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Abstract

A fair exchange guarantees that a participant only reveals its items (such as
signatures, payments, or data) if it receives the expected items in exchange.
Efficient fair exchange requires a so-called third party, which is assumed to be
correct. Optimistic fair exchange involves this third party only if needed, i.e.,
if the participants cheat or disagree.

In Part I, we prove lower bounds on the message and time complexity of
two particular instances of fair exchange in varying models, namely contract
signing (fair exchange of two signatures under a contract) and certified mail
(fair exchange of data for a receipt). We show that all given bounds are tight
by describing provably time- and message-optimal protocols for all considered
models and instances.

In Part II, we have a closer look at formalizing the security of fair exchange.
We introduce a new formal notion of security (including secrecy) for reactive
distributed systems. We illustrate this new formalism by a specification of cer-
tified mail as an alternative to the traditional specification given in Part I.

In Part III, we describe protocols for generic and optimistic fair exchange of
arbitrary items. These protocols are embedded into the SEMPER Fair Exchange
Layer, which is a central part of the SEMPER Framework for Secure Electronic
Commerce.
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Kurzzusammenfassung

Ein Austausch ist fair, wenn eine Partei die angebotenen Güter, wie zum Bei-
spiel digitale Signaturen, Zahlungen oder Daten, nur abgibt, wenn sie die er-
warteten Güter im Tausch erhält. Ohne eine als korrekt angenommene dritte
Partei, welche eine mit einem Notar vergleichbare Rolle übernimmt, ist fairer
Austausch nicht effizient möglich. Ein fairer Austausch heißt optimistisch, falls
diese dritte Partei nur in Problemfällen am Protokoll teilnimmt.

In Teil I werden beweisbar zeit- und nachrichtenoptimale Protokolle für die
Spezialfälle ”elektronische Vertragsunterzeichnung“ (fairer Austausch zwei-
er Signaturen; engl. contract signing) und ”elektronisches Einschreiben“ (fairer
Austausch von Daten gegen eine Quittung; engl. certified mail) von fairem Aus-
tausch vorgestellt.

Teil II beschreibt einen neuen Integritäts- und Geheimhaltungsbegriff für
reaktive Systeme. Dieser basiert auf einer Vergleichsrelation ”so sicher wie“,
welche die Sicherheit zweier Systeme vergleicht. Ein verteiltes, reaktives Sy-
stem wird dann als sicher bezeichnet, wenn es so sicher wie ein idealisiertes
System (engl. trusted host) für diesen Dienst ist. Mit diesem Formalismus geben
wir eine alternative Sicherheitsdefinition von ”elektronischem Einschreiben“
an, deren Semantik im Gegensatz zu der in Teil I beschriebenen Definition nun
unabhängig vom erbrachten Dienst ist.

Teil III beschreibt ein Design und optimistische Protokolle für generischen
fairen Austausch von zwei beliebigen Gütern und den darauf aufbauenden
SEMPER Fair Exchange Layer. Dieser ist ein wesentlicher Baustein des SEM-
PER Framework for Secure Electronic Commerce.

ii



Zusammenfassung

Ein zentrales Problem beim elektronischen Handel ist der faire Austausch von
Gütern, wie Zahlungen, Quittungen, Daten, oder Signaturen. Im herkömmli-
chen Handel kann dies durch Anwesenheit beider Geschäftspartner garantiert
werden, was beim elektronischen Handel in der Regel nicht möglich ist.

Diese Arbeit beschreibt verschiedene Aspekte von fairen Austauschdien-
sten, welche zwei Güter genau dann atomar ausliefern, wenn die zu liefernden
Güter die gegenseitigen Anforderungen der Handelspartner erfüllen.

Atomizität im Betrugsfall ist nur durch Einbeziehung einer dritten Partei
effizient möglich. Da dies jedoch für den Normalfall, daß beide Partner kor-
rekt sind, nicht gewünscht ist, beschränken die in dieser Arbeit beschriebenen
optimistischen Protokolle die Teilnahme der dritten Partei auf Fehlerfälle.

Nach einem Literaturüberblick gliedert sich die Arbeit in drei Teile.

Teil I

In Teil I wird die beweisbar optimale Effizienz zweier Spezialfälle untersucht.
Elektronische Vertragsunterzeichnung ist der faire Austausch zweier Vertrags-

signaturen unter einem gegebenen Vertragstext. Für alle beschriebenen Model-
le benötigt ein zeitoptimales Protokoll jeweils 2k Nachrichten in Zeit k und ein
nachrichtenoptimales Protokoll jeweils k + 1 Nachrichten in Zeit k + 1. Für
synchrones Netz ergibt sich bei Eingabe von identischen Vertragstexten k = 2
unabhängig davon, ob die dritte Partei bei der Vertragsüberprüfung teilnimmt
oder nicht. Für asynchrone Netzwerke ergibt sich bei gleichen Vertragstexten
k = 2, falls die dritte Partei an der Vertragsüberprüfung teilnimmt, und anson-
sten k = 3. Falls die dritte Partei bei korrekten Teilnehmern nur im Fehlerfall,
nicht jedoch bei Eingabe verschiedener Vertragstexte, einbezogen werden soll,
erhöht sich k jeweils um 1.

Elektronisches Einschreiben ist der faire Austausch einer Nachricht gegen eine
Quittung. Es wird die Effizienz von drei Varianten untersucht: elektronisches
Einschreiben mit Betreff (engl. labeled certified mail) überträgt die Nachricht nur,
wenn Sender und Empfänger den gleichen Betreff eingeben. Herkömmliches
elektronisches Einschreiben (engl. certified mail) überprüft die Übereinstim-
mung des Betreffs nicht. Trotzdem kann der Empfänger im Einzelfall entschei-
den, ob er die Nachricht empfangen und eine Quittung ausstellen will. Einge-
schränktes elektronisches Einschreiben (engl. simple certified mail) erzwingt die
Auslieferung in jedem Fall.

Wir beweisen obere und untere Schranken für die Nachrichtenkomplexität
von elektronischem Einschreiben mittels gegenseitiger Simulation mit elektro-
nischer Vertragsunterzeichnung. Wir zeigen, daß nachrichtenoptimales elek-
tronisches Einschreiben mit Betreff und nachrichtenoptimale elektronische Ver-
tragsunterzeichnung äquivalent hinsichtlich ihrer Komplexität sind.

Desweiteren zeigen wir, daß jedes optimistische Protokoll für herkömmli-
ches elektronisches Einschreiben ohne zusätzliche Nachrichten zu einem Pro-
tokoll für elektronisches Einschreiben mit Betreff erweitert werden kann. Ab-
schließend beschreiben wir ein beweisbar zeit- und nachrichtenoptimales Pro-
tokoll für eingeschränktes elektronisches Einschreiben, welches faire Quittie-
rung bereits mit zwei Nachrichten in Zeit zwei garantiert.
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Teil II

Die Spezialfälle für fairen Austausch in Teil I werden auf herkömmliche Weise
definiert: Integritätsanforderungen sind Aussagen über die Ein- und Ausga-
ben der Teilnehmer, welche auf temporale Logik abgebildet werden können.
Die Geheimhaltung der Nachricht wird durch ein interaktives Spiel definiert,
in welchem ein Angreifer mit dem System interagiert und anschließend eine
geheime Nachricht raten muß. Eine Folge dieses Ansatzes ist, daß für jeden
neuen Dienst eine neue Definition benötigt wird.

In Teil II wird daher ein neuer Sicherheitsbegriff für beliebige reakti-
ve Systeme beschrieben, welcher bestehende nichtreaktive oder spezialisier-
te Ansätze verallgemeinert. Dieser Sicherheitsbegriff definiert eine Relation

”mindestens so sicher wie“, welche die Sicherheit zweier Systeme vergleicht.
Der Dienst eines gewünschten Systems wird dann durch die Beschreibung ei-
nes idealisierten Systems (engl. trusted host) spezifiziert.

Eine zentrale Beobachtung hierbei ist, daß diese idealisierten Systeme nicht
nur den Dienst, sondern auch die tolerierten Schwachstellen spezifizieren
müssen, um effiziente Implementierungen zu ermöglichen. Ein System, wel-
ches einzelne verschlüsselte Nachrichten über ein unsicheres Netzwerk über-
mittelt, ist zum Beispiel nur dann sicher, wenn das idealisierte System dem
Angreifer mitteilt, ob überhaupt eine Nachricht geschickt wurde oder nicht.

Als Beispiele für diesen neuen Sicherheitsbegriff stellen wir Spezifikationen
und reaktive Systeme zum Nachrichtenversand und für elektronisches Ein-
schreiben mit Betreff vor und beweisen deren Sicherheit.

Teil III

In herkömmlichen Diensten für fairen Austausch (wie z.B. in Teil I) wird je-
weils ein spezielles Protokoll für jeden Spezialfall, d.h. für je zwei Typen von
elektronischen Gütern, benötigt. Dementsprechend wurde bereits eine Vielzahl
solcher Protokolle für Spezialfälle wie elektronische Vertragsunterzeichnung,
elektronisches Einschreiben, fairer Kauf (Austausch Daten/Zahlung), sowie
faire Zahlung (Austausch Zahlung/Quittung) vorgestellt.

Um die wachsende Anzahl der benötigten Protokolle zu mindern, be-
schreibt Teil III Protokolle und ein Design für den generischen und optimi-
stischen fairen Austausch beliebiger elektronischer Güter, die gewisse Dien-
ste zur Fehlerbehebung bereitstellen. Da diese Fehlerbehebungsdienste un-
abhängig von den Gütern sind, können auch zukünftige Güter mit den be-
schriebenen Diensten fair ausgetauscht werden.

Dieses Design und die zugrundeliegenden Protokolle sind ein zentra-
ler Baustein der vom EU Projekt SEMPER von 1995-1999 entwickelten
Architektur zur Realisierung sicherer elektronischer Handelsabläufe (vgl.
www.semper.org ).
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Chapter 1

Introduction and Overview

It is common in electronic commerce that two parties need to exchange some
items fairly, as over a physical counter in a shop. Imagine Bob has requested a
delivery from Alice, e.g., a piece of software, a translation or a legal expertise.
Alice wants to deliver to Bob a file. The file represents the work of several
person-hours, so Alice wants a receipt if Bob receives the file. Bob, on the other
hand, only wants to issue a receipt if he received the file.

In traditional commerce, fairness of an exchange can be guaranteed to a
reasonable extent. The items are either physically exchanged over a counter, or
else exchanged by fixing the terms in a contract while settling arising disputes
at court or real-world notaries.

In electronic commerce, no physical counter exists and contracts may be dif-
ficult to enforce for cross-border business. Furthermore, the costs of enforcing
a contract may not be worth the effort.

Therefore, we solve this problem by fair exchange services. For a fair ex-
change, each party describes the item it offers (e.g., signatures, payments, or
data) and describes the item it desires in exchange. For instance, Bob expects
the desired file in exchange for a receipt whereas Alice expects a receipt in ex-
change for the file.

An idea for providing this service is to exchange the items like over a
counter. Alice sends the result and Bob sends the receipt. This solution, how-
ever, does not guarantee fairness: If, e.g., Bob does not send the receipt, Alice
still sends the result and does not obtain the expected receipt.

Therefore, in order to avoid such situations, we will describe protocols
which guarantee fairness in any case, i.e., either both receive what they expect
or else, no one gets even part of the expected item.

Guaranteeing fairness is either inefficient or allows for a high probability of
errors, or else requires a third party, which is assumed to be correct.

While inefficiency and high error probabilities are often unacceptable in
electronic commerce, a third party participating in all protocol executions re-
sults in a performance bottleneck. Furthermore, the third party learns more
information about ongoing transactions than needed.

Therefore, we focus on the concept of optimistic fair exchanges. These opti-
mistic fair exchanges do not involve the third party in the regular case, i.e., if
both participants behave correctly and agree on what shall be exchanged. Only
if something goes wrong, the third party is invoked to restore fairness.

1



1. Introduction and Overview

1.1 Overview

After an overview of related work in Chapter 2, this thesis is structured in three
self-contained parts:

Part I analyzes the optimal efficiency of two particular instances of optimistic
fair exchange, namely contract signing and certified mail.

Part II proposes a new and generic notion of security of reactive cryptographic
systems. (A reactive system interacts with its user multiple times while
keeping state in between.) This formalism is illustrated by describing an
alternative to the traditional specification of certified mail as described in
Part I.

Part III describes a design and protocols for generic optimistic fair exchange of
any two business items generalizing the services described in Part I.

1.1.1 Part I

In Part I, we identify tight lower bounds on the message and time complexity
optimistic contract signing as well as on the message complexity of certified
mail.

Contract signing protocols fairly compute a contract, i.e., a non-repudiable
agreement on a given contract text. We prove tight lower bounds on the ef-
ficiency of optimistic contract signing for eight different models: We consider
synchronous or asynchronous communication, verification of evidence with
or without participation of the third party, and optimism on agreement (i.e.,
the third party is not involved if the players are correct and agree) or also on
disagreement (i.e., the third party is not involved if the players are correct; no
matter whether they agree or disagree).

For all models, a time-optimal protocol requires 2k messages in time k
whereas the message-optimal protocol requires k+1 messages in time k+1. For
our two weakest models (i.e., synchronous network, optimism on agreement
only, with/without the third party participating in verification), we describe
protocols for k = 2 and prove their message and time optimality. On asyn-
chronous networks, we obtain optimal protocols for k = 2 if the third party
participates in the verification of the contract and k = 3, else. For optimism
on disagreement, we have shown how to adapt any optimistic protocol that is
optimistic on agreement. This simulation increases k by 1.

Certified mail is a fair exchange of a message for a receipt. We identified three
distinct models of optimistic certified mail: Labeled certified mail assumes that
the mail is only sent if the sender and the recipient agree on the label (e.g., a
subject) under which the mail shall be sent. Traditional certified mail does not
include labels but still allows the recipient to refuse to participate in particular
runs of the protocol. Simple certified mail does not allow the recipient to reject
participation in particular protocol executions.

We prove tight lower bounds on optimistic labeled certified mail by mutual
simulation with optimistic contract signing where such bounds have already
been identified. The main result is that optimistic labeled certified mail cannot

2
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be more efficient than optimistic contract signing and that message-optimal op-
timistic contract signing protocols can be adopted to provide message-optimal
optimistic labeled certified mail.

A natural objection against these results is that labeled certified mail is a
more powerful model than traditional optimistic certified mail. To defeat this
objection, we show that traditional optimistic certified mail cannot be more
efficient since it can be adapted to provide labeled certified mail as well.

Finally, we describe a provably time- and message-optimal protocol for sim-
ple certified mail. This service provides the essential service of certified mail
(namely non-repudiation and fairness) while being considerably more efficient
than the traditional service of certified mail.

1.1.2 Part II

The security of the instances of fair exchange described in Part I is defined in
the traditional way: Integrity is defined by requirements on the in- and outputs
of the participants, which can be mapped to temporal logic [Pfit8 96, Veit 99].
The secrecy of a message is defined by a game, where the adversary tries to
guess the message after executing, e.g., the certified mail protocol. A conse-
quence of this approach is that the designer of each new service is required to
design a corresponding security definition as well.

Part II defines a new generic notion of security (including secrecy) for re-
active systems. This is done by defining a relation “as secure as” comparing
two reactive systems: A system SysA is as secure as a system SysB if and only if
an adversary attacking SysA cannot achieve more than an adversary attacking
SysB.

Similar to a secure multi-party computation of a function, which is specified
by the function to be computed, one can then specify the intended service by
defining an idealized system offering it. Given such a so-called trusted host,
a distributed implementation is secure if it is “as secure as” the trusted host
specifying the intended service.

A remarkable observation is that in order to enable practical yet provably
secure real-world systems, a trusted host needs to provide a specific adversary
service (we call this concept “real-life” trusted hosts). This interface allows the
designer to specify all acceptable vulnerabilities of the service. Consider for
example a system for sending encrypted messages that does not waste band-
width by sending messages at all times. Such a system will only be secure
if the trusted host notifies the adversary about who sent messages to whom,
since the adversary will usually see the (encrypted) messages on the network.

We illustrate this new notion of security by formally comparing the security
of reactive systems for message encryption and certified mail with two real-life
trusted hosts specifying their intended services.

1.1.3 Part III

In existing concepts for fair exchange, a particular fair exchange protocol is
needed for each instance of fair exchange, i.e., for any two types of items to
be exchanged. There have been a large number of proposals for particular
instances of fair exchange for contract signing (exchange of two signatures),

3
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certified mail (exchange of data for the signature under a receipt), or fair pur-
chase (exchange of data for a payment). However, new instances or new types
of items require new protocols.

In order to reduce the increasing number of required protocols, Part III de-
scribes the design for generic and optimistic fair exchange. We propose syn-
chronous optimistic fair exchange protocols that can be used for fairly exchang-
ing any two business items satisfying certain conditions. The basic idea is to
use transfers of business items as the foundation of fair exchange. We fix four
exchange-enabling properties of transfers and argue why most items can be
adapted to provide one or more of these properties. The consequence of these
exchange-enabling properties is that almost any two business items can then
be exchanged fairly. Furthermore, new items can be added without adding
new fair exchange protocols.

These protocols are finally embedded into the design of the SEMPER Trans-
fer and Fair Exchange Layer (SEMPER [Semp 00] stands for Secure Electronic
Marketplace for Europe).
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Chapter 2

Related Work

In this chapter, we give an overview of the existing literature on fair exchange.
An overview of existing notions of security for reactive systems will be given
in Chapter 7 after introducing the required terminology.

2.1 Classification of Fair Exchange

In this overview, we classify fair exchange protocols by the items they allow to
exchange. The existing work mainly deals with fair exchange of specific types
of business items. Only few proposals come close to our generic notion of fair
exchange. Items for which specific exchange protocols have been described in
the existing literature are

Secret Data The transfer protocol reveals data which is not known to the recip-
ient beforehand.

Signatures A signature is transferred by executing a (possibly interactive) sig-
nature protocol.

Payments A payment is transferred by executing a payment protocol.

In principle, any set of items can be exchanged for any other set of items. For
the special case of exchanges of the single items mentioned above, this would
lead to at least nine instances of fair exchange, if there were only one imple-
mentation of each item. In the existing literature, only few particular instances
of fair exchange received attention. Thus, the remainder of this chapter con-
centrates on these instances:

Contract Signing (Section 2.2) is a protocol where two players compute a non-
repudiable agreement on a contract text. It can be provided by fair ex-
change of signatures on a given contract.

Certified Mail (Section 2.3) is the sending of a message for a receipt. It can be
provided using a fair exchange of secret data for a signature on the de-
scription of the sent message.
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Fair Purchase (Section 2.5.1) is an exchange of secret data for a payment. A
special case is “payment for receipt”, i.e., an exchange of a payment for a
signature.

Fair Exchange of Secrets (Section 2.5.2) is the fair exchange of one secret data
item for another.

Generic Exchange (Section 2.4) Generic exchanges exchange any two items sat-
isfying certain conditions.

For each kind of fair exchange, we group the protocols by the extent to which
a third party is involved:

Fair Exchange with In-line Third Party: These protocols include a third party
which participates in all exchanges and guarantees fairness. The advan-
tage of this approach is that the protocols guarantee a fair outcome in a
limited time. The disadvantage of this approach is that the third party
participates in all exchanges, which leads to performance and trust bot-
tlenecks: Even if the participants are correct, they cause load at the third
party and the third party may misbehave or infringe the privacy of the
parties participating in the exchange.

Optimistic Fair Exchange: These protocols include a third party as well. How-
ever, this third party is not involved if both participants are correct and
agree. Thus, the third party is no longer a performance and trust bottle-
neck while still being able to guarantee fairness in case of disagreement,
misbehavior, or failure.

Gradual Fair Exchange without Third Party: These (cryptographic) protocols aim
at a probabilistic guarantee of fairness and do not require any third party.

Naturally, the fair exchange protocols without a third party seem to be the
best choice. However, these cryptographic solutions are based on a gradual
exchange where tiny parts of the item to be exchanged are exchanged in many
rounds. Compared to protocols with a third party the known probabilistic
protocols have the following disadvantages:

• The protocols only achieve probabilistic fairness [EvYa 80]: Instead of
guaranteeing fairness, the protocols only guarantee that the advantage
of one party over the other can be made small.

• The round-complexity is linear in the degree of this probability of an un-
fair outcome, e.g., for achieving a fairness guarantee of 99%, about 100
rounds are required.

• Some protocols do not guarantee a definitive outcome in a limited time:
The answer of a protocol that a house has been sold with probability 95%
does not enable the seller to decide whether it is allowed to sell the house
again or not.

Thus, we feel that using a third party cannot be avoided for most applications.
Compared to the optimistic protocols, the in-line protocols have the disadvan-
tages that
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2.2. Contract Signing

• the protocol provides a weaker guarantee of availability since the third
party must be available during the protocol,

• the parties are required to trust the third party since their security de-
pends on the well-behavior of the third party, and

• this also holds for the privacy of the players: The third party may be able
to keep track of who exchanges what with whom.

Therefore, optimistic protocols are the best choice for most applications: In
the error-free case, they achieve a better performance without requiring a third
party. Only in case of failure (which should be seldom), a third party is needed.

Remark 2.1. Protocols for general multi-party computation [Yao 86, GMW 87]
can usually not be used for fair exchange, since they assume an honest majority.
◦

2.2 Contract Signing

Contract signing is a generalization of the fair exchange of two signatures un-
der a contract. The term “contract signing” was first introduced in [Blum 81].
An ideal contract signing protocol should offer fairness without a third party or
assumptions about the computational capabilities of the signatories. It should
either be deterministic or probabilistic with a negligible error-probability. Un-
fortunately, such protocols do not exist [EvYa 80]1. Therefore one has to make
a tradeoff between deterministic protocols, which are efficient but require trust
into a third party, and probabilistic protocols with error probabilities, which
are linear in the number of rounds.

Remark 2.2. Fair exchange of signatures2 and fair contract signing are different
problems since contract signing does not require a contract to be a text and
two signatures. Obviously, contract signing can always be implemented based
on fair exchange of signatures, but not all contract signing schemes exchange
signatures. They only guarantee non-repudiation of the agreement on a con-
tract.

Remark 2.3. Contract signing protocols achieve more than distributed commit-
ment: While commitment protocols [SiKS 97] usually3 assume that the players
are correct and that an agreement need not be proven, contract signing aims
at a non-repudiable agreement while assuming a Byzantine failure model, i.e.,
even if the signatories are malicious, contract signing guarantees that consen-
sus can be proved whereas commit-protocols do not.

Remark 2.4. Agreement protocols [PeSL 80], like contract signing, assume a
Byzantine failure model. Still, they usually do not aim a non-repudiation of

1In [EvYa 80], it was shown that no deterministic contract signing scheme (called “public-key
agreement system”) without a third party exists if the verifier is state-less and only the two signa-
tories participate in the contract signing protocol. In Section 3.3.2, we extend this result to include
state-keeping verifiers.

2Each player A receives a digital signature signB(C) on a contract text C if and only if the other
signatory B receives signA(C), too.

3Some extensions, such as [RoPa 93], also consider stronger failures.
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the agreement. However, recent proposals provide non-repudiation and can be
used as a building block for multi-party contract signing [DoSc 98, DoSc1 98].

◦

2.2.1 In-line Protocols

Early work on contract signing with in-line third party was done in [Rab1 83]:
In a sketched protocol, both signatories send their signatures to the third party
who verifies and forwards them.

In order to reduce the involvement of the third party, [Rab1 83] proposes
to use so-called beacons emitting random integers for a probabilistic protocol:
After signing an initial agreement, both signatories choose random numbers
and sign the sum of them together with the correct round number. Then, the
contract is declared valid if the sum of the two chosen integers is the signed
random number broadcasted by the beacon. Even though the involvement of
the third party is reduced, this protocol has the disadvantage that the cheating
probability is linear in the run-time of the protocol: If the random number is
chosen in a space of n elements, it will take about n rounds until the beacon
actually signs the chosen integer. For one round, however, a party may not
send the signed sum while receiving it from the peer. In this case, the beacon
will still broadcast the correct sum with probability 1/n.

2.2.2 Optimistic Protocols

Recent research concentrated on optimistic contract signing schemes that avoid
such uncertain situations, and guarantee a definite decision within limited time:
The first optimistic scheme has been described in [Even 83]. [AsSW 97] (recently
implemented in [Oser 99] and formally analyzed in [ShMi 99]) describes a syn-
chronous contract signing protocol with four messages. This was improved
in [AsSW 98] to a four-message protocol for asynchronous networks which, in
addition, implements fair exchange of signatures using verifiable encryption.
This enable the third party to replace missing signatures [AsSW1 98], without
changing the format of the resulting signature. I.e., in order to enable the third
party to generate a “real” signature (e.g., signA(C)) under the contract instead
of just signing on behalf of an incorrect signatory (i.e., signT(signA(“T may sign
C on my behalf”)). Independently, [BaDM 98] proposed to use verifiable en-
cryption for fair exchange of signatures as well.

Another extension called abuse-free optimistic contract signing has been pro-
posed in [GaJM 99]. In all optimistic contract signing schemes mentioned
above, a signatory may at some point during the protocol be able to choose
whether to validate or invalidate the contract with the help of the third party.
At this point, it already obtained a signature from the peer that the peer would,
in principle, be willing to sign a particular contract. The authors claim that “his
willingness to sign [can be used] to get leverage for another contract” and fix
this “problem” using designated verifier signatures.

Optimistic multi-party contract signing protocols have first been described
in [AsSW2 96] and have recently been extended in [ABSW 98, ABSW 99]. An
asynchronous protocol for optimistic multi-party contract signing has been
proposed in [BaWa 98].
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2.2.3 Gradual Protocols

For contract signing, the gradual exchange protocols without third party can
be further subdivided into two categories:

Gradual Exchange of Secrets: Both parties convert the secret signature to be ex-
changed into a secret in a format to which existing fair exchange of se-
cret protocols can be applied. Then, the secret is exchanged gradually in
many rounds.

Gradual Increase of Privilege: These protocols gradually increase the probability
with which a contract is valid.

Gradual Exchange of Secrets: The first protocols based on gradual exchange of se-
crets have been proposed by Blum [Blum 81, Blum 83, Blu2 83] and were based
on a specific number theoretic assumption which has been proved wrong
in [HaSh 85]. The protocols were then adapted in [Gol4 83, Gold 83] to the
concept of puzzles [Merk 78] which can be based on any public-key crypto
system. Since the difference of computation needed by honest and dishonest
signatories was small4, the monetary value of the contract was one input to
the protocols. This enabled the protocol to choose the security parameters so
that forging the contract was estimated more expensive than the value of the
contract. This was fixed in [Even 83, EvGL 83, EvGL 85] by using oblivious
transfer as a primitive: The signatures are divided into n shares which are sent
using oblivious transfer. Thus, after sending the shares using oblivious trans-
fer, each player knows half of the shares but the other player does not know
which ones. Then, both players reveal all shares bit-by-bit. In this stage, the
shares already received are used to detect cheating. In [Damg 94, Damg 95],
Damgård describes the first protocols for gradual fair exchange of RSA, Rabin,
or ElGamal signatures which are provably secure, i.e., one can prove that after
an interruption, the computational work left to both parties differs at most by
one bit of a secret and breaking the scheme is as hard as factoring.

The disadvantage of using gradual exchange of signatures for contract sign-
ing is that the fairness depends on equal computational power of all signato-
ries: One assumes that both parties would be able to compute the remainder of
the secret to the same extent. Furthermore, if the protocol aborts while a large
part of the secret has not been exchanged, both parties cannot be sure whether
the contract is valid or not since, e.g., one cannot know whether the other sig-
natory spends the remaining computational effort to make the contract valid.
Thus, if a contract signing protocol for selling a house has been aborted, one
cannot decide whether the house has been sold or not.
Gradual Increase of Privilege: An alternative approach is based on gradual in-
crease of privilege. The protocol proposed in [BGMR 85, BGMR 90] exchanges
signatures under a contract by means of gradually increasing the probability
that a judge rules the contract as being valid. To our knowledge, this is the only
protocol based on this principle. The protocol works as follows: In n messages
sent by each signatory, the probability that a contract is declared valid is grad-
ually increased from 0 to 1. If the protocol stops prematurely, each signatory

4An adversary can solve puzzles in the square of the amount required from the intended recip-
ient, whereas an exponential amount is desirable.
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can invoke a third party called “judge.” This third party waits until the sign-
ing protocol has terminated (i.e., we are in a synchronous model). After this
timeout, the third party picks a real random number ρ in the interval [0, 1], or
retrieves it in case the third party was invoked for this contract before. If the
probability given by the last message received by the invoking party is at least
ρ, the contract is considered valid and an affidavit is issued and sent to both
signatories. Otherwise the contract is considered invalid. By construction, if
the protocol is prematurely stopped, one party might be “privileged”, i.e., has
a slight advantage when invoking the judge: If the third party chooses a ρ that
lies between the probabilities of the two signatories, only one of them can fi-
nalize the contract. Thus, if a correct player A invokes the third party and gets
the answer that the contract is invalid, she cannot be sure that the same would
happen if B invokes the third party, i.e., that the contract is indeed not signed.
In the worst case, B might have a valid contract (i.e., probability 1) and hence
knows that if A complains, it will succeed only with the probability contained
in the last message sent by B. The probability that such an uncertain situation
arises is linearly small in the number of messages exchanged [BGMR 90].

A problem with this approach is that one still has the problem of the half-
sold house: I.e., if the protocol is interrupted in between, a seller cannot be sure
whether his house was sold or not without contacting the third party.

2.3 Certified Mail

Certified mail is the fair exchange of secret data for a receipt [Blum 81, Rabi 81].
It can be provided by a fair exchange of secret data for a signature on the de-
scription of the data.

Certified mail is the only instance of fair exchange for which a standardized
framework exists [ISO13888-1 97]: The players in a certified mail system are at
least one sender S and one receiver R. Depending on the protocols used and
the service provided, the protocol may involve one or more third parties T.
If reliable time-stamping is desired, additional time-stamping authorities TS
may be involved, too. For evaluating the evidence produced, a verifier V can
be invoked after completion of the protocol. Sending a certified mail includes
several actions [ISO13888-1 97]. Each of these actions may be disputable, i.e.,
may later be disputed at a verifier, such as a court (see Figure 2.1): A sender
composes a message (non-repudiation of origin) and sends it to the first third
party (non-repudiation of submission). The first third party may send it to
additional third parties (non-repudiation of transport) and finally to the recip-
ient (non-repudiation of delivery, which is a special case of non-repudiation of
transport). The recipient receives the message (non-repudiation of receipt).

For each of these actions, the party involved may produce evidence, i.e.,
signed tokens, in order to enable other parties to later dispute the action at the
verifier. In addition to the parties performing the action, additional witnesses
may sign the token, too. A non-repudiation of receipt token, for example, may
be signed by the recipient and one of the third parties. If we assume that evi-
dence about the actions of a player should not be produced without its consent,
one should require that each token at least contains the signature of the party
performing the action. The protocols may provide time-stamping of the evi-
dence produced, too.
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sender:
S →

third
party

T1

→ . . . →
third
party
Tn

→
recipient:

R

origin transport transport receipt
submission delivery

Figure 2.1: Framework for Certified Mail: Players and their actions.

The most common evidence which is produced by all certified mail proto-
cols are “non-repudiation of receipt” tokens. The obvious problem when pro-
ducing this kind of evidence is fairness, i.e., the receipt should only be issued if
the recipient was able to obtain the message and vice versa. The obvious prob-
lem achieving this is that if the sender reveals the message first, the recipient
may refuse to sign a receipt. If the receipt is sent first, the sender may refuse
to send the message. A similar fairness requirement should hold for protocols
providing non-repudiation of origin: If the recipient receives a message (and
acknowledges the receipt), the recipient should be able to prove the origin of
the message.

In addition to the kinds of non-repudiation provided, we can also distin-
guish by the structure of the non-repudiation tokens produced. Sometimes, the
message itself or a hash values of it is signed5. A weaker form are signatures
on keys or encrypted messages which require that the encrypted message can-
not be decrypted into different messages using different keys. Furthermore,
the produced evidence may include a signature on a time-stamp by a time-
stamping authority TS.

Additional criteria for the classification of certified mail protocols given in
Table 2.1 are:

Confidentiality: The protocol keeps the contents of the message confidential
against the third party or against eavesdroppers observing the network.

Communication Model: All protocols require that the network is reliable, i.e.,
that messages can eventually be delivered or obtained from a third party.
In addition to this property, some protocols require a synchronous net-
work where the parties can decide on time-outs of messages.

In the following subsections, we will focus on fair mechanisms using asym-
metric techniques, i.e., we will omit protocols which do not guarantee fairness
(such as [ISO13888-3 97] or “CEM” in [ZhGo1 96]) as well as symmetric tech-
niques (such as security envelopes [ISO13888-2 98]).

We now describe selected protocols for certified mail in detail. A compar-
ison of all protocols offering deterministic fairness is given in Table 2.1. (A
survey on the listed proposals of Zhou and Gollman is given in [ZhGo3 96].)

2.3.1 In-line Protocols

Early work on fair exchange with in-line third party was done in [Rabi 83,
Rab1 83]. More recently, a multitude of similar protocols with in-line third

5A hash function H() is a collision-free one-way function, i.e., it is difficult to find a pre-image
x givenH(x) and two x1 6= x2 such thatH(x1) = H(x2) [Damg 88].
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Signatures on NR-tokens Properties
Protocols NRO NRS NRT NRD NRR Conf. Rem.
[AsSW 97] S R T O, S
[AsSW 98] S R T O
[BaTy 94] S,T T,S r,S,t -
[BaDM 98] R T O, S
[CoSa 96]1 S,TS,T R,TS,S,T -
CMP1 [DGLW 96] S,T R,T -
CMP2 [DGLW 96] S,T R,T E
[Han 96] S,T R,T - B
[ISO13888-3 97]a S,t T T -
[Mica 97] R E,T O, S
[ZhGo 96] S,t r,t T
CEM-ip [ZhGo1 96]a T T T R,T -
[ZhGo2 96] S S,T S,R,T S,R - ts
[ZhGo 97] s r T O, S
[ZhSh 96] s,t r T S,ts

aThis paper aims at a non-repudiation infrastructure.

Legend:
NR Non-repudiation of origin (O), submission (S), transport (T), de-

livery (D), and receipt (R).
NRO to NRR Signature on tokens by sender (S, s), recipient (R, r), third party (T,

t), or time-stamping authority (TS). Upper case means signature
on message. Lower case signals signatures on ciphertexts or keys.

Conf. Confidentiality against third parties (T). Some protocols (E) also
have integrated link-to-link encryption for protection against net-
work eavesdropping. Naturally, (E) could be added to any proto-
col afterwards whereas (T) would require protocol modifications.

Remarks “O” stands for optimistic and “B” stands for black-board (see
Page 13), “S” stands for synchronous networks, and “ts” stands
for time-stamps from the third party.

Table 2.1: Overview of properties of protocols for certified mail.

parties have been proposed. They mainly differ in the evidence generated,
i.e., which signatures are required on which non-repudiation token. Instead
of describing all protocols, their main service properties are summarized in
Table 2.1.

One example of a protocol using an in-line third party is the protocol pro-
posed in [ZhGo 96, Zhou 96]6. The basic idea is that the parties first exchange
signatures under the encrypted message. Then, the third party signs and dis-
tributes the key. The signature on the encrypted message together with the
signatures on the key then forms the non-repudiation of origin and receipt to-
kens. The protocol is sketched in Figure 2.27.

Another example is the protocol CMP1 proposed by [DGLW 96] as sketched
in Figure 2.3. The basic idea of this protocol is that the sender encrypts the
signed message with a symmtric cipher, encrypts the used key of the cipher

6This protocol was formally analyzed in [Schn3 98] using CSP.
7In the sequel, we do not consider any details of the sketched protocols, such as participant

names or other identifiers in the messages. The goal of the subsequent descriptions is mainly to
illustrate the message flows, i.e., for a real description, we have to refer to the cited literature.
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Sender S Third Party T Recipient R

−−−−−
signS(E1(m))
−−−−−−−−−−−−−−−→

←−−−−−
signR(E1(m))
−−−−−−−−−−−−−−−

− E1−−−−−−−→

←−
signT(E1)−−−−−−− −

signT(E1)−−−−−−−−→

Figure 2.2: Sketch of the Protocol Proposed in [ZhGo 96] (E1 denotes symmet-
ric encryption).

Sender S Third Party T Recipient R

−−−−−−−−−−−−−−−−
m1 := E1(signS(m)), ET (E1),H(m)

−−−−−−−−−−−−−−−−−−−−−−→
←−
signR(H(m)), m1−−−−−−−−−−−−−−

←−
signT(signR(H(m)), m)
−−−−−−−−−−−−−−−−−− −

signT(signS(m))
−−−−−−−−−−−−−→

Figure 2.3: Sketch of Protocol “CMP1” proposed in [DGLW 96].

with the public key of the third party, and sends these parameters together with
the hash-value of the message to the recipient. The recipient then signs this
hash value and forwards all information to the third party. The third party de-
crypts the message and sends a signed message containing the message signed
by the sender to the recipient and sends a signed message containing the hash-
value signed by the recipient and the actual message sent to the sender.

One protocol which pursues a different approach has been proposed
in [Han 96]. The paper claims that no third party is needed. However, it
uses strong blackboard-like communication primitives. It requires a black-
board that guarantees that both parties are able to publish a message under
an address which cannot be erased afterwards and can only be retrieved by a
judge or by knowing the address. Note that this model is worse than the third
parties used in other protocols since the black-board needs persistent memory
whereas most other third parties are memoryless. A similar proposal has been
made in [Tang 96].

The activities around certified mail are reflected in recent standardiza-
tion activities [Herd2 95]. ISO standards ISO13888 standardize the ser-
vice and mechanisms for non-repudiation [ISO13888-1 97, ISO13888-2 98,
ISO13888-3 97]: ISO13888-1 describes a framework for non-repudiation
sketched in Figure 2.1 and describe above, ISO13888-2 describes symmetric
techniques (so called security envelopes), and ISO13888-3 describes asymmet-
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Sender S Recipient R Third Party T

rS
R← {0, 1}∗ rR

R← {0, 1}∗

−
m1 := signS(H(m),H(rS))

−−−−−−−→
←−

m2 := signR(m1,H(rR))
−−−−−−−
−

m, rS−−−−−−−→
←− rR−−−−−−−

if [timeout]:

−−−−−−−−−
m1, m2, m, rS−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−
signT(m1, m2)−−−−−−−−−−−−−−−−−−−−

←−
m, rS−−−−−−−

Figure 2.4: Sketch of certified mail protocol from [AsSW 97].

ric techniques using digital signatures. An overview of an early stage of stan-
dardization was described in [Herd2 95]. The initial drafts of this standard did
not ensure that the recipient really issues a non-repudiation of receipt token
(the so-called “selective receipt problem”). A proposal how to fix this problem
has been made in [ZhGo2 96].

2.3.2 Optimistic Protocols

The basic goal of optimistic certified mail protocols is that the third party
need not be involved to guarantee fairness if both parties follow the protocol
[AsSW3 96, AsSW 97, Mica 97]. Only if one party misbehaves, the third party
is invoked to restore fairness.

Optimistic certified mail has first been described in [AsSW3 96] general-
izing the fair payment for receipt protocols from [BüPf 89]. Independently,
Micali developed a similar protocol for certified electronic mail [Mica 97]
(patented in [Mica1 97, Mica2 97]).

The protocol for optimistic certified mail proposed in [AsSW 97] (see Fig-
ure 2.4) provides non-repudiation of receipt and origin: The sender signs a
hash-value H(m) of the message that it will send, the recipient signs an ac-
knowledgment that it is willing to receive the fixed message. Then, the sender
sends the message and the recipient sends the receipt. For saving one signa-
ture, this receipt consists of a pre-image rR together with the signed message
m2 fixing the one-way image H(rR). If the recipient does not send a receipt,
the sender invokes the third party with the acknowledgment in which the re-
cipient states that it is willing to accept the message in exchange for a receipt.
The third party then signs a replacement receipt and forwards the message to
the recipient. Another presentation as well as an efficiency improvement to the
protocol proposed in [AsSW 97] has been described in [ZhGo 97].

The independently developed protocol for optimistic certified mail pro-
posed in [Mica 97] (see Figure 2.5) provides non-repudiation of receipt as well
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Sender S Recipient R Third Party T

−
m1 := ET (ER(m))

−−−−−−−→
←−
signR(m1)−−−−−−−
−

m3 := ER(m)
−−−−−−−→

ET (m3)
?= m1 :

output DR(m3)
else:

−
m4 := signR(m1)−−−−−−−→
←−
DT (m1)−−−−−−−

←−−−−−−−−−−−−−
signR(m1)−−−−−−−−−−−−−−−−−−−−

Figure 2.5: Certified mail protocol from [Mica 97].

as confidentiality against eavesdroppers and third parties: First, the sender
encrypts the message with the public key of the recipient. The sender then
encrypts the ciphertext with the public key of the third party. The recipient
signs the encrypted message and the sender reveals the ciphertext. The recipi-
ent finally checks whether the ciphertext encrypted with the public key of the
post-office is identical to the ciphertext signed8. If this is not the case or if the
sender did not send anything at all, the recipient asks the third party to decrypt
the ciphertext signed in the receipt. Note that since the non-repudiation of re-
ceipt token is not signed by the sender, the recipient may choose the message
to be contained in the receipt, i.e., the token does not prove that the message
was sent but only that the recipient claims that it was received.

More recent proposals for optimistic certified mail are included in
[AsSW 98, AsSW1 98], which enable fair exchange on asynchronous networks
and show how to enable the third party to produce replacement signatures
using verifiable encryption9.

2.3.3 Gradual Protocols

These protocols only involve the sender and the recipient during message
transmission and a verifier for deciding disputes afterwards. All proposed
protocols for this scenario need to be probabilistic [EvYa 80], i.e., they do not
guarantee fairness but rather guarantee that the advantage of one party over
the other can be made small. The basic idea of this proof is that both parties re-
veal a secret message or secret signature, respectively. For each party therefore
exists a final message which allows the recipient to compute the secret. No

8This assumes that the encryption is deterministic, i.e., that any message is always encrypted
into the same ciphertext.

9An independent proposal for using verifiable encryption for fair exchange on synchronous
networks was published in [BaDM 98].
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matter who sends this final message first has a disadvantage since the other
party may terminate the protocol without sending his final message.

Early cryptographic schemes are based on a gradual exchange of the mes-
sage for the receipt. These protocols only involve the sender and the recipient
during message transmission and a verifier for deciding disputes afterwards.
All schemes of this kind cannot achieve deterministic fairness [EvYa 80]: They
do not give a definitive answer but only guarantee that the advantage of one
party over the other can be made arbitrarily small (but still linear in the num-
ber of messages), e.g., computing the signature on the receipt requires a similar
effort for the sender than computing the message requires from the recipient.

The scheme proposed in [Gol1 84] uses oblivious transfer for sending cer-
tified mail. In principle, the sender first creates n shares of the message to be
sent using a so called threshold scheme10. The recipient signs a message that
says that the receiver acknowledges having received a message, if the sender
can show the pre-image of a given image produced by applying an one-way
function to a randomly chosen secret. This pre-image is divided into n shares,
too. Then, both parties send all their secrets using oblivious transfer11. Since
the sender does not know whether the message has been received or not, each
party only knows that the peer has about half of the secrets but does not know
which of them. These shares received in oblivious transfer will later be used
to detect cheating in the last phase: Both parties send one bit of each share to
the peer. Since the recipient knows about half the secrets, it can verify that at
least half of the bits received are identical to one of the known shares whereas
the other bits can be used to construct the remaining shares. Then, they send
the next bit of all shares and repeat this procedure until all bits have been sent.
If any party interrupts before all bits have been sent, both parties have almost
the same amount of information. For fairness, this protocol assumes that both
parties have similar computational power, i.e., that no party is better at com-
puting the shares to be exchanged bit-by-bit. Other cryptographic schemes
like [Blum 81, BlVV 84, EvGL 85, Gold 82, VaVa 83] use similar techniques, i.e.,
they convert the certified mail problem into a problem of fair exchange of se-
crets by using a threshold–scheme and then perform a gradual exchange of
these n secrets.

2.4 Generic Fair Exchange

The model of generic fair exchange has been proposed in [AsSW 97] together
with an optimistic protocol for several instances of it. The basic idea of generic
fair exchange is to enable the fair exchange of different items fulfilling certain
conditions using one protocol.

Existing generic fair exchange protocols usually assume that the items can
be exchanged by single messages, i.e., unlike the protocols described in Part III,
they cannot be used to exchange interactive protocols.

The first protocol for multiple instances of fair exchange was published in
[AsSW 97]. The protocol requires four rounds and time four for synchronous

10A (n, k)-threshold scheme [Sham 79] divides the secret message into n shares where, e.g., k ≤
n shares are needed for reconstructing the secret.

11Oblivious transfer [Blum 81] sends a message so that the probability of receiving it is, e.g., 0.5
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optimistic fair exchange. They assume that the item can be sent in one mes-
sage, which can be re-sent via the third party without changing the outcome
(i.e., they assume that one item provides verifiability; see Section 12.2). They
guarantee fairness if at least one of the items can be replaced or revoked by
the third party (i.e., the other item is required to provide generatability or re-
vocability; see Section 12.2). The protocol provides non-repudiation for both
players, i.e., the exchange can be proven afterwards. Without non-repudiation
of receipt, the protocol needs three messages in three rounds.

In [AsSW 97], generatability of signatures was provided by so-called af-
fidavits, i.e., the third party signs on behalf of an absent or incorrect signer.
Therefore, [AsSW1 98] and [BaDM 98] independently proposed to use verifi-
able encryption as an implementation of generatability of signatures. This has
the advantage that the resulting replacement signature cannot be distinguished
from ordinary signatures, i.e., fairly exchanged signatures look like ordinary
signatures.

In [AsSW 98] (see also [Asok 98]), the protocol of [AsSW 97] was extended
to asynchronous networks. The protocol requires four messages in four rounds
without producing evidence for non-repudiation.

Generic optimistic multi-party fair exchange has first been described in
[AsSW2 96] recently extended in [ABSW 98, ABSW 99]. Protocols for multi-
party fair exchange using in-line third parties have been proposed in [FrTs 98,
KeGa 96].

2.5 Other Instances of Fair Exchange

This section describes instances of fair exchange, which are not considered in
so much detail in this thesis.

2.5.1 Fair Purchase

Fair purchase is the fair exchange of a payment for secret data to be purchased.
It involves a seller and a buyer. The protocols can be divided into three cate-
gories:

Generic: Protocols which do not make any assumption about the payment sys-
tem.

Part of Payment System: Protocols using the payment switch of the bank as a
third party guaranteeing the fairness of the exchange. This enables more
efficient protocols.

Gradual: Tiny payments are exchanged for tiny parts of the item. This assumes
that the tiny parts are useful in themselves12.

An inherent problem of fair purchase is that for many items, such as computer
software, the protocol cannot guarantee that the items delivered really match
the description of the buyer: Whether a program is a word-processor satisfying
a set of requirements cannot be decided automatically. In those cases, the pro-
tocol can only “bind” the description to the items, i.e., produce evidence that a

12In our opinion, this is currently the most practical instance of gradual fair exchange.
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seller promised that the delivered items fulfill the given requirements. The dis-
pute whether the delivered items fulfill the promised requirements then have
to be resolved by a human arbiter outside the system. Naturally, the more pre-
cise this description is, the more verifications can be done inside the system
and thus the stronger the guarantees which can be given automatically. Only
for machine-verifiable items, such as credentials, one can guarantee fairness
automatically.

Generic Fair Purchase and Payment for Receipt Protocols

Since protocols for fair purchase can also be used to “buy” simple receipts13, we
now describe both concepts together. We omit schemes like [SuTy 96, Zwiß 97]
which do not guarantee fairness of the outcome.

The first generic fair purchase protocol has been proposed in [BüPf 90,
PWP 90]. In this protocol, both parties first agree on the description of the data
and the amount to be paid. Then, the money is sent to the third party. After
the third party acknowledges the receipt of the money to the seller, the seller
sends the data to the third party. The third party forwards data and money, if
the data fulfills the agreement.

This protocol requires an on-line third party participating in the protocol.
This problem has been solved by the generic protocol proposed in [AsSW 97]:
After the agreement, the buyer sends the money and the seller sends the data.
Only if the goods are not as expected, the buyer invokes the third party which
verifies the data and revokes the payment, if the data do not match the descrip-
tion. Note that this protocol only guarantees fairness if the third party is able to
revoke the payment or if it knows the data to be delivered beforehand. If this
is not the case, the protocol still produces evidence that the seller misbehaved
which can be used outside the system.

Producing such evidence which can be used outside the system is the aim
of the generic protocol which has been proposed in [HaTs 96]: The seller sends
a signed offer. The buyer pays, the seller delivers. The buyer sends a receipt.
If the seller does not send the data, the buyer raises a dispute at a third party
which then observes a replay of the protocol. If the seller again does not send
the data, the resulting claim is settled outside the system.

In the protocols described up to now, a third party participates in the fair
purchase. Another class of fair exchange protocols use third parties which pro-
vide disputable sub-services such as disputable storage or disputable commu-
nication, i.e., a purchase then includes a buyer, a seller, the bank, and the third
party. The alleged advantage is that this disputable communication could be
used for other services, too, or that if the hardware provides it, no additional
third parties are needed. If the services are installed for fair purchase only, it
makes no difference to third parties participating in the protocols.

[Tang 96, Tang1 96] describes a service called verifiable transaction atomic-
ity. One goal of this service is to enable third parties to later verify which items
have been exchanged. This is achieved by a third party called “transaction
log” (i.e., in our terminology, the third party is in-line). Another goal is that a
buyer who paid receives the data. This is achieved by means of an unspecified

13This is the case if the receipt is known beforehand, i.e., if it only contains parameters such as
the value and date of the payment. It is not the case if the receipt should fix payment internals,
such as coin numbers.
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“disputation-resolve” method. Another proposal for using a transaction log
for non-repudiation has been made by [CHTY1 96] (see also [Camp 96]).

Payment Systems Enabling Fair Purchase

Most recent payment system proposals (e.g., [BBCM1 94, BGHH 95, SET 97])
provide a means to link a text to the payment made. This field called “mer-
chandise description” in [BGHH 95] appears on the statement of account and
is part of the produced receipt. It can be used to dispute the purchase later.
However, these payment protocols do not include a reference to the data be-
ing delivered: The buyer is enabled to prove that a payment has been made
to a particular seller for data matching a given description. The seller is then
required to prove that it delivered the data by other means.

Some payment systems also provide a real proof of the transaction, i.e.,
a receipt containing the data, the description, and the amount paid. In Net-
Bill [CoTS 95], for example, the buyer includes a reference to the encrypted
data into the merchandise description. The NetBill server then sends a receipt
to the buyer which contains the key to decrypt the data after the payment has
been made. Thus, this receipt sent to the buyer contains references to the de-
scription of the data, the encrypted data, and the key used to encrypt them.
This enables the buyer to dispute the complete purchase afterwards.

A limited form of fair purchase is the exchange of payments for receipts.
All research in this area is closely related to research in payment systems.
Payment-system-independent optimistic receipt mechanisms have been pro-
posed in [AsSW3 96, BüPf 89].

A number of payment systems provide means to settle disputes about
whether a payment has been made or not involving the bank as a wit-
ness [BüPf 89, BGHH 95, BBCM1 94]. For a survey of recent payment systems
see [AJSW 97].

[ShBD 98] uses an in-line third party for fair purchase. The protocols are
based on an integrated on-line payment system where money is kept in ac-
counts at the third party. For efficiency, the authors describe how the third
party can be distributed onto multiple machines.

Gradual Fair Purchase

Gradual exchanges of payments for data are provided by so-called micro-
payment systems first described in [Pede 95] (more recent publications are
[AnMS 96, HaSW 96, Mana1 95, Pede 97, RiSh 97]). The exchange protocols
then exchange each low-value part of the data against one tick of the micro-
payment scheme. Examples are to bill a few cents for each subsequent couple
of video-seconds or each subsequent web-page. If any of the parties does not
send its fraction, the protocol ends. At the end, any party may loose at most
one part of the data or one payment tick.

A slightly different approach was described in [Jako1 95]: The protocol pro-
poses to adapt the mechanism of two-spendable coins for fair exchange: The
first spending is done before the data is received. Then, the seller sends its data.
Finally, the seller hopes that it receives the second payment which enables it to
deposit the coin. The rationale behind this hope is that after the first payment
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(i.e., after spending half of the coin), the coin is defined to be unspendable, i.e.,
the buyer would not gain by not paying the second half.

2.5.2 Fair Exchange of Secrets

The service of fair exchange of secrets exchanges two secrets. Each secret is
described by a publicly known description which can later be used to verify
the received secret. The protocols can be divided into categories by means of
the kinds of secrets and descriptions which are supported by them.

Data: These protocols exchange secret data described by hash values or images
of one-way functions. We assume that this image is known beforehand.
For purchases, for example, it could be part of the offer.

Discrete Logarithms: The secret is a discrete logarithm x of a publicly known
value gx in a known group.

Factorizations: The secret is the prime factorization (p, q) of a publicly known
number n = pq.

Bit-Strings: A sequence of single bits is revealed. The description is a random
subset of the bits that are known by the recipient (e.g., “00100010” can be
described as “0xx00x1x” where “x” stands for unknown).

Exchanging discrete logarithms or factorizations can be adapted to a fair ex-
change of signatures, i.e., these protocols can be used for contract signing, too.
Naturally, the generic fair exchange protocol proposed in [AsSW 97] can be
applied to any fair exchange of secrets. A protocol for the exchange of data de-
scribed by a hash value has been proposed in [FrRe 97]. The authors describe
a non-optimistic protocol using a third party to guarantee fairness. Besides of-
fering the fair exchange service, the authors aim at reducing the trust into the
third party:

• The third party is not able to learn the data to be exchanged.

• Any two honest players can detect dishonesty of the third player.

The protocol of [FrRe 97] uses verifiable secret sharing [CGMA 85] to achieve
these requirements: In principle, the secret data is shared with a 2-out-of-2
scheme into two parts. Each party sends one share to the third party and the
other part to the other party participating in the exchange. The verifiable secret
sharing scheme guarantees that both recipients of the shares can verify that the
shares contain data corresponding to the given one-way image14. The third
party then exchanges and forwards the received shares. Finally both partici-
pants reconstruct the received secret using the shares received from the third
party and from the other participant.

In [Syve2 98], a proposal how to apply fair exchange of secrets to fair ex-
change of data is made. The participating parties first exchange encrypted
items. Then, in the subsequent rounds, they reveal information which reduces

14The paper contains proposals for a number of different on-way functions based on different
cryptographic assumptions.
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the computational effort for decrypting these items. The advantage of this ap-
proach is that no third party is needed at all. Like existing protocols for fair
exchange of secrets, the disadvantages are that it requires many rounds and
that it assumes that both participants have similar computational power.

Multiple protocols for a gradual exchange of specific secrets without third
party have been proposed in the literature. Protocols for exchanging fac-
torizations have been proposed by [Blu2 83, Tedr 85, Damg 95, Yao 86]. Pro-
tocols for exchanging discrete logarithms have been proposed in [BCDG 88,
HaLi1 93, Damg 95]. [BCDG 88] reveals intervals and proves that the secret is
in this interval. [HaLi1 93] reveals some bits of the representation of the se-
cret value x itself. Single bits can be released by using the protocols proposed
by [Tedr 84, Clev 90, LuMR 83]. Data described by one-way images is gradu-
ally exchanged by, e.g., [OkOh 94].

2.5.3 Some Relations among Instances of Fair Exchange

Some relations among different existing instantiations of fair exchange have
been described in the literature15. The question we would like to answer is:

• Can any given instance of type A be used to construct an instance of type
B?

One example is whether any certified mail service can be used to provide con-
tract signing (which is true; see Part I), or whether any payment for receipt
mechanism can be used to provide a fair purchase service.

Some relations between specific protocols for certified mail, fair exchange
of data, and contract signing have been proven in [BlVV 84]. They define that
a system SysA can be weakly reduced to a system SysB, iff SysB can be used to
construct a system of type SysA. A reduction is “strong”, if it requires an inde-
pendent signature scheme Sign() and a cryptographically secure hash function
H().

Fair Exchange of Secret can be used to provide Certified Mail: The strong reduc-
tion to construct a certified mail protocol from a fair exchange of secret data
protocol and any signature scheme works as follows [BlVV 84]: The originator
selects a random number s and then signs a message saying “I acknowledge
having received the message which is pre-image to f(m), iff anybody is able to
present the pre-image of f(s)”. Then, the secrets s and m are exchanged using
the given fair exchange of data protocol. Note that this reduction makes addi-
tional assumptions about the one-way function: Normally, one only assumes
that the one-way function is difficult to invert. This protocol makes the addi-
tional assumption that it keeps all bits of its input secret, i.e., that the recipient
is not able to obtain parts of the message given the one-way image of it.

Fair Exchange of Secret can be used to provide Contract Signing: The weak re-
duction to construct a contract signing protocol given a fair exchange of secret
protocol requires three-party disputes, i.e., a third party keeping track of in-
valid contracts: Each party, say A, signs a message guaranteeing that a given
number fA was computed as fA = f(signA(C))16. Then, they exchange these

15Some more will be described in Part I.
16Even though this reduction is called “weak” in [BlVV 84], it assumes that “contract signatures”

can be produced independently, i.e., they nevertheless assume the existence of a digital signature
scheme. Thus, this reduction should rather be called strong.
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pre-images using fA and fB as the descriptions of the expected secrets. If one
of the parties later finds out that the pre-image was no valid contract, it contacts
the third party and revokes the contract.

The other reductions proposed in [BlVV 84] are not generic: The weak re-
duction to construct a contract signing protocol using fair exchange of secrets
assumes that all schemes are based on the same cryptosystem (EA(), DA())
where the same key-set is used for encryption (written as m := DA(EA(m)))

and signatures (written as EA(DA(m)) ?= m). The same holds for the weak re-
duction to construct a fair exchange of secrets from contract signing: It assumes
that the exchanged signatures can be used as a one-time-pad on the secret to
be exchanged. This reduction also needs a “court” since the resulting protocol
does not verify that the one-way function applied to the given secrets sA and
sB outputs the given images f(sA) and f(sB).
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Optimal Efficiency of
Optimistic Fair Exchange
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Chapter 3

Optimal Efficiency of
Optimistic Contract Signing

3.1 Introduction

A contract is a non-repudiable agreement on a given text [Blum 81]. A contract
signing scheme includes at least three players and two protocols: Two signa-
tories participate in a contract signing protocol “sign“ which fairly computes
a contract, i.e., guarantees that either both or none of the signatories obtains a
contract. This contract can then be used as input to a contract verification pro-
tocol “show“ to convince arbitrary verifiers such as a court that the signatories
reached agreement on the given text.

Note that unlike cryptographic contract signing protocols [Blum 81], our
notion does not tolerate uncertainty about the outcome. In the end, the user
must have a definitive answer whether a valid contract was produced or not.
Furthermore, we achieve deterministic fairness if the underlying digital signa-
ture scheme is secure.

In all practical schemes, contract signing involves an additional player,
called third party. This party is (at least to some extent) trusted to behave cor-
rectly, thus playing the role of a notary in paper-based contract signing. A
well-known protocol for contract signing by exchanging signatures via a third
party works as follows [Rab1 83]: Both signatories send their signatures to the
third party. The third party then verifies and forwards them. At the end, both
signatories end up having two signatures on the contract which may be sent to
any verifier for verification. In this and similar protocols, the third party has to
be involved in all executions of the contract signing protocol.

In order to minimize this involvement while guaranteeing fairness, the con-
cept of so called “optimistic contract signing” has been introduced [AsSW 97,
BGMR 90]. The basic idea of optimistic schemes1 is that the third party is not
needed in the fault-less case: After the execution of the optimistic signing pro-
tocol, two correct signatories that agree on the contract to be signed always end
up with a valid contract. Only if one of the signatories misbehaves, the third
party is involved to decide on the validity of the contract.

1See also [BüPf 89, BüPf 90] for optimistic fair exchange of payments against goods or receipts.
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Model Efficiency Analysis Proof
Scheme Op C TP CA = CB

“(+)”
CA 6= CB TP in

Scheme 3.1 (+) s 2v, sk 3m 3t 1m 5t sl Th. 3.3
Scheme 3.2 (+) s 2v, sk 4m 2t 2m 4t sl Th. 3.3
[AsSW 98] (+) a 2v, sk 4m 4t 4m 4t sk Th. 3.4
Scheme 3.3 (+) a 2v, sk 6m 3t 6m 5t sk Th. 3.5
Scheme 3.4 (+) a 3v, sk 3m 3t 4m 4t sk Th. 3.6
Scheme 3.5 (+) a 3v, sk 4m 2t 6m 5t sk Th. 3.6

Legend:
Op “+” stands for optimistic on disagreement (Def. 3.4; optimized

for all optimistic cases), “(+)” stands for optimistic on agree-
ment (Def. 3.4; optimized for agreement).

C Communication Model: “s” for synchronous, “a” for asyn-
chronous.

TP Properties of the third party: “3v” if the third party is allowed
to participate in verification, “2v” if not, “sl” for state-less, “sk”
for state-keeping.

Eff. “4m 2t”, e.g., means that during the “sign“-protocol, four cor-
rect messages were sent in time two. Underlined figures denote
optimal efficiencies. “CA = CB” denotes that correct signato-
ries input identical contracts, and “CA 6= CB” denotes different
contracts.

Proof Theorems in which optimality of the scheme is proven for the
given case.

Table 3.1: Provably Optimal Schemes By Model.

3.1.1 Results of this Chapter

In this chapter, we examine the efficiency of optimistic contract signing based
on digital signatures in detail.

At first, we define a variety of contract signing models: Optimistic contract
signing can be designed for synchronous and asynchronous networks. It may
need no third party if both signatories are correct and either agree or disagree
(we call this optimistic on disagreement) or only if the correct signatories agree
on the contract (we call this optimistic on agreement). Finally, the third party
may be allowed or disallowed to participate in the verification of a contract.
The third party is always allowed to keep state.

In Theorem 3.1 we show that no asynchronous optimistic contract signing
scheme without a state-keeping third party exists. This proves that in our pro-
tocols, the third party keeps state only if needed. In Theorem 3.2, we show that
the third party is always needed during the “sign“-protocol if the signatories
misbehave, i.e., that no protocol is optimistic even in the case of faults.

We present provably time- and message-optimal optimistic contract signing
protocols for all models identified above (see Tables 3.1, 3.2, and 3.3): For all
our models, a time-optimal protocol requires 2k messages in time k whereas
the message-optimal protocol requires k + 1 messages in time k + 1. For all
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Model Efficiency Model Efficiency
Op C TP “+” Op C TP “+”

Scheme 3.6(+) * * m t → + * * m+2 (t+1)

Scheme 3.7(+) * * m t → + * * (m+1) t+1

Table 3.2: Adapting Contract Signing Schemes for Optimism on Disagreement
(optimality proofs can be found in Th. 3.8-3.13, a legend in Table 3.1).

Theorem Model Results
No. C TP Op t(+) m(+)

Th. 3.1 a 3v, sl (+) Does not exist
Th. 3.3 s 3v (+) ≥ 3

s 3v (+) ≥ 3 ← = 3
s 3v (+) ≥ 2

Th. 3.4 a 2v (+) ≥ 4
Th. 3.5 a 2v (+) ≥ 3

a 2v (+) = 3 → ≥ 6
Th. 3.6 a 3v (+) ≥ 3

a 3v (+) ≥ 3 ← = 3
a 3v (+) ≥ 2

Theorem Model Results
No. C T Opt t+ m+

Th. 3.8 s 3v + ≥ 4
Th. 3.9 s 3v + ≥ 3

s 3v + = 3 → ≥ 6
Th. 3.10 a 2v + ≥ 5
Th. 3.11 a 2v + = 4 → ≥ 8
Th. 3.12 a 3v + ≥ 4
Th. 3.13 a 3v + ≥ 3

a 3v + = 3 → ≥ 6

Table 3.3: Our Impossibility Theorems and What They Prove (a legend can be
found in Table 3.1).

models, each message/time-optimal protocol in time k + 1/k is optimal with
respect to time/messages given the message/time limitation.

At first, in Sections 3.4 and 3.5, we analyze the (hopefully) most likely case
that both signatories are correct and agree. For our two weakest models (i.e.,
synchronous network, optimism on agreement only, with/without the third
party participating in verification), we describe protocols for k = 2 and show
that they are message and time optimal. On asynchronous networks, we obtain
optimal protocols with k = 2 if the third party participates in the verification
of the contract and k = 2, else. Since these protocols are required to contact
the third party if two correct participants disagree, we then show in Section 3.6
how to adapt these schemes such that no third party is needed if the partic-
ipants are correct but may as well disagree (see Table 3.2). This simulation
increases k by 1.

Remark 3.1. As in [Lync 96], we do not consider the memory and computation
complexity of our protocols. It is linear in the length of the inputs as well as
the complexity of the cryptographic primitives and the constant factors can be
made small. Therefore, we feel that the network latency will be one of the main
factors determining the speed of the resulting protocol. ◦
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3.1.2 Notations and Assumptions

We assume that a digital signature scheme (gen, signA, testA) for a given
message-space M and security parameter n is given [GoMR 88, DiHe 76]. The
keys for each party, e.g., A, are computed by the probabilistic algorithm gen(·).
For a given message msg ∈ M , s := signA(msg) denotes the signature of a
player named A under a message msg . Such digital signatures computed by
A can be verified using the corresponding verification function testA, which is
distributed using a given certification infrastructure. A signature s on a mes-
sage m is called valid iff testA(s, m) = true. The security of the signature scheme
guarantees authentication and non-repudiation, i.e., signA can be used to com-
pute a valid signature on m and without knowledge of signA, a polynomial-
time adversary cannot compute valid signatures s′ on messages m′ not pre-
viously signed by A, except with negligible probability. In our protocols, we
assume that A as well as msg can efficiently be computed given the signature.
Furthermore, the security analysis of our protocols is done as if digital sig-
natures would provide error-free authentication, i.e., we do not consider the
negligible case that signatures may be broken.

With |S | for any set S , we denote the number of the elements in set S .
We assume that signed messages are typed and labeled with the protocol

parameters, e.g., that sending m2 = signO(text) in protocol “prot“ using a third
party T executed by machine S running with a tid started at time t0 (if syn-
chronous) to machine R actually sends the signed message signO(“prot“, S, R, T,
tid , t0, “m 2”, text) in order to prevent interchanging messages between differ-
ent protocols and runs (the identifier “m 2” denotes the unique name identi-
fying message m2; for clarity of our protocols, we may nevertheless mention
some of the parameters that are included and signed automatically). Messages
without this form or with unexpected parameters are simply ignored. In the
synchronous case, messages that do not arrive in their designated round are
ignored.

In our figures, ©A a/b→ ©B depicts that a machine is in state A and receives a
message called a. It sends a messages called b and changes to state B. Sending
multiple messages b1, b2, . . . is denoted by sending b1 + b2 + . . . . The recipient
of a message is not depicted. It is described in the text and can be determined
by searching for an input of the given message at another machine. Dashed
arrows denote non-optimistic exception handling. If the message name is bold,
the message is exchanged with the third party. Subscripts in message names
usually denote the time at which they are sent (e.g., m3 would be a message
from Round 3). Bold states are final states. If a message mi is not received on a
synchronous network, this is modeled by receiving the message ¬mi.

Our figures depict the automata for one run with a given tid , only. This run
is identified by the tid received in the first input or message. To enable parallel
execution of multiple protocols, a new process needs to be started for each
new tid received. A state-keeping third party, for example, will always listen
to incoming messages. If it receives a message, it checks whether a process for
this tid and these signatories exists. If this is the case, the message is forwarded
to this process. Else, a new copy of the third party automaton is started in a
new process and parameterized with the new tid .

In our text, the end of a definition or a scheme is marked with the symbol
“3”, the end of a theorem or lemma is marked with “2”, the end of a proof is
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marked with “ ”, and the end of a list of remarks is marked with the symbol
“◦”.

3.2 Definitions

We now define our network and complexity model as well as the notion of
optimistic contract signing.

3.2.1 Network Models and Protocol Complexity

We distinguish between the “standard” synchronous and asynchronous net-
work models [Lync 96]. On synchronous networks, messages are guaranteed
to be delivered within a so-called “round”, i.e., a recipient of a message can
decide whether a message was sent or not2. On asynchronous networks, mes-
sages are eventually delivered but may be delayed and reordered arbitrarily.
Therefore, a recipient cannot decide in general whether a message will even-
tually arrive or not. Therefore, our asynchronous protocols accept a distin-
guished input wakeup. After this input the protocol stops waiting for pending
messages and guarantees termination within a limited time by only interacting
with the third party that is assumed to be correct. In our optimistic protocols,
this input signals the end of the optimistic phase and notifies the machine that
the correct third party may be involved.

A machine is called correct if it adheres to its algorithm. We assume a byzan-
tine failure model, i.e., a faulty machine may send arbitrary messages it is able
to compute but must not be able to prevent delivery of messages between two
correct machines. The time complexity of a synchronous protocol is the num-
ber of rounds required for its execution, i.e., the protocol complexity is the last
round where a message may be sent or the output is made. The time com-
plexity of an asynchronous protocol is the time required for its execution if
transmission of each message requires time 1 and local computations require
no time.

For both network types, we assume that each algorithm receives its mes-
sages from other algorithms and its local inputs, then does a computation on
them and outputs at most one local output and one message for each other
algorithm.

The time complexity of any protocol sketched above can be formalized by
defining a logical time [Lync 96]. This complexity will be used in Definition 3.6
to define the complexity of optimistic protocols, which shall be optimized.

Definition 3.1 (Time Complexity)
The time complexity of a protocol is defined to be the highest clock assignment
at the end of the protocol obtained by the following rules:

1. Each machine participating in the protocol has a time assignment time ∈
IN and a mode assignment mode ∈ {send, receive}. In send-mode, mes-
sages can only be sent. In receive-mode, messages can only be received.
Initially, time := 0 and mode := receive is assigned.

2Note that the reliability of the connection between the signatories is not needed for security
rather than for correct optimism.
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2. The time assignment of an algorithm is increased whenever an event hap-
pens.

Unlike Lamport’s time-stamps [Lamp 78], an event here is defined as
“changing from receive-mode to send-mode”. Consecutive send or re-
ceive operations as well as changes from send to receive mode do not
change the local clock.

3. The assigned time of the local clock of the sender is assigned to every
message sent.

4. Whenever a time-stamp higher than the local time assignment has been
assigned to a received message, the local time assignment is set to the
time assigned to the received message.

3

Remark 3.2. In the synchronous model, the time complexity defined by Defini-
tion 3.1 equals the minimum number of rounds needed for the protocol. ◦

3.2.2 Optimistic Contract Signing

We now define different flavors of contract signing. Each flavor can then be
optimized for time- or message-optimality on synchronous or asynchronous
networks.

We assume that the signatories agreed on the unique and fresh tid and
know their mutual identities before starting the protocol. A common method
to guarantee this is to use a pair of two locally unique numbers as the global
transaction identifier. Note that unlike Part III, we link subsequent protocol
executions (e.g., “sign“ and “show“) using the input tid . Furthermore, we as-
sume that on synchronous networks, the players agreed on a starting Round t0
in which the protocol is started.

Definition 3.2 (Contract Signing Scheme)
A contract signing scheme for a contract space M with |M | ≥ 2, an identifier
space id space , and a set of transaction identifiers TIDs is a triple (A, B, V)
of probabilistic interactive algorithms (such as probabilistic interactive Turing
Machines) where V does not keep state between subsequent protocol runs. The
algorithms A and B are called signatories, and V is called verifier. In addition,
the scheme may specify a set AM of auxiliary machines without in- or outputs.
The algorithms can carry out two interactive protocols:

Contract Signing (Protocol “sign“): Each signatory, e.g., A, obtains a local input
(sign, B, CA, tid) where sign indicates that the “sign“-protocol shall be exe-
cuted with signatory B ∈ id space , CA ∈ M is the contract text A wants to
sign, and tid ∈ TIDs is the common unique transaction identifier which
is used to distinguish different protocol runs. At the end, each of A and
B returns a local output, which is either (signed, tid) or (rejected, tid).

Verification (Protocol “show“): This is the contract verification protocol between
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any particular verifier V and only one of the signatories A or B34. The
signatory, say A, obtains a local input (show, tid). The verifier V outputs
either (signed, A, B, C, tid) with the identities5 of the two signatories and
the contract text, or else (rejected, tid).

3

Intuitively, an output signed of the “sign“-protocol means that the user can now
safely act upon the assumption that the input contract has been signed, i.e., that
a subsequent verification will succeed. If the protocol outputs rejected, the user
can safely assume that no contract was signed, i.e., the other signatory will not
be able to pass verification.

The set AM subsumes all auxiliary machines needed for the correct opera-
tion of the scheme. Since they do not make in- or outputs, there is no need to
identify them individually. Examples include network machines, certification
authorities, or third parties.

The requirements on termination of the protocols depend on the underly-
ing network: On asynchronous networks, nobody can decide whether a mes-
sage will eventually arrive or not. Thus, with incorrect players, termination
cannot be guaranteed without precautions. Therefore, we allow the user to
request termination manually: After a local input (wakeup, tid), the protocol
stops waiting for pending messages and is required to terminate and produce
a correct output (e.g., by only interacting with a correct third party).6

Remark 3.3. Most existing protocols only consider one single run of a protocol,
i.e., they do not introduce transaction identifiers to distinguish two indepen-
dent runs. ◦
Definition 3.3 (Secure Contract Signing)
A contract signing scheme (Def. 3.2) is called secure if it fulfills the following
requirements if the machines in AM are correct7:

Requirement 3.3a (Correct Execution): Consider an execution of “sign“ by two
correct signatories with an input (sign, B, CA, tid) to A and (sign, A,
CB , tid) to B with a unique and fresh tid ∈ TIDs and CA, CB ∈ M .
If these inputs are made in the same round on synchronous networks
and if wakeup is not input on asynchronous networks, the “sign“-protocol
outputs (signed, tid) iff CA = CB or else (rejected, tid) to both signatories.

Requirement 3.3b (Unforgeability of Contracts): If a correct signatory, say A, did
not receive an input (sign, B, C, tid) so far, any correct verifier V will not
output (signed, A, B, C, tid).

3Note that we did not consider verification including A and B, even though this may lead to
more efficient protocols for some models (see Remark 3.15).

4Without this restriction, a signatory would not be enabled to switch off its machine as long as
the contract is valid.

5We assume that the order of the names does not matter. E.g., a requirement that the verifier
outputs (signed, A, B, C, tid) is also fulfilled if it actually outputs (signed, B, A, C, tid).

6Note that this termination may lead to a different outcome as compared to an undisturbed run
of the protocol.

7Note that a specific system may weaken this strong trust assumption.
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Requirement 3.3c (Verifiability of Valid Contracts): If a correct signatory, say A,
outputs (signed, tid) on input (sign, B, C, tid) and later executes “show“
on input (show, tid) with a particular correct verifier V then this verifier
V will output (signed, A, B, C, tid).

Requirement 3.3d (No Surprises with Invalid Contracts): If a correct signatory, say
A, outputs (rejected, tid) on input (sign, B, C, tid) then no correct verifier
will output (signed, A, B, C, tid).

Furthermore, one of the following requirements must be fulfilled:

Requirement 3.3e (Termination on Synchronous Network): On input of (sign, B, C,
tid), a correct signatory, say A, will either output (signed, tid) or (rejected,
tid) after a fixed number of rounds.

Requirement 3.3f (Termination on Asynchronous Network): On input of (sign, B,
C, tid) and (wakeup, tid), a correct signatory, say A, will either output
(signed, tid) or (rejected, tid) after a fixed time8.

3

Remark 3.4. Note that wakeup can only be input to the signatories during the
“sign“ protocol. Termination of the “show“ protocol is implied by [R. 3.3c] if a
contract was produced.9

Remark 3.5. If two correct signatories input different contracts CA 6= CB on
asynchronous networks and later input wakeup, then an output (rejected, tid)
to both is not required by “correct execution”.

However, if the protocol would not output (rejected, tid) to both, then at
least one signatory would obtain an output signed. For “verifiability”, this sig-
natory would be able to convince the verifier. This, however, contradicts “un-
forgeability” of the other correct signatory who did not input the same contract.
◦
Definition 3.4 (Optimistic Contract Signing with Two-Party Verification)
An optimistic contract signing scheme for a contract space M , an identifier space
id space , and a set of transaction identifiers TIDs is a triple (A, B, V) together
with a machine T. The scheme must fulfill the following requirements:

Requirement 3.4a (Security): (A, B, V) with a set AM := {T} with a correct ma-
chine T is a secure contract signing scheme (Def. 3.3) where the third
party does not participate in the “show“ protocol.

Requirement 3.4b (Limited Trust in T): R. 3.3b and R. 3.3c are fulfilled even if T
is incorrect.10

Furthermore, one of the following requirements must be fulfilled:
8This is a logical time as defined in Def. 3.1. Note that “eventually” is too weak in our opinion:

The term “fixed time”, requires that there exists a fixed bound on the maximum number of message
exchanges after wakeup.

9Implicitly, this assumes that a user only executes the “show“-protocol after obtaining a con-
tract.

10Intuitively, R. 3.3d cannot be guaranteed for an incorrect T. Since the outcome of one correct
signatory must depend on the behavior of T (otherwise, T would not be needed), T could trick
this signatory into an output rejected while enabling an output signed to its peer.
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Requirement 3.4c (Optimistic on Agreement on Synchronous Network):
If two correct signatories input (sign, B, C, tid) and (sign, A, C, tid) in a
given round with a fresh and unique tid and a C ∈ M , the third party
does not send or receive messages in the “sign“-protocol.

Requirement 3.4d (Optimistic on Agreement on Asynchronous Network):
If two correct signatories input (sign, B, C, tid) and (sign, A, C, tid) with
a fresh and unique tid and a C ∈ M and do not input (wakeup, tid), then
the “sign“-protocol terminates in a fixed time and the third party does not
send or receive messages.

An optimistic contract signing scheme is called optimistic on disagreement if
R. 3.4c or R. 3.4d hold even if the correct signatories input different contract
texts CA 6= CB . 3

Remark 3.6. R. 3.3a for an incorrect T automatically holds in all optimistic ex-
ecutions (if T is not asked, it cannot influence the outcome). This means that
if the participants are correct, agree, and do not input wakeup, all optimistic
protocols will automatically produce a correct output signed. Only protocols
that are optimistic on disagreement usually produce a correct output of rejected
without contacting the third party. ◦

A weaker definition allows the third party to participate in the verification of a
contract. This enables, e.g., revocation of contracts during recovery:

Definition 3.5 (Optimistic Contract Signing with Three-party Verification)
An optimistic contract signing scheme with three-party verification for a contract
space M , an identifier space id space , and a set of transaction identifiers TIDs
is a triple (A, B, V) together with a machine T of probabilistic interactive algo-
rithms. The scheme must fulfill the following requirements:

Requirement 3.5a (Security): (A, B, V) with with a set AM := {T} with a correct
machine T is a secure contract signing scheme (Def. 3.3).

Requirement 3.5b (Limited Trust in T): R. 3.3b is fulfilled even if T is incorrect.

The scheme is called optimistic on agreement if R. 3.4c or R. 3.4d hold. It is
called optimistic on disagreement if these requirements hold even if the correct
signatories input different contract texts CA 6= CB . 3

Remark 3.7. Note that the involvement of the third party in the verification is
not as bad as its involvement in the actual contract signing protocol: In prac-
tice, only few signed contracts should be disputed at court.

Remark 3.8. Including the other signatory into the verification changes the re-
sulting optimal protocols, since the third party can ask the other signatory to,
e.g., prove dishonesty of the signatory showing its contract. ◦

3.2.3 Complexity of Optimistic Schemes

The complexity of optimistic protocols that will be optimized in the sequel is
defined as follows:
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Definition 3.6 (Complexity of Optimistic Schemes)
Let (A, B, V) and T be an optimistic scheme.

The optimistic message complexity of the scheme is defined to be the max-
imum number of messages sent/received by correct players in all optimistic
cases11.

The optimistic time complexity of the scheme is defined to be the maximum
time where a correct player may be required to send or receive messages in all
optimistic cases. More precisely, it is the time where one can safely switch the
machine off in all optimistic cases. 3

Remark 3.9. The fine distinction in the definition, i.e., that it does not simply
state “the maximum time where a player sends or receives a message” is
needed for cases where a player in the optimistic case waits for a message
which will only arrive in the non-optimistic case. In this case he will not re-
ceive a message in the optimistic case, nevertheless the machine cannot yet be
switched off in the optimistic case because it is not yet clear to the machine that
it is in this case. Hence our definition assigns a higher time complexity to this
case than the simple definition would.

Such situations may occur in the synchronous case, where the third party
may ask both participants to show evidence during a non-optimistic execu-
tion. Therefore, e.g., a correct participant who already output signed and has
finished in the optimistic execution may be required to prove this decision to
the third party in a non-optimistic execution. If the protocol includes such an
“ask-back”, the time of the last ask-back message is the time complexity of the
protocol.

E.g., Scheme 3.1 below would also be optimal for optimism on disagree-
ment in the simpler definition: In case of disagreement, m1 is the only message
sent. The fact that A must wait until Round 5 is not considered by this com-
plexity measure.

Remark 3.10. Local in- and outputs are no messages in our sense.

Remark 3.11. Yet another time measures in the synchronous case is the time of
the output of the decision. ◦

Lemma 3.1 (Using Asynchronous Protocols on Synchronous Networks)
Any asynchronous contract signing protocol that is optimistic on agree-
ment/disagreement in time t with m messages can be used as a synchronous
contract signing protocol in t rounds and m messages that is optimistic on
agreement/disagreement. 2

Proof. The asynchronous protocol is adapted as follows:

1. A correct player sends an outgoing message immediately whenever all
preconditions are fulfilled (i.e., a message mi will usually be sent in
Round i).

2. After the number t of rounds given by the optimistic time complexity, a
player automatically inputs wakeup to the asynchronous protocol.

11I.e., for “optimistic on disagreement”, the complexity is defined to be the maximum of the
agreement and the disagreement case.
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Figure 3.1: Evaluating an Integrity Requirement (the adversary Σ∗ is depicted
gray, the correct machines Σ′ white, and the predicate as black bars).

It is clear that the synchronous protocol fulfills all requirements where occur-
rences of wakeup are not explicitly mentioned.

Correct execution for the optimistic cases follows with asynchronous opti-
mism from the fact that wakeup is not input while the protocol execution can
still be optimistic.12 If CA 6= CB for a protocol that is optimistic on agreement
only, we input wakeup automatically even though the protocol may still be run-
ning. In this case, the output (rejected, tid) to both signatories follows from the
argument in Remark 26.

Synchronous termination follows from asynchronous termination since
wakeup will be input automatically (see Item 2). Optimism on synchronous
networks holds because the input wakeup is only made at a time where all op-
timistic executions have finished.

3.2.4 Traditional Formalization of the Integrity Requirements

We now sketch a formal model for evaluating the requirements listed above
which follows the ideas in [Pfit8 96, PfWa 94]. In Part II, we will describe a new
alternative for defining integrity and secrecy using Trusted Hosts specifying the
intended service.

The basic idea of this traditional formalization is that for each requirement,
a given subset of the machines is assumed to work correctly. Integrity require-
ments are then expressed over sequences of in- and outputs of these correct
machines: No matter what the incorrect machines do, the probability of the
requirements not being fulfilled should be negligible. This simple approach
towards formalizing requirements can be used since we do not deal with se-
crecy requirements. Note that as in [Pfit8 96], we require integrity even if the
users behave not as expected. We simulate this by allowing the adversary to
choose the user-inputs of all users. The set-up underlying the following defi-
nition is depicted in Figure 3.1.

Definition 3.7 (Fulfillment of Integrity Requirement)
Let Σ(n) = {A1(n), A2(n), . . . , Ak(n)} be a given scheme consisting of a list of
interacting machines that are polynomial-time in an input security parameter
n. Let Σ′(n) ⊆ Σ(n) be the subset of machines that are assumed to be correct.

12Since all optimistic executions terminate before time t + 1 and wakeup is input at time t + 1,
wakeup can only be input in non-optimistic executions.
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An integrity requirement is a predicate on the in- and outputs of Σ′(n). It is
fulfilled if the probability of winning the following game is negligible13 for any
polynomial-time machine Σ∗(n) replacing all machines in Σ(n)− Σ′(n):

1. Σ∗(n) interacts arbitrarily with the machines in Σ′(n). This includes
Σ∗(n) generating user-inputs.

2. The adversary Σ∗(n) wins the game if the predicate is not fulfilled by the
resulting user in- and outputs of the correct machines in Σ(n).

3

3.3 Some Basic Impossibility Results

We now describe some basic limitations of optimistic contract signing.

3.3.1 On Asynchronous Recovery with a Third Party

The third party has to keep state and asynchronous recovery14 never involves
both signatories:

Lemma 3.2 (Asynchronous Recovery is 2-party)
After an input wakeup on asynchronous networks, the outcome of the “sign“-
protocol is determined only by the states and inputs from the third party and
the signatory starting it. 2

Proof. If the third party is invoked by a correct player, the recovery phase is
required to terminate in order to guarantee termination of the “sign“-protocol.
However, if the third party asks the other signatory, the third party cannot
decide on asynchronous networks whether the message would eventually be
answered or not. Thus, if the third party would wait forever and the signatory
is not correct, “resolve“ would not terminate.

A state-keeping third party cannot be avoided on asynchronous networks:

Theorem 3.1 (Asynchronous T Keeps State)
There is no asynchronous contract signing scheme with state-less third party15,
which is optimistic on agreement. 2

Proof. Assume there is an asynchronous optimistic contract signing scheme
with this property. Then there is an equivalent “sign“-protocol which has only
messages, say m1, . . . , mn, in a row where A sends m1 and mn (if not, prepend-
ing an empty message helps): Messages sent in parallel are independent of
each other. The security of the scheme must not depend on their order since
the asynchronous network may reorder the messages. Therefore, the protocol
can be converted into subsequent messages by shoving messages up or down
(see Figure 3.2).

13I.e., for each polynomial p(n) and all sufficiently large n, the probability of winning the game
is smaller than 1/p(n).

14With recovery we denote the non-optimistic phase involving the third party. On asynchronous
networks, t is started by an input wakeup. Else, by messages that have not been received.

15For a state-less third party, the answer to any message does not depend on earlier messages
that have been processed.
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Figure 3.2: Saving a Dashed Message by Shoving it Up or Down.

Furthermore, we assume that after an input wakeup, the invoker (either A or
B) sends all messages the invoker has sent or received so far to the third party,
i.e., a prefix (m1, . . . , mk) of (m1, . . . , mn). Since we are in an asynchronous
model, the third party’s decision cannot depend on the non-invoking signatory
(Lemma 3.2). Since the third party is assumed to be state-less, the decision can
be modeled as a set of functions TP () on (m1, . . . , mk) to {signed, rejected} for
each k for which a request is allowed.

Consider a run with correct A and B where both input identical contracts
and B inputs wakeup after mn−1 and before the last message mn from A has
been received. Since A may have received a valid contract, the third party must
decide TP (m1, . . . , mk) := signed for k = n − 1 to fulfill the “No Surprises”-
requirement.

Now assume that TP (m1, . . . , mk) = signed for some k ≥ 2. If we
now consider the case that one player gets a wakeup after sending mk−1, a
recovery request must be allowed since the other player will eventually re-
ceive mk−1 which enables it to recover to signed. For consistency reasons, we
have TP (m1, . . . , mk−1) := TP (m1, . . . , mk)=signed. Thus, inductively we get
TP (m1) = signed which contradicts the unforgeability requirement.

3.3.2 On Two-party Contract Signing without Third Party

In this theorem, we extend the impossibility results from [Even 83] to include
protocols with state-keeping verifier. In our language, this corresponds to a
scheme with four-party verification and state-keeping verifier where the third
party does not participate in the “sign“-protocol at all, i.e., even if one of the
players is dishonest16.

Theorem 3.2 (No 2-party Contract Signing)
There exists no synchronous contract signing scheme with three-party verifi-
cation (Definition 3.5) including both signatories17 and state-keeping verifier,
which is optimistic even in case of faults.18 2

Remark 3.12. Recall that asynchronous protocols can be used on synchronous
networks, too (see Section 3.2.1). As a consequence, this theorem proves that
no such protocol exists on asynchronous networks as well. ◦

16Recall that contract signing protocols that are optimistic on disagreement never need the third
party if the signatories are correct and do not input wakeup.

17Recall, in Definition 3.5 only one signatory participates in the verification, hence this theorem
is more general.

18This implies that the third party does not send or receive messages even in case of one faulty
signatory.
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Proof. If there were such a protocol, in the “sign“-protocol, the signatories
would interact only with each other. Let us assume that all messages of the
“sign“-protocol are sent in a row and that A sends the first and the last message
(if not, delaying or appending some messages helps). Since a correct party
must not contact the third party or the verifier, we can w.l.o.g. assume that
they ignore all other messages during the “sign“-protocol. Let us assume that
T is unconditionally trusted (i.e., unlimited trust in T; this is possible since it
makes the impossibility result even stronger) and that the verifier V plays the
role of T as well (i.e., we use a state-keeping verifier instead of a state-keeping
third party and a state-less verifier that interact).

Let (m1, . . . , mn) be the correct messages that are exchanged in a correct
execution of “sign“ with matching parameters (i.e., they include identical par-
ticipant identifiers, contracts, and tids).

In the first execution of the “show“ protocol for a particular tid , the verifier V
as well as the machines A and B then perform a dialogue to derive the decision
on a given prefix of messages m1, . . . , mk.

Let us consider a correct signatory A: If A receives all protocol messages
(m1, . . . , mn) correctly and with matching parameters, its output must be
signed. For unforgeability, the output on (m1) must be rejected. Thus, for A
there exists a message mi such that receiving this message changes its output
from rejected to signed. Furthermore, for “no surprises”, a correct B would out-
put signed after sending mi.

Let us now consider an initial decision of the verifier for B if signatory A
presents a prefix m1, . . . , mi−1 while signatory B presents a prefix m1, . . . , mi.

If the verifier decides on rejected, this contradicts no surprises for a correct
B, since an incorrect A may deny receiving mi.

If the verifier decides on signed, this contradicts no surprises for a correct A,
since an incorrect B may claim that it sent mi without actually sending it, i.e.,
the correct A output rejected while the verifier decides on signed.

3.4 Optimistic on Agreement

We now describe contract signing protocols which are optimistic in case of
agreement. For these protocols, we aim at optimizing the optimistic case, i.e.,
we prove that their efficiency is optimal if the participants are correct and agree
on the contract text.

3.4.1 A Message-optimal Synchronous Scheme

The message-optimal optimistic scheme19 for synchronous networks requires
three messages in the optimistic case using a state-less third party. Its opti-
mistic behavior is depicted in Figure 3.3. The individual machines of the play-
ers are depicted in Figures 3.4, 3.5, and 3.6.

Scheme 3.1 (Message-optimal Synchronous)
This scheme consists of the triple (A, B, V) and T of interactive probabilistic
machines which are able to execute the protocols defined as follows:

19The message flows are similar to the optimistic protocol in [Mica 97] which provides certified
mail instead of contract signing.
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Contract Signing (Protocol “sign“; Figure 3.3): On input (sign, B, CA, tid), the sig-
natory A initiates the protocol by sending the signed message m1 :=
signA(A, B, T, t0, CA, tid) with contract CA to the responding signatory
B. B receives the input (sign, A, CB, tid) and message m1 and verifies
whether the received contract text CA is identical to the input contract
text CB . If not, the players disagree about the contract and B returns
(rejected, tid). Else, it signs the received message and sends it as m2 :=
signB(m1) to A. Player A then signs the received message again, sends it
back as m3 := signA(m2) and outputs (signed, tid). On receipt of message
m3, B outputs (signed, tid) as well. After a successful execution of this
optimistic protocol, A and B store m3 under the input tid for later use in
a verification protocol.

If A does not receive message m2 it waits until Round 5, and, if m5 is
not received, it outputs (rejected, tid). If B did not receive message m3, it
may be that A nevertheless was able to compute a valid contract m3 after
receiving m2. Therefore it starts the “resolve“-protocol to invoke the third
party to guarantee fairness.

Recovery from Exceptions (Sub-protocol “resolve“): B sends a message m4 :=
signB(m2) containing m1 and m2 to the third party T. The third party
then checks whether both players have agreed and then forwards m2 in
m5 :=m2 to A, which might still wait for it. This guarantees that A receives
a valid contract m3 := signA(m2) and outputs (signed, tid). Furthermore
T sends an affidavit on m2 in m′

5 := signT(m2) to B and B outputs (signed,
tid). After the “resolve“-protocol, A keeps m3 and B keeps m′

5 to be used
in later verification protocol executions.

Verification of a Contract (Protocol “show“): On input (show, tid), a signatory
looks up m3 or m′

5 and sends it to the verifier. The verifier verifies it
and outputs (signed, A, B, C, tid) if this succeeds and (rejected, tid) else.

3

Remark 3.13. Note that in our protocols, the contract and the contents of most
messages are fixed after the first message sent by a signatory. Therefore, each
player can save signatures by including one-way images H(ri) of random au-
thenticators ri into the initial message which can then be released instead of
signing subsequent messages [AsSW 97].

Remark 3.14. For simplicity, our protocols do not keep the contract confiden-
tial against the third party. This can easily be improved by signing a contract
on H(C) and modifying the verification as follows: For verifying a contract, a
signatory sends C to the verifier and inputs (show, tid) to the contract signing
scheme. The verifier then outputs (signed, A, B, C, tid) if the verification out-
puts (signed, A, B, hC , tid) and hC = H(C) for the received C. ◦
We now prove the security of the scheme. Note that in [Veit 99], we also
conducted a more formal analysis of this protocol using the model checker
“SPASS” [Weid 97, Weid 98].

Lemma 3.3 (Security of Scheme 3.1)
Scheme 3.1 is a secure synchronous optimistic contract signing scheme, which
is optimistic on agreement. 2

39



3. Optimal Efficiency of Optimistic Contract Signing

Signatory A Signatory B

m1XXXXXz
not ok: rejected

m2�����9
not ok and no m5:
rejected
else signed.

m3XXXXXz
not ok: “resolve“
else signed.

Figure 3.3: Optimistic Behavior of Scheme 3.1.

Start
sign/m1 m2 /m3SA signed

¬m2

RA

m5/signed

rejected

¬m5/rejected

show/m3 or m5

Figure 3.4: Signatory A of Scheme 3.1.

m1/m2SB1

rejected

SB2

¬m3/m4

RB

¬m1

m3/signed signed

m'5/signed

rejected

¬m'5/rejected

show/m3 or m'5

sign/Start

Figure 3.5: Signatory B of Scheme 3.1.

m4/(m5, m'5)

Start

Figure 3.6: Third Party T of Scheme 3.1.
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Proof. The scheme adheres to Definition 3.2 by construction. We now show that
each of the requirements described in Definitions 3.3 and 3.4 are fulfilled:

Correct Execution: If both correct players A and B input (sign, B, CA, tid) and
(sign, A, CB, tid) with identical tids and CA = CB , then both receive a
valid contract m3 and output (signed, tid). If the contracts or tid ’s differ,
B outputs (rejected, tidB) after receiving m1 and A outputs (rejected, tidA)
after not receiving m5 in Round 5.

Unforgeability of Contracts: In order to convince a correct verifier V for a given
tid , C, and partner, one needs correct messages m3 or m′

5 containing this
tid . Since m3 as well as m′

5 contain signatures from both participants, a
correct signatory input (sign, A, C, tid) or (sign, B, C, tid), respectively.

Verifiability of Valid Contracts: If a correct machine A outputs (signed, tid) then it
received m2 (or m5 containing m2) which will be accepted by the verifier
as a correct contract m3 after being signed by A. B outputs (signed, tid)
only if it received m3 or m′

5 which are accepted by the verifier, too.

No Surprises with Invalid Contracts: Let us first assume that a correct signatory
A returned (rejected, tid) on input (sign, B, C, tid) whereas B is able to
convince the verifier. This requires that B knows m3 or m′

5 for the given
tid and C. Since A returned rejected, it did not receive m2 until Round 5
and it did not send m3. Therefore, only m′

5 could lead to successful verifi-
cation. However, if the third party was correct, it will not accept recovery
requests from B after Round 420. Furthermore, in Round 4, no recovery
was started since A did not receive m5 in Round 5. Thus B did not receive
m′

5 in Round 5.

Let us now assume that a correct signatory B returned (rejected, tid) on
input (sign, A, C, tid). Then B either did not send m2 for this tid or it
sent m4 to T. In the first case, A cannot convince the verifier since m2 is
part of m3 and also m′

5. In the second case, a correct third party would
necessarily have answered with m′

5 and thus B would not have returned
(rejected, tid ).

Termination on Synchronous Network: The scheme requires at most 5 rounds (3
in “sign“ and 2 in “resolve“) to terminate.

Limited Trust in T: Even if T is incorrect, it cannot forge any signature of the
two signatories. Therefore, unforgeability still holds.

Verification is independent of T. Therefore, verifiability even holds if T
is incorrect.

Optimistic on Disagreement on Synchronous Network: If the correct signatories
input (sign, B, CA, tid) and (sign, A, CB , tid) with CA = CB , signatory
A outputs (signed, tid) after Round 2 whereas player B outputs (signed,
tid) after Round 3. In this case, the scheme sends the m1, m2, m3 and
requires 3 rounds.

20This round number is relative to the time t0 as fixed by the initial input of A and implicitly
included and signed in m1 (see Section 3.1.2).
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3. Optimal Efficiency of Optimistic Contract Signing

If CA 6= CB , A outputs (rejected, tid) after Round 5 and B after Round 1
without contacting the third party by starting “resolve“. In this case, the
scheme sends m1 only but requires 5 rounds.

We now show that no optimistic contract signing scheme with only two mes-
sages exists. This proves that the number of messages of Scheme 3.1 is opti-
mal. Furthermore, we show that it cannot be done with three messages in two
rounds. Thus, the number of rounds of Scheme 3.1 is optimal, too, given the
restriction to 3 messages.

Theorem 3.3 (Optimality of Scheme 3.1)
In the synchronous model with three-party verification21, there exists no con-
tract signing scheme which is optimistic on agreement with a “sign“-protocol
with less than 3 messages in case of agreement, and a protocol which needs 3
messages needs at least 3 rounds. 2

Proof. Let us assume that there exists an optimistic contract signing scheme
which requires three messages in two rounds in case of agreement. In the opti-
mistic phase, one player, say B, sends two messages m1B in Round 1 and m2B

in Round 2 whereas the other player sends one single message mA in Round 1
or 2.

Let us first assume that A sends its single message mA in Round 1. Since
two correct players who input identical contracts CA = CB must not contact
the third party, the single message mA from A needs to be sufficient to enable B
to convince the verifier in the optimistic case. Now assume that an incorrect B
receives the valid contract mA but sends nothing. Then A must either be able to
obtain a valid contract or else, the third party is required to revoke the contract,
i.e., invalidate mA.

If A obtains a contract, this contradicts the “unforgeability” for “limited
trust” requirements, since A and T could forge the resulting contract that does
not contain any inputs from B.

If we now assume that the contract is revoked (e.g., by storing the tid in
a revocation list at the third party) then an incorrect A may revoke a valid
contract mA of a correct B. (Recall, in the optimistic case, a correct B output
signed after Round 2 and does not answer subsequent recovery requests, which
cannot arrive before Round 3.)

If we now assume, on the other hand, that A sends mA in Round 2, then
mA and (m1B , m2B) must be valid contracts, i.e., sufficient for “show“. If A
now omits sending mA, it will end up with a valid contract. Therefore B must
be enabled to run “resolve“. The resulting recovery without any message from
A, however, again contradicts the “unforgeability” for “limited trust” require-
ments (again, the contract cannot be revoked since A terminated already). Thus
no protocol with 3 messages in 2 rounds exists.

If a two-message scheme existed, adding an empty message would produce
a 3 message scheme in 2 rounds which does not exist.

21See Def. 3.5. Note that this is a stronger result than actually needed for proving the optimality
of Scheme 3.1. It shows that even with three-party one cannot do better.
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Remark 3.15. This optimality proof only holds for our particular complexity
measure. [Even 83], describes a protocol with only two messages in one round
in case of agreement. However, since the signatories are required to answer
recovery messages up to Round 3 (i.e., two rounds after the output signed), it is
a three-round protocol in our model. ◦

3.4.2 A Round-optimal Synchronous Scheme

We now describe the round-optimal Scheme 3.2 for synchronous networks and
prove its security in Lemma 3.4. It requires only two rounds but four mes-
sages. Since any three-message “sign“-protocol needs at least three rounds
(Theorem 3.3), there exists no one-round protocol at all and no 2-round pro-
tocol with only three messages. So the scheme described is optimal with re-
spect to rounds and given the limitation to two rounds also with respect to
the number of messages. The optimistic behavior of the scheme is depicted in
Figure 3.7. The players are depicted in Figures 3.8 and 3.9.

Scheme 3.2 (Round-optimal Synchronous)
This scheme consists of the triple (A, B, V) and T of interactive probabilistic
machines which are able to execute the protocols defined as follows:

Contract Signing (Protocol “sign“; Figure 3.7): On input (sign, B, CA, tid) a signa-
tory, say A, sends message m1A := signA(A, B, T, t0, CA, tid) with the pro-
tocol parameters in the first round. If it does not receive a message m1B

with CA = CB , it waits for recovery message m4 and outputs (rejected,
tid) if m4 is not received in Round 4. If a message m1B with CA = CB

is received, A sends m2A := signA(m1A, m1B) in the second round and
waits for m2B . If m2B with a correct contract text CA = CB is received, it
outputs (signed, tid). Else, it starts “resolve“.

Recovery from Exceptions (Sub-protocol “resolve“): A signatory, say A, sends mes-
sage m3A :=m2A to the third party which verifies its consistency and signs
an affidavit. This affidavit is sent as m4 := signT(m2A) to both parties. If
the parties receive an affidavit in Round 4, they output (signed, C, tid).
Else, they output (rejected, tid).

Verification of a Contract (Protocol “show“): On input (show, tid), a signatory, say
A, looks up (m2A, m2B) or m4 and sends it to the verifier V. The veri-
fier checks that the signatures are correct. If these checks fail, it outputs
(rejected, tid) and else (signed, C, tid).

3

Remark 3.16. By involving both signatories in the “resolve“ sub-protocol, the
scheme could output a decision after time 2 in any case: If, e.g., A output
rejected and B tries to recover to signed while using another m′

1B 6= m1B , ma-
chine A could show the “real” m1B and thus force the third party to abort re-
covery for a cheating B. However, the resulting scheme is not optimal for opti-
mism on agreement since after an output signed, a correct signatory is required
to wait for a recovery message that may arrive in Round 3. ◦
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Signatory A Signatory B

m1A m1B�����9
XXXXXz

not ok and no m4:
rejected

not ok and no m4:
rejected.

m2A m2B�����9
XXXXXz

if ok: signed
else: “resolve“.

if ok: signed
else: “resolve“.

Figure 3.7: Optimistic Behavior of Scheme 3.2.

show/
m4 or (m2A, m2B)

signed

¬m1B/

m4/signed

rejected

m1B /m2Astart
sign /m1A m2B /signedSA1 SA2

¬m2B/m3A

RA1

SA3
¬m4/rejected

m4/signed

Figure 3.8: Signatory, e.g., A, of Scheme 3.2.

m3A/m4

Start
m3B/m4

Figure 3.9: Third Party T of Scheme 3.2.
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Lemma 3.4 (Security of Scheme 3.2)
Scheme 3.2 is a secure synchronous contract signing scheme, which is opti-
mistic on agreement. 2

Proof. The scheme adheres to Definition 3.2 by construction. We now show that
it fulfills the requirements stated in Definitions 3.3 and 3.4:

Correct Execution: If both players behave correctly and input identical con-
tracts, each signatory, say A, receives m1B and m2B . Thus, the protocol
outputs (signed, tid) on both machines. If the signatories disagree, both
will receive inconsistent messages in Round 1 and will wait for recovery
until Round 4. Since no recovery message m4 will be received, they will
output (rejected, tid).

Unforgeability of Contracts: In order to convince a correct verifier, a signatory,
say A, needs (m2A, m2B) or m4. Since (m2A, m2B) as well as m4 contain
signatures from both signatories, a correct signatory input (sign, A, C,
tid) or (sign, B, C, tid), respectively.

Verifiability of Valid Contracts: A signatory, say A, only outputs (signed, tid) after
receiving m4 or after sending m2A and receiving m2B . Thus, they are able
to convince the verifier.

No Surprises with Invalid Contracts: If a signatory, say A, outputs rejected, this
signatory did not start “resolve“ and did not receive m4 in Round 4 which
means that B also did not receive m4. In order to convince a verifier, B
therefore needs m2A. However, since A output rejected, it did not send
m2A.

Termination on Synchronous Network: At most 4 rounds are required for termi-
nation.

Limited Trust in T: Even if T is incorrect, it cannot forge any signature of the
two signatories. Therefore, unforgeability still holds.

Verification is independent of T. Therefore, verifiability even holds if T
is incorrect.

Optimistic on Disagreement on Synchronous Network: If two correct signatories
input (sign, B, CA, tid) and (sign, A, CB , tid), iff CA = CB they output
(signed, tid) after Round 2 without contacting the third party. In this case,
the scheme sends m1A, m1B, m2A, m2B and requires 2 rounds.

If the signatories are correct and disagree, they send m1A and m1B and
output (rejected, tid) after Round 4 without contacting the third party.

3.4.3 A Time-optimal Asynchronous Scheme

We now describe a new time-optimal asynchronous contract signing scheme.
It terminates in time 3 and requires six messages in the optimistic case. In The-
orem 3.5 we prove that this is time-optimal. Its optimistic behavior is sketched
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in Figure 3.10, the machines are depicted in Figures 3.11 and 3.12. Note that
the third party is state-keeping: Once a contract is accepted (i.e., m′

5 or m′′
5

was sent), the third party enters its signed state which disables aborting the
protocol. A state-less third party would be more convenient, but we prove in
Theorem 3.1 that this is not possible.

A message-optimal scheme has been proposed in [AsSW 98]. It requires
four consecutive messages and time four in case of agreement. This is message-
optimal in the optimistic case since, as we will prove, there is no asynchronous
optimistic contract signing scheme with only three messages (Theorem 3.4).

On disagreement, the scheme as described in [AsSW 98] does not terminate
without an input wakeup. As proposed in [AsSW 98], this can be fixed by an ad-
ditional disagreement message. With this fix, the scheme requires 4 messages
in time 4 in case of disagreement while involving the third party to abort the
protocol run.

Scheme 3.3 (Time-optimal Asynchronous)
This scheme consists of the triple (A, B, V) and T of interactive probabilistic
machines which are able to execute the protocols defined as follows:

Contract Signing (Protocol “sign“; Figure 3.10): On input (sign, B, CA, tid) the
signatory, say A, sends its signed contract in message m1A :=
signA(A, B, T, CA, tid). If A receives m1B with an identical contract, it
sends m2A := signA(m1A, m1B). If a message m2B from B is received,
A sends m3A := signA(m2A, m2B). After receiving m3B , the signatory out-
puts (signed, tid). If m2B is received before m1B since the messages have
been reordered by the asynchronous network, both m2A and m3A are sent
(in this case, m2A is composed using m1B as included in m2B). If m3B is
received before m2B , m3A is sent and (signed, tid) is output.

If an m1B with a different contract is received before m2B or if (wakeup,
tid) occurs before m2A has been sent, “resolve1“ is started by sending
m4A := signA(m1A). If wakeup occurs after m2A has been sent but be-
fore m3A, “resolve1“ is started by sending m′

4A := signA(m2A). If wakeup
occurs after m3A has been sent, “resolve2“ is started by sending m′′

4A :=
signA(m3A). Messages m2B or m3B from a cheating player B containing
different contracts CA 6= CB are ignored.

Recovery from Exceptions (Sub-protocol “resolve1“): This protocol is used in a sit-
uation where the status of a contract may not be clear. If the signatory
sends m4A, the third party either re-sends a previously sent decision m5,
m′

5 or m′′
5 for this tid or else an abort acknowledgment m5 := signT(m4A)

and changes to the aborted-state for the aborting signatory. If the signa-
tory sends m′

4, the third party either re-sends a previous decision m5, m′
5,

or m′′
5 or else signs an affidavit m′

5 := signT(m′
4). After receiving m5, the

signatory outputs (rejected, tid). After receiving m′
5 or m′′

5 , the signatory
outputs (signed, tid).

Recovery from Exceptions (Sub-protocol “resolve2“): This sub-protocol is used to
complete the contract if it is clear that it must be completed. One signa-
tory, say A, sends its message m′′

4A to the third party. The third party then
either re-sends a previous decision if it was m′

5 or m′′
5 (but not m5) or else
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Signatory A Signatory B

if wakeup: “resolve1“.
m1A m1B�����9

XXXXXz
if wakeup: “resolve1“.

if CA 6= CB “resolve1“.
if m5: rejected.

if CA 6= CB “resolve1“.
if m5: rejected.

if wakeup: “resolve1“.
m2A m2B�����9

XXXXXz
if wakeup: “resolve1“.

if wakeup: “resolve2“.
m3A m3B�����9

XXXXXz
if wakeup: “resolve2“.

signed signed

Figure 3.10: Optimistic Behavior of Scheme 3.3.

produces an affidavit and sends it as m′′
5 := signT(m′′

4A) to A who outputs
(signed, C, tid). This recovery by A overrides the effects of a previous
abort message m4B sent by an incorrect player B, i.e., even if the third
party sent m5 after receiving m4B , a correct player A may later ask the
third party to over-rule this decision by sending m′′

4A.

Verification of a Contract (Protocol “show“): After the input (show, tid), a signa-
tory, say A, looks up (m3A, m3B), m′

5, or m′′
5 and sends it to the verifier V.

The verifier verifies the messages. If these checks fail, it outputs (rejected,
tid) and else (signed, A, B, C, tid).

3

Lemma 3.5 (Security of Scheme 3.3)
Scheme 3.3 is a secure asynchronous contract signing scheme which is opti-
mistic on agreement. 2

Proof. Scheme 3.3 adheres to Definition 3.2 by construction. We now show that
it also fulfills the requirements stated in Definitions 3.3 and 3.4.

Correct Execution: If both signatories A and B start with inputs (sign, B, C, tid)
and (sign, A, C, tid) and do not input wakeup then both will eventually
receive all messages and will output (signed, tid). If they disagree, both
will abort by sending m4 and will finally output (rejected, tid).

Unforgeability of Contracts: Assume that a correct verifier outputs (signed, A, B,
C, tid). This means that he received at least messages m1A, m1B (maybe
included in m′

5 or m′′
5 ) containing identical contracts which are signed by

A and B, respectively. Thus, the correct parties have input (sign, B, C, tid)
and (sign, A, C, tid) since otherwise they would not have sent m1A and
m1B at all.
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m3B / (m3A + signed)

m3B /signed

StartS1A

S2A

sign/m1A

rejected

S3A

m1B/m2A

signed

resolve2

wakeup / m4A

wakeup / m'4A

wakeup / m'' 4A

resolve1

m'5 / signed

m5 /

rejected

m2B /m3A

m2B / (m2A + m3A)

m'5/ signed
m'' 5 / signed

m'' 5 / signed

(m1B & CA≠CB)/m4A

Figure 3.11: Signatory, e.g., A, of Scheme 3.3 (states S2A or S3A may be by-
passed if messages are reordered).

m'' 4A/m'' 5

m'4B/m'5

m'4A/m'5

m4B/m5

m'' 4B/m'' 5

* /m5

Start

aborted
by B

m4A/m5

* /m5

aborted
by A

m'' 4B/m'' 5

m'' 4A/m'' 5
signed signed

* /m'' 5* /m'5

Figure 3.12: Third Party T of Scheme 3.3.

Verifiability of Valid Contracts: A signatory, say A, only outputs (signed, tid) after
receiving m3B or m′

5 or m′′
5 containing identical contracts in messages

m1A and m1B . Thus, it is able to convince a verifier in all cases.

No Surprises with Invalid Contracts: Let us assume that (rejected, tid) was out-
put by a correct signatory, say A, after receiving m5 and a correct verifier
invoked by B outputs (signed, tid). Then either (m3A, m3B), m′

5 or m′′
5

must be known by B. Let us first assume that (m3A, m3B) was shown to
the verifier; then A sent both m3A and m4A or m′

4A, i.e., A was incorrect.
Let us now assume that m′

5 was shown to the verifier; then T sent both
m5 and m′

5, i.e., the third party was incorrect. Let us finally assume that
m′′

5 was shown to the verifier. Since m5 as well as m′′
5 were produced by

the third party, the machine T was in one of the aborted states and thus
A must have sent either m4A or m′′

4A. Since A received m5, it did not send
m′′

4A. Together this implies that A sent m4A. This contradicts the assump-
tion that m′′

5 was shown to the verifier, since a correct A which sends m4A

does not send m2A which is part of m′′
5 .

48



3.4. Optimistic on Agreement

Termination on Asynchronous Network: If the user inputs wakeup, one of the
“resolve“-protocols is started. In this protocol, the other signatory is not
involved anymore. Since the third party is assumed to be correct, it will
answer. Thus, the “resolve“-protocol terminates with a definitive answer
after time 2, i.e., a fixed time after the input of wakeup.

Limited Trust in T: Even if T is incorrect, it cannot forge any signature of the
two signatories. Therefore, unforgeability still holds.

Verification is independent of T. Therefore, verifiability even holds if T
is incorrect.

Optimistic on Agreement: If two correct signatories do not input wakeup and in-
put identical contracts, they both receive the outputs (signed, tid) from
the “sign“-protocol after time 3 without contacting the third party. In this
case, the messages miA, miB (i=1, 2, 3) are sent.

On disagreement, the messages m1A, m1B, m4A, m4B, m5, m5 are sent in
time 4.

We now prove in Theorem 3.4 that asynchronous contract signing with only
3 messages is impossible. Then we prove the optimality of Scheme 3.3 in The-
orem 3.5.

Theorem 3.4 (Message-optimality of [AsSW 98])
There exists no asynchronous optimistic contract signing scheme with a “sign“-
protocol with less than four messages in case of agreement. 2

Proof. Let us assume that A sends two messages, say m1 and m3, in the op-
timistic phase whereas B sends only one message, say m2. Then (m1, m2, m3)
must be sufficient for both parties to convince the verifier. If A sends m1 and m3

without having received m2, B can convince a verifier without sending m2 to
A. For “no surprises”, A is required to be able to recover to signed given m1, m3

and without contacting B (Lemma 3.2) which contradicts the unforgeability re-
quirement. Thus, m3 is sent after m2 has been received. If we now assume
that B sends m2 before receiving m1, A could convince a verifier without send-
ing any message to B and B would be required to be able to recover to signed
without contacting A (Lemma 3.2) which again contradicts the unforgeability
requirement.

Therefore, the messages are sent in the order m1, m2, m3 (similar to Scheme
3.1 depicted in Figure 3.3). Since the protocol is optimistic, at least (m1, m2)
shown by A and (m1, m2, m3) shown by B are sufficient to convince the verifier.
Now consider the exceptions: If B does not receive m3 and T did not decide for
this tid before, the third party has to decide locally on the output signed for B
(Lemma 3.2 and termination of B) since A may have obtained a valid contract
(m1, m2). Thus B may obtain a valid contract from the third party even if A
only sent m1. Therefore, A must be able to start recovery with the third party
after sending m1, too. In this case and if the request from A if the first for this
tid , the third party is required to decide locally whether the contract is valid or
not given only m1 from A. For unforgeability for B, it has to decide on rejected
based on m1 only. If B now asks for recovery with m1 and m2, T has to decide
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locally on a decision for B (remembering its first decision). If T decides on
rejected, a correct player B may be surprised since A, which already obtained
rejected, may have obtained a valid contract and dishonestly recovered with
m1 only. If T decides on signed since a dishonest A may have started recovery
after receiving valid contract (m1, m2, m3), the “no surprises” requirement for
a correct A would not be fulfilled.

This enables us to prove the optimality of Scheme 3.3:

Theorem 3.5 (Optimality of Scheme 3.3)
There exists no asynchronous optimistic contract signing scheme with a “sign“-
protocol in less than time 3 in case of agreement and a protocol in time 3 needs
at least 6 messages. 2

Proof. If we assume that a 2-time 4-message optimistic “sign“-protocol exists,
then this can be used to construct a 3-time 3-message protocol: Since the two-
party signing protocol has 4 messages labeled with two subsequent times, two
messages (m1A, m1B) are labeled with time 1 and two messages (m2A, m2B)
are labeled with time 2, where messages labeled with the same time are inde-
pendent of each other. Therefore, one player, say B, can send m1B together
with m2B , and m2A can be sent after receiving these two messages. The result
is a three-message protocol with the messages m′

1A :=m1A, m′
2B :=(m1B , m2B),

and m′
3A := m2A, which does not exist according to Theorem 3.4.

If we assume that a 5-message protocol in time 3 exists, we can construct
an equivalent protocol with 3 messages in time 3 by shoving a message up or
down (see Figure 3.2): If 5 messages are sent in time 3, there exists a time t for
which only one message mA sent by one signatory, say A, exists. Furthermore,
two messages m′

A and mB are labeled with a time t′ which is either t + 1 or
t− 1. If t′ = t + 1 then the messages mA and m′

A can be sent together at time t.
This is possible since A does not receive a message at time t, which guarantees
that the contents of m′

A have already been fixed when mA was sent. For B,
receiving m′

A earlier must not make a difference since the network may have
reordered the messages anyhow. If t′ = t−1 then the messages m′

A and mA can
also be sent together at time t. This is possible since B does not send a message
at time t, which implies that m′

A is not needed by B to compute a message.
This construction enables us to change two subsequent times with two and one
messages into two subsequent times with one message each. Two applications
of this construction result in the desired 3-message protocol in time 3 which
contradicts Theorem 3.4.

3.5 Optimistic on Agreement with Three-party Ver-
ification

We now describe optimistic contract signing schemes which are optimistic on
agreement but require the third party to participate in the verification of a con-
tract. For the synchronous case with three-party verification, Scheme 3.1 is
message optimal whereas Scheme 3.2 is time optimal. Thus, we only consider
asynchronous networks in the sequel.
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3.5. Optimistic on Agreement with Three-party Verification

3.5.1 A Message-optimal Asynchronous Scheme

We now describe an asynchronous version of the optimistic Scheme 3.1. This
scheme can only be made asynchronous by including the third party into the
verification of a contract. The individual machines of the players are depicted
in Figures 3.14, 3.15, and 3.16.

Scheme 3.4 (Message-optimal Asynchronous)
This scheme consists of the triple (A, B, V) and T of interactive probabilistic
machines which are able to execute the protocols defined as follows:

Contract Signing (Protocol “sign“; Figure 3.13): On input (sign, B, CA, tid), the
signatory A initiates the protocol by sending the signed message m1 :=
signA(A, B, T, CA, tid) with contract CA to the responding signatory B. B
receives the input (sign, A, CB, tid) and message m1 and verifies whether
the received contract text CA is identical to the input contract text CB . If
not or if wakeup is input before m1 is received, B sends m′

2 := signB(abort,
tid) and outputs (rejected, tid). Else, it signs the received message and
sends it as m2 := signB(m1) to A. If it received m2, A signs the received
message again, sends it as m3 :=signA(m2) back and outputs (signed, tid).
On receipt of message m3, B outputs (signed, tid) as well. After a success-
ful execution of this optimistic protocol, A and B store m3 under the tid
for later use in a verification protocol.

If A gets an input wakeup before receiving message m2 or if it receives m′
2,

it starts “resolve1“ to abort the protocol. If B did not receive message m3,
it may be that A nevertheless was able to compute a valid contract m3

after receiving m2. Therefore B starts the “resolve2“-protocol.

Recovery from Exceptions (Sub-protocol “resolve1“): To start this recovery proto-
col, A sends the message m4A := signA(abort, m1) to T. If the third party
made a decision before, it re-sends the decision. If the third party is in its
start-state, it changes to the aborted state and acknowledges this to A by
sending m5 := signT(aborted, m1). If A receives m5, it outputs (rejected,
tid). If A receives m′

5, it outputs (signed, tid).

Recovery from Exceptions (Sub-protocol “resolve2“): Machine B sends m4B :=
signB(m2) containing m1 and m2 to the third party T. If the protocol
was aborted, the third party now sends m5. Else, it sends an affidavit
m′

5 := signT(m2) to B and changes to the signed-state. If B receives m′
5, it

outputs (signed, tid). If it receives m5, it outputs (rejected, tid).

Verification of a Contract (Protocol “show“): On input (show, tid), signatory A
looks up m3 or m′

5 and sends m′
5 or mA := signA(m3) to the verifier. In

the case of m′
5, the verifier immediately outputs signed. Otherwise it for-

wards mA to the third party. If the third party re-sends an abort message
m5, the verifier outputs (rejected, tid). If the third party answers with m′

5,
it outputs (signed, A, B, C, tid) (note that the third party may change state
during verification).

Signatory B on the other hand looks up either m′
5 or else signs mB :=

signB(m3) and sends it to the verifier. If the verifier receives a correct
message, it outputs (signed, A, B, C, tid) and (rejected, tid), else.
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3. Optimal Efficiency of Optimistic Contract Signing

Signatory A Signatory B

m1XXXXXz
CA 6= CB or wakeup:

rejected+m′
2

else m2.
m2 or m′

2�����9
m′

2 or wakeup:
“resolve1“

else signed.
m3XXXXXz

not ok or wakeup:
“resolve2“

else signed.

Figure 3.13: Optimistic Behavior of Scheme 3.4.

Start
sign/m1 m2 /m3SA signed

m'2 or wakeup / m4A

RA

m'5/signed

rejected

m5/rejected

show/mA

Figure 3.14: Signatory A of Scheme 3.4.

3

Note that m3 can be used by B to convince the verifier in any case whereas it
need not be a valid contract for A if the protocol was invalidated.

Lemma 3.6 (Security of Scheme 3.4)
Scheme 3.4 is a secure asynchronous contract signing scheme with three-party
verification which is optimistic on agreement. 2

Proof. The scheme adheres to Definition 3.5 by construction. We now show that
each of the requirements described in Definitions 3.3 and 3.4 is fulfilled:

Correct Execution: If both correct players A and B input (sign, B, CA, tid) and
(sign, A, CB , tid) with identical tid and CA = CB , then both receive m3

and output (signed, tid). If the contracts differ then signatory B sends m′
2

and outputs (rejected, tid). On receipt of m′
2 signatory A sends m4A to T,
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m1/m2SB1

rejected

SB2

wakeup/m4B

RB

m1&CA≠CB or wakeup

/ m'2+rejected

m3/signed signed

m'5/signed

rejected

m5/rejected

show/mB or m'5

sign/Start

Figure 3.15: Signatory B of Scheme 3.4.

signedaborted Start

* /m'5
* /m5

m4A / m5 m4B / m'5

mA / m'5

Figure 3.16: Third Party T of Scheme 3.4.

who will answer with m5 since it did not decide for this tid before. Upon
receipt of m5, signatory A outputs (rejected, tid), too.

Unforgeability of Contracts: In order to convince a correct verifier V for a given
tid , C, and partner, one needs correct messages m3 or m′

5 for these param-
eters. Since m3 as well as m′

5 contain signatures from both participants, a
correct signatory input sign.

Verifiability of Valid Contracts: If a correct signatory A outputs (signed, tid) then
it received m2 or m′

5 from which it can compute mA. This is a valid con-
tract if the third party does not re-send m5. If m′

5 has been received and
the third party re-sends m5, the third party is incorrect. If m2 has been
received and a correct third party re-sends m5, A is incorrect since it sent
m4A while receiving m2.

If B output (signed, tid), it received m3 or m′
5 which will can be used to

convince the verifier in any case.

No Surprises with Invalid Contracts: Let us first assume that a correct signatory
A returned rejected on input (sign, B, C, tid) whereas B is able to convince
the verifier. This requires that B knows m3 or m′

5 for the given tid and
C because it cannot construct mA in order to pretend to be A. Since A
returned rejected, it executed “resolve1“ and received m5. Thus, B did not
receive m′

5 from the correct T. If B received m3, A was incorrect since it
did not ignore m2 after sending m4A.

Without m2, machine A cannot obtain an output signed at the verifier.
If B would output rejected after sending m2 and A would be able to con-
vince a verifier, then the third party sent m′

5 during “show“ and m5 during
“resolve2“, i.e., the third party would be incorrect.
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3. Optimal Efficiency of Optimistic Contract Signing

Termination on Asynchronous Network: The scheme requires at most time 2 after
an input wakeup.

Limited Trust in T: Unforgeability also holds if the third party misbehaves since
any valid contract includes signatures from both signatories.

Optimistic on Agreement on Asynchronous Network: If two correct signatories in-
put (sign, C, tid), signatory A outputs (signed, C, tid) after time 2 and
player B after time 3. Thus, on agreement, the scheme sends m1, m2, m3

and requires time 3. On disagreement, the scheme sends m1, m
′
2, m4A, m5

and requires time 4.

Theorem 3.6 (Optimality of Scheme 3.4)
There exists no asynchronous optimistic contract signing scheme with three-
party verification with a “sign“-protocol with less than three messages in case
of agreement, and every three-message protocol requires at least time 3. 2

Proof. If we assume that there exists a two-message asynchronous optimistic
“sign“-protocol, unforgeability requires that each signatory sends one of these
messages. Furthermore, each of these messages received by a correct player
must be sufficient to convince the verifier since optimism requires that if this
single message is received correctly and the signatories agree, this signatory
outputs signed (unlike synchronous networks, it cannot wait for later revoca-
tion messages from T).

Let us assume that the signatory sending the first message receives wakeup
after sending its message but before receiving the message from the peer. If
this is the first request to T for this tid , this signatory is required by Lemma
3.2 to recover with the third party, and the decision must be rejected in order
to guarantee unforgeability. This contradicts the “no surprises” requirement
since the other signatory outputs signed.

Let us assume that there exists an optimistic “sign“-protocol with three mes-
sages in two rounds. Then this can be used to construct a two-message protocol
by shoving messages as in the proof of Theorem 3.5 and Figure 3.2, but such a
two-message protocol does not exist.

3.5.2 A Time-optimal Asynchronous Scheme

We now describe a time-optimal Scheme 3.5 for asynchronous networks and
three-party verification and prove its security in Lemma 3.7. It requires only
two rounds but four messages. Since any three-message “sign“-protocol needs
at least three rounds (Theorem 3.5), there exists no one-round protocol at all
and no 2-round protocol with only three messages. So the scheme described
is optimal with respect to rounds and given the limitation to two rounds also
with respect to the number of messages. The optimistic behavior of the scheme
is depicted in Figure 3.17. The players are depicted in Figures 3.18 and 3.19.

Scheme 3.5 (Time-optimal Asynchronous)
This scheme consists of the triple (A, B, V) and T of interactive probabilistic
machines which are able to execute the protocols defined as follows:
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3.5. Optimistic on Agreement with Three-party Verification

Contract Signing (Protocol “sign“; Figure 3.17): On input (sign, B, CA, tid) a sig-
natory, say A, sends message m1A := signA(A, B, T, CA, tid) with the pro-
tocol parameters in the first round. If it receives an input (wakeup, tid) or
an incorrect message m1B , it starts the sub-protocol “abort“. If a message
m1B with CA = CB is received, A sends the message m2A := signA(m1A,
m1B) and waits for m2B . If (wakeup, tid) is input or no correct m2B is
received, it executes the sub-protocol “resolve“. Else, if a correct m2B is
received, it outputs (signed, tid). If A receives m2B before receiving m1B ,
it sends m2A and outputs (signed, tid).

Aborting a Protocol Run (Sub-protocol “abort“): This subprotocol is used to abort
a run unless it was resolved before.

The signatory, say A, sends a message m′
3A := signA(m1A) to the third

party. If the third party is still in state Start it sends a message m′
4A :=

signT(aborted, m′
3A) and changes to the state aborted by A.

If the third party is in the state aborted by A, it re-sends m′
4A. If the third

party is in the state aborted by B, it re-sends m′
4B . If the third party is in

the signed-state, it re-sends m4A, m4B , or m6.

If A receives m4B , m4B , or m6 it outputs (signed, tid). If it receives m′
4A or

m′
4B it outputs (rejected, tid).

Recovery from Exceptions (Sub-protocol “resolve“): This sub-protocol completes
a contract if this run was not aborted before.

The signatory, say A, sends a message m3A := signA(m2A) to the third
party. If T is in the Start state, T sends a message m4A := signT(signed,
m3A) to A.

If the third party is in the state aborted by A, it re-sends m′
4A. If the third

party is in the state aborted by B, it re-sends m′
4B . If the third party is in

the signed-state, it re-sends m4A, m4B , or m6.

If A receives m4B , m4B , or m6 it outputs (signed, tid). If it receives m′
4A or

m′
4B it outputs (rejected, tid).

Verification of a Contract (Protocol “show“): On input (show, tid), a signatory, say
A, sends either m4A, m4B , m6, or m5A := signA(m2A, m2B) to the verifier.

If the verifier receives m4A, m4B , or m6, it outputs (signed, A, B, C, tid).

Else, it forwards m5A to the third party. If the third party is in the Start-
state, it answers with m6 := signT(m5A) and changes to the signed-state.
Else, it re-sends an earlier decision. If this earlier decision is not m′

4A, the
verifier outputs (signed, A, B, C, tid). Else, it outputs (rejected, tid).

3

Lemma 3.7 (Security of Scheme 3.5)
Scheme 3.5 is a secure asynchronous contract signing scheme with three-party
verification, which is optimistic on agreement. 2

Proof. The scheme adheres to Definition 3.5 by construction. We now show that
it fulfills the requirements stated in Definitions 3.3 and 3.4:
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Signatory A Signatory B

if wakeup: “abort“.
m1A m1B�����9

XXXXXz
if wakeup: “abort“.

if m1B not ok: “abort“
if wakeup: “resolve“
if ok: signed.

m2A m2B�����9
XXXXXz

if m1A not ok: “abort“
if wakeup: “resolve“
if ok: signed.

Figure 3.17: Optimistic Behavior of Scheme 3.5.

m'4A /rejected

Start
sign/m1A m1B /m2ASA1 signed

rejected

m1B&CA≠CB or
wakeup/m'3A

show/(m2B, m2B)
or  m4A or m4B  or m6

m2B /signedSA2

wakeup/m3A

RA

m4A or m4B or m6
/signed

m'4B /rejected

m2B /m2A+signed

Figure 3.18: Signatory, e.g., A, of Scheme 3.5.

*/m6, m4A or m4B
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*/m'4B*/m'4A

m5A/m6 m5B/m6

aborted
by A

aborted
by B

Figure 3.19: Third Party T of Scheme 3.5.
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Correct Execution: If both players behave correctly and input identical con-
tracts, each signatory, say A, receives m1B and m2B . Thus, the protocol
outputs (signed, tid) on both machines. If the signatories disagree, both
execute the “abort“ protocol and will output (rejected, tid).

Unforgeability of Contracts: In order to convince a correct verifier, a signatory,
say A, needs (m2A, m2B), m4A, or m4B . Since all these messages contain
signatures from both signatories, a correct signatory input (sign, A, C,
tid) or (sign, B, C, tid), respectively.

Verifiability of Valid Contracts: A signatory, say A, only outputs (signed, tid) after
receiving (m2A, m2B), m4A, m4B , or m6. If it receives m4A, m4B , or m6

the verifier decides on signed. If A received (m2A, m2B) it can send m5A

to the verifier who decides on signed if the third party does not send m′
4A.

If we now assume that the third party sends m′
4A, then T received m′

3A

while A output signed on receipt of m2B , i.e., A was incorrect.

No Surprises with Invalid Contracts: If a signatory, say A, outputs rejected, it re-
ceived m′

4A or m′
4B .

If the verifier would output signed for B upon receipt of m4A, m4B, or m6,
then T would be incorrect since it must not sign these messages together
with m′

4A or m′
4B .

Let us now assume that the correct verifier would output signed upon
receipt of m5B , then T sent m6 instead of its earlier decision m′

4A or m′
4B ,

i.e., T would be incorrect.

Termination on Synchronous Network: The protocol terminates in time 2 and 4
messages in case of agreement. On disagreement, it requires 6 messages
in time 4.

Limited Trust in T: Even if T is incorrect, it cannot forge any signature of the
two signatories. Therefore, unforgeability still holds.

Optimistic on Agreement: If two correct signatories input (sign, B, C, tid) and
(sign, A, C, tid) and do not input wakeup, a signatory, say A, out-
puts (signed, tid) after receiving m1B , m2B . In this case, the messages
m1A, m1B , m2A, m2B are sent in time 2.

In case of disagreement, the messages m1A, m1B, m′
3A, m′

3B, m′
4A, m′

4A are
sent and the scheme requires time 4.

3.6 Optimistic on Disagreement

We now describe provably time- or message-optimal protocols that are opti-
mistic on disagreement. For this case, we optimize the maximum number of
messages and time needed if both signatories are correct. This includes the
cases that they agree or disagree on the contract.

We do this by showing how to adapt any optimistic contract signing proto-
col to be optimistic on disagreement. If the contract signing protocol has only
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3. Optimal Efficiency of Optimistic Contract Signing

one message at time one, this requires one additional message and one addi-
tional round. If the contract signing protocol has two messages at time 1, it
requires two additional messages and one additional round.

In order to prove the optimality of the resulting protocols, we show that
optimism on disagreement cannot be achieved in the time/messages needed
by the optimal protocols presented in Sections 3.4 and 3.5.

3.6.1 Adapting Optimistic Contract Signing

Theorem 3.7
Any optimistic contract signing scheme can be adapted to be optimistic on
disagreement with two additional messages in time 1.

If the protocol has only one message at time 1, this simulation requires only
one additional message in time 1. 2

We prove this by two reductions:

Scheme 3.6
Let CS = (A, B, V) and T be a contract signing scheme that is optimistic on
agreement.

This scheme is adapted as follows: On input (sign, B, CA, tid), each sig-
natory, say A, sends a message m′

1A := signA(B, CA, tid) to B. If machine A
receives a correct message m′

1B with matching parameters, it executes the un-
derlying protocol. Else, it outputs (rejected, tid). 3

Lemma 3.8
Scheme 3.6 is a secure contract signing scheme that is optimistic on disagree-
ment. 2

Proof. We now show that each requirement holds that is not directly implied
by the security of the underlying protocol:

Correct Execution: If both signatories A and B start with inputs (sign, B, C, tid)
and (sign, A, C, tid) and do not input wakeup then they send m′

1A and
m′

1B and then start the underlying protocol with matching parameters.
Correct execution then follows from correct execution of the underlying
protocol.

If both input different contracts, then m′
1A and m′

1B are sent and both
output (rejected, tid).

No Surprises with Invalid Contracts: If the underlying protocol output (rejected,
tid), “no surprises” follows from “no surprises” of the underlying pro-
tocol. If “no surprises” is output before a party starts the underlying
protocol, then “no surprises” follows from the unforgeability for the un-
derlying protocol.

Termination on Asynchronous Network: The input (wakeup, tid) produces an out-
put (rejected, tid) immediately if the underlying scheme has not been
started. Else, termination follows from the termination of the underly-
ing protocol.
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Optimistic on Disagreement: If two correct parties input the same contract, op-
timism on disagreement follows from optimism on agreement of the
underlying scheme. If the parties input different contracts, A outputs
(rejected, tid) after sending m′

1A and receiving m′
1B while A outputs

(rejected, tid) after sending m′
1B and receiving m′

1A.

Scheme 3.7
Let CS = (A, B, V) and T be an optimistic contract signing scheme with only
one message m1 at time 1 of the “sign“-protocol. We assume w.l.o.g. that m1 is
sent from B to A. The scheme is adapted as follows:

On input (sign, B, C, tid) in Round 1, A sends a message m′
1 := signA(B, C,

tid) to B. If machine B disagrees with the contract or if wakeup was input, B
sends m′

2 := signB(abort, tid) and outputs (rejected, tid). If it agrees, it starts
the given contract signing protocol by sending m1 of the original protocol. If A
receives m′

2 or an input (wakeup, tid) before m1, it outputs (rejected, tid). Else,
it proceeds with the given contract signing protocol using m1

22. Subsequent
inputs of wakeup are handled by the underlying protocol. 3

Lemma 3.9
Scheme 3.7 is a secure contract signing scheme that is optimistic on disagree-
ment. 2

Proof. We now show that each requirement holds that is not directly implied
by the security of the underlying protocol:

Correct Execution: If both players input identical contracts then m′
1 is sent from

A to B who answers with m1 of the original protocol. Since this protocol is
then executed without changes, correct execution for agreement follows
from correct execution of the underlying protocol.

If the input contracts differ, then B sends m′
2 and both output (rejected,

tid) without starting the underlying protocol.

No Surprises with Invalid Contracts: If the underlying protocol output (rejected,
tid), “no surprises” follows from “no surprises” of the underlying proto-
col. If (rejected, tid) is output before B sends m1 or A receives it, then “no
surprises” follows from the unforgeability for the underlying protocol.

Optimistic on Disagreement: If two correct signatories input (sign, B, C, tid) and
(sign, A, C, tid) and do not input wakeup, signatory A sends m′

1 and B
starts the protocol. In this case, optimism follows from the fact that the
underlying protocol is optimistic on agreement. If both input different
contracts, m′

1 and m′
2 are sent and both output (rejected, tid).

22I.e., if no m1 or m′
2 is received in the synchronous case, this is handled like a missing m1.
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3.6.2 Optimality Proofs

Any time- or message-optimal contract signing scheme described in Sec-
tion 3.4 can be adapted to be optimistic on disagreement. We now show that
Scheme 3.6 applied to time-optimal schemes results in time-optimal schemes
that are optimistic on disagreement. Furthermore, using message-optimal
schemes, Scheme 3.7 results in message-optimal schemes that are optimistic
on disagreement.

Theorem 3.8
There exists no synchronous optimistic contract signing protocol with three-
party verification which is optimistic on disagreement with less than 4 mes-
sages in all optimistic cases. 2

Proof. Let us assume that such a scheme exists and that the messages are sent
in a row m1, m2, m3 (if this is not the case, delaying some messages helps) and
that machine A sends the first message.

In case of agreement m1, m2, m3 are sent, where m1, m2 is sufficient for A to
convince a verifier that a contract C is valid and m1, m2, m3 is sufficient for B.

If we now assume that B did not obtain m3 in a run with identical contracts,
the third party may either revoke the contract m1, m2 for A or else decide on
signed for B.

If it revokes the contract and A is correct then an incorrect B is able to inval-
idate the contract of a correct A. This contradicts the verifiability requirement
of A (a correct A cannot participate in the recovery protocol since it terminated
after time 3 where it sent its last message.)

Therefore, T and B must recover with (m1, m2) to signed without contacting
A.

Let w.l.o.g. B be the party inputting a different contract C ′ 6= C in case
of disagreement. In this case m1, m

′
2, m

′
3 are sent (primed messages contain

the contract C′ 6= C; some messages may be empty) and m1, m
′
2 as well as

m1, m
′
2, m

′
3 must lead to an output rejected without contacting T. In this case,

however, a cheating B may send m′
2 and A terminates with an output rejected.

Still, B could recover using a consistent m2, which contradicts the “no sur-
prises” requirement of A.

Theorem 3.9
There exists no synchronous contract signing protocol with three-party verifi-
cation which is optimistic on disagreement that needs time 2 in all optimistic
cases and every scheme in time 3 requires at least 6 messages. 2

Proof. If there were a scheme in time 3 with at most 5 messages, the messages
could be rearranged into a 3 message protocol in time 3, which does not exist
(recall Figure 3.2).

Theorem 3.10
There exists no asynchronous optimistic contract signing protocol which is op-
timistic on disagreement with less than 5 messages in all optimistic cases. 2
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Proof. Let us assume that there were a scheme with 4 messages. Let us assume
that these messages are sent in a row and that A sends the initial message (if
not, delaying some messages helps).

In case of agreement between correct signatories a prefix of messages (m1,
m2, m3, m4) (some may be empty) is sent where (m1, m3) must lead to a valid
contract for B whereas (m2, m4) must lead to a valid contract for A and, for
unforgeability, at least m1 and m2 are non-empty (recall, we ruled out three-
party disputes). In case of disagreement between correct signatories, a prefix of
messages (m1, m

′
2, m

′
3, m

′
4) is sent where both (m1, m

′
3) and (m′

2, m
′
4) must not

be sufficient for B and A, respectively, to convince the verifier. Again, at least
m1 and m′

2 are sent in order to enable A to detect disagreement (the scheme was
assumed to be optimistic for disagreement and detecting ¬m2 is impossible on
asynchronous networks).

Let us assume that B invokes T with (m1, m2) for the first time for this tid
and T decides rejected for B. Then a correct B may have sent m2 and a correct
A may have answered with m3. In this case, when A later invokes T also, the
third party is required to decide on signed for A in spite of its first decision
since an incorrect B may nevertheless receive m3 and thus obtain a contract.
This decision, however, would contradict the “no surprises” requirement of a
correct B. Therefore, the third party is required to decide on signed for B for the
messages (m1, m2).

However, as a consequence, a cheating B can recover to signed using
(m1, m2) after participating in an optimistic execution where it sent m′

2 and
m′

4, which contradicts “no surprises” for A.

Theorem 3.11
There exists no asynchronous contract signing protocol which is optimistic on
disagreement which needs time 3 in all optimistic cases, and every scheme in
time 4 requires at least 8 messages. 2

Proof. If there is a scheme in time 3 or a scheme in time 4 with less than 8
messages, this scheme can be used to construct a 4-message scheme in time
4 by shoving messages as in the proof of Theorem 3.5 and Figure 3.2, which
contradicts Theorem 3.10.

Theorem 3.12
There exists no asynchronous optimistic contract signing protocol with three-
party verification, which is optimistic on disagreement with less than 4 mes-
sages in all optimistic cases. 2

Proof. Let us assume that such a scheme exists and that the messages are sent in
a row m1, m2, m3 and that machine A sends the first message (if not delaying
some messages helps).

In case of agreement m1, m2, m3 are sent and m1, m2 is sufficient to compute
a contract for A and m1, m2, m3 is sufficient for B.

If we now assume that B obtained wakeup before receiving m3 in a run with
identical contracts, the third party is required to either revoke the contract for
this tid or else B must be able to obtain a contract.
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If the third party revokes the contract without contacting A (Lemma 3.2),
this contradicts “verifiability” of A since A may have output (signed, tid) in the
meantime.

If the third party decides on signed for B, B may send m′
2 and A terminates

with an output rejected. Still, B could recover using a consistent m2, which
contradicts the “no surprises” requirement.

Theorem 3.13
There exists no asynchronous contract signing protocol with three-party veri-
fication which is optimistic on disagreement in time 2 in all optimistic cases.
Every scheme in time 3 requires at least 6 messages. 2

Proof. If there were a scheme in time 2 or in time 3 with 5 messages, the mes-
sages could be reordered resulting in a scheme with 3 messages in a row. Such
a scheme does not exist.
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Chapter 4

Optimal Efficiency of
Optimistic Certified Mail

4.1 Introduction

Certified mail is the fair exchange of a message for a receipt [Blu2 83]. A certified
mail scheme contains at least three machines being able to execute two proto-
cols: A sender sends a message to a recipient using the “send“-protocol which
produces a receipt if and only if the recipient obtains the message. This receipt
can later be used in a receipt verification protocol “show“ to convince arbitrary
verifiers, such as a court, that the mail was received by the intended recipient.

For issuing receipts, the obvious problem is fairness, i.e., if the sender re-
veals the message first, the recipient may refuse to sign a receipt. If the receipt
is sent first, the sender may refuse to send the message.

Therefore, in all practical schemes, certified mail involves an additional
third party. This party is at least to some extent trusted to behave correctly,
thus playing the role of a trusted post office in paper-based certified mail.

In order to minimize this involvement while guaranteeing fairness, the no-
tion of “optimistic certified mail” has been introduced [AsSW 97].

The basic idea of optimistic certified mail is that the third party is not
needed in the fault-less case. Only in case of errors, the third party is involved
to restore fairness.

4.1.1 Results of this Chapter

This chapter proves tight lower bounds on three kinds of optimistic certified
mail for a variety of models. The main service of certified mail is to produce a
non-repudiable receipt fixing the sent message. This receipt is produced if and
only if the message is sent.

Our three models of certified mail differ in the preconditions for sending a
message:

• Labeled optimistic certified mail sends a message and issues a receipt
if and only if the sender and the recipient agree on the subject of the
message. The subject as well as the message are fixed in the receipt.
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LCM
+

CS
+

LCM
(+)

(0,0, Sim 4.1)

CS
(+)

CM
(0,0,Sim 4.4)

(+2,+1, Sim 3.7)

(+1,+1, Sim 3.8)

(0,0, Sim 4.3)

(0,0, Sim 4.1)

(0,0, Sim 4.3 )

(0,0,
  clear)

(0,0, clear)

(0,0,
  clear)

Legend:
CM “Traditional” Certified Mail.
LCM Labeled Certified Mail.
CS Contract Signing.
+ stands for optimistic on disagreement.
(+) stands for optimistic on agreement.
(m, t, SimX) Arrows are labeled with the messages and time needed

for the simulation described in Scheme X . Dashed ar-
rows are only applicable to some schemes.

Figure 4.1: Relations between Contract Signing and Certified Mail.

• Unlabeled optimistic certified mail (this is the traditional model) only
sends a message and issues a receipt if the recipient is willing to partici-
pate in a particular protocol run.

• Simple optimistic certified mail sends the mail and issues the receipt in
any case.

At first we analyze labeled certified mail for asynchronous and synchronous
networks, and optimism on agreement and disagreement. Unlike contract
signing, we do not allow three-party disputes.

In Section 4.3, we show that any labeled certified mail scheme can be used to
provide contract signing without additional messages or time. Together with
the results on the optimal efficiency of optimistic contract signing from Chap-
ter 3, this results in lower bounds for labeled certified mail. In Section 4.4,
we show that all our message-optimal contract signing schemes can be used
to provide labeled certified mail without additional messages or time. The
message-optimality of the resulting scheme then follows from the simulation
described in Section 4.3.

In Section 4.5 we show how to “label” unlabeled optimistic certified mail.
This proves that the traditional notion of optimistic certified mail cannot be
more efficient than our model of labeled certified mail.

In Section 4.6, we describe the new notion of “simple certified mail”, which
does not allow the recipient to choose whether to participate in individual pro-
tocol runs or not. This leads to a two-message protocol in time two which is
time- as well as message-optimal.

An overview of our reductions is given in Figure 4.1. All optimality results
are summarized in Table 4.1.
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Schemes Model Efficiency Proof in
Op C TP “(+)”

Schemes 3.1+3.7+4.3 + s 2v 4m 4t Th. 4.2
[AsSW 98]+Scheme 3.7+4.3 + a 2v 5m 5t Th. 4.2
Scheme 3.1+4.3 (+) s 2v 3m 3t Th. 4.2
[AsSW 98] (+) a 2v 4m 4t Th. 4.2
Scheme 4.7 s a 2v 2m 2t Th. 4.4

Legend:
Op “+” stands for optimistic on disagreement, “(+)” stands for optimistic

on agreement, “s” stands for simple certified mail.
C Communication Model: “s” for synchronous, “a” for asynchronous.
TP Properties of the third party: “2v” means that the third party is not

allowed to participate in the verification of a receipt.
m Number of messages in the optimistic case (underlined figures are

provably optimal).
t Time in the optimistic case.

Table 4.1: Optimal Schemes for Optimistic Labeled Certified Mail.

4.1.2 Notations and Assumptions

In addition to the assumptions introduced in Section 3.1.2, we assume that
a public-key encryption scheme (ET , DT ) for the third party T is given. We
assume that c = ET (r; m) encrypts m randomized using a random number
r. Besides the usual secrecy of the encrypted plaintext, we require that it is
hard to choose two pairs (r, m) and (r′, m′) with m 6= m′ such that ET (r, m) =
ET (r′, m′)1.

Such a scheme can be built by encrypting (r, m,H(r, m)) using RSA
[RSA 78] where the third party proves the fact that its keys where chosen prop-
erly; then any ciphertext has a unique decryption. The resulting scheme is as
secure as RSA itself.

The terms “any model” or “all models” only refers to the contract signing
models that are considered in this chapter, i.e., it refers to all models without
three-party verification as defined in Section 3.2 as well as their counterparts
for labeled certified mail as defined in Section 4.2.

For proving generic simulations, we prove the simulation protocols using
the requirements of the underlying service. Whenever used, these require-
ments are listed in square brackets. Usually, our simulations can be used on
synchronous and asynchronous networks. Therefore, we assume that syn-
chronous protocols ignore the input of wakeup that may sometimes be caused
by our simulations. Since synchronous termination requires termination in a
fixed time, this also holds after an input wakeup, i.e., on synchronous networks,
synchronous termination implies asynchronous termination.

We denote a machine Z composed from machines X and Y as Z = 〈X, Y〉.
The sub-machines are defined to be local to each other, i.e., communicate using
in- and outputs to each other instead of messages.

1This enables us to fix a message and other parameters by including a signed ciphertext into
the receipt.
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We use the identifier of the first machine as the identifier of the compos-
ite machine, i.e., protocols and signatures of machine Y inside 〈X, Y〉 will be
verified under the identifier X. We assume that messages are automatically
dispatched to the appropriate sub-machine and that the identifier of X is suffi-
cient for sending messages to the sub-machine Y as well.

Remark 4.1. The intuitive reason that all sub-machines use the name and ad-
dress of the super-machine is that in practice the complete machine belongs to
a person and uses the address and signature identity of its owner.

Remark 4.2. When identifying the sub-machine using the super-machine’s
name, we assume that the identifier used by a sub-protocol can be configured.

As our definition of contract signing does not include the name of a ma-
chine in its inputs2, this requires that the underlying scheme is initialized using
the identifier of the super-protocol. In practice, however, the contract signing
schemes would be extended to include a machine’s own name in all inputs,
too. ◦

4.2 Definitions

We now define the new notion of labeled optimistic certified mail. In the se-
quel, we use the network model as defined in Section 3.2.1 and the notion of
optimistic contract signing as defined in Section 3.2.2.

The traditional notion of optimistic certified mail will be defined in Sec-
tion 4.5.1. Simple certified mail will be defined in Section 4.6.1.

4.2.1 Optimistic Labeled Certified Mail

Our new model of certified mail called “labeled certified mail” assumes that
mails are sent and accepted under non-secret labels, i.e., that the recipient can
define for which kinds of messages or which subjects a receipt should be is-
sued.

The label enables to specify the context in which the message is sent. Con-
sider, e.g., a delivery of a program where the recipient is only willing to receive
the program if both parties agree on the licensing conditions. In this appli-
cation, labeled certified mail makes sure that the program data is only sent if
both agree. Furthermore, it fixes the conditions as part of the receipt. Another
examples are external references to link the certified mail transmission into a
larger commerce context (see Section 11.3 for more information on external ref-
erences).

Definition 4.1 (Labeled Certified Mail Scheme)
A labeled certified mail scheme for a message space M with |M | ≥ 2, a label space
L and a set of transaction identifiers TIDs is a triple (S, R, V) of probabilistic in-
teractive machines (such as probabilistic interactive Turing Machines) where V
does not keep state between subsequent protocol runs3. The algorithm S is

2These protocols implicitly assume that the identifier used by each protocol machine is fixed;
the reason for this simplification is that the contract signing protocols were not primarily devel-
oped for building certified mail on top of them.

3If the outcome of a verification may depend on the state of the verifier, a receipt can not be
shown to arbitrary verifiers.

66



4.2. Definitions

called sender, the algorithm R is called recipient, and the algorithm V is called
verifier. In addition, the scheme may specify a set AM of auxiliary machines
without in- or outputs. The algorithms can carry out two interactive protocols:

Sending Mail (Protocol “send“): The sender obtains a local input (send, R, l, m,
tid), where send indicates that the “send“-protocol shall be executed, R
is the identifier of the recipient, l ∈ L is the label under which message
m ∈ M shall be sent, and tid ∈ TIDs is the common unique and fresh
transaction identifier which is used to distinguish different protocol runs.
The recipient inputs (receive, S, l, tid) to signal that he is willing to receive
a message under a given label l from a sender S and acknowledge its
receipt. At the end, the sender either gets an output (sent, tid) or (failed,
tid) whereas the recipient either gets (received, m, tid) or (failed, tid).

Verification (Protocol “show“): This is the receipt verification protocol between a
particular verifier V and the sender S only4. The sender inputs (show, tid)
and the verifier outputs either (received, S, R, l, m, tid) with the identities
of the sender and the recipient as well as the label and the message or
(failed, tid).

3

Intuitively, the input labels are similar to the subject under which the mail is
sent, i.e., the recipient fixes the subject under which a mail shall be received
and a receipt shall be issued. The outputs (sent, tid) and (received, m, tid) of
the “send“-protocol mean that the message has been sent and a receipt has been
issued whereas the outputs failed signal failure, i.e., that the message has not
been released and no valid receipt has been issued.

Definition 4.2 (Secure Labeled Certified Mail)
A labeled certified mail scheme as defined in Definition 4.1 is called secure if it
fulfills the following requirements if all auxiliary parties in AM are correct:

Requirement 4.2a (Correct Execution): Consider an execution of “send“ by a cor-
rect sender S and a correct recipient R on input (send, R, lS , m, tid) to
S and (receive, S, lR, tid) to R with a unique and fresh tid ∈ TIDs,
S, R ∈ id space , m ∈ M , and the labels lS , lR ∈ L. If these inputs are
made in the same round on synchronous networks and if wakeup is not
input on asynchronous networks, the sender outputs (sent, tid) and the
receiver outputs (received, m, tid) iff lS = lR.

If a correct recipient outputs (received, m, tid) on input (receive, S, l, tid)
and the sender S is correct, then the sender input (send, R, l, m, tid).

Requirement 4.2b (Unforgeability of Receipts): If (receive, S, l, tid) was not input
by a correct recipient R, no correct verifier V will output (received, S, R, l,
m, tid) for any m.

Requirement 4.2c (Receipts are Fixed): If a correct recipient outputs (received, m,
tid) on input (receive, S, l, tid) then no correct verifier will output
(received, S′, R, l′, m′, tid) for any different S′, m′ or l′.

4Like in contract signing, we do not consider verification including the sender as well as the
recipient.
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Requirement 4.2d (Verifiability of Valid Receipts): If a correct sender S outputs
(sent, tid) on input (send, R, l, m, tid) and later executes “show“ on in-
put (show, tid) with a particular correct verifier V then this verifier V will
output (received, S, R, l, m, tid).

Requirement 4.2e (No Surprises for the Recipient): If a correct recipient R outputs
(failed, tid) on input (receive, S, l, tid) then no correct verifier will output
(received, S, R, l, m, tid) for any m.

Requirement 4.2f (Secrecy of the Message): If a correct sender outputs (failed, tid)
on input (send, R, l, m, tid) then the message m ∈ M is kept entirely
secret.5

Furthermore, one of the following requirements must be fulfilled:

Requirement 4.2g (Termination on Synchronous Network): On input (send, R, l, m,
tid), a correct sender will either output (sent, tid) or (failed, tid) after a
fixed number of rounds.

On input (receive, S, l, tid), a correct recipient will output (received, m,
tid) or (failed, tid) after a fixed number of rounds.

Requirement 4.2h (Termination on Asynchronous Network): On input (wakeup,
tid) a correct sender will either output (sent, tid) or (failed, tid) after a
fixed time.

On input (wakeup, tid) a correct recipient will either output (received, m,
tid) or (failed, tid) after a fixed time.

3

Remark 4.3. Note that wakeup can only be input to the sender and the receiver
during the “send“-protocol. Termination of the “show“-protocol is implied by
[R. 4.2d].

Remark 4.4. “Correct execution” does not guarantee the output of failed in case
of disagreement. But from [R. 4.2g+R. 4.2h] follows that the sender outputs
failed if it does not output sent whereas the recipient outputs failed if it does not
output received.

Remark 4.5. Intuitively, the fresh tids are only used to associate the inputs at
S and R, i.e., to determine that they belong to the same protocol run. If the
players input different tids, the protocol usually behaves as if the other party
is not present. The protocols guarantee termination without an input wakeup
for different labels [R. 4.2a] but not for different tids. ◦
An optimistic protocol includes a third party which is not involved if the par-
ties are correct and agree:

Definition 4.3 (Optimistic Labeled Certified Mail)
An optimistic labeled certified mail scheme for a message space M , a label space
L and a set of transaction identifiers TIDs is a triple (S, R, V) and a machine
T of probabilistic interactive machines. The scheme must fulfill the following
requirements:

5This secrecy requirement will be formalized in the traditional way in Section 4.2.2 and in Sec-
tion 9.2 using our new notion of security for reactive systems.
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Requirement 4.3a (Security): (S, R, V) with a set AM := {T}with a correct T is a
secure labeled certified mail scheme (Def. 4.2) where machine T does not
participate in the “show“-protocol.

Requirement 4.3b (Limited Trust in T): R. 4.2b, R. 4.2c, and R. 4.2d are fulfilled
even if T is incorrect.

Furthermore, one of the following requirements must be fulfilled:

Requirement 4.3c (Optimistic on Agreement on Synchronous Network): If a correct
sender S inputs (send, R, l, m, tid) and a correct recipient R inputs (receive,
S, l, tid) in a given round then the third party does not send or receive
messages in the “send“-protocol.

Requirement 4.3d (Optimistic on Agreement on Asynchronous Network): If a cor-
rect sender S inputs (send, R, l, m, tid), a correct recipient R inputs
(receive, S, l, tid), and both do not input (wakeup, tid), then the “send“-
protocol terminates in a fixed time and the third party does not send or
receive messages.

An optimistic labeled certified mail scheme with |L| ≥ 2 is called optimistic on
disagreement if the third party does not send or receive messages in the “sign“-
protocol, even if the sender and the recipient input different labels. 3

Remark 4.6. Optimism on agreement is only efficient if it is likely that the play-
ers have agreed on the label before starting the protocol. In many applications,
this will be the case since the execution of the certified mail protocol is, e.g.,
just one step in a larger electronic commerce transaction.

Remark 4.7. Requirement 4.2a for an incorrect T automatically holds in all op-
timistic executions. However, if the protocol does not guarantee optimism on
disagreement, “correct execution” may no longer be guaranteed.

Remark 4.8. A preliminary analysis of time-optimal labeled certified mail pro-
tocol has shown that Requirement 4.2c seems to be the main reason why cer-
tified mail requires more time than contract signing in some models. It guar-
antees that a collusion of the sender and an incorrect third party cannot later
change the message contained in a receipt. At the beginning, the recipient has
no information about the message. Therefore, it cannot be fixed before time 2.
Dropping R. 4.2c from R. 4.3b would therefore enable us to save one round in
some cases. In this case, a signature of the third party would be sufficient to
fix the message but an incorrect third party together with the sender would be
enabled to forge receipts.

Remark 4.9. An alternative to dropping Requirement 4.2c is to assume that the
recipient, e.g., knows a commitment fixing the expected message beforehand
(it has to know the label anyway). This may enable more efficient protocols
as well. However, we do not consider such optimizations in the sequel since
we aim at a service that is independent of the internal details (such as com-
mitments) of an actual protocol implementing the service. An advantage of
this service-based approach is that implementations of services can be inter-
changed and that they can be evaluated independently of the protocol using
them.
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Remark 4.10. Unlike contract signing, in general, we do not consider protocols
where the third party participates in the “show“-protocol, even though the re-
sulting revocability of receipts may increase the efficiency in some cases. ◦

4.2.2 Traditional Formalization of the Secrecy Requirement

Compared to contract signing, which can be specified using integrity require-
ments, certified mail also requires secrecy of the message. In Section 3.2.4,
we sketched the traditional way to formalize integrity requirements. We now
show how to formalize the secrecy of certified mail.

The following definition defines that the adversary must not be able to ob-
tain partial information on the message if no receipt is issued. “Partial infor-
mation” is modeled similar to the notion of “indistinguishable encryptions”
[Gold 93, GoMi 84]: If the adversary is somehow able to determine any feature
of the message given the ciphertext, then there are two ciphertexts (e.g., one
with and one without this feature) that it is able to distinguish. Therefore, in
the following definition, the adversary is asked to choose two ciphertexts and
later tries to guess which one was used.

For certified mail, this means that a run of certified mail is executed with a
message mi randomly chosen out of a pair (m0, m1) of two messages selected
by the adversary. Then, if no receipt was issued, the adversary tries to guess
which of the two messages was actually input in this particular run. If the
adversary is able to guess the correct message in non-negligibly more than 50%
of the runs without receipt, then it was able to obtain some partial information
and the scheme is insecure.

Definition 4.4 (Traditional Formalization of “Secrecy of Message”)
Let (S, R, V) and T be a given labeled certified mail scheme for a message space
M := {0, 1}k, a label space L := {0, 1}l, and a set TIDs of possible tids. Each
machine M obtains a security parameter n ∈ IN at startup. This is denoted by
M(n).

For the following game, the recipient is replaced by one polynomial time
interactive Turing machine R∗ that has one additional channel to a message
chooser C and to the user-input channel of the sender. Besides the channel
with R∗, the chooser has one output channel to the user-input channel of the
sender S (see Figure 4.2). The game is defined as follows:

1. The chooser chooses a fresh tid ∈ TIDs and sends it to the adversary
R∗(n).

2. R∗(n) interacts arbitrarily with the correct machines S(n), T(n), and V(n)
of the labeled certified mail scheme. This includes user-inputs to all cor-
rect machines. Inputs to the sender are forwarded by the chooser, if the
used tid differs from the chosen tid .

3. R∗(n) sends two messages m0 and m1 and a label l to the chooser C.

4. The chooser verifies that m0, m1 ∈ M and l ∈ L and chooses a random
bit i ∈ {0, 1}. It then inputs (send, R, l, mi, tid) to the sender and stops.
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Figure 4.2: Evaluating the Message Secrecy Requirement.

5. R∗(n) interacts arbitrarily with the correct machines of the labeled certi-
fied mail scheme. This includes user-inputs to all correct machines. In-
puts to the sender are again forwarded by the chooser, if the used tid
differs from the chosen tid .

6. R∗(n) outputs a guess i∗.

7. Finally, R∗(n) wins if the sender output (failed, tid) and the guess was
correct, i.e., i∗ = i.

Let Pf (n) be the probability that the sender outputs failed and Pw(n) the prob-
ability that the game is won, i.e., that failed was output and the guess was
correct.

The scheme provides secrecy of the input message if for any given adver-
sary R∗(n), the adversary can guess the right messages in about half the runs
where the sender output failed, i.e.,

∀p ∈ poly : ∃n0 ∈ IN : ∀n > n0 : Pw(n) ≤ 1
2
Pf (n) +

1
p(n)

,

where poly denotes the set of all polynomials in n. 3

Remark 4.11. The condition is similar to the condition that P (wins |failed) ≤
1/2 + 1/p(n), except that this condition would lead to problems if Pf is ex-
ponentially small.

Remark 4.12. In Section 9.2, we will give an alternative trusted-host specifica-
tion of certified mail and prove the security of one of our protocols using our
new formalism. ◦

4.3 Contract Signing using Labeled Certified Mail

We now show how to provide contract signing based on labeled certified mail
without any additional messages.

The basic idea of the reduction is to send a signed contract text with labeled
certified mail to the recipient while verifying agreement by including the con-
tract text into the label. Then, the received message is defined to be a valid
contract for the recipient whereas the receipt on the same message is defined
to be the valid contract for the sender. Naturally, this requires that the contract
can be used as a label.
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Signatory A Signatory B

“(sign, B, C, tid)” “(sign, A, C, tid)”
tid ′ := (“cm2cs”, tid) tid ′ := (“cm2cs”, tid)

m1 := signA(A, B, C, tid ′)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
Labeled Certified Mail (l := C; m := m1, tid := tid ′)

−−−−−−−−−−−−−−−−−−−−−→
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“(signed, tid)” “(signed, tid)”
[Contract = m1+receipt] [Contract = m1]

Figure 4.3: Optimistic Behavior of Scheme 4.1 (Contract Signing with Labeled
Certified Mail): Sending a signed contract m1 using the contract text C as the
label.

Theorem 4.1 (Contract Signing with Labeled Certified Mail)
Any scheme for labeled certified mail with a label space L and a message space
M in time t with m messages can be used to construct a contract signing scheme
for a contract space L in time t with m messages. The contract signing scheme
is optimistic on agreement/disagreement (Def. 3.4) if the used labeled certified
mail scheme is optimistic on agreement/disagreement (Def. 4.3). 2

A consequence of this theorem is that no scheme for labeled certified mail can
be more efficient than a contract signing scheme for the same model (recall,
our lower bounds on contract signing only assumed that |M | ≥ 2, i.e., the
result holds for any valid label space L). We prove the theorem by describing
a scheme providing contract signing using labeled certified mail:

Scheme 4.1 (Contract Signing with Labeled Certified Mail)
Let any labeled certified mail scheme (Scm, Rcm, Vcm), Tcm be given.

We define a contract signing scheme (〈A, Scm〉, 〈B, Rcm〉, 〈V, Vcm〉) and
〈T, Tcm〉. The behavior of the simulation machines A, B, V, and T is defined
as follows:

Signing a Contract (Protocol “sign“; Fig. 4.3): On input (sign, B, C, tid), machine
A derives a fresh and unique transaction identifier tid ′ := (“cm2cs”, tid)
from the input tid , computes m1 := signA(A, B, C, tid ′), and inputs (send,
B, C, m1, tid ′) to Scm. If this algorithm outputs (sent, tid ′), A outputs
(signed, tid), else it outputs (rejected, tid).

On input (sign, A, C, tid), machine B computes tid ′ and inputs (receive,
A, C, tid ′) into the labeled certified mail algorithm Rcm. If Rcm outputs
(received, m1, tid ′) with a correct message m1 = signA(A, B, C, tid ′), B
outputs (signed, tid) and (rejected, tid) else.

On input (wakeup, tid), the machines A or B input (wakeup, tid ′) to Scm or
Rcm, respectively.
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Verification of a Contract (Protocol “show“): On input (show, tid) to machine B, it
sends signB(m1) to V who outputs (signed, A, B, C, tid) if m1 is correct
and (rejected, tid) else.

On input (show, tid) to machine A, it sends signA(m1) to V and inputs
(show, tid ′) to Scm. If Vcm outputs (received, A, B, C, m1, tid ′), machine V
verifies that m1 is correct. If this is the case, the verifier outputs (signed,
A, B, C, tid). Else, it outputs (rejected, tid).

3

Lemma 4.1 (Security of Scheme 4.1)
Scheme 4.1 is a secure contract signing scheme (Def. 3.3). It is optimistic on
agreement/disagreement (Def. 3.4) if the used labeled certified mail scheme is
optimistic on agreement/disagreement (Def. 4.3). 2

Proof. The scheme adheres to Definition 3.2 by construction. We now show that
the requirements of Definition 3.3 and 3.4 are fulfilled:

Correct Execution (R. 3.3a) Let us assume that wakeup was not input on asyn-
chronous networks and that both initial inputs were made in the same
round on synchronous networks. Then, if both correct machines A and
B get the inputs (sign, B, C, tid) and (sign, A, C, tid) with identical tid
and C, then B gets an output (received, m1, tid ′) from Rcm with a correct
m1 [R. 4.2a] and outputs (signed, tid) whereas A receives (sent, tid ′) from
Scm [R. 4.2a] and outputs (signed, tid) as well. If both input different con-
tracts, Scm and Rcm output (failed, tid ′) since the input labels are different
which will lead to outputs (rejected, tid) by both [cf. Remark 4.4].

Unforgeability of Contracts (R. 3.3b+R. 3.4b) For successful verification, B needs
signB(m1) even with incorrect T. Since m1 is signed by A, a correct A
received an input (sign, B, C, tid).

Signatory A cannot produce signB(m1) since the signature scheme is se-
cure. Therefore, for successful verification, the verifier Vcm is required to
output (received, A, B, C, m1, tid ′). This output only occurs after an input
(receive, A, C, tid ′) by B to Rcm even if T is incorrect [R. 4.2b+R. 4.3b].
From the construction of a correct B, this input is only made on input
(sign, A, C, tid).

Verifiability of Valid Contracts (R. 3.3c+R. 3.4b) If a correct A output (signed, tid),
A received an output (sent, tid ′) from Scm on input (send, B, C, m1, tid ′).
Therefore, the certified mail scheme will output (received, A, B, C, m1,
tid ′) to V, too [R. 4.2d].

If a correct B output (signed, tid), B received m1 which will be accepted
as a valid contract.

No Surprises with Invalid Contracts (R. 3.3d) If a correct A output (rejected, tid),
then (failed, tid ′) was output to A. Therefore, B is not able to obtain the
message m1 that is otherwise never sent by A [R. 4.2f]. Thus machine B
will not be able to pass verification.

If a correct B obtains an output (rejected, tid), either m1 was incorrect or
else, B obtained an output (failed, tid ′) from Rcm. If m1 was incorrect, this
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m1 is included in the receipt, too [R. 4.2c], and A is not able to pass ver-
ification. If B obtained an output (failed, tid ′), the certified mail scheme
will not output (received, A, B, C, m1, tid ′) to the verifier [R. 4.2e].

Termination on Asynchronous Network (R. 3.3f) On input (wakeup, tid), the ma-
chines input (wakeup, tid ′) to the certified mail scheme which gives a
definitive output [R. 4.2h]. This output leads to an output of the contract
signing scheme within the same time.

Optimistic on Asynchronous Network (R. 3.4d) If both contracts and tid ’s are
equal and none of the signatories receives (wakeup, tid), the scheme does
not input wakeup to the underlying scheme and does not contact the third
party itself. Therefore, and as equal contracts imply equal labels, the re-
sulting scheme is as optimistic as the underlying scheme [R. 4.3d].

4.4 Message-optimal Labeled Certified Mail

We now describe a scheme for message-optimal optimistic labeled certified
mail based on message-optimal optimistic contract signing and prove its se-
curity and optimality. For easier readability, we first present a simulation that
needs additional messages. Then, we optimize the scheme for the message-
optimal contract signing schemes as described in Chapter 3. In this case, no
additional messages are needed.

Theorem 4.2 (Labeled Certified Mail with Contract Signing)
Let (t, m) be the complexity of a message-optimal optimistic contract signing
protocol (Def. 3.4) for the considered models.

Then there exists a message-optimal optimistic labeled certified mail
scheme (Def. 4.3) in time t with m messages for the same model. 2

We now describe a reduction and its message-optimization and finally
prove the theorem by showing that this optimization can be applied to the
message-optimal contract signing protocols described in Chapter 3.

The basic idea of the following reduction is that the sender encrypts the
message for T, uses the ciphertext as the contract, and finally enables the recip-
ient to verify the encryption by revealing the cleartext (including the message).
If, however, the sender refuses to reveal these inputs, the third party decrypts
the message if and only if the contract has been signed.

Scheme 4.2 (Labeled Certified Mail with Contract Signing)
Let (Acs, Bcs, Vcs), Tcs be an optimistic contract signing scheme. We then define
a labeled certified mail scheme (〈S, Acs〉, 〈R, Bcs〉, 〈V, Vcs〉) and 〈T, Tcs, Vcs〉6. The
behavior of the simulation machines S, R, V, and T is defined as follows:

Sending Mail (Protocol “send“; Figure 4.4): On input (send, R, l, m, tid), the
sender S chooses a random r and computes tid ′ = (“cs2cm”, tid) and

6Recall that the verifier is state-less, i.e., the two copies will show the same behavior.
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Sender S Recipient R

“(send, R, l, m, tid)” “(receive, S, l, tid)”
choose r randomly.

−
m1 := ET (r; S, R, l, m, tid)

−−−−−−−−−−−→
C := (S, R, l, m1) C := (S, R, l, m1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

←−
Contract Signing (C, tid ′ := (“cs2cm”, tid))

−−−−−−−−−−−→
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
m2 := (r, m)
−−−−−−−−−−−→

“(sent, tid)” “(received, m, tid)”

Figure 4.4: Optimistic Behavior of Scheme 4.2 (Labeled Certified Mail with
Contract Signing).

sends m1 := ET (r; S, R, l, m, tid) to R. Then, in the next round on syn-
chronous networks, it inputs (sign, R, (S, R, l, m1), tid ′) to the contract
signing scheme. If Acs outputs (signed, tid ′), S sends m2 := (r, m) to R
and outputs (sent, tid). If S receives wakeup, it inputs (wakeup, tid) to
Acs. If Acs outputs (rejected, tid ′) the sender S outputs (failed, tid) without
sending m2.

If R gets an input (receive, S, l, tid) and receives an m1, it inputs (sign,
S, (S, R, l, m1), tid ′) to Bcs. If (wakeup, tid) is input before receiving m1,
machine R outputs (failed, tid). If Bcs outputs (signed, tid) and R receives
m2, it checks whether m2 fits m1, i.e., whether re-computing ET with the
known inputs produces the ciphertext. If it fits, R outputs (received, m,
tid). Else, it starts the sub-protocol “resolve“. If (wakeup, tid) is input to
R before obtaining an output from Bcs, it inputs (wakeup, tid ′) to Bcs. If it
receives (wakeup, tid) while waiting for m2, it starts “resolve“. If machine
Bcs outputs (rejected, tid ′), the recipient outputs (failed, tid).

Recovery from Exceptions (Sub-protocol “resolve“): R inputs (show, tid ′) to Bcs. If
Vcs outputs (signed, S, R, (S, R, l, m1), tid ′) to T, the third party T verifies
that the output parameters of the contract signing protocol match the
parameters contained in the contract. Then, it decrypts m1 and checks
that it also contains the correct parameters7.

If the checks succeed, T sends m2 to R who outputs (received, m, tid). If
the checks fail, it sends m3 := signT(aborted, tid) to R who outputs (failed,
tid).

7Otherwise, the recipient may start another execution of the certified mail protocol while re-
using m1 as the contract. Then, the third party would decrypt the message in “resolve“ since it
was part of a valid contract. Thus, R would obtain the message even though S output failed. For
this reason, we need non-malleability of the encryption scheme [DoDN 91] not only for secrecy but
also for integrity.
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Verification (Protocol “show“): On input (show, tid), the sender sends m2 to the
verifier V and inputs (show, tid ′) to Acs. If Vcs outputs (signed, S, R,
(S, R, l, m1), tid ′), the verifier V verifies that the output parameters of the
contract signing protocol match the parameters contained in the contract.
Then, it checks that repeating the encryption using the outputs of the con-
tract verification as well as (r, m) as contained in m2 in fact produces m1.
If this is the case, the verifier V outputs (received, S, R, l, m, tid). Else, it
outputs (failed, tid).

3

Lemma 4.2 (Security of Scheme 4.2)
Scheme 4.2 is a secure labeled certified mail scheme (Def. 4.2). It is optimistic
on agreement/disagreement (Def. 4.3) if the used contract signing scheme is
optimistic on agreement/disagreement (Def. 3.4). 2

Proof. The scheme adheres to Def. 4.1 by construction. We now show that the
requirements in Def. 4.2 and 4.3 hold:

Correct Execution (R. 4.2a): On input (send, R, l, m, tid) to S and (receive, S, l,
tid) to R they start the contract signing protocol at the same time with
matching parameters and, if none inputs wakeup, the correct sender out-
puts (sent, tid) after correct execution of the contract signing protocol
[R. 3.3a]. The correct recipient receives m1 and m2 and outputs (received,
m, tid).

If the recipient outputs (received, m, tid), a correct sender sent m1 on in-
put (send, R, l, m, tid).

Unforgeability of Receipts (R. 4.2b+R. 4.3b): If the verifier outputs (received, S, R,
l, m, tid), then Vcs output (signed, S, R, (S, R, l, m1), tid ′) which implies
that a correct recipient input (sign, S, (S, R, l, m1), tid ′), even if T is in-
correct [R. 3.3b+R. 3.4b]. By construction, this input is only made by a
correct recipient on input of (receive, S, l, tid).

Receipts are Fixed (R. 4.2c+R. 4.3b): If a recipient output (received, m, tid) on in-
put (receive, S, l, tid), the contract signing scheme output (signed, tid ′)
on input (sign, S, (S, R, l, m1), tid). From [R. 3.3b+R. 3.4b] follows that
there cannot be a different output (signed, S, R, C ′, tid ′) for Vcs even if T
is incorrect. Therefore, in order to obtain an output (sent, S, R, l, m′, tid)
at the verifier, the incorrect sender would be required to show a message
m′

2 = (m′, r′) with m′ 6= m that encrypts to the same ciphertext m1 as
fixed by the contract. This, however, contradicts the assumptions that it
is hard to find two different messages that encrypt to the same ciphertext.

Verifiability of Valid Receipts (R. 4.2d+R. 4.3b): If the scheme outputs (sent, tid)
to the correct sender, the contract signing protocol was executed success-
fully, i.e., the verification protocol of the contract signing scheme will
output (signed, S, R, (S, R, l, m1), tid ′) [R. 3.3c+R. 3.4b] with the parame-
ters input by the correct sender. Furthermore, repeating the encryption
using m2 will result in m1 as contained in the contract. Therefore, by
construction, the verifier will decide on (received, S, R, l, m, tid).
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No Surprises for the Recipient (R. 4.2e): If the recipient output (failed, tid) and a
contract was produced, this contract does not contain a valid ciphertext
m1 (otherwise, “resolve“ would have output the message). Therefore, a
correct verifier V will output (rejected, tid).

If no valid contract was produced, i.e., no input (sign, S, (S, R, l, m1), tid ′)
was made to Bcs or such an input was answered with (rejected, tid ′) (e.g.,
since lS 6= lR and thus CA 6= CB), then Vcs will not output (signed, S, R,
(S, R, l, m1), tid ′) [R. 3.3b or R. 3.3d, respectively] and therefore V will not
output (received, S, R, l, m, tid).

Secrecy of Message (R. 4.2f): If a correct sender output (failed, tid), the contract
signing scheme output (rejected, tid ′) and m2 was not sent. From the
security of the encryption scheme follows that the recipient cannot gain
knowledge about m with m1 only. If we now assume that the recipient
re-uses m1 in a protocol run without S, then our assumptions on the en-
cryption scheme guarantee that changing S in the plaintext also changes
the ciphertext. Therefore, the third party will not reveal m after decrypt-
ing m1 since the machine S as identified inside m1 did not participate in
the contract signing protocol. In addition, non-malleability guarantees
that R is unable to produce a ciphertext m∗

1 that will be decrypted by T
while revealing information about m.

Furthermore, the recipient is not able to convince the third party to de-
crypt m1: The verification of the contract between S and R will not
output (signed, S, R, (S, R, l, m1), tid ′) for the same tuple (S, m1, tid ′)
[R. 3.3b+R. 3.3d] since S will not participate in another run with the same
tid ′.

Termination on Asynchronous Network (R. 4.2h): If a machine gets a wakeup, it ei-
ther produces an output directly or after receiving an output from the
contract signing scheme after an input wakeup [R. 3.3f].

Optimistic on Disagreement/Agreement on Asynchronous Network (R. 4.3d):
If a correct sender S inputs (send, R, l, m, tid) and a correct recipient R
inputs (receive, S, l, tid), they input (sign, S, C, tid ′) and (sign, R, C, tid ′),
respectively (this is done in the same round on synchronous networks).
From [R. 3.3a] follows that this leads to an output (signed, tid ′) without
contacting the third party [R. 3.4d]. Since m1 and m2 are correct, this
leads to the outputs sent/received without contacting the third party.

If the labels differ, the contracts are different and the underlying scheme
will output (rejected, tid ′). If the underlying scheme is optimistic on dis-
agreement, this output will be produced without contacting the third
party.

We now show how to optimize Scheme 4.2 to provide message-optimal la-
beled certified mail based on the message-optimal contract signing protocols
described in Chapter 3. Since the optimization can be applied to message-
optimal contract signing schemes and the optimized simulation does not need
additional messages or time, the message-optimality directly follows from The-
orem 4.1.
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Scheme 4.3 (Message Optimization of Scheme 4.2)
Let (Acs, Bcs, Vcs) and Tcs be an optimistic contract signing scheme satisfying
the following conditions:

1. Machine Acs sends the only message m1A at time 1.

2. There exists a message mkA that is sent by a correct Acs such that:

• If the signatories are correct and agree, then mkA is always sent.

• If mkA is sent8, then Acs will eventually output (signed, tid ′) (either
directly or else after recovering with T).

Then Scheme 4.3 is constructed by concatenating message m1 of Scheme 4.2 to
m1A and concatenating m2 of Scheme 4.2 to mkA. If mkA is not sent (i.e., in
case of disagreement or non-optimistic cases), the protocol proceeds without
changes, i.e., the optimization waits for an output of the underlying protocol
as well and sends m2 only if this output is (signed, tid ′). 3

Remark 4.13. A counterexample where Acs cannot be sure that the output will
be signed, even after sending its last message of the optimistic phase, can be
constructed as follows: Consider a protocol m1, m2, m3, m4 started by Acs

where the last message “opens” the messages m1 and m3 that are encrypted
for, e.g., machine T. In this case, Acs sends m3 even if the output will be rejected
because m2 was already wrong internally.

Remark 4.14. In the time-optimal protocols from Chapter 3, both signatories
start by sending a signature under the contract to the peer. Therefore, our op-
timization cannot be applied to these time-optimal schemes. Still, the resulting
protocol can be partly optimized by concatenating the second message m2 sent
by Acs to the last message of the protocol.

Remark 4.15. For some models, our message-optimal protocols are not the first
optimally efficient protocols. Two protocols for optimism on agreement and
two-party disputes have been proposed in [Mica 97] for synchronous net-
works and [AsSW 98] for asynchronous networks, respectively. Their message-
optimality in case of agreement follows from Theorem 4.2.

Remark 4.16. Even though we ruled out three-party disputes, a contract signing
protocol with three-party disputes that satisfies the conditions will result in
a message-optimal labeled certified mail protocol with three-party disputes as
well. An example of a case where this lemma holds is Scheme 3.4, since sending
m3 guarantees that the output to Acs will be signed. ◦

Lemma 4.3 (Security of Scheme 4.3)
Scheme 4.3 is an optimistic labeled certified mail scheme. 2

Proof. The scheme adheres to Def. 4.1 by construction. We now show that the
requirements in Def. 4.2 and 4.3 hold:

Correct Execution (R. 4.2a): Since Bcm does not send a message at time 1, A
sends two subsequent messages m1A (of the contract signing scheme)

8Note that this does not imply that Acs must not send a message in case of rejected but rather
that this message can be distinguished from mkA.
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and m1 (of the simulation) without receiving any messages in between.
Thus, they may as well be concatenated without changing the behavior
on asynchronous networks. Therefore, the reasoning in Lemma 4.2 still
holds.

Secrecy of Message (R. 4.2f): If Acs sends mkA before receiving later messages
from Bcs, the optimization requires Acs to send m2 before receiving these
later messages of the contract signing protocol. Thus, Bcs is enabled to
obtain the confidential message before Acs obtains a complete contract.
However, condition 2 guarantees that Acs will eventually output (signed,
tid ′) either directly or after recovery (otherwise, mkA would not be sent).
Therefore, S will output (sent, tid), i.e., S obtained a correct receipt.

For all other requirements the reasoning in the proof of Lemma 4.2 holds with-
out changes.

Proof. (Theorem 4.2)
For proving the theorem, we have to show that the preconditions of

Scheme 4.3 are fulfilled for the message-optimal schemes in Chapter 3 and
that the optimistic complexity of the resulting protocol is not worse than the
complexity of the underlying contract signing protocol.

For the considered model without three-party disputes, the message-
optimal schemes (Schemes 3.1, [AsSW 98], and Scheme 3.7) satisfy the con-
dition that Acs sends the first message. For the schemes that are optimistic on
agreement, the last message sent by Acs in case of agreement satisfies condi-
tion 2. For Scheme 3.7, the existence of such a message follows from the fact
that it exists in the underlying scheme that is optimistic on agreement.

Let (t, m) be the complexity of the underlying protocol. Let us now assume
that the protocol sends m2 without sending mkA in case of agreement, i.e., the
optimization had to wait for an output (signed, tid ′) of the underlying contract
signing scheme thus increasing the time and messages needed. In this case,
condition 2 guarantees that the protocol execution was non-optimistic (other-
wise mkA would have been sent). Thus, the execution does not increase the
optimistic complexity as defined in Def. 3.6. In case of disagreement, the un-
derlying scheme will produce an output (rejected, tid ′) at the end and m2 will
not be sent. Thus, the optimization does not increase the time and message
complexity of the scheme in case of disagreement, too.

4.5 Labeling “Traditional” Certified Mail

In this section, we describe how to label traditional optimistic certified mail
without losing efficiency. This disproves the objection that labeled certified
mail is less efficient than traditional optimistic certified mail, i.e., that opti-
mistic contract signing can be based on traditional certified mail as well.

4.5.1 Definition

The traditional notion of optimistic certified mail is like labeled optimistic certi-
fied mail without labels: Both players still input a tid to signal that their inputs
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belong together. However, the recipient is no longer able to specify a label
under which the message shall be received.

Definition 4.5 (Optimistic Certified Mail)
A (traditional) optimistic certified mail scheme is an optimistic labeled certified
mail scheme (Def. 4.3) with only the empty label in the set of labels, i.e., L:={ε}.
3

Remark 4.17. Note that without labels, the distinction between optimistic on
agreement and disagreement no longer makes sense. ◦

4.5.2 Labeling “Traditional” Certified Mail

We now show how to adapt any optimistic certified mail protocol to labeled
certified mail. The basic idea of this simulation is to augment the initial mes-
sages with a signature on the input label and tid . If the protocol is executed
without changes, this signature is then needed for showing a receipt. One is-
sue that must be solved by the simulation is how to cope with differing labels,
i.e., how to securely abort the protocol that has been started by sending the
initial messages.

Theorem 4.3 (Labeling Certified Mail Protocols)
Traditional optimistic certified mail protocols can be adapted to provide la-
beled certified mail with the same efficiency in the optimistic case. 2

Proof. We simulate optimistic labeled certified mail using optimistic certified
mail depending on the structure of the optimistic certified mail protocol.

In the first round of the optimistic “send“-protocol, the protocol sends at
most two messages m1S and m1R. We now present three simulations covering
all optimistic protocols: Scheme 4.4 can be applied if m1R and m1S are sent.
Scheme 4.5 can be applied if only m1S is sent, and Scheme 4.6 can be applied if
only m1R is sent. All simulations do not need additional messages or time.

From the security of these simulations then follows that any optimistic cer-
tified mail scheme can be adopted for labeled certified mail without losing ef-
ficiency.

Scheme 4.4 (Labeled Certified Mail from Certified Mail (1 of 3))
Let (Scm, Rcm, Vcm), Tcm be an optimistic certified mail scheme with two mes-
sages in the initial round. Let m1S be the message sent by the sender and let
m1R be that of the recipient.

We assume without loss of generality that the behaviour of any machine in
this scheme for one tid does not depend on results of transactions for other
tid ’s.9,10

9The assumption is needed because below, Rcm is sometimes aborted by R. If, for instance, Scm

could store this, it would not need to fulfil “correct execution” in future runs with this Rcm, because
Rcm is not correct in the sense of the underlying scheme.

10This is without loss of generality because otherwise, we could adapt the following scheme by
always running the simulated Rcm with a new identity, i.e., signature key. The machine R using
Rcm would accompany the first messages of each run with a certificate of this new key, signed with
its normal key. Then one is always in the case where Rcm has been correct so far. The complexity
of the underlying scheme is no lower than its complexity in this case.
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We define a labeled certified mail scheme (〈S, Scm〉, 〈R, Rcm〉, 〈V, Vcm〉) and
〈T, Tcm〉. If not mentioned otherwise, all simulation machines forward any
message output by their sub-machine to the intended recipient sub-machine.
The behavior of the simulation machines S, R, V, and T is defined as follows:

Sending a Message (Protocol “send“): On input (send, R, lS, m, tid), the sender
inputs (send, R, ε, m, tid ′) with tid ′ := (“cm2lcmSR”, tid) to Scm. If Scm

outputs m1S to be sent to Rcm, machine S sends (m1S , mS) with mS :=
signS(lS , tid ′) to R instead. If machine S receives (m1R, mR) with mR =
signR(lR, tid ′) and lR = lS , the protocol continues without changes. Else,
or if wakeup was input, S ignores m1R and inputs (wakeup, tid ′) to the un-
derlying scheme. If any message that arrives in the sequel is augmented
with mR then S stores this mR. If machine Scm outputs (sent, tid ′) and mR

has arrived, then S outputs (sent, tid), else (failed, tid).

On input (receive, S, lR, tid) the recipient inputs (receive, S, ε, tid ′) to
Rcm. If Rcm outputs m1R to be sent to Scm, machine R sends (m1R, mR)
to S instead. If wakeup is input or if R receives (m1S , mS) with mS =
signS(lS , tid ′) and lS 6= lR, it terminates the algorithm Rcm and outputs
(failed, tid) without inputting m1S . Else, the protocol continues. If Rcm

outputs a recovery message mT to be sent to Tcm, the simulation machine
R appends (mS , mR) to mT and sends it to machine T. If machine Rcm

outputs (received, m, tid ′), then R outputs (received, m, tid).

If (wakeup, tid) is received by a machine, the machine inputs (wakeup,
tid ′) to the corresponding machine of the underlying certified mail
scheme.

If a machine of the underlying scheme outputs (failed, tid ′), the scheme
outputs (failed, tid).

Recovery with 〈T, Tcm〉: The first recovery message from Rcm sent to T is only
input to Tcm if a correct pair (mS , mR) of signed messages with matching
labels lS = lR is appended. Else, all subsequent recovery messages from
R are ignored.

Answers to recovery requests from Scm are augmented with mR if Rcm

has sent recovery messages for this tid before. Else, T executes recovery
of Scm without changes. S accepts messages from T with and without
mR, while it ignores messages from R until it receives mR.

Verification of a Receipt (Protocol “show“): On input (show, tid), S inputs (show,
tid ′) to Scm and sends mR to the verifier.

The verifier V outputs (received, S, R, l, m, tid) if the underlying scheme
outputs (received, S, R, ε, m, tid ′) and the sender is able to present an
mR := signR(l, tid ′). Else, it outputs (failed, tid).

3

Lemma 4.4 (Security of Scheme 4.4)
Scheme 4.4 is a secure optimistic labeled certified mail scheme (Def. 4.3). 2

Proof. The scheme adheres to Definition 4.1 by construction. We now show that
each of the requirements described in Definitions 4.2 and 4.3 is fulfilled:
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Correct Execution (R. 4.2a): If (send, R, l, m, tid) is input to S and (receive, S, l,
tid) is input to R with identical labels, then the messages mS and mR

are appended to m1S and m1R, respectively, and both include the same
labels. Therefore, the protocol continues without changes. From [R. 4.2a]
follows that the protocol then produces the correct outputs.

If a correct recipient output (received, m, tid) on input (receive, S, lR,
tid) then Rcm was not terminated and output (received, m, tid ′) on in-
put (receive, S, ε, tid ′). From [R. 4.2a] follows that a matching input
(send, R, ε, m, tid ′) was obtained by Scm. This is only input if a correct S
obtained an input (send, R, lS, m, tid) for some lS. If lS 6= lR then a correct
S would have sent mS with lS 6= lR and R would have terminated with
an output (failed, tid), in contradiction to our precondition that it output
received.

Unforgeability of Receipts (R. 4.2b+R. 4.3b) and Receipts are Fixed (R. 4.2c+R. 4.3b):
If V outputs (received, S, R, l, m, tid) then Vcm output (received, S, R, ε, m,
tid ′) and V received mR = signR(l, tid ′). The sending of mR implies that
R obtained an input (receive, S′, l, tid), and also S′ = S because we tacitly
included the identities in all signed messages. This proves unforgeability
of receipts.

If R output (received, m′, tid)) upon this input, then Rcm output (received,
m′, tid ′) on input (receive, S, ε, tid ′). Thus it was not terminated and we
can apply [R. 4.2c]. Hence m′ equals m in the output of Vcm and thus of
V. This proves that receipts are fixed.

Verifiability of Valid Receipts (R. 4.2d+R. 4.3b): If a correct sender output (sent,
tid) on input (send, R, l, m, tid), then Scm output (sent, tid ′) on input (send,
R, ε, m, tid ′). Moreover, by construction S received an mR that matches
its input parameters tid and l. This is sufficient to verify the receipt.

No Surprises for the Recipient (R. 4.2e): If a correct R output (failed, tid), then ei-
ther Rcm terminated regularly and output (failed, tid ′) or R did not send
any messages except m1R. In the first case, no surprises follows immedi-
ately from no surprises in the underlying scheme. In the second case, we
show that the sender cannot convince the verifier Vcm for any message
m for this tid ′. If a decision received of Vcm would be possible with m1R

only, a collusion of an incorrect Scm and Tcm could claim after a run with
a correct Rcm that only m1R was sent and thus produce receipts for arbi-
trary messages. (Recall that Vcm cannot ask Rcm and that m1R cannot fix
the message to be received.) This would contradict [R. 4.2c+4.3b].

Secrecy of Message (R. 4.2f): If the sender S outputs (failed, tid) because the un-
derlying Scm output (failed, tid ′), the underlying protocol guarantees se-
crecy of the message [R. 4.2f]. Since m is not sent in the additional mes-
sages, overall secrecy of m follows by construction.

The only other possibility for S to output (failed, tid) is that it does not
receive mR. We now show that if T is correct (which is assumed for this
requirement), this also implies that Scm outputs (failed, tid ′) and thus se-
crecy of the message. By construction, all messages without a valid mR

are ignored by S and T (R can only produce a matching pair (mR, mS)
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for the message mS signed by the correct S, who does not sign two labels
for the given tid ′). If we now assume that Scm outputs (sent, tid ′) while S
did not get mR, there is no causally preceding message from Rcm to Scm

and Tcm for this tid ′. In this case, for verifiability and unforgeability with
limited trust in the underlying scheme, the output of Scm must be (failed,
tid ′).

Termination on Asynchronous Network (R. 4.2h): On agreement, this follows
from [R. 4.2h] of the underlying scheme. On disagreement, R outputs
(failed, tid) immediately while S inputs (wakeup, tid ′) to Scm upon receipt
of a non-matching initial message. If S is correct, termination for S then
follows from [R. 4.2h] of the underlying scheme.

Optimistic on Asynchronous Network (R. 4.3d): If both input the same label and
tid and none of the players receives wakeup, the scheme does not in-
put wakeup to the underlying certified mail scheme. Thus the resulting
scheme is optimistic, too [R. 4.3d].

Scheme 4.5 (Labeled Certified Mail from Certified Mail (2 of 3))
Let (Scm, Rcm, Vcm), Tcm be an optimistic certified mail scheme with one initial
message m1S sent by the sender Scm.

We define a labeled certified mail scheme (〈S, Scm〉, 〈R, Rcm〉, 〈V, Vcm〉) and
〈T, Tcm〉. If not mentioned otherwise, all simulation machines forward any
message output by their sub-machine to the intended recipient sub-machine.
The behavior of the simulation machines S, R, V, and T is defined as follows:

Sending a Message (Protocol “send“): On input (send, R, lS, m, tid), the sender
inputs (send, R, ε, m, tid ′) with tid ′ := (“cm2lcmS”, tid) to Scm and sends
(m1S , mS) with mS :=signS(lS , tid ′) instead of m1S . If the sender receives
an abort message m′

2R = signR(failed, tid ′) or an incorrect m2R, the sender
inputs (wakeup, tid ′) to Scm. If any message that arrives in the sequel is
augmented with mR then S stores this mR. Else, the underlying scheme is
executed without changes. If the underlying scheme outputs (sent, tid ′)
and mR has arrived, the sender outputs (sent, tid).

On input (receive, S, lR, tid) the recipient waits for (m1S , mS). If the label
received in mS is equal to the input one, i.e., lS = lR, it inputs (receive,
S, ε, tid ′) and m1S to Rcm. Furthermore, it appends mR := signR(lR, tid ′)
to the first message sent, say m2R. Else, if the labels are different or if
wakeup is input before receiving (m1S , mS), the recipient sends m′

2R :=
signR(failed, tid ′) and outputs (failed, tid). If Rcm outputs (received, m, tid ′)
then R outputs (received, m, tid).

If (wakeup, tid) is received by a machine, the machine inputs (wakeup,
tid ′) to the corresponding machine of the underlying certified mail
scheme. If a machine of the underlying scheme outputs (failed, tid ′), the
scheme outputs (failed, tid).

Recovery with 〈T, Tcm〉: The first recovery message from Rcm sent to T is only
input to Tcm if a correct pair (mS , mR) of signed messages with matching
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labels lS = lR is appended. Else, all subsequent recovery messages from
R are ignored.

Answers to recovery requests from Scm are augmented with mR if Rcm

has sent recovery messages for this tid before. Else, T executes recovery
of Scm without changes. S accepts messages from T with and without
mR, while it ignores messages from R until it receives mR.

Verification of a Receipt (Protocol “show“): On input (show, tid), S inputs (show,
tid ′) to Scm and sends mR to the verifier.

The verifier V outputs (received, S, R, l, m, tid) if the underlying scheme
outputs (received, S, R, ε, m, tid ′) and the sender is able to present an
mR = signR(l, tid ′). Else, it outputs (failed, tid).

3

Lemma 4.5 (Security of Scheme 4.5)
Scheme 4.5 is a secure optimistic labeled certified mail scheme (Def. 4.3). 2

Proof. The scheme adheres to Definition 4.1 by construction. We now show that
each of the requirements described in Definitions 4.2 and 4.3 is fulfilled:

Correct Execution (R. 4.2a): If (send, R, l, m, tid) is input to S and (receive, S, l,
tid) is input to R with identical labels, then the messages mS and mR

are appended to m1S and m2R, respectively, and both include the same
label. Therefore, the protocol continues without changes. From [R. 4.2a]
follows that the protocol then produces the correct outputs.

If the recipient outputs (received, m, tid), then it received (m1S , mS). A
correct sender only sends mS upon an input (send, R, l, m′, tid) for some
m′ (note that also R is implicitly signed in mS). Moreover, Rcm must have
output (received, m, tid ′) by construction. Thus m was an input to Scm for
tid ′ [R. 4.2a] and therefore m = m′.

Unforgeability of Receipts (R. 4.2b+R. 4.3b) and Receipts are Fixed (R. 4.2c+R. 4.3b):
See proof of Lemma 4.4. (Literally, except that the fact “Rcm was not
terminated” is now clear anyway.)

Verifiability of Valid Receipts (R. 4.2d+R. 4.3b): See proof of Lemma 4.4.

No Surprises for the Recipient (R. 4.2e): If a correct R output (failed, tid) because
the underlying Rcm output (failed, tid ′) then the sender cannot convince
the verifier [R. 4.2e]. The only other possibility for R to output (failed, tid)
is before making any input (receive, S, ε, tid ′) to Rcm. Then unforgeability
[R. 4.2b] implies that the sender cannot convince the verifier.

Secrecy of Message (R. 4.2f): See proof of Lemma 4.4.

Termination on Asynchronous Network (R. 4.2h): This follows immediately from
[R. 4.2h] of the underlying scheme.

Optimistic on Asynchronous Network (R. 4.3d): If both input the same label and
tid and none of the players receives wakeup, the scheme does not input
wakeup to the underlying certified mail scheme which, in this case, is op-
timistic too [R. 4.3d].
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Scheme 4.6 (Labeled Certified Mail from Certified Mail (3 of 3))
Let (Scm, Rcm, Vcm), Tcm be an optimistic certified mail scheme with one initial
message m1R sent by the recipient Rcm.

We define a labeled certified mail scheme (〈S, Scm〉, 〈R, Rcm〉, 〈V, Vcm〉) and
Tcm. If not mentioned otherwise, all simulation machines forward any mes-
sage output by their sub-machine to the intended recipient sub-machine. The
behavior of the simulation machines S, R, and V is defined as follows:

Sending a Message (Protocol “send“): On input (receive, S, lR, tid) the recipient
inputs (receive, S, ε, tid ′) to Rcm and sends (m1R, mR) with mR :=
signR(lR, tid ′) and tid ′ := (“cm2lcmR”, tid) instead of m1R to S. If the re-
cipient receives an abort message m′

2S from the sender, it inputs (wakeup,
tid ′) to Rcm. If machine Rcm outputs (received, (m, mR), tid ′) with a correct
mR, the recipient R outputs (received, m, tid). If mR is not as expected, it
outputs (failed, tid).

On input (send, R, lS , m, tid) the sender waits for (m1R, mR) and verifies
that mR = signR(lR, tid ′) and lR = lS . If this is the case, the sender in-
puts (send, R, ε, (m, mR), tid ′) and m1R to Scm and executes the protocol
without changes. Else, if the labels are different or if wakeup is received
before receiving m1R, the sender sends m′

2S := signS(failed, tid ′) and out-
puts (failed, tid). If machine Scm outputs (sent, tid ′) the sender S outputs
(sent, tid).

If (wakeup, tid) is received by a machine, the machine inputs (wakeup,
tid ′) to the corresponding machine of the underlying certified mail
scheme. If a machine of the underlying scheme outputs (failed, tid ′), the
scheme outputs (failed, tid).

Recovery with Tcm: Recovery of the underlying protocol is not modified.

Verification of a Receipt (Protocol “show“): On input (show, tid), S inputs (show,
tid ′) to Scm.

The verifier V outputs (received, S, R, l, m, tid) if the underlying scheme
outputs (received, S, R, ε, (m, signR(l, tid ′)), tid ′). Else, it outputs (failed,
tid).

3

Lemma 4.6 (Security of Scheme 4.6)
Scheme 4.6 is a secure optimistic labeled certified mail scheme (Def. 4.3). 2

Proof. The scheme adheres to Definition 4.1 by construction. We now show that
each of the requirements described in Definitions 4.2 and 4.3 is fulfilled:

Correct Execution (R. 4.2a): If (send, R, l, m, tid) is input to S and (receive, S, l,
tid) is input to R with identical labels, then the message mR is appended
to m1R and the protocol is executed without changes. From [R. 4.2a]
follows that the protocol then produces the correct outputs.

If the recipient outputs (received, m, tid), then Rcm output (recei-
ved, (m, mR), tid ′). From [R. 4.2a] of the underlying scheme follows that
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(send, R, ε, (m, mR), tid ′) was input to Scm. By construction, this input is
only made by S upon input of (send, R, l, m, tid).

Unforgeability of Receipts (R. 4.2b+R. 4.3b) and Receipts are Fixed (R. 4.2c+R. 4.3b):
If the verifier V outputs (received, S, R, l, m, tid) then Vcm has output
(received, S, R, ε, (m, mR), tid ′) with mR = signR(l, tid ′). Such an mR was
only signed if R got an input (receive, S, l, tid). (Recall that S is tacitly
assumed to be signed in mR.) This implies unforgeability.

If R output (received, m′, tid) on this input, Rcm must have output
(received, (m′, mR), tid ′). From [R. 4.2c+R. 4.3b] follows that m′ equals
m in the output of Vcm and thus of V.

Verifiability of Valid Receipts (R. 4.2d+R. 4.3b): If a correct sender output (sent,
tid) then the underlying scheme output (sent, tid ′) for the message
(m, mR). From [R. 4.2d+R. 4.3b] follows that on input (show, tid ′) to Scm,
the verifier Vcm will output (received, S, R, ε, (m, signR(l, tid ′)), tid ′) which
leads to an output (received, S, R, l, m, tid) of V.

No Surprises for the Recipient (R. 4.2e): If a correct R output (failed, tid) on input
(receive, S, l, tid), then Rcm either output (failed, tid ′) on input (receive, S,
ε, tid ′), or it output (received, (m, m∗

R), tid ′) with a wrong m∗
R.

In the first case, the verifier Vcm does not output (received, S, R, ε, m′, tid ′)
for any m′ [R. 4.2e], and V will not output (received, S, R, l, m, tid) by con-
struction.

In the second case, the verifier Vcm will only output (received,
S, R, ε, (m, m∗

R), tid ′) for the same m∗
R [R. 4.2c]. If m∗

R 6= signR(l∗, tid ′)
for any l∗ then the verifier V does not output received. Otherwise, l∗ = l
would hold because R only signs one mR for this tid ′. But this contradicts
the assumption of this second case.

Secrecy of the Message (R. 4.2f): If the sender outputs (failed, tid), then either the
underlying certified mail protocol output (failed, tid ′) and guarantees se-
crecy of the message [R. 4.2f] or else, failed was output after receiving
m1R. In this case the message is never input to the underlying scheme.
Since the sender does not send the message in any simulation message,
the message is kept secret.

Termination on Asynchronous Network (R. 4.2h): This follows from [R. 4.2h] of
the underlying scheme.

Optimistic on Asynchronous Network (R. 4.3d): If both input the same label and
tid and none of the players receives wakeup, the scheme does not input
wakeup to the underlying certified mail scheme which, in this case, is op-
timistic too [R. 4.3d].
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4.6 Simple Certified Mail

We now present a variant of certified mail which is considerably more effi-
cient than labeled certified mail. We show that one is able to provide non-
repudiation with 2 messages in time 2 if the recipient is not allowed to reject to
participate in individual runs of the non-repudiation protocol.11

4.6.1 Definition

The basic difference between labeled and simple certified mail is that simple
certified mail neither includes labels nor transaction identifiers, i.e., the recipi-
ent cannot decide whether to participate in a particular run (identified by the
tid ) or not.

Definition 4.6 (Simple Certified Mail)
A simple certified mail scheme for a message space M is a triple (S, R, V) of proba-
bilistic interactive machines (such as probabilistic interactive Turing Machines)
where V does not keep state between subsequent protocol runs. The algo-
rithm S is called sender whereas the algorithm R is called recipient. In addition,
the scheme may specify a set AM of auxillary machines without in- or outputs.
The algorithms can carry out two interactive protocols:

Sending Mail (Protocol “send“): The sender obtains a local input (send, R, m),
where send indicates that the “send“-protocol shall be executed, R is the
intended recipient, and m ∈ M is the message to be sent. After the pro-
tocol execution, the sender either gets an output (sent, R, m) or (failed, R,
m) whereas the recipient may output (received, S, m).

Verification (Protocol “show“): This is the non-repudiation of receipt verification
protocol between the sender S and a particular verifier V12. The sender
inputs (show, R, m) and the verifier outputs either (received, S, R, m) or
(failed, R, m).

It is called secure if it fulfills the following requirements if all machines in AM
are correct:

Requirement 4.6a (Correct Execution): Consider an execution of “send“ by a cor-
rect sender S and recipient R on input (send, R, m) to S. Then, if the sender
does not input (wakeup, R, m) the “send“-protocol outputs (sent, R, m) to
the sender and (received, S, m) to the recipient.

Requirement 4.6b (Verifiability of Valid Receipts): If a correct sender S outputs
(sent, R, m) on input (send, R, m) and later executes “show“ on in-
put (show, R, m) with a particular correct verifier V then V will output
(received, S, R, m).

Requirement 4.6c (Secrecy of Message): If a correct sender outputs (failed, R, m)
on input (send, R, m) then the recipient will not be able to obtain infor-
mation about the message m.

11Note that this restriction corresponds to a german service of registered mail where a mail is
defined to be delivered even if the recipient does not pick up his mail within a certain time.

12Note that if the recipient would be allowed to participate, a protocol sending the message
during “show“ would be a correct scheme.
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Requirement 4.6d (No Surprises for the Recipient): If a correct verifier outputs
(received, S, R, m) then a correct recipient R outputs (received, S, m)13.

Requirement 4.6e (Termination on Synchronous Network): A correct sender will
either output (sent, R, m) or (failed, R, m) after a fixed number of rounds.

Requirement 4.6f (Termination on Asynchronous Network): On input (wakeup, R,
m), a correct sender will either output (sent, R, m) or (failed, R, m) af-
ter a fixed time.

3

We again define an optimistic simple certified mail by introducing a third party
T that participates in case of exceptions:

Definition 4.7 (Optimistic Simple Certified Mail)
A secure simple certified mail protocol with AM := {T} is called “optimistic”
if for correct R and a correct S who does not input (wakeup, R, m), the “send“-
protocol terminates after a fixed time and the third party does not send or re-
ceive messages. 3

4.6.2 Protocol with Optimal Efficiency

We now sketch a simple certified mail scheme which is time- as well as
message-optimal. Figure 4.5 depicts the optimistic behavior whereas Figure
4.6 depicts the detailed behavior of the machines.

Scheme 4.7 (Optimal Simple Certified Mail Scheme)
The scheme for simple certified mail for a message space M is a triple (S, R,
V) and a third party T of interactive probabilistic machines which are able to
execute the protocols defined as follows:

Sending Mail (Protocol “send“; Figure 4.6): On input (send, R, m), the sender
sends m1 := signS(m) to R. The recipient then sends m2 := signR(m1)
to the sender and outputs (received, S, m). Upon receipt of m2, the sender
outputs (sent, R, m).

On input (wakeup, R, m), the sender sends m3 := signS(R, m) to T who
sends m4R := m3 to R and m4S := signT(m3) to S who then outputs (sent,
R, m).14

Verification (Protocol “show“): On input (show, R, m) to S, S sends m2 or m4S ,
respectively. The verifier outputs (received, S, R, m) if the verification of
the signatures was successful and (failed, R, m), else.

3

13Since the recipient must not participate in “show“, this output is required to occur during
“send“.

14Note that an incorrect S may send a message m′ 6= m, which may lead to a second receipt.
This, however, does not contradict the requirements since the receiver and the third party will only
produce receipts for messages that are received by the recipient.
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Sender S Recipient R

“(send, R, m)”

−
m1 := signS(m)
−−−−−−−−−−−−−→

wakeup : “resolve“

←−
m2 := signR(m1)−−−−−−−−−−−−−

“(sent, R, m)” “(received, S, m)”

Figure 4.5: Optimistic Behavior of the Simple Certified Mail Scheme 4.7
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Figure 4.6: Machines of Scheme 4.7.

Lemma 4.7 (Security of Scheme 4.7)
Scheme 4.7 is a secure simple certified mail scheme. 2

Proof. The scheme adheres to the protocols and their in- and outputs by defini-
tion. We now show that the requirements of Definition 4.6 and 4.7 are fulfilled:

Correct Execution: A correct receiver outputs (received, S, m) after receiving m1

and sending m2. After receiving m2, a correct sender outputs (sent, R,
m).

Verifiability of Valid Receipts: If a sender output (sent, R, m), it has received m2

or m4S , which are both accepted as a receipt by the verifier.

Secrecy of Message: A correct sender never outputs failed.

No Surprises for the Recipient: If a correct verifier outputs received, R either sent
m2 and obtained m or eventually obtains m as part of m4R.

Termination on Asynchronous Network: On input (wakeup, R, m), the sender out-
puts (sent, R, m) after time 2.

Optimism: If both players are correct and the sender does not input
(wakeup, R, m), then m1 and m2 are sent and the “send“-protocol termi-
nates without T sending or receiving messages.
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It is obvious that the following theorem holds:

Theorem 4.4 (Optimality of Scheme 4.7)
Scheme 4.7 is message- as well as round-optimal in the optimistic case.

This holds even if the third party is allowed to participate in the “show“-
protocol. 2

Proof. If the optimistic protocol would have only one round or one message,
the receipt would be independent of the message. Therefore, the sender may
convince a verifier that it sent any message.
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Chapter 5

Conclusion and Outlook

In this part, we have analyzed the efficiency of two particular instances of op-
timistic fair exchange, namely contract signing and certified mail.

With respect to the optimal efficiency, we focused on the (hopefully) most
likely case where both participants are correct. In this case, the efficiency of our
optimistic protocols is better than non-optimistic fair exchange (cf. [PfSW1 98]).
Therefore, optimistic protocols should be chosen for most applications if a high
percentage of faulty protocol executions seems unlikely1. Another reason for
using optimistic protocols is that they provide a higher level of availability, and
more secrecy against the third party.

Furthermore, we have shown by means of mutual simulation that the
message-complexity of both instances of fair exchange in case of two-party
disputes is identical for optimism on disagreement. Obviously, our schemes
resulting from several simulations are not efficient with respect to computa-
tion and memory. However, optimizing particular protocols is easily possible
without additional messages or time.

A preliminary analysis of the time-complexity of time-optimal certified
mail has shown that in case of optimism only on agreement, optimistic labeled
certified mail needs more time than optimistic contract signing. For optimism
on disagreement optimistic labeled certified mail needs as much time as con-
tract signing. However, formal proofs of these observations are still in progress.

Even though we published some results towards multi-party fair ex-
change [ABSW 98, ABSW 99, AsSW2 96], the optimal efficiency of multi-party
fair exchange under different assumptions is still unclear in most cases. In
[ABSW 99], we have sketched how to apply multi-party contract signing to
implement the secure and publicly verifiable multi-party commit of an atomic
transaction. It would be interesting to further extend this approach towards a
general notion of optimistically secure atomic transactions between mutually
distrusting parties.

1Since a cheating party does not gain anything, this should be the most likely case.
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Chapter 6

Introduction

Most practically relevant cryptographic systems are reactive: For instance, in
electronic cash systems users interact with the system by withdrawing, spend-
ing, receiving and depositing e-cash, and at any point in time the system has
to remember the amount each party owns. Following the terminology in dis-
tributed systems we call any system that can interact with its environment
multiple times and needs to keep state between two interactions reactive.

Some systems are obviously reactive, like electronic payments, but also
secret-key agreement, public-key certification, or certified mail. At first glance
more surprising examples are digital signatures and message encryption se-
cure against active attacks: such attacks are sequences of interactions between
the adversary and the system, and thus these systems are naturally defined
reactively.

We present a computational model for reactive systems, and investigate
how to define the security of such systems following the simulation paradigm:
Security of a system is defined by means of an ideal system that has all the
desired security properties by construction, but usually makes unrealistic as-
sumptions, e.g., that a machine unconditionally trusted by all parties is avail-
able (called “trusted host”). A real system is secure if it is “at least as secure as”
this ideal system: Anything that can be achieved by an adversary attacking the
real system can be achieved as well, i.e., simulated, by an adversary attacking
the ideal system.

6.1 Our Results

Our main two contributions are to show how the simulation paradigm can
be applied to reactive and real-world systems. Previous work either consid-
ered only practical protocols for specific types of systems, or focused on non-
reactive evaluation of functions.

One of the new aspects is that we model the users explicitly as arbitrary
stateful machines. These users use the system as well as its simulation. This is
particularly natural if one reactive system is used as a sub-system of another
one while keeping its own state.

Our model compares the security (i.e., integrity and secrecy) of any two
systems. We then use the concept of trusted hosts for specifying the intended
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service of a system. A trusted host is, essentially, a single and non-corruptible
machine, which provides the desired service for all parties. A reactive system
is secure if it is at least as secure as the trusted host specifying its service.

As we will show in Section 6.2, applying the concept of trusted hosts in its
original sense (i.e., only one machine that offers the same service to attackers
and honest users) leads to the problem that in many cases, no efficient system
can fulfill such a specification. Nevertheless, one may want to use an efficient
system and one should be able to define and prove precisely what security
such a system offers. We solve this problem by the new concept of “real-world”
trusted hosts: First, such a trusted host differs from a normal one by offering
specific services to the adversary, which define the accepted vulnerabilities of
the system in an abstract way. Secondly, it is then useful to accept that there is
not one, but a collection of trusted hosts in one specification.

6.2 “Real-world” Trusted Hosts Specifying Ac-
cepted Vulnerabilities

To illustrate why we need specific “real-world” trusted hosts offering special
services to adversaries, we now sketch some common vulnerabilities that are
accepted for efficiency reasons in many situations, and why they cannot be
modeled in a usual one-for-all trusted host.

6.2.1 Accepted Secrecy Leaks

As a first example, consider encryption. For instance, in [Gold 99], Page 8, Gol-
dreich says that an encryption scheme is considered secure if it simulates an
ideal secret channel between the parties, and that this means that an eaves-
dropping adversary gains nothing over a user which does not tap this channel.
This is indeed the most desirable service and easily specified by a trusted host
that simply relays messages. However, it implies that an adversary does not
even see whether a message was sent or not. Thus any real system as secure as
this trusted host must hide this fact, too, e.g., by sending meaningless cipher-
texts at all other times (see [Abad 98]). This may indeed be the way to go in a
few applications, but it costs a lot of bandwidth. In many applications, one is
therefore satisfied with encrypting the real messages only. Nevertheless, one
may want to have a precise definition of what one has achieved in the form of
the simulation of a trusted host. For this, we introduce an abstraction of the
accepted vulnerability into the trusted host. For encryption, the trusted host
will tell the adversaries the traffic pattern in the form of one “busy” bit per pair
of honest participants and round (see Section 9.1).

The same situation with observable traffic patterns occurs in many other
systems. Our approach enables us to separate cryptographic vulnerabilities
of insecure implementations from the unavoidable vulnerability of the service
given certain ressource limitations.
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6.2.2 Multi-Round-Rushing Adversaries

While, once noticed, the traffic analysis vulnerability may seem clear, and so
does a similar vulnerability that the adversary can usually destroy messages in
transit, it may be less obvious that even after these changes to a trusted host, no
real implementation will be as secure as it. (The same problem occurs with the
ideal model of encryption, i.e., it is not a result of introducing vulnerabilities at
all.)

The problem is that adversaries can react several rounds faster than honest
participants.1 We first present it in the synchronous model and then discuss
why it is not only a technical difficulty of this model.

The synchronous model is that all correct machines switch once per round,
and their outputs are available as inputs to other machines in the next round.
Thus, if an honest user sends a message using the real encryption system, the
message goes via the sender’s machine and the recipient’s machine. The cor-
responding timing would be modeled in the trusted host, i.e., the trusted host
would deliver messages after two switching steps. Thus, with the trusted host,
an honest user cannot get an answer referring to his message earlier than four
rounds after his message. However, if the recipient in the real system is cor-
rupted, he can save the two rounds where his own machine would handle
the message by taking it immediately from the line, decrypting it (he knows
his own decryption key), and composing and encrypting the answer, all in one
round. Thus an answer from a dishonest recipient can arrive two rounds faster.
In this case, we see no realistic way at all to improve the real system so that it
corresponds to the same trusted host for honest and dishonest recipients.

We therefore also model this accepted vulnerability in the trusted host, so
that anyone basing an application on the trusted host must be aware of it. For
this, we distinguish access points of honest users and adversaries to the trusted
host. The service offered to the adversary is faster, corresponding to the mini-
mal timing the adversary can achieve in real systems.

It is reasonable to ask whether this problem would disappear in asyn-
chronous models, and whether asynchronous models aren’t more realistic any-
way. (A similar approach would be to relax the timing requirements in the
comparison, i.e., not to require that events in the ideal and the real system must
happen in the same rounds.) First, however, many cryptographic protocols are
designed for synchronous systems and it should be possible to define their se-
curity.2 Secondly, in real life the problem occurs whenever the users (not the
machines of the system!) may have access to real time. This seems unavoidable
because we cannot define that cryptographic systems should never be used in
real-time applications or that human users should not look at their watches.
Thus, in a real system an adversary may indeed be faster (e.g., by bridging
network delays), and honest users can notice this. This will usually not have a
very bad effect,3 but contradicts real-life indistinguishability of the real system
and the trusted host. Hence we believe that this fact must be modeled in the
trusted host.

1This is different from the well-known problem of rushing adversaries within a round, which
is described in Section 8.1.6.

2Of course, the synchrony is typically virtual, i.e., derived from loosely synchronized clocks
and bounds on message delays after which a message will be considered lost.

3However, one can construct examples where users tell secrets to someone who can react very
fast, e.g., because they believe that the person must already have known the secrets before.
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6. Introduction

6.3 Overview

Chapter 7 discusses related work.
Chapter 8 presents our formal model in detail. A reactive system is basically

a set of synchronously interacting probabilistic state machines. “At least as
secure as” means that for each static adversary in the real reactive system there
is an adversary in the ideal reactive system that achieves essentially the same
effect for each honest user. This means that the adversary attacking an ideal
system can computationally or perfectly simulate the (reactive) behaviour of
the real system towards the honest users.

Chapter 9 shows how to apply our model to practical reactive systems. The
first example (Section 9.1) is secure channels, i.e., secret and authenticated mes-
sage transmission. As we will see, already this seemingly trivial example ex-
hibits serious definitional problems. The second example (Section 9.2) is opti-
mistic labeled certified mail. This example illustrates our alternative to the tradi-
tional style of definition as used in Section 4.2. In both cases we define trusted
hosts, present a real system, and prove the security.
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Chapter 7

Related Work

Early research (e.g., [GoMi 84, Yao1 82]) formalized the security of non-reactive
cryptographic primitives against passive attacks. For completeness, we sketch
some of these early results but then focus on definitions based on the simu-
latability paradigm. Early sketches of general security definitions for reactive
systems were described in [PfWa 94, GMW 87]. In [PfWa 94], a system was de-
fined to be secure if for any adversary and user-machine behavior, there exists
a behavior of a virtual user accessing the corrupted ports of the trusted host
such that the behavior to the correct users is indistinguishable. The environ-
ment was already modeled explicitly by introducing user-machines.1

7.1 Direct Cryptographic Security Definitions

Simulatability is not the main way to define cryptographic security: For many
systems the desired properties can be defined directly, without comparing the
real system with some ideal system.

In general, all integrity properties can be directly defined by requiring that
an adversary cannot destroy the desired properties (cf. Section 3.2.4). Unfor-
tunately, secrecy properties are more difficult to capture with such definitions
[GoMi 84]2 since they require a more detailed model of the attack and a clear
definition of the secret that shall be guessed (cf. Section 4.2.2), i.e., a new se-
crecy definition is required for each new kind of system. This hampers an
evolution of a well-understood security formalism in parallel to the evolution
of new services.

This is probably the reason why for multi-party computations trusted host
definitions are the dominant way of defining security. Note that a trusted host
necessarily defines both, secrecy and integrity.

A disadvantage of simulatability-based definitions as compared to direct
ones is that a trusted host usually over-specifies the intended service: It fixes
all details completely and fixes also details that are not relevant for security. For
instance, a trusted host may fix the exact timing of a protocol even though it
would not make any difference for security.

1The concept of user-machines was also described in [PfWa3 98].
2In [GoMi 84], an encryption system was defined to be semantically secure if any output of an

adversary given the ciphertext can also be computed without it.
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7.2 General but Non-reactive Simulatability Defini-
tions

The first definition of secure multi-party computation of a function was pro-
posed in [Yao 82]. It defines that a protocol provides secrecy if each player
does not gain knowledge about the other inputs to the function, except the
computed value. Integrity is defined as being able to detect cheating players.
This definition does not require that the inputs are kept secret in case a player
is cheating. This was fixed in later definitions of secure function evaluation
by defining secrecy including integrity [Beav5 91, Cane 96, GoLe 91, MiRo 92,
Yao 82]. In [GoLe 91], for example, the simulation paradigm was used for
defining secrecy and integrity: A computation including faulty players was
defined to be secure if any protocol execution including faulty players can be
simulated by a ‘legal version” of the protocol. In such a legal version, the faulty
players first compute their inputs, then perform all computations correctly, and
finally make an output that is computed from their view. This is similar to the
definition of non-adaptive secure computation in [Cane 96]. In order to intro-
duce adaptiveness, [Cane 96] then allows the adversary to input corruption
requests in the legal version of the protocol.

In [GoMR 89], a similar approach has been used to define the notion of
zero-knowledge: In a zero-knowledge proof, a prover P proves the fact that
x ∈ L for a language L to a verifier V. Intuitively, secrecy means that the
verifier learns nothing except the fact that x ∈ L. This is formalized by the
requirement that any dialogue between a prover P and an incorrect verifier V′

can be simulated by a simulator M(V′).

7.3 Reactive but Non-General Simulatability Defi-
nitions

We now sketch some specific reactive security definitions that follow a simu-
latability approach comparable to ours.

In [GeMi 95], the security of verifiable secret sharing was defined based on
existing simulatability definitions for multi-party computation of a function.
This definition splits the reactive system into a sharing and a recovery phase.
Each of these phases is then specified by a function. A scheme is defined to
be a secure verifiable secret-sharing scheme if it securely computes these two
functions.

[BeCK1 98] define the security of authentication and key exchange proto-
cols. They compare an adversary attacking a protocol on an idealized authen-
ticated network model (called AM) with an adversary attacking a real-world
protocol on an unauthenticated network (called UM).

A so-called authenticator converts an idealized non-authenticated protocol
for a authenticated network model AM into an authenticated protocol for an
unauthenticated network UM. It is defined as being secure if for any adversary
for the unauthenticated network there exists an adversary for the authenticated
network, such that the output distributions for any given input vector are com-
putationally indistinguishable.

Next they analyze key exchange protocols for implementing authenticators
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now directly comparing the behavior of an idealized trusted host3 and a real
protocol. In both models the machines output the secret keys, but the adver-
sary does not obtain any information about them (i.e., there are two different
kinds of outputs) unless he corrupts a user. The adversary is scheduling every-
thing.

The weakness that the adversary does not obtain any information about the
keys is observed in [Shou 99]. The basic model for key exchange is the same
as in [BeCK1 98] but more explicit (i.e., the trusted host is really defined as a
machine). The user revealing (partial) information is modeled by letting the
adversary choose functions f which can be applied to the global state (which
includes all secret keys). The adversary then obtains the output of the chosen
function. The collection of all functions f corresponds to our user machine H
modeling the users of the system.

Note that [BeCK1 98, Shou 99] do not consider users as stateful machines
but rather quantify over the input sequences of correct users. This is sufficient
for the analysis of authentication protocols but does not extend to secrecy of
other protocols.

Remark 7.1. In [Pfit8 96] such user-machines were generally defined, but only
in the context of a cryptographic semantics for temporal-logic formulas, i.e.,
integrity requirements. However, there it was easy to prove that the user ma-
chines could be joined with the adversary machine. Intuitively this means that
the honest users are fully controlled by the adversary. But in general, i.e., with
secrecy requirements, this is not possible: if A comprises the honest users, there
are no “secrets” that could be protected – A would know everything the honest
users would know. ◦

Another definition of a particular reactive system is [Beav 96] that defines
the security of oblivious transfer against adaptive adversaries, i.e., adversaries
that may decide to corrupt any player while the protocol is running. This is
done by allowing the adversary to send “corrupt requests” to the players at
any time.

7.4 Reactive and General Simulatability Defini-
tions

An early reactive specification was the notion of “mental games” as sketched
in [GMW 87]. It specifies the game to be played by means of a single turing-
machine and then requires that the (distributed) game produces the same out-
puts and that each view of a player can be simulated using its inputs and the
outcome of the game.

One way to apply the simulation paradigm to the definition of secure re-
active systems that has been proposed is to consider a reactive system as the
sequential composition of individual function applications. Each distributed
function evaluation can then be compared to the idealized function using the
existing notion of simulatability for multi-party computation of a function (see
Section 7.2).

3The described trusted host defines commands like “establish key”, “corrupt session”, or “cor-
rupt player” that can be invoked by the adversary.
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Indeed, often one can identify individual sub-protocols (sending one mes-
sage, making one payment, withdrawing money, etc.), and one could hope that
they play the role of these functions. However, both the system and its users
may keep state between different executions, e.g., if the system is a secure
database the results of a “read” operation clearly depends on earlier “write”
operations. In particular with the system, this is much better modeled if one
also defines the ideal system in a reactive way (i.e., with an “ideal state”) and
defines the comparison of reactive systems.

For instance, in an electronic cash system the success of an attempted pay-
ment depends on the fact whether a party has enough “electronic coins.” These
coins in their cryptographic form should certainly not be an output of the with-
drawal function in the ideal system used for the definition because they are
implementation-dependent. Nor can we simply let the ideal system output
something like “you now have seven coins” in withdrawal and let the user
input this again in payment because an adversary might input an arbitrary
number. Instead, the ideal system should internally have a state that contains
the correct number of coins any party would currently have.

A quite detailed definition for reactive systems using this approach is given
in [HiMa 97, FiHM 99]: They define the system by straight-line programs, with
inputs and outputs (but without loops). A protocol is secure iff for any adver-
sary A corrupting a subset of the players of the protocol, there exists an ideal-
model adversary A0 and a fixed subset of the machine outputs of the protocol,
such that the distribution of the subset of the outputs of the correct machines
(excluding T) in the protocol is identical to the distribution of all outputs of
the correct machines in the ideal model. The definitions are only given for the
information-theoretic model which simplifies the definition of user behavior
but also results in relatively complicated definitions for the views that must be
simulatable. The definitions do not easily generalize to the computational case
(later, for each concept, we will explain why).

Another approach extending multi-party function evaluation is to consider
a reactive system as a single state transition machine. Under the assumption
that each party outputs its state after each round, the execution of such a ma-
chine can then be modeled as a sequence of multi-party computations of the
state transition function [Gold 98].

An approach to specifying general reactive systems that is similar to ours
was sketched in [Cane 98]. It is an extension of the model for secure function
evaluation proposed in [Cane 96]. The basic idea of the extension is to intro-
duce an environment that keeps state between subsequent invocations of the
reactive system. In [CaGo 99], this approach was applied to threshold encryp-
tion where an arbitrary protocol π that uses the cryptosystem plays the role of
this environment.
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Chapter 8

Security of Reactive Systems

This section describes our formal notion of the security of reactive systems.
In Section 8.1, we define the model of systems, adversaries, users, and ideal
systems specifying a service based on trusted hosts. In Section 8.2, we define
what it means that a system is “as secure as” another system. In Section 8.3, we
prove some properties of our model.

8.1 Building Blocks of a Model of Reactive Systems

Intuitively, when a reactive system is running, there are some correct machines,
adversaries, and honest users, i.e., an environment to which we want to guar-
antee a service, see Figure 8.1. We will call this a configuration. In the follow-
ing subsections, we first briefly describe the machine model. Then we define
correct machines and how a system prescribes them, adversaries and honest
users, and how a configuration runs. In particular, we need a special switch-
ing model allowing for “rushing users”. Finally, we define ideal systems, i.e.,
trusted hosts, in a way that allows them to contain accepted vulnerabilities.

8.1.1 Machines

All our machines, including adversaries and users, are modeled as probabilis-
tic interactive state machines. In each switching step, such a machine reads its
inputs and a random value (assumed to come from a random source private to
this machine), changes its local state, and makes outputs. For ease of concrete

M1 M2

Active attacks

A
G

M3 M4

H

Figure 8.1: A Configuration of a Reactive System
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specifications we allow machines to have several so-called input and output
ports; there can be one input or output per port in each round. For each ma-
chine M, let ports(M) denote its ports (formally pairs of a name and a Boolean
value “in” or “out”); similarly for sets of machines. Machines start with one
“initial input”, i.e., the starting state is parameterized.

We call a machine polynomial-time if the time of its computation is polyno-
mially bounded in the length of its initial inputs.1 The typical computational
model is interactive Turing machines as in [GoMR 89]; each port is modeled by
a communication tape.2

8.1.2 Structures

A structure is a triple (M , G , s). The first component is a set M = {M1, . . . ,Mn}
of machines, called the correct machines. Intuitively, these are the machines that
execute a prescribed protocol. We assume that both the machines and all their
ports have a unique name within any structure.

The second component, G , is a graph called the connection graph. Its nodes
are ports, let nodes(G) be the set of them. Intuitively, this graph contains both
the connections between different machines of M and all the connections that
these machines offer to their environment, i.e., honest users and adversaries.
We require nodes(G) ⊇ ports(M ) and define free(G,M ) = nodes(G)−ports(M ).
Each output port is connected to one or more input ports, and each input port is
connected to exactly one output port. Hence G describes unidirectional mul-
ticast channels, and all ports are connected. Each multicast connection must
contain at least one port from ports(M ).

The third component, s , called specified ports, is an arbitrary subset of
free(G,M ). Formally, it will only play a role in the definition of “as secure as”.
There the ports in s are intuitively those whose service must be guaranteed.

8.1.3 Systems

Typically, a system will be described by an “intended” structure (M , G , s) for
the case without attacks, and the other allowed structures are derived from it
given a so-called trust model for both machines and channels.

However, our model is not specific to any such derivation rules: We simply
define that a system Sys is a set of structures (M ,G, s).

Remark 8.7. Recall that we currently only model static adversaries. Hence each
of our structures can contain a fixed set of correct machines. Otherwise we
would have to provide specific ports where the adversary can make “corrup-
tion requests”. ◦

1The simpler definition that the state-transition function is polynomial-time is not sufficient.
For instance, a polynomial-time machine could then always make an output twice as long as its
latest input. Two interacting machines of this type would have exponential power.

2Actually, we are not aware of a precise formalization for a multi-party scenario (i.e., how the
Turing machines that continually run on a bit-by-bit basis are synchronized or scheduled into
global message-by-message communication), but this can certainly be done and is not specific
to our paper. (It is also needed for multi-party function evaluation and any specific multi-party
reactive systems with computational bounds.)
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8.1.4 Honest Users

As mentioned in the introduction, a special feature of our model is that we
model the honest users, i.e., the environment of the correct machines and the
adversary, as normal probabilistic machines. The reason is that in the real
world, the users’ inputs will depend in some unknown way on previous in-
and outputs. Moreover, real users may also communicate outside the given
system; for instance, user X might give some outputs to user Y so that Y ’s
input can depend on them, even if X makes no inputs himself. We therefore
model the set of all honest users as a single probabilistic machine named H.

A compatible user for a structure (M , G , s) is an arbitrary machine H whose
port names are disjoint from ports(M ). Typically, ports(H) ∩ nodes(G) is non-
empty, i.e., the user uses some of the free ports offered by the structure. Intu-
itively, these ports are used for commands from the users to the system, such
as “send message m to R” or “pay amount x to S”, and to obtain the system’s
reaction, like “message m received” or “amount x paid”.

Remark 8.8. Using an arbitrary machine H gives the strongest definition: an ar-
bitrary probabilistic user machine represents the adversary’s arbitrary a-priori
knowledge about the behavior of the honest users. However, in computational
security definitions, we will also restrict H to computationally feasible behav-
ior.

Remark 8.9. We currently do not allow restrictions on honest users (such as
“don’t do this before doing that”), corresponding to the view that a system
specification used in a simulateability definition should contain provisions for
all possible user behaviors, e.g., error messages.

Remark 8.10. In a system with subprotocols like individual payments, our
model automatically covers that subprotocols can be interleaved, i.e., that dif-
ferent users may make payments etc. at the same time. If one does not want
this, it must be excluded on the system side, e.g., by ignoring inputs at certain
times. ◦

8.1.5 Adversaries

A compatible adversary for a structure (M , G , s) and user H is an arbitrary
machine A whose ports are disjoint to those of M and H and that contains all
ports of G that are still free, i.e., ports(A) ∩ nodes(G) = free(G,M )− ports(H).

The remaining ports of H and A are for communication between the hon-
est users and the adversary. Intuitively, these connections are used for active
attacks. One example is that a user forwards outputs of a machine Mi to the
adversary, e.g., the received plaintexts in a chosen-ciphertext attack on an en-
cryption scheme. Another example is that a user forwards certain inputs from
the adversary to a machine Mi, as in a chosen-message attack on a signature
scheme. We describe the connections by a graph GAH , whose set of nodes
nodes(GAH ) is ports(H) ∪ ports(A) − nodes(G). Like G , it may connect an out-
put port with several input ports, while an input port is connected only once.
Furthermore, connections from H to itself are not allowed. We call this a com-
patible graph.

A configuration is defined as a tuple (M , G , s , H, A, GAH ) where (M , G ,
s) is a structure, and H, A, and GAH are a compatible user, adversary, and
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Figure 8.2: A Configuration. The structure is shown in bold lines. While Fig-
ure 8.1 showed a “normal” case, this figure shows some more exotic possibili-
ties; those that we have excluded are crossed out with an X.

graph, see Figure 8.2.3 We denote the set of all configurations for a given sys-
tem Sys by Conf(Sys), and those with polynomial-time adversary and user by
Confpoly(Sys). We omit “poly” if it is clear from the context.

Remark 8.11. The fact that we allow either all or all polynomial-time adversary
machines in configurations guarantees that we can later freely modify and
combine adversaries without risking that the new adversary is not valid.

Remark 8.12. We currently model a single adversary who co-ordinates all mali-
cious behavior in the configuration. This results in the strongest security defini-
tions. Introducing multiple adversaries only changes the model if we limit the
communication and computation power of some of them: Otherwise they can
always agree on a common strategy and behave like a single adversary. Hence
a structure would contain precise interfaces for the different adversaries, and
possibly classes of allowed machines for them. Multiple and non-cooperating
adversaries of different power are considered in [HiMa 97, FiHM 99]. A prac-
tical example are wallet-with-observer payment systems [ChPe1 93]; they offer
privacy for the payer only if a corrupt bank cannot communicate directly with
a corrupt observer inside the payer’s personal wallet. ◦

8.1.6 Dynamic Behaviour with Rushing Users

We now define the dynamic behaviour of a configuration, i.e., of connected
correct machines, adversary and user.

All machines, including A, receive the same initial input, also called global
input. For simplicity we assume that it is of the form 1k, where k ∈ N is a
security parameter.

As mentioned above, we currently use a synchronous model. Normally, i.e.,
in systems without specific adversaries and users, this means that the execution
proceeds in rounds. In each round, all messages from the previous round are
reliably transported from the output ports to the connected input ports. Then
each machine switches (based on its current local state, all messages from its
input ports, and its current random input), producing a new local state and
messages for its output ports. (If an input port does not provide any message,
the machine reads a special “empty” symbol ε.)

The well-known concept of “rushing adversaries” (the first references we
are aware of are [BrDo 84] for the concept and [ChDw 89] for the name) can be

3Without loss of generality, one can make a similar definition with only one graph, but then one
needs additional notation to retrieve the structure from the configuration.
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described as follows: In a fully synchronous system, even the adversary would
respect the round structure, i.e., consider only outputs of the previous round
as inputs. However, this is not realistic in most implementations of rounds:
A real adversary can “rush” and compute its outputs of a given round based
on the outputs of the correct players of the same round.4 Hence one switches
adversaries and correct machines alternately in the model.5

We now have the same problem with the users: Even an honest human
user might consider a “message” as soon as it pops up on his or her display.6

Since we do not want to restrict the user behavior, we define “rushing users”
in addition to “rushing adversaries”. Furthermore, in real life, the adversary
and the honest users may interact with each other several times in one round
before producing their inputs for the correct machines. This would mean that
in each round, we first switch the correct machines and then allow an arbitrary
dialogue between the user machine H and the adversary A before they produce
their inputs for the correct machines in the next round. Fortunately, as we show
in Section 8.3.2, the following model with only four subrounds of each round
[i] is equivalent:

• In Subround [i.1], the correct machines in M and the user H switch.

• In Subround [i.2], the adversary A switches.

• In Subround [i.3], the user H switches again.

• In Subround [i.4], the adversary A switches again.

We can assume w.l.o.g. that H and A make outputs on connections where all
recipients are in M only in Subrounds [i.3] and [i.4], respectively, because a
machine Mj can only consider them in Round [i + 1.1]. Otherwise we define
that Mj obtains the concatenation of the two outputs as an input. Given this
switching model, the runs (or executions, or traces) of a configuration are well-
defined. Hence for each global input (i.e., starting states), one obtains a prob-
ability space on such executions, given by all random inputs to all machines.

The view of a set M ′ of machines in a run consists of the global input and, for
each round, of the random input and the list of all messages sent or received by
the machines in M ′. Such a view, like any other function of a run, is a random
variable in the probability space of the runs. We call it view conf ,k(M ′), where
k is the initial input and conf the configuration, and omit conf if it is clear
from the context. Let view conf (M ′) denote the ensemble of random variables
(view conf ,k(M ′))k∈N.

Remark 8.13. The subrounds also hide differences between correct and attacked
connection graphs: Channels where the adversary can modify the messages
are routed through the adversary. In a fully synchronous model, the messages

4If such an attack is not modeled, two players can send two random numbers r1 and r2 to each
other and use r1 ⊕ r2 as a secure distributed coin-flip (cf. [Blu1 83]). In practice, however, such a
scheme is insecure since a dishonest player may send r2 after learning r1.

5Recall that this is another problem than the multi-round-rushing adversaries explained in Sec-
tion 6.2.2, which will be covered by the specification of the trusted hosts.

6We could prevent this by letting the machines hold back user outputs until the beginning of
the next round. However, the next problem occurs in any case.
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Figure 8.3: Configuration of an Ideal System

would be delayed as A switches them, while the uncorrupted channel would
deliver them directly. With subrounds, every message arrives in the next full
round in both cases.

◦
Lemma 8.1
The following general facts are true about compositions of machines:

a) We can consider several machines of the same type (i.e., users, adver-
saries, or correct machines) as one machine without modifying the prob-
ability space of executions of the system.

b) Such a composition of polynomial-time machines is polynomial-time.

c) In the same sense, a user machine and correct machines can be combined
into a user machine.

d) W.l.o.g. the view of a combined machine M∗ can be identified with the
view of the set of individual machines Mi in it. This implies that we can
also say w.l.o.g. that the view of each Mi is a part of the view of M∗.

2

Proof. The composition of several machines in Part a) means that the transi-
tion function of a composed machine is defined by letting internal machines
and internal connections switch just like external ones. Then one can easily
show associativity of such compositions. The number of steps of the composi-
tion is the sum of the steps of the two machines, plus an overhead for internal
switching linear in the length of the messages written. All this is polynomial
in k. Part c) is clear from Part a) because correct machines switch like a special
case of user machines. For Part d), recall that the view of M∗ consists of all the
random inputs and all messages sent and received by M∗. From this, the local
states and messages sent and received internally between machines Mi can be
uniquely reconstructed.

8.1.7 Ideal Systems with Accepted Vulnerabilities

As we allow accepted vulnerabilities even in the ideal system (recall Sec-
tion 6.2), our ideal systems are technically not special and we do not make
a specific definition for them. Typically, an ideal system Sys contains only
structures of the type ({TH }, G , s) (see Figure 8.3), i.e., with only one correct
machine. It is called trusted host. In other models, i.e., without accepted vul-
nerabilities, the trusted host has no special connections to the adversary, and
one is not so flexible in allowing different trusted hosts in different structures.
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8.2 Simulateability Definition of Secure Reactive
Systems

We now define what it means that one system Sys1 is “at least as secure as”
another system Sys2 , abbreviated as Sys1 ≥sec Sys2 . Usually Sys2 will be an
ideal system and Sys1 a real system supposed to implement the same service.
An overview is given in Figure 8.4.

Roughly we want to make the following requirement: Whatever an adver-
sary can achieve in a structure (M1 ,G1 , s1 ) ∈ Sys1 with an honest user H,
another adversary could achieve in a structure (M2 ,G2 , s2 ) ∈ Sys2 with the
same honest user. However, we must somehow fix which structures from Sys2
are suitable for the same user. We therefore assume a “suitability” mapping f
from Sys1 to the powerset of Sys2 . Usually, this mapping is derived from an
intended structure for each system and a trust model. However, in the general
definition, f can be almost arbitrary.

We will now also use the sets s of specified ports given in the structures.
Primarily, however, the distinction between the user interface and the adver-
sary interface of a system is implicit in the definition of f : If structures (M1 ,
G1 , s1 ) and (M2 ,G2 , s2 ) ∈ f(M1 ,G1 , s1 ) have free ports in common, and a
user H uses them in the first system, the same ports of H are automatically
connected to the corresponding ports of (M2 , G2 , s2 ). Hence at these ports,
the first structure must offer a service indistinguishable from the second one.
However, H may have additional ports that occur in free(G2 ,M2 ), but not in
free(G1 ,M1 ). If such a port is in s2 , i.e., a specified port, we will indeed con-
nect H with (M2 , G2 , s2 ) at this port, but otherwise we will not. In the latter
case, we exclude this user machine H. For clarity, we also exclude the case
free(G1 ,M1 ) ∩ (free(G2 ,M2 ) − s2 ) 6= ∅ in the mapping f , i.e., structures that
are compared should not have the same name for ports that are not supposed
to be compared.7 See Figure 8.5 below for the general case.

The notion that the second adversary achieves the same results as the first
is defined as follows: The views of H in the two configurations must be indis-
tinguishable, see Figure 8.4.8 We recall the definition of indistinguishability (in
the form from [Gold1 95], first introduced in [BlMi 82, GoMi 82, Yao1 82]):

Definition 8.1 (Indistinguishability)
Two ensembles (vark)k∈N and (var′k)k∈N of random variables (or probability
distributions) are called

• perfectly indistinguishable (“=”) if they are identical,

• computationally indistinguishable (“≈poly”) if for any probabilistic
polynomial-time algorithm D (the distinguisher), the differences of the
outcome of D on the two distributions are negligible (in k):

|P (D(vark, 1k) = 1)− P (D(var′k, 1k) = 1)| ≤ 1
poly(k)

.

7Now the omission of machines H with ports from free(G2 ,M2 ) − s2 is w.l.o.g.: We can
take an identical H′ except that these port get completely new names. As these ports are not in
free(G1 ,M1 ), no corresponding renaming in (M1 , G1 , s1 ) is necessary.

8Note that this includes the views of the adversary since it may communicate its view to H.
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Figure 8.4: Simple Case of the Simulateability Definition for Reactive Systems.
The grey line delimits the view of the honest users, which must be indistin-
guishable. The sets of specified ports on both sides are the same and precisely
the interface between M and H.
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Figure 8.5: General Case of the Simulateability Definition for Reactive Systems.

Hence D gets an element chosen according either vark or var′k and the
security parameter as input and makes a Boolean output. The notation
g(k) ≤ 1/poly(k) (“negligible”) for a function g means that for all polyno-
mials p, ∃k0∀k ≥ k0: g(k) ≤ 1/p(k).

We write ≈ if we want to cover both cases. 3

Definition 8.2 (Sys1 ≥sec Sys2 )
Let Sys1 , Sys2 be two systems, and let a mapping f from Sys1 to the powerset
of Sys2 be given. We require that free(G1 ,M1 ) ∩ free(G2 ,M2 ) ⊆ s2 for all (M2 ,
G2 , s2 ) ∈ f(M1 ,G1 , s1 ), i.e., comparable structures only contain equal free
port names if they are supposed to correspond to each other.

• We call Sys1 perfectly at least as secure as Sys2 with respect to f and
write

Sys1 ≥f ,perf
sec Sys2

if for any configuration conf1 = (M1 ,G1 , s1 , H, A1,GAH ,1 ) ∈ Conf(Sys1 ),
there exists a configuration conf2 = (M2 ,G2 , s2 , H, A2,GAH ,2 ) ∈
Conf(Sys2 ) with (M2 ,G2 , s2 ) ∈ f(M1 ,G1 , s1 ) (and the same H) such that

view conf1 (H) = view conf2 (H),

unless H has ports from free(G2 ,M2 )− s2 .9

9Recall the explanation of the use of s2 at the beginning of this section.
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• We call Sys1 computationally at least as secure as Sys2 with respect to f
and write

Sys1 ≥f ,poly
sec Sys2

if for any configuration conf1 ∈ Confpoly(Sys1 ), there exists a configura-
tion conf2 ∈ Confpoly(Sys2 ) with (M2 ,G2 , s2 ) ∈ f(M1 ,G1 , s1 ) (and the
same H) such that

view conf1 (H) ≈poly view conf2 (H),

unless H has ports from free(G2 ,M2 )− s2 .

In both cases, we call conf2 an “indistinguishable configuration” for conf1 and
write

conf2 ∈ Indistf (conf1 ).

3

Where the difference between perfect and computational security is irrele-
vant, we simply write ≥sec or ≥f

sec.

Remark 8.14. In most cryptographic examples (including the examples de-
scribed in Chapter 9), a function f with s2 = s1 for all (M2 ,G2 , s2 ) ∈ f(M1 ,
G1 , s1 ) is sufficient. This corresponds to the fact that the ideal system provides
the same specified ports than its implementation. ◦

8.3 Properties of our Definition

8.3.1 Transitivity

An important lemma is that ≥sec is transitive, as one would expect.

Lemma 8.2
If Sys1 ≥f1

sec Sys2 and Sys2 ≥f2
sec Sys3 , then Sys1 ≥f3

sec Sys3 , where f3 := f2 ◦ f1

is defined in a natural way: f3(M1 ,G1 , s1 ) is the union of the sets f2(M2 ,G2 ,
s2 ) with (M2 ,G2 , s2 ) ∈ f1(M1 ,G1 , s1 ). 2

Proof. The preconditions imply that for any configuration conf1 ∈ Conf(Sys1 ),
there exists a configuration conf2 ∈ Conf(Sys2 ) with the same user H such
that viewconf1 (H) ≈ view conf2 (H), and conf3 ∈ Conf(Sys3 ), still with the same
user H, such that view conf2 (H) ≈ view conf3 (H) and (M2 ,G2 , s2 ) ∈ f1(M1 ,G1 ,
s1 ) and (M3 ,G3 , s3 ) ∈ f2(M2 ,G2 , s2 ). Thus (M3 ,G3 , s3 ) ∈ f3(M1 ,G1 , s1 ).
Moreover, view conf1 (H) ≈ view conf3 (H) holds because indistinguishability is
transitive. This is trivial for perfect indistinguishability (equality). For compu-
tational indistinguishability and any distinguisher D, the sequence of proba-
bility differences between the views with index 1 and 3 is at most the sum of
the two given sequences, and the sum of two negligible functions is negligible
again.
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One would also expect≥sec to be reflexive with the identity function f , i.e.,
a system is as secure as itself if one compares each structure with itself. This
does hold for the strictest type of comparison where each port is considered
specified, i.e., all structures are strengthened to (M , G , free(G,M )). Otherwise,
however, we have to rename all ports in free(G,M ) − s in one copy of the
system to fulfill the condition that ports that are not supposed to be compared
do not “by chance” have the same names.

8.3.2 Dialogues Between Honest Users and Adversary

In Section 8.1.6 we claimed that splitting rounds into four subrounds is suffi-
cient, although in reality A and H can engage in a multi-round dialogue before
producing their outputs for the correct machines. We now show that this is
true, i.e., the notions defined in Def. 8.2 are not changed if we replace the three
last subrounds in the switching model by an arbitrary multi-round dialogue.

To distinguish both models, we call the model with arbitrary dialogues the
dialogue model and our standard model the quarter-round model. As the dif-
ference does not concern the structures, we can consider the same systems in
both models. We denote the set of configurations of a system in the dialogue
model by Confd(Sys).

Lemma 8.3
Sys1 is at least as secure as Sys2 w.r.t. a mapping f in the dialogue model if
and only if this holds in the quarter-round model. This is true for both compu-
tational and perfect security. 2

Proof. Let Sys1 and Sys2 be two systems, and let f be a valid mapping. We
can treat the perfect and the computational case together; in the second case all
given adversaries and users are polynomial-time; this will imply that so are the
constructed ones, similar to Lemma 8.1. We have to show that the following
two statements are equivalent:

(1) For any configuration confd,1 = (M1 ,G1 , s1 , Hd, A1,d,GAH ,1 ,d) ∈
Confd(Sys1 ), there exists a configuration confd,2 = (M2 ,G2 , s2 , Hd, A2,d,
GAH ,2 ,d) ∈ Confd(Sys2 ) with (M2 ,G2 , s2 ) ∈ f(M1 ,G1 , s1 ) (and the same
dialogue user Hd) such that

view confd,1
(Hd) ≈ view confd,2

(Hd),

unless Hd has ports from free(G2 ,M2 )− s2 .

(2) For any configuration conf1 = (M1 ,G1 , s1 , H, A1,GAH ,1 ) ∈ Conf(Sys1 ),
there exists a configuration conf2 = (M2 ,G2 , s2 , H, A2,GAH ,2 ) ∈
Conf(Sys2 ) with (M2 ,G2 , s2 ) ∈ f(M1 ,G1 , s1 ) (and the same H) such that

view conf1 (H) = view conf2 (H),

unless H has ports from free(G2 ,M2 )− s2 .

(1) implies (2): The configuration conf1 is also valid in the dialogue model.
Thus (1) implies that there is an indistinguishable configuration confd,2 ∈
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Indistf (conf1 ), but with a dialogue adversary A2,d. Since H processes messages
from A2,d only once in each subround [i.1] and [i.3], all messages sent by A2,d to
H between these points in time can be concatenated into one message, respec-
tively. This results in an equivalent quarter-round adversary A2.
(2) implies (1): Let the given configuration in the dialogue model be confd,1 =
(M1 ,G1 , s1 , Hd, A1,d,GAH ,d,1 ). We first construct a quarter-round user H and a
quarter-round adversary A1 that compress the multi-round dialogue between
Hd and A1,d into quarter-rounds (see Figure 8.6):

• In Quarter-round [i.1], H does nothing.

• In Quarter-round [i.2], machine A1 forwards the inputs obtained from M1

to the user H.10

• In Quarter-round [i.3], machine H takes the inputs from M1 and A1 and
internally simulates the dialogue between A1,d and Hd until they produce
their outputs to M1 .11 Machine H sends the resulting outputs to M1 and
to A1.

• In Quarter-round [i.4], machine A1 uses the outputs received from H as
alleged outputs of A1,d to the correct machines.

Let conf1 = (M1 ,G1 , s1 , H, A1,GAH ,1 ) be the resulting quarter-round config-
uration. Now (2) implies that there exists an indistinguishable configuration
(M2 ,G2 , s2 , H, A2,GAH ,2 ) ∈ Indistf (conf1 ) with a quarter-round adversary A2.

We now reverse the compression by combining A1,d and A2 into a dialogue
machine A2,d that naturally interacts with the original dialogue user Hd. The
views of H in the configurations with A1and A2 are indistinguishable. The
views of Hd within H, i.e., in the right column of Figure 8.6, can be regarded
as part of the view of H (see Lemma 8.1d), hence they are also indistinguish-
able. By construction, the views of Hd are identical in the two configurations
in each row of Figure 8.6. Hence they are also indistinguishable in the two
configurations in the left column.

Remark 8.15. For this proof, it makes no difference whether H also switches in
Quarter-round [i.1] or not. ◦

8.3.3 Output of Guess by the Adversary

In addition to view (H), one can consider a final output made by the adversary
(e.g., like the guessing-outputs in definitions of semantic security [GoMi 84]),
or all outputs the adversary makes to some unconnected result port. This in-
tuitively corresponds to the idea that secrecy is captured by “whatever the ad-
versary can do must be simulateable,” while “whatever the honest users do and
see is simulateable” captures integrity.

The definitions are modified such that each adversary has a distinguished
output port guess (which is typically unconnected in the graph GAH ,g ), and the
pair of the user Hg’s view and the events at this port must be indistinguishable.

10Note that there is no secrecy problem in this direction, i.e., there is no reason for A to keep
secrets from H.

11W.l.o.g., this may be signaled by an end-of-dialogue symbol.
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Figure 8.6: Simulateability by Compressing Dialogues to Quarter-Rounds. (A
dialogue is depicted as a bold line.)

We show that this addition results in a definition that is equivalent to our gen-
eral notion of secrecy. (We only need to allow replacement of a system by one
with bijectively renamed ports in certain cases.)

Lemma 8.4
Sys1 is at least as secure as Sys2 with respect to f in the model with guessing
output iff this holds in our standard model. This is true for both computational
and perfect security. 2

Proof. As with Lemma 8.3, we can treat the perfect and the computational case
together. The proof structure is also similar.
(1) implies (2): Let Sys1 be as secure as Sys2 with guessing outputs, and let a
configuration conf1 for Sys1 in the standard model be given. We obtain a valid
configuration with guessing output if we augment A1 by a port guess (w.l.o.g.,
this name does not occur yet in (M1 , G1 , s1 , H, A1, GAH ,1 ) and Sys2 ) where it
does not make any outputs. Thus (1) implies that there is an indistinguishable
configuration confg,2 with guessing output. If one deletes the guessing output
(e.g., by defining an adversary A2 containing Ag,2 but ignoring its guess), this is
also a valid configuration in the standard model, and indistinguishability of the
pair of H’s view and the guessing output clearly implies indistinguishability of
H’s view alone.
(2) implies (1): Now let Sys1 be as secure as Sys2 in the standard model, and
consider a configuration (M1 , G1 , s1 , Hg, Ag,1, GAH ,g,1 ) with guessing output.
Let guess ′ be a port name that does not occur in (M1 , G1 , s1 , H, A1, GAH ,1 ) and
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Figure 8.7: Machines with and without Guessing Outputs

Sys2 . We construct a related configuration (M1 ,G1 , s1 , H, A1,GAH ,1 ) where the
former guessing output belongs to the user’s view as follows (see Figure 8.7):
The adversary A1 equals Ag,1, and H is like Hg, except that it has the new in-
put port guess ′, where it ignores all inputs. The graph GAH ,1 is GAH ,g,1 aug-
mented by an edge connecting the port guess with guess′. Let (M2 ,G2 , s2 , H,
A2,GAH ,2 ) ∈ Indistf (M1 ,G1 , s1 , H, A1,GAH ,1 ) be an indistinguishable config-
uration.

We retransform this into a configuration (M2 , G2 , s2 , Hg, Ag,2, GAH ,g,2 ) with
guessing output: If GAH ,2 contains a connection from A2 to the port guess ′, the
corresponding output port of A2 is renamed into guess (by the precondition,
no port in the structure and of Hg has this name, and a port of A2 could be
renamed), and this connection is omitted in GAH ,g,2 . (Recall that H is the same
and ignored these inputs anyway.)

There is always such a connection from A2: We did not allow unconnected
ports, nor connections from H to itself. If guess′ were connected to an output
port of M2, this port would have to be in s2 , i.e., guess ′ would not be new.

It is clear that the pair of the view of Hg and the guessing output is identical
to the view of H in the upper row in the figure, and that the views of H in the
right column of the figure are indistinguishable. By construction, the view of
Hg and the guessing output is identical to the view of H in the lower row, i.e.,
the views of Hg in the left column of the figure are indistinguishable, too.

8.3.4 Fixing a User Interface in the Structure

In particular in the cryptographic examples, we naturally expected honest
users of a structure (M , G , s) to use precisely the set s of specified ports and
to leave the other free ports to the adversary. We now show that this gives an
equivalent definition in the case where s1 = s2 for all (M2 ,G2 , s2 ) ∈ f(M1 ,
G1 , s1 ). Hence we consider the restricted set Confs(Sys) of configurations with
ports(H) ∩ free(G,M ) = s . We call this the fixed-user-interface model.

Lemma 8.5
Sys1 is at least as secure as Sys2 w.r.t. a mapping f with s1 = s2 for all (M2 ,G2 ,
s2 ) ∈ f(M1 ,G1 , s1 ) in the fixed-user-interface model if and only if this holds
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Figure 8.8: Fixed-User-Interface Model Implies Standard Model if s2 = s1 = s.

in the standard model. This is true for both computational and perfect security.
2

Within the proof, the dialogue model will be useful. We then need the equiva-
lent of Lemma 8.3 for the fixed-user-interface case:

Lemma 8.6
Sys1 is at least as secure as Sys2 w.r.t. a mapping f with s1 = s2 for all (M2 ,
G2 , s2 ) ∈ f(M1 ,G1 , s1 ) in the fixed-user-interface model if and only if this
holds in the model with fixed user interface and dialogues. This is true for
both computational and perfect security. 2

The proof is the same as that of Lemma 8.3, except that one has to show that the
construction of the “compressing” user machine H respects the interface con-
dition. This is clear because ports(H)∩ free(G1 ,M1 ) = ports(Hd)∩ free(G1 ,M1 ).

