dpi� 	�
x position� ��
X�� window� ��
xbase� ��
xlraster� ��
xlspace� ��� ��
xmax� ��
xraster� ��
xspace� ��� ��

y dpi� 	�
y position� ��
ybase� ��
yellow� ��� �
yellowgreen� ��� �
ymax� ��
yraster� ��
yspace� ��� ��


