
Formula Layout

R� Heckmann R� Wilhelm

Technischer Bericht Nr� A �� � ��

Reinhold Heckmann� Reinhard Wilhelm

FB �� � Informatik�

Universit�at des Saarlandes

Postfach ������

D�		��� Saarbr�ucken

Germany

e�mail
 fheckmann�wilhelmg�cs�uni�sb�de

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formula Layout

Reinhold Heckmann Reinhard Wilhelm

Fachbereich Informatik� Universit�at des Saarlandes

Saarbr�ucken� Germany

fheckmann�wilhelmg�cs�uni�sb�de

July �� ����

Abstract

Both the quality of the results of TEX�s formula layout algorithm and the complexity of its

description in the TEXbook ��� are hard to beat� The algorithm is �verbally� described as an

imperative program with very complex control �ow and complicated manipulations of the data

structures representing formulae� In a forthcoming textbook �	�
 we describe TEX�s formula layout

algorithm as a functional program transforming mlist�terms into box�terms� This transformation

is given in this paper�

� Introduction

The quality of the results of TEX�s formula layout algorithm are convincing� However� any attempt to

understand the reasons for that leads to deep frustration when Knuth�s description of the algorithm

from the TEXbook �� is used� In an attempt to understand this problem� one has to cleanly separate

the reasons for the lack of understandability�

�� The problem may have a nature that does not allow for a solution which is easily described in

some readable way� Not much can be done about that�

�� The algorithm used to solve the problem may not be the simplest possible� but may be tuned

for e�ciency or optimality of the result� Here� a clean separation between principles of a space

of solutions and the optimizations applied would help the interested reader�

�� The context of the chosen algorithm may enforce a bad design� Here� a new describer may take

the freedom to abstract from this context�

�� The description may not be the best possible for the given algorithm� This is a particularly

favorable situation for an attempt to explain an interesting subject better�

Knuth�s description of formula layout is an imperative program with very complex control �ow and

complicated manipulations of the data structures representing formulae� The �programming language�

is English prose with some formal fragments� In this paper� we present a new description using the

pure functional language Miranda
� ��� The use of a functional language gives a completely new �avor

to the description� Of course� the mere fact that we use a concrete programming language instead of

English phrases adds rigor and exactness to the exposition�

Our criticism and attempt to improve the presentation of the formula layout algorithm of TEX

mainly touches points � � � above� In Section �� we consider the input of the layout algorithm� i�e��

the internal representation of formulae� In ���� we discuss Knuth�s original data structure� In our

�Miranda is a trademark of Research Software Ltd�

�

opinion� it is misconceived� Many di�culties in Knuth�s description result from the design of this data

structure� In ���� we propose a new data structure for formulae with a clean and simple design�

In Section � we present somemore details which in�uence formula layout
 the styles of formulae and

subformulae �which communicate information about their context�� the representation of characters�

and the layout parameters which control the positions of subformulae� Knuth�s account of these things

is very concrete� In contrast� we present an abstract interface which hides the details of font table

organization� and makes clear how the information is used�

In Section �� we consider the output of the layout algorithm� box terms� Knuth�s description of

this data structure and its operations is particularly vague� We try to model Knuth�s intentions by a

Miranda data type and functions de�ned in Miranda�

In Section �� we present a bunch of specialized functions which translate subformulae of various

kinds into box terms� In Section 	� we deal with the translation of whole formulae� i�e�� the recursive

descent to subformulae and the selection of the appropriate specialized subformula functions�

We give an honest estimation of the improvements in the conclusion �Section ��� Of course� our

functional solution is not simpler than the problem admits� Formula layout is an inherently di�cult

problem� not in terms of computational� but of algorithmic complexity� There are many di�erent

kinds of mathematical formulae� whose layout is governed by tradition and aesthetics� Algorithms for

formula layout have to distinguish many cases and pay attention to lots of little details�

� Internal Representation of Formulae

��� The Original TEX�Representation

TEX reads a formula speci�cation from the input and converts it into an internal representation� a

math list� A math list is a sequence of math items�

According to the description in the TEXbook �� page ����� a math item is an atom� a horizontal

space� a style command �e�g�� �textstyle�� a generalized fraction� or some other material which we

do not consider here for simpli�cation�

Atoms have �at least� three parts
 a nucleus� a superscript� and a subscript� Each of these �elds

may be empty� a math symbol� or a math list� There are thirteen kinds of atoms� some of which

with additional parts� Eight atom kinds mainly regulate the spacing between two adjacent atoms
 a

relation atom such as ��� is surrounded by some amount of space� a binary atom such as ��� by less

space� and an ordinary atom such as �x� by no extra space at all� The remaining �ve kinds of atoms

have a more serious semantics� An overline atom for instance is an overlined subformula�

The formula �xi � y�n�� for instance may be speci�ed as ��x�i	y
���overline�n	���� In

internal form� it is represented by a math list consisting of �ve atoms
 an �Open��atom with nucleus

��� �and empty superscript and subscript�� an �Ord��atom with nucleus �x�� empty superscript� and

subscript �i�� a �Bin��atom with nucleus ���� an �Ord��atom with nucleus �y�� and �nally a �Close��atom

with nucleus ���� whose superscript is a math list consisting of a single �Over��atom� whose nucleus is

a math list of three atoms corresponding to n� ��

This internal representation deserves some criticism� The superscript and subscript �elds are

empty in most cases� there should really be superscript and subscript constructors� The thirteen

kinds of atoms combine two completely di�erent aspects
 a classi�cation needed to control spacing�

and the adjunction of meaningful constructors� These two aspects should not be mixed into a single

concept� Interestingly� TEX�s layout algorithm internally tries hard to distinguish these aspects� as we

explain by two examples�

Overline atoms are handled during a �rst pass through the formula� The overline rule is added to

the corresponding subformula� and afterwards� it is transformed into an �Ord� atom since the spacing

�

of overline atoms and �Ord� atoms is identical� The actual inter�atom spaces are added in a second

pass through the formula�

Fractions are math items� but not atoms� Their layout is computed during the �rst pass of the

algorithm� and afterwards� they are transformed into �Inner� atoms� The kind �Inner� controls the

spacing around fractions in the second pass of the algorithm�

Thus� we see that the mixture of di�erent concepts into the same notion leads to the need to

destructively transform the data structure of formulae which makes TEX�s layout algorithm hard to

understand�

��� An Alternative Representation De�ned in Miranda

To avoid the problems mentioned above� we completely redesigned the internal representation of

formulae� The following de�nition is given in Miranda�

As in the original representation� formulae are math lists �mlist� consisting of math items �mitem��

mlist �� �mitem�

Mitems are de�ned as the elements of a constructor type� We do not distinguish between atoms and

non�atoms� and restrict ourselves to semantically meaningful constructors�

mitem ���

Sym class mathchar � �� a single symbol with its class

MathSpace num � �� space �in relative math units

Over mlist � �� overlined subformula

Under mlist � �� underlined subformula

Frac mlist mlist � �� fraction with numerator and denominator

Sup mitem mlist � �� formula with superscript

Sub mitem mlist � �� formula with subscript

SupSub mitem mlist mlist � �� with superscript and subscript

Class�cmd class mlist � �� from �mathord� �� �mathop� � etc

Style�cmd style � �� from �displaystyle etc

Group mlist �� a nested group� indicated by �����

For reasons of simplicity� we omitted some of TEX�s possibilities� To cover the full power of

TEX formulae� additional constructors would be needed for left and right big delimiters� for accented

characters� for roots �
p
� � �

p
��� for vertically centered subformulae� etc� They don�t o�er principally

new problems� although the treatment of accented characters and roots in �� is particularly hard

to grasp� The constructor Frac represents a special case of TEX�s generalized fractions� for a full

treatment� more argument �elds would be needed�

To complete our description� we have to de�ne the types class� mathchar� and style� The

type mathchar is de�ned in Section ���� and style in Section ���� The type class enumerates nine

constructors

class ��� Ord � Op � Bin � Rel � Open � Close � Punct � Inner � None

The �rst eight classes correspond to those atom kinds which control spacing� The ninth class None is

used for mitems which are not atoms in the original TEX representation� and are never transformed

into atoms�

Using our representation� the formula �x�i	y
���overline�n	�� is internally described as the

following term

� Sym Open ����

Sub �Sym Ord �x�
 �Sym Ord �i���

Sym Bin �	��

Sym Ord �y��

�

Sup �Sym Close �
�
 �Over �Sym Ord �n�� Sym Bin �	�� Sym Ord ����

�

The internal representation is created by a parser starting from the external formula description�

We have to assume that this parser is a bit more powerful than the one employed in the TEXbook� It

has to correctly transform the input string into our data structure obeying the subformula structure�

Note that the nucleus of Sup etc� needs grouping if it is not a single symbol� �The nucleus is an mitem

instead of an mlist� since otherwise� class computation and spacing would fail��

When reading a character or mathematical symbol� the parser knows about the pre�assigned class

of this symbol� e�g�� Rel for ��� and Open for ���� This class is stored in the internal representation as

the �rst argument of the Sym constructor� As the biggest di�erence to the original TEX�situation� we

assume that the parser is able to recognize binary symbols which are used in non�binary contexts� e�g��

the plus symbol in f� � The class of these symbols should be Ord instead of Bin� In the original TEX�

algorithm� atoms of kind �Bin� change their kind into �Ord� depending on the kinds of neighboring

atoms during the computation of inter�atom spaces� This solution could also be programmed in

Miranda� but would make function do mlist in Section 	�� overly complex�

In contrast to the original description� classes are not stored with all mitems� The reason is that

in almost all cases� the class of an mitem can be derived mechanically from its structure� The only

exceptions are symbols which are classi�ed by some external declarations� and the Class cmd items

which come from explicit class assertions in the formula description �by the commands �mathord�

�mathop etc���

The following function computes the class of every subformula

class� �� mitem �� class

class� �Sym cl mc
 � cl �� the class is a symbol property

class� �MathSpace w
 � None �� spaces are not atoms� and never will be

class� �Over ml
 � Ord �� Over�atoms are changed into Ord�atoms

class� �Under ml
 � Ord �� Under�atoms are changed into Ord�atoms

class� �Frac num den
 � Inner �� fractions become Inner�atoms

class� �Sup mi sup
 � class� mi

class� �Sub mi sub
 � class� mi

class� �SupSub mi sup sub
 � class� mi

class� �Class�cmd cl ml
 � cl �� class is explicitly set

class� �Style�cmd st
 � None �� style commands are not atoms

class� �Group ml
 � Ord �� this is an Ord�atom in TeX

In the comments� we tried to explain the reason for this rule� For instance� Over�items are classi�ed

as Ord because they are transformed into �Ord��atoms in the course of TEX�s layout algorithm�

� Additional Details

In this section� we present some additional detail information needed for the formula layout
 the styles

of formulae and subformulae� the representation of characters� and the layout parameters controlling

the positions of subformulae�

��� Formula Styles

The layout of formulae and subformulae in TEX documents depends on a style parameter� There are

two kinds of basic styles
 formulae may appear on a separate line by their own �display style� or as

�

part of a line of text �text style�� Consider the following displayed formula

nX

j��

Aij �
y�

y� � z�

and its inline counterpart
Pn

j��
Aij� y�

y��z�
� We observe that in display style� the sum symbol is bigger�

and the limits of the summation are placed vertically below and above it �this is called limit position��

In text style however� the position of the limits is to the right of the symbol� All superscripts are set

in styles with smaller characters and spaces� The same is true for the constituents of the fraction in

text style� Notice also how the position of superscripts depends on their context� i�e�� on the style of

the corresponding subformula� In the denominator� their position is lower than in the numerator�

In the TEXbook ��� there are eight styles altogether
 display style D� text style T � script style S�

script�script style SS � and four �cramped� styles D�� T �� S�� and SS �� In cramped styles� which are used

for denominators� superscripts are placed in a lower position than in the corresponding uncramped

styles� In analyzing the usage of these styles� it turned out that they may be regarded as pairs of

a main style and a Boolean value �cramped�� The two components of the pairs are independently

calculated and used� so that it is easy to separate them completely� This is done in our Miranda

program� Hence� we have only four styles

style ��� D � T � S � SS

Function script computes the style for subscripts and superscripts from the current style� and

fract calculates the styles of numerators and denominators�

script� fract �� style �� style

script D � S� script T � S� script S � SS� script SS � SS

fract D � T� fract T � S� fract S � SS� fract SS � SS

��� Math Characters and Output Characters

Characters from a formula description do not yet completely determine the characters which appear

in the printed document� The formula description x�x for instance yields the printed formula xx�

where the two occurrences of x appear in di�erent sizes� The reason is that the �rst x is set in text

style T� whereas for the second one� script style S is used�

In our description� we model this behavior by using two di�erent types of characters and a style�

dependent transfer function� For characters in the internal representation� whose appearance is not yet

determined� we use type mathchar� whereas type outchar is used for characters in the result of the

formula layout� The transfer function is setchar �� style �� mathchar �� outchar� Although

the two types and setchar could be speci�ed further following the hints in the TEXbook� we refrain

from doing it since a complete de�nition would be di�cult and hardly interesting�

For formula layout� we need some information about the size and form of characters� The height

of a character is the distance from its top end to the base line� e�g�� �a� and �g� have the same height�

and �f � has a bigger one� The depth is the distance from the base line to the bottom end� e�g�� �a�

has depth �� whereas �g� has non�zero depth� The width is the horizontal size� and the slant gives

information how far the character is slanted to the right�

These character informations are given by the four functions char height� char depth� char width�

and char slant� all with type outchar �� dim� where dim is the type of dimensions� i�e�� amounts

of length� measured in basic units� We may simply assume dim �� num� The four functions are left

unspeci�ed here� in practice� their values are read o� from the appropriate font tables�

�

��� Layout Parameters

The exact layout of a formula depends on some layout parameters� They control the position of

superscripts� the distance between numerator and fraction stroke� the thickness of the stroke� etc�

In the TEXbook� the layout parameters are attached to the fonts used to make formulae� Since

the choice of the font depends on the style� we incorporate the layout parameters as functions of type

style �� dim� The function names are �abbreviations of� the symbolical names given in the table in

�� page �����

Height of �x� in current font
 x�height

Width of �M � in current font
 quad

Parameters for numerators
 num num�

for denominators
 denom denom�

for superscripts
 sup�drop sup sup� sup�

for subscripts
 sub�drop sub sub�

for limits at large operators
 big�op through big�op�

Default thickness of rules
 rule�thickness

Distance from �axis� to base line
 axis�height

The axis is the line where fraction strokes sit on� Consider e�g�� x � y

z
� The base line is at the

bottom end of the �x� and the ����

Some font parameters are used in special contexts only� This is realised by three auxiliary functions�

num�level� den�level �� style �� dim

num�level D � num D� num�level st � num� st

den�level D � denom D� den�level st � denom� st

sup�level �� style �� bool �� dim

sup�level D False � sup D �� Display style� not cramped

sup�level st True � sup� st �� all cramped styles

sup�level st cr � sup� st �� style T� S� or SS� not cramped

In addition to the style�dependent layout parameters� there is a constant scriptspace of type dim�

� The Target Representation� Box Terms

During formula layout� an input term of type mlist is translated

into a term of type box� Boxes are rectangles whose edges are

parallel to the page edges� Compound boxes are built from smaller

boxes� and atomic boxes contain symbols or are �lled with black�

Each box has a horizontal base line� It has the reference point

of the box at its left end� Boxes have heights� h� depths� d� and

widths� w� These dimensions may be negative� This is the case for

boxes which are shifted upwards or downwards beyond their base

line and for boxes which represent negative distances�

�

h

�
�
d
�
� w �

In the TEXbook� boxes and their properties are described verbally� At �rst glance� the size

attributes of a compound box seem to be totally determined by the sizes of its constituents� Later

however� it seems as if the size dimensions of a box may be arbitrarily changed� For� the description

of the formula layout contains phrases such as �increase the depth of the box by�� �add � � � to the

width of the box�� or �construct a box with depth � � � and height � � ���

Here� we represent boxes as a Miranda data type� The operations on boxes are formalized� The size

dimensions of our boxes are determined by their structure� We tried to catch the intended meaning

of the size manipulations in �� by adding space boxes without visible content�

	

box ��� HSpace dim � �� horizontal space with width

VSpace dim dim � �� vertical space with height and depth

Rule dim dim dim � �� black box with height� depth� and width

Chr outchar � �� character box

HBox �box� � �� horizontal list of boxes

Vdn �box� � �� vertical list of boxes� downward

Vup �box� �� vertical list of boxes� upward

Their are four kinds of atomic boxes and three kinds of compound boxes� An HBox is the horizontal

concatenation of a list of boxes� ordered from left to right� The boxes are concatenated such that their

base lines become adjacent� The reference point of an HBox is the one of its leftmost constituent� An

HBox may be empty�

Both Vdn and Vup boxes represent vertical concatenations of boxes� In both cases� the concatena�

tion is done so that the reference points of the constituent boxes are vertically aligned� In Vdn boxes�

the constituents are ordered from top to bottom� The reference point of a Vdn box is the reference

point of its topmost component� In contrast� the components of a Vup list are ordered from bottom

to top� The reference point of a Vup box is the one of its lowest component� Thus� in both cases� the

reference point of the compound box is the one of the head of its list of components� Both Vdn and

Vup lists should never be empty�

The Dimensions of a Box

Height� depth� and width of a box are uniquely de�ned from its structure� We call the sum of height

and depth vsize�

height� depth� width� vsize �� box �� dim

vsize box � height box 	 depth box

height �HSpace w
 � �� height �VSpace h d
 � h� height �Rule h d w
 � h

height �Chr ch
 � char�height ch

height �HBox boxl
 � max� �map height boxl
 �� as max� but max� �� � �

height �Vdn �top � rest

 � height top

height �Vup �bot � rest

 � height bot 	 sum �map vsize rest

depth �HSpace w
 � �� depth �VSpace h d
 � d� depth �Rule h d w
 � d

depth �Chr ch
 � char�depth ch

depth �HBox boxl
 � max� �map depth boxl

depth �Vdn �top � rest

 � depth top 	 sum �map vsize rest

depth �Vup �bot � rest

 � depth bot

width �HSpace w
 � w� width �VSpace h d
 � �� width �Rule h d w
 � w

width �Chr ch
 � char�width ch

width �HBox boxl
 � sum �map width boxl

width �Vdn boxl
 � max �map width boxl

width �Vup boxl
 � max �map width boxl

For the sake of e�ciency� all three dimensions could be stored at HBox� Vdn� and Vup constructors�

in order to avoid costly recomputations �memoization��

Some Operations on Boxes

hconc concatenates two boxes to form an HBox� If one of them is an HBox already� nesting of HBoxes

is avoided�

hconc �� box �� box �� box

hconc �HBox boxl
 �HBox boxl�
 � HBox �boxl 		 boxl�
 �� list concatenation

hconc box �HBox boxl�
 � HBox �box � boxl�

hconc �HBox boxl
 box� � HBox �boxl 		 �box��

hconc box box� � HBox �box � box��

�

right moves a box to the right by putting an HSpace box in front of it�

right �� dim �� box �� box

right � box � box

right l box � �HSpace l
 �hconc box �� �hconc � hconc as infix operator

center centers a given box inside a space of given width� It uses right�

center �� dim �� box �� box� center w box � right ��w � width box
��
 box

center is only called with w � width box� It does not matter that there is no HSpace to the right of

the box since centered boxes are placed in vertical lists where widths are maximized�

The next operation extends a box to the right ��increases its width���

extend �� dim �� box �� box

extend � box � box� extend l box � box �hconc �HSpace l

A box is raised by increasing its height and decreasing its depth� the vsize does not change� This is

done by vertically adjoining an empty box of vsize �� but non�zero height and depth �one of these

must be negative��

raise �� dim �� box �� box

raise � box � box

raise l box � Vup �VSpace �l � d
 �d � l
� box� where d � depth box

To verify raise� show the two equations

height �raise l box
 � height box 	 l depth �raise l box
 � depth box � l�

Instead of Vup� Vdn could be used equally well �with a di�erent argument��

Finally� we de�ne an operation vlist which takes three arguments
 a box B� a list of boxes in

upward order which goes above B� and a list of boxes in downward order which goes below B� The

reference point of the whole thing is that of B�

vlist �� box �� �box� �� �box� �� box

vlist box up�list dn�list � Vdn � Vup �box � up�list
 � dn�list

vlist could equally well be speci�ed the other way round
 � � � Vup �Vdn �box�dn�list
 � up�list
�

� Setting of Subformulae

In the sequel� we show how subformulae of the various kinds are translated into box terms� Later� we

combine these functions to a function that computes the layout of arbitrary mitems�

��� Symbols and Spaces

Symbols �mathchars� are transformed into character boxes by choosing the appropriate output char�

acter �function setchar of Section ���� and putting it into a box �Chr� which is vertically centered

around the axis in some cases �vcenter�� The result is not only the box� but also the slant ��italic

correction�� of the produced character� This information is needed later�

set�sym �� style �� class �� mathchar �� �box� dim

set�sym st cl mc � �vcenter �Chr ch
� char�slant ch
� if cl � Op

� � Chr ch � char�slant ch
� otherwise

where ch � setchar st mc

vcenter �� style �� box �� box

vcenter st box � raise �axis�height st � �height box � depth box
��
 box

When spaces are set� their size has to be transformed from style�dependent mathematical units

into an absolute dimension�

set�space �� style �� num �� box� set�space st ml � HSpace �ml � quad st � �

�

��� Setting Overlined and Underlined Subformulae

We assume that the subformula is already translated into a box� The thickness of the line� th� depends

on the style� Between the line and the formula� there is a gap of size �th� and above the overline � below

the underline� there is white space of size th� Since the reference point of the whole thing should be

that of the subformula� we use Vup for overlines and Vdn for underlines� In both cases� the list of

constituent boxes starts with the subformula box� followed by the distance to the line� the line itself�

and the white space beyond it�

set�over� set�under �� style �� box �� box

set�over st box � Vup �box� VSpace �� � th
 �� Rule th � w� VSpace th ��

where w � width box� th � rule�thickness st

set�under st box � Vdn �box� VSpace �� � th
 �� Rule th � w� VSpace th ��

where w � width box� th � rule�thickness st

��� Setting of Fractions

Numerator and denominator are already given as boxes� The desired vertical position of the numerator

is given by num level relative to the base line� However� the fraction stroke will be positioned at the

axis� an invisible line somewhere above the base line� Thus� we compute the position num pos of

the reference point of the numerator relative to the axis� From this� the actual distance num dist

between the bottom edge of the numerator and the top edge of the stroke is calculated� There is a

style�dependent minimal distance min dist� If num dist is too small� it is increased up to min dist�

The denominator is handled analogously� Next� both numerator and denominator are centered to the

maximum of their width� Then� we form a vertical list whose reference point is at the middle of the

fraction stroke using vlist� and �nally raise the resulting box to the level of the axis�

set�frac �� style �� box �� box �� box

set�frac st num den �

raise ax fracbox

where ax � axis�height st� th � rule�thickness st

num�pos � num�level st � ax� den�pos � den�level st 	 ax

num�dist � num�pos � depth num � th��

den�dist � den�pos � height den � th��

min�dist � � � th� if st � D

� th� otherwise

num�dist� � num�dist �max� min�dist �� maximum as infix operator

den�dist� � den�dist �max� min�dist

w � �width num
 �max� �width den

num�list � �VSpace num�dist� �� center w num�

den�list � �VSpace den�dist� �� center w den�

fracbox � vlist �Rule �th��
 �th��
 w
 num�list den�list

��� Superscripts and Subscripts in Limit Position

The following functions deal with superscripts and subscripts in the limit position� i�e�� vertically above

and below the nucleus as in
�P
i��

� �In the nolimit position� they are to the right of the nucleus�� Function

lim sup deals with the case of superscripts only� lim sub is called if there are only subscripts� and

lim supsub is for joint superscript � subscript combinations� We assume that nucleus� superscript�

and subscript are already given as boxes�

In limit position� superscripts are placed above the nucleus in some distance� and white space is

added above them� Superscript and nucleus are �rst centered to their maximum width� Afterwards�

the superscript is shifted to the right by some amount shiftwhich depends on the slant of the nucleus�

This is visible in e�g��
�R
�

� Subscripts are handled symmetrically�

To partially reduce the three functions to two� we use two auxiliary functions mksup and mksub

which transform superscripts and subscripts into a list of boxes� For superscripts� the list is ordered

upward� and for subscripts downward�

mksup �� style �� dim �� box �� �box�

mksup st shift sup �

�VSpace dist �� right shift sup� VSpace space �� �� upward list

where dist � �big�op st
 �max� �big�op� st � depth sup

space � big�op� st

mksub �� style �� dim �� box �� �box�

mksub st shift sub �

�VSpace dist �� right ��shift
 sub� VSpace space �� �� downward list

where dist � �big�op� st
 �max� �big�op� st � height sub

space � big�op� st

In the actual functions� the appropriate auxiliary functions are called and their results are vertically

combined�

lim�sup �� style �� dim �� box �� box �� box

lim�sup st shift nuc sup �

Vup �nuc� � sup�list

where w � �width sup
 �max� �width nuc

sup� � center w sup� nuc� � center w nuc

sup�list � mksup st shift sup�

lim�sub �� style �� dim �� box �� box �� box

lim�sub st shift nuc sub �

Vdn �nuc� � sub�list

where w � �width nuc
 �max� �width sub

nuc� � center w nuc� sub� � center w sub

sub�list � mksub st shift sub�

lim�supsub �� style �� dim �� box �� box �� box �� box

lim�supsub st shift nuc sup sub �

vlist nuc� sup�list sub�list

where w � �width sup
 �max� �width nuc
 �max� �width sub

sup� � center w sup� nuc� � center w nuc� sub� � center w sub

sup�list � mksup st shift sup�

sub�list � mksub st shift sub�

��� Superscripts and Subscripts in Nolimit Position

Here� the superscripts and subscripts are put to the right of the nucleus as in
P

�

i��� Their exact

position depends on the fact whether the nucleus is a �character box� possibly followed by a kern��

This information is passed as a Boolean to the functions nolim sup� nolim sub� and nolim supsub�

The third function has an additional argument
 the slant of the nucleus� which is used to move the

superscript to the right� This is visible in e�g�� P �
� � The functions involving superscripts need the

information whether the style is �cramped��

There are several auxiliary functions to compute the positions of superscripts and subscripts� For

a �partial� motivation for the formulae appearing in these functions� we refer to the TEXbook ���

��

sup�position �� style �� bool �� bool �� dim �� dim �� dim

sup�position st cramped is�char hnuc dsup �

sup�pos �max� sup�level st cramped �� hnuc � height nuc

�max� dsup 	 abs �x�height st
�� �� dsup � depth sup

where sup�pos � �� if is�char

� hnuc 	 sup�drop �script st
� otherwise

sub�position� �� style �� bool �� dim �� dim

sub�position� st True dnuc � � �� dnuc � depth nuc

sub�position� st False dnuc � dnuc 	 sub�drop �script st

sub�position �� style �� bool �� dim �� dim �� dim

sub�position st is�char dnuc hsub � �� hsub � height sub

sub�position� st is�char dnuc

�max� sub st

�max� hsub � � � abs �x�height st
 � �

sub�position� �� style �� bool �� dim �� dim

sub�position� st is�char dnuc �

sub�position� st is�char dnuc �max� sub� st

The cases where there are only superscripts or only subscripts are relatively simple� Note that

every �script� is extended to the right by scriptspace�

nolim�sup �� style �� bool �� bool �� box �� box �� box

nolim�sup st cramped is�char nuc sup �

nuc �hconc �raise sup�pos sup�

where dsup � depth sup� hnuc � height nuc

sup�pos � sup�position st cramped is�char hnuc dsup

sup� � extend scriptspace sup

nolim�sub �� style �� bool �� box �� box �� box

nolim�sub st is�char nuc sub �

nuc �hconc �raise ��sub�pos
 sub�

where dnuc � depth nuc� hsub � height sub

sub�pos � sub�position st is�char dnuc hsub

sub� � extend scriptspace sub

The case of a joint superscript � subscript combination is much more di�cult� First� the desired