Proof. (Lemma 8.5)
As usual, let Statement (1) be security in the new model, here the fixed-

user-interface model, and Statement (2) be security in our standard model.

(1) implies (2): Let a configuration (M1 , G1 , s1 , H, A1, GAH ,1 ) ∈ Conf(Sys1 ) in
the standard model be given. We construct a related dialogue user Hs with the
fixed user interface, i.e., ports(Hs)∩free(G1 ,M1 ) = s1 , see Figure 8.8, and a suit-
able adversary A1,s and graph GAH ,s,1 : Any port ps ∈ s1 − ports(H) becomes
a port of Hs, and Hs simply forwards messages between this port and a corre-
sponding new port p′s connected to A1,s. Here we need the dialogue property:
The forwarding is done in extra sub-rounds before and after each [i.1]. Any
port pa ∈ ports(H)∩ (free(G1 ,M1 )− s1 ) becomes a port of A1,s instead, and A1,s

simply forwards messages between this port and a corresponding new port p′a
connected to Hs. We call the endpoint at Hs port p′′a; Hs uses it just like H used
pa.
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Now (1) and Lemma 8.6 imply that there is an indistinguishable configura-
tion (in the dialogue and fixed-user-interface model) confs,2 = (M2 ,G2 , s2 , Hs,
A2,s,GAH ,s,2 ) with the same user Hs and ports(Hs) ∩ free(G2 ,M2 ) = s2 . More-
over, our precondition implies s2 = s1 , hence in Figure 8.8 it is simply called
s .

We now transform it into a configuration (M2 ,G2 , s2 , H, A2,GAH ,2 ) ∈
Conf(Sys2 ): We must use the original H. One difference to Hs is that it does
not have the ports called ps and p′s above. We simply want to rejoin the con-
nections there (as in the simple case shown in Figure 8.8, but we have to check
that all conditions on the graphs are fulfilled.

• Case 1: ps is an input port (and thus p′s an output port): Only one port
can be connected to ps. Several ports p′′s may be connected to p′s, but they
must all belong to A2,s because Hs has no connections to itself, and no
ports connected to M2 outside s by the fixed-user-interface model (and
p′s 6∈ s).

Hence we give A2 the port ps; internally it forwards inputs there to all
ports p′′s of its submachine A2,s.

• Case 2: ps is an output port (and thus p′s an input port): Now only one
port p′′s can be connected to p′s, and as above it belongs to A2,s, while ps

can be connected to several ports p−s , which may belong to both M2 and
A2,s.

We give A2 the port ps. If p′′s is a unicast port, it remains internal to A2,s

and A2 simply forwards its outputs to ps. Otherwise p′′s also becomes a
port of A2,s, and A2 internally duplicates the corresponding outputs from
A2 to ps and p′′s .

The other difference between H and Hs is that the ports called pa were renamed.
We want to give them their old names again. (And thus also rename them in
the attached connections.) This presupposes that these names do not occur in
the configuration yet. If they do and are in free(G2 ,M2 )−s2, we need not fulfill
any indistinguishability condition. They cannot be in s2 = s1. Otherwise, they
are in GAH ∩ ports(A). Then we rename those other ports and retain a valid
configuration.

Finally, A2,s may be a real dialogue adversary. However, as H and M2 only
react on inputs from A2 once in the normal quarter-rounds [i.1] and [i.3], A2 can
concatenate all outputs from A2,s and output them once at the end of quarter-
rounds [i.2] and [i.4].

Now the views of H in the two configurations in each row of Figure 8.8 are
equal by construction except for port renaming, and the views of Hs, which
comprise those of H, in the right column. Hence the two views of H in the left
column are also indistinguishable.

(2) implies (1): Now let a configuration in the fixed-user-interface model, (M1 ,
G1 , s1 , Hs, A1,s, GAH ,s,1 ) ∈ Confs(Sys1 ), be given. It is clearly also in Conf(Sys1 ).
Let (M2 , G2 , s2 , Hs, A2, GAH ,2 ) be an indistinguishable configuration as it exists
by (2). We have to show that it fulfills ports(Hs) ∩ free(G2 ,M2 ) = s2 . The
general precondition on users implies ports(Hs) ∩ free(G2 ,M2 ) ⊆ s2 , and the
fixed-user-interface model ports(Hs)∩free(G1 ,M1 ) = s1 . Together with s2 = s1
this implies ports(Hs) ⊇ s2 , and thus the claim.
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8.3.5 Integrity Specifications

We now consider a modular usage of a trusted-host specification: One can
show that the trusted host fulfills various requirements, e.g., safety require-
ments expressed in temporal logic. This may be done by formal and even au-
tomatic model checking if the trusted host is simple enough. At least it does
not contain cryptographic operations, which would make the same task infea-
sible for the real system. Now we want to interpret these statements for the
real system. Hence we want to show that the real system also fulfills these re-
quirements in a certain cryptographic sense, i.e., even if parts of the system are
under control of an adversary, but possibly only for polynomial-time adver-
saries and negligible error probabilities. Such a notion was defined (not quite
as rigorously as here) in [Pfit8 96].

Clearly this can only hold for requirements that are formulated in terms of
in- and outputs of the trusted host at the specified ports, and not its internal
state, because the security definition only means that the real and the ideal
system interact with their users in an indistinguishable way.

As a rather general version of integrity requirements (independent of the
concrete formal language in which they will be formulated) we consider those
that have a linear-time semantics, i.e., that correspond to a set of allowed traces
of in- and outputs.

Definition 8.3 (Integrity Requirements)
By an integrity requirement Req for a system Sys , we mean a function that
assigns a set of finite traces of in- and outputs at the ports in s to each set s
with (M ,G, s) ∈ Sys .

• The system Sys is said to fulfill Req perfectly if for any conf = (M ,G,
s , H, A,GAH ) ∈ Conf(Sys), the restrictions to s of all finite runs of this
configuration lie in Req(s).12

• The system Sys is said to fulfill Req computationally if for any conf = (M ,
G, s , H, A,GAH ) ∈ Confpoly(Sys), the following holds: The probability
that the restriction to s of a run of this configuration (until the time when
H stops) does not lie in Req(s) is negligibly small (in the security param-
eter k).

3

Lemma 8.7 (Conservation of Integrity Properties)
Let a system Sys2 be given that fulfills an integrity requirement Req perfectly,
and let a system Sys1 be perfectly or computationally as secure as Sys2 with
respect to f with s1 = s2 for all (M2 ,G2 , s2 ) ∈ f(M1 ,G1 , s1 ).

In the first case, Sys1 also fulfills Req perfectly. In the second case, Sys1
also fulfills Req computationally if membership in the set Req can be decided
in polynomial time. 2

Note that Req is indeed also defined on Sys1 under the preconditions: No
f(M1 ,G1 , s1 ) can be empty for security, and thus all sets s1 also occur as a
set s2 .

12Unlike our general model, this excludes availability requirements.
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8.3. Properties of our Definition

Proof. The basic idea is that if Sys1 did not fulfill the requirement while Sys2
does, this would offer a possibility to distinguish them, in contradiction to the
definition of “≥f

sec”.
Assume that a configuration conf1 = (M1 ,G1 , s1 , H, A1,GAH ,1 ) ∈

Conf(Sys1 ) exists that contradicts the claimed statement. Let H cover s com-
pletely (restricting ourselves to such user machines is equivalent for s1 = s2 ;
see Lemma 8.5).

Let the systems be perfectly as secure as and let conf2 ∈ Conf(Sys2 ) with
(M2 ,G2 , s2 ) ∈ f(M1 ,G1 , s1 ) be the configuration such that

view conf1 (H) = view conf2 (H)

that exists by Definition 8.2. Then, the perfect indistinguishability of these
views contradicts the assumption that conf1 does not fulfill Req(s) while all
conf2 do.

Let the systems be computationally as secure as and let conf2 ∈
Confpoly(Sys2 ) with (M2 ,G2 , s2 ) ∈ f(M1 ,G1 , s1 ) be the configuration such that

view conf1 (H) ≈poly view conf2 (H)

that exists by Definition 8.2. We define a distinguisher Dist that distinguishes
H’s views: Given the view of machine H in Sys1 or Sys2 , the distinguisher can
extract the trace at s1 that we consider. It verifies if this trace lies in Req(s).
If not, Dist outputs 1 (meaning that it believes H interacted with system Sys1 ),
otherwise 0.

This distinguisher is polynomial-time (in the global inputs of the system)
because the view of H is polynomial-length, and membership in Req was as-
sumed to be polynomial-time decidable. The distinguisher has a significant
advantage in distinguishing because the probability that it outputs 0 if H in-
teracted with Sys2 is one, while the probability that it outputs 1 if H interacted
with Sys1 is non-negligible.
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Chapter 9

Some Provably Secure
Reactive Systems

In order to illustrate how our new notion of reactive security can be applied
to practical systems, we provide two examples: a reactive system for secure
channels, and a reactive system for certified mail. For each example we present
a specification using an ideal system and an implementation and show that the
implementation is at least as secure as the ideal system.

9.1 Secure Channels

Our notion of secure channels offers secrecy and authenticity of transmitted
messages. This means that an adversary must not obtain knowledge on the
contents of messages exchanged between correct players and must not be able
to send seemingly correct messages in the name of a correct sender.

9.1.1 An Ideal System

The goal of the ideal system for secure channels is to transmit messages be-
tween any two users while keeping messages delivered between correct users
secret and unchanged. The accepted attacks for secure channels are:

Deleting Messages: The adversary shall be enabled to suppress messages sent
between correct machines (because authentication does not guarantee
availability). This is modeled by a suppress-matrix input by the adversary
and specifying which messages should be deleted in a specific round.

Seeing Encrypted Network Traffic: The adversary may learn which correct play-
ers sent messages to whom, i.e., we assume that traffic will be produced
on the network if a user inputs a message. This is modeled by a busy-
matrix output to the adversary.

Multi-Round Rushing: The adversary can receive and send messages without
the delay of the transport caused by using the actual network (see Sec-
tion 6.2.2). To model this, the trusted host serves the adversary without
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9.1. Secure Channels

delays. For instance, a message from a correct player to the adversary is
output in the same round, even though messages to other correct players
take more rounds.

Scheme 9.1 (Ideal System for Secure Channels)
Let a set Msg ⊆ {0, 1}≤len of messages of length at most len be given with
ε ∈ Msg , where ε is the empty word and stands for “no message”. Let a number
n ∈ N of intended participants be given and M := {1, . . . , n}, and let rnds ∈ N
be the intended number of rounds.

An ideal system Syschan for secure channels is then defined as the set of all
structures

({TH(H )},GTH (H ), s∗(H ))

for any set H ⊆ M of correct users1, where TH(H ), GTH(H ), and s∗(H ) are
defined as follows:

Ports and Graph: Let A = M−H be the set of the corrupted players. The trusted
host has an input port in(u) and an output port out(u) for each correct
user u ∈ H . Furthermore, it has output ports adv out and busy and in-
put ports adv in and suppress for the adversary machine A. We define
s∗(H ) := {in ′(u), out ′(u)}u∈H , i.e., each in- and output port of a correct
user has a corresponding port in s∗(H ). (This distinction of non-primed
and primed ports is only needed to define s∗(H ) as a subset of the free
ports of GTH(H ); thus, we usually omit this distinction in the sequel and
use (in(u), out(u)) for the ports of TH as well as H.)

The graph GTH(H ) connects in′(u) to in(u) and out(u) with out ′(u) and
duplicates each of the four adversary ports by defining a primed variant
and connecting it with the non-primed one; see Figure 9.1. (In the sequel,
we again subsume the primed and non-primed adversary ports under
the non-primed port to be connected to the adversary.)

In Round 0, TH does nothing. (This is time reserved for initialization in the real
system.) Now we consider any Round i > 0.

Inputs: The overall inputs that TH accepts from honest users are denoted by a
matrix ini : H ×M → Msg , where each row (ini(s, r)|r ∈ M ) is the input
at port in(s). (If a user H makes other inputs, they are set to ε in TH.) This
means that every user s may send one message to every other user r in
each round. At the adversary ports, the trusted host expects the input of
matrices adv ini : A×H → Msg and suppressi : H ×H → {0, 1}.

Computations: For all s, r ∈ H , the trusted host computes the following values:

outi(s, r) :=
{

ε if suppressi(s, r) = 1
in i−1(s, r) else; (9.1)

busyi(s, r) :=
{

0 if ini(s, r) = ε
1 else. (9.2)

1In the sequel, we use the identifier H for the set of names of the correct users whereas H denotes
the corresponding user-machine. Similarly, A will denote corrupted users and A the adversary
machine.
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Figure 9.1: Structure of the Ideal System for Secure Channels

This means that messages between honest users take one round, while
the adversary immediately sees that such a message is in transit. For
a ∈ A, u ∈ H , the trusted host computes

outi(a, u) := adv ini(a, u); (9.3)
adv outi(u, a) := ini(u, a). (9.4)

This means that messages to and from the adversary are delivered imme-
diately.

Outputs: The matrices adv outi : H × A → Msg containing messages for cor-
rupted users and busyi : H ×H → {0, 1} containing activity flags are out-
put at the corresponding adversary ports. Each column (outi(s, r)|s ∈ M )
of the matrix outi : M ×H → Msg is output at the port out(r).

3

Remark 9.1. Note that this trusted host specifies that messages must be authen-
ticated, i.e., that an adversary cannot send messages in the name of other users.
A trusted host for secrecy without authenticity would allow the adversary to
input an extended matrix adv out into the trusted host. It contains for each s
and r (both may be correct) either a message to be sent on behalf of s to r, or a
flag indicating whether the original message shall be suppressed or delivered.

Remark 9.2. For simplicity, we assume that the adversary can suppress mes-
sages sent from a party to itself, i.e., we do not handle these messages dif-
ferently. For the implementation, this implies that if a user wants to send a
message to itself, this is done using the insecure network. ◦

9.1.2 A Provably Secure System

We now define an actual implementation for secure encryption and authenti-
cation of messages.

Let len be the maximum length of the messages to be transmitted, let rnds
be a number of rounds, and let M = {1, . . . , n} be defined as in Def. 9.1.

In the following, the algorithms (genS, sign, test) denote a secure digital sig-
nature scheme [DiHe 76, GoMR 88] for the message space MsgS := Msg ×
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9.1. Secure Channels

{1, . . . , rnds} ×M with Msg = {0, 1}≤len .2 We write (signu, testu) ← genS(1k)
for the generation of a signature key signu and a verification key testu based on
a security parameter k input in unary representation. By sig ← signu(msg), we
denote a signature on the message msg ∈ MsgS , including msg itself.3 We de-
note the resulting signature space by sig space(k) (the length of the signatures
is polynomially bounded in k). The verification testu(sig) returns msg if the
signature is valid with respect to the included msg , else false.

By (genE, E, D), we denote an encryption scheme secure against adaptive
chosen-ciphertext attacks (e.g., [CrSh1 98]).4 We write (Eu, Du) ← genE(1k∗(k))
for the generation of an encryption key Eu and a decryption key Du. In this key
generation, k∗(k) denotes a security parameter that allows to encrypt messages
in the message space M × sig space(k) for the given k.5 By c ← Eu(m), we
denote the (probabilistic) encryption of the message m using the key Eu. The
ciphertext is decrypted to the cleartext m by the function m← Du(c) using the
key Du.

Scheme 9.2 (Secure Channels)
Let a set Msg ⊆ {0, 1}≤len of messages of length at most len be given with
ε ∈ Msg , where ε is the empty word and stands for “no message”. Let a number
n ∈ N of intended participants be given and M := {1, . . . , n}, and let rnds ∈
N be the intended number of rounds. We mainly describe a set of machines
{Mu|u ∈ M }.

The system Sys is the set of all structures

(M (H ),G(H ), s∗(H ))

for any set H ⊆ M of correct users, where M (H ) = {Mu|u ∈ H }, G(H ) and
s∗(H ) are defined as follows:

Ports and graph: Let A = M − H be the set of the corrupted players. Each
machine Mu has a pair (in(u), out(u)) of in- and output ports to a
user (called user u), one pair (in0(v, u), out0(u, v)) of in- and output
ports for exchanging keys for each v ∈ M in Round 0, and a pair
(netw in(v , u),netw out(u, v)) of in- and output ports for exchanging
messages with Mv for each v ∈ M ; see Figure 9.2. We define s∗(H ) :=
{in ′(u), out ′(u)}u∈H .

The connection graph defines authentic channels for key exchange. All
other connections are left to the discretion of the adversary. We there-
fore define G(H ) as follows: Each key exchange output port out0(u, v) is
connected to a free port out′0(u, v) as well as to the corresponding input
port in0(v, u), i.e., the adversary can listen to, but not modify the key ex-
change channels between correct players. All other ports netw out(s, r)

2By “for a message space” we mean that the generated keys are appropriate to allow for this
message space.

3We even assume more concretely that it is a pair of the message and the actual signature which
can be uniquely decomposed. Then sig uniquely determines msg independent of the key. Other-
wise more complicated message formats would be needed below, which is a waste of space in the
standard case.

4In Section 9.1.3 we will define security against chosen-ciphertext attacks in more detail.
5We do not require all input messages to be of the same length. However, security for this

message space implies that also the message length is hidden by the encryption.
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9. Some Provably Secure Reactive Systems

and netw in(s, r) are connected to ports netw out ′(s, r) and netw in ′(s, r)
that are in free(G(H ),M (H )). Similarly, G(H ) connects in ′(u) to in(u)
and out(u) with out ′(u). As before, we omit the primes in the sequel.

The behavior of each machine Mu is defined as follows (see Figure 9.4 for the
exact timing of the most important message subsequence):

Round 0 (Initialization) Machine Mu generates four keys that are appropriate
for the domains of the signature and encryption schemes, respectively:

(signu, testu) ← genS(1k)
(Eu, Du) ← genE(1k∗(k)).

It outputs (testu, Eu) to out0(u, v) for v ∈ M .

Now we consider an arbitrary round i > 0.

Inputs Machine Mu accepts a vector

(ini(u, r)|r ∈ M )

from its user input port. If ini(u, r) 6∈ Msg we again set ini(u, r) := ε. If
i = 1, it also accepts two public keys (testv, Ev) at port in0(v, u). If i > 1,
it reads one element netw ′

i−1(s, u) from each network input port.

Computations Machine Mu computes a network message netwi(u, r) for each
r ∈ M as follows:

netwi(u, r)←
{

Er(u, signu(ini(u, r), i, r)) if ini(u, r) 6= ε,
ε else. (9.5)

If i > 1, it also decomposes6 each received message netw ′
i−1(s, u) as fol-

lows: Let
(si−1(s, u), sig i−1(s, u))← Du(netw ′

i−1(s, u))

or, if the decryption or decomposition fails, both components be ε. Then

outi(s, u) :=




m if si−1(s, u) = s
and tests(sig i−1(s, u)) = (m, i− 1, u)

ε else.
(9.6)

Outputs Machine Mu outputs the vector (out i(s, u)|s ∈ {1, . . . , n}) to its user.
Furthermore, it outputs each netwi(u, r) on the corresponding network
output port netw out(u, r).

3

Remark 9.3. The format of the network message may look complicated. How-
ever, simpler formats are not always secure. In particular, omitting the identity
u in the encryption, i.e.,

netwi(u, r)← Er(signu(ini(u, r), i, r))
6We assume that tuples are represented such that their decomposition is unambiguous.
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Figure 9.2: Two Machines in a Structure of the Real System for Secure Chan-
nels.

is insecure although one may feel that the signature inside determines the iden-
tity: An adversary can choose one of his own test keys testa for the signature
system equal to one of a correct machine, say tests, because Ms switches in
Round [0.1] and A in Round [0.2]. Later it can then take a network message
netwi(s, r) sent between two honest participants and also use it as its own
network message netw ′

i(a, r) (again this works because A switches after Ms in
Round i). This message then passes the test similar to Equation 9.6, and thus
the message ini(s, r) is output to the user H also as out i+1(a, r). This is an ef-
fect that the adversaries on the trusted host cannot achieve. It is also dangerous
in practice, because H, believing that it obtained this message from Ma, might
freely send parts of it back to Ma in a reply.

Remark 9.4. The attack on network messages in this form as in Remark 9.3 can
easily be avoided by verifying that all public keys are different. However, this
does not imply provable security given the normal definition of a signature
system: It is not forbidden that an adversary can choose a key related to the key
of a correct machine such that signatures made with signs are also acceptable
as signatures with respect to testa.

Remark 9.5. First encrypting and then signing does not automatically work ei-
ther, e.g.,

netwi(v, r)← signv(i, r, Er(ini(v, r)))

has the same problem even more obviously: The adversary can take the cipher-
text c = Er(ini(v, r)) from such a message and also send it in a message of his
own as netw ′

j (a, r)← signa(j, r, c).
◦

9.1.3 Security Proof

We now show that the implementation is as secure as the trusted host. Our
simulation is blackbox and uniform in the user machine, i.e., for each set H ⊆
M of correct machines, we define one simulator Sim, which can use any given
adversary A for the real system as a blackbox sub-machine.
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Figure 9.3: Set-up of the Simulation.

Scheme 9.3 (Simulator Sim)
Let a set H ⊆ M of correct participants be given. Let A := M −H be the names
of the corrupted players. The interface between the “real” adversary A and the
system was shown on the right-hand side in Figure 9.2.

We now define a corresponding adversary Sim(A) on the trusted-host sys-
tem for any given adversary A of the real system (see Figure 9.3). It consists of
a simulator Sim interacting with A.7 The ports of Sim(A) were shown in Fig-
ure 9.1. Internally, it more or less simulates the behavior of the real machines
{Mu|u ∈ H } using the information obtained from machine TH in order to give
the simulated A its expected environment. See Figure 9.4 and 9.5 for the timing
of the protocol and its simulation.

In the initial round, the simulator Sim simulates the correct machines with-
out changes:

Round [0.1] The trusted host TH and the user H switch. (Recall that adversaries,
and thus Sim, only switch in even quarter-rounds.)

Round [0.2] Sim simulates the key generation without changes: It first pro-
duces all the outputs corresponding to simulated correct machines; then
it switches A. No changes are made to the connection between A and H.

Round [0.3] The user H switches.

Round [0.4] The simulator switches A only.

All subsequent rounds are simulated as follows:

Round [i.1] The trusted host TH and the user machine H switch.

Round [i.2] The simulator simulates the outputs of the correct machines:

a) Sim prepares all inputs to A: From TH, Sim obtains matrices busyi

and adv outi .
For each message sent from a correct sender s ∈ H to a corrupted
recipient r ∈ A, A expects to see a network message netwi(s , r)
on the simulated lines. This is computed as in Equation 9.5 using
adv outi(s, r) instead of ini(s, r).
For each message sent between correct machines s, r ∈ H signaled
by the trusted host by an output busyi(s, r) = 1, the adversary also

7One may be tempted to write Sim(A) := Sim × A. However, composition would mean that
messages between Sim and A are only delivered in the next round, while Sim will preprocess
inputs, switch its subprogram A and postprocess outputs all in one round.
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expects to see an enciphered network message netwi(s , r) on the
simulated lines. This is computed as in Equation 9.5 using any fixed
message msim instead of ini(s, r).8 We use a fixed message msim

since the simulator cannot obtain the actual message input at the
port in(s) (it is kept secret by TH).

b) Sim switches A: A may make network outputs netw ′
i(s, r) for all

s ∈ M and r ∈ H and outputs to H, which Sim simply passes on.

Round [i.3] The user H switches.

Round [i.4] The simulator computes its outputs to TH:

c) Sim switches A: I.e., A reads the inputs from H and produces its
outputs netw ′

i(s, r) to the correct machines. Note that some of these
outputs may have been written when switching A in Round [i.2].
Outputs from A to H are just forwarded.

d) Sim derives its external outputs: Sim converts the received network
messages into inputs suppressi+1 and adv ini to the adversary ports
of TH:
For s, r ∈ H and if busy i(s, r) = 1, the trusted host expects to re-
ceive suppress i+1(s, r) indicating whether the adversary destroyed
the message in transit. Therefore the simulator Sim verifies A’s
output netw ′

i(s, r) according to Equation 9.6. It sets suppressi+1(
s, r) := 1 if the output of the decomposition is ε and suppressi+1(
s, r) := 0 else. If the output of the decomposition is a message
msg ′ 6= msgsim with msg ′ 6= ε, or if it is any message msg ′ 6= ε
although busyi(s, r) = 0, the simulator stops.9

For s ∈ A and r ∈ H , the message netw ′
i(s, r) is decrypted and

verified as in Equation 9.6, and the result is output as adv ini+1.

3

Note that the simulated correct machines switch at the beginning of Rounds
[i.2] and at the end of Rounds [i.4], while real correct machines switch in
Rounds [i.1]. This is no problem because the simulated A is clocked by the
simulator: For A, the switching of the simulated correct machines at the end
of Round [i− 1.4], then TH, and again the simulated correct machines together
looks like a normal Round [i.1].10

We now show in Theorem 9.1 that the simulation is computationally correct
given computationally secure public-key encryption and signature schemes.
We use the well-known definition of secure digital signatures [GoMR 88]. For
the security of the encryption scheme as needed in the second part of this proof,
we use a variant of “message-restricted chosen-ciphertext attacks” [RaSi 92] as

8Intuitively, the security of the encryption scheme will later ensure that this message cannot be
distinguished from ini(s, r).

9In the real system, msg ′ would be output to the recipient, but the simulator has no way of mak-
ing TH do this. Hence the simulation would become distinguishable and can as well be stopped.
However, it will be seen in the proof that this case presupposes that A has broken the signature
scheme, and thus this case is negligible.

10This argument implicitly assumes that synchronous machines have no internal real-time
clocks.
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Round Ms(s ∈ H ) A Mr(r ∈ H )
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[i + 1.1] © −

outi+1−−−−−→
[i + 1.2] ©
[i + 1.3]
[i + 1.4]

Figure 9.4: Exact Timing of Scheme 9.2 for a Message Between Two Correct
Machines. (© denotes relevant switching of the machine in this column; H
switches in [i.1] and [i.3].)
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Figure 9.5: Simulation of Scheme 9.2 for a Message Between Two Correct Ma-
chines. (� denotes additional state transitions not in the protocol.)
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sketched in [CrSh1 98] and formalized as “IND-CCA2” in [BDPR 98]. The basic
idea of this definition is that the adversary Aenc plays the following game with
a decryption oracle Dec:

1. The decryption oracle generates a key pair (E, D) for the given security
parameter k and sends the public key E to Aenc.

2. Aenc may ask Dec to decrypt any polynomial number of messages.

3. Aenc sends two messages m0 and m1 to Dec, which randomly chooses a
bit b and returns the encryption c of mb.

4. Aenc may then asks Dec to decrypt a polynomial number of ciphertexts c′

with c′ 6= c, i.e., Dec refuses to decrypt the given ciphertext c.

5. Aenc outputs a bit b∗.

The attack succeeds if the probability of a correct guess b∗ = b is 1/2 + εk for a
sequence εk that is non-negligible in the given security parameter k.

Theorem 9.1 (Computational Security)
Let a set Msg ⊆ {0, 1}≤len of messages of length at most len be given with
ε ∈ Msg , where ε is the empty word and stands for “no message”. Let a number
n ∈ N of intended participants be given and M := {1, . . . , n}, and let rnds ∈ N
be the intended number of rounds.

Then
Sys ≥f ,poly

sec TH

holds for Sys as defined in Scheme 9.2, TH as defined in Scheme 9.1, and

f((M (H ),G(H ), s∗(H ))) := {({TH(H )},GTH (H ), s∗(H ))}.
2

Proof. We have to show that for any given configuration (M (H ), G(H ),
s∗(H ), H, A, GAH ) of the real system, there exists a configuration (TH(H ),
GTH (H ), s∗(H ), H, Sim(A), GAH ) such that the families of distributions of
the view of H are polynomially indistinguishable unless H has ports from
free(GTH (H ), TH(H ))− s∗(H ).

We actually show that the joint views of A and H in the two cases are indis-
tinguishable.11 This is stronger because the view of H is contained in the joint
view (see Lemma 8.1). In other words, we now consider H and A connected by
GAH that interact either with the correct machines M (H ) of the real system, or
else with the combination of TH and Sim, which we abbreviate as TH + Sim.
This combination is defined such that TH and Sim now all switch in Rounds
[i.1]. Figure 9.3 illustrates that the given Sim never modifies messages between
A and H. Another consequence of the simulation of the complete view of A and
H is that we do not restrict H to ports of s∗(H ) (even though for simplicity H
occupies s∗(H ) in our figures).

Intuitively, there are only two possible sources of errors in the simulation:
in Round [i.2] a message msim is encrypted instead of a real message, and a

11The view of A is well-defined because Sim runs A without rewinding. Since A is also clocked
by Sim as it would be in the real system, the relative timing of H and A is also correct.
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simulation may stop prematurely in Round [i.4] due to what we already saw
intuitively to be a successful signature forgery by A.

Signatures: We first show that the probability that the simulation stops
prematurely is negligible. Let us assume the contrary, i.e., that there exists
two machines A and H such that the simulation stops with a non-negligible
probability. Then A and H can be converted into a successful adversary Asig

against the underlying signature system12: Asig randomly chooses u ∈ H and
starts simulating TH and Sim interacting with the given A and H. It does ev-
erything as prescribed except that it uses the given public key test as testu, and
hence uses the given signing oracle whenever it has to execute signu. If the
simulation stops prematurely (see Item (d) of Round [i.4]), a “network mes-
sage” netw ′

i−1(s, r) for s, r ∈ H has been received that is correct according to
Equation 9.6 but contains a message msg ′ 6= msgsim or any message although
busy i−1(s, r) = 0. Then, if s = u, the algorithm Asig outputs the second compo-
nent sig of Dr(netw ′

i−1(s, r)) as its forgery.
We first show that if Asig makes any output, it is a successful forgery: By

Equation 9.6, testu(sig) = (msg ′, i − 1, r). By construction of Sim, the only
possibility that a message with the components i − 1, r (here we use the as-
sumed unique decomposition of the representation of message triples) would
be signed by the simulated Mu (and thus Asig would have called the signature
oracle for it) is in Round [i − 1.2] when constructing netwi−1(u, r). However,
this happens only if busyi−1(u, r) = 1, and with msgsim as the first component.
Hence the proposed forgery is in fact on a new message.

Now, we have to show that the probability that the constructed Asig outputs
a valid signature is still non-negligible: It is clear that Asig perfectly simulates
Mu, since the only change was to replace signature key generation and signing
by the given oracles. If Sim stops prematurely, a signature of one of the |H |
players has been forged. Since the keys of the machines are chosen randomly
and independently and |H | is independent of k, the probability that the forgery
succeeds for the given key testu used by a randomly chosen player is a fixed
fraction of the overall probability of success and thus still non-negligible.

As a consequence, we can abstract from the negligible failures of the sig-
nature scheme in the sequel: This is formalized by considering machines
TH′ + Sim′(A) that do not stop in Item d) of Step [i.4] but output the forged
message msg ′ instead. It follows from the proof so far that TH′ + Sim′(A) and
TH + Sim(A) are indistinguishable if the signature scheme is secure.

Encryption: Now, for the encryption part, we make a reactive version of
the typical “hybrid arguments”, e.g., known from [GoMi 84]: Intuitively, we
show that to distinguish the overall views, the distinguisher must be able to
distinguish at least one particular encryption. For this, we consider hybrid ma-
chines Hybi,s,r for i := 1, . . . , rnds and s, r ∈ H that treat the inputs inj(s′, r′)
for s′, r′ ∈ H as in the real system up to the triple (i, s, r) (in lexicographic or-
der) and afterwards as in the simulation.13 This means that up to Round i− 1

12Given a public key and a signing oracle signing arbitrary messages, the goal of Asig is to out-
put a valid signature on any message that has not been signed by the oracle with non-negligible
probability [GoMR 88].

13It is not trivial in general to define hybrid reactive systems, even if one only wants to switch
between the two configurations after a certain round: If the configurations are probabilistic and
have memory, it may not be clear how to initialize the memory of configuration 2 such that it is
consistent with the execution of configuration 1 so far. Hence we make the particular construction
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the real system is run, except that the matrix in i−1 is stored. In Round [i.1],
for pairs (s′, r′) ≤ (s, r) with s′, r′ ∈ H , the network message netw i(s′, r′) is
also computed as in the real system. For (s′, r′) > (s, r) with s′, r′ ∈ H and all
subsequent rounds, it is computed as netw i(s′, r′) := ε if in i(s′, r′) = ε or else
by applying Equation 9.5 to msim. Note that this is exactly the joint effect of
TH′ + Sim′(A) since it outputs forgeries as well. For s′ 6∈ H or r′ 6∈ H there is
no difference between M (H ) and TH + Sim anyway.

Finally, let Hyb0 be TH + Sim. Clearly, Hybtmax
with tmax := (rnds , s, r) and

with maximum s and r is M (H ).
Let us assume that a distinguisher Dist exists that distinguishes Hyb0 from

M (H ) (i.e., Hybtmax
) with a non-negligible sequence of probabilities εk as de-

fined in Def. 8.1. With pt(k), we denote the probability of an output 1 for Hybt.
With pred(t), we denote the predecessor of t in the lexicographic ordering of
the indices. Since

∣∣∣∣∣
tmax∑
t=1

(−ppred(t)(k) + pt(k))

∣∣∣∣∣ = |ptmax(k)− p0(k)| ≥ εk

and pt(k) ≥ 0, there is at least one t so that |pt(k)−ppred(t)(k)| is non-negligible,
say ε′k. Let t = (i, s, r) be this index.

We assume that Dist outputs 0 to identify the simulation while it outputs 1
to identify the real system, i.e., that pt(k) ≥ ppred(t)(k) + 1/poly(k) for a polyno-
mial poly(k) and infinitely many k.14

We now construct an adversary Aenc against the encryption scheme. It uses
H, A and Dist as blackboxes and simulates either Hybt or Hybpred(t) as follows;
an overview is given in Figure 9.6.

1. First Aenc obtains a public key E from Dec. It uses this key in the place of
Er, and generates all the other public keys for correct participants itself.

2. Then it simulates the machines M (H ) in interaction with the given black-
boxes until directly before constructing netwi(s, r). Where decryptions
with the unknown key Dr are needed, it uses the decryption oracle.

3. Now it sends the two messages m0 := (s, signs(msim, i, r)) and m1 :=
(s, signs(ini(s, r), i, r)) to Dec. (If ini(s, r) = ε, it does nothing.) This is
the message that is simulated in the hybrid system Hybpred(t) but not in
Hybt. As a response, Dec chooses b R← {0, 1} and sends the ciphertext
c := Er(mb). Our Aenc then uses c as netw i(s, r).

4. From now on, it simulates TH′ + Sim′. Again, if it needs a decryption
with Dr, it uses the decryption oracle. Now, however, the oracle refuses
to answer if the query equals c.

The only ciphertexts that Aenc has to decrypt with Dr are the possibly
modified network messages netw ′

j(s′, r), and the only usage it makes of
the result is to compute outj+1(s′, r) according to Equation 9.6.

If netw ′
i(s, r) = c (intuitively, the adversary has not modified the net-

work message netw i(s, r) = c), our Aenc sets out i+1(s, r) = ini(s, r).

explicit.
14Else, we consider a Dist′ that outputs the inverse of Dist.
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Figure 9.6: Adversary for the Encryption Scheme

If netw ′
j(s′, r) = c for any other pair (j, s′) (intuitively a replay attack) it

sets outj+1(s′, r) := ε.

5. At the end, Aenc inputs the view of the simulated H × A to Dist. It uses
the output bit b∗ of Dist as its own output.

We now show that the success probability of Aenc is equal to that of the distin-
guisher and thus non-negligible.

First it is clear by construction that if Dec chooses to encrypt m0, then H and
A interact with Hybpred(t), otherwise with Hybt, with only one possible differ-
ence: how outj+1(s′, r) is computed if netw ′

j(s′, r) = c for the given ciphertext
c.

• Case (j, s′) = (i, s) and b = 0: Then machine Hybpred(t) would decrypt c
to m0, set suppress i(s, r) = 0 and therefore its internal TH would output
out i+1(s, r) = ini(s, r), which is also what Aenc does.

• Case (j, s′) = (i, s) and b = 1: Then machine Hybt would decrypt c to m1

and also obtain out i+1(s, r) = ini(s, r) just like Aenc.

• Case (j, s′) 6= (i, s) and b = 0: Then machine Hybpred(t) would decrypt c
to m0 = (s, sig). It first tests that s = s′. Then, it verifies that tests(sig) =
(m′, j, r) for any m′ ∈ Msg and the given (j, r). As we assumed that the
signature verification outputs the signed message, this implies that j = i.
Since (j, s′) 6= (i, s), the verifications fail. It sets suppressj(s

′, r) = 1 and
the output of TH is outj+1(s′, r) = ε just like Aenc’s output.

• Case (j, s′) 6= (i, s) and b = 1: Then machine Hybt would decrypt c to
m1 = (s, sig). It first tests that s = s′. Then, it verifies that tests(sig) =
(m′, j, r) for any m′ ∈ Msg and the given (j, r). As we assumed that
the signature verification outputs the signed message, this implies that
j = i. Thus, since (j, s′) 6= (i, s), the verifications fail and the output is
outj+1(s′, r) = ε just like Aenc.

Hence the success probability of Dist within Aenc is the same as in its normal
setting. Whenever Dist outputs a guess b∗ = b while interacting with Hybpred(t)

or Hybt, the same correct guess b∗ is output by Aenc, too.
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Let pt(k) ≥ ppred(t)(k) + 1/poly(k) for a polynomial poly(k) and infinitely
many k as described above. Since b = 1 and b = 0 with probability 1/2, we can
compute the success probability of Aenc as

penc(k) =
1
2
pt(k) +

1
2
(1− ppred(t)) (i.e., b = 1, b∗ 6= 0 and b = 0, b∗ = 0)

=
1
2

+
1
2
(pt(k)− ppred(t))

≥ 1
2

+
1

2poly(k)
.

Hence, if Dist can in fact distinguish the views, then Aenc is indeed a success-
ful adversary against the encryption system that succeeds with non-negligible
probability, and we have reached the desired contradiction.

9.2 Labeled Certified Mail

We now apply the formalism to labeled certified mail. We define an ideal sys-
tem specifying a service of reactive labeled certified mail. We then present an
actual implementation and prove that it is as secure as this ideal system.

It turns out that we have to modify the certified mail protocols from Chap-
ter 4, i.e., most of them do not fulfill the strong reactive security definition
based on simulatability. (This does not seem to be a matter of how we de-
fine the ideal system, but a more fundamental question related to the general
composability that follows from this strong definition.) Of course, the pro-
tocols from Chapter 4 can nevertheless be used in any application for which
the definition from Chapter 4 is sufficient. The main technical modification is
that, instead of using encryption to fix the message, we now use a so-called
chameleon commitment scheme. However, the resulting certified mail scheme
does not fulfill the requirement “limited trust in the third party” (R. 4.2c of
R. 4.3b) from Chapter 4 since this chameleon commitment enables an incorrect
third party to later forge receipts. Thus, the resulting scheme is not “optimistic”
in our sense as defined in Chapter 4.

9.2.1 An Ideal System

We now describe an ideal system for labeled certified mail. This ideal system
defines the service as well as the maximum information that we allow an adver-
sary to obtain (in fact, the “service” to the adversary is considerably better than
the vulnerabilities of our protocol). This ideal system assumes that sending a
message and showing a receipt requires a fixed time. It defines the following
attacks to be acceptable:

Suppressing a Run The adversary may suppress an execution of a certified mail
protocol as long as the outcome is still fair.

This is a stronger model than in Part I: It models that the channels be-
tween normal correct machines can be modified (only those including
the verifier or the third party cannot).
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Figure 9.7: Structure of an Ideal System for Certified Mail

Maximum Information The adversary obtains all parameters except the mes-
sage immediately. If a run is successful, the message can be obtained
as well.

This corresponds to the fact that the network traffic need not be en-
crypted, i.e., the message may be transmitted in clear.

Adversary may Show Receipts The adversary may show any valid receipt.

This corresponds to the fact that we do not require authenticity of the
channel to the verifier, i.e., not only the sender can show a valid receipt.

As mentioned in Section 7.1, trusted-host-based specifications tend to over-
specify the intended service. An example of such an over-specification is that
the trusted host fixes the timing of the protocol for correct users and that the
trusted host ignores inputs with unfresh tids, while in Part I the responsibil-
ity for freshness was with the users and the behavior for the other case was
unspecified.

Scheme 9.4 (Trusted Host for Labeled Certified Mail)
Let a message space Msg ⊆ {0, 1}≤len , a label space L ⊆ {0, 1}≤len , a set of
transaction identifiers TIDs ⊆ {0, 1}≤len , and a round number rnds ∈ N be
given. Furthermore, let numbers nS , nR ∈ N of intended senders and recipients
be given and let MS := {1, . . . , nS} and MR := {nS + 1, . . . , nS + nR}. Let
v := nS + nR + 1 so that the verifier can be treated in a similar way. Let n := v
and M := {1, . . . , n}. Let ∆send be the fixed intended time to send a message
from a correct sender to a correct recipient and to issue a receipt.

An ideal system TH LCM for labeled certified mail is then defined as the set
of all structures

({TH(H )},GTH (H ), s∗(H ))

for any set H ⊆ M of correct users with v ∈ H . The corrupted players are
A := M −H . We abbreviate the sets of correct senders and recipients by HS :=
MS ∩ H , and HR := MR ∩ H , and the corrupted ones by AS := MS ∩ A and
AR := MR ∩ A. Machine TH(H ), GTH (H ) and the set s∗(H ) are defined as
follows:

Ports and graph: Each user u ∈ H , TH(H ) has pair (in(u), out(u)) of in- and out-
put ports, except that no input port for the verifier v is needed. For the ad-
versary, there are two ports: adv in for inputs and adv out for signaling
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whatever the adversary is allowed to know. The graph GTH (H ) primes
each port of TH(H ), i.e., connects it to a free port with the same (but
primed) name (see Figure 9.7). We define s∗(H ) := {in ′(u), out ′(u)}u∈H ,
i.e., each in- and output port of a correct user has a corresponding port in
s∗(H ) (We again identify primed and non-primed ports in the sequel).

Overall structure of TH: Let

Slots := MS ×MR × {1, . . . , rnds}.

As the trusted host will allow each user to start a “send“ protocol with
each other user in each round, this corresponds to the “slots” or oppor-
tunities for such protocol runs. The trusted host contains matrices

tidstate : H × TIDs → {ε} ∪ Slots ;
slotstate : Slots → Localstate.

Initially, tidstate contains ε everywhere. Generally it denotes which cor-
rect participants have used which tids in which slot. slotstate initially
contains the starting states s0, r0, and sr0 for (s, r) ∈ HS ×AR or AS ×HR

or HS × HR, respectively. Generally, slotstate(s, r, i) is the state of a sub-
machine th(s, r, i) for this slot. If the slot is not used, i.e., neither s nor
r start a “send“ protocol with the other in this round, the starting state
always remains. After the successful end of a “send“ protocol with label
l and message m, the state is (received, l, m, tid) and th(s, r, i) can be used
by the sender or the adversary to “show“ the receipt.

We first describe how TH dispatches global inputs to the machines th(s, r, i),
then the programs of the machines th(s, r, i), and finally how their outputs are
transformed into global outputs. The trusted host does nothing for i = 0. We
now consider an arbitrary round i with i > 0:

Global inputs: At each input port in(s) with s ∈ HS , TH accepts an input vector
(inSi(s, r)|r ∈ MR ∪ {v}). An element inSi(s, r) with r ∈ MR is empty
(i.e., ε) or a command (send, r, l, m, tid) with l ∈ L, m ∈ Msg , and tid ∈
TIDs . An element inSi(s, v) is empty or (show, tid) with tid ∈ TIDs.
(Other inputs are set to ε in TH.)

At each input port in(r) with r ∈ HR, TH accepts an input vector
(inRi(r, s)|s ∈ MS ) whose elements are either ε or a command (receive, s,
l, tid) with l ∈ L and tid ∈ TIDs .

At the port adv in , the trusted host accepts a matrix adv ini over Slots.
Each element adv ini(s, r, t) is a set of commands from the adversary for
the sub-machine in the given slot. A command may be one of the fol-
lowing values: adv receive signals that the adversary is willing to receive
the message handled by this sub-machine. (adv send, m) enables the ad-
versary to send a message m. adv suppress suppresses the given run if
possible. adv show shows the receipt.

Input dispatching: The trusted host first considers all inputs from the adversary:
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The adversary inputs adv in i(slot) with slot ∈ Slots. The trusted host
inputs each correct command in adv ini(slot) to th(slot). (Note that user-
inputs such as send or receive are ignored since they are no correct adver-
sary commands.)

After dispatching all adversary inputs to the sub-machines, all sub-
machines are switched once for each command (in alphabetical order),
i.e., adversary inputs are handled with a higher priority than user-inputs.
(Note that these are only “virtual” submachines, i.e., this does not contra-
dict the synchronous model, it is only a way to keep the state-transition
figures simpler.)

Then, it processes the input elements from the correct users in the order
as listed above.15 16

For any input element ε, it does nothing.

For inSi(s, r) = (send, r, l, m, tid), it verifies that tid is fresh for s, i.e.,
tidstate(s, tid) = ε. If yes, it sets tidstate(s, tid) := (s, r, i) and inputs
(send, l, m, tid) to the sub-machine th(s, r, i).17

For inSi(s, v) = (show, tid), it looks up slot := tidstate(s, tid). If this is not
ε, it inputs show to the sub-machine th(slot).

For inRi(r, s) = (receive, s, l, tid), it checks whether tid is fresh for r, i.e.,
tidstate(r, tid) = ε. If yes, it sets tidstate(r, tid) := (s, r, i) and inputs
(receive, l, tid) to th(s, r, i).

The trusted host inputs stop to all machines th(s, r, i − ∆send) to trigger
the output of their results after ∆send rounds.

Sub-machines: The state diagrams of the machines th(s, r, i) are shown in Fig-
ures 9.8 to 9.10. There are three types of machines, one each for (s, r) ∈
HS × AR, AS × HR or HS × HR. Inputs that are not explicitly shown in
a state are ignored. Recall that stop is always input by TH after the fixed
time ∆send.

The diagrams are complete except that the local variables are not shown
in the states. The states s0, r0, sr0, and failed are without parameters. State
sr3 stores two possibly different tids, one input by the sender and one
input by the recipient. All other states have variables l, m, and tid . Vari-
ables are initially ε and then set by the first input with the same name;
later ones are interpreted as comparisons, i.e., incoming messages with
different parameters are ignored.

The basic idea of the machines in Figure 9.8 and 9.9 is that the adversary
acting on behalf of the incorrect participant is notified that a run has been
started. If the adversary then makes the required input, the protocol run
succeeds and else fails.

For two correct parties, more cases need to be distinguished (see Fig-
ure 9.10): State sr3 corresponds to the case where the parties input dif-
ferent parameters or the adversary suppressed the run. In state sr4 both

15The only non-determinism resulting otherwise would be if one user inputs two commands
with the same tid in the same round.

16This may cause a second state transition of a given sub-machine that already processed an
input from the adversary.

17The sub-machines do not get the parameters s, r, and i, which TH handles itself.
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adv_receive /
(adv_msg, m)

stop
/(sent,tid)

re
ceived

show-
ing

show /
(adv_busy, v, l, tid)

– /
(rec_to_v,
l, m, tid)

show /
 (adv_busy, v, l, tid)
&(rec_to_v, l, m, tid)

(send, l, m, tid)
/  (adv_busy, s, l, tid)

s0

stop / (failed
_for_s, tid)

failed

adv_show
/  (rec_to_v, l, m, tid)

adv_show
/  (rec_to_v, l, m, tid)

s1

s2

s3

adv_suppress
/ –

stop / (failed_for_s, tid)

Figure 9.8: Trusted Host for Certified Mail: th(s, r, i) for a correct s and incor-
rect r. (The scheduling of each round first executes an enabled dashed transi-
tion and then a solid one.)
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Figure 9.9: Trusted Host for Certified Mail: th(s, r, i) for a correct r and incor-
rect s.

input matching parameters and the machine is idling and waiting for
the end of the potentially successful protocol run. If the adversary asks
for the message, the sub-machine changes into state sr5 to disable sup-
pressing this run. If the adversary suppresses this run, the sub-machine
changes into state sr3 to prevent that the adversary obtains the message.
In state sr1 and sr2, only one of the participants made an input and the
protocol waits for termination in order to output failed. Note that the ad-
versary is able to show the receipt in state sr5 already while the correct
sender still waits for the end of the protocol.

Output dispatching: All outputs of multiple values at one port are arranged in
sets, i.e., multiple outputs of one value are ignored. In each round i,
each machine th(s, r, j) makes at most three outputs. While processing
the adversary’s input, the machine may produce an output rec to v or
(adv msg, m). Furthermore, at most two outputs separated by “&” are
produced while processing the inputs of the correct users. Machine TH
dispatches them to the global output ports as follows:

(sent, tid), which only occurs for s ∈ H , leads to an element (sent, tid) at
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Figure 9.10: Trusted Host for Certified Mail: th(s, r, i) for correct r and s.

the port out(s).

(received, m, tid), which only occurs for r ∈ H , leads to an element
(received, m, tid) at the port out(r).

(failed for s, tid) leads to an element (failed, tid) at the port out(s).

(failed for r, tid) leads to an element (failed, tid) at the port out(r).

Each output of (rec to v, l, m, tid) leads to one element (received, s, r, l, m,
tid) in the set of results output at port out(v).

Each output of a tuple (adv busy, u, l, tid) by sub-machine th(s, r, t) leads
to an element (s, r, t, (adv busy, u, l, tid)) at the adversary port adv out ,
and the output of (adv msg, m) leads to an element (s, r, t, (adv msg, m)).

3

Since Def. 4.1 required any labeled certified mail scheme to provide at least
three machines, it is clear that no trusted host is a labeled certified mail scheme
in that sense. However, we now show that our trusted hosts fulfill the re-
quirements of labeled certified mail if we assume that the adversary does not
suppress runs between correct players. Since it can be decided in polynomial
time whether a given run fulfills the following integrity requirements (i.e., all
requirements except [R. 4.2f]), the integrity of any secure implementation fol-
lows from Lemma 8.7.

For the secrecy of the message [R. 4.2f], this does not follow immediately.
However, if sufficient information about the message would be revealed in
an implementation (while it is not in TH), this information could be used to

138



9.2. Labeled Certified Mail

distinguish the trusted host and its implementation. Thus, the implementation
would no longer be secure.

Lemma 9.1
The trusted host from Scheme 9.4 fulfills the security requirements in Def. 4.2
if the machine TH is correct and ignores inputs adv ini(s, r, t) = adv suppress
for correct s and r.18 2

Proof. We consider each of the requirements:

Correct Execution (R. 4.2a): First let s ∈ HS and r ∈ HR input (send, r, lS , m,
tid) and (receive, s, lR, tid), respectively, in Round i, and let tid be fresh
for both. These become elements inSi(s, r) and inRi(r, s), and TH dis-
patches them to th(s, r, i). If lS = lR, the sub-machine enters state
sr4. As adv suppress is ignored, the input of stop, which TH makes af-
ter ∆send Rounds, leads to an output (sent, tid) and (received, m, tid).
These outputs are dispatched into outputs (sent, tid) at the port out(s)
and (received, m, tid) at the port out(r). If lS 6= lR, the sub-machine en-
ters state sr3 and outputs failed for s and failed for r, respectively. These
outputs are dispatched into outputs (failed, tid) at port out(s) and out(r).

Secondly, consider that (received, m, tid) is output at the port out(r) af-
ter an input inRi(r, s) = (receive, s, l, tid) with fresh tid . Then tidstate(r,
tid) was ε before this input was dispatched and (s, r, i) afterwards, and
(receive, l, tid) was input to th(s, r, i). No other th(s′, r, j) ever gets an in-
put with this tid , because earlier, it would have destroyed the condition
tidstate(r, tid) = ε and later, it will not pass the test tidstate(r, tid) = ε.
Hence the output must come from an output (received, m, tid) of th(s, r, i).
Figure 9.10 for correct s and r easily shows that this requires an input
(send, l, m, tid) and thus a global input element inSj ′(s, r) = (send, r, l, m,
tid).

Unforgeability of Receipts (R. 4.2b): An output (received, s, r, l, m, tid) at the port
out(v) only occurs after an output (rec to v, l, m, tid) of th(s, r, i) for some
i. If the recipient is correct, this output is never made without an input
(receive, l, tid). This input only occurs after an input (receive, s, l, tid) at
Port ini(r).

Receipts are Fixed (R. 4.2c): If a verifier output (received, s, r, l, m, tid) then there
exists a th(s, r, i) that stores m, l, and tid , and output (rec to v, l, m, tid).
In both sub-machines with correct recipient, this output only occurs af-
ter the correct recipient input (receive, s, l, tid) and either a correct sender
input (send, r, l, m, tid) or else the adversary input (adv send, m) to this
sub-machine. As a consequence, on input stop, the sub-machine will out-
put (received, m, tid) containing the same message m that is output to the
verifier.

Verifiability of Valid Receipts (R. 4.2d): If the trusted host outputs (sent, tid) to a
correct sender s ∈ HS on input (send, r, l, m, tid), then the correspond-
ing sub-machine is from then on always in state received or showing

18Note that this restriction corresponds to our former assumption that the network is reliable.
However, it is only needed for proving “Correct Execution”.
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and will output (received, s, r, l, m, tid) on input (show, tid) in both states.
Note that subsequent inputs of (show, tid) lead to subsequent outputs of
received at v.

No Surprises for the Recipient (R. 4.2e): If a verifier output (received, s, r, l, m, tid)
then there exists a th(s, r, i) that output (rec to v, l, m, tid) for the stored
m and l. From any state where such an output is possible, both sub-
machines (for correct and incorrect sender) can no longer produce an
output (failed for r, tid), i.e., the recipient will not output (failed, tid).

Secrecy of the Message (R. 4.2f): If a correct sender s obtains an output (failed,
tid) on input (send, r, l, m, tid), then the corresponding sub-machine
th(s, r, i) in slot tidstate(s, tid) output (failed for s, tid). Thus, it does not
output (adv msg, m), (received, m, tid), or (rec to v, l, m, tid) (these are the
only outputs revealing information about the message). Thus, the recip-
ient or adversary do not obtain knowledge about the message since this
particular message is only known by this particular sub-machine.

Termination on Synchronous Network (R. 4.2g): After an input of (send, r, l, m,
tid) or (receive, s, l, tid) with a fresh tid , the trusted host sends a stop sig-
nal at time ∆send+i to each sub-machine started at time i. Since this leads
to an output in all states of a running protocol, the “send“ protocol termi-
nates in time ∆send. Additionally, the verification of a receipt requires at
most time 1 in all machines.

By proving that the labeled certified mail scheme defined by Scheme 9.5 is
as secure as the trusted host, we will almost show that it is a secure labeled
certified mail scheme: Unlike the trusted host, it fulfills the requirements of
Def. 4.1 by construction. The requirements from Def. 4.2, except for “Secrecy
of the Message” are integrity requirements in the sense of Section 8.3.5. Hence
Lemma 9.1 and Lemma 8.7 imply that the real system also fulfills these require-
ments.

Remark 9.6. This trusted host defines a fixed trust model: In any given system
with some corrupt players, the behavior for the correct players is defined by
the trusted host. Thus, we did not express restrictions on the trust model as in
the requirement “limited trust in T” [R. 4.3b]. However, this could be done by
a separate trusted host modeling the behavior if T is corrupted.

Remark 9.7. Since there exists no notion of a third party, a trusted-host-based
specification cannot be used to specify the notion of “optimistic protocols.” In
other words, the main aspect of optimism, that no messages are exchanged
with the third party under certain conditions, is a structural requirement on
the real system. ◦

9.2.2 A Provably Secure System

We now describe a concrete system that is as secure as the ideal system de-
fined above. The protocol is shown in Figure 9.11 and a more precise timing
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diagram in Figure 9.15. The scheme is synchronous (as everything in this chap-
ter), with two-party verification, and optimistic on disagreement, and it needs
4 messages in time 6 in the optimistic case.

We need four cryptographic primitives. The first is a signature scheme,
where we use the notation as in Section 9.1.2. We tacitly assume that its mes-
sage space is sufficiently large to allow for all our messages to be signed.

The second primitive is a one-way function F : {0, 1}∗ → {0, 1}∗, i.e., the
probability that a polynomial-time adversary is able to guess m given F(m) for
a randomly chosen m R← {0, 1}k is negligible in k. To compute a one-time sig-
nature, a value r R← {0, 1}k (k is the given security parameter) will be chosen,
F(r) will be signed (this is the authentication of a one-time public key), and
later r serves as a signature under an a-priori known message.

The third primitive is a chameleon commitment scheme [BrCC 88]. In an
ordinary commitment scheme a recipient generates the key that enables a
sender to fix a message while keeping it secret. Furthermore, the sender may
later open the commitment to prove that it in fact contained a given message.
Chameleon commitments provide the same service, except that the party gen-
erating the key of the scheme can take an opened commitment on a message m
and show how it could instead have been opened to an arbitrary message m′.
For concreteness, we use the scheme from [BoCP 88, ChHP 92, Pede 92] with a
“chameleon” extension. One party randomly chooses a a k-bit prime q and a
k′(k)-bit prime p where q divides p−1 (k′(k) > k denotes a sufficiently large se-
curity parameter of the scheme). Then it randomly selects a generator g of the
unique subgroup Gq of order q in ZZ∗p and x R← ZZ∗q . It makes p, q, g, and h := gx

public. A commitment on a message m ∈ ZZq is denoted by Com(m, r) := gmhr

mod p, where r ∈ ZZq should be randomly chosen. Using the secret key x and
given m and r, one can open Com(m, r) to reveal any other m′ ∈ ZZq by setting

r′ := (m−m′)/x + r

because gm′
hr′ = gm′+xr′ = gm′+(m−m′)+xr = gmhr. The resulting commit-

ment scheme is perfectly hiding and computationally binding.19

The fourth primitive is a collision-resistant hash-function H : {0, 1}≤len →
{0, 1}k−1, i.e., the probability that a polynomial-time adversary is able to com-
pute m′ 6= m with H(m′) = H(m) is negligible in k. It is used for computing
images of the input message. Provably secure hash-functions (e.g., [ChHP 92])
usually need a key. In our scheme, this key will be chosen by the third party.

Scheme 9.5 (Reactive Certified Mail)
Let a message space Msg ⊆ {0, 1}≤len , a label space L ⊆ {0, 1}≤len , a set of
transaction identifiers TIDs ⊆ {0, 1}≤len , a round number rnds , and numbers
nS , nR be given as in Definition 9.4 (in the sequel, we usually omit the security
parameter k).

We mainly describe a set of machines {Mu|u ∈ M ∪ {t}}with t := n + 1 for
n := nS + nR + 1, i.e., one machine for each user and additionally a machine
Mt for a third party. The system SysLCM is the set of all structures

(M (H ),G(H ), s∗(H ))
19In order to break the binding property of a commitment co = gmhr without the secret key

x, an adversary is required to find another representation co = gm∗
hr∗ with m∗ 6= m, which is

computationally hard without knowing the secret key x.
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for any set H ⊆ M of correct users, where M (H ) = {Mu|u ∈ H }, and G(H ) and
s∗(H ) are defined below.

The machines Mu are of four types: one for senders (u ∈ MS ), one for recip-
ients (u ∈ MR), one for the verifier (u = v) and one for the third party (u = t).
Let A = M −H be the set of the corrupted players.

Ports and graph: Each machine Mu has a pair (in(u), out(u)) of in- and output
ports to its user (called user u), one broadcast output channel out0 (u)20,
and a list of input channels in0 (v , u) for each other machine v ∈ M . Fur-
thermore, it has a pair (netw in(w , u),netw out(u,w)) of in- and output
ports for exchanging messages with Mw for each w ∈ M . We define
s∗(H ) := {in ′(u), out ′(u)}u∈H . The verifier Mv has no user-input chan-
nel in(u) while machine Mt has no user ports at all.

The connection graph G(H ) defines authentic broadcast channels for
key exchange. Channels with the verifier and third party are assumed
to be reliable. All other connections are left to the discretion of the
adversary: Each key exchange output port out0(u) is connected to a
free output port out′0(u) as well as to all corresponding input ports
in0(u, w) for w ∈ M (H ), i.e., the adversary can listen to, but not
modify the key exchange channels between correct players. Each reli-
able output port netw out(u, w) with u ∈ {t, v} or w ∈ {t, v} is con-
nected to a replicated free port netw out ′(u, w) as well as the corre-
sponding input port netw in(u, w). All other ports netw out(s, r) and
netw in(s, r) are connected to ports netw out ′(s, r) and netw in ′(s, r) that
are in free(G(H ),M (H )). Similarly, G(H ) connects in ′(u) to in(u) and
out(u) with out ′(u). As before, we omit the primes in the sequel.

Initialization (Round 0): The third party generates the parameters q, p, g, x, h of
the chameleon commitment scheme as well as a hash-function H. It
broadcasts q, p, g, h, and H. Each machine generates signature keys (
signu, testu) and broadcasts testu.

Each sender Ms with s ∈ HS initializes the following variables, where
SlotsS := MR × {1, . . . , rnds}:

tidstates : TIDs → {ε} ∪ SlotsS ;
slotstates : SlotsS → Localstate.

As the sender can start a “send“ protocol with each recipient in each
round, this corresponds to the “slots” or opportunities for such proto-
col runs. Initially, tidstates contains ε everywhere. Localstate is the set of
possible states of each protocol sub-machine cm ss(r, i). Each slot-state
is initialized with state ps0(r, i).

21 All protocol sub-machines cm ss(r, i)
store the slot as a parameter.

20Unlike secure channels, we now also require consistency as guaranteed by the multicast chan-
nels in order to ensure that the verifier and all recipients obtain the same public keys.

21These matrices will usually be sparsely populated. In practice, the state of the few sub-
machines in non-starting states can either be stored in a database or else by spawning sub-
processes who keep the corresponding state.

142



9.2. Labeled Certified Mail

Each recipient Mr with r ∈ HR initializes the following variables, where
SlotsR := MS × {1, . . . , rnds}:

tidstater : TIDs → {ε} ∪ SlotsR;
slotstater : SlotsR → Localstate.

Initially, tidstater contains ε everywhere. All states store the slot as a
parameter. Thus, each slot-state is initialized with state pr0(s, i).

Sender Input Dispatching: Each sender obtains a vector ini(s) with ini(s) =
(inSi(s, r)|r ∈ MR) from its user. For inSi(s, r) = (send, r, l, m, tid), the
sender machine verifies that tid is fresh for Ms, i.e., tidstates(tid) = ε.
If yes, it sets tidstates(tid) = (r, i) and inputs (send, r, l, m, tid) to the
sub-machine cm ss(r, i).

For inSi(s, v) = (show, tid), it looks up slot := tidstates(tid). If this is ε,
the input is ignored. Else, it inputs show to the sub-machine cm ss(slot).

For each message msg received at netw in(r, s) that contains a tid , the
tuple (msg,msg) is input to cm ss(tidstateS (tid)).

Recipient Input Dispatching: Each recipient obtains a vector ini(r) with ini(r) =
(inRi(r, s)|s ∈ MS ) from its user. For inRi(r, s) = (receive, s, l, tid), it
checks whether tid is fresh for Mr, i.e., tidstater(tid) = ε. If yes, it sets
tidstater(tid) := (s, i) and inputs (receive, s, l, tid) to cm rr(s, i).

For each message msg received at netw in(s, r) that contains a tid , the
tuple (msg,msg) is input to cm rr(tidstateR(tid)).

Input Dispatching of Mt and Mv: The third party and the verifier do not have
matrices of sub-machines. Instead, they process received messages in-
dependently and in parallel.

The “send“-Protocol: A protocol run is depicted in Figure 9.11. The individual
sub-machines are depicted in Figures 9.12, 9.13, and 9.14. The timing is
depicted in Figure 9.15. The detailed behavior is as follows:

Machine cm ss(r, i): On input of (send, r, l, m, tid) from its super-machine
Ms, a sender sub-machine cm ss(r, i) chooses rS

R← ZZq, sets dS := (s,
r, l, tid , i), computes m1 ← signs(dS , Com(H(m), rS))22 to be sent to
r and outputs (msg, r, m1)23. On input of a correct tuple (msg, m2) in
Round i + 2, the machine computes m3 := (tid , rS , m) and outputs
(msg, r, m3). Otherwise, it waits for the protocol to end. If it output
m3 and does not receive a correct input (msg, m4) in Round i+4, it
executes the sub-protocol “resolve“.
After 6 rounds, it outputs (sent, tid) to the super-machine if it re-
ceived m2 and else (failed, tid). (Note that it will receive m4 or m6

since the connection to T is reliable.)
22In the sequel, we tacitly assume that signed message can unambiguously be distinguished.

This can, e.g., be guaranteed by signing a message identifier +m i+ together with the contents of
mi.

23This is a message envelope that signals to the super-machine that message m1 shall be sent to
machine Mr.
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Machine cm rr(s, i): Upon receipt of an input (receive, s, l, tid) from its
super-machine Mr, a recipient sub-machine cm rr(s, i) waits for
an input (msg, m1) and verifies that the parameters are as ex-
pected. Otherwise, it waits. If m1 was correct, it computes m2 ←
signr(m1,F(rR)) with rR

R← {0, 1}k and outputs (msg, s, m2). Then,
it waits for a correct (msg, m3) in Round 3. If this input is not
received, it waits for a correct input (msg, m6) in Round i + 6.
If (msg, m3) is received, it computes m4 := (tid , rR), outputs
(msg, s, m4), and outputs (received, m, tid) at time i + 6.
If m3 was not received, it waits for an input (msg, m6) in Round i+6.
If a correct m6 is input, it outputs (received, m, tid) and (failed, tid),
else.

Sub-protocol “resolve“: Machine cm ss(r, i) computes m5 := (m1, m2, m3)
and outputs (msg, t, m5). Upon receiving m5, Mt verifies it and ver-
ifies that the round number in dS as contained in m1 is i − 5. If
these checks succeed, it sends m6 ← signt(m5) to Ms and Mr. Else, it
aborts. (Note that we assume that machine Mt can process multiple
requests in parallel, i.e., we do not elaborate on its sub-machines.)

The “show“-Protocol: On input (show, tid) from the super-machine, a sender
machine cm ss(r, i) in state received outputs either (msg, v, (m1, m2,
m3, m4)) while it outputs (msg, v, m6) in state received′.

Upon receipt of one of these receipts, the verifier machine Mv outputs
(received, s, r, l, m, tid) if these messages are correct while using the pa-
rameters as fixed in m1 as well as the message from m3. (Again, we as-
sume that Mv can process multiple requests in parallel; however multiple
receipts for one tid of the same participants only lead to one output of
received.)

Output Dispatching: All outputs of multiple values at one port are arranged in
sets. For each tuple (msg, w,msg) with w ∈ M that is output by a sub-
machine, the super-machine Mu adds an element msg to the set of mes-
sages to be output at netw out(u, w). All other outputs by sub-machines
are output at out(u).

All outputs of Mv of parallel executions of “show“ in the current round
are output as a set out(v).

3

Remark 9.8. This scheme does not fulfill Requirements 4.3a and 4.3c from Defi-
nition 4.3: It is clear that in the described scheme where the third party chooses
the commitment scheme, Requirement 4.2c does not hold if the third party
misbehaves: Using the secret key x, a sender colluding with the third party
can change the receipt such that it matches any message. Therefore, the re-
quirement “limited trust in the third party” is not fulfilled for this scheme. ◦

9.2.3 The Security Proof

We now prove the security of Scheme 9.5 with respect to the trusted host de-
fined in Def. 9.4. The overall structure of the proof is similar to the proof for
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cm ss(r, i) Mt cm rr(s, i)

(send, r, l, m, tid) (receive, s, l, tid)

rS
R← ZZq

dS := (s, r, l, tid , i)
dR := (s, r, l, tid , i)

−−−−−−−−−−−−−
m1 ← signs(dS, Com(H(m), rS))

−−−−−−−−−−−−−−−−−−−→ ¬m1 or
dS 6= dR: wait

until round
i + 6.

rR
R← {0, 1}k .

←−−−−−−−
m2 ← signr(m1,F(rR))
−−−−−−−−−−−−−−−−−−−−−−−−−

¬m2: Wait
until round

i + 6.

−−−−−−−−−
m3 := (tid , rS, m)
−−−−−−−−−−−−−−−−−−−−−−→

¬m3: wait for
m6. Else: Wait

until round
i + 6.

←−−−−−−−−−−
m4 := (tid , rR)
−−−−−−−−−−−−−−−−−−−−−

If ok: wait until
round i + 6.

Else:

−
m5 := (m1, m2, m3)−−−−−→

m5 not ok:
abort.

Else, m6 ←
signt(m1, m2,

m3).

←− m6−−−−− − m6−−−−−→

m2: (sent, tid)
else (failed, tid)

m3 or m6:
(received, m, tid)

else (failed, tid)

Figure 9.11: Scheme 9.5 for Synchronous Labeled Certified Mail (dashed ar-
rows are only needed in case of exceptions).
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re-
ceived'

show /
(msg, v,

m6)

— /
(sent, tid)

failed

re-
ceived

show /
(msg, v,
m1...m4)

(send, r,  l, m, tid) /
(msg, r, m1)

ps0

— /
(failed, tid)

(msg, m2 )

 / (msg, r, m3)

¬(msg, m2 )
/ —

(msg, m4)

 / —

¬(msg, m4 )

/ (msg, t, m5)

(msg, m6 )
/ (sent, tid)

Figure 9.12: Sender for Certified Mail (Sub-Machine cm ss(r, i); unlabeled tran-
sitions are triggered by time).

¬(msg, m6 )
/ (failed, tid)(receive, s, l, tid)

 /—

— /
(received, m, tid)

failed

re-
ceived

pr0
(msg, m6 ) /

(received, m, tid)

(msg, m1)/
(msg, s, m2)

¬(msg, m1)
/ —

— / (failed, tid)

(msg, m3)
/ (msg, s, m4)

¬(msg, m3)
/  —

Figure 9.13: Recipient Machine for Certified Mail (Sub-Machine cm rr(s, i)).

pv0

m1...m4
/ (received, s, r, l, m, tid)pt0

m5 /
m6+m6

m6
/ (received, s, r, l, m, tid)

Figure 9.14: Third Party and Verifier Machines for Certified Mail.
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Round cm ss(r, i) A cm rr(s, i) Mt

inSi (s, r) = inRi (r, s) =
(send, . . . ) (receive, . . . )

[i.1] © −−−−m1−−−−−−→ ©
[i.2] ©
[i.3] (H)

[i.4] ©−−−−
m′

1−−−−−−→
[i + 1.1] © ←−−−−m2−−−−−− ©
[i + 1.2] ©
[i + 1.3] (H)

[i + 1.4] ←−−−−
m′

2−−−−−−©
[i + 2.1] © −−−−m3−−−−−−→ ©
[i + 2.2] ©
[i + 2.3] (H)

[i + 2.4] ©−−−−
m′

3−−−−−−→
[i + 3.1] © ←−−−−m4−−−−−− ©
[i + 3.2] ©
[i + 3.3] (H)

[i + 3.4] ←−−−−
m′

4−−−−−−©
[i + 4.1] © −−−−m5−−−−−−→ © ©

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[i + 4.2] ©
[i + 4.3] (H)
[i + 4.4] ©
[i + 5.1] © © ©

←−−−−−−−−−−−m6−−−−−−−−−−−−−
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[i + 5.2] ©
[i + 5.3] (H)
[i + 5.4] ©
[i + 6.1] © © ©

outi+6 (s, r) = outi+6 (r, s) =
(sent, . . . ) (received, . . . )
or “failed” or “failed”

Figure 9.15: Timing of the “send“ Protocol of Scheme 9.5 for Correct Sub-
machines cm ss(r, i) and cm rr(s, i). (Arrows to A correspond to messages
netw . . ., arrows from A to messages netw ′ . . .. © denotes switching of the ma-
chine in this column, (H) denotes switching of H.)
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Figure 9.16: Structure of the System and its Simulation (the matrices of tiny
squares depict the slots with sub-machines).

secure channels, i.e., for each set H ⊆ M of correct participants and any given
adversary A for this system, we make a blackbox-reduction without rewinding.

The main cryptographic aspect of the simulation of the system in the sim-
ulation of a message m1: At the time m1 shall be sent, the trusted host only
outputs a busy-signal without revealing the actual message. However, our
simulator has to give a correct-looking network message to A, which includes
a commitment that is supposed to fix the message m to be sent. If the protocol
run is successful, it has to open this commitment two rounds later. If it then
reveals a message m′ 6= m, i.e., not the input of the honest user to TH, the
simulation is not correct: e.g., an honest recipient may not get the message an
honest sender sent. Here is why we needed the chameleon property: It allows
the simulator (who also only simulates the machine Mt and thus knows its key)
to first make the commitment on an arbitrary message msim, and later open it
to the correct message m.

We now define a corresponding adversary Sim(A) on the trusted-host sys-
tem. It consists of a simulator Sim that simulates all machines Mu of the system
and any given adversary A. The machine Sim as described below simulates
the behavior of correct real machines by machines {M′

u|u ∈ H } and Mt and Mv

using the information obtained at machine TH in order to give the simulated
A its expected environment (see Figure 9.16). In order to enable a modular
proof, the main aspects of the simulation are handled by sub-machines cm s′

and cm r′ that simulate the sub-machines cm s and cm r of the real protocol.
However, instead of processing dispatched inputs from the user H, the simu-
lated machines interact with the sub-machines th in the corresponding slot of
TH.

Scheme 9.6 (Simulation of Labeled Certified Mail)
Let a set H ⊆ M of correct participants be given. Let A := M −H .

We now define an adversary Sim(A). It consists of a simulator Sim interact-
ing with A and TH. Sim behaves as follows:

Ports and Graph: The ports and graph between the simulated machines M′
u u ∈
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H are identical to the real system. In addition, the simulator Sim has two
ports adv in ′ and adv out ′ for interacting with TH.

Initialization (Round 0): In Round 0, the behaviour and key exchange of all
simulated machines M′

u is identical to their real counterparts from
Scheme 9.5. The sub-machines of a sender and a recipient are denoted
with cm s′(r, i) and cm r′(s, i), respectively.

Input Dispatching: The dispatching of network inputs is not changed. Each
input at port adv out ′ is dispatched as follows using a fixed message
msim ∈ Msg :

Input at adv out ′: Input: at:
(s, r, i, (adv busy, s, l, tid)) (send, r, l, msim, tid) M′

s

(s, r, i, (adv busy, r, l, tid)) (receive, s, l, tid) M′
r

(s, r, i, (adv busy, v, l, tid)) (show, tid) M′
s

(s, r, i, (adv msg, m)) (adv msg, m) cm s′s(r, i) in M′
s

Machines M′
s and M′

r then dispatch these inputs to their sub-machines as
usual.

Sender Sub-machine cm s′s(r, i): A state transition in Round [i.1] of the real ma-
chines is usually simulated in two parts: In [i − 1.4] the simulation ver-
ifies incoming messages and sends requests to the trusted host. In [i.2],
the answers of the trusted host are received and the resulting messages
are sent.

The sender sub-machine cm s′s(r, i) simulates a correct sender sub-
machine cm s(r, i), except for the following changes (see Figure 9.17
and 9.18):

Round [i.2]: The sender sub-machine computes m1,sim like m1 with the
input message msim. With rsim, we denote the random number
used for computing the commitment Com(H(msim), rsim).

Round [i+1.4]: Upon input of a correct (msg, m2), it outputs adv receive
(that will be dispatched to adv in ′(s, r, i)) to obtain the message m.
Otherwise, it outputs adv suppress.

Round [i+2.2]: Upon input of (adv msg, m), the sub-machine computes
m3,sim := (tid , r′S , m) using the message m and r′S := (H(msim) −
H(m))x−1 + rsim mod q, which is computed using the secret key
x of the simulated machine T. This choice of r′S guarantees that
Com(H(m), r′S) = Com(H(msim), rsim) using the chameleon prop-
erty of the commitment scheme.
If (adv msg, m) is not input after outputting adv receive, the sub-
machine stops prematurely.

Round [i+6.2]: The sub-machine does not output its final result.

No changes are made to the behavior of the sender in the “show“-
protocol.

Recipient Sub-machine cm r′r(s, i): This machine simulates a correct recipient
sub-machine cm rr(s, i), except for the following changes (see Figure 9.17
and 9.18):
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Round [i.4] If no correct (msg, m1,sim) was input, the sub-machine out-
puts adv suppress.

Round [i+2.4] After the input of a correct (msg, m3,sim), it outputs
(adv send, m).24

Round [i+6.2]: The sub-machine does not output its final result.

Third Party M′
t: The third party M′

t is simulated with the following change:

Round [i+4.4] The third party verifies the input message m5 and decides
whether it will send m6 at time [i + 5.2] as usual. If yes, it outputs
((s, r, i), (adv send, m)) for the tuple (s, r, i) as included in m1.

Verifier M′
v: The simulated verifier M′

v verifies input messages like Mv. For each
correct message, it retrieves s, r and the starting round i of the corre-
sponding protocol run from m1 and outputs ((s, r, i), adv show).

Output Dispatching: Each super-machine M′
u with u 6∈ {v, t} dispatches all mes-

sages (i.e., tuples starting with msg) without changes. All other outputs
outslot of a sub-machine in slot slot are output as (slot, outslot) to Sim to
be forwarded to TH. Non-network outputs of M′

t and M′
v are output to

Sim.

The simulator Sim collects all adversary outputs outslot for each slot
(s, r, i) and outputs them as a set adv in ′((s, r, i)). Adversary outputs are
((s, i), outslot ) from M′

r with r ∈ HR, ((r, i), outslot ) from M′
s with s ∈ HS ,

((s, r, i), outslot ) from M′
t, and ((s, r, i), outslot ) from M′

v.

3

Theorem 9.2
Let a message space Msg ⊆ {0, 1}≤len , a label space L ⊆ {0, 1}≤len , a set of
transaction identifiers TIDs ⊆ {0, 1}≤len , a round number rnds ∈ N, and num-
bers nS , nR be given as in Definition 9.4. Let ∆send := 6.

Then
SysLCM ≥fcm ,poly

sec TH LCM

holds for SysLCM as defined in Scheme 9.5, TH LCM as defined in Scheme 9.4,
and

fcm((M (H ),G(H ), s∗(H ))) := ({TH(H )},GTH (H ), s∗(H )).

2

Proof. We show for any given configuration (M (H ), G(H ), s∗(H ), H, A, GAH )
and the corresponding configuration (TH (H ), GTH (H ), s∗(H ), H, Sim(A),
GAH ) based on the simulator Sim(A) as defined in Scheme 9.6 that the fami-
lies of distributions of the view of H are polynomially indistinguishable unless
H has ports from free(GTH (H ), {TH (H )})− s∗(H ).

24This input enables the adversary to start verification at time [i + 3.2] in case of s ∈ AS , even
though correct players have to wait for the end of the protocol.
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TH Adversary Sim(A) TH
Round th(s, r, i) cm s′s(r, i) A cm r′r(s, i) th(s, r, i)

inSi (s, r) = inRi (r, s) =
(send, . . . ) (receive, . . . )

[i.1] ©−
adv b., s, l, tid
−−−−−−−−−−−→ ←−

adv b., r, l, tid
−−−−−−−−−−−©

[i.2] ©−
m1,sim−−−−−−→© ©

[i.3] (H)

[i.4] ©−
m′

1,sim−−−−−−→� −
adv sup. or ε
−−−−−−−−−−→

[i + 1.1] © ©
[i + 1.2] © ©←−m2 or ε−−−−−−©
[i + 1.3] (H)

[i + 1.4] ←−−
adv receive
or adv sup.
−−−−−−−−−− �←−−

m′
2−−−−©

[i + 2.1] ©−−
adv msg, m

or ε−−−−−−−−−−→ ©
[i + 2.2] ©−

m3,sim−−−−−−→© ©
[i + 2.3] (H)

[i + 2.4] ©−
m′

3,sim−−−−−−→� −
adv send, m

or ε−−−−−−−−−−→
[i + 3.1] © ©
[i + 3.2] © ©←−m4 or ε−−−−−−©
[i + 3.3] (H)

[i + 3.4] ←−−
m′

4−−−−©

Round TH cm s′s(r, i) A M′
t TH

[i + 4.1] © ©
[i + 4.2] ©−m5 or ε−−−−−−→© ©

−−−−−−−−−−−−−−−−→
[i + 4.3] (H)

[i + 4.4] © � −
adv send, m

or ε−−−−−−−−−−→
[i + 5.1] © ©
[i + 5.2] © ©←−m6 or ε−−−−−−©

←−−−−−−−−−−−−−−−−
[i + 5.3] (H)

Round TH cm s′s(r, i) A cm r′r(s, i) TH

[i + 5.4] ©
[i + 6.1] © ©

outi+6 (s, r) = outi+6 (r, s) =
(sent, . . . ) (received, . . . )
or (failed, . . . ) or (failed, . . . )

Figure 9.17: Simulation of the Labeled Certified Mail Protocol. (The symbol
� denotes additional state transitions not in the protocol; primed messages
denote messages that may have been changed by the adversary).
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Adversary Sim(A) TH
Round A M′

v th(s, r, i)

[j.1] ©
[j.2] ©
[j.3] (H)

[j.4] ©−
(m1, . . . , m4)

or m6−−−−−−−−−−−→�−adv show−−−−−−−−→
[j + 1.1] ©

(received, . . . ) or ε

Figure 9.18: Simulation of the Verification for Labeled Certified Mail.

Defining (s, r, i)-Systems: We now define sub-systems containing all sub-
machines that handle a given slot (s, r, i) of TH.

Third Party: Mt and M′
t process any network input only if it includes cor-

rect signed messages m1 and m2 with the same (s, r, i). All other inputs are
ignored. We denote the behavior for a given triple (s, r, i) with cm t(s, r, i) and
cm t′(s, r, i), respectively.

Verifier: The verifier Mv outputs (received, s, r, l, m, tid) only after processing
correct network inputs m1 and m2 including the same (s, r, i) (either included
in the tuple (m1, . . . , m4) or in m6). All other inputs are ignored, and similarly
by M′

v. We denote the behavior of for a given triple (s, r, i) with cm v(s, r, i)
and cm v′(s, r, i), respectively.

In the sequel, the sub-machines cm ss(r, i), cm rr(s, i), cm t(s, r, i), and
cm v(s, r, i) are called (s, r, i)-system, while cm s′s(r, i), cm r′r(s, i), th(s, r, i),
cm t′(s, r, i), and cm v′(s, r, i) are called (s, r, i)-simulation.

Correct Dispatching within (s, r, i)-Systems: We first show that all inputs at
s∗(H ) or at the network in the simulation and the real system are either ignored
or lead to identical inputs at the (s, r, i)-system and its simulation.

Then, we show that all outputs that are not output at s∗(H ) or the network
are internal to each (s, r, i)-system and its simulation. In particular, they are
not in A’s and H’s view.

Inputs at the User-Interface s∗(H ): An input of (send, r, l, m, tid) to TH at port
in(s) with s ∈ HS in Round i is input to cm ss(r, i) or th(s, r, i), respectively.
An input (show, tid) to TH at port in(s) is ignored if this sender did not input
(send, r, l, m, tid) with the same tid before, and machine Ms ignores these in-
puts as well. Else, it is input to cm ss(r, i) or th(s, r, i), respectively. An input
of (receive, s, l, tid) to TH at port in(r) with r ∈ HR is input to cm rr(s, i) or
th(s, r, i), respectively. All other inputs at s∗(H ) are ignored.

Network Inputs: Network inputs are dispatched and transported to the
(s, r, i)-system and its simulation without changes.

Visible Outputs: All network outputs (msg, r,msg) are dispatched and out-
put to A without changes in the system and its simulation. The outputs at
out(v) are collected from the outputs of the sub-machines of Mv and M′

v with-
out changes.

We show now that all non-network outputs of the sub-machines of an
(s, r, i)-system and all outputs of th(s, r, i) that are neither adv busy and adv msg
correspond to each other and lead to identical outputs at the user interface
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s∗(H ).
If cm ss(r, i) outputs (sent, tid), machine Ms outputs (sent, tid) at out(s).

This output corresponds to the output (sent, tid) at th(s, r, i), which is output
by TH at out(s) as well.

The output (failed, tid) by cm ss(r, i) leads to the same output at out(s) of
Ms. This output corresponds to the output of (failed for s, tid) by th(s, r, i),
which leads to an output (failed, tid) at TH as well.

The output (received, m, tid) by cm rr(s, i) leads to the same output at out(r)
of Mr. It corresponds to the output (received, m, tid) at th(s, r, i) which leads to
the same output at TH.

The output (failed, tid) by cm rr(s, i) leads to an output (failed, tid) at out(r)
of Mr. It corresponds to the output (failed for r, tid) by th(s, r, i), which leads to
an output (failed, tid) at out(r) of TH as well.

The output (received, s, r, l, m, tid) at cm v(s, r, i) is output at out(v). It
corresponds to (rev to v, l, m, tid) by th(s, r, i), which leads to an output
(received, s, r, l, m, tid) at out(v) as well.

Other Outputs are Internal: The only other outputs of the (s, r, i)-simulation
that have not been considered so far are adv busy, adv msg, adv send,
adv receive, adv show, and adv suppress.

The output adv busy by th(s, r, i) is forwarded as adv out(s, r, i) to Sim
which inputs the corresponding input command (see Page 149) to M′

s or M′
r,

respectively. These machines then initialize tidstate(tid) and input the com-
mand to the corresponding sub-machine.

An output (adv msg, m) by th(s, r, i) is dispatched via TH and Sim to
cm s′s(r, i).

An output (adv send, m) by cm r′r(s, i) or cm t′(s, r, i) is dispatched to
th(s, r, i).

An output adv receive by cm s′s(r, i) is dispatched to th(s, r, i).
An output adv show by cm v′(s, r, i) is dispatched to th(s, r, i).
An output adv suppress by cm s′s(r, i) or cm r′r(s, i) is dispatched to th(s, r, i).
In the sequel, we usually omit the dispatching and use abbreviations

like “cm s′(r, i) inputs adv suppress to th(s, r, i)”, even though this message is
passed through machines M′

s, Sim, and TH.

Correct Sender; Incorrect Recipient: Let us now consider a protocol execu-
tion of a given (s, r, i)-system and its simulation on corresponding inputs. We
show that the visible behavior (i.e., on the network and at s∗(H )) is indistin-
guishable.

Let s ∈ HS and r ∈ AR. We therefore compare the behavior of th(s, r, i),
cm s′s(r, i), cm v′(s, r, i), and cm t′(s, r, i) with cm ss(r, i), cm v(s, r, i), and
cm t(s, r, i). Before Round i, all sub-machines do nothing. If send is not input
in Round i, all (s, r, i)-machines remain in their starting state forever without
making any outputs. (Initially, neither cm v(s, r, i) nor cm v′(s, r, i) will output
received for this s, r, tid for any fresh tid .)

Let us now consider the case that (send, r, l, m, tid) is input with a fresh
tid to cm ss(r, i) and to th(s, r, i) (inputs with non-fresh tid are ignored in
both systems). Then, th(s, r, i) changes to s1 and outputs (adv busy, s, l, tid),
which is dispatched as (send, r, l, msim, tid) to cm s′s(r, i). Then, the sender sub-
machines send m1 and m1,sim, respectively. These messages only differ with
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respect to the committed message. The perfect indistinguishability of these two
commitments follows from the hiding property of the underlying commitment
scheme. If the adversary does not send a correct m2, then cm ss(r, i) outputs
(failed, tid) at time i + 6. cm s′s(r, i) on the other hand sends adv suppress to
th(s, r, i), which changes from state s1 to s3. Thus, since TH inputs stop at time
i + 6, this machine outputs (failed, tid) at s∗(H ) as well.

If we now assume that cm ss(r, i) and cm s′s(r, i) receive a correct m2,
cm ss(r, i) sends m3 while cm s′s(r, i) inputs adv receive to th(s, r, i), which
changes from state s1 to s2 while outputting (adv msg, m). Then, cm s′s(r, i)
sends m3,sim. The adversary cannot distinguish (m1, m3) from (m1,sim, m3,sim)
since r as well as r′S are uniformly distributed in ZZq (recall that rsim is never
revealed to the adversary):

r′S = (H(msim)−H(m))x−1 + rsim mod q

= const + rsim mod q.

After sending m3 and m3,sim the behavior of cm ss(r, i) and cm s′s(r, i) with re-
spect to the network is identical (including cm t(s, r, i) and cm t′(s, r, i)). (Note
that an output (adv send, m) by cm t′(s, r, i) will be ignored by th(s, r, i) after
m3 has been sent.) This includes recovery in case m4 was not received correctly
(in particular, at the end, they will be in the same state). Let us now consider
the outputs at s∗(H ) at time i +6. After receiving m2, the real protocol outputs
(sent, tid) at time i + 6 at s∗(H ) in any case. (Recall that the connection to the
correct cm t(s, r, i) is reliable.) The same holds for th(s, r, i), since it is in state
s2 and will receive an input stop. This implies that th(s, r, i) changes to state
received exactly if and when cm ss(r, i) changes to received or received′.

This covers all inputs that are accepted from A and H during the “send“-
protocol. Let us now consider all other accepted inputs, namely network in-
puts to the verifier as well as the input of show to the correct sender.

The real verifier only produces an output at s∗(H ) iff a correct receipt
(m′

1, . . . , m′
4) or m′

6 was received that passes all the verifications. The same
holds for the output ((s, r, i), adv show) by cm v′(s, r, i) by construction. Let us
now consider the outputs of sub-machine th(s, r, i) at out(v): If cm v′(s, r, i)
outputs (s, r, i, adv show) while th(s, r, i) does not output (received, s, r, l, m,
tid), then th(s, r, i) either was not in state s2, received, or showing25 or else these
states store different parameters (see Fig. 9.8).

In the first case, the simulated sender cm s′s(r, i) did not output adv receive
and thus did not send m3. Since the verifier obtained a correct m′

1 and m′
3 for

this tid (directly or in m6), the security of a primitive was broken:

1. If the adversary was able to present an m′
1 6= m1 for the same (s, r, i), then

the signature scheme was broken since cm s′s(r, i) signs m1 only once for
each (s, r, i) and no other sub-machine of M′

s signs m1 for this (s, r, i).26

2. Otherwise, the commitment is fixed by m1. If the adversary was able to
produce a pair (r′, c′) with Com(c′, r′) = Com(c, r), then, it was able to

25In this state the input adv show is ignored but an output (received, . . . ) at s∗(H ) is produced
anyway.

26Recall that we defined that signed messages carry a type identifier, so that no message not
called “m1” can equal a message m1. Moreover, we required that the implementation of tuples
guarantees unambiguous decomposition, and m1 contains s, r and i in fixed components.
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break the binding property if c′ 6= c, or else the hiding property of the
commitment scheme.

In the second case, th(s, r, i) stores the parameters input to cm s′s(r, i) and
fixed in m1 while cm v(s, r, i) received an m′

1 6= m1 or m′
3 6= m3. Thus, one of

the primitives was broken, too. (If m′
1 = m1 then the adversary knows (c, r)

and is required to find a c′ 6= c to break the binding property in Item 2, or to
find a collision of the hash function.)

Let us now consider an input of (show, tid) in Round j to cm ss(r, i) and
th(s, r, i), respectively. Machine cm ss(r, i) considers this input iff it is in in
state received or received′, while th(s, r, i) considers it if it is in state received or
showing. Above we showed that this happens under the same conditions (in
Round i + 6), and that cm s′s(r, i) is then in the same state as cm ss(r, i). By
construction, the message cm ss(r, i) then sends to cm v(s, r, i) is accepted, and
thus cm v(s, r, i) outputs (received, s, r, l, m, tid) in Round j + 1. In the simula-
tion, th(s, r, i) changes to state showing and outputs (adv busy, v, l, tid), which
leads to an input (show, tid) to cm s′s(r, i). Hence, still in Round j, machine
cm s′s(r, i) sends the corresponding message to cm v′(s, r, i) as cm ss(r, i), hence
the network messages are indistinguishable. In Round j + 1, th(s, r, i), being
in state showing, outputs (received, s, r, l, m, tid). (Additionally in Round [j.4],
cm v′(s, r, i) accepts and outputs adv show; this is ignored by th(s, r, i) in Round
j+1 in state showing. This corresponds to the fact that the trusted host specifies
that showing receipts by a correct sender should always work.)

Correct Recipient; Incorrect Sender: Let s ∈ AS and r ∈ HR. We therefore
compare the behavior of th(s, r, i), cm r′r(s, i), cm v′(s, r, i), and cm t′(s, r, i)
with cm rr(s, i), cm v(s, r, i), and cm t(s, r, i). Before Round i, all sub-machines
do nothing. If (receive, s, l, tid) is not input in Round i at in(r), all machines
remain in their starting state forever without making any outputs.

Let us now consider the case that (receive, s, l, tid) with a fresh tid is input to
cm rr(s, i) and th(s, r, i), respectively. Then th(s, r, i) changes to state r1 and out-
puts (adv busy, r, l, tid), which leads to an input (receive, s, l, tid) to cm r′r(s, i).
Then, both sub-machines wait for m1 (we omit the distinction between m1 and
m1,sim since they are indistinguishable). If the adversary does not send m1

then cm rr(s, i) outputs (failed, tid) at time i + 6. cm r′r(s, i) on the other hand
outputs adv suppress to th(s, r, i), which changes from state r1 to r2. Thus, since
TH inputs stop at time i + 6, this sub-machine outputs (failed, tid) at s∗(H ) as
well.

If cm rr(s, i) and cm r′r(s, i) receive a correct m1, both sub-machines send
m2.

If a correct m3 is not received, both machines wait for m6. If m6 is not
received either, the real machine cm rr(s, i) outputs (failed, tid) at time i + 6,
and th(s, r, i) outputs (failed, tid) on input stop since cm r′r(s, i) did not output
(adv send, m).

If a correct m3 is received, both machines send m4 and cm r′r(s, i) inputs
(adv send, m) to th(s, r, i), which changes from state r1 to received. In this case,
machine cm rr(s, i) as well as the trusted host output (received, m, tid) at time
i + 6.

After this execution of the “send“-protocol cm rr(s, i) as well as th(s, r, i)
ignore all inputs at s∗(H ) while cm rr(s, i) and cm r′r(s, i) ignore all network
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inputs from A as well.
Let us now again consider all other accepted inputs. The real ver-

ifier cm v(s, r, i) only produces an output (at s∗(H )) iff a correct receipt
(m′

1, . . . , m′
4) or m′

6 was received that passes all the verifications. The same
holds for the output ((s, r, i), adv show) by cm v′(s, r, i) by construction. As ar-
gued before, th(s, r, i) does not produce the same output as cm v(s, r, i) only if
it is not in state received or if this state stores different parameters (see Fig. 9.9).27

If the recipient sent m4 at time [i + 3.1] in the real protocol, the adversary is
first able to cause an output (received, . . . ) using this m4 at time [i + 4.1]. In the
simulation, the recipient inputs (adv send, m) at time [i + 2.4] and sends m4 at
time [i + 3.2]. The adversary obtains m4 at time [i + 3.2] and may first send it
to the simulated verifier, which outputs adv show to th(s, r, i) at time [i + 3.4].
th(s, r, i) then outputs (received, . . . ) at time [i + 4.1] as well. If the third party
sent m6 at time [i + 5.2], the same timing argument holds since the third party
input (adv send, m) before sending m6, too. (Since (adv send, m) is ignored by
th(s, r, i) after round i + 5, since cm t(s, r, i) and cm t′(s, r, i) do not accept m5

after round i + 5.)
If machine th(s, r, i) is in state r1, r1, or failed, then it either obtained an input

adv suppress and thus machine cm r′r(s, i) never sent m2, or it did not receive an
input (adv send, m) in time and thus neither m4 was sent by cm r′r(s, i) nor m6

was sent by cm t′(s, r, i). If the adversary presents (m′
1, m

′
2, m

′
3, m

′
4) during

verification, it was either able to forge the signature on a message m′
2 6= m2.

(Again this must really be a forgery, because a message with this type identifier
and these parameters s, r, and i is not signed anywhere else.) Else, if m′

2 = m2,
it was able to break the one-way property of F by computing a pre-image to
F(rR) since, except in m4, no information about the randomly chosen rR is
revealed. If the adversary was able to present any valid message m′

6 containing
m2 fixing the slot (s, r, i), it was able to forge a signature of the third party, or to
make cm t′(s, r, i) sign it. For this, however, it would again need to forge m2.

If machine th(s, r, i) is in state received but this state contains different pa-
rameters than output by cm v(s, r, i), the messages (m′

1, m
′
2, m

′
3, m

′
4) or m′

6 with
m′

2 6= m2 or m′
3 6= m3 were shown to cm v(s, r, i) (m2, m4 are the messages

sent by the correct recipient). In the first case, the signature on m′
2 has been

forged. In the second case, the adversary presented m′
3 = (tid , r′, m′) for m1 =

signs(dS , Com(H(m), rS)) as signed in m2. Thus, it was either able to compute a
(r′, c′) with c′ 6= c and Com(c′, r′) = Com(c, r) (i.e., it was able to break the bind-
ing property of the commitment scheme), or else compute a c = c′ = H(m′) for
an m′ 6= m (i.e., break the collision-resistance of the hasfunction).

Correct Sender and Recipient: Let s ∈ HS and r ∈ HR. We therefore compare
the behavior of th(s, r, i), cm s′s(r, i), cm r′r(s, i) cm v′(s, r, i), and cm t′(s, r, i)
with cm ss(r, i), cm rr(s, i), cm v(s, r, i), and cm t(s, r, i). Before Round i, all
sub-machines do nothing. If neither send nor receive is input in Round i, all
machines remain in their starting states forever without making any outputs.

If (send, r, l, m, tid) is input to cm ss(r, i) and th(s, r, i), but (received, s, l,
tid) is not input to the corresponding recipient port in(r), machine th(s, r, i)

27Here, we need the fact that two adversary outputs of Sim can be processed in parallel. The
adversary may cause an output (adv send, m) at cm t′(s, r, i) by recovering a completed run in
parallel to causing an output adv show by showing the receipt obtained in the completed run.
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changes to state sr1 and outputs (adv busy, s, l, tid), which leads to an input
(send, r, l, msim, tid) to cm s′s(r, i). The sender machines then send m1 and
m1,sim, respectively. Since the recipient is correct, it will not send m2 and thus,
if the signature scheme is not broken, both recipient machines will not receive
m2 (m2 again fixes the parameters and a correct recipient never signs it if its in-
put from th(s, r, i) contained different parameters). In this case, cm ss(r, i) will
outputs (failed, tid) at time i + 6. In the simulation, machine th(s, r, i) is in state
sr1, ignores the input adv suppress from cm s′s(r, i), and outputs (failed for s, tid)
on input of stop at time i + 6, which leads to an output (failed, tid), too.

If (receive, r, l, tid) is input to cm rr(s, i) and th(s, r, i), but (send, r, l, m, tid)
for any m ∈ Msg is not input to the corresponding sender machines, th(s, r, i)
changes to state sr2 and outputs (adv busy, r, l, tid), which leads to an input
(receive, s, l, tid) at cm r′r(s, i). Then, both recipient machines wait for m1. Since
the sender machines are correct, they will not sign m1 and thus, if the signature
scheme is not broken, both will not receive m1. In this case, cm rr(s, i) will
output (failed, tid) at time i+6 while machine th(s, r, i) is in state sr2, ignores the
input adv suppress from cm r′r(s, i), and outputs (failed for r, tid) on inputstop at
time i + 6, which leads to an output (failed, tid) at time i + 6 as well.

Let us now consider the case that a different label or tid was input. In both
cases, machine cm ss(r, i) sends m1 while the recipient does not receive it as
expected (unless the adversary was able to forge an m′

1 6= m1). Thus, without
sending any more messages, the sender and the recipient will output (failed,
tid) at time i + 6. In the simulation only m1,sim is sent as well and the trusted
host th(s, r, i) changes to state sr3 and outputs (failed, tid) to both at the end.
(Again, th(s, r, i) ignores the inputs adv suppress from cm s′s(r, i) and cm r′r(s, i),
respectively.)

Let us now consider the case that (send, r, l, m, tid) and (receive, r, l, tid) was
input to the corresponding ports with matching parameters. In this case, the
sender sub-machines cm ss(r, i) and cm s′s(r, i) send m1 and m1,sim, respec-
tively.

If the adversary does not send a correct m′
1, then cm ss(r, i) and cm rr(s, i)

output (failed, tid) at time i + 6 without sending additional messages. In the
simulation, cm r′r(s, i) inputs adv suppress to th(s, r, i) without sending any
message, i.e., th(s, r, i) changes from state sr4 to sr3 and outputs (failed, tid) to
both participants as well.

If m′
1 6= m1, then the adversary was able to forge a signature of the sender

for the given (s, r, i).
If the adversary forwards the correct m1 then the recipient machines

cm rr(s, i) and cm r′r(s, i) send m2.
If no correct m′

2 is sent by the adversary, machine cm ss(r, i) outputs (failed,
tid) while cm s′s(r, i) inputs adv suppress to th(s, r, i) and th(s, r, i) outputs
(failed, tid) to both participants at time i + 6. Since the sender did not receive
m2, cm rr(s, i) does not receive a correct m′

3 (unless one of the primitives was
broken). Thus, it outputs (failed, tid) as well.

If the adversary was able to compute a m′
2 6= m2, then it was able to forge a

signature of the recipient for the given (s, r, i).
If the sender machine cm ss(r, i) receives m2, it sends m3, while machine

cm s′s(r, i) inputs adv receive to th(s, r, i). Machine th(s, r, i) changes from state
sr4 to sr5 and outputs (adv msg, m) while cm s′s(r, i) sends m3,sim as well. In
this case, indistinguishability of (m1, m3) and (m1,sim, m3,sim) follows from
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9. Some Provably Secure Reactive Systems

indistinguishability for incorrect recipient.
At this point, the final output in both cases will be (sent, tid) and (received,

tid) while the behavior on the network will be identical. (The output
(adv send, m) from cm r′r(s, i) to th(s, r, i) is ignored.)

The argument for network inputs to the verifier as well as an input (show,
tid) is identical to the case with an incorrect recipient, except that we now
use the fact that machine th(s, r, i) changes to sr5 (instead of s2) on input
(adv send, m).
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Chapter 10

Conclusion and Outlook

In this part, we have defined the new relation “as secure as” comparing the
overall security of two reactive systems implementing the same service. Fur-
thermore, we have introduced the new concept of real-world trusted hosts.

Compared to earlier approaches to trusted-host-based specification, real-
world trusted hosts do not define the ideal service but rather the real-world
service including vulnerabilities of a service that need not be avoided.

Together, these two concepts enable efficient and practical protocols that
are provably secure.

As a consequence, each designer of a new practical system need not specify
the service from scratch, but may rather just show that the new design is as
secure as the well-established trusted host for this service.

Finally, we demonstrated our approach by specifying and evaluating reac-
tive systems for certified mail and secure message transmission. Unfortunately,
we were unable to present a certified mail scheme that is secure according to
our definition as well as optimistic.

While this new notion of security for reactive systems is a first step towards
a general definition, there are still many open problems to solve. At first, the
new formalism and its implications may be studied in more detail.

One area of extensions are further refinements of our model: The extension
to asynchronous systems, the inclusion of more powerful adversary models,
such as mobile or dynamic adversaries instead of static ones, and the possibil-
ity of limiting the scope of the adversary, are desirable extensions that should
be pursued. A starting point for such extensions would be existing solutions
for these problems in other models.

Another much more complex issue is to reduce the over-specification of
our trusted hosts while still retaining the guarantee that the resulting systems
remain secure in practice. Such practical specification should leave more free-
dom to the implementors. However, an ambiguous specification may easily
introduce new security leaks such as covert channels. Thus, identifying an ac-
ceptable tradeoff between provable security and coverage of most secure real-
world implementations seems to be one of the harder problems to solve.
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Transfer-based Optimistic
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Chapter 11

Introduction and Overview

This part describes a design and protocols for generic and optimistic fair ex-
change of any two business items.

Part I discussed the efficiency of two instances of fair exchange, namely
certified mail and fair purchase, even though there are many more types of two-
party fair exchanges (see Section 2.1). On an abstract level, any two items, such
as signatures, data, or payments, can be exchanged for each other. For, e.g.,
these items, one would require at most nine different fair exchange protocols
and solutions to these nine fair exchange problems have already been devel-
oped. So why develop generic fair exchange?

The reason is that this abstract view does not hold in practice: In prac-
tice, differentiating between payments, signatures, and data is too coarse. A
fair exchange protocol for payment for receipt may work with one payment
scheme but not with another. So instead of having nine different protocols
for exchanging signatures, payments, and data, each new implementation of
a business item may require new fair exchange protocols for each item which
has already been installed. Therefore, for a given number of n different kinds
of business items, this leads to about n2/2 different fair exchange protocols if
one only wants to exchange one single item for another. Adding a new type
of item means adding n + 1 additional fair exchange protocols. Furthermore,
exchanging multiple business items (e.g., a payment in exchange for the de-
livery of a program and a signed delivery note) requires specific fair exchange
protocols for any fixed combination of items to be exchanged.

The solution to this problem is to provide exchanges which are independent
of the items. This is done by defining so-called exchange-enabling properties of
transfers1 of business items, which can be exploited by fair exchange protocols
to guarantee fairness.

A fair exchange is implemented as two virtually parallel transfers of two
business items satisfying the fixed expectations of both exchanging parties.
Compared to just two transfers, the focus lies on the “atomic parallelism”
which is not provided by two subsequent transfers where one party (the first
one to receive a complete transfer) usually has an advantage. Therefore, in or-
der to guarantee this “atomic parallelism”, generic fair exchange interleaves

1A transfer sends an item from a sender to a recipient. Examples of transfers are payments
(transfers value), signature protocols (transfers a signature on a document), or messages (transfers
data).
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11. Introduction and Overview

both transfers while the exchange-enabling properties guarantee the atomicity
of the interleaving.

Unfortunately, fairness requires a third party in case of faults2. Again, we
try to avoid invoking the third party in the normal case. This is done by defin-
ing so-called optimistic exchange-enabling properties of transfers that enable
optimistic fair exchanges (cf. [BüPf 89]) where the third party is only needed
in case of faults, i.e., if both players are correct, the third party is not actively
involved.

As we will show, the fairness of our generic exchange protocols is based on
four exchange-enabling properties of transfers:

Sender Verifiability: A sender can convince the third party that a correct recipi-
ent was able to obtain an item.

A simple example of providing sender verifiability of, e.g., signatures is
to re-send the signature to the third party who verifies and forwards it.

Recipient Verifiability: A recipient can convince the third party that it is unable
to obtain an item.

Recipient verifiability can, e.g., be provided by asking a bank whether a
particular coin has been deposited or not. Furthermore, the coin needs to
be blacklisted in order to prevent later deposit.

Generatability: The third party can be authorized by the sender to complete or
redo a transfer without the cooperation of the sender.

A simple example of providing generatability, e.g., for signatures is to
authorize the third party to sign on one’s behalf.

Revocability: The third party can be authorized by the recipient to “undo” a
transfer without cooperation of the recipient.

A simple example of providing revocability for credit-card payments is
to authorize the third party to revoke a given credit-card payment.

Based on these properties, we are able to exchange many different pairs of
items with only few generic fair exchange protocols. Exchanging multiple busi-
ness items is also simplified: The transfer-based exchanges no longer differen-
tiate between single items and multiple items as long as the transfer of multiple
items provides an exchange-enabling property. Furthermore, adding new im-
plementations of business items is considerably easier: Now, the implementor
is only required to provide an exchange-enabling property in order to enable
fair exchange of the new items.

In principle, our protocols for fair exchange all follow the same pattern:
Both parties participating in the exchange sign an agreement what items will
be exchanged and what item will be transferred first. Then, each item is trans-
ferred using the underlying transfer protocol. After successfully receiving the
transfer from the business partner, the fair exchange protocol ends. Else, if
the expected item is not received, the participants may ask the third party to
restore fairness, e.g., as follows:

2A generic protocol cannot be better than instances of it. For contract signing, fairness cannot
be guaranteed without a third party in a limited time (see Theorem 3.2 in Section 3.3.2).
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• If one of the items is generatable and was not sent, this item is replaced
by the third party.

• If one of the items is revocable and the other item was not sent, this item
is revoked.

Thus, the third party is able to restore fairness if the items support the required
combination of exchange-enabling properties. A protocol for, e.g., contract
signing, following this pattern works as follows: Both prospective signatories
digitally sign that they want to sign a certain contract. If these letters of under-
standing have been exchanged, both send their signatures under the contract.
However, if one of the signatories receives no signature from the peer, it sends
its own signature as well as the letters of understanding to the third party and
asks it to sign an affidavit on behalf of the incorrect party not sending its sig-
nature.

11.1 Overview

In Chapter 12, we define fair exchanges and transfers with exchange-enabling
properties.

Then, in Chapter 13, we describe two protocols for transfer-based fair ex-
change of two items. Together with the given simulations between exchange-
enabling properties, these two protocols are sufficient to exchange any two
exchange-enabled items if at least one of them is generatable or revocable.

Finally, in Chapter 14, we describe the SEMPER Fair Exchange Framework
embedding these definitions and protocols into an object-oriented framework
for fair exchange.

11.2 A Short Overview of SEMPER

The problem of transfer-based fair exchange as described in this part was iden-
tified while developing the SEMPER Framework for Secure Electronic Com-
merce.

The goal of the SEMPER project (see http://www.semper.org ) was to
develop an open framework for secure electronic commerce on the Internet.
The project was funded from 1995 until 1998 by the ACTS programme of the
European Commission.

As a basis for understanding the fair exchange framework described in
Chapter 14, we sketch the SEMPER model for electronic commerce as well as
the framework based on it. For a more detailed description, we have to refer to
[ABPP 00, ScWW 98, ScWW1 99].

11.2.1 The SEMPER Model of Secure Electronic Commerce

The framework is based on a model of secure two-party electronic commerce.
The main idea of this model is to describe business interactions in terms of
sequences of transfers and fair exchanges of business items. After each such
action, each side decides which action to enable next based on the success of
the previous actions (see Figure 11.1).
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Offer

Order

Delivery / Receipt

Payment / Receipt

Request

SEMPER

Deal of S and B

Buyer B

Offer

Order

Delivery / Receipt

Payment / Receipt

Request

SEMPER

Deal of S and B

Seller S

Figure 11.1: Example of a SEMPER Deal. (Note that the deal might enable
other sequences as well, e.g., after “Contract” the transfer “Payment without
Receipt” might also be enabled.)

Interactions: Transfers and Fair Exchanges

The interactive actions between two players are transfers and fair exchanges.
In a transfer, one party sends a package of business items to the business

partner. The sending party can define certain security requirements, such as
confidentiality, anonymity, or non-repudiation of origin.

In an exchange, each party describes the business items it offers and the
business items it expects in exchange. Again, the parties can define security
requirements. At the end, if all expectations were met, the business items are
exchanged, i.e., each correct participant obtains all expected business items.
Else, no exchange takes place and each participants does not obtain additional
information on the business items offered by other correct participants.

Sequence of Interactions

In SEMPER, a deal contains the sequences of enabled interactions. Any deal
enables certain sequences of transfers and fair exchanges based on user-
interaction, local computations, and local decisions in between two interactions
(see Figure 11.1).

In the course of an ongoing deal, after each transfer or exchange, the parties
are either

• satisfied, and thus willing to proceed with a certain number of other trans-
fers or exchanges, or

• dissatisfied, in which case an exception or dispute is raised which might
end up at a real court if all else fails.

Based on these facts, it is decided if and how to proceed, i.e., which interaction
shall be executed next.
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Credential
Block

Payment
Block

Statement
Block

...

Transfer and
Exchange Layer

Business Items
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Business
Applications

Commerce
Layer Commerce Deals

Transfer Block

 Exchange Block

Figure 11.2: Central Blocks of the SEMPER Framework for Electronic Com-
merce.

11.2.2 The SEMPER Framework for Secure Electronic Com-
merce

The SEMPER framework (see Figure 11.2) is structured in layers. The lowest
of the following layers deals with existing business items whereas the highest
layer intuitively deals with commerce issues while abstracting from all details:

• The Commerce Layer offers high-level services for executing deals like
“mail-order retailing”, “on-line purchase of information”, or “registra-
tion with service provider”. It is configurable by downloading new ser-
vices or extending existing ones.

• The Transfer and Exchange Layer provides a framework for transfer and
exchange of business items.

The Exchange Block provides services implementing our generic fair ex-
change protocols.

The Transfer Block defines services to transfer multiple business items
in one transaction while guaranteeing common security attributes and
exchange-enabling properties.

• The Business Items Layer provides business items, such as payments, sig-
natures, or data. Each business item may implement the services defined
by the transfer block.

In addition to these layers, any block may use the so-called Supporting Services,
which are the usual cryptographic services, communication, archiving of data
(keys, non-repudiation tokens, audit trail), transaction support, preferences
management, access control, and the trusted user interface. Furthermore, it
provides secure communication services implementing security services such
as anonymity which must be guaranteed for subsequent interactions in one
deal.
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11.3 Notations and Assumptions

The external behavior of our protocols is depicted as UML sequence diagrams
[FoSc 97], i.e., we denote the involved parties by vertical lines sending in- and
outputs as messages to each other. Participants in lined boxes are mandatory,
whereas participants in dashed ones are optional (e.g., a third party which does
not participate if the protocol is optimistic). Grayed participants denote exter-
nal applications using the service. Dashed arrows denote protocol executions.

As parameters of these in- and outputs, we use the identifiers introduced
in the corresponding definition. Commonly used identifiers as well as some
assumptions are listed in Figure 11.3.

Like in Part I, we denote a machine Z composed from machines X and Y
as Z = 〈X, Y〉. The sub-machines are defined to be local to each other, i.e.,
communicate using in- and outputs to each other instead of messages. We use
the identifier of the first machine as the identifier of the composite machine,
i.e., protocols and signatures of machine Y inside 〈X, Y〉 will be verified under
the identifier X. We assume that messages are automatically dispatched to the
appropriate sub-machine and that the identifier of X is sufficient for sending
messages to the sub-machine Y as well.

If a machine S of a composite machine 〈S, Ssub〉 uses another local machine
Ssub for executing sub-protocols, we distinguish external in- and outputs of
the protocol from in- and outputs to the machines running sub-protocols by
putting them in quotes, i.e., “[Sin

tid |input(arg)]” denotes an external input to the
machine S, whereas [Ssub

in
tid |command(args)] denotes an output from S input to

its sub-machine Ssub. The sub-protocols are separated from the actual protocol
using dotted horizontal lines.

For simplicity, we use a synchronous model, i.e., all sub-protocols run for
a fixed time and the super-protocol only continues after the sub-protocol has
been completed. This holds even if a player only makes an input without re-
ceiving an output, i.e., the super-protocol waits until the sub-protocol is sup-
posed to be completed. Furthermore, we assume that messages between cor-
rect players are not corrupted and delivered within one round.

In our definitions, each in- and output of a particular protocol execution is
labeled with a so-called Transaction Identifier “tid”. For each protocol run, this
identifier is assumed to be fresh and unique for the machines executing the
protocol, i.e., the tuples (R, tid) or (S, tid) unambiguously identify a given pro-
tocol run as executed by machines R and S. A correct machine only executes a
protocol if the tid is fresh and locally unique, i.e., subsequent executions of the
same or different protocols are required to use different tids. For subsequent
protocol executions of one scheme, we sometimes use unique extensions of one
tid . They may be defined as tid ′ := (tid , e1), tid ′′ := (tid , e2), . . . with exten-
sions e1, e2 that are unique and specific to this scheme in order to guarantee
that all resulting tids are fresh if the underlying tid is fresh.

In addition to these transaction identifiers, which are local to one protocol
execution and machine, we use so-called external references xref ∈ XREFs (usu-
ally strings) for linking3 two or more protocol executions. We assume that a
xref input to a correct protocol machine is fresh and unique for this machine.

3This is similar to nesting of sub-transactions [LMWF 94]. Later, in our design, protocols will
be encapsulated in so-called transaction objects. Differences are that we, e.g., assume byzantine
failures of untrusted machines.
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X An interactive probabilistic machine X named X. (A
machine keeps its own state and can, e.g., be imple-
mented as a process.)

σX A particular state σX of machine X.
Z=〈X, Y〉 A composite machine Z, e.g., composed from sub-

machines X and Y. The sub-machines are defined to be
local to each other. Local sub-machines communicate
via in- and outputs instead of messages.

signX(msg) The signature of X under msg . We assume that X as well
as msg can efficiently be computed given the signature.

dX The description of the item to be sent by machine X.
d ′X The description of the item expected from the peer ma-

chine X.
tid A transaction identifier linking the in- and outputs be-

longing to the same protocol execution.
tid ′, tid ′′, . . . Unique extensions of tid usually input to subsequent

protocols of the same scheme. It can, e.g., be computed
as tid ′ := (tid , 1), tid ′′ := (tid , 2), . . . .

TIDs The domain of the tids.
xref The external reference linking two different protocol

executions. In order to identify one protocol run un-
ambiguously, we require that xref is fresh and unique
among the players executing the subsequent protocols
of a given scheme.

XREFs The domain of the xref s.
mi A message numbered i. This message is usually sent in

round i of a synchronous protocol.
t An absolute time usually measured in terms of the

clock of machine T.
t0 The starting time of the first protocol of a scheme.
∆ A difference between two times such as the run-time of

a protocol or a delay.
ε The empty word denoting “no output”.
[Pin

tid |cmd(args)] The input of a command cmd with arguments args to a
protocol running under tid executed by machine P. For
composite machines, inputs are made directly to each
sub-machine, i.e., there is no notion of in- and outputs
for composite machines.

[Pout
tid |tag: par] The output of a result tagged tag with output param-

eters par by a protocol running under tid executed by
machine P.

Figure 11.3: Identifiers, Notations, and Assumptions as used in our Protocols.
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However, in order to link multiple protocol runs, we sometimes allow that
one xref is input to multiple protocols that shall be linked. However, even in
this case, we assume that this xref is not input to any other protocol execu-
tion. Examples of nested protocols where this link is required for security are
nesting transfers into an exchange, or nesting exchanges into sequences (see
Section 11.2.1). For simplicity, we assume that the domain XREFs is suffi-
ciently large to allow for the xref s as input by our super-protocols to used sub-
protocols without explicitly defining a larger XREFs for each sub-protocol.

Like in Part I, we assume that signed messages are typed and labeled with
the protocol parameters [AnNe1 95], e.g., that sending m2 = signO(text) in
protocol “prot“ using a third party T executed by machine S running with
a tid started at time t0 to machine R actually sends the signed message
signO(“prot“, S, R, T, tid , t0, “m 2”, text) in order to prevent attacks from inter-
changing messages between different protocols and runs (the identifier “m 2”
denotes the unique name identifying message m2; for clarity of our protocols,
we may nevertheless mention some of the parameters that are included and
signed automatically). Messages without this form or with unexpected param-
eters are simply ignored. Messages that do not arrive in their designated round
are ignored.

Remark 11.1. Note that in Part I, the tid was used for linking different in- and
outputs of one protocol as well as different protocols. For nesting two transfer
protocols into exchanges, however, we felt that these two functionalities should
be clearly separated. ◦
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Chapter 12

Foundations of
Transfer-based Fair Exchange

In this chapter, we first define transfer-based fair exchange of business items
in Section 12.1. Then we define the exchange-enabling properties of transfers
in Section 12.2. Finally, in Section 12.3, we illustrate how to provide exchange-
enabling properties for some common business items.

12.1 Business Items and Fair Exchanges

Figure 12.1 depicts the roles in transfers and fair exchanges: An exchange-
enabling transfer is executed between a sender and a recipient whereas an
exchange is initiated by an originator and answered by a responder. One of
our goals is that generic exchanges use exchange-enabling transfers.

12.1.1 Business Items

A business item is something which can be owned and has some use. Examples
include digital signatures, payments, or data.

In order to phrase requirements for transfers and fair exchanges, we have
to define what “gaining” or “losing” (parts of) a business item means. For each
existing item, such a notion clearly exists: One knows a message, received a
payment, or can show a signature. However, no generic notion of having an
item which includes all those cases exist.

Therefore, we model the “ownership” of an item by defining a family of

<<uses>>

Originator exchange Responder

Sender transfer Recipient

Figure 12.1: Roles for Transfers and Fair Exchanges.
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Owner O

use i (d)

User U

Use Protocol

used i (O, d) or “ ε”.

Figure 12.2: Interactions for Using Basic Commerce Items.

protocols named “use“ between the alleged owner and a correct user machine
U (the interactions are depicted in Figure 12.2). During the execution of this
protocol, the user decides whether the alleged owner has the item or not. Note
that these “use“-protocols are mainly a tool for defining our requirements on
the underlying items. They are not used by the protocols but rather for proving
their security, i.e., we assume that a family of “use“-protocols is defined for
each item and then express the requirements on exchange-enabling transfers
and fair exchanges with respect to these “use“-protocols.

The reason why we define a family of “use“-protocols instead of just one
protocol is that we have to tackle the problem of partial information: A mes-
sage is only secret if no partial information can be guessed, i.e., we have to
rule out that an adversary guesses any part. For some schemes, such as some
digital signature schemes, no families are needed: There may be just one “use“
protocol, namely the verification of the signature.

Definition 12.1 (Business Items)
A business item (or short “item”) is a tuple B = (U,D ,TIDs) containing a cor-
rect machine U, a set D of descriptions1, and a set TIDs of transaction identi-
fiers where the machine U can execute a family {“usei“|i ∈ IN} of protocols:

Using the Item: The “usei“-protocol is started by the input [Oin
tid |usei(d)] at a ma-

chine O with d ∈ D and any tid ∈ TIDs which is fresh for O and U2. It
may eventually output [Uout

tid |usedi: O, d ] with d ∈ D to the user U.

Owning an Item: A correct machine O owns an item with a description d , if an
input [Oin

tid |usei(d)] for any i ∈ IN with any fresh tid eventually leads to
an output [Uout

tid |usedi: O, d ].

Illegally Obtaining an Item: An incorrect machine O′ obtained knowledge on an
item with description d during a protocol run if, intuitively speaking, the
gained information non-negligibly increases the probability that O′ is
able to execute any “usei“-protocol (i ∈ IN) such that the user outputs
[Uout

tid |usedi: O′, d ].

3

Remark 12.1. Note that by assuming only the owner and the user as being cor-
rect, we subsume additional machines which are required to be correct for

1In practical implementations, one may use a half-order (e.g., $5 is more than $4 but incom-
parable with EUR3). For our definitions, this would change the equality comparison of two de-
scriptions to the application of this half-order. For simplicity, however, we did not use them in the
sequel.

2This means that this is the first protocol run on this machine with this particular tid .
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exchanged
or failed

Originator O Responder R

Exchange Protocol

exchange( O, dR, d’O, xrefR)exchange( R, dO, d’R, xrefO)

exchanged
or failed

Figure 12.3: Interactions for Exchanging Two Items.

usability of the item as sub-machines of the user. Examples are certification
authorities, or the clearing center of a bank. If one would identify all these par-
ticipating machines, we would need real trust models, i.e., we would need to
identify for each player and requirement3, which machines are assumed to be
correct. This, however, would limit the readability of the resulting definitions
without substantial gain. ◦

Examples of business items and their descriptions are (see Section 12.3 for de-
tailed examples):

Payments can be described by the amount, the payer and the currency.

Signatures can be described by the signer and the message to be signed.

Data can be described by an input description predicate, a one-way function
image4 fixing the data, or may be evaluated interactively by asking the
user.

12.1.2 Fair Exchange

In a fair exchange, each party participating in the exchange inputs one descrip-
tion of the item it offers to send as well as one description of the item it expects
to receive in exchange. Furthermore, each inputs an external reference xref for
linking the exchange into other protocols such as a commerce sequence (see
Section 11.2.1). The interface events of a fair exchange are depicted in Figure
12.3.

Note that we distinguish two roles, even though the service is symmetric.
The reason for this distinction is the fact that in most fair exchange protocols,
an originator starts the protocol by sending a message to a responder.

The security requirements are that only if both offered items fulfill the ex-
pectations of the peers, both parties will end up being owners of the expected
items. If not, nothing happens, i.e., no knowledge about the items can be ob-
tained.

Definition 12.2 (Fair Exchange)
An exchange scheme is a tuple (O, R, BO, BR,XREFs,TIDs) where machine O is
called originator, R is called responder, and BO = (UO,DO,TIDsO) and BR =

3The trusted players may depend on the requirement: For contract signing, e.g., a player is
usually required to trust the third party for fairness but not for unforgeability of a contract.

4For well-known data, such as software, these images may, e.g., be certified and published by
the manufacturer.
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(UR,DR,TIDsR) are two business items. In addition, the scheme may define a
set AM with auxiliary machines without in- or outputs. Machine O can execute
the following protocol with R:

Exchange (Protocol “exchange“): The players obtain the local inputs [Oin
tid |

exchange(R, dO, d ′R, xref O)] and [Rin
tid |exchange(O, dR, d ′O, xref R)] with dR,

d ′R ∈ DR, dO, d ′O ∈ DO, xref O, xref R ∈ XREFs, and tid ∈ TIDs . In the
input to, e.g., O, exchange indicates that the “exchange“-protocol shall be
executed, R identifies the user one wants to exchange the item with, dO is
the description of the item to be sent from O to R, d ′R is the description of
the item O expects to receive from R, xref O is the external reference, and
tid is the common unique transaction identifier. We assume that xref and
tid are fresh and unique for O and R.

At the end of the protocol run, each participant, say O, returns a local out-
put, which can take the following values: An output “[Oout

tid |exchanged]”
signals that a successful exchange took place and an item with the ex-
pected description has been received. An output “[Oout

tid |failed]” signals
that the exchange failed and no item was sent or received.

Two correct players O and R can exchange two items (dO, dR), if the inputs
[Oin

tid |exchange(R, dO, dR, xref )] and [Rin
tid |exchange(O, dR, dO, xref )] lead to the

outputs [Oout
tid |exchanged] and [Rout

tid |exchanged].
An exchange scheme is fair iff it fulfills the following requirements for all O

and R:

Requirement 12.2a (Correct Execution): If O and R are correct and the inputs
are [Rin

tid |exchange(O, dR, d ′O, xref R)] and [Oin
tid |exchange(R, dO, d ′R, xref O)],

the protocol either outputs [Rout
tid |failed] and [Oout

tid |failed] or else [Oout
tid |

exchanged] and [Rout
tid |exchanged].

Inputs with xref R 6= xref O , dR 6= d ′R, or dO 6= d ′O must lead to the outputs
[Rout

tid |failed] and [Oout
tid |failed].

Requirement 12.2b (Transfer): If the protocol outputs [Oout
tid |exchanged] on input

[Oin
tid |exchange(R, dO, d ′R, xref O)] to a correct participant, say O, then O

owns the item BR with description d ′R.5

Requirement 12.2c (No Surprises): If a participant, say O, obtains an output
[Oout

tid |failed] on input [Oin
tid |exchange(R, dO, dR, xref O)], even an incorrect

peer R has not obtained knowledge about the item BO described by dO
6.

Requirement 12.2d (Termination): A correct player will process a correct input
within a fixed number of rounds.

3

Remark 12.2. This definition does not require availability of an exchange, i.e.,
an exchange scheme that does nothing and always outputs false is correct. The
reason for this remedy is that we are unable to define the pre-conditions for
being able to exchange on this abstract level. For transfer-based exchanges,
however, this will be fixed.

5Note that this does not require that the sender of the item looses it. Some item types (such as
signatures) can be sent any number of times.

6Note that this intuitive notion is difficult to formalize for arbitrary items (see Section 15).
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Remark 12.3. It is clear that a participant is able to prevent successful exchange
of the items in any case: It just inputs an expectation that is not fulfilled by the
item input by the peer. The only requirement is that in this case, this participant
is unable to obtain the item sent by the peer.

Remark 12.4. This definition does not make any assumptions how to achieve
fairness, e.g., it does not include a machine acting as a third party. Its goal is
rather to identify the fundamental goals of fair exchange. ◦

12.1.3 Transferable Business Items

Business items with exchange-enabling transfers (see Section 12.2) define pro-
tocols for transferring an item d from a sender to a recipient. Transfer in this
context means that the sender assigns ownership of an item to the intended
recipient, in particular if this recipient was no owner of this item before.

Since the protocols and interfaces of transferable items vary considerably,
we postpone the definition of the complete interfaces of particular kinds of
transferable items to Section 12.2 and concentrate on the property needed to
define availability of fair exchange, namely that a scheme defines whether a
particular sender is able to transfer a particular item.

Definition 12.3 (Transferable Item)
A transferable business item is a tuple I = (S, R, T, B,XREFs,TIDs , δ, ∆) con-
taining a sender machine S, a recipient machine R, a third-party machine T,
an item B = (U,D ,TIDsB), a set XREFs of external references, a set TIDs of
transaction identifiers, a predicate

δ : ΣS × ΣR ×D → {true, false},
where ΣS is the set of states of machine S, ΣR is the set of states of R, and a list
∆ containing the running-times of the provided protocols.

If δ(σS , σR, dS) holds, we say that the sender S in state σS can transfer an
item with description dS to a recipient in state σR. 3

Remark 12.5. The list ∆ is used for time-outs of the synchronous super-
protocols. Since we did not assume that all participants in a protocol produce
an output, a super-protocol sometimes needs these numbers to know whether
a sub-protocol should actually be completed.

Remark 12.6. Note that this definition does not require availability of transfers.
This requires more detailed knowledge of the items7. An implementation,
which is never able to transfer its items, easily fulfills the given requirements.
Thus, we rather “moved” the availability problem from the definition of ex-
changes to the definition of transfers instead of defining it once and for all.
◦

12.1.4 Transfer-based Fair Exchange

In Definition 12.2, a fair exchange did not require availability, i.e., an exchange
scheme outputting failed in all executions is fair. However, intuitively speaking,

7For, e.g., off-line payment schemes, we are able to require that a withdrawal should guarantee
availability of the payment. However, the notion of “withdrawal” cannot be generalized.
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an exchange should take place if correct players agree and are able to transfer
the offered items.

Definition 12.4 (Transfer-based Fair Exchange)
A transfer-based fair exchange scheme for two sets ΣO and ΣR of transferable
items8 is a tuple (O, R, T,XREFs,TIDs) containing an originator machine O, a
responder machine R, a third-party machine T, a set XREFs of external refer-
ences, and a set TIDs of transaction identifiers.

It is called secure if the following requirements are fulfilled for all

IO = (SO, RO, TO, BO,XREFsO,TIDsO, δO, ∆O)

with IO ∈ ΣO and

IR = (SR, RR, TR, BR,XREFsR,TIDsR, δR, ∆R)

with IR ∈ ΣR :

Requirement 12.4a (Fairness): (〈O, SO, RR〉, 〈R, SR, RO〉, BO, BR, XREFs , TIDs)
together with AM := {〈T, TO, TR〉} is a fair exchange scheme, i.e., the
machines of the transfer-based exchange scheme and the two transfer-
able items can be composed to a fair exchange scheme9.

Requirement 12.4b (Availability): If machine SO is in state σSO and RO is in state
σRO with δ(σSO, σRO, dO) = true and machine SR is in state σSR and ma-
chine RR is in state σRR with δ(σSR, σRR, dR) = true then the composite
machines 〈O, SO, RR〉 and 〈R, SR, RO〉 can exchange (dO , dR).

Requirement 12.4c (No Loss): If a participant, say 〈O, SO, RR〉, with δO(σSO , σRO,
dO) for the state σSO of SO and any state σRO of RO produces an output
[Oout

tid |failed] on input [Oin
tid |exchange(R, dO, d ′R, xref O)], then δO(σSO , σRO,

dO) still holds.

A transfer-based exchange scheme is called optimistic if the composite third
party 〈T, TO, TR〉 does not participate in the “exchange“-protocol if the par-
ticipants are correct and agree (i.e., they input matching parameters xref R =
xref O, dR = d ′R, tidO = tidR and dO = d ′O). 3

12.2 Transferable Items Enabling Fair Exchange

We now describe different kinds of transferable items enabling fair exchange.
In order to enable optimistic fair exchanges where the third party is only re-
quired for restoring fairness in case of exceptions, the concept of optimism is
defined for transfers as well. Each transferable item provides at least two pro-
tocols corresponding to the phases of the exchange:

Transfer: The “transfer“-protocol tries to transfer the items without contacting
the third party.

8Each of these sets will later define the class of items that can be exchanged using this generic
protocol. Intuitively, items in ΣO are sent by O, whereas items in ΣR are sent by R.

9Note that transfer-based exchange is no fair exchange by itself. However, it is an extended
service, which can be used to provide fair exchange.
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Sender Verifiable Transfer

Recipient RSender S

transferSV(
R, d, T, t T,

xref )

receivedSV:
d, xref or “ ε”.

sentSV  or
failed

Third Party T

receiveSV(
  T, t T, xref )

Figure 12.4: Interactions for a Transfer with Sender Verifiability.

Sender Verification  Protocol

Recipient R

sent
or failed

Third Party T

verifySV (
S, R, d, xref)

Sender S

showSV(xref)

receivedSV:
d, xref

  or “ ε”.

Figure 12.5: Interactions for Verifying a Transfer with Sender Verifiability.

Recovery with Third Party: After a transfer, which may have failed, the error re-
covery phase is then started if an exception, such as a wrong or missing
message or a timeout, occurs. In this phase, the third party is involved
and guarantees the desired exchange-enabling property of the transfer.

12.2.1 Sender Verifiability

Sender verifiability guarantees that a correct sender and the third party can make
sure that a correct recipient is able to obtain an item. If sender verifiability
cannot be guaranteed, the “transferSV“-protocol outputs failed to the sender
and does not transfer the item.

In the optimistic case, the third party does not participate in the transfer.
Therefore, the third party decides based on evidence presented during the ver-
ification protocol, i.e., the sender may present evidence and witnesses that the
receiver received the item or may send the item again, whereas the receiver
may present evidence and witnesses to prove that it was unable to obtain the
item.

Definition 12.5 (Transferable Items with Sender Verifiability)
A transferable item with sender verifiability is a tuple I = (S, R, T, B,XREFs,
TIDs , δSV , (∆t, ∆v)) where machine S is the sender, R is the recipient, T is the
third party, B is a business item, XREFs is a set of external references, TIDs
is the set of transaction identifiers, and δSV is the transferability predicate, and
∆t, ∆v ∈ IN are the fixed running times10of the protocols that need to be pro-
vided by the item:

“transferSV“: This protocol is started on input of [Sin
tid |transferSV(R, d , T, tT ,

10Recall that we assumed that a correct machine produces its output at the end of the protocol
and that a super-protocol waits for a sub-protocol to be completed, even if no output is made.
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xref )]11 and [Rin
tid |receiveSV(T, tT , xref )] with a locally fresh and unique

tid ∈ TIDs , a description d ∈ D , a future time tT measured in terms of
T’s clock fixing the time until which sender verifiability shall be guaran-
teed, and a fresh external reference xref ∈ XREFs , which has not been
used in an execution of “transferSV“ between S and R before. The sender
may output [Sout

tid |sentSV] signaling that sender verifiability can be pro-
vided or [Sout

tid |failed] signaling failure without a transfer.

The recipient R may produce an output [Rout
tid |receivedSV: d , xref ].

“verifySV“: This protocol is started on input of [Tin
tid |verifySV(S, R, d , xref )] and

[Sin
tid |showSV(xref )] with two idenfifiers S and R, an xref ∈ XREFs, and a

fresh tid . It may output [Tout
tid |sent] or [Tout

tid |failed].

The recipient R may produce an output [Rout
tid |receivedSV: d , xref ].

We define δSV (σS , σR, d) := true (i.e., S in state σS “can transfer an item d” to R
in state σR) iff the inputs [Sin

tid |transferSV(R, d , T, tT , xref )] and [Rin
tid |receiveSV(

T, tT , xref )] at any time t0 with any fresh tid , the given T, any fresh xref ∈
XREFs , and any tT ∈ IN with tT ≥ t0 + ∆t to correct machines lead to an out-
put [Rout

tid |receivedSV: d , xref ] to a correct recipient R starting in state σR. The
transferable item is called “optimistic” if this output is produced without con-
tacting the third party.

If the third party is correct, the item is required to fulfill the following re-
quirements:

Requirement 12.5a (Correct Execution): If S and R are correct and δSV (σS , σR, d)
for state σS of S and state σR of R holds then the inputs [Sin

tid |transferSV(
R, d , T, tT , xref )] and [Rin

tid |receiveSV(T, tT , xref )] with tT ≥ t0 + ∆t leads
to an output [Sout

tid |sentSV].

If δSV (σS , σR, d) = false then correct machines output [Sout
tid |failed] and

[Rout
tid |failed].

Requirement 12.5b (Sender Verification): If a correct sender output [Sout
tid |

sentSV] on input [Sin
tid |transferSV(R, d , T, tT , xref )], then subsequent in-

puts of [Tin
tid |verifySV(S, R, d , xref )] and [Sin

tid |showSV(xref )] to correct par-
ties before time tT lead to an output [Tout

tid |sent].

Requirement 12.5c (Correct Verification): If the third party outputs [Tout
tid |sent] on

input [Tin
tid |verifySV(S, R, d , xref )], a correct recipient R outputs [Rout

tid |
receivedSV: d , xref ] before time tT .

Requirement 12.5d (Transfer): If a correct recipient R outputs [Rout
tid |receivedSV:

d , xref ] then R owns item B with the output description d .

Requirement 12.5e (No Surprises): If the sender is correct and either no input
[Sin

tid |transferSV(R, d , T, tT , xref )] for any tid , xref , tT and T was made
or else an output [Sout

tid |failed] was obtained, then the recipient R cannot
obtain knowledge about the item B described by d .

11We labeled this input transfer instead of send in order to emphasize that, usually, it does not
only send data but rather starts an interactive protocol.
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Requirement 12.5f (No Loss): If δSV (σS , σR, d) = true for a state σS of a correct S
and any state σR

12, the sender input [Sin
tid |transferSV(R, d , T, tT , xref )] for

any tid , xref , tT and T, and an output [Sout
tid |failed] was produced, then

δSV (σS , σR, d) = true holds after time tT + ∆v .

Requirement 12.5g (Termination): A correct player will process a correct input
within the fixed number of rounds.

3

Items may be adapted as follows to provide sender verifiability:

• In on-line public-key payment systems, such as SET, the sender may re-
send the payment information to the third party, which forwards it to the
bank. The bank then decides whether the payment is successful or not.

For off-line payment schemes, the third party may be required to ask the
bank on-line whether a particular coin is valid or not.

• Idempotent items, such as messages, where two transfers are equivalent
to one transfer, can be sent again via the third party.

Remark 12.7. The “verifySV“-protocol may include recovery of the transfer in
order to reach a consistent state: A message, e.g., may be sent again in order to
ensure that a correct recipient obtained the message and that a decision sent by
the third party is in fact justified.

Remark 12.8. The time tT input by the sender defines the absolute time at T
until which an input verifySV is guaranteed to produce a correct result. It is
included as an argument to enable practical implementations to determine the
time when data collected for guaranteeing the exchange-enabling property is
no longer needed. For sender-verifiability, for example, pending evidence may
be deleted after this time. As an alternative, one may define an additional input
of the sender that deletes this evidence (cf. Sec. 12.2.5).

◦

12.2.2 Revocability

Revocability means that the third party is able to revoke a given transfer within
a certain time, i.e., render the received item unusable. This is done by executing
an additional protocol “revoke“ with a third party after the actual transfer. This
protocol is then required to make the item unusable no matter whether the
transfer was successful or not. The interactions during the transfer are depicted
in Figure 12.6 and 12.7.

Definition 12.6 (Transferable Items with Revocability)
A transferable item with revocability is a tuple I = (S, R, T, B, XREFs , TIDs ,
δR, (∆t, ∆r)) where machine S is the sender, R is the recipient, T is the third
party, B is a business item, XREFs is a set of external references, TIDs is the
set of transaction identifiers, δR is the predicate signaling the availability of a
transfer, and ∆t, ∆r ∈ IN are the fixed run-times of the protocols of the item:

12Note that this includes the states of all machines R′ 6= R.
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Revocable Transfer

Recipient RSender S

transferR(
R, d, T, tT, xref)

Third Party T

receivedR:  d
or “ ε”.

sentR  or
failed

receiveR(
T, tT, xref).

Figure 12.6: Interactions for a Revocable Transfer.

Revocation  Protocol

Recipient R

revoked or
failed

Third Party T

revoke (
S, R, d, xref)

Sender S

revoke (xref)

revoked: xref
or “ ε”.

revoked
or “ ε”.

Figure 12.7: Interactions for Revoking a Transfer.

“transferR“: This protocol is started on input of [Sin
tid |transferR(R, d , T, tT , xref )]

and [Rin
tid |receiveR(T, tT , xref )] at any time t0 with a locally fresh and

unique tid ∈ TIDs , a description d ∈ D , a time tT ∈ IN at machine T,
and a fresh external reference xref ∈ XREFs , which has not been used
in an execution of “transferR“ between S and R before. The recipient R
may produce an output [Rout

tid |receivedR: d ]. The sender may output [Sout
tid |

sentR] or [Sout
tid |failed].

“revoke“: This protocol is started on input of [Sin
tid |revoke(xref )] and [Tin

tid |
revoke(S, R, d , xref )] with a fresh tid ∈ TIDs , two names S and R, d ∈
D , and xref ∈ XREFs. The protocol may output [Sout

tid |revoked], [Tout
tid |

revoked] and [Rout
tid |revoked: xref ] or [Tout

tid |failed].

We define δR(σS , σR, d) := true iff the input of [Sin
tid |transferR(R, d , T, tT , xref )]

and [Rin
tid |receiveR(T, tT , xref )] at any time t0 with any fresh tid , the given T,

any fresh xref ∈ XREFs , and any t ∈ IN with tT ≥ t0 +∆t to a correct S in state
σS and a correct machine R in state σR leads to an output [Rout

tid |receivedR: d ].
It is called “optimistic” if this output is produced without contacting the third
party.

If the third party is correct, the item is required to fulfill the following re-
quirements:

Requirement 12.6a (Correct Execution): If S and R are correct and δR(σS , σR, d)
for state σS of S and state σR of R holds, then the inputs [Sin

tid |transferR(
R, d , T, tT , xref )] and [Rin

tid |receiveR(T, tT , xref )] with tT ≥ t0 +∆t leads to
an output [Sout

tid |sentR].

If δR(σS , σR, d) = false then correct machines output [Sout
tid |failed] and

[Rout
tid |failed].
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Requirement 12.6b (Correct Revocation): If a correct sender output [Sout
tid |sentR] on

input [Sin
tid |transferR(R, d , T, tT , xref )], the subsequent inputs [Sin

tid |revoke(
xref )] and [Tin

tid |revoke(S, R, d , xref )] before time tT at T lead to the out-
puts [Sout

tid |revoked] and [Tout
tid |revoked].

If R is correct, it obtains an output [Rout
tid |revoked: xref ] before time tT +∆r.

Requirement 12.6c (Transfer): If a correct recipient R outputs [Rout
tid |receivedR: d ]

on input [Rin
tid |receiveR(T, tT , xref )] and does not output [Rout

tid |revoked:
xref ] before time tT + ∆r then R owns the item B for the output descrip-
tion d after time tT + ∆r.

Requirement 12.6d (No Surprises): If the sender and the third party are correct
and either no input [Sin

tid |transferR(R, d , T, tT , xref )] for any tid , xref , T,
and tT ∈ IN was made, or else an output [Sout

tid |failed] or [Tout
tid |revoked] was

produced, the recipient is not able to obtain knowledge about the item B
described by d .

Requirement 12.6e (No Loss): If δR(σS , σR, d) = true for a state σS of a correct
S and any state σR of R, the sender input [Sin

tid |transferR(R, d , T, tT , xref )]
for any tid and xref , T and tT ∈ IN, and [Sout

tid |failed] or [Tout
tid |revoked] was

output, then δR(σS , σR, d) = true holds after time tT + ∆r.

Requirement 12.6f (Termination): A correct player will process a correct input
within the fixed number of rounds.

3

Some examples of revocability are:

• Credit-card payments can usually be revoked within a certain time.

• Revocability may be added to data by encrypting it with the key of the
third party. Then, a correct sender would automatically send the data at
time tT +∆r. If not, the third party would decrypt it, if it was not revoked.
(Note that in our terms, this is similar to a simulation of revocability using
generatability.)

• A signature can be made revocable by means of revocation lists: In addi-
tion to the signed message, the signer signs the condition that this signa-
ture is only binding after time tT + ∆r if no revocation entry signed by T
was posted at a given revocation list.

12.2.3 Recipient Verifiability

Recipient verifiability guarantees that a recipient can convince the third party
that it was unable to obtain a particular item fixed in a “prepareRV“-protocol,
even if it would have misbehaved.

The interactions for a transfer with recipient verifiability are depicted in
Figure 12.8. The interactions for its verification are depicted in Figure 12.9.

Definition 12.7 (Transferable Items with Recipient Verifiability)
A transferable item with recipient verifiability is a tuple I = (S, R, T, B, XREFs ,
TIDs , δRV , (∆p, ∆t, ∆v)) where machine S is the sender, R is the recipient, T
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transferRV (
xref)

Preparation of Recipient Verification

Recipient RSender S Third Party T

providesRV: d
  or “ ε”.

Transfer Protocol

prepareRV (
 R, d, T, tT, xref)

received:
xref

    or “ ε”.

checkRV (
 T, tT, xref)

failed
or “ ε”.

Figure 12.8: Interactions for a Transfer with Recipient Verifiability.

Recipient Verification Protocol

Recipient R

not_sent
 or failed:

Third Party T

verifyRV (
S, R, dT, xref)

Sender S

showRV(xref)

received :
xref

  or “ ε”.
not_sent:
xref   or “ ε”.

Figure 12.9: Interactions for Verifying a Transfer with Recipient Verifiability.

is the third party, B is a business item, XREFs is a set of external references,
TIDs is the set of transaction identifiers, δRV is the transferability predicate,
and ∆p, ∆t, ∆v ∈ IN are the fixed run-times of the protocols of the item:

“prepareRV“: This protocol is started on input of [Sin
tid |prepareRV(R, d , T, tT ,

xref )] and [Rin
tid |checkRV(T, tT , xref )] at any time t0 where T is the ma-

chine to be used as the third party, R is the intended recipient of the
transfer, d is the description under which the item will be transferred,
tT is the time at T until which recipient verifiability shall be guaranteed,
and xref ∈ XREFs is a fresh external reference, which has not been used
in an execution of “prepareRV“ between S and R before.

The recipient may obtain an output [Rout
tid |providesRV: d ].

“transferRV“: This protocol is started on input of [Sin
tid |transferRV(xref )] with a

fresh tid an xref ∈ XREFs . The recipient may produce an output [Rout
tid |

received: xref ]. The sender may produce an output [Sout
tid |failed].

“verifyRV“: This protocol is started on input of [Tin
tid |verifyRV(S, R, d , xref )]

and [Rin
tid |showRV(xref )] with a fresh tid , two names S and R, and an

xref ∈ XREFs . The protocol may either output [Tout
tid |not sent] and [Sout

tid |
not sent: xref ] or else [Tout

tid |failed]. Furthermore, the protocol may output
[Rout

tid |received: xref ] to the recipient.

We define δRV (σS , σR, d) := true iff the input of [Sin
tid |prepareRV(R, d , T, tT ,

xref )] and [Rin
tid |checkRV(T, tT , xref )] at any time t0 and [Sin

tid |transferRV(xref )]
after time t0 + ∆p to correct players with a given T, any fresh tid ∈ TIDs and
xref ∈ XREFs, and tT ∈ IN with tT ≥ t0 + ∆p + ∆t leads to the output [Rout

tid |
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received: xref ] to a correct recipient R starting in state σR. The transferable item
is called “optimistic” if this output is produced without contacting the third
party.

If the third party is correct, the item is required to fulfill the following re-
quirements:

Requirement 12.7a (Correct Execution): If S and R are correct and δRV (σS , σR, d)
for state σS of S and state σR of R holds then the input [Sin

tid |prepareRV(
R, d , T, tT , xref )] and [Rin

tid |checkRV(T, tT , xref )] at any time t0 with tT ≥
t0 + ∆p leads to an output [Rout

tid |providesRV: d ] to a correct recipient.

If δRV (σS , σR, d) = false then [Sout
tid |failed] is output.

Requirement 12.7b (Correct Verification): If a correct recipient output [Rout
tid |

providesRV: d ] on input [Rin
tid |checkRV(T, tT , xref )] and does not out-

put [Rout
tid |received: xref ], the inputs [Tin

tid |verifyRV(S, R, d , xref )] and [Rin
tid |

showRV(xref )] to correct parties before time tT imply that [Tout
tid |not sent]

or [Rout
tid |received: xref ] is output13.

If the sender is correct and the correct third party outputs [Tout
tid |not sent],

the sender outputs [Sout
tid |not sent: xref ].

Requirement 12.7c (Transfer): If a correct recipient R outputs [Rout
tid |received: xref ]

and does not input [Rin
tid |showRV(xref )], then R owns the item B with the

output description d .

Requirement 12.7d (No Surprises): If the sender is correct and either no input
[Sin

tid |prepareRV(R, d , T, tT , xref )] for any tid , xref , tT and T was made or
else, no input [Sin

tid |transferRV(xref )] without an output [Sout
tid |failed] was

made and no input [Tin
tid |verifyRV(S, R, d , xref )] without an output [Tout

tid |
not sent] was made, then the recipient R is not able to obtain knowledge
about the item B described by d .

Requirement 12.7e (No Loss): If δRV (σS , σR, d) = true for a state σS of a cor-
rect machine S and any state σR and either no input [Sin

tid |prepareRV(R,
d , T, tT , xref )] for any tid , xref , tT and T was made, or else no input [Sin

tid |
transferRV(xref )] without an output [Sout

tid |failed] was made and no input
[Tin

tid |verifyRV(S, R, d , xref )] without an output [Tout
tid |not sent] was made

then δRV (σS , σR, d) = true holds after time tT + ∆v.

Requirement 12.7f (Termination): A correct player will process a correct input
within the fixed number of rounds.

3

Some examples of recipient verifiability are:

• Together with the bank, a payment can be made recipient verifiable by
fixing it during “prepareRV“. Then, if this particular payment was not
deposited before “showRV“ is executed, the third party will decide on
not sent and a later deposit of this particular payment will not be ac-
cepted anymore.

13Recall that received may be output in “transferRV“ or “verifyRV“.
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Preparation of Generateability

Recipient RSender S

prepareG (
R, d, T, tT, xref)

Third Party T

providesG: d
or “ ε”.

transferG (
xref)

Transfer Protocol

received: xref
or “ ε”.

checkG (
T, tT, xref)

Figure 12.10: Interactions for a Transfer with Generatability.

Generation Protocol

Recipient RThird Party T

generate (
S, R, d, xref)

Sender S

generate (xref)

generated:
xref

  or “ ε”.

generated
or failed received: xref

or “ ε”.

Figure 12.11: Interactions for Generating a Transfer.

• A credit-card payment can usually be revoked by the bank. After revo-
cation, the third party can then decide on not sent.

• For messages, the message may be fixed during “prepareRV“ using a com-
mitment. If the sender refuses to re-send the message and open the com-
mitment during “showSV“, the third party may decide on not sent.

Remark 12.9. During “prepareRV“, items may need to be locked or evidence
stored to enable later exploitation of the property. Therefore, for cleaning up,
we again included a time tT until which the property can be exploited. ◦

12.2.4 Generatability

Generatability means that the sender is able to authorize a third party to com-
plete or redo a transfer in a given context “xref ” on its behalf.

In order to authorize the third party to generate an item, the sender and the
recipient execute the “prepareG“-protocol. Then, after successful completion,
the third party can replace the transfer by executing the “generate“-protocol,
i.e., do or redo the transfer on behalf of an incorrect or absent sender.

The activities are depicted in Figure 12.10 and 12.11. Again, the third party
may not participate in the “prepareG“ and “transferG“ protocols if the imple-
mentation is optimistic.

Definition 12.8 (Transferable Items with Generatability)
A transferable item with generatability is a tuple I = (S, R, T, B,XREFs,
TIDs , δG, (∆p, ∆t, ∆g)) where machine S is the sender, R is the recipient, T
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is the third party, B is a business item, XREFs is a set of external references,
TIDs is the set of transaction identifiers, δG is the transferability predicate, and
∆p, ∆t, ∆g ∈ IN are the fixed run-times of the protocols of the item:

“prepareG“: This protocol is started on input of [Sin
tid |prepareG(R, d , T, tT , xref )]

and [Rin
tid |checkG(T, tT , xref )] at any time t0 where T is the machine to be

used as third-party, R is the intended recipient of the transfer, d is the
description of the item, tT ∈ IN is the time at T until which generatabil-
ity shall be guaranteed, and xref ∈ XREFs is a fresh external reference,
which has not been used in an execution of “prepareG“ between S and R
before.

The recipient may output [Rout
tid |providesG: d ].

“transferG“: This protocol is started on input of [Sin
tid |transferG(xref )] with a

fresh tid and an xref ∈ XREFs . The recipient may output [Rout
tid |received:

xref ].

“generate“: This protocol is started on input of [Rin
tid |generate(xref )] and [Tin

tid |
generate(S, R, d , xref )] with two names S and R, a description d ∈ D , and
an xref ∈ XREFs by the third party after time t0 +∆p and before time tT .
The protocol may either output [Rout

tid |received: xref ], [Tout
tid |generated], and

[Sout
tid |generated: xref ] or else [Tout

tid |failed].

We define δG(σS , σR, d) := true iff the input of [Sin
tid |prepareG(R, d , T, tT , xref )]

and [Rin
tid |checkG(T, tT , xref )] at any time t0 to a correct player with a given T,

any fresh tid ∈ TIDs and xref ∈ XREFs, and tT ∈ IN with tT ≥ t0 + ∆p + ∆t

leads to the output [Rout
tid |providesG: d ] to a correct recipient R starting in

state σR.14 The transferable item is called “optimistic” if this output is pro-
duced without contacting the third party and a subsequent execution of the
“transferG“-protocol does not involve the third party.
If the third party is correct, the protocols are required to fulfill the following
requirements:

Requirement 12.8a (Correct Execution): If correct parties input [Sin
tid |prepareG(R,

d , T, tT , xref )] and [Rin
tid |checkG(T, tT , xref )] at the same time and the re-

cipient outputs [Rout
tid |providesG: d ], then the input [Sin

tid |transferG(xref )] af-
ter time t0 + ∆p leads to an output [Rout

tid |received: xref ] at a correct recipi-
ent.

Requirement 12.8b (Correct Generation): If a correct recipient obtained an output
[Rout

tid |providesG: d ] on input [Rin
tid |checkG(T, tT , xref )], then the subsequent

input of [Rin
tid |generate(xref )] and [Tin

tid |generate(S, R, d , xref )] by correct
players before time tT lead to the outputs [Tin

tid |generated()] and [Rout
tid |

received: xref ].

If S is correct, it outputs [Sout
tid |generated: xref ] before time tT + ∆g .

Requirement 12.8c (Transfer): If a correct recipient R outputs [Rout
tid |received: xref ]

after an output [Rout
tid |providesG: d ] on input [Rin

tid |checkG(T, tT , xref )], then
R owns B with the output description d .

14Note that the recipient knows whether the sender is able to transfer the item after “prepareG“.
This is different from recipient verifiability, where preparation may succeed even if the sender
is unable to transfer the item. In this case, however, successful preparation is still required to
guarantee correct verification.
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Requirement 12.8d (No Surprises): If the sender is correct and either no input
[Sin

tid |prepareG(R, d , T, tT , xref )] for any tid , xref , tT and T was made, or
else neither [Sin

tid |transferG(xref )] nor [Tin
tid |generate(S, R, d , xref )] was in-

put, then the recipient R is not able to obtain knowledge about the item
B described by d .

Requirement 12.8e (No Loss): If δG(σS , σR, d) = true for a state σS of a correct
S and any state σR and S inputs [Sin

tid |prepareG(R, d , T, tT , xref )] and nei-
ther [Sin

tid |transferG(xref )] nor [Tin
tid |generate(S, R, d , xref )] was input, then

δG(σS , σR, d) = true holds after time tT + ∆g .

Requirement 12.8f (Termination): A correct player will process a correct input
within the fixed number of rounds.

A generatable item is called “optimistic” if the “prepareG“ and “transferG“ pro-
tocols executed by a correct sender being able to transfer an item and a correct
recipient output providesG and received without involving the third party. 3

Some examples of recipient verifiability are:

• For signatures, generatability can be provided by authorizing the third
party to sign an affidavit, i.e., the sender signs “I herewith authorize the
third party to sign contract C in the transaction xref on my behalf”. Then,
this authorization together with the signature of T will later be accepted
as a valid contract15.

• Data can be made generatable by encrypting it with the third party’s
public key, i.e., during “prepareG“, a message signS(xref , R, ET (r;
xref , R, data)) is sent to the recipient (a random number r is used for ran-
domizing the encryption). Later, the third party decrypts this message.
If the decryption fails, the data is assumed to be empty. Else, the third
party sends the data to the recipient.

Remark 12.10. For generatability, the non-repudiation of the external reference
is of particular importance: Without this reference, a generatable transfer could
be moved from one exchange (e.g., buyer with seller) to another (e.g., buyer
and buyer), thus enabling one participant (e.g., the buyer) to ask the third party
to generate the item in exchange for the item that is transferred to itself instead
of the intended recipient. ◦

12.2.5 Towards Asynchronous Transfers

For simplicity, all exchange-enabling transfers were defined for synchronous
networks only. However, we are convinced that they can be adapted for asyn-
chronous networks, too. In this case, the time-outs would be replaced by ad-
ditional “unprepare“ protocols to release pending evidence and allow re-use of
locked items.

On asynchronous networks, the protocols including incorrect parties may
not terminate since pending messages may not be received and therefore, no
result can be produced. Therefore, for adapting the transfers to asynchronous

15Less intrusive generatability for signatures can be provided by using verifiable encryption
[AsSW1 98].
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networks, we would apply the approach used in Part I: The “prepare“ and
“transfer“-protocols can at any time be terminated by an input wakeup. After
this input, the protocol is required to output a result within a fixed time (i.e.,
the protocol must not wait for messages from parties that may be incorrect
but rather terminate while only interacting with parties known to be correct).
In order to guarantee this, the recovery protocols (i.e., “verifySV“, “revoke“,
“verifyRV“, and “generate“) must not contact parties that may be incorrect (cf.
Lemma 3.2).

As we will later show, sender and recipient verifiability are equivalent on
synchronous networks. This, however, will not be the case for asynchronous
networks: For sender verifiability, the evidence is usually stored at the sender
(e.g., the message to be sent again). Therefore, to provide recipient verifiability
based on sender verifiability, one has to contact the sender that may be incor-
rect. This is not possible on asynchronous networks.

12.3 Examples of Transferable Items

To illustrate our generic approach for transferable items, we now describe the
examples of transferable items necessary to instantiate the most common in-
stances of fair exchange, namely contract signing, certified mail, and fair pur-
chase.

Note that we only describe some selected exchange-enabling properties for
each transferable item. Further properties can either be provided by additional
protocols or else by using the simulations described in Section 13.3.

12.3.1 Signatures

We now describe sender-verifiable and generatable transfers of digital signa-
tures.

For sender-verifiability, a sender transfers a signature by signing the input
message. Sender verifiability is provided by re-sending the signature. An al-
leged owner executes the “usei“-protocol by sending the signature to the user
who verifies them.

Scheme 12.1 (Signatures with Sender Verifiability)
Let signN(msg) be the secure digital signature of a machine N ∈ id space under
msg ∈ Msg . We assume that each machine can only sign under its own name
and that all machines can verify all signatures.
We define a scheme I = (S, R, T, B,XREFs,TIDs , δSV , (∆t, ∆v)) for sender-
verifiable signatures with B = (U,D ,TIDs), D := id space×Msg , and TIDs :=
{0, 1}∗ as follows:

Using a Signed Message (Protocol “usei“): On input [Rin
tid |usei((X,msg))], the re-

cipient checks whether it knows an m2 containing signX(msg , R). If this
is the case, it sends (signX(msg , R), i, tid) to U.

On receipt of a message, the user checks whether this message has the
form (signX(msg , R), i, tid) for an X ∈ id space , xref ∈ XREFs, msg ∈
Msg , i ∈ IN, and tid ∈ TIDs . If this is the case, it outputs [Uout

tid |usedi:
R, (X,msg)].
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Sending a Signature (Protocol “transferSV“): On input [Rin
tid |receiveSV(T, tT ,

xref )], machine R sends m1 := signR(T, tT , xref , tid) to S. On input [Sin
tid |

transferSV(R, (X,msg), T, tT , xref )], machine S checks whether S = X and
waits for m1. If S 6= X or m1 is not received, it outputs [Sout

tid |failed]. Else, it
sends a message m2 := (signS(msg, R), m1) to the recipient R and outputs
[Sout

tid |sentSV]. Furthermore, it stores m2 under xref .

Upon receipt and successful verification, the recipient outputs [Rout
tid |

receivedSV: (S,msg), xref ].

Sender Verification (Protocol “verifySV“: On input of [Tin
tid |verifySV(S, R, (ST ,

msgT ), xref T )] and [Sin
tid |showSV(xref )], the sender retrieves m2 and sends

it to T who verifies it. If it does not match with the input parameters (i.e.,
msgT = msg , ST = S, and xref T = xref ), it outputs [Tout

tid |failed]. Else, it
sends m′

2 := m2 to R and outputs [Tout
tid |sent].

If R receives a correct m′
2, it outputs [Rout

tid |receivedSV: (S,msg), xref ]16.

We define ∆t := 2, ∆v := 2. 3

Lemma 12.1
Scheme 12.1 is a transferable item with sender verifiability (Def. 12.5). 2

Proof. It is clear that the scheme is optimistic and that δSV (σS , σR, (X,msg)) =
true for any state σS of machine S and any state σR iff S = X .

We now show that Scheme 12.1 fulfills the requirements of Definition 12.5:

Correct Execution (R. 12.5a): The input of [Sin
tid |transferSV(R, (X,msg), T, tT ,

xref )] and [Rin
tid |receiveSV(T, tT , xref )] leads to an output [Sout

tid |sentSV], if
S = X.

Sender Verification (R. 12.5b): If a correct sender output [Sout
tid |sentSV], it is able to

send m′
2 (it stored the necessary information). Therefore, the third party

will output sent for the same parameters.

Correct Verification (R. 12.5c): If the third party outputs [Tout
tid |sent] on input

[Tin
tid |verifySV(S, R, (S,msg), xref )], it forwarded a message m′

1 match-
ing the input parameters. Therefore, a correct recipient outputs [Rout

tid |
receivedSV: (S,msg), xref ]

Transfer (R. 12.5d): If a correct recipient output [Rout
tid |receivedSV: (S,msg), xref ],

it knows signS(msg). Therefore, the user will output usedi for any i ∈ IN.

No Surprises (R. 12.5e): If the sender does not input [Sin
tid |transferSV(R, (S,msg),

T, tT , xref )] or if [Sout
tid |failed] is output, m1 is not sent. From the secu-

rity of the signature scheme follows that the recipient is unable to show
signS(msg) to the user U.

No Loss (R. 12.5f): δSV never changes.

Termination (R. 12.5g): All protocols terminate within the given time.
16Note that for a incorrect sender, this output based on m′

2 may contain a different xref than m2.
This, however, does not contradict our requirements, since the protocol makes sure that receivedSV
was output for the xref input by T.
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We now describe a generatable transfer for signatures. In order to provide
generatability, the sender authorizes the third party to sign on its behalf by
executing the “prepareG“-protocol. Then, if it does not send its signature in
“transferG“, the third party can issue an affidavit using the authorization pro-
duced during “prepareG“.

Scheme 12.2 (Signatures with Generatability)
Let signN(msg) be the secure digital signature of a machine N ∈ id space under
msg ∈ Msg . We assume that each machine can only sign under its own name
and all machines can verify all signatures. Let T be the third party as used in
Scheme 12.2.
We define a scheme I = (S, R, T, B,XREFs,TIDs, δG, (∆p, ∆t, ∆g)) for gen-
eratable signatures with B = (U,D ,TIDs) with D := id space × Msg and
TIDs := {0, 1}∗ as follows:

Preparing Generatability (Protocol “prepareG“): On input [Rin
tid |checkG(T, tT ,

xref )], the recipient sends m1 := signR(T, tT , xref , tid) to S. On input
[Sin

tid |prepareG(R, (X,msg), T, tT , xref )], machine S checks whether S = X
and waits for m1. If this is the case and m1 is received, it sends a message
m2 := (signS(msg , gen, m1), tid) to the recipient R. Furthermore, it stores
m2 under xref .

Upon receipt and successful verification, the recipient outputs [Rout
tid |

providesG: (S,msg)] and stores m2.

Transferring a Signature (Protocol “transferG“): On input of [Sin
tid |transferG(xref )],

machine S looks up m2 and sends m3 := (signS(msg, R), xref , tid) to the
recipient R. Upon receipt and successful verification, the recipient out-
puts [Rout

tid |received: xref ].

Generation (Protocol “generate“): On input [Rin
tid |generate(xref )] and [Tin

tid |
generate(S, R, (ST ,msgT ), xref T )], the recipient retrieves m2 and sends it
to the third party. The third party checks the contained parameters and
checks whether its current time is no larger than tT . If this is not the
case, it outputs [Tout

tid |failed]. Else, it outputs [Tout
tid |generated] and sends

m4 := signT(m2) to R and S who output [Rout
tid |received: xref ] and [Sout

tid |
generated: xref ], respectively.

Using a signed message (Protocol “usei“): On input [Rin
tid |usei((X,msg))], the re-

cipient retrieves m3 or m4 and sends it with R and i to U with i, tid ap-
pended.

On receipt of a message, the user checks whether this message has
the form (signS(msg), i, tid , R) or (signT(signS(msg , gen, signR(T, tT , xref ,
tid)), tid)) for a S ∈ id space , xref ∈ XREFs , msg ∈ Msg , i ∈ IN, and tid ∈
TIDs . If this is the case, it outputs [Uout

tid |usedi: R, (X,msg)].

We define ∆p := 2, ∆t := 1, ∆g := 2. 3

Lemma 12.2
Scheme 12.2 is a transferable item with generatability (Def. 12.8). 2
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Proof. It is clear that the scheme is optimistic and that δG(σS , σR, (X,msg)) =
true for any state σS of machine S and any state σR iff S = X .

We now show that Scheme 12.2 fulfills the requirements of Definition 12.8:

Correct Execution (R. 12.8a): If the recipient output [Rout
tid |providesG: (S,msg)]

on input of [Sin
tid |prepareG(R, (S,msg), T, tT , xref )] and [Rin

tid |checkG(T, tT ,
xref )], the sender has stored m2 and sends m3 on input input [Sin

tid |
transferG(xref )]. Therefore, the recipient will output [Rout

tid |received: xref ].

Correct Generation (R. 12.8b): If a correct recipient output [Rout
tid |providesG: (S,

msg)] on input of [Sin
tid |prepareG(R, (S,msg), T, tT , xref )] and [Rin

tid |checkG(
T, tT , xref )] it knows a corresponding m2. After sending this message to
T before time tT , on input [Tin

tid |generate(S, R, (S,msg), xref )], T will sign
m4 and R will output [Rout

tid |received: xref ]. Since m4 is sent to S as well, a
correct sender will output [Sout

tid |generated: xref ].

Transfer (R. 12.8c): If a recipient output [Rout
tid |received: xref ] after an output

[Rout
tid |providesG: (S,msg)], it knows m3 or m4, which are sufficient for us-

ing the item.

No Surprises (R. 12.8d): If [Sin
tid |prepareG(R, (S,msg), T, tT , xref )] is not input,

the recipient does not receive m2 or m3 containing R. If [Sin
tid |prepareG(

R, (S,msg), T, tT , xref )] is input and neither [Sin
tid |transferG(xref )] nor

[Tin
tid |generate(S, R, (S,msg), xref )], then the recipient obtains neither m3

nor m4. From the security of the signature scheme follows that message
m2 obtained by R does not contain knowledge useful for using (S,msg),
since it does not help to guess m3 or m4.

No Loss (R. 12.8e): δG never changes.

Termination (R. 12.8f): All protocols have a fixed run-time.

Remark 12.11. This simple mechanism for generatability defines a replacement
signature m4 to be equivalent to the original signature m3 by changing the user
U. If one does not want to change the “usei“ protocol, one can add generatabil-
ity by means of verifiable encryption of the signature [AsSW1 98]: Here, dur-
ing “prepareG“, the sender encrypts the signature with the third party’s public
key and proves the correctness of the ciphertext to the recipient. Later, during
“generate“, the third party decrypts the ciphertext provided by the recipient
and thus obtains the real signature signS(msg). ◦

12.3.2 Untraceable On-line Payments

A digital coin [Chau 89] is essentially a so-called blind signature under a coin
number. It is described by its currency and its denomination.

We now describe sender-verifiable payments based on the untraceable on-
line payment scheme described in [Chau 89]. In a sender-verifiable transfer,
the recipient first fixes the coin numbers to be transferred. If this is done, the
payment is executed. In order to link the individual coins to the parameters of
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the transfer (in particular R, tT and xref ), we use public keys as coin numbers
and then authenticate the parameters with the corresponding secret keys.

Note that we again included the definition of the business item B into the
definition of the payment with sender-verifiability. We assume that the value
of one coin is, e.g., $1.

Scheme 12.3 (On-line Payments with Sender Verifiability)
Let signN(msg) be the secure digital signature of a machine N ∈ id space under
msg ∈ Msg . Let (pkB, skB) be the public and private key of an RSA scheme,
i.e., pkB(skB(msg)) = skB(pkB(msg)) = msg and skB(a · b) = skB(a) · skB(b)
for all messages m ∈ Msg for a given set Msg .
We define a scheme I = (S, R, T, B,XREFs,TIDs , δSV , (∆t, ∆v)) with B =
(〈U, B〉,D ,TIDs) for sender-verifiable on-line coins as follows:

Withdrawing Coins (Protocol “withdraw“): On input of [Sin
tid |withdraw($n)], the

sender sends a list (x1, . . . , xn) to the bank B with xi := nipkB(bi) where
all bi’s are randomly chosen and the ni are an encoding of public keys pk i

corresponding to randomly chosen secret keys ski of the given signature
scheme.

The bank then debits $n from the sender’s account and sends (yi, . . . , yn)
to S with yi := skB(xi).

The sender computes the signed coins and stores them:

zi := yi/bi = skB(nipkB(bi))/bi = skB(ni).

Sending a Payment (Protocol “transferSV“): On input [Sin
tid |transferSV(R, $k, T,

tT , xref )], the payer looks up the first k of its stored coins z1, . . . , zk. If
not enough coins are in the sender’s storage, it outputs [Sout

tid |failed] and
sends m′

1 := (SV, tid). Else, it sends a message m1 := (SV, n1, . . . , nk, tid ,
xref , T, tT ) to the recipient. The recipient then sends m2 := signR(m1). If
S does not obtain a correct m2, it executes the sub-protocol “refresh“ and
outputs [Sout

tid |failed].

Else, the sender sends m3 := (signsk1
(z1, m2), . . . , signskn

(zn, m2)) and
outputs [Sout

tid |sentSV].

Upon receipt of the coin numbers m1 and a corresponding input [Rin
tid |

receiveSV(T, tT , xref )], the recipient sends m2. If it receives m′
1, it outputs

[Rout
tid |failed]. Upon receipt of m3, the recipient forwards m2, m3 to the

bank who then verifies that each element i has the form signsk i
(zi, m2),

and that pkB(zi) = ni. Furthermore, the bank marks ni as being used and
credits the amount to the account of the payee R. Then, it sends a receipt
m4 := signB(R, $k, xref ) to the recipient who outputs [Rout

tid |receivedSV:
$k, xref ] after storing the receipt.

If some coins have been deposited before, the deposit is rejected and the
recipient makes no output.

Payment Recovery (Protocol “refresh“): This protocol is used to refresh coins
where the coin-numbers have already been revealed. This guarantees
unlinkability of the failed payment with future payments, i.e., without
unlinkability, no such protocol would be needed. If m2 was not received,
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the payer S refreshes its coins by sending fresh coin numbers (x′1, . . . , x′k)
that are computed as above together with m3 to the bank who issues k
fresh coins while verifying the deposited coins (in case of double-deposit,
it does not issue new coins). The payer then computes fresh coins z′i and
stores them.

Sender Verification (Protocol “verifySV“): On input of [Tin
tid |verifySV(S, R, $k,

xref T )] and [Sin
tid |showSV(xref )], the sender sends m2, m3 via the third

party to the bank. The bank verifies and deposits the coins, if they have
not been deposited under another xref before. Then, it sends a receipt
m5 := signB(R, $k, xref ) to the third party and to the recipient who
output [Tout

tid |sent] and [Rout
tid |receivedSV: $k, xref ], respectively. If any of

the coins have been deposited before under another xref , the bank sends
signB(double d, xref ) to the third party who outputs [Tout

tid |failed]17.

Using a Payment (Protocol “usei“): On input [Rin
tid |usei($k)], the payee retrieves

the receipt m4 or m5 and sends it as a message (signB(R, $k, xref ), tid , i, R)
to the user U.

Upon receipt of a correct message (signB(R, $k, xref ), tid , i), the user out-
puts [Uout

tid |usedi: R, $k].

We define ∆t := 5, ∆v := 3. 3

Lemma 12.3
Scheme 12.3 is a transferable item with sender verifiability (Def. 12.5). 2

Proof. It is clear that the scheme is optimistic and that δ(σS , σR, $k) = true holds
for any state σR and any state σS of machine S where S has at least k unspent
coins.

We now show that Scheme 12.3 fulfills the requirements of Definition 12.5:

Correct Execution (R. 12.5a): If [Sin
tid |transferSV(R, $k, T, tT , xref )] and [Rin

tid |
receiveSV(T, tT , xref )] is input, a correct machine S outputs [Sout

tid |sentSV]
if it has k unspent coins left, since a correct R answers m1 with m2. If not
enough coins are available, then S sends m′

1 and both output failed.

Sender Verification (R. 12.5b): If a correct sender output [Sout
tid |sentSV], it is able to

show m2, m3. If we now assume that an output [Tout
tid |sent] is not made on

input [Tin
tid |verifySV(S, R, $k, xref )], then some of the coin numbers have

been deposited before, which contradicts the assumption that S is correct
and that the coin numbers were chosen randomly. Note that the coins
contained in m3 fix the xref unambiguously, i.e., an in correct R is unable
to deposit the coins under another xref .

Correct Verification (R. 12.5c): If the third party outputs [Tout
tid |sent] on input

[Tin
tid |verifySV(S, R, $k, xref )], then it successfully deposited m3 and there-

fore, a receipt signB($k, xref ) was sent to the recipient who output [Rout
tid |

receivedSV: $k, xref ]

Transfer (R. 12.5d): If a correct recipient output [Rout
tid |receivedSV: $k, xref ], it

knows a receipt signB(R, $k, xref ). Therefore, the correct user will out-
put usedi for any i ∈ IN.

17Note that in this simple example, we did not consider the security against fraud by the bank.
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No Surprises (R. 12.5e): If the sender is correct and outputs [Sout
tid |failed], it did

not obtain m2. Therefore, it does not send m3. From the security of the
payment scheme follows that the recipient does not obtain information
useful for using this payment since it only obtained coin numbers but no
corresponding signatures by the bank.

No Loss (R. 12.5f): f the sender is correct and outputs [Sout
tid |failed], it did not ob-

tain m2. Therefore, it executes the “refresh“-protocol. This protocol will
succeed since as explained for R. 12.5e, the recipient cannot deposit the
payment at this point. Thus, the sender ends up with the initial number
of fresh coins.

Termination (R. 12.5g): All protocols terminate within the given time.

Revocable payments are identical to sender-verifiable payments, except that
the credit to the recipient is delayed until time tT + ∆r.

Scheme 12.4 (On-line Payments with Revocability)
Let signN(msg) be the secure digital signature of a machine N ∈ id space under
msg ∈ Msg . Let (pkB, skB) be the public and private key of an RSA scheme,
i.e., pkB(skB(msg)) = skB(pkB(msg)) = m and skB(a · b) = skB(a) · pkB(b) for
all messages m ∈ Msg for a given set Msg .
We define a scheme I = (S, R, T, B,XREFs,TIDs , δR, (∆t, ∆r)) with B =
(〈U, B〉,D ,TIDs) for on-line coins with revocability by introducing the follow-
ing modified protocols:

Withdrawing Coins (Protocol “withdraw“): As in Scheme 12.3.

Sending a Payment (Protocol “transferR“): On input [Sin
tid |transferR(R, $k, T, tT ,

xref )], the payer looks up the first k of its stored coins z1, . . . , zk. If
not enough coins are in the sender’s storage, it outputs [Sout

tid |failed] and
sends m′

1 := (R, tid). Else, it sends a message m1 := (R, n1, . . . , nk, tid ,
xref , T, tT ) to the recipient. The recipient then sends m2 := signR(m1). If
S does not obtain a correct m2, it executes the sub-protocol “refresh“ and
outputs [Sout

tid |failed].

Else, the sender sends m3 := (signsk1
(z1, m2), . . . , signskn

(zn, m2)) and
outputs [Sout

tid |sentR].

Upon receipt of the coin numbers m1 and a matching input [Rin
tid |receiveR(

T, tT , xref )], the recipient sends m2. If it receives m′
1, it outputs [Rout

tid |
failed]. Upon receipt of m3, the recipient forwards m3 to the bank
who then verifies that each element i has the form signsk i

(zi, m2), that
pkB(zi) = ni. Furthermore, the bank marks ni as being used and sched-
ules the amount of $k to be credited to the account of payee R at time
tT + ∆r

18. Then, it sends a receipt m4 := signB(R, $k, tT + ∆r, xref ) to the
recipient who outputs [Rout

tid |receivedR: $k] after storing the receipt.

If some coins have been deposited before, the deposit is rejected and the
recipient makes no output.

18If one assumes that debiting the account is always possible, one may also credit them immedi-
ately and debit the amount on revocation.
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Revocation (Protocol “revoke“): On input [Sin
tid |revoke(xref )] by S and [Tin

tid |
revoke(S, R, $k, xref )] by T, the sender sends m2, m3 to the third party. The
third party checks the messages (e.g., whether they have been sent before
time tT ) and forwards them to the bank if they are correct. The bank ver-
ifies the coins and makes sure that all coins have been deposited for this
xref . If some coins were deposited under another xref ’, then the bank
sends signB(double d, xref ) to the third party who outputs [Tout

tid |failed].

Then, the bank cancels the credit of $k to the recipient’s account and is-
sues $k fresh coins to the payer using the “refresh“-protocol. Further-
more, it sends a message signB(revoked, S, R, xref ) to the third party, who
forwards this message to S and R and stores this xref in its revocation list
for R.

Finally, the parties output [Sout
tid |revoked], [Rout

tid |revoked: xref ] and [Tout
tid |

revoked].

Using a Payment (Protocol “usei“): On input [Rin
tid |usei($k)], the recipient re-

trieves the receipt for the payment and sends it together with tid , i, R to
U.

Upon receipt of a correct message (signB(R, $k, t, xref ), tid , i, R), after
time t, the user asks the third party whether the transaction with this
xref has been revoked for R. If not, it outputs [Uout

tid |usedi: R, $k].

We define ∆t := 5, ∆r := 4. 3

Lemma 12.4
Scheme 12.4 is a transferable item with revocability (Def. 12.6). 2

Proof. It is clear that the scheme is optimistic and that δ(σS , σR, $k) = true for
any state σR and any state σS of machine S where S has at least k unspent coins.

We now show that Scheme 12.3 fulfills the requirements of Definition 12.5:

Correct Execution (R. 12.6a): The inputs [Sin
tid |transferR(R, $k, T, tT , xref )] and

[Rin
tid |receiveR(T, tT , xref )] lead to an output [Sout

tid |sentR] by a correct S if
S has k unspent coins left, since a correct R answers m1 with m2. If not
enough coins are available, then S sends m′

1 and both output failed.

Correct Revocation (R. 12.6b): If a correct sender output [Sout
tid |sentR], it is able

to show m2, m3. If we now assume that an output [Tout
tid |revoked] is not

made on input [Tin
tid |revoke(S, R, $k, xref )] before time tT , then some of

the coin numbers have been deposited before for this xref and R, which
contradicts the assumption that S is correct and that the coin numbers
were chosen randomly and then fixed in m3 using the signatures of the
keys included into the coins.

Transfer (R. 12.6c): If a correct recipient output [Rout
tid |receivedR: $k] on in-

put [Rin
tid |receiveR(T, tT , xref )], then it received a receipt m4 =

signB(R, $k, tT + ∆r, xref ). If the run for this xref and R has not been re-
voked (and thus [Rout

tid |revoked: xref ] was output), this receipt is sufficient
for using the payment.
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No Surprises (R. 12.6d): If the sender is correct and outputs [Sout
tid |failed], it did

not obtain m2. Therefore, it does not send m3. From the security of the
payment scheme follows that the recipient does not obtain information
useful for using this payment.

If the sender outputs [Sout
tid |sentR] and the third party outputs [Tout

tid |
revoked], then the payment for this (xref , R) is revoked19 and cannot be
used anymore.

No Loss (R. 12.6e): If the sender is correct and outputs [Sout
tid |failed], it executes

“refresh“ and ends up with the same number of coins that can be spent
(see R. 12.5f of Scheme 12.3).

If the third party input revoke, the bank issues fresh coins for this partic-
ular sender.

Termination (R. 12.6f): All protocols terminate within the given time.

12.3.3 Labeled Data

For some data to be exchanged, such as the message in a labeled certified mail
scheme (see Section 4), the recipient knows the intended sender and a label of
the message but has no expectation on the contents of the message at all. Since
this special case enables efficient generatability (the generated item is defined
to be the expected one), we now describe this kind of generatable transfer for
labeled data.

Scheme 12.5 (Secret Generatable Data)
Let signN(msg) be the secure digital signature of a machine N ∈ id space under
msg ∈ Msg . Let ET (r;msg) be a probabilistic encryption of msg randomized
with r under T’s public key. Let L be a set of message labels.

We define a scheme I = (S, R, T, B,XREFs,TIDs , δG, (∆p, ∆t, ∆g)) for gen-
eratable data with B = (U,D ,TIDs) with D := id space × id space × L and
TIDs := {0, 1}∗ as follows:

Creating Secret Data (Protocol “create“): This protocol stores the data to be sent.
On input of [Sin

tid |create(R, l, m)], the data m ∈ {0, 1}n is stored under the
intended recipient R and a label l.

Preparing Generation (Protocol “prepareG“) Upon input of [Sin
tid |prepareG(R,

(S, R, l), T, tT , xref )] with l ∈ L, machine S retrieves m for the given (R, l)
and selects a random number r and sends m1 := signS(ET (r; m, S, R,
xref ), (S, R, l), tid , T, tT , xref ) to R. Furthermore, S stores (m, r, R) under
xref .

On input of [Rin
tid |checkG(T, tT , xref )], the recipient waits for m1 and veri-

fies the signature and the clear-text portion of the message. If it matches
the input parameters, it outputs [Rout

tid |providesG: (S, R, l)] and stores m1

under xref . Else, it ignores m1.
19Since we modeled the “use” using receipts, this is independent of the actual revocation of the

payment. If the payment would not be revoked together with the receipt, the scheme may still
fulfill the requirements even though it is intuitively insecure.
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Sending Data (Protocol “transfer“): On input of [Sin
tid |transferG(xref )] to a sender

S, it looks up (m, r, R) for the input xref . If no such entry exists, it does
nothing. Else, it sends a message (m, r, tid , xref ) to the intended recip-
ient R and deletes the entry. Upon receipt, the recipient verifies that
ET (r; m, S, R, xref ) in fact results in the ciphertext contained in m1 and
outputs [Rout

tid |received: xref ] if this succeeds.

Generating the Data (Protocol “generate“): On input [Rin
tid |generate(xref )] and

[Tin
tid |generate(S, R, (S, R, l), xref )], R sends m1, tid , xref to T who decrypts

it and verifies that it has the correct form and that it was sent before time
tT . If this verification fails, it outputs [Tout

tid |failed]. Else, it sends (m, r, tid ,
xref ) to R and S. Then, the machines output [Rout

tid |received: xref ], [Tout
tid |

generated], and [Sout
tid |generated: xref ].

If the verification of the encrypted message fails, the third party defines
m := ε as the received message.

Outputting the Received Data (Protocol “retrieve“): On input of [Rin
tid |retrieve(

xref )] after receiving the data in a message (m, r, tid , xref ) from S or T
under the given xref , the recipient outputs [Rout

tid |data: m].

Using Data (Protocol “usei“): On input [Rin
tid |usei((S, R, l))], the recipient sends (

tid , m, r, i, m1) to the user.

The user U verifies that m1 is correct and that ET (r; m, S, R, xref ) results
in the ciphertext contained in m1. If this is the case, it outputs [Uout

tid |usedi:
R, (S, R, l)]. Else, it asks T to decrypt m1 and checks whether m and m′

have at least i digits in common. If this is the case, it outputs [Uout
tid |usedi:

R, (S, R, l)] as well. In all other cases, it does not make any output.

We define ∆p := 1, ∆t := 1, and ∆g := 2. 3

Remark 12.12. This transferable item together with transferable signatures pro-
viding sender verifiability (Scheme 12.1) can be used to instantiate a labeled
certified mail scheme using the generic fair exchange protocol described in Sec-
tion 13.1. ◦
Lemma 12.5
Scheme 12.5 is a transferable item with generatability (Def. 12.8). 2

Proof. It is clear that the scheme is optimistic and that δ(σS , σR, (S, R, l)) = true
for any state σS of machine S and any state σR iff S stored a message m for this
R and l.

We now show that Scheme 12.5 fulfills the requirements of Definition 12.8:

Correct Execution (R. 12.8a): If the recipient output [Rout
tid |providesG: (S, R, l), T,

tT , xref ], the recipient stored an m1, i.e., a correct sender stored (m, r, R)
under xref . Therefore, an input [Sin

tid |transferG(xref )] will lead to an out-
put [Rout

tid |received: xref ].

Correct Generation (R. 12.8b): If a correct recipient output [Rout
tid |providesG: (S, R,

l), T, tT , xref ] it knows a corresponding m1. After sending this message
to T before time tT , T will decrypt it and send m, r to S and R. Therefore,
they will output [Rout

tid |received: xref ], [Sout
tid |generated: xref ] and T outputs

[Tout
tid |generated].
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Transfer (R. 12.8c): If a recipient output [Rout
tid |received: xref ] after an output

[Rout
tid |providesG: (S, R, l), T, tT , xref ], it knows m1, m, r, which are suffi-

cient for ownership.

No Surprises (R. 12.8d): If [Sin
tid |prepareG(R, (S, R,msg), T, tT , xref )] is input

by the sender and neither [Sin
tid |transferG(xref )] nor [Tin

tid |generate(
S, R, (S, R, l), xref )], then the recipient obtains neither m nor r. From the
security of the encryption scheme follows that message m1 obtained by
R does not contain knowledge useful for using (S, R, l), since it does not
help to guess a correct m fixed by m1. Furthermore, if a different S′,
R′, or xref ′ is input, the encrypted ciphertext does not match with the
parameters input by T.

No Loss (R. 12.8e): This requirement holds since S only deletes the stored data
on input [Sin

tid |transferG(xref )].

Termination (R. 12.8f): All protocols have a fixed run-time.
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Chapter 13

Protocols for Transfer-based
Fair Exchange

In Sections 13.1 and 13.2, we describe two examples of synchronous fair ex-
change protocols based on exchange-enabling transfers. These fair exchange
protocols follow the same pattern:

1. The parties agree on the parameters of the exchange.

2. The parties prepare the second transfer.

3. The parties execute both transfers.

4. If something goes wrong, the parties involve the third party in order to
restore fairness using the exchange-enabling properties of the transfers.

If the players are correct and agree, the protocol usually ends after Step 3.
Therefore, the protocols are optimistic if the underlying transfers are opti-
mistic.

The protocol described in Section 13.1 requires transferable items with
sender verifiability and generatability, respectively. The protocol described in
Section 13.2 requires recipient verifiability and revocability, respectively.

In order to use these two protocols to exchange any two items, we describe
in Section 13.3 how to use certain exchange-enabling properties to simulate
others. Together with the two given protocols for fair exchange, this enables us
to exchange any two items providing exchange-enabling properties if at least
one item provides generatability or revocability.

Note that these simulations are mainly for completeness. In practice, one
would provide additional fair exchange protocols, which are optimized for any
two particular exchange-enabling transfers that can be exchanged at all.

13.1 Fair Exchange of Sender-verifiable and Gener-
atable Items

The following synchronous optimistic fair exchange protocol assumes that one
of the items offers sender verifiability whereas the other item offers generata-
bility. The basic idea is that the participants prepare the generatable item sent
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Originator O Responder R

“[Oin
tid |exchange(R, dO, d ′

R, xref )]” “[Rin
tid |exchange(O, dR, d ′

O , xref )]”

m1 := signO(〈T, TO, TR〉, R, dO, d ′
R, xref , tid)→

¬m1: “[Rout
tid |failed]”.

tidR := (tid , R). tidR := (tid , R).
tidO := (tid , O). tidO := (tid , O).
tV := t0 + ∆p + ∆SV

t + ∆G
t + 2 tG := tV + ∆v

m2 := signR(m1)←
¬m2: “[Oout

tid |failed]”.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[RR

in
tidR
|checkG(T, tG, m2)]

“prepareG“
[SR

in
tidR
|prepareG(O, dR, T, tG, m2)]

←
[RR

out
tidR
|providesG: dR].

if ¬providesG: “[Oout
tid |failed]”.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[SO

in
tidO
|transferSV(R, dO , T, tV , m2)] [RO

in
tidO
|receiveSV(T, tV , m2)]

“transferSV“→
[SO

out
tidO
|sentSV] [RO

out
tidO
|receivedSV: dO, m2].

or [SO
out
tidO
|failed]

if failed: “[Oout
tid |failed]”. if ¬receivedSV: wait until tG + ∆g .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“transferG“
[SR

in
tid′

R
|transferG(m2)]

←
[RR

out
tid′

R
|received: m2].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if ¬received: resolve with T. if ¬receivedSV: “[Rout

tid |failed]”.
“[Oout

tid |exchanged]” “[Rout
tid |exchanged]”

Figure 13.1: Optimistic Fair Exchange Protocol of Scheme 13.1 for Exchanging
the Generatable Item IR and the Sender-verifiable Item IO sent by O.

by the responder, transfer the sender-verifiable item from the originator to the
responder, and finally transfer the generatable item from the responder to the
originator. If this transfer fails, the third party is asked to generate it after ver-
ifying that the sender-verifiable item was in fact transferred successfully. The
behavior of the protocol in the fault-less case is sketched in Figure 13.1, the
recovery is depicted in Figure 13.2.

Scheme 13.1 (Exchange “SV & G”)
Let ΣO be the set of all transferable items with sender verifiability and let ΣR

be the set of all transferable items with generatability.
A transfer-based fair exchange scheme (O, R, T,XREFs,TIDs) for ΣO and

ΣR is defined as follows:
Let IO = (SO, RO, TO, BO, {0, 1}∗,TIDs , δSV , (∆SV

t , ∆v)) with IO ∈
ΣO be a sender-verifiable item. Let IR = (SR, RR, TR, BR, {0, 1}∗,
TIDs , δG, (∆p, ∆G

t , ∆g)) with IR ∈ ΣR be a generatable item.1 Then, the be-
havior of O, R, and T is defined as follows:

1For simplicity, in the sequel we assume that all schemes use the same set TIDs and XREFs
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Originator O Third Party T

m3 := signO(m2)→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[SO

in
tid′

O
|showSV(m2)] [TO

in
tid′

O
|verifySV(S,R, dO , m2)]

“verifySV“← →
[TO

out
tid′O
|sent]

or [TO
out
tid′O
|failed].

if failed: abort.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[RR

in
tid′′R
|generate(m2)] [TR

in
tid′′R
|generate(R, O, dR, m2)]

“generate“←
[RR

out
tid′′

R
|received: m2] [TR

out
tid′′

R
|generated]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
“[Oout

tid |exchanged]”

Figure 13.2: Recovery Protocol of Scheme 13.1.

Exchange by O: On input “[Oin
tid |exchange(R, dO, d ′R, xref )]” in round t0, the ma-

chine sends m1:=signO(〈T, TO, TR〉, R, dO, d ′R, xref , tid)2 and waits for m2.
If m2 is not received, it outputs [Oout

tid |failed]. Else, it executes the follow-
ing sub-protocols:

Sub-protocol “prepareG“: It inputs [RR
in
tidR
|checkG(T, tG, m2)] with tG :=

tV + ∆v and tV := t0 + ∆p + ∆SV
t + ∆G

t + 2. Then, it waits for an
output [RR

out
tidR
|providesG: dR] at time t0 +∆p +2. If this is not output

after time ∆p rounds, it outputs “[Oout
tid |failed]”.

Sub-protocol “transferSV“: Else, it inputs [SO
in
tidO
|transferSV(R, dO,

T, tV , m2)] and waits for an output [SO
out
tidO
|sentSV] at time

t0 + 2 + ∆p + ∆SV
t . If [SO

out
tidO
|failed] is output instead, it out-

puts “[Oout
tid |failed]”.

Sub-protocol “transferG“: If it receives an output [RR
out
tid ′R
|received: m2]3 at

time tV − 2 it outputs “[Oout
tid |exchanged]”. Else, it starts recovery

with T.

Exchange by R: On input “[Rin
tid |exchange(O, dR, d ′O, xref )]” in round t0, machine

R waits for m1 and verifies it using the input parameters, i.e., dR = d ′R,
dO = d ′O. If it did not receive a correct m1

4, it outputs “[Rout
tid |failed]”. Else,

it sends m2 := signR(m1) and then executes the following sub-protocols:

Sub-protocol “prepareG“: It inputs [SR
in
tidR
|prepareG(O, dR, T, tG, m2)] with

tidR = (tid , R) for tG := tV + ∆v, tV := t0 + ∆p + ∆SV
t + ∆G

t + 3,

and that these sets are large enough to allow for our constructions.
2Remember that m1 contains the starting time t0.
3As described in Section 11.3, we assume that primed tids are unique extensions of the under-

lying tid .
4If different xref s or tids are input, no correct m1 will be received.
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and m2 := signR(m1) to the sender SR of the item to be sent with
generatability.

Sub-protocol “transferSV“: It inputs [RO
out
tidO
|receiveSV: T, tV , m2] with

tV := t0 + ∆p + ∆SV
t + ∆G

t + 2 and waits for an output [RO
out
tidO
|

receivedSV: dO, m2] until time tG+∆g
5. If this output is not received,

it outputs “[Rout
tid |failed]”.

Sub-protocol “transferG“: If the output receivedSV was obtained at time
t0 + ∆p + ∆SV

t + 2, it inputs [SR
in
tid ′R
|transferG(m2)]. If the out-

put transferSV was obtained before time tG, it outputs “[Rout
tid |

exchanged]”.

Recovery of O: This recovery protocol is executed to generate an item if the orig-
inator claims that it sent its item dO but did not receive the expected trans-
fer dR.

Machine O sends a signed request m3 := signO(m2) to start recovery.

Then, the “verifySV“-protocol is started with the inputs [SO
in
tid ′O
|showSV(

m2)] and [TO
in
tid′O
|verifySV(S, R, dO, m2)] with the R and dO signed in m2.

If this sub-protocol outputs [TO
out
tid ′O
|failed], the third party aborts6. Else, if

the verification outputs [TO
out
tid ′O
|sent], the item is generated:

The players T and O input [TR
in
tid ′′R
|generate(R, O, dR, m2)] and [RR

in
tid ′′R
|

generate(m2)]. If the generation outputs [RR
out
tid ′′R
|received: m2] before time

tG + ∆g , machine O outputs “[Oout
tid |exchanged]” and else “[Oout

tid |failed]”.

3

Theorem 13.1 (Security of Scheme 13.1)
Scheme 13.1 is a secure transfer-based fair exchange protocol for sender-
verifiable and generatable items. 2

Proof. We show that all requirements of Definitions 12.2 and 12.4 are fulfilled
by Scheme 13.1 if IO is sender verifiable and IR is generatable:

Correct Execution (R. 12.2a) and Availability (R. 12.4b): If both machines are cor-
rect and receive non-matching inputs, R outputs failed after receiving a
message m1 with unexpected parameters, whereas O outputs failed after
not receiving m2. Else, they start the “prepareG“-protocol with matching
inputs.

If both machines O and R are able to transfer the items to each other,
the “prepareG“-protocol outputs [RR

out
tidR
|providesG: dO] on input [RR

out
tidR
|

checkG: T, tG, m2] (by definition of δG and tG ≥ t0 + 2 + ∆p). Then,
the correct player input [SO

in
tidO
|transferSV(R, dO, T, tV , m2)] and [RO

in
tidO
|

receiveSV(T, tV , m2)] with tV ≥ t0 + 2 + ∆p + ∆SV
t . If O is able to trans-

fer dO , this leads to an output [RO
out
tidO
|receivedSV: dO, m2] and an out-

put [SO
out
tidO
|sentSV] [R. 12.5a]. Therefore, R will input [SR

in
tid ′R
|transferG(

5Note that the outputs of this sub-protocol may in fact be caused by the recovery during
“verifySV“, e.g., if a message is sent again.

6In this case, the originator was incorrect since it was unable to convince T even though it
obtained an output sentSV.
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m2)] and output “[Rout
tid |exchanged]”. As a consequence, a correct O will

obtain an output [RR
out
tid ′R
|received: m2] [R. 12.8a] and will output “[Oout

tid |
exchanged]” as well.

Transfer (R. 12.2b): A participant, say O, only outputs “[Oout
tid |exchanged]” after

receiving the expected transfer. From [R. 12.5d] or [R. 12.8c] follows that
it owns the item, since no later state changes are made.

No Surprises (R. 12.2c) If participant O outputs “[Oout
tid |failed]”, it either failed

before inputting [SO
in
tidO
|transferSV(R, dO, T, tV , m2)], the sub-protocol

“transferSV“ output [SO
out
tidO
|failed], or the recovery output [TO

out
tid ′O
|failed]

to the third party. In the first two cases, the recipient does not obtain
knowledge on item dO [R. 12.5e]. If the third party outputs [TO

out
tid ′O
|failed],

then the originator started recovery by sending m3, i.e., it obtained an
output [SO

out
tidO
|sentSV]. However, for a correct originator, [R. 12.5b] im-

plies that this results in an output [TO
out
tid ′O
|sent] at T.

If participant R outputs [Rout
tid |failed] after not receiving m1, it does not

input [SR
in
tidR
|prepareG(. . . )] and therefore, R is still able to transfer the

item [R. 12.8d]. If it outputs “[Rout
tid |failed]” upon not receiving [RO

out
tid |

receivedSV: dO, m2] until time tV + ∆v , [R. 12.5c] implies that in this case,
the verification at the third party will output [TR

out
tid ′′R
|failed] and the third

party will not input [TR
in
tid ′′R
|generate(R, O, dR, m2)]. Since R does not in-

put [SR
in
tid ′R
|transferG()] either, the recipient does not obtain knowledge

about item dR [R. 12.8d].

No Loss (R. 12.4c): Similar to “no surprises” using [R. 12.8e, R. 12.5f], except
that R (the sender of the generatable item) is re-enabled to transfer the
item after time tG + ∆g .

Termination (R. 12.2d): Since all sub-protocols terminate [R. 12.5g,R. 12.8f] in a
fixed time, the protocols terminate in a fixed time as well.

13.2 Fair Exchange of Revocable and Recipient-
verifiable Items

The following exchange protocol requires that one of the items offers revoca-
bility whereas the other item offers recipient verifiability. The basic idea is that
the participants first prepare the recipient-verifiable item. Then, they transfer
the revocable item and the recipient-verifiable item. If the recipient-verifiable
item is not sent, the third party is invoked to verify this fact and revoke the
first transfer. The behavior of the protocol in the fault-less case is sketched in
Figure 13.3, the recovery is depicted in Figure 13.4.

Scheme 13.2 (Exchange “R&RV”)
Let ΣO be the set of all transferable items with revocability and let ΣR be the
set of all transferable items with recipient verifiability.
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Originator O Responder R

“[Oin
tid |exchange(R, dO, d ′

R, xref )]” “[Rin
tid |exchange(O, dR, d ′

O, xref )]”

m1 := signO(〈T, TO, TR〉, R, dO , d ′
R, xref , tid)→

¬m1 or not ok (e.g., dO 6= d ′
O):

“[Oout
tid |failed]”.

tidR := (tid , R). tidR := (tid , R).
tidO := (tid , O). tidO := (tid , O).

m2 := signR(m1).
tR := tV + ∆v. tV := t0 + ∆p + ∆R

t + ∆RV
t + 3.

m2 := signR(m1)←
¬m2 or not ok: “[Oout

tid |failed]”.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[RR

in
tidR
|checkRV(T, tV , m2)]

“prepareRV“
[SR

in
tidR
|prepareRV(O,dR, T, tV , m2)]

←
[RR

out
tidR
|providesRV: dR].

if ¬providesRV: “[Oout
tid |failed]”.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[SO

in
tidO
|transferR(R, dO, T, tR, m2)] [RO

in
tidO
|receiveR(T, tR, m2)]

“transferR“→
[SO

out
tidO
|sentR] [RO

out
tidO
|receivedR: dO]

or [SO
out
tidO
|failed].

if failed: “[Oout
tid |failed]”. if ¬receivedR: “[Rout

tid |failed]”.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“transferRV“
[SR

in
tid′

R
|transferRV(m2)]

←
[RR

out
tid′R
|received: m2].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if ¬received: resolve with T. if failed or not sent:

“[Rout
tid |failed]”.

“[Oout
tid |exchanged]” “[Rout

tid |exchanged]” after time tR.

Figure 13.3: Optimistic Fair Exchange Protocol of Scheme 13.2 for Exchanging
the Recipient-verifiable Item IR sent by R and the Revocable Item IO sent by O.

A transfer-based fair exchange scheme (O, R, T,XREFs,TIDs) for ΣO and
ΣR is defined as follows: Let IO = (SO, RO, TO, BO, {0, 1}∗,TIDs , δR, (∆R

t , ∆r))
with IO ∈ ΣO be a revocable item. Let IR = (SR, RR, TR, BR, {0, 1}∗,
TIDs , δRV , (∆p, ∆RV

t , ∆v)) with IR ∈ ΣR be a recipient-verifiable item. Then,
the behavior of O, R, and T is defined as follows:

Exchange by O: On input “[Oin
tid |exchange(R, dO, d ′R, xref )]” in round t0, the ma-

chine sends m1 = signO(〈T, TO, TR〉, R, dO, d ′R, xref , tid) and waits for a
message m2 = signR(m1). If this message is received, it inputs [RR

in
tidR
|

checkRV(T, tV , m2)] with tV = t0 + ∆p + ∆R
t + ∆RV

t + 3 and waits for
an output of the sub-protocol “prepareRV“. If the sub-protocol outputs
[RR

out
tidR
|providesRV: dR], it inputs [SO

in
tid ′O
|transferR(R, dO, T, tR, m2)] with

tR := tV + ∆v . Else, it outputs “[Oout
tid |failed]”. If “transferR“ outputs

[SO
out
tid ′O
|failed], it outputs “[Oout

tid |failed]”. If it receives the outputs [SO
out
tidO
|
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Originator O Third Party T

m3 := signO(m2)→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[RR

in
tid′′

R
|showRV(m2)] [TR

in
tid′′

R
|verifyRV(S, R, O, dR, m2)]

“verifyRV“← →
[RR

out
tid′′R
|received: m2] [TR

out
tid′′R
|not sent]

or ε. or [TR
out
tid′′R
|failed].

if received: “[Oout
tid |exchanged]”. if failed: abort.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[SO

in
tid′O
|revoke(m2)] [TO

in
tid′O
|revoke(S, R, dO, m2)]

“revoke“←
[SO

out
tid′

O
|revoked] [TO

out
tid′

O
|revoked]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
“[Oout

tid |failed]”

Figure 13.4: Recovery Protocol of Scheme 13.2.

sentR] and [RR
out
tid ′R
|received: m2] it outputs “[Rout

tid |exchanged]”. Else, it
starts recovery with T.

Exchange by R: On input “[Rin
tid |exchange(O, dR, d ′O, xref )]” in round t0, the re-

sponder waits for m1 and verifies it. If it is incorrect, it outputs “[Rout
tid |

failed]”. Else, it computes m2 := signR(m1) and sends it to O. Then, it
executes the following sub-protocols:

Sub-Protocol “prepareRV“: Machine R inputs [SR
in
tidR
|prepareRV(O, dR, T,

tV , m2)] with tV := t0 + ∆p + ∆R
t + ∆RV

t + 3 and tidR = (tid , R)
to the sender SR of the item to be sent with recipient verifiability.

Sub-Protocol “transferR“: Then, it inputs [RO
in
tidO
|receiveR(T, tR, m2)] and

waits for an output of the “transferR“-protocol. If RO does not output
[RO

out
tidO
|receivedR: dO] with tidO = (tid , O) at time t0 + ∆p + ∆R

t + 2,
the responder outputs “[Rout

tid |failed]”.

Sub-Protocol “transferRV“: The responder inputs [SR
in
tid ′R
|transferRV(m2)]

and outputs “[Rout
tid |exchanged]” at time tR. If the sub-protocol

“transferRV“ outputs [SR
out
tid ′R
|failed] or [SR

out
tid′′R
|not sent: m2], the re-

sponder outputs “[Rout
tid |failed]”.

Recovery by O: This recovery protocol is executed to revoke an item if the re-
sponder did not send its item. The originator sends a signed request
m3 := signO(m2) to the third party in order to prove the deal the partici-
pants made. Then, the players input [RR

in
tid ′′R
|showRV(m2)] and [TR

in
tid ′′R
|

verifyRV(S, R, O, dR, m2)]. If O obtains an output [RR
out
tid ′′R
|received: m2]

during “verifyRV“, it outputs [Oout
tid |exchanged]. If the third party obtains

an output [TR
out
tid ′′R
|failed], it aborts this run. Else, if it receives [TR

out
tid ′′R
|

not sent], it inputs [TO
in
tid ′O
|revoke(S, R, dO, m2)]. At the same time tR, O

204



13.2. Fair Exchange of Revocable and Recipient-verifiable Items

inputs [SO
in
tid ′O
|revoke(m2)]. Finally, after an output [SO

out
tid ′O
|revoked], ma-

chine O outputs “[Oout
tid |failed]”.

3

Theorem 13.2 (Security of Scheme 13.2)
Scheme 13.2 is a secure transfer-based fair exchange protocol for revocable and
recipient-verifiable items. 2

Proof. We show that all requirements of Definitions 12.2 and 12.4 are fulfilled
by Scheme 13.2 if IO is revocable and IR is recipient verifiable:

Correct Execution (R. 12.2a) and Availability (R. 12.4b): If both machines are cor-
rect and receive non-matching inputs, R outputs failed after receiving an
m1 with unexpected parameters, whereas O outputs failed after not re-
ceiving m2. Else, they start the “prepareRV“-protocol with matching in-
puts.

If both machines are able to transfer the items to each other, the
protocol outputs [RR

out
tidR
|providesRV: dR] on inputs [SR

in
tidR
|prepareRV(O,

dR, T, tV , m2)] and [RR
in
tidR
|checkRV(T, tV , m2)] [R. 12.7a]. Then, both

input [SO
in
tidO
|transferR(R, dO, T, tR, m2)] and [RO

in
tidO
|receiveR(T, tR, m2)].

Since O is able to transfer dO , this leads to an output [RO
out
tidO
|receivedR:

dO] according to the definition of δR since tR > t0 +∆R
t . Therefore, R will

input [SR
in
tid ′R
|transferRV(m2)] and output “[Rout

tid |exchanged]”. Since SR is
able to transfer dR, this will lead to an output output [RR

in
tid ′R
|received(

m2)] [R. 12.7a] and R will output “[Oout
tid |exchanged]” as well.

Transfer (R. 12.2b): Participant O only outputs “[Oout
tid |exchanged]” after receiv-

ing the expected transfer. From [R. 12.7c] follows, that it owns the item.

Participant R outputs “[Oout
tid |exchanged]” after receiving the expected

transfer and not receiving an output [SR
out
tid ′R
|failed] or [SR

out
tid ′′R
|not sent:

m2]. From the correctness of the sender follows that T does not output
[SR

out
tid ′R
|not sent]. As a consequence, it will not revoke the received trans-

fer. From [R. 12.6c] then follows that R owns the item.

No Surprises (R. 12.2c) If participant R outputs “[Rout
tid |failed]”, it either does not

input [SR
in
tid ′R
|transferRV(. . . )] or else it output [SR

out
tid ′R
|failed] or [SR

out
tid ′′R
|

not sent: m2]. From [R. 12.7d] follows that RR does not obtain knowledge
about dR.

If “[Oout
tid |failed]” is output before [SO

in
tidO
|transferR(. . . )] is input or if this

input was answered with [SO
out
tidO
|failed], the recipient does not obtain

knowledge about the item [R. 12.6d]. Else, if it output “[Oout
tid |failed]” af-

ter recovery, it obtained an output [SO
out
tid |revoked: m2] and RO does not

obtain knowledge about the item dR as well [R. 12.6b, R. 12.6d].

Termination (R. 12.2d): Since all sub-protocols terminate in a fixed time
[R. 12.5g,R. 12.8f], the protocols terminate in a fixed time, too.

No Loss (R. 12.4c): Similar to “no surprises” using [R. 12.6e, R. 12.7e], except
that the sender of the recipient-verifiable item is re-enabled to transfer
the item after a delay of tV + ∆v .
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Sender Verifiability Recipient Verifiability

Revocability Generateability

Figure 13.5: Simulations between Exchange-enabling Transfers.

Sender S Recipient R

“[Sin
tid |prepareRV(R, d , T, tT , xref )]” “[Rin

tid |checkRV(T, tT , xref )]”

m1 := signS(R, d , tT , xref , tid)→
“[Rout

tid |providesRV: d ]”

Figure 13.6: Preparation of Recipient Verifiability using Sender Verifiability.

13.3 Simulations of Exchange-enabling Transfers

We now describe simulations between different exchange-enabling transfers,
i.e., how to use certain exchange-enabling properties to provide others. These
simulations can be used to “map” a given property to the properties needed
by our exchange protocols. This enables us to exchange any two items where
at least one item is generatable or revocable. Second, it shows that on syn-
chronous networks, both types of verifiability are equivalent, i.e., one can be
used to simulate the other.

Our simulations are depicted in Figure 13.5: We show that the recipient and
sender verifiability is weaker than generatability and revocability. We do this
by describing protocols that provide verifiability given revocability or gener-
atability. Furthermore, we show that on synchronous networks sender and re-
cipient verifiability are equivalent, i.e., can be simulated with each other. These
simulations are based on three-party disputes and cannot be used on asyn-
chronous networks. Moreover, on asynchronous networks, we believe that
sender and recipient verifiability are fundamentally different, i.e., neither of
them can be used to simulate the other.

13.3.1 Recipient Verifiability using Sender Verifiability

We first show how to simulate recipient verifiability using sender verifiability.
Basically, during “prepareRV“, the sender promises to send an item. Then, dur-
ing a “verifyRV“-protocol, the third party forces the sender to execute “verifySV“
and decides against the sender if the sender is unable to show that the recipient
obtained the item. The protocols are depicted in Figures 13.6, 13.7, and 13.8.

Lemma 13.1 (Simulation SV → RV )
Let I ′ = (S′, R′, T′, B,XREFs,TIDs , δ′SV , (∆SV

t , ∆SV
v )) be a transferable item

with sender verifiability. Then, the item I = (〈S, S′〉, 〈R, R′〉 〈T, T′〉, B, XREFs ,
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Sender S Recipient R

“[Sin
tid′ |transferRV(xref )]”

m2 := m1→
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[S′in
tid′ |transferSV(R,d , T, tT + 2, (xref , m1))]

[R′out
tid′ |receiveSV:
T, tT + 2, (xref , m1)]

“transferSV“→
[S′out

tid′ |sentSV] [R′out
tid′ |receivedSV: d , (xref , m1)]

or [S′out
tid′ |failed] or ε.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if receivedSV:

“[Rout
tid ′ |received: xref ]”

Figure 13.7: Transfer of Recipient Verifiability using Sender Verifiability.

Sender S Third Party T Recipient R

“[Tin
tid ′′ |verifyRV(S, R, d , xref )]” “[Rin

tid′′ |showRV(xref )]”

m1←
if tT + 1 ≤ tnow or

m1 incorrect:
“[Tout

tid ′′ |failed]”

m1←
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[S′in

tid′′ |showSV(xref )] [T′in
tid′′ |verifySV(S, R,d , (xref , m1))]

“verifySV“←→
[T′out

tid′′ |sent]
[R′out

tid′′ |receivedSV:
d , (xref , m1)] or ε.

or [T′out
tid′′ |failed].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if sent: “[Tout

tid ′′ |failed]” if receivedSV:
“[Tout

tid ′′ |not sent]”. “[Rout
tid′′ |received: xref ]”.

Figure 13.8: Verification of Recipient Verifiability using Sender Verifiability.

TIDs , δRV , (∆p, ∆t, ∆v)) as defined below offers recipient verifiability. I is
optimistic if item I′ is optimistic.

The behavior of I is defined by the behavior of S, R, and T as follows:

Protocol “prepareRV“: On input “[Sin
tid |prepareRV(R, d , T, tT , xref )]” and “[Rin

tid |
checkRV(T, tT , xref )]” machine S sends m1 :=signS(R, d , tT , xref , tid) to R
who outputs “[Rout

tid |providesRV: d ]”.

Protocol “transferRV“: On input “[Sin
tid ′ |transferRV(xref )]”, the sender sends

m2 := m1 and inputs [S′intid ′ |transferSV(R, d , T, tT + 2, (xref , m1))] (sender
verifiability needs to be guaranteed at time tT + 2 since a recipient verifi-
cation started at time tT will start the sub-protocol for sender verification
at time tT + 2). Upon receipt of m1, the recipient inputs [R′intid′ |receiveSV(
T, tT + 2, (xref , m1))].
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On output of [R′outtid ′ |receivedSV: d , (xref , m1)], the recipient outputs
“[Rout

tid′ |received: xref ]”.

Protocol “verifyRV“: On input “[Rin
tid′′ |showRV(xref )]” and “[Tin

tid′′ |verifyRV(
S, R, d , xref )]”, the recipient sends m1 to T who checks that the request
is in time (i.e., whether tT ≤ tnow + 1) and that the parameters contained
in m1 match the input ones. If this is the case, T sends m1 to S in Round 2.
If this is not the case, it outputs “[Tout

tid′′ |failed]”. Upon receipt of m1, ma-
chine S inputs [S′intid ′′ |showSV(xref )] in Round 3. Furthermore the third
party inputs [T′intid′′ |verifySV(S, R, d , (xref , m1))] in Round 3.

If the “verifySV“-protocol outputs [T′outtid ′′ |failed], the third party outputs
“[Tout

tid′′ |not sent]” (recall that R’s goal was to show that it was unable to
receive the item). If it outputs [T′out

tid ′′ |sent], the third party outputs “[Tout
tid |

failed]”.

If the recipient obtains an output [R′outtid ′′ |receivedSV: d , (xref , m1)], it out-
puts “[Rout

tid′′ |received: xref ]”.

We define ∆p := 1, ∆t := ∆SV
t + 1, ∆v := ∆SV

v + 2. 2

Proof. Item I is as optimistic as I ′ by construction. We show that I fulfills the
requirements defined in Definition 12.7.

Correct Execution (R. 12.7a): The inputs “[Sin
tid |prepareRV(R, d , T, tT , xref )]” and

“[Rin
tid |checkRV(T, tT , xref )]” always lead to an output “[Rout

tid |providesRV:
d ]” if the players are correct.

Correct Verification (R. 12.7b): If the recipient output “[Rout
tid |providesRV: d ]” it

received a correct m1. Therefore, the inputs “[Tin
tid′′ |verifyRV(S, R, d ,

xref )]” and “[Rin
tid′′ |showRV(xref )]” before time tT lead to an output

“[Tout
tid′′ |not sent]” except if the sub-protocol “verifySV“ outputs [T′outtid ′′ |

sent]. However, if sent is output, a correct recipient output “[Rout
tid′′ |

received: xref ]” [R. 12.5c].

Note that “verifySV“ may output “[Tout
tid′′ |not sent]” even if R output

“[Rout
tid′′ |received: xref ]” if an incorrect machine S refuses to participate in

“verifyRV“. This, however, does not contradict R. 12.7b.

Transfer (R. 12.7c): This follows directly from [R. 12.5d].

No Surprises (R. 12.7d): If the sender does not input “[Sin
tid ′ |transferRV(xref )]”,

[S′intid ′ |transferSV(R, d , T, tT + 2, (xref , m1))] is not input either. No sur-
prises then follows from [R. 12.5e].

If the third party outputs “[Tout
tid′′ |not sent]”, then a correct S executed

“verifySV“ before tT + 2, which output [T′outtid ′′ |failed]. From [R. 12.5b] fol-
lows that no output [S′outtid ′′ |sentSV] was made on input of [Sin

tid ′ |transferSV(
R, d , T, tT + 2, (xref , m1))]. From [R. 12.5g] follows that S output [S′outtid ′ |
failed] in the transfer. From [R. 12.5e] then follows that no R is able to
obtain knowledge about the item.

No Loss (R. 12.7e): Follows similarly from [R. 12.5f].
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Termination (R. 12.7f): Follows directly from [R. 12.5g].

We now show that δRV (σS , σR, d) = true iff δSV (σS′ , σR′ , d) = true for the
sub-machines: Let us first assume that δRV = true holds. If prepareRV and
checkRV are input, m1 is sent in ““prepareRV“” and a subsequent input of
transferRV leads to the input of transferSV and receiveSV. This results in an
output receivedSV that leads to an output “received”, i.e., δRV = true holds
as well. Let us now assume that δRV = true. Then prepareRV, checkRV, and
transferRV leads to an output received. As a consequence, the underlying pro-
tocol “transferSV“ output sent, i.e., δSV = true holds as well.

13.3.2 Sender Verifiability using Recipient Verifiability

We now sketch how to simulate sender verifiability using recipient verifiability.
The main problem of this simulation is that the sender is unable to find out
whether the recipient obtained the item or not without executing “verifyRV“.
Therefore, in case of faults, this protocol is needed for recovery.

The resulting simulation is similar to a generalization of an optimistic
certified mail protocol: During “transferSV“, the protocols “prepareRV“ and
“transferRV“ are executed and acknowledged by the recipient. If an incorrect
recipient refuses to acknowledge the receipt of a transfer, the third party forces
the recipient to execute “verifyRV“ and decides against the recipient if the recip-
ient is unable to show that it did not obtain the item. During verification at the
third party, the sender either shows the acknowledgment from the recipient or
from the third party.

The protocols are depicted in Figure 13.9, 13.10, and 13.11.

Lemma 13.2 (Simulation RV → SV )
Let I ′ = (S′, R′, T′, B, XREFs, TIDs , δRV , (∆p, ∆RV

t , ∆RV
v )) be a transferable

item with recipient verifiability. Then, the item I = (〈S, S′〉, 〈R, R′〉 〈T, T′〉, B,
XREFs, TIDs, δSV ,, (∆t, ∆v)) as defined below offers sender verifiability. I is
optimistic if item I′ is optimistic.

The behavior of I is defined by the behavior of S, R, and T as follows:

Protocol “transferSV“: On input of “[Sin
tid |transferSV(R, d , T, tT , xref )]” and

“[Rin
tid |receiveSV(T, tT , xref )]”, the machines S and R inputs [S′intid |

prepareRV(R, d , T, tv, xref )] and [S′intid |checkRV(T, tv, xref )] with tv := t0 +
∆p + ∆RV

t + 4. On output [R′outtid |providesRV: d ], the recipient sends m1 :=
signR(T, d , tT , xref , tid ,H(r)) for a random r7. If S does not receive m1

it outputs “[Sout
tid |failed]”. Else, it inputs [S′intid ′ |transferRV(xref )]. On out-

put [R′outtid ′ |received: xref ], the recipient sends m2 := r and outputs “[Rout
tid |

receivedSV: d , xref ]”. If the “transferRV“-protocol outputs [S′outtid ′ |failed],
the sender outputs “[Sout

tid |failed]”.

If S receives a correct m2, it outputs “[Sout
tid |sentSV]”. Else, it starts the

sub-protocol “resolveSV“.

Sub-protocol “resolveSV“: For resolving, the sender sends signS(m1), which
is forwarded by T in Round 2 to R who inputs [R′intid ′′ |showRV(xref )]

7H() is a secure one-way function.
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Sender S Recipient R

“[Sin
tid |transferSV(R, d , T, tT , xref )]” “[Rin

tid |receiveSV(T, tT , xref )]”
tv := t0 + ∆p + ∆RV

t + 4. tv := t0 + ∆p + ∆RV
t + 4.

r random.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[S′in

tid |prepareRV(R, d , T, tv, xref )] [R′in
tid |checkRV(T, tv, xref )]

“prepareRV“→
[R′out

tid |providesRV: d ]
or ε.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m1 := signR(T, d , tT , xref , tid ,H(r))←
if ¬m1: “[Sout

tid |failed]”.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[S′in

tid′ |transferRV(xref )]

“transferRV“→
[R′out

tid′ |received: xref ]
or ε.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if [S′out

tid′ |failed]: “[Sout
tid |failed]”.

m2 := r←
if ¬m2: resolve with T. if ¬received: resolve with T.
“[Sout

tid |sentSV]” “[Rout
tid |receivedSV: d , xref ]”.

Figure 13.9: Sender Verifiability using Recipient Verifiability.

Sender S Third Party T Recipient R

signS(m1)→
signS(m1)→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[T′in

tid′′ |verifyRV(S,R, d , xref )] [R′in
tid′′ |showRV(xref )]

“verifyRV“←→
[T′out

tid′′ |not sent] [R′out
tid′′ |received: xref ]

or [T′out
tid′′ |failed]. or ε.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if not sent: if received:

m′
T = signT(failed, m1). “[Rout

tid |receivedSV: d , xref ]”.
if failed:

mT = signT(sent, m1).

mT or m′
T←

if mT : “[Sout
tid |sentSV]”

else “[Sout
tid |failed]”

Figure 13.10: Recovery of Sender Verifiability using Recipient Verifiability.
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Sender S Third Party T

“[Sin
tid |showSV(xref )]” “[Tin

tid |verifySV(S,R, d , xref )]”

(m1, m2) or mT→
“[Tout

tid |sent]”.

Figure 13.11: Verification of Sender Verifiability using Recipient Verifiability.

in Round 3. On input [T′intid ′′ |verifyRV(S, R, d , xref )], machine T waits
for an output [T′outtid ′′ |not sent] or [T′outtid ′′ |failed]. If not sent is output, T
sends m′

T :=signT(failed, m1) and, upon receipt, the sender outputs “[Sout
tid |

failed]”. If failed is output, it sends mT := signT(sent, m1) and the sender
outputs “[Sout

tid |sentSV]”.

Protocol “verifySV“: On input “[Sin
tid |showSV(xref )]” and “[Tin

tid |verifySV(S, R, d ,
xref )]”, the sender either sends (m1, m2) or mT . If one of these messages
is received correctly, the third party outputs “[Tout

tid |sent]” and “[Tout
tid |

failed]”, else.

We define ∆t := ∆p + ∆RV
t + ∆RV

v + 5, ∆v := 1. 2

Proof. We show that I fulfills the requirements defined in Definition 12.5:

Correct Execution (R. 12.5a): If a correct sender is able to transfer d to R, a cor-
rect recipient will obtain an output [R′outtid ′ |received: xref ] and will send m2.
Therefore, the sender will output “[Sout

tid |sentSV]”.

If a correct sender cannot transfer d to R, S′ will output [S′outtid ′ |failed] on
input of [S′intid ′ |transferRV(xref )] and will output “[Sout

tid |failed]”.

Sender Verifiability (R. 12.5b): If the sender outputs “[Sout
tid |sentSV]”, it either re-

ceived (m1, m2) or mT , which both lead to an output “[Tout
tid |sent]”.

Correct Verification (R. 12.5c): If the third party output sent on receipt of
(m1, m2), then the correct recipient obtained an output [R′outtid ′ |received:
xref ] (otherwise, it would not send m2). This leads to an output “[Rout

tid |
receivedSV: d , xref ]”.

If the third party output sent on receipt of mT , then the execution of
“prepareRV“ output [R′outtid |providesRV: d ] because T requires m1 and m1

is only sent with these parameters. Therefore, protocol “verifyRV“ output
[T′outtid ′′ |failed] and a correct recipient output [R′outtid ′ |received: xref ] [R. 12.7b]
since the verification was started before time tv . This leads to an output
“[Rout

tid |receivedSV: d , xref ]”.

Transfer (R. 12.5d): Follows directly from [R. 12.7c].

No Surprises (R. 12.5e): If no input transferRV is made, if “[Sout
tid |failed]” is output

without receiving m1, or if [S′outtid ′ |failed] is output by “transferRV“, this
follows directly from [R. 12.7c].

If “[Sout
tid |failed]” was output after receiving m′

T , the third party output
[T′outtid ′′ |not sent] on input [T′intid ′′ |verifyRV(S, R, d , xref )] with the parame-
ters fixed in signS(m1). Therefore, the recipient is unable to obtain knowl-
edge about the item [R. 12.7d].
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Sender S Recipient R

“[Sin
tid |prepareRV(R, d , T, tT , xref )]” “[Rin

tid |checkRV(T, tT , xref )]”
xref ′ := (S, R, tT + 1, xref ). xref ′ := (S, R, tT + 1, xref ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[S′in

tid |prepareG(R, d , T, tT + 1,
xref ′)]

[R′in
tid |checkG(T, tT + 1, xref ′)]

“prepareG“→
[R′out

tid |providesG: d ] or ε.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if providesG:
“[Rout

tid |providesRV: d ]”

Figure 13.12: Preparation of Recipient Verifiability using Generatability.

No Loss (R. 12.5f): Reasoning similar based on [R. 12.7e].

Termination (R. 12.5g): Since all sub-protocols terminate in a fixed time, the pro-
tocols terminate in a fixed time, too.

If I is optimistic and the parties are correct no recovery is needed and only
“prepareRV“ and “transferRV“ are executed. Therefore, the third party does not
participate, i.e., the resulting exchange is optimistic, too.

We now show that δRV (σS , σR, d) = true iff δSV (σS′ , σR′ , d) = true for
the sub-machines: If we assume that δRV (σS , σR, d) = true then the in-
puts by the “transferSV“-protocol to the sub-machines result in an output
[R′outtid ′ |received: xref ]. This leads to an output “[Rout

tid |receivedSV: d , xref ]”, i.e.,
δSV (σS′ , σR′ , d) = true. If we assume that δSV (σS′ , σR′ , d) = true then
the “transferSV“-protocol executed with matching parameters output “[Rout

tid |
receivedSV: d , xref ]”. By construction, the underlying “transferRV“-protocol
output [R′outtid ′ |received: xref ], i.e., δRV (σS , σR, d) = true holds.

Remark 13.1. For simulating sender verifiability using revocability directly, one
could pursue a similar approach, i.e., one could transfer the item with revoca-
bility and revoke it if the recipient does not send a receipt. To prevent incorrect
revocation, one either needs to ask the recipient whether it is willing to re-send
the receipt, or else the third party needs to store which runs have been revoked
and which have not. ◦

13.3.3 Recipient Verifiability using Generatability

We now sketch how to simulate recipient verifiability using generatability. The
underlying idea is that during “verifyRV“, the item is always generated and
therefore, an output “[Tout

tid |not sent]” will never occur. The protocols are de-
picted in Figure 13.12, 13.13, and 13.14.

Lemma 13.3 (Simulation G→ RV )
Let I ′ = (S′, R′, T′, B,XREFs,TIDs , δG, (∆G

p , ∆G
t , ∆g)) be a transferable item

with generatability. Then, the item I = (〈S, S′〉, 〈R, R′〉 〈T, T′〉, B, XREFs,
TIDs , δRV , (∆p, ∆t, ∆v)) as defined below offers recipient verifiability. I is
optimistic if item I′ is optimistic.
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Sender S Recipient R

“[Sin
tid |transferRV(xref )]”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[S′in

tid′ |transferG(xref ′)]

“transferG“→
[R′out

tid′ |received: xref ′] or ε.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if received:
“[Rout

tid |received: xref ]”

Figure 13.13: Transfer of Recipient Verifiability using Generatability.

Third Party T Recipient R

“[Tin
tid |verifyRV(S,R, d , xref )]” “[Rin

tid |showRV(xref )]”

m1 := signR(xref ′)←
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[T′in

tid′′ |generate(S,R, d , xref ′)] [R′in
tid′′ |generate(xref ′)]

“generate“← →
[T′out

tid′′ |generated] [R′out
tid′′ |received: xref ′]

or [T′out
tid′′ |failed]. or ε.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
“[Tout

tid |failed]”. “[Rout
tid |received: xref ]”.

Figure 13.14: Verification of Recipient Verifiability using Generatability.

The behavior of I is defined by the behavior of S, R, and T as follows:

Protocol “prepareRV“: On input of “[Sin
tid |prepareRV(R, d , T, tT , xref )]” and

“[Rin
tid |checkRV(T, tT , xref )]”, the machines compute xref ′ := (S, R, tT +1,

xref ) and input [S′intid |prepareG(R, d , T, tT + 1, xref ′)] and [R′intid |checkG(T,

tT + 1, xref ′)], respectively. If [R′outtid |providesG: d ] is output, the recipient
outputs “[Rout

tid |providesRV: d ]”.

Protocol “transferRV“: On input “[Sin
tid |transferRV(xref )]”, the sender inputs

[S′intid ′ |transferG(xref ′)].

On output of [R′outtid ′ |received: xref ′] by R′, the recipient outputs “[Rout
tid |

received: xref ]”.

Protocol “verifyRV“: On input “[Rin
tid |showRV(xref )]” and “[Tin

tid |verifyRV(S, R,
d , xref )]”, the recipient sends m1 := signR(xref ′) to T. Then, the par-
ties input [R′intid ′′ |generate(xref ′)] and [T′in

tid ′′ |generate(S, R, d , xref ′)] and T

outputs “[Tout
tid |failed]”. Machine S ignores the output [S′outtid ′′ |generated:

xref ′].

We define ∆p := ∆G
p , ∆t := ∆G

t , and ∆v := ∆g + 1. 2

Proof. We show that I fulfills the requirements defined in Definition 12.7:

Correct Execution (R. 12.7a): Follows from [R. 12.8a]: With δSV = δG and the
definition of δG follows that the input of [S′intid |prepareG(R, d , T, tT +
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Sender S Recipient R

“[Sin
tid |prepareRV(R, d , T, tT , xref )]” “[Rin

tid |checkRV(T, tT , xref )]”

m1 := signS(R, d , tT , xref , tid)→
“[Rout

tid |providesRV: d ]”

Figure 13.15: Preparations of Recipient Verifiability using Revocability.

1, xref ′)] and [S′intid |checkG(T, tT + 1, xref ′)] leads to an output [R′outtid |
providesG: d ] and R will output “[Rout

tid |providesRV: d ]”.

Correct Verification (R. 12.7b): If a correct recipient output “[Rout
tid |providesRV:

d ]”, an execution of “verifyRV“ always leads to an output “[Rout
tid |received:

xref ]” [R. 12.8b].

Transfer (R. 12.7c): This follows directly from [R. 12.8c].

No Surprises (R. 12.7d): If “[Sin
tid |prepareRV(R, d , T, tT , xref )]” or else neither

“[Sin
tid |transferRV(xref )]” nor “[Tin

tid |verifyRV(S, R, d , xref )]” was input, this
follows from [R. 12.8d]. Since the protocol never outputs “[Sout

tid |failed]” or
“[Tout

tid |not sent]”, this covers all cases.

No Loss (R. 12.7e): Follows similarly from [R. 12.8e].

Termination (R. 12.7f): Follows directly from [R. 12.8f].

Since I ′ only calls the corresponding sub-protocols for generatability, item I′ is
as optimistic as item I .

For the composite machines, δRV (σS , σR, d) = true holds iff δG(σS′ , σR′ ,
d) = true holds for the sub-machines: If we assume that δG(σS′ , σR′ , d) = true

holds then the inputs of [S′intid |prepareG(R, d , T, tT + 1, xref ′)] and [R′intid |checkG(
T, tT + 1, xref ′)] with matching parameters lead to an output [R′outtid |providesG:
d ]. From [R. 12.8a] follows that a subsequent input of [S′intid |transferG(xref ′)]
leads to an output [R′outtid |received: xref ′], i.e., δRV (σS , σR, d) = true. If now
assume that δRV (σS , σR, d) = true holds, then the input of “[Sin

tid |prepareRV(R,
d , T, tT , xref )]”, “[Rin

tid |checkRV(T, tT , xref )]” and “[Sin
tid |transferRV(xref )]” lead

to an output “[Rout
tid |received: xref ]”. From [R. 12.7a] follows that the scheme

output “[Rout
tid |providesRV: d ]”, which implies that δG(σS′ , σR′ , d) = true.

13.3.4 Recipient Verifiability using Revocability

We now sketch how to simulate recipient verifiability using revocability. The
basic idea of this simulation is that during “verifyRV“, the third party enables
the sender to revoke the item and outputs [T′outtid ′ |not sent]. Thus, if the sender
is correct, the recipient cannot obtain the item.

The protocols are depicted in Figure 13.15, 13.16, and 13.17.

Lemma 13.4 (Simulation R→ RV )
Let I ′ = (S′, R′, T′, B,XREFs ,TIDs, δR, (∆R

t , ∆r)) be a transferable item with
revocability. Then, the item I = (〈S, S′〉, 〈R, R′〉 〈T, T′〉, B, XREFs , TIDs , δRV ,
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Sender S Recipient R

“[Sin
tid |transferRV(xref )]”

xref→
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[S′in

tid |transferR(R, d , T, tT + 2, (
xref , m1))]

[R′in
tid |receiveR(T, tT + 2, (xref , m1))]

“transferR“→
[S′out

tid |sentR] [R′out
tid |receivedR: d ]

or [S′out
tid |failed]. or ε.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if failed: if receivedR:

“[Sout
tid |failed]”. “[Rout

tid |received: xref ]” at time tT + ∆r .

Figure 13.16: Transfer of Recipient Verifiability using Revocability.

Sender S Third Party T Recipient R

“[Tin
tid |verifyRV(S, R, d , xref )]” “[Rin

tid |showRV(xref )]”

m2 := signR(m1)←
if tT + 1 ≤ tnow:
“[Tout

tid |failed]”.

m2←
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[S′in

tid′ |revoke((xref , m1))] [T′in
tid′ |revoke(S,R, d , (xref , m1))]

“revoke“← →
[S′out

tid′ |revoked] [T′out
tid′ |revoked]

[R′out
tid′ |revoked: (
xref , m1)]

or [T′out
tid′ |failed].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
“[Sout

tid |not sent: xref ]” “[Tout
tid |not sent]”.

Figure 13.17: Verification of Recipient Verifiability using Revocability.

(∆p, ∆t, ∆v)) as defined below offers recipient verifiability. The item I is opti-
mistic if item I′ is optimistic.

The behavior of I is defined by the behavior of S, R, and T as follows:

Protocol “prepareRV“: On input of “[Sin
tid |prepareRV(R, d , T, tT , xref )]” and

“[Rin
tid |checkRV(T, tT , xref )]”, S sends m1 := signS(R, d , tT , xref , tid) to R

who outputs “[Rout
tid |providesRV: d ]”.

Protocol “transferRV“: On input “[Sin
tid |transferRV(xref )]”, the sender sends

xref and inputs [S′intid |transferR(R, d , T, tT + 2, (xref , m1))]. If the proto-
col outputs [S′outtid |failed], the sender outputs “[Sout

tid |failed]”.

Upon receipt of xref the recipient inputs [R′intid |receiveR(T, tT + 2, (
xref , m1))]. On output [R′outtid |receivedR: d ], the recipient outputs “[Rout

tid |
received: xref ]” at time tT + ∆r.

Protocol “verifyRV“: On input “[Rin
tid |showRV(xref )]” and “[Tin

tid |verifyRV(S, R,
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d , xref )]”, the recipient sends m2 := signR(m1) to T. If this message is re-
ceived until time tT + 1, it is forwarded to S who inputs [S′intid ′ |revoke(
(xref , m1))] in Round 3. Furthermore, T inputs [T′intid ′ |revoke(S, R, d , (
xref , m1))] and outputs “[Tout

tid |not sent]”.

Upon output of [S′outtid ′ |revoked] machine S outputs “[Sout
tid |not sent: xref ]”.

Machine R ignores the output of [R′outtid ′ |revoked: (xref , m1)].

We define ∆p := 1, ∆t := ∆R
t , and ∆v := ∆r + 2. 2

Proof. We now show that I fulfills the requirements defined in Definition 12.7:

Correct Execution (R. 12.7a): The inputs “[Sin
tid |prepareRV(R, d , T, tT , xref )]” and

“[Rin
tid |checkRV(T, tT , xref )]” always lead to an output “[Rout

tid |providesRV:
d ]”.

Correct Verification (R. 12.7b): If the recipient output “[Rout
tid |providesRV: d ]”, it

knows m1 needed to start “verifyRV“, which will always output “[Tout
tid |

not sent]”.

Transfer (R. 12.7c): If R outputs “[Rout
tid |received: xref ]” at time tT +∆r and “[Rin

tid |
showRV(xref )]” is not input, m2 is not sent and the third party does not
input [T′intid ′ |revoke(S, R, d , (xref , m1))] (note that only the R fixed in m1

can produce a correct m2). Therefore, R owns the item d [R. 12.6c].

No Surprises (R. 12.7d): If “[Sin
tid |transferRV(xref )]” is not input, then [S′intid ′ |

transferR(. . . )] is not input and no surprises follows from [R. 12.6d].

If “[Sin
tid |transferRV(xref )]” is input and “[Sin

tid |failed()]” is output, the
underlying transfer output [S′outtid |failed] and no surprises follows from
[R. 12.6d].

If the third party outputs [T′outtid ′ |not sent], then a correct S executed
“revoke“ before tT + 2. From [R. 12.6b] follows that it output [T′outtid |
revoked]. With [R. 12.6d], this implies that the recipient does not obtain
knowledge about the item d .

No Loss (R. 12.7e): Follows similarly from [R. 12.6e].

Termination (R. 12.7f): Follows directly from [R. 12.6f].

During the optimistic phase, the third party is not contacted. Therefore, the
simulation is as optimistic as the underlying item.

For the composite machines, δRV (σS , σR, d) = true holds, iff δR(σS′ , σR′ ,
d) = true holds for the sub-machines: Let us first assume that δR(σS′ , σR′ ,
d) = true. Then, the “transferRV“-protocol output “[Rout

tid |received: xref ]” and
δRV (σS , σR, d) = true holds as well. If we now assume that δRV (σS , σR, d) =
true holds then the “transferRV“-protocol output “[Rout

tid |received: xref ]” and
the underlying “transferR“-protocol output [R′outtid |receivedR: d ], i.e., δR(σS′ , σR′ ,
d) = true holds as well.
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Remark 13.2. Following this pattern, one should also be able to simulate sender
verifiability using generatability directly: Before actually transferring the item,
the recipient is first enabled to generate the item with the third party. Then,
during “verifySV“, the third party enables the recipient to execute “generate“
and outputs “[Tout

tid |sent]”. However, since this does not enable the exchange
of new types of transfers with the given fair exchange protocols, we do not
elaborate on this efficiency improvement. ◦
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Chapter 14

The SEMPER Fair Exchange
Framework

In Section 11.2, we have sketched the basic concepts of the general SEMPER
Framework for Electronic Commerce. This framework contains the SEMPER
Fair Exchange Framework as a central part.

We now describe this Fair Exchange Framework in more detail based on
the protocols and definitions presented in the previous chapters. This frame-
work is based on the exchange protocols and the exchange-enabling properties
described in the earlier chapters. The design extends the design of the transfer
layer as described in [Beil 98, Semp 98].

In Section 14.1, we first describe the static view of the transfer and exchange
layer of SEMPER, i.e., its class hierarchy and the services of the most impor-
tant classes. This includes the “wrapping” of the exchange-enabling properties
(Section 12.2) and the generic fair exchange protocols (Section 13) into classes.
Furthermore, we recall some details of the transfer framework as described in
[Semp 98].

Finally, in Section 14.2, we describe the dynamic behavior of the transfer-
and fair exchange framework. This is done in two parts: First, we describe
what a running exchange looks like, i.e., which objects are instantiated and
how they interact during the execution of an exchange protocol. Then, we
describe the negotiations and procedure to create such a configuration.

14.1 Class Hierarchy of the Transfer and Exchange
Layer

We now describe a static view on the transfer and exchange layer, i.e., we de-
scribe all classes and the use of their objects. The interaction among the objects
and the execution of protocols will then be described in Section 14.2.

Figure 14.1 shows the main classes of the transfer and exchange layer. In
the following subsections, we will explain these classes in more detail: Trans-
actions implementing interactive protocols, attributes for specifying their be-
havior, descriptions of business items for negotiating and selecting appropri-
ate transfer transactions, and exchange descriptions for negotiating exchange
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Public Description
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Transfer Description

Generate-
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Revocability
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Verifiability

Recipient
Verifiability

+compare
+getPublic

<<abstract>>
 Attribute

<<abstract>>
Exchangeability

Attribute

<<abstract>>
Transaction

<<abstract>>
Transfer

Transaction

<<abstract>>
Exchange

Transaction

<<abstract>>
Sender

<<abstract>>
Recipient

<<abstract>>
Originator

<<abstract>>
Responder

<<abstract>>
Exchange Description

Figure 14.1: Class Hierarchy and Selected Methods of the Transfer and Fair
Exchange Layer (written in UML notation; see [FoSc 97]).

protocols.
Note that we only depicted the central methods of our design for fair ex-

change. In practice, each class needs additional methods and services. The
class Transaction, for example, provides methods for persistency and fault tol-
erance [Beil 98] as well as so-called observer objects [GHJV 95] to observe and
control the execution of protocols.

14.1.1 Transactions Implementing Protocols

All protocols are implemented by so-called transaction role objects. A particular
kind of transaction, such as transfer or exchange, defines the required roles
as abstract classes. A protocol is then implemented by one transaction object
sub-classing each of the required roles.

Exchange transactions require at least originator and responder role ob-
jects. Each optimistic exchange protocol from Section 13 provides an addi-
tional object implementing the third party. For instance, the originator of
the “S-Verifiable/Generatable” exchange transaction implements machine O
of Scheme 13.1 on page 199.

Transfer transaction require at least a sender and a recipient. The transfer
transactions depicted in Figure 14.3 define the interfaces of each role of a trans-
fer with exchange-enabling properties. Each exchange-enabling transfer pro-
tocol from Section 12.2 provides an additional object implementing the third
party. The actual implementors of business items are then required to provide
subclasses of these roles that can be instantiated (see [Semp 98, Beil 98] for a
more detailed description of the transfer layer).

Note that selecting an appropriate scheme and machine can be a complex
task and need not be done by the user of the transfer and exchange layer. These
negotiations are explained in detail in Section 14.1.3.

In order to “convert” machines into transaction role objects, we implement
each machine of our model (such as S, R, O, or T) in a transaction object sub-
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Figure 14.2: Classes of the Exchange Block.
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Figure 14.3: Classes of the Transfer Block.
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classing the particular role of the corresponding service. The interface of each
transaction object directly reflects the functionality of the corresponding ma-
chine as defined in Chapter 12: The tid is input when instantiating a transac-
tion. The method names are a prefix of the input command and in principle
accept the same arguments than the inputs. An input of, e.g., [Sin

tid |prepareRV(
args)] corresponds to calling the method prepare(tid , args) of the sender ob-
ject of a transaction with recipient verifiability. The returned result tag and
the output parameters correspond to the return parameters of the method that
started the protocol1. For protocols that do not require an input by a particular
machine in our definitions, the design introduces empty methods starting the
protocol and returning the defined result (e.g., even though “prepareG“ does
not take any inputs from the recipient, the corresponding generatability recip-
ient role object provides a method verify() to execute the recipient’s side of this
protocol and to return the output of the “prepareG“ protocol).

14.1.2 Attributes Specifying Security Services

An attribute is an object describing required services of transactions, i.e., in-
putting an attribute to a negotiation specifies the behavior of the negotiated
transaction so that the transaction guarantees the corresponding service de-
fined by this attribute.

Transfer transactions accept attributes for the exchange-enabling properties
as well as non-repudiation, i.e., the property that this transaction can later be
proven to a judge.

Note that these attributes are not specific to particular kinds of items, i.e.,
any particular transfer transaction may provide any subset of the exchange-
enabling attributes.

14.1.3 Descriptions as Transaction Factories for Negotiating
Protocols

For transferring an item, a sender and a recipient transfer-transaction role ob-
ject is needed, which are able to provide the services corresponding to the de-
sired attributes. For an exchange, an originator and a responder exchange-
transaction role object is needed.

The appropriate transaction role objects are negotiated and selected by so-
called transaction factories [GHJV 95]: A transaction factory is able to create a
transaction object and return it to the caller. The kind of transaction returned
(i.e., the protocol and the role to be executed) can be based on the results of a
negotiation. Note that these negotiations require interaction with the peer since
each player does not have sufficient information on the set-up of the peer. E.g.,
for paying $5, one does not know which payment systems exist on the peer’s
machine.

In our design, descriptions describe protocols and are used as factories.

Negotiating Transfers: Each business item to be transferred is represented by
its description. I.e., descriptions of the items are input and output at the inter-

1Note that each protocol only produces one output for each party. Otherwise observer-objects
may be used to return intermediate results.
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14. The SEMPER Fair Exchange Framework

face instead of the actual items. The rationale is that most items (i.e., payments,
rights, or signatures) are transferred by interactive protocols and therefore, a
user cannot input these protocols but only describe them.

The actual items as well as the appropriate protocols for transferring them
are handled by the business items layer, i.e., a description is like a reference to
one or more actual business items managed by the business items layer.

We distinguish three kinds of descriptions for transfers: A Sender Descrip-
tion is a sender’s side description of a transfer protocol to be executed. A Re-
cipient Description is the recipient’s side of an expected transfer. Since both of
these descriptions may contain internal information, such as account numbers,
about the system that should not be revealed, a Public Description is a public
version that can be extracted from any description using the getPublic method.
This method is defined by the class Public Description and is inherited by all
other descriptions.

If a recipient has no expectation at all, i.e., accepts any transfer, it may use
the so-called Generic Description, which is a recipient description.

The factory for the sender role of a transfer transaction is the sender descrip-
tion object of the item to be transferred. By calling the method negotiateSender
on input of the recipient name2 and the required security attributes, an appro-
priate protocol is selected and a sender-role object is returned.

The recipient uses the method negotiateRecipient of the receiver description
of the item it expects while inputting the desired security attributes and, if
desired, the name of the expected sender. If it does not expect any particular
item, it uses a generic-description object for its negotiation.

More information on transfer transactions can be found in [Semp 98]. A
more detailed description of payment negotiations is given in [AsSt 00].

Negotiating Exchanges: The exchange transactions are selected by a so-
called exchange description. This description is created using the peer name,
a sender description of the item to be sent and a recipient description of the
item to be received. Its method negotiateExchange negotiates an appropriate
exchange transaction together with its peer Exchange Description. For select-
ing an appropriate exchange transaction, the exchange description class keeps
a static list of attributes for exchange-enabling properties as well as lists of in-
stalled exchange transactions together with their required properties.

This negotiation is described in more detail in Section 14.2.2.

14.2 The Transfer and Exchange Layer in Action

We now describe how the transfer and exchange layer works. First, we describe
the goal, i.e., what a running exchange protocol looks like. Then, we explain
how we get there.

14.2.1 Exchanges in Action

Figure 14.4 shows the set-up, i.e., all instantiated objects, of one party par-
ticipating in a running exchange: A running exchange transaction exchanges

2We assume that the name can internally be mapped to a network address.
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S-Verifiability
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Figure 14.4: Fair Exchange in Action: Objects and their Services in an Ongoing
Exchange

two transfers. It sends/receives items by calling the transfer and receive
methods of the transfer transactions. Furthermore, it uses particular methods
(such as verify, generate, or show) for accessing the functionality of the exchange-
enabling properties.

In the depicted example, the exchange transaction is an originator of a fair
exchange of a sender-verifiable for a generatable transfer (see Section 12.2). It
interacts with a sending sender-verifiable transfer (i.e., a Sender Transfer Trans-
action providing Sender Verifiability) and a receiving generatable transfer (i.e.,
a Recipient Transfer Transaction providing Generatability).

Figures 14.5, 14.6, and 14.7 provide a closer look at how the protocol is ac-
tually executed. Figure 14.5 depicts the interaction diagram for the originator
of a sender-verifiable/generatable exchange transaction. It consists of the fol-
lowing steps:

1. After the exchange has been started by calling its start -method, the ex-
change transaction first signs an agreement with its peer. This is done by
extracting the public descriptions of the input descriptions and sending
them in m1 and m2. If the players disagree, the originator aborts.

2. Then, the originator’s exchange transaction starts the preparation sub-
protocol for verifying the generatability provided by the transfer received
from the responder. This is done by calling the check -method of the re-
ceiving transfer transaction. Note that here and in the sequel, the input
identity of the peer and the description of the item is only used for veri-
fication purposes, i.e., to verify whether the agreement messages contain
the same identities and descriptions than initially used for negotiating
the transfers (see Section 14.2.2).

3. Then, the originator’s exchange transaction sends its transfer by calling
the transfer -method of the sender-verifiable transfer transaction.

4. Then, it receives a transfer by calling the receive -method of the gener-
atable transfer.

5. Finally, if the expected item was received, it outputs the description of
the item received.
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Figure 14.5: Fair Exchange: Interaction Diagram for the Originator (See
Scheme 13.1 on page 199 for the behavior in detail).
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Figure 14.6: Fair Exchange: Interaction Diagram for the Responder.

The corresponding steps for the responder are depicted in Figure 14.6. If the
originator transferred its item in Step 3 without receiving a transfer from the
responder in Step 4. In this case, the originator starts the recovery protocol
with the third party. This protocol is depicted in Figure 14.7.

The design of the other generic fair exchange protocol follows the same
pattern: Again, the protocols described in Section 13 are each implemented by
one object for the originator, the responder and the third party, respectively.
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Figure 14.7: Fair Exchange: Originator’s view of the Recovery with the Third
Party.

14.2.2 Negotiating Exchanges

The fair exchange negotiation is performed by the negotiateExchange method
between two fair exchange descriptions containing the peer name, a sender
description of the item to be sent, and a recipient description of the item to be
received. They output one initialized role-object of an exchange protocol at the
end.

In addition to selecting an appropriate exchange protocols and roles, it also
negotiates the underlying transfers, i.e., at the end, a fixed exchange protocol
together with two transfer protocols have been selected so that the transfer
protocols guarantee the required exchange-enabling properties.

The negotiation is based on a list of installed fair exchange protocols and
their required properties as known to the exchange description class3. Each
role of each exchange protocol requires one exchange-enabling property at-
tribute for the sending and the receiving transfer.
The negotiation is nested and works as follows (Figure 14.8):

1. The user starts the negotiation by calling the negotiateExchange
method of the fair exchange description. The fair exchange description
then retrieves the table of registered fair exchange protocols and their
required exchangeability attributes.

2. The fair exchange description collects a list of exchange-enabling prop-
erties for which exchange protocols exists. It starts by selecting the first
attribute in this list.

3. It asks its sender description to negotiate with the peer recipient descrip-
tion whether such a transfer is possible.

If this is the case, the sender description returns an appropriate transfer
transaction sender. If not, it returns a failure and the fair exchange de-
scription selects the next attribute in Step 2. If no untried exchangeability
attribute exists, the negotiation failed.

3In Java, this can be implemented by a static variable of the class, which can be accessed by all
its objects.
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If the negotiation of a transfer was unsuccessful at the first try, the transfer
descriptions may still try to provide the requested property using one of
the simulations described in Section 13.3, i.e., the transfer descriptions
select a simulation that guarantees the desired property and then start a
negotiation of this simulation (i.e., the simulation again negotiates with
its peer simulation whether a transfer with its required property can be
provided directly). If this succeeds, the negotiated simulating transfer
transaction role objects are returned.

4. Given the attribute of the first transfer, the fair exchange description
checks for what other exchangeability attributes exchange protocols ex-
ist. It selects one of them.

5. It asks the input recipient description to negotiate with the peer sender
description whether such a transfer is possible.

If this is the case, the sender description returns an appropriate transfer
transaction. If not, it returns a failure and the fair exchange description
selects the next attribute in Step 4.

If the fair exchange description failed to negotiate any transfer recipient
with an exchangeability attribute for which an exchange protocol exists,
it selects the next attribute for the first transfer, i.e., goes back to Step 2.

6. Then, it instantiates an appropriate role-object of the selected fair ex-
change transaction. During this instantiation, it inputs references to both
transfers, the addresses of the players, and the recipient descriptions into
the fair exchange protocol.

7. The fair exchange description returns the fair exchange transaction role
which is ready to run, i.e., it will execute the actual exchange when both
users call the start() method.

Remark 14.1. In Steps 2, 4 the fair exchange has the choice which property or
protocol to try first. Therefore, the sequence of properties and protocols can be
set by the preferences input by the human user.

Remark 14.2. Steps 3 and 4 can be performed in parallel, i.e., the exchange de-
scription negotiates pairs of exchange-enabled transfers for a particular ex-
change in parallel. ◦

14.3 Extending the Transfer and Exchange Layer

14.3.1 Transfer Block

In order to add a new transferable item, one has to implement the item,
its sender and recipient descriptions, and appropriate transfer transactions. If
one wants to exchange the item fairly, some of the provided transfer transac-
tions must be able to guarantee exchange-enabling properties. For payments,
for example, the implementor would be required to add a new purse, payment
items, payment sender and recipient descriptions as well as a payment trans-
action which, e.g., implements generatability.
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Figure 14.8: Fair Exchange: Negotiating an Exchange Protocol for the Origina-
tor.

14.3.2 Exchange Block

For the given set of properties, the current design supplies two protocols,
which, given the current set of exchange-enabling properties and the given
set of simulations, are sufficient to exchange any two items fairly. However, in
practice it may be desirable to install more efficient versions of protocols for
these properties (i.e., without requiring simulations). In order to do this, one
may install new fair exchange transactions for each role and register them at the
exchange description class4. In the preferences, one should tell the exchange
description to prefer this protocol compared to the old protocol. Naturally, the
protocol is only executed if the peer installed it, too.

The more interesting case, however, is to extend the exchange layer in a
more general way. An example of such an extension would be to add grad-
ual fair exchange protocols which do not guarantee deterministic fairness but
which also do not need a third party. This can be done as follows: Again, one
defines new properties of transfers and implements the appropriate transfer
transactions for the items that shall be exchanged using the new protocol (such
as micro-transferable for probabilistically fair gradual exchange protocols). Fi-
nally, one has to provide fair exchange protocols for these new properties or a
mixture between new and old properties.

This mechanism for extending the transfer and exchange layer should also
work for particular instances of fair exchange. In this case, one would imple-
ment specific exchange transactions for the appropriate items. Furthermore,
one would either tell the exchange description that if both items are of the
exchangeable type (e.g., signatures for contract signing), it may select the con-
tract signing protocol. An alternative would be to define a new property “con-
tractable” which is only provided by the particular items needed by this con-
tract signing protocol and which then leads to the selection of this particular
exchange protocol by the exchange description.

Note that this should not require changes to the fair exchange descrip-
tion: After installation of the new property attributes and protocols, the fair
exchange description considers and selects them during negotiation if appro-

4Recall, the registered transactions are kept in a static variable of the class.
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priate.

228



Chapter 15

Conclusion and Outlook

In this part, we have described synchronous protocols and a general design of
a framework for generic and optimistic two-party fair exchange.

Our protocols have been designed for the synchronous network model
commonly used in cryptography. However, for increased availability and
robustness it is desirable to extend the protocols towards asynchronous net-
works. Even though we feel that few fundamental changes are required, our
exchange-enabling properties as well as our generic fair exchange protocols
need to be refined. This does not require an extension of the given framework
since asynchronous as well as synchronous services can already co-exist.

In our definitions of the exchange-enabling properties, we describe in-
tegrity requirements by means of listing required protocols as well as require-
ments on their user in- and outputs (e.g., in protocol X , an input Y should
result in an output Z). Unfortunately, this approach is insufficient for secrecy
of business items: Here, we are required to formalize what it means that an in-
correct party does not obtain any useful additional information about the item.
One approach towards a formalization of these secrecy requirements was pur-
sued in Part II by comparing a given implementation with the trusted host
specifying the intended service. Even though this formalization is useful for
evaluating particular protocols, it cannot easily be applied to our generic no-
tion of transfers: Since trusted-host-based specifications tend to over-specify
the behavior of a system, we would be required to specify one trusted host for
each kind of items. Without a notion of action refinement, building a trusted
host for substantially different items is still an open problem. Therefore, a large
number of trusted hosts is needed, which again leads to a large number of ex-
change protocols. As a consequence of aiming at a design rather than a for-
mal model, we therefore omitted a formalization of the secrecy requirements.
Promising future approaches towards formalizing the privacy requirements
seem to be:

• A notion of action refinement for trusted hosts may enable more generic
trusted-host-based specifications.

• A specific semantics for “not gaining knowledge about items” may be
built based on the “use“-protocols formalizing the use of an item.

• The exchange-enabling properties may later be defined in relation to the
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“pure” transfer, i.e., one may formalize the notion that with the addi-
tional protocols for exchange-enabling properties, the item is as secure as
without them.

The used two-party approach towards fair exchange should cover most of to-
day’s need for fair exchange in electronic commerce. In the future, multi-party
fair exchanges, such as reliable and certified broadcast, may be needed as well
[Waid6 98]. Designing such protocols should be straightforward by combining
the ideas of transfer-based exchanges with existing protocols for multi-party
fair exchange [ABSW 98, ABSW 99].

Up to now, we only implemented the transfer layer and an exchange pro-
totype. An implementation of the complete framework will lead to a more
thorough validation as well as further refinements and extensions. One aspect
of such an implementation is to adapt additional business items based on ex-
isting products to provide exchange-enabling transfers.
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Division, Zürich, Dec. 1998.

[ABSW 99] N. Asokan, Birgit Baum-Waidner, Matthias Schunter, Michael
Waidner: Optimistische Mehrparteienvertragsunterzeichnung;
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[BBCM1 94] Jean-Paul Boly, Antoon Bosselaers, Ronald Cramer, Rolf Mi-
chelsen, Stig Mjølsnes, Frank Muller, Torben Pedersen, Birgit Pfitz-
mann, Peter de Rooij, Berry Schoenmakers, Matthias Schunter, Luc
Vallée, Michael Waidner: The ESPRIT Project CAFE - High Secu-
rity Digital Payment Systems; ESORICS 94 (Third European Sym-
posium on Research in Computer Security), Brighton, LNCS 875,
Springer-Verlag, Berlin 1994, 217-230.

[BCDG 88] Ernest F. Brickell, David Chaum, Ivan B. Damgård, Jeroen van de
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