position sup pos of the superscript is computed� It is the distance from the reference point of the

superscript to the base line� From it� the distance sup dist between the bottom edge of the superscript

and the base line is derived� The subscript is handled analogously� There is a minimum value

min sup for sup dist� and a minimum value min dist for the total distance sup�dist 	 sub�dist

between superscript and subscript� There are correction values corr sup and corr dist if these

minimum values are not reached� The correction of sup dist is done by raising both superscript and

subscript� i�e�� adding corr dist to sup dist and subtracting it from sub dist� The correction of

sup�dist 	 sub�dist is done by lowering the subscript� i�e�� adding corr dist to sub dist�

nolim�supsub �� style �� bool �� bool �� dim �� box �� box �� box �� box

nolim�supsub st cramped is�char slant nuc sup sub �

nuc �hconc sup�sub

where dsup � depth sup� hsub � height sub

hnuc � height nuc� dnuc � depth nuc

sup�pos � sup�position st cramped is�char hnuc dsup

sub�pos � sub�position� st is�char dnuc

sup�dist � sup�pos � dsup� sub�dist � sub�pos � hsub

��

min�dist � � � rule�thickness st

corr�dist � correction �sup�dist 	 sub�dist
 min�dist

min�sup � � � abs �x�height st
 � �

corr�sup � correction sup�dist min�sup

sup�dist� � sup�dist 	 corr�sup

sub�dist� � sub�dist 	 corr�dist � corr�sup

sup� � right slant �extend scriptspace sup

sub� � extend scriptspace sub

sup�sub � vlist �VSpace sup�dist� sub�dist�
 �sup�� �sub��

The amount of the necessary correction values is computed by the following function

correction �� num �� num �� num

correction value min�value � min�value � value� if value � min�value

� �� otherwise

The de�nitions of sup dist� and sub dist� can be algebraically simpli�ed to

sup�dist� � sup�dist �max� min�sup

sub�dist� � ��sup�dist 	 sub�dist
 �max� min�dist
 � sup�dist�

After that� corr sup� corr dist� and the function correction are no longer needed� We did not

directly introduce the simpli�ed de�nitions since they are hard to explain by themselves�

� From Subformulae to Whole Formulae

	�� Some Auxiliary Functions

In some cases� white space is appended to a symbol to compensate for its slant �italic correction��

it�corr �� �box� dim
 �� box� it�corr �box� slant
 � extend slant box

The function lim� computes whether superscripts and subscripts are placed in limit position�

lim� �� style �� class �� bool

lim� D Op � True� lim� st cl � False

Actually� this is a bit simpli�ed since it only realizes TEX�s default rule� In full TEX� there are

commands �limits and �nolimits which may be appended to large operators� The default rule is

only applied if none of these commands is issued�

	�� Translation of Math Items

Math items are translated by the function set mitem� For the nucleus of formulae with superscripts

or subscripts� we need a special version of set mitem� called set nuc� which not only returns a box�

but also the information whether its argument was a single character� and if so� its slant �the value

needed for italic correction��

set�nuc �� style �� bool �� mitem �� ��box� dim
� bool

set�nuc st cr �Sym cl mc
 � � set�sym st cl mc� True

set�nuc st cr mitem � ��set�mitem st cr mitem� �
� False

Function set mitem deals with the various cases of mitems� It handles the recursive setting

of subformulae and then passes control to specialized functions� Its Boolean parameter is the bit

indicating cramped styles� Notice that denominators� overlined formulae� and subscripts are always

cramped� Other subformulae inherit the cramp status of their context�

��

set�mitem �� style �� bool �� mitem �� box

set�mitem st cr �Sym cl mc
 � it�corr �set�sym st cl mc

set�mitem st cr �MathSpace mw
 � set�space st mw

set�mitem st cr �Over ml
 � set�over st �set�mlist st True ml

set�mitem st cr �Under ml
 � set�under st �set�mlist st cr ml

set�mitem st cr �Frac num den

� set�frac st numbox denbox

where st� � fract st� numbox � set�mlist st� cr num

denbox � set�mlist st� True den

set�mitem st cr �Sup nuc sup

� lim�sup st �slant��
 boxnuc� boxsup� if lim

� nolim�sup st cr is�char boxnuc� boxsup� otherwise

where lim � lim� st �class� nuc

��boxnuc� slant
� is�char
 � set�nuc st cr nuc

boxnuc� � it�corr �boxnuc� slant

boxsup � set�mlist �script st
 cr sup

set�mitem st cr �Sub nuc sub

� lim�sub st �slant��
 boxnuc� boxsub� if lim

� nolim�sub st is�char boxnuc boxsub� otherwise

where lim � lim� st �class� nuc

��boxnuc� slant
� is�char
 � set�nuc st cr nuc

boxnuc� � it�corr �boxnuc� slant

boxsub � set�mlist �script st
 True sub

set�mitem st cr �SupSub nuc sup sub

� lim�supsub st �slant��
 boxnuc� boxsup boxsub� if lim

� nolim�supsub st cr is�char slant boxnuc boxsup boxsub� otherwise

where lim � lim� st �class� nuc

st� � script st

��boxnuc� slant
� is�char
 � set�nuc st cr nuc

boxnuc� � it�corr �boxnuc� slant

boxsup � set�mlist st� cr sup

boxsub � set�mlist st� True sub

set�mitem st cr �Class�cmd cl ml
 � set�mlist st cr ml

set�mitem st cr �Group ml
 � set�mlist st cr ml

The case of the Style cmd constructor is missing since it is handled by set list presented below�

	�� Translation of Math Lists

In the TEXbook� there is a second pass during formula layout where appropriate spaces are inserted

between adjacent atoms� ignoring any non�atoms in between�

Here� insertion of inter�atom spaces is done by the function set mlist which translates math lists

into boxes� It does its job by calling an auxiliary function do mlist with an additional class argument�

This argument remembers the class of the previously set item� ignoring items of class None� At the

beginning of the math list� the remembered class is None�

set�mlist �� style �� bool �� mlist �� box

set�mlist st cr ml � do�mlist st cr None ml

Function do mlist handles style commands� inserts inter�atom spaces �set space�� and calls set mitem

to translate items into boxes�

do�mlist �� style �� bool �� class �� mlist �� box

��

do�mlist st cr old �� � HBox ��

do�mlist st cr old �Style�cmd st� � ml
 � do�mlist st� cr old ml

do�mlist st cr old �mi � ml
 �

boxmi �hconc rest

where boxmi � set�mitem st cr mi� new � class� mi

rest � do�mlist st cr old ml� if new � None

� set�space st �space st old new
 �hconc

do�mlist st cr new ml� otherwise

The auxiliary function space �� style �� class �� class �� num computes the space between

two �atoms� according to the table in the TEXbook �� page ����� The output is assumed to be in

relative mathematical units� It depends on the style� and the conversion to an absolute dimension by

set space is again style dependent�

	�� Setting of Whole Formulae

Function set display handles displayed formulae� and set inline formulae within text lines�

set�display� set�inline �� mlist �� box

set�display ml � set�mlist D False ml �� Display style� not cramped

set�inline ml � set�mlist T False ml �� Text style� not cramped

Actually� the di�erence between these two functions should be bigger� In TEX� displayed formulae

require some postprocessing for positioning� and potential line breaks are computed within inline

formulae�

� Conclusion

Let us summarize what we achieved by our description�

� De�ning an adequate data type separates concerns� i�e�� spacing aspects from structure aspects�

This is of great help for a better understanding of the algorithm�

� Using a powerful parser instead of a macro expansion mechanism avoids some postprocessing of

the input on the data structure representing math formulae� Hence� we can translate mlists to

box terms in a single pass� whereas Knuth needs two passes�

� De�ning the result data type �box terms� makes many aspects of the algorithm explicit� which

are implicit or at most verbally described in Knuth�s description�

� Using a functional description language forced us to transform the updatable global variables of

Knuth�s description into explicit function parameters� On the one hand� this adds complexity

to the description� but on the other hand� the �ow of information becomes visible
 it can be

seen where information comes from� where it is updated� and where it is used� Thus� it becomes

apparent which subtasks depend on others� and which are independent from each other�

� Some constructs� e�g�� roots� were not treated here for space reasons� They don�t o�er principally

new problems� although their treatment in �� is particularly hard to grasp�

� Some postprocessing parts of the algorithm look somewhat �imperative�� These are those� where

some subformulae are set independently of each other only to detect afterwards� that certain

minimal distances between them are not satis�ed �set frac and nolim supsub�� Miranda is not

the best language to describe this� but it is possible as you can see�

� In our presentation� we preferred clarity over e�ciency� The main problem is the computation

of the size attributes height� depth� and width of box terms which is repeated many terms�

The attributes should already be computed when box terms are constructed� and stored at

��

their constructors so that e�g�� HBox �box� becomes HBox dim dim dim �box�� The class

attribute of mitems should be handled similarly� The necessary program transformations are

not di�cult� but afterwards� it is no longer obvious that the size attributes of a compound box

are fully determined by its constituent boxes�

References

�� D�E� Knuth� The TEXbook� Addison Wesley� � �	�

�� D� Turner� An overview of Miranda� SIGPLAN Notices� December � �	�

�� R� Wilhelm and R� Heckmann� Dokumentenverarbeitung� Addison Wesley� � 	�

��

