
Constraint Propagation in Mozart

Tobias Müller

Dissertation

zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Saarbrücken, 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 2001, Tobias Müller

Programming Systems Lab
Universität des Saarlandes, 66041 Saarbrücken, Germany
Email: tmueller@ps.uni-sb.de
Web: www.ps.uni-sb.de/~tmueller

This document was prepared with LATEX 2ε.
Program listings were typeset with a modified version of Denys Duchier’s raw2tex.

Prüfungsausschuss / Examining Committee:

Vorsitzender: Prof. Dr. Jörg Siekmann

Erstgutachter: Prof. Dr. Gert Smolka

Zweitgutachter: Assistant Prof. Dr. Martin Henz

Dekan: Prof. Dr. Rainer Schulze-Pillot

Beisitzer: Dr.-Ing. Alassane Ndiaye

Tag des Kolloquiums: 3. Dezember 2001

Abstract

This thesis presents constraint propagation in Mozart which is based on compu-
tational agents called propagators. The thesis designs, implements, and evaluates
propagator-based propagation engines. A propagation engine is split up in generic
propagation services and domain specific domain solvers which are connected by
a constraint programming interface. Propagators use filters to perform constraint
propagation. The interface isolates filters from propagators such that they can be
shared among various systems.

This thesis presents the design and implementation of a finite integer set domain
solver for Mozart which reasons over bound and cardinality approximations of sets.
The solver cooperates with a finite domain solver to improve its propagation and
expressiveness.

This thesis promotes constraints to first-class citizens and thus, provides extra
control over constraints. Novel programming techniques taking advantage of the
first-class status of constraints are developed and illustrated.

Kurzzusammenfassung

Diese Dissertation beschreibt Constraint-Propagierung in Mozart, die auf Berech-
nungsagenten, Propagierer genannt, basiert. Die Dissertation entwirft, implemen-
tiert und evaluiert Propagierer-basierte Propagierungsmaschinen. Eine Propagie-
rungsmaschine ist aufgeteilt in generische Propagierungsdienste und domänenspe-
zifische Domänenlöser, die durch eine Schnittstelle zur Constraint-Programmierung
miteinander verbunden sind. Propagierer benutzen Filter, um Constraints zu propa-
gieren. Die Schnittstelle isoliert Filter von Propagierern, so dass Programmkodes
von Filtern von verschiedenen Systemen genutzt werden können.

Diese Dissertation präsentiert den Entwurf und die Implementierung eines
Domänenlösers über endliche Mengen von ganzen Zahlen für Mozart, die über
Mengen- und Kardinalitätsschranken approximiert werden. Dieser kooperiert mit
einem Löser über endlichen Bereichen, um die Propagierung und die Ausdrucksfä-
higkeit zu verbessern.

Diese Dissertation erhebt Constraints zu emanzipierten Datenstrukturen und
stellt auf diese Weise zusätzliche Steuerungsmöglichkeiten über Constraints zur Ver-
fügung. Des Weiteren werden neuartige Programmiertechniken für emanzipierte
Constraints entwickelt und demonstriert.

Extended Abstract

This thesis presents constraint propagation in Mozart, a programming system for the
concurrent constraint programming language Oz. The presented framework of constraint
propagation is based on propagators which are concurrent computational agents realizing
constraints.

Constraint Propagation Engines This thesis designs an architecture for propagation
engines which perform propagator-based constraint propagation. A propagation engine
comprises a generic part, called propagation services, and a domain-specific part, called
domain solver. A domain solver can be regarded as an abstract data type encapsulating
all domain specific details. Thus, the propagation services can be generic by relying on
the abstractions of the abstract data type. The integration of propagation services into
the virtual machine of Mozart is presented and an interface between propagation services
and domain solvers for constructing plug-in domain solvers is developed.

A propagator uses a filter to perform constraint propagation. The interface is de-
signed such that a filter can be shared among various systems by isolating the filter from
the actual propagator.

The implementations of both the propagation services and the interface are presented
in detail. Further, the implementation of a finite domain solver is given to demonstrate
the presented framework.

Propagation services and the interface have been implemented as part of the virtual
machine of Mozart while the domain solvers are implemented as plug-in domain solvers.
The efficiency of the obtained constraint engines is competitive with existing systems.

Finite Integer Set Constraints This thesis presents the design and implementation of
a full-fledged domain solver over finite sets of integers for Mozart. This solver rea-
sons over bound approximations as well as over the cardinalities of sets. The solver is
tightly connected with the finite domain solver of Mozart to improve expressiveness and
constraint propagation. Resulting programming techniques are demonstrated by various
case-studies.

The thesis presents a scheme for generating filters for a set propagators from the cor-
responding set expressions. The finite integer set domain solver is used for applications
in computational linguistics and combinatorial optimization. The implementation of the
finite set solver is based on the presented framework of propagation engines.

First-class Constraints This thesis promotes constraints to first-class citizens. Con-
straint propagation of existing propagation-based solvers is restricted to the values of the
variables connected to the constraints. Promoting constraints to first-class citizens gives
the programmer an additional level of control over constraints and makes it possible to
go beyond the propagation of values.

First-class constraints make it possible to supplement conventional constraint prop-
agation by symbolic constraint reasoning. This makes novel programming techniques
possible. These techniques can improve existing solvers and make it possible to enter
new application areas by constraint programming. Several case-studies demonstrate the
benefits of constraint programming with first-class constraints.

First-class constraints are prototypically integrated in Mozart. The integration re-
quires only conservative extensions of the propagation engine framework.

Debugging the correctness of propagation-based constraint engines may require to
investigate the state of a solver at certain stages. This thesis presents a debugging scheme
which is based on the investigation of solver states by different graph-views. Further,
a debugging tool is derived from the proposed scheme, called Investigator. Its use is
illustrated in an example debugging session. The implementation of the Investigator is
fully based on first-class constraints.

Ausführliche Zusammenfassung

Diese Dissertation beschreibt Constraint-Propagierung in Mozart, ein Programmiersy-
stem für die nebenläufige Constraint-Programmiersprache Oz. Das beschriebene Sche-
ma von Constraint-Propagierung basiert auf Propagierern, die als nebenläufige Berech-
nungsagenten Constraints realisieren.

Constraint-Propagierungsmaschinen Diese Dissertation entwirft eine Architektur für
Propagierungsmaschinen, die Propagierer-basiert Constraints propagieren. Eine Pro-
pagierungsmaschine besteht aus einem generischen Teil, genannt Propagierungsdienst,
und einem domänenspezifischen Teil, genannt Domänenlöser. Ein Domänenlöser kann
als abstrakter Datentyp angesehen werden, der alle domänenspezifischen Details ein-
schließt. Auf diese Weise können Propagierungsdienste generisch auf domänenspezi-
fische Details über Abstraktionen des abstrakten Datentyps zugreifen. Die Integration
von Propagierungsdiensten in die virtuelle Maschine von Mozart wird beschrieben und
eine Schnittstelle zwischen Propagierungsdiensten und Domänenlösern zum Konstruie-
ren von Plug-in-Lösern entwickelt.

Ein Propagierer benutzt einen Filter, um Constraints zu propagieren. Die Schnittstel-
le wird durch Isolieren von Filtern und Propagierern so entworfen, dass der Programm-
kode eines Filters von verschiedenen Systemen genutzt werden kann.

Die Implementierung von Propagierungsdiensten und der Schnittstelle zur
Constraint-Programmierung wird im Detail beschrieben. Zur Illustration wird die
Implementierung eines Domänenlösers über endlichen Domänen erläutert.

Propagierungsdienste und die Schnittstelle werden als Teil der virtuellen Maschine
implementiert, während Domänenlöser als Plug-in-Löser realisiert werden. Die erzielte
Effizienz der implementierten Constraint-Maschinen ist konkurrenzfähig mit existieren-
den Systemen.

Constraints über endlichen Mengen von ganzen Zahlen Diese Dissertation be-
schreibt den Entwurf und die Implementierung eines vollausgestatteten Domänenlösers
über endlichen Mengen von ganzen Zahlen für Mozart. Dieser Löser propagiert über
Mengen- und Kardinalitätsschranken und ist darüber hinaus eng mit dem Löser über
endlichen Bereichen von Mozart verbunden, um die Ausdrucksfähigkeit und die Propa-
gierung zu verbessern. Fallstudien illustrieren resultierende Programmiertechniken.

Des Weiteren beschreibt diese Dissertation ein Schema zum Erzeugen von Filtern für
Mengenpropagierer aus korrespondierenden Mengenausdrücken. Der Constraint-Löser
über endlichen Mengen von ganzen Zahlen wird für Anwendungen in der Computer-
linguistik und der kombinatorischen Optimierung eingesetzt. Die Implementierung des
Lösers basiert auf dem Schema von Propagierungmaschinen.

Emanzipierte Constraints Diese Dissertation erhebt Constraints zu emanzipierten Da-
tenstrukturen. Das Lösen von Constraints in existierenden propagierungsbasierten Lö-
sern ist auf die Werte der mit den Constraints verbundenen Variablen beschränkt. Das
Erheben von Constraints zu emanzipierten Datenstrukturen stellt dem Programmierer ei-
ne zusätzliche Ebene der Steuerung über Constraints zur Verfügung und ermöglicht es,
über das Propagieren von Werten hinauszugehen.

Emanzipierte Constraints ermöglichen es, herkömmliche Constraint-Propagierung
um symbolisches Constraint-Lösen zu erweitern. Das macht neuartige Programmier-
techniken möglich, die existierende Löser verbessern und neue Anwendungsgebiete für
Constraint-Programmierung erschließen können. Mehrere Fallstudien demonstrieren die
Vorzüge von Constraint-Programmierung mit emanzipierten Constraints.

Emanzipierte Constraints sind prototypisch in Mozart integriert, und deren Integrati-
on erfordert nur konservative Erweiterungen des Schemas von Propagierungsmaschinen.

Die Fehlersuche zur Korrektheit von propagierungsbasierten Constraint-Lösern kann
das Untersuchen des Zustandes eines solchen in einer bestimmten Lösungsphase erfor-
dern. Diese Dissertation beschreibt ein Fehlersuchschema, das auf dem Untersuchen
des Zustandes eines Lösers durch verschiedene Graph-basierte Darstellungen beruht.
Des Weiteren wird ein Werkzeug zur Fehlersuche abgeleitet, Investigator genannt. Sein
Gebrauch wird am Beispiel einer Fehlersuche demonstriert. Die Implementierung des
Investigators basiert vollkommen auf emanzipierten Constraints.

Acknowledgements

I am grateful to Gert Smolka for giving me the opportunity to work with the Program-
ming Systems Lab in Saarbrücken and for teaching me that striving for simplicity and
clarity is the key to gain novel insights. It was a privilege and fun to work in his group
and I thank all colleagues for a stimulating atmosphere.

Discussions with Christian Schulte, Martin Henz and Jörg Würtz about design and
implementation of constraint solving were an invaluable source of ideas and inspirations.
Martin Henz gave me the opportunity to cooperate with him and other researchers in the
FIGARO project.

It was a pleasure to work with Konstantin Popov, Ralf Scheidhauer, Michael Mehl
and Christian Schulte on the implementation of Mozart. I profited a lot from their expe-
rience and knowledge.

Discussions with Carmen Gervet helped me to find a starting point for my work on
finite set constraints.

I am grateful to Martin Müller and Denys Duchier for sharing with me their knowl-
edge on set constraints. Denys Duchier helped to improve the implementation a lot by
using set constraint in computer linguistic applications and by contributing ideas for the
scheme for generating filters.

Christian Schulte, Thorsten Brunklaus, Katrin Erk, Sven Thiel, Leif Kornstaedt,
Konstantin Popov, and Denys Duchier gave me invaluable feedback on draft versions
of this thesis and thus, helped me to improve the presentation of my work. Of course,
remaining errors are my fault.

Marco Kuhlmann helped me to master LATEX and all the rest of it. Mats Carlsson and
Joachim Schimpf helped me programming the benchmarks in Chapter 10 for SICSTUS

and ECLi PSe, respectively.
I thank Erica Melis and Jürgen Zimmer for giving my the opportunity to apply first-

class constraints to proof planning problems.
I will keep all of the above mentioned in good memory; some of them became good

friends of mine.
Last but not least, I thank Simone for her patience, support and love. She is and will

always be a very special person to me.

To Arno, Christel and Margarete.

Contents

1 Introduction 1
1.1 Constraint Propagation Engines . 2
1.2 Finite Integer Set Constraints . 3
1.3 First-class Constraints . 4
1.4 Published Material . 5
1.5 Overview . 6

2 Problem Solving with Constraints 7
2.1 Constraint Solving . 7
2.2 Constraint Satisfaction and Filtering 8
2.3 A Model for Constraint Solving with Propagators 11

3 Constraint Programming in Oz 15
3.1 The Core . 15
3.2 Finite Domain Constraints . 17
3.3 Computation Spaces . 19

3.3.1 Search . 21
3.3.2 Constraint Combinators . 24

I Constraint Propagation Engines 27

4 A Propagation Engine Architecture 29
4.1 Components of a Propagation Engine 29
4.2 Representation of the Constraint Graph 29

4.2.1 Constraint Variables . 30
4.2.2 Propagators . 30

4.3 Propagator Execution . 31
4.4 Managing Propagators . 32

5 Propagation Services for Mozart 35
5.1 Mozart’s Virtual Machine . 35

5.1.1 Constraint Store . 35
5.1.2 Concurrency and Synchronization 36

5.2 Propagation Services . 36

xi

5.2.1 Constraint Variables . 37
5.2.2 Propagators . 37
5.2.3 Propagator Management . 39

5.3 Hierarchical Computation Spaces . 40
5.3.1 Computation Spaces in the Virtual Machine 41
5.3.2 Encapsulation of Constraint Propagation 42
5.3.3 Propagator Management Reconsidered 42

5.4 Discussion . 44

6 A Domain Solver Interface Architecture 45
6.1 Requirements . 45
6.2 Constraint Variables . 46
6.3 Managing Propagators . 47
6.4 Constraint Propagation . 48
6.5 Separating Filters from Propagation Functions 50
6.6 Interface Abstractions . 51

7 Implementation Aspects of Propagation Services 53
7.1 Interfaces to the Services of the Virtual Machine 53
7.2 Constraint Propagation Services . 55

7.2.1 Constraint Variables . 55
7.2.2 Propagators . 57
7.2.3 Executing Propagators . 59
7.2.4 Telling Basic Constraints to Constraint Variables 62

7.3 Discussion . 63

8 The Constraint Propagator Interface of Mozart 65
8.1 Engineering the Concrete Interface . 65

8.1.1 Design Decisions . 65
8.1.2 Overview over the Interface Abstractions 66

8.2 Constraint Variables, Profiles and Events 67
8.3 Propagator Definition . 70
8.4 Propagator Creation . 70
8.5 Propagation Functions . 72

8.5.1 Access to Constraint Variables 73
8.5.2 Filter Interface . 76
8.5.3 An Example of a Propagation Function 77

8.6 Discussion . 79

9 Aliasing of Constraint Variables 81
9.1 Extending the Architecture of Propagation Services 81
9.2 Integrating Aliasing in Propagation Services 83
9.3 Aliased Parameters in Propagation Functions 84
9.4 Implementation Aspects . 84

9.4.1 Aliasing Procedure for Constraint Variables 84

9.4.2 Handling of Aliased Parameters by Access Variables 85
9.4.3 Detection of Aliased Parameters in Vectors 87

9.5 Discussion . 88

10 Comparison and Evaluation 89
10.1 Comparison with Other Solvers . 89
10.2 Benchmarking Propagation Efficiency 92

10.2.1 An Inconsistent Benchmarking Constraint 92
10.2.2 Conducting the Benchmarks 93

10.3 Computational Costs of Interfaces . 97

II Finite Integer Set Constraints 99

11 Constraint Propagation over Finite Integer Sets 101
11.1 Basic Constraints . 101
11.2 Non-basic Constraints . 103
11.3 Connecting Finite Integer Sets and Finite Domains 105
11.4 An Example of Set Constraint Propagation 107
11.5 Discussion . 109

12 Construction of Filter Algorithms 111
12.1 Computation of Constraint Projectors 112
12.2 Computation of Events . 114
12.3 Filter Generation . 117
12.4 An Example for Filter Construction 120
12.5 Discussion . 123

13 Programming with Finite Integer Sets in Mozart 125
13.1 The Finite Integer Set Constraint Library 125

13.1.1 Imposing and Reflecting Basic Constraints 125
13.1.2 Propagators for Standard Set Operators 126
13.1.3 Connecting Finite Domain and Finite Integer Sets 127
13.1.4 Distribution . 127
13.1.5 Implementation Aspects . 128

13.2 Case Studies . 129
13.2.1 The Ternary Steiner Problem 129
13.2.2 Scheduling a Golf Tournament 131
13.2.3 Dependency Parsing . 135

13.3 Performance Evaluation . 138
13.4 Related Work . 140

III First-class Constraints 143

14 Promoting Constraints to First-class Citizens 145
14.1 The Idea . 145
14.2 Constraints as Values . 146
14.3 Programming . 149

14.3.1 Early Failure Detection . 149
14.3.2 Constraint Optimization . 153
14.3.3 Garbage Collection of Constraints 156
14.3.4 Smallest Sets of Inconsistent Constraints 157

14.4 Implementation . 160
14.5 Related Work and Discussion . 162

15 Debugging Constraints 165
15.1 Overview . 165
15.2 Debugging Constraints . 166
15.3 Graph-based Visualization of Constraints 167
15.4 Correctness Debugging with the Constraint Investigator 170

15.4.1 An Example Session with the Investigator 170
15.4.2 Approaches for Dealing with Realistic Applications 176
15.4.3 Additional Features . 177

15.5 Implementation . 178
15.6 Related Work and Discussion . 179

16 Conclusion 181
16.1 Contributions . 181
16.2 Future Work . 182

A Performance Figures Summary 185

Bibliography 186

Index 201

Chapter 1

Introduction

Everybody faces constraints everyday. Examples for constraints are: the number of
persons being carried by a lift must not exceed 10 and the open hours of a shop are from
10am to 4pm. These constraints are easy to meet but as the number of constraints grows,
a procedure for solving constraints is desired. Such a procedure is implemented by a
constraint solver.

Constraint Problems and Constraint Solvers A constraint problem is any problem
which is expressed in terms of problem variables, values and constraints over variables
and value. The domain of the values is called constraint domain. For example, the
number of persons being carried by a lift can be represented by a variable persons, the
limit by the value 10 (of the domain of positive integers) and the restriction that the
number of persons must not exceed the limit by the constraint persons < 10. A problem
expressed in terms of constraints is submitted to a constraint solver which tries to assign
valid values to the problem variables satisfying all constraints of the problem. Such an
assignment is called a solution of the problem. It is often the case that a solution is
required to be optimal according to a criterion leading to an optimization problem.

Various (specialized) constraint solvers have been devised over the years, e.g., the
Simplex algorithm to solve linear programming problems [35, 31] or local search for
propositional satisfiability problems [58, 133, 1]. This thesis is about propagation-based
constraint solving.

Propagation-based Constraint Solvers A propagation-based constraint solver uses
two techniques to find assignments: deter-
ministic constraint propagation and non-
deterministic search. Constraint propagation
excludes those values from being assigned
to a variable which are incompatible with a
solution. Not yet excluded values are stored

search engine propagation engine

Figure 1.1: Architecture of a propagation-based
constraint solver.

in the domain of the variable (called constraint variable). Incompatible values are
excluded (or filtered) from domains by propagators. A propagator represents an indi-
vidual constraint over a number of problem variables (its parameters) and encapsulates

2 Chapter 1: Constraint Propagation Engines

an algorithm for filtering out incompatible values.1 Such an encapsulated algorithm is
called filter algorithm.

Constraint propagation is typically not able to exclude all but one value per variable
and thus, to produce an assignment for a given problem. Hence, constraint propagation
is complemented by search. As soon as constraint propagation stopped because no fur-
ther values can be excluded, search branches to different alternatives in a speculative
way excluding values and thus, triggering new constraint propagation in the alternatives.
Constraint propagation and search are interleaved until a desired solution is found or all
alternative are explored.

Constraint propagation is performed by a propagation engine while search is done
by a search engine. Both engines together form a propagation-based constraint solver
(Figure 1.1).

Propagation Engines Constraint propagation with propagators is performed by a prop-
agation engine (Figure 1.2). A propagation engine consists
of generic propagation services and a constraint domain spe-
cific solver, called domain solver. A domain solver provides
the variables and propagators for a certain constraint domain
while the propagation services manage and control these vari-
ables and propagators in a domain-independent way.

propagation services

domain solver

Figure 1.2: Architecture of
a propagation engine.

Subject of this Thesis This thesis investigates constraint propagation with propagators
in three directions: (i) it designs and implements propagation engines (Section 1.1); (ii)
it designs a domain solver over finite sets of integers (Section 1.2); (iii) it promotes
propagators to first-class citizens (Section 1.3).

This thesis is in a line with other theses about the design and implementation of
Mozart [124, 150, 63]. In particular, this thesis is connected to Mehl’s thesis on the
design and implementation of the virtual machine of Mozart [88] and Schulte’s thesis on
design and implementation of search in Mozart [128].

1.1 Constraint Propagation Engines

Part I of this thesis presents the integration of constraint engines in Mozart [99].

Motivation Mozart is a programming system implementing the programming language
Oz which provides for speculative computation by computation spaces and concurrency
and synchronization by threads and logic variables [137]. Threads and computation
spaces form a unique environment for propagation engines in contrast to todays con-
straint solvers. These are mostly Prolog-based (e.g., GNU PROLOG [38], SICSTUS

[74], ECLiPSe [76] and CHIP [40]) or C++ libraries (e.g., ILOG SOLVER [73]). Further,
the key requirements for propagation engines are (i) to be able to use sophisticated filter
algorithms, (ii) to be extendible by new plug-in domain solvers and (iii) to be efficient.

1The notion filtering occurred first in [148]. Another notion for filtering found in the literature is
narrowing.

1.2 Finite Integer Set Constraints 3

Architecture An architecture for propagation engines is developed which is based on
propagators and constraint variables. This architecture separates constraint domain-
independent propagation services from constraint domain-dependent domain solvers.
The separation is achieved by splitting propagators and constraint variables in their do-
main independent parts, their heads, and in their domain dependent parts, their bodies.
Thus, the separation in propagation services and domain solvers comes naturally. The
architecture is refined by defining an interface between propagation services and domain
solvers. This interface is called constraint propagator interface (for short CPI). This
makes it possible to plug domain solvers as external modules into propagation services
provided by some runtime system.

A propagator computes the values to be excluded from its parameters by running a
filter. Most of the effort for implementing a new domain solver is needed for designing
and implementing the filter of the propagators. Hence it is desired that filters are shared
between various domain solver implementations. Consequently, an interface between
propagators and filter (called filter interface) is conceived making the exchange of filter
implementation between different constraint solvers possible and straightforward.

Integration This thesis develops a model for integrating propagation services and an
interface to domain solvers into the virtual machine of Mozart. This model extends
the virtual machine of Mozart in an orthogonal and conservative way since it does not
change the virtual machine; it only uses parts of the virtual machine via a clean interface
or adds new functionality without changing old one.

Implementation The implementation of propagation engines follows the integration
model and is provided by Mozart in production quality. The implementation covers
three parts: propagation services as part of the virtual machine, the interface for con-
necting domain solvers, and the implementation of a complete plug-in finite domain
solver (including constraint variables and a propagator for the constraint x ≤ y + c).
The presentation is supplemented by code samples to support a reconstruction and the
plug-in finite domain solver can be obtained from [105].

Evaluation The plain propagation performance is measured for Mozart and other
propagation-based constraint solvers. This is done by running an inconsistent finite
domain constraint in various configurations and taking the time until an inconsistency
is detected. The results of the measurements obtained for Mozart are compared with
results for the other constraint solvers.

A central feature of the design and implementation of propagation engines is factor-
ization by introducing interfaces. Hence, the performance impact of various interfaces is
measured and analyzed in depth to reveal the computational cost of this factorization.

1.2 Finite Integer Set Constraints

Part II of this thesis designs a domain solver over finite set of integers which is integrated
and demonstrated in Mozart.

Motivation Sets occur in many problems as a natural means of expression. Those sets

4 Chapter 1: First-class Constraints

are subsets of some finite universe and their elements can be mapped against positive
integers without any loss of expressiveness. Hence, a domain solver over finite integer
set constraints is integrated in Mozart. This solver is particularly useful for applications
in computational linguistics [48, 80, 45].

Constraints over Finite Integer Sets This solver approximates a set by a lower bound
set and an upper bound set and additionally, by cardinality bounds. The lower bound set
contains elements known to be in the set. The upper bound set contains elements which
are still candidates to be in the set. Constraint propagation adds elements to the lower
bound and removes elements from the upper bound. The approximation by lower and
upper bounds was inspired by Gervet’s work on set intervals [55].

Problem specifications provide frequently hints about the number of elements to be
expected in sets. This is taken into account by adding cardinality bounds. Cardinality
bounds denotes the minimal and maximal number of elements of a set. Cardinality
propagation raises the minimal number of elements and lowers the maximal number of
elements. This makes it possible to determine sets earlier or to detect inconsistencies
faster.

Generation of Filters The design of filters performing bound and cardinality propaga-
tion is not straightforward and prone to errors. As a consequence, this thesis proposes a
scheme for automatically generating filter for set constraints. The idea is to express a set
constraint in terms of constraints with primitive filters and to generate a monolithic filter
for the set constraint by transformations on the primitive filters. The implementation of
the devised scheme generates filters for bounds and cardinality propagation. These filters
can be directly used by set propagators via the filter interface.

Integration and Application Finite integer set constraints are integrated into Mozart
as domain solver which a constraint program accesses by a library. The use of set con-
straints in Mozart is illustrated by applications in the field of combinatorial optimization
and natural language processing. Particularly, the combination of finite sets and finite
domains is essential to improve expressiveness and constraint propagation and to make
the search for optimal solutions possible.

1.3 First-class Constraints

Part III of this thesis promotes constraints to first-class citizens.

Motivation Traditional constraint solver regard individual constraints as anonymous
entities. The only way to gain control over a constraint is to connect it with a 0/1-variable
and to reflect the constraint’s validity to this variable. Such a constraint is called meta or
reified constraint [143, 112]. The control over a reified constraint is very limited since
it eventually imposes a constraint. As consequence, constraints are promoted to first-
class citizens and thus, full control over constraints is gained and true meta constraint
programming is made possible.

Promoting Constraints to First-class Citizens Constraints are promoted to first-class
citizens by providing an abstract data type for constraints. Values of this type can occur

1.4 Published Material 5

at the same place where primitive values can occur. The operations of the abstract data
type make it possible to obtain the name and the parameters of a first-class constraint, to
learn whether the constraint is already entailed or not, to explicitly discard a first-class
constraint and to turn its propagation on or off.

Programming with First-class Constraints In contrast to constraint propagation,
which excludes values from variables, first-class constraint programming reasons about
the constraints themselves by accessing the current state of a constraint and controlling
a constraint’s behavior directly. This makes new programming and inference techniques
possible. Promising applications in the field of combinatorial optimization are demon-
strated. These fields include early detection of unsatisfiable constraints, re-formulation
of constraints to improve propagation, and garbage collection of redundant but not yet
entailed constraints.

Implementation First-class constraints have been prototypically implemented with
Mozart. The implementation is orthogonal to the propagation services and does not
need any modification of domain solvers. Further, no performance penalty is imposed
when not using first-class constraints.

Debugging Support for Propagation Engines This thesis develops a scheme for de-
bugging the correctness of a constraint program which is in contrast to current schemes
which focus on optimizing search and performance [134, 126, 91]. The proposed scheme
investigates the state of the corresponding propagation engine which can be regarded as
a graph. The nodes and edges of the graph are derived from the relations between prop-
agators and their parameters. Such a graph is visualized by various graphs views. The
proposed debugging scheme is realized in Mozart by a debugging tool called Constraint
Investigator which makes it possible to explore graph views derived from a state of a
propagation engine. The implementation of the Investigator is based on first-class con-
straints.

1.4 Published Material

The results of this thesis have been partly published in the articles listed below.

Constraint Propagation Engines The constraint propagator interface has been pre-
sented in:

Tobias Müller and Jörg Würtz. Embedding propagators in a concurrent constraint
language. The Journal of Functional and Logic Programming, 1999 [108].

which is an extended version of [107]. An interface to separate the implementation of a
propagator from its filter algorithm has been proposed in:

Ka Boon Ng, Chiu Wo Choi, Martin Henz, and Tobias Müller. GIFT: a generic
interface for reusing filtering algorithms. Proceedings of the Workshop on Tech-
niques for Implementing Constraint Programming Systems - TRICS, 2000 [111].

6 Chapter 1: Overview

Finite Integer Set Constraints The finite integer set solver of Mozart and correspond-
ing programming techniques have been presented in:

Tobias Müller and Martin Müller. Finite set constraints in Oz. 13. Workshop
Logische Programmierung, 1997 [106] .

First-class Constraints Constraints as first-class citizens have been presented in:

Tobias Müller. Promoting constraints to first-class status. Proceedings of the First
International Conference on Computational Logic – CL2000, July 2000 [102].

A constraint debugger for constraint solving with propagators has been presented in:

Tobias Müller. Practical investigation of constraints with graph views. Proceed-
ings of the Sixth International Conference on Principles and Practice of Constraint
Programming – CP 2000, 2000 [101].

1.5 Overview

Chapter 2 introduces constraint programming and presents a computation model for con-
straint propagation. Chapter 3 introduces constraint programming in Oz.

The material of this thesis is presented in three parts.

Constraint Propagation Engines (Part I) Chapter 4 develops an architecture for
propagator-based constraint engines. Chapter 5 discusses the integration of propagation
services into the virtual machine of Mozart. Chapter 6 develops an interface for connect-
ing domain solvers with propagation engines. Chapter 7 discusses the implementation
aspects of the integration of propagation services into the virtual machine of Mozart.
Chapter 8 presents the constraint propagator interface of Mozart as an concrete inter-
face for implementing domain solvers and illustrates its application by implementing a
complete plug-in finite domain solver. Chapter 9 discusses the integration of aliasing
of constraint variables in constraint propagation engines. Chapter 10 evaluates the ob-
tained propagation engines in detail and compares Mozart with other available constraint
solvers.

Finite Integer Set Constraints (Part II) Chapter 11 presents finite integer set con-
straints. Chapter 12 develops a scheme for generating filter algorithms for finite set
propagators and illustrates the scheme by an example. Chapter 13 presents the finite set
library for Mozart and demonstrates its use by various case studies.

First-class Constraints (Part III) Chapter 14 introduces constraints as first-class cit-
izens and develops programming techniques for first-class constraints. Chapter 15
presents a constraint debugging tool which uses a graph metaphor to visualize the state
of a solver.

Chapter 16 summarizes the contributions of this thesis and gives an outlook to future
work. Supplementary material to the thesis can be found at [105].

Chapter 2

Problem Solving with Constraints

This chapter introduces informally constraint solving as combination of propagation,
branching and exploration (Section 2.1). Then, constraint satisfaction problems as a for-
mal model for constraint solving are presented (Section 2.2). Finally, a computational
model for constraint solving with propagators is given which is the foundation for de-
signing and implementing propagation engines (Section 2.3).

2.1 Constraint Solving

Constraint solving is a method to solve combinatorial optimization problems. A problem
is expressed by a set of constraints and a set of variables, called problem variables. The
constraints state relations between variables. A possible solution is an assignment of
values to variables satisfying all constraints. To eventually compute an assignment for
a problem variable, such a problem variable is annotated with a set of potential values,
called its domain. A variable denotes a value if its domain contains only a single value.
Such a variable is determined. A variable is determined by constraint propagation, by
successively removing values from a variable’s domain (short variable domain) which
are incompatible with the constraints imposed on this variable. Constraint propagation
is implemented by a propagation algorithm.

Constraints are expressed with a constraint language which defines the constraint
domains and the available constraints for the domains. Common constraint domains
are finite domain constraints [145], finite set constraints [55], real interval constraints
[12] and record constraints [138, 123]. The way a problem is expressed by constraints
controls the propagation behavior obtained by the constraint solver. Since constraint
propagation on its own usually not able to find a solution, it is supplemented by search.
Search tries to solve the problem under an assumption and if this assumption is wrong,
another assumption is tried on the same problem. This process is recursively continued
by alternating constraint propagation and search until a solution is obtained. Thus, a
search tree is created. This approach has two dimensions: (i) the shape (or branching) of
the search tree and (ii) the way the search tree is explored. Dimension (i) is implemented
by a branching algorithm and dimension (ii) by a exploration algorithm.

8 Chapter 2: Constraint Satisfaction and Filtering

Propagation, branching and exploration algorithms are implemented by a constraint
program which is submitted to a constraint solver.

Propagation Algorithm A propagation algorithm enforces a relation on the values of
problem variables by imposing constraints on the problem variables. Once imposed, a
constraint enforces the relation it represents by removing those values from the domains
which are not in the relation. Moreover, a constraint reconsiders the values of its vari-
ables as soon as values are removed by other constraints. The purpose of a propagation
algorithm is to remove values from variable domains resp. to indicate that there is no
valid assignment, i.e. propagation fails. Both outcomes of propagation have an impact
on the number of alternatives to be explored by search: The number of values left in the
domains of the problem variables determines the number of alternatives to be explored.
Failing propagation terminates exploration of the search tree at this point. Additionally,
the propagation algorithm shall run with modest computational cost.

Branching Algorithm The branching algorithm defines the shape of the search tree.
As soon as the propagation algorithm has finished and has not failed, the branching
algorithm computes a branching constraint which determines what alternatives are ex-
plored. A branching constraint is a disjunction expressing alternatives. It has to be
such that no solutions are lost. For example, having a problem variable x ∈ {1, 2, 3, 4},
possible branching constraints are: (i) x = 1 ∨ x 6= 1, (ii) x ≤ 2 ∨ x > 2 and (iii)
x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4. The creation of alternatives by a branching algorithm
creates a search tree where the alternatives are represented by the choice nodes and the
constraints imposed on the branches are the edges of the tree.

Branching is also called distribution and the computation of a branching constraint
is done by a distribution step.

Exploration Algorithm The exploration algorithm determines how a search tree cre-
ated by a branching algorithm is traversed by determining the order of how the alterna-
tives are explored (e.g., in a depth-first or a breadth-first fashion).

2.2 Constraint Satisfaction and Filtering

The propagation algorithm introduced in Section 2.1 can be formalized by a constraint
satisfaction problem (CSP) [85, 144, 95, 141, 7]. This section introduces CSPs formally
and provides an algorithm for solving them.

Constraint Satisfaction Problems A CSP is a triple (V, D,C) where V is a finite
set of variables {x1, . . . , xn}, D is a set of mappings from variables to domains {x1 7→

d1, . . . , xn 7→ dn} (called domain store) and C a finite set of constraints {c1, . . . , cm}.
A domain is a finite set of values and the domain di of a variable xi can by retrieved by
dom(D, xi) = di if xi 7→ di ∈ D. Variables are denoted by x and y while values by v
and w. An n-tupel (x1 = v1, . . . , xn = vn) denotes the simultaneous assignment of the
values v1, . . . , vn to the variables x1, . . . , xn , respectively. A constraint c(x1, . . . , xm)

with m ≤ n is a set of m-tupels {(x1 = v1,1, . . . , xm = vm,1), . . . , (xl = v1,l, . . . , xm =

vm,l)} denoting simultaneous assignments legal for constraint c. The set of parameters

2.2 Constraint Satisfaction and Filtering 9

{x1, . . . , xk} of a constraint c(x1, . . . , xk) is denoted by V (c).
The set Dα of tuples denoting all possible simultaneous assignments of a given do-

main store D is

Dα = {(x1 = v1, . . . , xk = vk) | v1 ∈ dom(D, x1) ∧ . . . ∧ vk ∈ dom(D, xk)} (2.1)

A domain store D1 is stronger than a store D2 (resp. D2 is weaker than D1) if Dα
1 ⊆ Dα

2 .
Removing values from domains is called domain pruning or domain reduction.

Domain Filtering Domain filtering of a constraint c removes for xi ∈ V (c) all values
from the domains dom(D, xi) which are not legal with c and evolves D to D′:

D′ = filter(D, c) where ∀xi ∈ V : (2.2)

dom(D′, xi) =

{

{vi | (. . . , xi = vi , . . .) ∈ c ∧ vi ∈ dom(D, xi)} if xi ∈ V (c)
dom(D, xi) else

Entailment and Failure A tuple s = (y1 = w1, . . . , yk = wk) over all the vari-
ables yi ∈ V ′ and V ′ ⊆ V is a projection of a tuple t = (x1 = v1, . . . , xn = vn)

over all variables xi ∈ V if y1 = w1, . . . , yk = wk ∈ {x1 = v1, . . . , xn = vn}.
The predicate projection(t, s) is true if s is a projection of t . The set of tuples
cα = {t | projection(t, s) ∧ s ∈ c} denotes all legal simultaneous assignment tuples
of c in Dα. A constraint c is entailed by a domain store D if

Dα ⊆ cα (2.3)

which means that all simultaneous assignments in D are subsumed by the simultaneous
assignments of c.

A CSP fails if ∃xi ∈ V : dom(D′, xi) = ∅. This is equivalent to Dα = ∅. A failed
CSP is denoted by (V,⊥,C). A CSP is determined if Dα is a singleton set.

The negation of a constraint c(x1, . . . , xk) is ¬c(x1, . . . , xk) = {t | t = (x1 7→

v1, . . . , xk 7→ vk) ∧ t 6∈ c}.

A Procedure for Constraint Propagation Constraint propagation enforces a certain
degree of consistency between the values in the domains and the constraints. A common
degree of consistency is arc-consistency which requires that every value in a domain
is part of a legal simultaneous assignment of a constraint (see [141, Section 3.2.3] for
a formal definition). Various consistency algorithms to achieve arc-consistency have
been proposed (from AC-3 [85] and AC-5 [144] to AC-7 [15]). The algorithm in Pro-
gram 2.1 is an AC-3 algorithm (see [85] and [141, Section 4.2.3]) generalized for n-ary
constraints.

The algorithm in Program 2.1 imposes arc-consistency on a CSP (V, D,C) with
n-ary constraints and returns an updated CSP. The algorithm represents a constraint c by
a filter function Fc : D → D× {0, 1} which performs domain filtering and indicates if c
is entailed or not. A filter Fc is the conjunction of an entailment function Ec : D → {0, 1}

and a narrowing function Nc : D → D where D denotes a set of domain stores. The
entailment function Ec(D) returns 1 if c is entailed by D according to condition (2.3).

10 Chapter 2: Constraint Satisfaction and Filtering

CSP : propagate(CSP : (V, D,C)) {
S = C // initialize iteration set
while (S 6= ∅) { // iterate until fixed-point

c ∈ S; S = S \ {c} // pick a constraint
(D′, entailed) = Fc(D) // run filter function
if (D′ = ⊥) // detect failure ...
return (V,⊥,C) // .. and return failed CSP

if (entailed = 1) // detect entailment ...
C = C \ {c} // ... and drop entailed constraint

// add dependent constraints to iteration set
S = S ∪ {c′ | c′ ∈ C \ {c}, x ∈ V (c) : dom(D, x) 6= dom(D′, x) ∧ x ∈ Vc′}

D = D′ // update domain store
}
return (V, D,C) // return updated CSP

}

Program 2.1: A generalized AC-3 consistency algorithm for n-ary constraints
based on a filter function.

The narrowing function Nc(D) performs filtering on D according to equation (2.2) and
returns an updated domain store D′.

The algorithm performs fixed-point iteration until filtering cannot remove further
values from any domain. This is achieved by maintaining an iteration set S of constraints
to be considered and by adding those constraints to S whose parameters’ domains have
been pruned. A fixed-point is represented by the domains in D and is reached if S is
empty. The algorithm terminates since the domains are finite and S runs empty if no
further domain pruning is possible. As an optimization, the presented algorithm discards
entailed constraints which is desirable for an efficient implementation.

Required Properties of Narrowing and Entailment Functions Würtz defines in [150,
Section 2.4] properties of narrowing functions Nc and entailment functions Ec that ensure
that they realize a given constrain c. The conditions are given in Figure 2.1 as relations
of sets of simultaneous assignments.

Property (correct.1) states that no solution of d ∧ c is discarded by a narrowing func-
tion. Property (extensional.1) states that Nc only adds information to the domain store
by removing simultaneous assignments. Property (adequate.1) states that failures is de-
tected at latest if all parameters are determined. Property (monotonic.1) states that nar-
rowing is monotonic, i.e., the result of a narrowing function is at least strong as for a
weaker domain store. Monotonicity of filters is needed for computing unique propaga-
tion fixed-points independent of the execution order of filters (see [150, Section 2.5]).
Property (idempotent.1) guarantees that Nc has to be applied only once on a given do-
main store. This property is only desired for an efficient implementation.

Property (correct.2) says that entailment is correctly detected (see condition (2.3)).
Property (adequate.2) makes sure the entailment is detected at latest if a all domains are
determined. Finally, property (monotonic.2) states that if entailment is detected for a

2.3 A Model for Constraint Solving with Propagators 11

Dα ∩ cα ⊆ Nc(D)
α (correct.1)

Nc(D)
α ⊆ Dα (extensional.1)

if D is determined and Dα ⊆ ¬cα then Nc(D) = ⊥ (adequate.1)

if Dα
1 ⊆ Dα

2 then Nc(D1)
α ⊆ Nc(D2)

α (monotonic.1)

Nc(Nc(D)) = Nc(D) (idempotent.1)

if Ec(D) = 1 then Dα ⊆ cα (correct.2)

if D is determined and Dα ⊆ cα then Ec(D) = 1 (adequate.2)

if Dα
1 ⊆ Dα

2 then Ec(D1) ≥ Ec(D2) (monotonic.2)

Figure 2.1: Properties of filters.

weaker domain store then it is also detected for a stronger one.
Propagation algorithms as introduced in Section 2.1 are realized by CSPs. Constraint

propagation of propagation engines is based the algorithm in Program 2.1.

2.3 A Model for Constraint Solving with Propagators

This section presents a model for constraint solving based on propagators. This
propagator-based model integrates the CSP model in the Oz computation model pre-
sented in [137]. Further, by refining the CSP model (for example with propagation
events), the propagator-based model serves as a foundation for the design and imple-
mentation of propagation engines (Part I).

Basic Constraints A basic constraint denotes which values a variable can take. A
constraint store hosts the conjunction of individual basic constraints and corresponds to
the domain store in Section 2.2. Basic constraints x ∈ d (variable x takes its value in
domain d) and x = y (variables x and y have the same value, i.e., they are aliased) in a
constraint store bs are regarded.1 A basic constraint x = v is an abbreviation for x ∈ {v}.
The domain d of a variable x corresponds to dom(x, D) in Section 2.2 where D is the
domain store corresponding to a constraint store bs .

Non-basic Constraints A non-basic constraint expresses a relation (constraint) be-
tween variables, as for example between integers x1 + x2 = x3 or between sets
s1 ∪ s2 = s3. Such a relation cannot be expressed explicitly by the constraint store
and it is realized by a filter which is encapsulated in a propagator. A propagator is
a concurrent computational agent imposed on a set of variables, called its parameters.
Dually, from the view of a variable, the propagators imposed on a variable are called
connected propagators of a variable.

A propagator pc enforces the constraint c on its parameters by running its filter Fc

on its parameters . The propagator writes the domains pruned by its filter Fc to the basic
1Aliasing is an design decision of Oz and separately treated in Chapter 9.

12 Chapter 2: A Model for Constraint Solving with Propagators

constraint bp of its parameters and thus, advances the store bs to the store bs ∧ bp if
bs ∧ c entails bp (see condition correct.1 in Figure 2.1) and bp adds new and consistent
information to bs . A propagator pc ceases to exist if c is entailed by bs (the entailment
function of Fc returns 1) or if bs ∧ c is unsatisfiable (dis-entailed, i.e., ¬c is entailed by
bs). A propagator detects entailment or dis-entailment at the latest if all its parameters
denote single values according to conditions (adequate.2) and (adequate.1), respectively.

Typically, there are many propagators imposed on a set of variables leading to a
sharing of variables among different propagators. This causes propagators to trigger
each other by writing basic constraints to the variables. This goes on until a propagation
fixed-point is reached which is the case if no further new basic constraints can be written
to the variables (as reflected by Program 2.1).

Constraint Graph The relationship between the entities of the model, namely vari-
ables and propagators, can be depicted as a directed constraint graph. Variables are
represented by variable nodes and propagators by propagator nodes. The constraint
graph represents the current state of the CSP representing a given problem. Constraint
propagation transforms the constraint graph from one state to another by applying fil-
ters to propagator parameters until eventually no propagator node is left. Thus, filters
of propagators act as graph transformers: if a filter Fc detects entailment of c the corre-
sponding propagator node is removed; but a filter can also create new propagators and
thus, it adds new propagator nodes to the constraint graph.

As example consider the following propagators: p1(v1, v2)∧ p2(v1, v3)∧ p3(v2, v3).
The corresponding graph is shown in Figure 2.2. An edge (p, v) denotes that variable v
is a parameter of propagator p. An individual propagator observes and writes its basic
constraints to all those variables which it is able to reach in the graph. For example, p2

observes and writes basic constraints to v1 and v3 but not to v2.

p1 p2 p3 propagator nodes

v1 v2 v3 variable nodes

Figure 2.2: Constraint graph connecting propagators with variables.

For this constraint graph abstraction it is sufficient to assume that a propagator is an
active computational agent permanently monitoring its parameters.

Events On sequential hardware, it is computationally unfeasible to have propagators
permanently monitoring their parameters. Moreover, a propagator can only take advan-
tage of certain kinds of changes to its parameters. For example, a propagator performing
domain propagation benefits typically from individual values removed while a propaga-
tor performing value propagation typically exploits parameters becoming single values.
Hence, different propagation events (for short events) are distinguished which define
conditions for re-executing propagators. An event is denoted by e.

As an example regard finite domain constraints. One can distinguish a value event
(exactly one value is left), a bounds event (bounds are narrowed) and a domain event

2.3 A Model for Constraint Solving with Propagators 13

(some value is removed). Interestingly, events are typically (partially) ordered (forming
a lattice). In case of finite domain constraints, a value event causes also bound and
domain events while a bounds event causes also a domain event. Note distinguishing
lower and upper bound events results in a partial order.

Constraint Graph with Events The introduction of events is reflected in the constraint
graph by additional edges from variables to propagators. These additional edges are
labeled with events triggering re-execution of the connected propagators. A constraint
graph with events is a cyclic graph since there are edges from propagators to variables
(the propagators’ parameters) and from variables to propagators.

Augmenting the previous example by some events e1,2,3 yields: p1(v
e1
1 , v

e2
2) ∧

p2(v
e2
1 , v

e2
3) ∧ p3(v

e2
2 , v

e3
3). The notation p(ve) means that p is rerun if the event e

occurs on v. The corresponding extension of the constraint graph in Figure 2.2 to a con-
straint graph events is shown in Figure 2.3. (The complete constraint graph with events
consists of the graphs in Figures 2.2 and 2.3.)

v1 v2 v3 variable nodes

p1 p2 p3 propagator nodes

e1 e2

e2

e2

e2
e3

Figure 2.3: Extension of the constraint graph in Figure 2.2 by edges from vari-
ables to propagators labeled with events.

Now a propagator needs not to permanently observe its parameters for possible
changes. The propagator is notified if awaited events occur. For example, p1 is re-
run if event e1 occurs on variable v1 or event e2 occurs on variable v2. Events are caused
by other propagators sharing variables as parameters. For example, p1 shares parameters
with p2 (v1) and p3 (v2).

Execution States of a Propagator A propagator goes through various execution states
during its life-cycle (Figure 2.4). The execution state is either running, runnable,
sleeping, failed, or entailed. A propagator is switched from one execution state
to another one according to the result of its last execution or by some external event.

entailed runnable

running

failed sleeping

creation
entail

fail sleep

run

schedule

Figure 2.4: Execution states of a propagator.

On creation, the propagator pc for constraint c becomes running, i.e., pc computes

14 Chapter 2: A Model for Constraint Solving with Propagators

a new basic constraint bp which advances the bs to bs ∧bp. If c∧bs is not satisfiable then
this is indicated by fail and the propagator is set to failed. In case c is entailed by bs ,
this is indicated by entail and the propagator is set to the execution state entailed.
In both cases the propagator ceases to exist.

Otherwise the propagator signals sleep and is set to sleeping. Propagation of
other propagators may cause events on shared parameters and thus the propagator is
scheduled (transition schedule) by setting its state to runnable. Once runnable,
the propagator is executed by performing transition run. Note this model assumes the
transition run to be fair, i.e., every runnable propagator will eventually be run.2 The
cycle restarts and continues until no propagator causes any new event, constraint propa-
gation has reached a fixed-point.

2Additionally, filters of propagators are of course assumed to terminate.

Chapter 3

Constraint Programming in Oz

Oz is a concurrent constraint language with explicit concurrency, implicit synchroniza-
tion, lexical scoping, mutable state, first-class procedures and first-class computation
spaces. Smolka presents the computational model of Oz in [137]. Schulte, Smolka and
Würtz describe in [132] the integration of constraint programming including encapsu-
lated search in Oz.

This section gives an introduction to constraint programming in Oz. It explains the
facilities to program propagation algorithms with finite domains (Section 3.2) and how
to connect those propagation algorithms with computation spaces as means to realize
speculative computation as search and constraint combinators (Section 3.3).

For a comprehensive introduction to Oz see [60] and for constraint programming in
particular consult [131].

3.1 The Core

Values and Logic Variables The presented Oz programs compute on integers, liter-
als and rational trees. A literal is either a symbolic value (called an atom) or a value
without any structure but with an identity (called a name). A value is referred to by a
logic variable. This is a variable which initially denotes no value until it is eventually
bound. Values and logic variables are stored as a value graph in the constraint store (see
Section 5.1.1 for details).

Constructor Values The atom nil denotes by convention an empty list. Other atoms,
as ’|’ and ’#’, are used by syntactic sugar such as mixfix tuples (x1#. . .#xn ≡

’#’(x1 . . . xn)), cons-cells (x1|x2 ≡ ’|’(x1 x2)), and lists ([x1 . . . xn] ≡ ’|’(x1

’|’(. . .’|’(xn nil). . .))). The length N of a list L can be computed by {Length
L N} and dually, a list L of length N can be created by {MakeList N L}. Two lists
L1 and L2 can be concatenated to L3 by {Append L1 L2 L3}. Tuples and lists are
called vectors. The notation 〈x1 . . . xn〉 is used for a vector of n elements xi .

Statements An Oz program consists of statements which are sequentially executed.
The core statements are shown in Figure 3.1. A statement σ is empty (skip), declares a

16 Chapter 3: Constraint Programming in Oz

σ ::= skip empty statement
||| local x in σ end variable declaration
||| x = y ||| x = v ||| x = e tell statement
||| σ1 σ2 sequential composition
||| thread σ end thread creation
||| if x then σ1 else σ2 end conditional
||| case x of v then σ1 else σ2 end pattern matching
||| proc {x y} σ end procedure definition
||| {x y} procedure application

e ::= x + y ||| x - y arithmetic expressions
||| x == y equality test

v ::= s scalar value
||| l(x1 . . . xn) tuple construction

l ::= atom atom
||| true ||| false Boolean names

s ::= l literal
||| integer integer

x, y, z ::= variable variables

x ::= ε ||| x x variable list

Figure 3.1: Statements of Oz .

variables (local x in σ end1), tells constraints to the store (x = y resp. x = v),
or composes two statements (σ1 σ2).

Oz provides syntactic sugar for local variable declaration in the σ s of statements
for thread creation, conditional and pattern matching. A local variable declaration
local x in σ end can there be simplified to x in σ .

Expressions Expressions include the equality test and arithmetic expressions and have
the obvious meaning.

Concurrency and Synchronization The creation of a thread is not synchronized and
spawns a concurrent thread of computation. The statement thread σ end creates a
thread with an empty stack and pushes a tasks for σ onto the stack. A running thread
pops tasks from the stack and evaluates them. A thread vanishes as soon as the stack is
empty. Suspending (or synchronizing) statements block the whole thread. An example
for a synchronizing statement is the conditional statement if x then σ1 else σ2

end. It pushes σ1 (σ2) on the stack if x is bound to true (false). The conditional
statement suspends if x is unbound.2 In this way, it synchronizes on x .

Pattern Matching Pattern matching is very useful for programming with tuples and

1Oz provides anonymous variables denoted by "_" which need not to be declared and every occurrence
is distinct to any other occurrence.

2Note that Oz is a dynamically typed language so that also a run-time type-error can be raised.

3.2 Finite Domain Constraints 17

lists. The statement case x of v then σ1 else σ2 end synchronizes on x to be
determined. The variables occurring in the pattern v are created and v is unified with x .
If unification succeeds, the variables in v are bound and σ1 is pushed on the stack of the
current thread. In case unification fails, σ2 is pushed on the stack.

First-class Procedures and their Application Procedures are first-class citizens in Oz,
i.e., they can occur in programs everywhere where a value can occur. The creation of
a procedure is not synchronized. A procedure is created by proc {x y} σ end. It
binds x to a fresh name ξ and adds an entry ξ : y/σ to the procedure store. A procedure
in the procedure store ξ : y/σ can be applied by {x y} if x is bound to ξ . Procedure
application synchronizes on x .

Oz provides syntactic sugar for function-style procedure (for short function) defini-
tions

z = fun {x y} end ≡ proc {x y z} σ z end

Note that z does not occur free in σ . A function can be applied according to the extended
expression syntax:

e ::= z ={x y} function application

Expressions can be nested on parameter positions in procedures and functions. Instead
of X=[1 2 3] {P X} one can use {P [1 2 3]}.

List Iterators The following list iterators occur in program examples. Note that F is a
binary and P a unary procedure.

Z={Map [X1 ...Xn] F} ≡ Z=[{F X1} {F X2} ...{F Xn}]
{ForAll [X1. . .Xn] P} ≡ {P X1} {P X2}. . .{P Xn}
{ForAllTail [X1. . .Xn] P} ≡ {P [X1 . . .Xn]} {P [X2. . .Xn]}. . .{P [Xn]}

For concise applications of the above-mentioned list iterators, procedures are created
"on-the-fly". In Oz, the $ transforms a statement to an expression which can be used to
mimic anonymous procedures. For example {Map [1 2 3] fun {$ X} 2*X end
Y} uses $3 to pass the function to Map which eventually binds Y to [2 4 6].

3.2 Finite Domain Constraints

This sections introduces finite domain constraints and explains how to implement prop-
agation algorithms with them.

Basic Finite Domain Constraints A finite domain constraint x ∈ d ⊆ {0, . . . , supfd}
4

denotes an integer i ∈ d . Domain reduction removes elements from d until d is a
singleton set {i}, i.e., x refers to the integer i .

Basic finite domain constraints are imposed by the ::-operator (Figure 3.2) where
setdescr is an Oz value describing a finite set of integers.

3The function definition is turned into an expression whose value is the defined function.
4In Mozart, supfd is 228 − 1. The notation for a set {m, . . . , n} denotes a set containing all integers

i : m ≤ i ≤ n.

18 Chapter 3: Constraint Programming in Oz

σ ::= x :: setdescr tell finite domain

Figure 3.2: Imposing basic finite domain constraints.

setdescr ::= set set of integers
||| compl(set) {0, . . . , supfd} \ set

set ::= nil ∅ (empty set)
||| primset primset
||| [primset1 . . . primsetn] primset1 ∪ . . . ∪ primsetn

primset ::= integer {integer}
||| integer1#integer2 {integer1, . . . , integer2}

Figure 3.3: Description of a set of integers.

The ::-operator synchronizes on setdescr (Figure 3.3; the comments on the right
show how a set is constructed) to be determined.

Propagators Mozart provides a rich set of predefined propagators for finite domain
constraints including linear and non-linear (in-, dis-) equations, Boolean connectors,
symbolic relations and scheduling constraints (see [46, Sections 5 and 6]) by the module
FD. Individual abstractions provided by a module can be accessed by the ’.’-operator,
e.g., the propagator for the alldiff -constraint distinct is obtained by FD.distinct.

finite domain operators =: >: >=: <: =<: \=:
corresponding relation = > ≥ < ≤ 6=

Table 3.1: Correspondence between finite domain operators and relations.

Equations are provided both by expressions and abstractions of the module FD. The
operators for equations are shown in (Table 3.1). For example, the in-equality 2 × X −

3 × Y + 7 × Z ≤ 5 can either be represented by the finite domain expression 2*X-
3*Y+7*Z=<:5 or by the abstraction {FD.sumC [2 ~3 7] [X Y Z] ’=<:’ 5}.
Such abstractions are useful if equations are generated at run-time.

Mozart provides propagators with sophisticated filters, as for example an arc-
consistent alldiff -constraint FD.distinctD5 [120] or propagators for scheduling prob-
lems [6, 27, 28, 29, 150]. Such constraints are sometimes denoted by global constraints
due to Beldiceanu who coined the notion in [11].

Reification Mozart provides propagators for reified constraints [143]. A reified con-
straint (c ↔ b) of a constraint c reflects the validity of c to a 0/1-variable b: (c ↔

b) ∧ b ∈ {0, 1}. That means if c is entailed (dis-entailed) by the constraint store, b is
constrained to 1 (0). Otherwise, if b = 1 (0), c (¬c) is imposed.

5The propagator FD.distinct takes only advantage of determined parameters.

3.3 Computation Spaces 19

Propagators for reified arithmetic equation constraints are syntactically supported: a
finite domain equation can simply be equated to a 0/1-variable. For example, the reified
version of X+Y=:Z is X+Y=:Z = B where B is a 0/1-variable.

An Example Program Finite domain constraint programming implements the propa-
gation, branching and exploration algorithms for a given prob-
lem in a script. Here, the propagation algorithm for the "send +
more = money"-puzzle is programmed while the branching and

s e n d
+ m o r e
= m o n e y

exploration algorithms are postponed until Section 3.3.1.
Every letter in the following equation denotes a decimal digit and s and m must be

unequal to 0. The problem is to find an assignment for every letter that the equation
holds. The puzzle is expressed in terms of constraints by:

e, n, d, o, r, y ∈ {0, . . . , 9} ∧ s,m ∈ {1, . . . , 9} ∧ alldiff (s, e, n, d,m, o, r, y) (3.1)

1000 × s + 100 × e + 10 × n + d

+1000 × m + 100 × o + 10 × r + e

= 10000 × m + 1000 × o + 100 × n + 10 × e + y (3.2)

Procedure Money implements these constraints (Program 3.1) and is part of the script
for solving the problem. The procedure has the formal argument Sol which is con-
strained to the list of problem variables (S, E, N, D, M, O, R, and Y). The ForAll-loop
constrains all problem variables to the domain {0, . . . , 9}. The enclosed dis-equalities
remove 0 from the domains of S and M and propagator FD.distinct enforces all its
parameters to be pairwise distinct (constraint (3.1)). Finally, the equation (=:) imposes
the central constraint of this puzzle (constraint (3.2)).

proc {Money Sol} [S E N D M O R Y] = Sol in
{ForAll Sol proc {$ V} V :: 0#9 end}
S \=: 0 M \=: 0 {FD.distinct Sol}

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E

=: 10000*M + 1000*O + 100*N + 10*E + Y
end

Program 3.1: The implementation of the propagation algorithm for
"send+more=money"-problem.

3.3 Computation Spaces

Computation spaces are a concept to encapsulate speculative computation. Oz provides
spaces a first-class citizens and thus, makes it possible to program tree search (Sec-
tion 3.3.1) and constraint combinators (Section 3.3.2) in Oz itself. Schulte gives in his
thesis [128] a thorough account on design, implementation and application of computa-
tion spaces.

20 Chapter 3: Constraint Programming in Oz

Overview A computation space hosts a constraint store and propagators connected with
this store and thus, constraint propagation as described in
Section 2.3 takes place in a computation space.

A computation space has a root variable and a status.
The root variable is used to access the constraint in the

propagator · · · propagator

constraint store

space. The status indicates whether constraint propagation is currently running or not,
and if not running, (i.e. the space is stable) whether the space is succeeded, failed or
distributable. A distributable space contains a distributor which represents a branching
constraint (explained in Section 3.3.1). Additionally, the state can also indicate that a
space has been merged with another space. A space is failed if one of its propagators
failed. A space is succeeded if it is neither failed nor distributable. A succeeded space
is stable. The intuition is that a stable space cannot be made unstable from computation
outside of the space. It is essential for programming to detect stability of a space to
obtain predictable execution behavior.

Combining spaces results in a tree-shaped hierarchy of computation spaces, short
space hierarchy.6 The root of a space hierarchy is called the top-level space or root
space. In contrast to other computation spaces, a top-level space becomes never failed.
As a consequence of this, domains of variables created in the top-level space, so-called
top-level variables, can never become empty.

Operations Operations on spaces are provided by the module Space. The following
operations on spaces are regarded.

Space.new: Script → Space
A space is created by {Space.new x y} which synchronizes on x to be bound
to a value which is supposed to be a unary procedure (a script). Then a fresh space
s is created and y is bound to a fresh name ξ which is used to refer to s (x : ξ 7→ s).
The root variable of the space is initialized with a fresh variable z. Finally, a thread
in s is created to run {x z} in the new space.

Space.ask: {Space.ask x y} Space → Atom
The state of a space s can be inspected by {Space.ask x y} which synchro-
nizes on x : ξ 7→ s and on s being stable or merged. Then y is bound to either
the atom failed, merged, alternatives(n), or succeeded depending on
whether the space is failed, merged, contains a distributor with n choices or neither
failed, merged nor distributable, respectively.

Space.clone: Space → Space
A space is cloned by {Space.clone x y} which synchronized on x : ξ 7→ s
and on s being stable. Then y is bound to a clone ξ ′ 7→ s ′ where ξ ′ is a fresh
name and all names and variables in s′ are consistently renamed to fresh names
and variables.

Space.commit: Space × Integer
A distributable space is committed to an alternative by {Space.commit x y}
which synchronized on x : ξ 7→ s, on s being stable and not merged. Additionally,

6The notion "hierarchy" is used to distinguish from search tree created with computation spaces.

3.3 Computation Spaces 21

it synchronized on y to be bound to an integer. An error is raised if s is not
distributable or y does not denote a valid alternative (explained in Section 3.3.1).

Space.merge: Space → Any
A space is merged with the current space by {Space.merge x y} which syn-
chronizes on x : ξ 7→ s. Merging equates the root variable z of s with y, i.e.,
z = y. The application of merging in this thesis is restricted to only access the
root variable of a space.

3.3.1 Search

This section presents copy-based search engines based on computation spaces. A simple
search engine is implemented and applied to the example of Section 3.2. This section
closes by presenting some predefined search engines of Mozart.

Copy-based Search Search is applied to a problem if it cannot be solved only by con-
straint propagation. Performing a case analysis on the problem adds branching con-
straints to the problem. Thus, the constraints of the problem are strengthened and new
propagation is triggered. But this propagation may fail. Hence, state restoration has to
be used to recover from failure. Spaces suggest a copy-based state restoration approach
in contrast to widely used trailing approaches [2, 39]. Search engines based on spaces
were first presented by Schulte and Smolka in [130] and by Schulte in [127].

A branching constraint can be expressed by Oz’s choice combinator choice σ1

[] ... [] σn end where σi denotes an alternative constraint.
As an example, regard choice X=1 [] X \=: 1 end which
imposes on one branch of the search tree x = 1 and on the other
one x 6= 1. A choice combinator acts as distributor in a space and

1

2 5

3 4 6 7

makes a space distributable. The figure on the right denotes a a search tree. A circle
node denotes a choice point node (distributable space), a square node a failed node and
a rhombus node a solution.

A tree of computation spaces created by copy-based search is in contrast to hierar-
chies of spaces where branches are dependent on each other while spaces in a search tree
are independent from each other (Section 3.3.2).

A Search Engine A copy-based search is illustrated by implementing a search engine
which searches for all solutions. This engines is very simple search engine. It is restricted
to binary search trees and cannot be interrupted.

The search engine is shown in Program 3.2. Function SearchEngine expects a
space as argument and returns a list of solutions, i.e., root variables of solution nodes.
First, the state of the argument space is obtained using Space.ask. Since Space.ask
synchronizes on S to be stable, search starts when no computation has an impact on the
state of S. If the space is distributable, is it cloned and one alternative is committed in one
space and the other alternative in the other space. This triggers constraint propagation.
Then, the search engines is recursively applied to the committed spaces.

If space S is not distributable, it is checked whether it is succeeded or not. If so, the
root variable denotes a solution which s retrieved by merging the solution space with the

22 Chapter 3: Constraint Programming in Oz

space the engines runs in. If S is not succeeded, an empty solution is returned indicated
by nil.

fun {SearchEngine S} A = {Space.ask S} R in
if A==alternatives(2) % space S is distributable
then S1 = {Space.clone S} in % clone space S

{Space.commit S 1} % commit alternatives
{Space.commit S1 2}
{Append {SearchEngine S1} {SearchEngine S} R}

else
if A==succeeded % solution found
then Sol={Space.merge S} in R=[Sol] % retrieve solution
else R=nil end % no solution

end
R

end

Program 3.2: A search engine for finding all solutions.

Branch-and-bound Search It is often the case that a best solution according to some
criterion is asked for. This criterion is expressed by an ordering constraint. The presented
search engine searches for all solutions no matter if they are better than previously found
ones or not. Branch-and-bound search cures the problem. As soon as a solution is found,
branch-and-bound imposes on all open nodes of the search tree the constraint that newly
found solutions have to be better than the last one according to some criterion. An open
node is a choice point node with less than 2 edges.

1

2

3

(a) Finding the 1st solution.

1

2 5

3 4 6

(b) Finding the 2nd so-
lution.

1

2 5

3 4 6 7

(c) The tree is completely
explored.

Figure 3.4: An evolving search tree..

Figure 3.4 shows how a search tree is created. In Figure 3.4(a), the first solution
is found in node 3. An ordering constraint is added to the open nodes 1 and 2 which
enforces that the next solution is a better one. The next solution is found in node 6 (Fig-
ure 3.4(b)) and an improved ordering constraint is added to the open node 5. Eventually
node 7 fails, the search tree is completely explored and the solution found in node 6 is
the optimal solution (Figure 3.4(c)). Branch-and-bound guarantees that last solution is
the best and the ordering constraint prunes the search tree additionally.

3.3 Computation Spaces 23

Example Continued The example of Section 3.2 is continued by adding the branching
and exploration algorithms (Program 3.3).

proc {MoneyScript S}
{Money S}
{FD.distribute naive S}

end

Program 3.3: Complete script for the "send+more=money"-problem.

The finite domain library of Mozart provides the abstraction FD.distribute
which combines branching and exploration algorithms for finite domain constraints.
This abstraction can be configured for various branching and exploration strategies by
its parameters. Further, a procedure can be passed to FD.distribute which is run on
stability. This is useful for sophisticated propagation algorithms (see for example Sec-
tion 14.3.1). In this case, a naïve strategy is chosen, which takes the first undetermined
variable x ∈ dn in S and creates a distributor choice x = n [] x 6= n end where n
is the minimal value of dn.

The script MoneyScript is submitted to the previously defined search engine
SearchEngine:

Sol = {SearchEngine {Space.new MoneyScript}}

and Sol is bound to the solution [[9 5 6 7 1 0 8 2]]. The search tree of the
problem is shown in Figure 3.5.

1

4 2

3

E = 4 E 6= 4

E = 5

node S E N D M O R Y
1 9 {4, . . . , 7} {5, . . . , 8} {2, . . . , 8} 1 0 {2, . . . , 8} {2, . . . , 8}

2 9 {5, . . . , 7} {6, . . . , 8} {2, . . . , 8} 1 0 {2, . . . , 8} {2, . . . , 8}

3 9 5 6 7 1 0 8 2

Figure 3.5: The search tree and the constraints in the nodes of the
"send+more=money"-problem.

The edges of the search tree are annotated with the branching constraints imposed by
the distributor. The table shows the constraints at the problem variables in the respective
nodes. As one can see, S, M, and O are determined just by constraint propagation.

Predefined Search Engines Mozart provides two kinds of predefined search engines:
an interactive one, the Oz Explorer [126] (Figure 3.6), and various non-interactive ones,
e.g., SearchOne to find the first solution, SearchBest to find the best solution by
branch-and-boundsearch, and SearchAll to find all solutions. These machines have in
common that the problem formulation is passed as a unary procedure called script.

24 Chapter 3: Constraint Programming in Oz

These search engines provide control and debugging facilities.
For example, search can be interrupted or the size of the search
tree can be restricted. The Explorer makes it possible to explore
a search tree in an incremental way and to inspect the individual
nodes (see [129] for more control options). Figure 3.6 shows the
Oz Explorer window for the "send+more=money"-problem and
the tree is identical to the tree in Figure 3.5. Figure 3.6: Oz Explorer.

3.3.2 Constraint Combinators

Constraint combinators are another way of to facilitate speculative computation in Oz.
They provide extra expressiveness for constraint pro-
gramming. In contrast to search, combinators create
hierarchies of computation spaces. That means, com-
putation spaces depend on each other. The constraints
of a superordinated space are promoted to the sub-
ordinated space while constraints in the subordinated
space are encapsulated (Figure 3.7). The arrows in the
figure denote the direction of constraint visibility. In

superordinated
space

x
en

ca
ps

ul
at

io
n

subordinated
space

pr
om

ot
io

n

Figure 3.7: Constraint promotion and
encapsulation.

search, the spaces are independent from each other, i.e., there is no promotion of con-
straints between nodes in a search tree since branches are cloned spaces.

The implementation of constraint combinators requires in general a more precise
level of control than offered by stability. Schulte discusses these issues in detail in [128,
Chapter 11]. But for the example in this section, stability is an sufficient means of
control.

Example: A Negation Combinator The implementation of a constraint combinator is
illustrated by the implementation of a negation combinator. Stability is sufficient for this
combinator since a failed resp. succeeded space is stable. The negation combinator is
shown in Program 3.4.

proc {Negation P} N = {Space.new P} in
failed = {Space.ask N}

end

Program 3.4: A negation combinator.

First, the argument passed to procedure P is executed in a newly created space N and
then, the state of N is constrained to failed. As soon as N is stable, Space.ask syn-
chronizes and the combinator fires, i.e., succeeds if N is failed and fails if N is succeeded.

Figure 3.8 demonstrates how the negation combinator works. The combinator is run
in a space S with the constraints x ∈ {1, . . . , 10} and y ∈ {1, . . . , 10} and creates the
space N with the propagator x < y. The propagator constrains the domains of x and y
in N which is invisible in S due to encapsulation. Then, x > 5 is imposed in S which
prunes the domain of x and y. This is promoted to N and the domains of x and y are

3.3 Computation Spaces 25

S:
x ∈ {1, . . . , 10}

y ∈ {1, . . . , 10}

x ∈ {6, . . . , 10}

y ∈ {1, . . . , 10}

x ∈ {6, . . . , 10}

y ∈ {1, . . . , 4}

N :
x < y

x ∈ {1, . . . , 9}

y ∈ {2, . . . , 10}

x < y
x ∈ {5, . . . , 9}

y ∈ {6, . . . , 10}

x < y fails

x > 5 y < 5

Figure 3.8: Using the negation combinator.

further pruned due to x < y. But again, encapsulation prevents this changes to be visible
in S. Finally, y < 5 is imposed and the changes to the domains of x and y are promoted
to N which fails x < y. Now space N becomes stable and Space.ask synchronizes.
The combinator fires and succeeds.

26 Chapter 3: Constraint Programming in Oz

Part I

Constraint Propagation Engines

Chapter 4

A Propagation Engine Architecture

This chapter presents an architecture of a sequential propagation engine which realizes
the computational model discusses in Section 2.3.

4.1 Components of a Propagation Engine

A propagation engine consists of domain-independent propagation services and domain-
dependent domain solvers. A single propagation engine can be connected to several
domain solvers which may cooperate with each other (for example, see Section 13.1.3
for connecting finite domain and finite integer set constraints).

The separation of a propagation engine in propagation services and domain solvers
suggests to introduce of an interface which is done in Chapter 6.

propagation services

domain
solver

. . .
domain
solver

. . .
domain
solver

Figure 4.1: Propagation engine = propagation services + domain solvers.

A propagation engine is hosted in a computation space. The architecture reflects this
by providing means to compute the status of a computation space.

4.2 Representation of the Constraint Graph

As discussed in Section 2.3, running the propagation engine results in transforming
the constraint graph for a propagation algorithm defined by a constraint program (Sec-
tion 2.1). This section discusses the representation of the constraint graph while the
remaining sections of this chapter discuss the transformation of the constraint graph.

30 Chapter 4: Representation of the Constraint Graph

A constraint graph is represented in this model by an engine constraint graph con-
sisting of variable nodes and propagator nodes.

4.2.1 Constraint Variables

A constraint variable (Figure 4.2) represents a variable node of the constraint graph in
Figure 2.3 on page 13. It consists of a variable head and a variable body. The head is
domain-independent and is connected to the body. The body consists of the domain d and
different sets of connected sleeping propagators, short sleeping propagator sets. These
sets are indexed by events e1 to en . An event ei on the variable causes the propagators in
the sleeping propagator set indexed by ei to be scheduled.

constraint variable head
set of connected
sleeping propagators

...

domain d
set of connected
sleeping propagators

en

e1

Figure 4.2: A Constraint Variable.

The domain representation and the indexing events have to be defined by the do-
main solver while the representation of the sets of sleeping propagators is part of the
propagation services.

4.2.2 Propagators

A propagator represents a propagator node of the constraint graph. It is an entity with a
shared and a private state (Figure 4.3). Additionally, it is equipped with a propagation
function which computes new basic constraints for the parameters. This function is
explained in detail in Section 4.3.

Shared and Private State The shared state comprises the propagator’s parameters,
which are typically shared between several propagators. The private state consists of the
propagator head and the propagator body and its information is accessible only by the
propagator itself. The body is defined by the domain solver. It holds the references to
the parameters and provides the propagation function.

Role of the Propagator Head The propagator head is the domain-independent inter-
face between the propagation services and the corresponding propagator body. The head
has access to all information needed to manage and execute a propagator, as for example
the execution state and (via the body) the propagation function (see Section 4.4).

4.3 Propagator Execution 31

propagator head p1 propagator head p2 private state

propagator body p1 propagator body p2

parameter v1 parameter v2 parameter v3 shared state

Figure 4.3: Propagators with private and shared state.

4.3 Propagator Execution

Executing a propagator p imposing a constraint c means to run its propagation func-
tion. This function computes by its filter Fc new domains d ′ strengthening the current
domains d of the propagator’s parameters. Propagation events are computed from d ′ and
a constraint profile taken from d . A constraint profile prof d of a domain d contains char-
acteristic information of d to compute events in conjunction with a strengthened domain
d ′. A profile prof d is supposed to use less memory then the whole domain d . Constraint
profiles are domain-dependent and hence, part of the domain solver. The structure of a
propagation function is shown in Figure 4.4.

1. obtain access
to domains d of parameters

3. filter Fc: compute new domains
d ′ for constraint c

2. compute profile prof d

4. write domains d ′ to
parameters, compute events and
return value for propagation function

d
d

d ′

prof d

Figure 4.4: Propagation function of a propagator for constraint c.

A propagation function proceeds in four steps:

1. The propagation function obtains access to the domains and sleeping propagator
sets of the parameters via the references stored in the body of the propagator.

2. Constraint profiles of d are taken.
3. New domains d ′ are computed by the filter Fc. A filter can additionally create new

propagators on its parameters, for example to replace itself.
4. The new domains d ′ are written to the parameters. Events caused by filtering

are computed from the constraint profiles prof d and d ′. The computed events are
passed together with the return value of the propagation function to the propagation

32 Chapter 4: Managing Propagators

services. The return value indicates whether constraint c realized by pc is entailed
by the store (entail), inconsistent with store (fail), or none of both (sleep).

Constraint profiles are introduced to allow filters to override domains by providing
memory-efficient means to memorize a previous state of a domain.

Running filters as part of executing propagator results in transforming the constraint
graph by removing (propagator entailment), adding (propagator creation), and invalidat-
ing the nodes (propagator failure).

4.4 Managing Propagators

Performing propagation on a constraint graph transforms the graph as long as events
arise. Therefore, the propagation services maintain three sets of propagators as shown in
Figure 4.5

Maintaining Sets of Propagators The sleeping propagator set is the union of the
sleeping connected propagator sets of all variables. As soon as a propagator is scheduled
by some event it is moved to the runnable propagator set (transition schedule). A
propagator is returned to the sleeping propagator set if executing its propagation func-
tion returned sleep (transition sleep). Otherwise, in case the propagation function
returns either fail or entail, the propagator is moved to the discarded propagator set
(transition discard).

sleeping
propagators set

runnable
propagators set

discarded
propagators set

schedule

sleep

discard

Figure 4.5: Sets of propagators maintained by the propagation services.

This set model makes it easily possible to detect if the computation space hosting a
propagation engine is stable or entailed when propagation reaches a fixed-point.
A fixed-point is reached if the runnable propagator set is empty. A computation space is
entailed if the sleeping propagator set is additionally empty. Otherwise, the compu-
tation space is stable.

Managing an Individual Propagator The propagator management from the view
point of an individual propagator p by the propagation services is as shown in Figure 4.6
and resembles the execution states in Figure 2.4 on page 13.

As soon as a propagator is created its propagation function is executed to perform
an initial consistency check. According to the return value the propagator is moved to
either the sleeping propagator set or discarded propagators set. In case the return value
is fail, the propagation terminates immediately and the status of the host space is set
failed. The transition from the sleeping to the runnable propagator set is caused by
some event on a parameter of propagator p.

4.4 Managing Propagators 33

add p to sleeping
propagators set

add p to runnable
propagators set

execute propagation
function of p

discard propagator p
discard propagator p;
fail computation space

some events

sleep p is set running

run

entail fail

Figure 4.6: Managing an individual propagator.

The propagation services use a propagator scheduler to pick a propagator from the
runnable propagators set and to set it running (transition run in Figure 4.6). The propa-
gator scheduler guarantees that every propagator in the runnable propagator set is even-
tually run but does not make any assumption about when and in which order.

Non-monotonic Propagators Non-monotonic propagators occur in real-world appli-
cations, as for example in scheduling where tasks have
to be allocated on resources. The pruning of a non-
monotonic propagator depends on the current state of
the constraint store. For example, Würtz presents in
[150, Section 5.2.3] a non-monotonic filter algorithm
which allocates a given task relative to a set of tasks (a
so-called task interval [27]) depending on the current
constraint store. Hence, to ensure that always the same

runnable propagators set:

set of ordered set of
runnable runnable
monotonic non-monotonic
propagators propagators

Figure 4.7: Extended runnable prop-
agators set.

propagation fixed-point is reached, non-monotonic propagators have to be invoked on
the same basic constraints in the store.

This is achieved by executing non-monotonic propagators in a fixed order after all
monotonic propagators have reached a fixed-point. Therefore, every non-monotonic
propagator is assigned a unique priority on its creation. The priority is stored in the
head of the propagator and determines the order of execution. Further, the runnable
propagators set is extended by an ordered set of runnable non-monotonic propagators
(Figure 4.7). Monotonic propagators are stored the set of runnable monotonic propa-
gators. The propagator scheduler runs all propagators in the set of runnable monotonic
propagators before it runs all propagators in the ordered set of runnable non-monotonic
propagators according to their priority. This guarantees that starting from the same con-
straint store, every execution of a non-monotonic propagator function faces the same
basic constraints.

Note that running non-monotonic propagators may schedule other (monotonic and
non-monotonic) propagators. Hence, propagation continues until both propagator sets
are empty.

34 Chapter 4: Managing Propagators

Chapter 5

Propagation Services for Mozart

This chapter discusses the integration of propagation services into the virtual machine
(VM) of Mozart according to the architecture introduced in Chapter 4. The integration
of propagation services is presented in two steps: (i) without spaces and (ii) with spaces.
Step (i) starts by introducing Mozart’s VM with threads and synchronization but without
hierarchies of computation spaces in Section 5.1 and continues by discussing the inte-
gration of propagation services in this VM in Section 5.2. Step (ii) takes hierarchies of
computation spaces into account is presented in Section 5.3. The VM is extended by
computation spaces in Section 5.3 and the following sections adapt propagation services
for this extended VM. The chapter closes with a discussion in Section 5.4.

5.1 Mozart’s Virtual Machine

This section describes the part of Mozart’s VM needed for concurrent computation with
synchronization. The VM provides a computational environment to the propagation
services including the constraint store (for hosting constraint variables), concurrency and
synchronization (for scheduling and running propagators), and foreign code execution
(for propagator creation).

The Mozart VM is explained in great detail in [88, 124, 89] while the integration of
spaces is presented in [128].

5.1.1 Constraint Store

The constraint store stores values as a value graph: A node represents the current knowl-
edge about a value while an edge denotes the equality between values. A node can either
be a value node representing a value, a variable node representing a variable (a value still
unknown), or a reference node referring to another node. Every node carries its type. A
variable node represents the head of a variable and points to the corresponding body. A
variable is bound to a value by overriding the corresponding variable node by a reference
node pointing to the corresponding value node.

36 Chapter 5: Propagation Services for Mozart

5.1.2 Concurrency and Synchronization

The Mozart VM provides a sequential implementation of concurrency. Further, concur-
rent computation can synchronize on the binding of variables.

Concurrent Computation A thread executes a sequence of statements σ1, . . . , σn .
These statements are stored on a stack. A thread runs by taking the top-most statement
from the stack and executing it.

The execution of threads is controlled by the scheduler of the VM which runs at most
one thread at a time. Thereby, threads go through different states (similar to propagators).
The state of a newly created thread is runnable. A runnable thread will be eventually
executed (due to fairness). Assigning a time-slice to a runnable thread sets the state to
running and runs the thread. A running thread is preempted if its time-slice is expired
and the thread is not terminated, i.e., its stack is not empty. Preemption is needed for
fairness to eventually run all runnable threads. A preempted thread is immediately set
runnable again.

Synchronized Computation The VM implements synchronization as follows: If a
thread τ executes a statement σ suspending on a variable v, then the thread is suspended
and its state is set blocked. Then, a reference to τ (called suspension) is added to the
suspension set of v and σ is pushed back on τ ’s stack. The suspension set is stored in
the body of variable. Since the top-most statement of τ ’s stack is σ , resuming τ resumes
σ . A blocked thread is set runnable again by scheduling it.

Binding variable v causes all threads in the suspension set of v (among them thread τ)
to be scheduled and the corresponding suspension to be removed from the suspension set
of v. To avoid that binding different variables may cause a single thread to be scheduled
more than once, only threads with state blocked can be scheduled.

Execution of Foreign Code The VM is able to run foreign code by foreign functions.
The VM provides a uniform calling scheme for passing arguments to and obtaining the
execution status from a foreign function. Further, a foreign function can suspend on a
variable v. In that case, v is passed to the VM and the statement calling the foreign func-
tion is suspended as described above. Note that a foreign function cannot be preempted.

5.2 Propagation Services

Propagation services are based on the architecture presented in Chapter 4 and extend
the Mozart VM by the domain solver-independent part of propagation engines (see Fig-
ure 4.1 on page 29). This makes it possible to create a propagation engine by attaching
the corresponding domain solver to the VM.

Propagation services extend the VM by constraint variables (Section 5.2.1), propa-
gators (Section 5.2.2) and propagator management (Section 5.2.3).

5.2 Propagation Services 37

5.2.1 Constraint Variables

A constraint variable is derived from a variable according to Section 4.2.1:

constraint variable = variable + domain d + event sets.

In the following, the operations required to integrate constraint variables in the Mozart
VM are discussed.

Telling Basic Constraints In contrast to binding a variable to a value, as discussed
in Section 5.1.1, a constraint variable can be successively constrained until it denotes a
single value. This is simply done by updating the domain d of a constraint variable with
a strengthened domain d ′. Connected propagators waiting for caused events have to be
scheduled.

Computing Events and Scheduling Propagators Constraint propagation on con-
straint variables causes events and as consequence, connected propagators waiting for
the respective events have to be scheduled. As discussed in Section 4.3, efficient com-
putation of events uses constraint profiles.

constraint variable
with domain d

constraint profile prof d

constraint
propagation on d

compute
events

schedule propagators in the event
sets addressed by the computed events

domain pruning

d ′ prof d

events

Figure 5.1: Relation between basic constraints, constraint profiles, and events.

Figure 5.1 shows how a domain, a constraint profile, and events interact. Before
constraint propagation, a constraint profile prof d is taken from d . After constraint prop-
agation has finished, the strengthened domain d ′ is compared with prof d to compute the
events for scheduling sleeping computation. Eventually, the propagators in the respective
sleeping propagator sets are scheduled.

Note that actually every domain modification during domain pruning produces
events. To avoid frequent event computation, events are computed once when pruning
has finished. Constraint profiles make it possible to override domains during pruning.

A pesimistic estimation for a profile is to memorize the complete domain before
propagation. Profiles are mainly used where many domains are under consideration
at once, as in propagation functions of propagators. An example for a finite domain
constraint profile and the computation of the corresponding events is given in Section 8.2.

5.2.2 Propagators

A propagator consists of a head and a body (Figure 4.3 on page 31). The head is do-
main independent and stores all information for managing a propagator. The body of

38 Chapter 5: Propagation Services for Mozart

a propagator is defined by the domain solver and is private to the propagator. It stores
the references to the parameters which are shared with other propagators. Additionally,
other data structures, as tables of pre-computed values, can be shared between different
propagators. The private state can also be used for optimizations, e.g. storing intermedi-
ate results to avoid their re-computation.

Execution and Execution States of a Propagator A propagator performs constraint
propagation by executing its propagation function. The propagation function is defined
by the domain solver and its return value indicates the VM to what execution state to
proceed from state running (Figure 2.4 on page 13). The current execution state of a
propagator is stored in the private state of the propagator.

Creation of a Propagator A propagator is created in three steps as shown in Figure 5.2.
The code for creating a new propagator is run by a foreign function. Such a function is
called a creator function.

1. Check expected constraints: If the type of the parameters is incorrect raise a
type-error. If the parameters have not the expected mode suspend the creator
function on the responsible parameters. This cause the creator function to
be re-invoked when additional information becomes available.

2. Create propagator: Create the propagator and initialize the propagator’s
state in particular with references to the parameters.

3. Impose propagator: The propagation function of the propagator is initially
run. If this run does not terminate the propagator (by returning fail or
entail), references to the propagator (called propagator suspensions) are
added to sleeping propagators sets of the parameters. These sets correspond
to the events the propagator is scheduled on the respective parameters.

Figure 5.2: Steps of creating a propagator.

A propagator can only be imposed on parameters of expected type and mode. Pa-
rameters must have the expected type since for example a finite domain propagator can
obviously not cope with finite sets of integers. Even if no type-error occurred, the pa-
rameters must have the expected mode to make it impossible to invalidate constraint
propagation. For example, if the parameters of a finite domain propagator are not yet
finite domain variables, its propagation might be wasted when the parameters are later
on constrained to some values incompatible with finite domains. Type and mode are
determined by the constraints expected at the parameters, called expected constraints.

Non-monotonic Propagators On creation, a non-monotonic propagator is assigned a
unique priority by the propagation services which is stored in the propagator’s head. A
propagator is monotonic if there is no priority stored. This is the default case.

Propagation Function Constraint propagation is performed by a propagation function
as shown in the diagram in Figure 4.4 on page 31. This diagram is made linear by

5.2 Propagation Services 39

collapsing steps 1 and 2 such that constraint propagation proceeds in three steps (Fig-
ure 5.3).

1. Read parameters: A propagator’s body stores reference nodes to its param-
eters. The propagation function obtains access to the domain of a parameter
by a access variable. During creation of an access variable, the domain of
the corresponding parameter is obtained and the constraint profile is com-
puted.

2. Perform constraint propagation by filtering: This part computes the actual
elements to be removed from the domains of the parameters. Access to the
domains is obtained by the corresponding access variables.

3. Write parameters: This part is responsible to write back the domains com-
puted by the previous step. Additionally, the events caused by constraint
propagation are computed (using the constraint profiles stored in the access
variables) and propagators waiting for events are scheduled.

Figure 5.3: Steps of running a propagation function.

5.2.3 Propagator Management

This section describes the integration of propagator execution as part of propagation
services into the Mozart VM. This design of the integration is based on an analysis of
real-world constraint programs and thus, the requirements of realistic applications are
met.

Analyzing a Propagator’s Life-cycle Propagators are long-lived, i.e., they are re-
invoked many times. Running the constraint application programs of the Mozart test
suite1 produces the figures in Table 5.1. These figures are a rather pessimistic estimation
since the application programs in the test suite try to provoke "pathological" situations
where global variables are typically involved.

propagators immediately remaining
created failed entailed propagators
232.793 3.461 106.421 122.911

Table 5.1: Results of initial runs of propagation functions.

The 122.911 remaining propagators are neither immediately failed nor entailed. They
need 4.742.490 re-invocations to eventually become entailed or failed. That means a
propagator which is not immediately failed or entailed, is re-invoked on average 38 times.

1The Mozart test suite is a collection of dedicated test cases and constraint programs for practical
application problems. The Mozart test suite is part is the source code distribution of Mozart [99].

40 Chapter 5: Propagation Services for Mozart

Initial Run of Propagation Function The figures in Table 5.1 shown that about 47 %
of all propagator immediately terminate. This is the reason for the initial run of the prop-
agation function while a propagator is created. Thus, by early detection of propagator
termination adding propagator suspension to the parameters can be avoided (see step 3
in Figure 5.2).

Persistent Propagator Suspensions Due to the typically large number of re-
invocations of propagators, frequent changes to the constraint graph (removal and ad-
dition of labeled edges; see Figure 2.3 on page 13) would be inefficient. Hence, the
graph is kept by making propagator suspensions persistent, i.e., a propagator suspension
is not removed from an event set if the propagator is scheduled. Instead, it is left in
the event set and since it refers to a scheduled propagator, multiple scheduling of the
propagator is avoided.

Propagator Execution The VM is extended by a runnable propagator set (RP) and
a non-monotonic runnable propagator set (NRP). These sets correspond to the set of
runnable monotonic propagators resp. to the ordered set of non-monotonic propagators
in Section 4.4. Scheduling a monotonic propagator adds the propagator to RP while
a non-monotonic propagator is correspondingly added to NRP. As soon as RP is not
empty, a thread TRP is created which runs a propagation engine. The propagation en-
gine executes the propagation functions of the propagators in RP. The thread TRP can
be preempted between two function invocations but is immediately scheduled again. As
soon as RP is empty, TRP terminates and the non-monotonic propagators in NRP are run
by the propagation engine for non-monotonic propagators in an fixed order according to
their priority. This propagation engine works identically to the monotonic propagation
engine except that the order of propagators is maintained. Running non-monotonic prop-
agators may in turn schedule monotonic propagators and thus, re-invoke the monotonic
propagation engine.

5.3 Hierarchical Computation Spaces

This section integrates propagation services into the Mozart VM extended by hierarchies
of computation spaces. Section 5.3.1 adds computation spaces to the VM presented in
Section 5.1. Section 5.3.2 discusses the encapsulation of constraint propagation while
Section 5.3.3 reconsiders propagators management for hierarchical computation spaces.

Hierarchies of computation spaces are of relevance for constraint combinators (Sec-
tion 3.3.2). Copy-based search is completely orthogonal to space hierarchies since it
transparently copies computation spaces (including constraint variables and propaga-
tors) without modifying the copied spaces (except consistent renamings of the entities in
a copied space).

5.3 Hierarchical Computation Spaces 41

5.3.1 Computation Spaces in the Virtual Machine

A computation space (for short space) encapsulates computation. This means that com-
putation inside a space S does not affect computation outside S. In contrast, computation
outside S may have an effect on S. Especially, an inconsistency in a space fails only the
space (including its subordinated spaces, if there are any).

Simulating Multiple Stores The VM maintains a single constraint store. Multiple
stores of multiple spaces are simulated by a combination of trailing and scripting. Possi-
ble changes to a store are variable bindings to variables not hosted by the current space.
These bindings are recorded in a trail. The VM has a single trail which consists of trail
entries. A trail entry stores a variable node and the location of the variable node.

Whenever a trailed binding is undone, the binding is recorded in a script to be able
to reconstruct the state of the computation space. Hence, every space has a script for
its own. The script entry of a script memorizes the binding of a variable by storing the
location of the variable node and the location of the node of the value the variable was
bound to.2

Situatedness Encapsulated computation makes threads and variables situated by as-
signing them to a home space. Hence, every variable and thread stores its home space.
The home space is typically the space of creation.3 Changes to variables are only visible
to the sub-hierarchy of the space hierarchy with the home space as root. A thread is exe-
cuted in its home space. This causes computation to move between computation spaces.
This requires to install a space when computation enters the space and to de-install a
space when computation leaves the space. A variable v is called local to a space S if S is
the home space of v. A variable is called global to a space S if S is not the home space
of v and the home space of v is on the path from S to the root space.

Installation restores all bindings present before the space was left. The bindings are
stored in the script and are reestablished by unifying the two components of the script
entries. De-installation reverts all trailed bindings (called untrailing) by writing back the
previous values to the memorized location according to the trail entries. At the same
time the script is written to make the re-installation of these bindings possible whenever
computation enters this space again.

Synchronized Computation Revisited Situatedness has to be taken into account by
synchronization. When a variable is bound, only those threads are scheduled which are
situated in the current space sub-hierarchy. A current space sub-hierarchy includes all
spaces which are connected with root via the current space and the current space itself.
Note that threads must not be scheduled when installing a space since this may cause
infinite computation (see [128, Example 13.5]).4

2The location of the value node is stored because the value can be a variable which might be bound
before the next reconstruction.

3Note merging two spaces makes the home space different to the space of creation (see Schulte’s thesis
[128, Section 13.4] for details).

4Tree constraints are an exception since they may add new bindings. See [128, Section 13.6.2] for
details.

42 Chapter 5: Propagation Services for Mozart

Status of a Space The VM needs to detect the status of a computation space which
is either failed, stable, or entailed. A space is failed if a statement attempts to
write a value to the store being in contradiction with the current values in the store. A
space is stable if there are no runnable threads (detected by the scheduler of the VM)
and no threads suspending on global variables ([128, Section 13.3]). Otherwise, outside
computation would be able to trigger new computation within a space. A space is en-
tailed if it is stable and no threads are left. This is detected by having a counter keeping
track of the number of threads.

5.3.2 Encapsulation of Constraint Propagation

The introduction of space to the VM makes constraint variables situated, i.e., a constraint
variable stores its home space in its head.

Trailing Changes to Global Constraint Variables Changes to a global constraint vari-
able have to be encapsulated. Hence, updating the domain of a global constraint variable
by telling a basic constraint to it requires to trail the changes by taking a copy of the
original domain. Since this operation is a very frequent operation, an efficient imple-
mentation has to avoid redundant trailing.

The standard technique is time-stamping, i.e., a variable which is trailed is stamped
with a virtual time. A variable is only trailed if the current time and the variable time
is different. Since every space has its own virtual time, a variable is only trailed once
per computation space. The straightforward scheme has an extra field that stores the
complete time information [2]. Instead, a trailing scheme called time-marking [128] is
used which requires just a truth value. Therefore, the implementation needs just a single
bit (see Section 7.2.1 for details). The idea is to tag a variable as being time-stamped
as soon as it is trailed to prevent further trailing. When moving on to a subordinated
space, all tags of variables trailed in the child space are undone before creating a new
trail frame. When coming back to this trail frame later on, all variables in the old trail
frame are tagged trailed again.

Propagation Function Parameters of propagators can be global constraint variables.
Only the propagation function of a propagator has to take care for global parameters.
This is done by extending steps 1 and 3 in Figure 5.3 on page 39. Step 1 creates a
working copy of the domain of a global and all domain updates are done on this copy.
Step 3 is extended to update the actual domain of a global parameter with the working
copy by trailing the changes.

5.3.3 Propagator Management Reconsidered

The introduction of spaces in the VM makes propagators situated, i.e., a propagator is
only run in its home space. The home space is stored in the head of the propagator.

Scheduling of Propagators A computation space encapsulates constraint propagation.
This requires that only propagators in the current space sub-hierarchy are scheduled due

5.3 Hierarchical Computation Spaces 43

to changes of constraint variables in the current space. Hence, Figure 5.1 has to be
updated accordingly to schedule only propagators in the current space sub-hierarchy.

Local Runnable Propagator Sets and Local Propagation Engine Moving compu-
tation from one space to another imposes an unnecessary overhead. It is desirable to
perform as many propagator invocations as possible in an individual space without being
interrupted by moving from one space to another. Hence, the global runnable propagator
set (Figure 4.5 on page 32) is split into space-wise local runnable propagator sets (short
LRP). Scheduling a monotonic propagator p, adds p to the LRP of p’s home space.
The union of all LRPs corresponds to the set of runnable monotonic propagators in Fig-
ure 4.7 on page 33. Monotonic propagators to be executed in a space S are stored in
lrpS (the LRP of S). The propagation engine for monotonic propagators in Section 5.2.3
is replaced by local propagation engines associated with computation spaces. A local
propagation engine associated with S executes the propagators in lrpS. As soon as lrpS
is not empty, an LRP-thread TlrpS

is created and scheduled. Running TlrpS
executes the

local propagation engine of space S. This propagation engine can be preempted between
two propagator function invocations to not interfere with the fairness of threads. After
preemption, the corresponding LRP-thread TlrpS

is immediately scheduled. If lrpS is
empty, the execution of the engine stops and the LRP-thread TlrpS

is discarded. A new
thread T ′

lrpS
is created if a propagator is scheduled to in S and hence, added to lrpS.

Running Non-monotonic Propagators Non-monotonic propagators are run in an or-
der fixed by their priority; the earlier a propagator is created, the higher is its priority.
Every space is assigned a non-monotonic local runnable propagator set (short NLRP).
This is an ordered set of runnable non-monotonic propagators which dispenses propaga-
tors according to their priority. Scheduling a non-monotonic propagator p, adds p to the
NLRP of p’s home space. The union of all NLRPs represents the ordered set of runnable
non-monotonic propagators in Figure 4.7 on page 33.

If lrpS is empty the propagators in the NLRP nlrpS of a space S are run by local
propagation engines for non-monotonic propagators. These propagation engines work
identically to the local propagation engines for monotonic propagators except that the
order of propagators is maintained. Running the propagators from nlrpS may turn other
propagators in S runnable again and thus S may become instable again. A space S
can only become stable if lrpS and nlrpS are empty.

Locality of Parameters and Propagators The majority of parameters of propagators
are local, i.e., created in the same space as the propagators themselves. Running the
constraint applications of the Mozart Oz test suite produces the figures in Table 5.2.
These figures are similar to the figures given by Montelius in [97, Section 7.6] and show
that 87 % of the parameters are local.

The observation that the vast majority of the parameters of a propagator are created in
the same space as the propagator itself and the fact that propagators are typically added
to event sets, suggests to enforce the invariant that event sets store only propagators
that have the same home space as the parameter. This avoids the overhead of check-
ing locality for every individual propagator once the locality of a parameter is checked.

44 Chapter 5: Propagation Services for Mozart

number of
all parameters local parameters global parameters

343.736 299.353 44.383

Table 5.2: Locality of propagator parameters.

Scheduling propagators amounts then to simply moving propagators of a event set to the
local runnable propagator set of the current space without any locality check.

A propagator suspension on a global parameter is added to the parameter’s suspen-
sion set instead of an event set. For propagator suspensions in a suspension set, locality
has to be checked individually.

Stability For stability checking a space S, the VM needs (i) the parameters of the prop-
agators in S (see Section 5.3.1) and (ii) the information if there are runnable propagators
in S. Due to the requirement (i), every propagator is able to provide the VM with its
parameters. The VM checks for propagators with global parameters. Requirement (ii) is
covered by the mechanism for threads since all runnable propagators of S are represented
by the LRP-thread TlrpS

.

5.4 Discussion

The presented integration of propagation engines is fully orthogonal to search and
garbage collection since both are based on copying. Hence, both issues need not to
be considered for the integration. In contrast, hierarchies of computation spaces have
a significant impact on the integration and require a considerable amount of design and
implementation effort. Their trailing scheme for realizing encapsulation is not to be
confused with the copy-based state restoration scheme of Mozart’s search facilities.

An interesting scheduling scheme, called "layered propagation architecture", is pro-
posed by Laburthe in [83]: instead of having only one runnable propagator set, there are
different levels of expected propagation cost corresponding propagator sets. The set with
lowest cost is run first and then the other sets according to the costs of the propagators.
The presented model can "mimic" Laburthe’s scheduling scheme for the case of two sets
of runnable propagators by declaring expensive propagators as "non-monotonic" and
thus, postponing their execution until all other propagators have reached a fixed-point.

The presented integration of propagation services is an conservative and orthogonal
extension of the Mozart VM because it extends the functionality of the virtual machine
via a clean interface without changing existing components of the VM.

Chapter 6

A Domain Solver Interface
Architecture

This chapter presents the design of an interface for separating propagation services and
domain solvers extending the architecture in Figure 4.1 on page 29 to the architecure in
Figure 6.1.

propagation services

constraint programming
interface

virtual machine

plug-in
domain
solver

. . .
plug-in
domain
solver

. . .
plug-in
domain
solver

external modules

Figure 6.1: Architecture of a propagation engine with an interface between prop-
agation services and domain solvers.

This makes it possible to connect different domain solvers by the interface to the
propagation services. Domain solvers are now external modules plugged into the VM.

Additionally, this chapter proposes an interface for separating propagation functions
and filters. Mozart’s constraint propagator interface (Chapter 8) is based on this design.

6.1 Requirements

An interface between propagation services and domain solvers has to meet the following
requirements:

Ease of Use The interface hides low-level issues like system particularities to enable the
user to concentrate on issues like filtering and propagation techniques. On one hand,

46 Chapter 6: Constraint Variables

the provided abstractions make it possible to solve common implementation tasks
with minimal effort. On the other hand, the implementation of non-straightforward
optimizations is possible too.

Expressiveness The interface is flexible enough to support state-of-the-art constraint
solving techniques.

Extensibility The interface provides abstractions to make the complete implementation
of new domain solvers possible. Furthermore, it is extensible to meet the requirements
of future developments (for example, see Section 14.4 on the implementation of first-
class constraints).

Minimality The interface provides only functionalities that cannot be obtained other-
wise by the virtual machine. This makes the implementation simple and maintainable.
This is because programmers tend to keep just a limited set of functions in mind and
program their own extensions on top of them.

Compatibility and System-Independence The interface model can be easily imple-
mented for various propagator-based engines. Filter for the propagation functions of
propagators can be (re-)used without the need to change any of their code as demon-
strated in the constraint library FIGARO [111].

Efficiency The interface services used by domain solvers have to be efficient.

6.2 Constraint Variables

This section discusses descriptions of new domain solvers and the creation of constraint
variables.

Description of a Domain Solver (Figure 6.2) A domain solver DS is described by its
type (typeDS), its constraint domain (domainDS), and possible events (eventsDS).
This information is collected in a domain solver description.

propagation service passed messages domain solver

create domain solver description
for DS:

typeDS
domainDS
eventsDS

describe new

domain solver DS

interface

typeDS , domainDS , eventsDS

domain solver description for DS

Figure 6.2: Description of a domain solver.

The type assigns a constraint variable to a certain domain solver. The constraint do-
main determines the "universe" of a domain solver. The events are needed for scheduling
propagators.

Creating a Constraint Variable (Figure 6.3) Creating a new constraint variable needs

6.3 Managing Propagators 47

a domain solver description to be able to initialize the new variable with the type, an
constraint domain, and a set of event lists.

propagation service passed messages domain solver

create constraint variable w.r.t.
domain solver description:

constraint variable:
type: typeDS
events: Ei∈eventsDS
domain: d ⊆ domainDS

create new

constraint variable

interface

domain solver description descrDS

constraint variable

Figure 6.3: Creating a constraint variable.

The domain solver passes a domain solver description to the propagation service and
obtains the newly created constraint variable.

6.3 Managing Propagators

This section identifies the operations on propagators to be made available by an interface.

Propagator Scheduling (Figure 6.4) Propagator scheduling needs to distinguish be-
tween monotonic and non-monotonic propagators. In case of the later ones, the priority
has to be obtained additionally.

propagation service passed messages domain solver

propagator scheduling query propagator if

it is monotonic

retrieve priority of

propagator

interface

propagator

propagator is monotonic propagator is
non-monotonic

propagator priority

Figure 6.4: Propagator scheduling.

Stability Check (Figure 6.5) The stability check needs to analyze parameters of prop-
agators which are situated in superordinated spaces. Hence, a propagator is requested

48 Chapter 6: Constraint Propagation

to provide its parameters to the propagation service. Note that this functionality is also
essential for first-class constraints (see Section 14.2).

propagation service passed messages domain solver

perform stability check for

encapsulated search

retrieve parameters

of propagator

interface

propagator

parameters of propagator

Figure 6.5: Stability check.

Creating a Propagator A propagator pc for a constraint c is created and imposed on
its parameters (Figure 6.6) if the basic constraints of its parameters bparams entail the
constraints expected by the constraint on its parameters bexpected. If this is not the case, it
is signaled to the propagation services: suspend is signaled if bexpected is not yet entailed
and type-error if bexpected is dis-entailed. Otherwise, the events for re-executing the
propagator are determined, the propagator is created and passed along with the events to
the propagation service.

propagation service passed messages domain solver

create propagator for constraint c
check expected

constraints

suspend thread resp. handle

type-error

add propagator pc to event lists

of its parameters and schedule pc

determine events

and construct

propagator for c
interface

constraint c

parameters of c

suspend

type-error
success

events for parameters

propagator pc

Figure 6.6: Creating a propagator.

6.4 Constraint Propagation

This section identifies the functionality required by a propagator to perform constraint
propagation.

6.4 Constraint Propagation 49

propagation service passed messages domain solver

run propagator pc representing

constraint c

read domains of
parameters of pc

➀

constraint store

parameters of pc
run filter Fc

control life-cycle of pc, i.e.,

terminate pc by entailing or

failing it, or set pc asleep

update domains of
parameters

➁

compute propagator
execution status

➂
interface

propagation function of pc

parameters of c

domains

domains

reduced
domains

updated domains

propagator
execution status

Figure 6.7: Running a propagation function.

Executing a Propagator (Figure 6.7) Executing a propagator means to run its prop-
agation function. This is done either in the course of creating a propagator or if events
occur on parameters of the propagator.

Domain reduction is performed by the filter of the propagator which runs on the
domains of the parameters. Hence, the propagation function retrieves the domains of its
parameters, invokes the filter, and finally updates the reduced domains of the parameters.

The propagator execution status is computed depending on whether the reduced con-
straints are entailed by the constraint store, inconsistent with the store, or none of it.
The propagator execution status is passed to the propagation service which controls the
life-cycle of the propagator according to Figure 2.4 on page 13.

Accessing Parameters (Figure 6.8) Accessing a propagator’s parameter comprises to
obtain access to the domain, to compute a profile, and when domain reduction (filtering)
is finished, to update the parameter domain and to inform the propagation services which
propagators have to be scheduled.

Propagator Creation by Propagator Function (Figure 6.9) While running the prop-
agation function, the creation of a new propagator may be desired for example for op-
timizations. This newly created propagator pc′ may either supplement or replace the
existing propagator pc (as in case of propagators for reified constrains). This is deter-
mined by the filter algorithm.

Propagator pc′ is imposed on (a subset of) the parameters of pc. The required func-

50 Chapter 6: Separating Filters from Propagation Functions

propagation service passed messages domain solver

read domain of

parameter v

constraint store

parameter v
domain d
propagators
waiting for
events on v

reducing

domain

d to d ′

compute

profile

prof d

from d

schedule propagators

compute events E

from d ′ and prof d ;

select propagators to

be scheduled for

events E on v

interface

parameter v

d

d ′

propagators per event

propagators

d ′ prof d

Figure 6.8: Accessing Parameter.

propagation service passed messages domain solver

create new propagator

for constraint c′

add propagator pc′ to event lists

of its parameters and schedule

pc′

determine events and
construct propagator
pc′ for constraint c′

➃
interface

c′

events and parameters

propagator pc′

Figure 6.9: Propagator creation by propagator function.

tionality is a subset of the functionality for the creation of a propagator from scratch
(Figure 6.6).

6.5 Separating Filters from Propagation Functions

A filter is independent of the host system and is desired to be shared between various im-
plementations of domain solvers. Hence, it is desirable to isolate the services required by

6.6 Interface Abstractions 51

a filter function and to define an interface that makes filter host system-independent and
thus, straightforward to share. Figure 6.10 shows the interface between a propagation
function and its filter.

domain solver passed messages filter

read domains of
parameters of pc

(see ➀ in Figure 6.7)

perform domain reduction

for constraint c

update domains of
parameters

(see ➁ in Figure 6.7)

compute propagator
execution status

(see ➂ in Figure 6.7)

compute filter status

determine events and
create propagator for c′

(see ➃ in Figure 6.9)

impose new constraint c′

interface

domain d

domain d ′

filter status

constraint c′

parameters, events

Figure 6.10: Separating the filter from the propagation function.

The filter interface relies on operations provided by the interface between the prop-
agation service and the propagators (references ➀–➃ in Figure 6.10) and isolates such
operations only relevant for connecting a filter function with a propagator.

The filter operates only on domains rather than on variables. The filter status is an
abstract value which is translated into host system-dependent values. If the filter wants
to impose an extra propagator, it passes the constraint to its host propagator which takes
care of creating a new propagator.

6.6 Interface Abstractions

The identified services for an interface between propagation services and domain solvers
have to be reflected by interface abstractions. The following abstractions are proposed
for the implementation of a concrete interface:

Domain Solver Description It collects the type, domain, and the set of possible events.
Domain Representation It represents a domain attached to a constraint variable in the

constraint store and provides abstractions for updating domains.
Constraint Profile It stores a constraint profile of the domain representation.
Set of Events It represents a set of events.
Creation of a Constraint Variable It creates a constraint variable according to a do-

main solver description.

52 Chapter 6: Interface Abstractions

Propagators It presents a propagator and supports the operations shown in Figure 6.4
and Figure 6.5.

Creation of a Propagator It joins the functionality shown in Figure 6.6.
Access Variable It joins the functionality shown in Figure 6.8.
Propagation Routine of a Propagator It joins the functionality shown in Figure 6.7

and Figure 6.9.
Filter It joins the functionality discussed in Section 6.5.

The implementation of the interface abstractions, depends (i) on the implementation
language and (ii) on the host system. Chapter 8 presents an instance of this interface
design for the Mozart in C++.

Chapter 7

Implementation Aspects of Propagation
Services

This chapter discusses implementation aspects of the integration of propagation services
into the Mozart VM according to the model presented in Chapter 5. This chapter is
complemented by Chapter 8 which presents how domain solvers are connected to prop-
agation services.

The code samples are given in C++ [109, 140] (i) to ease the reconstruction of the
implementation of propagation services and (ii) to demonstrate that the model of prop-
agation services can be implemented in a standard programming language in a concise,
elegant and comprehensible way.

This chapter starts by describing briefly the interface classes of the Mozart VM (Sec-
tion 7.1) and proceeds by discussing the integration of propagation services (Section 7.2).

7.1 Interfaces to the Services of the Virtual Machine

This section briefly presents the C++ class interfaces of the classes implementing the
services of the Mozart VM described in Section 5.1. These classes are relevant since
they are the interface between the propagation services and the rest of the Mozart VM
and thus, the base for the integration of propagation services into VM. Mehl discusses
the full implementation of the Mozart VM in [88].

Spaces The Mozart Oz VM implements spaces by the class Space:

class Space {
bool isRoot(void); // check for root space
static Space getCurrentSpace(void); // get current space

};

Note getCurrentSpace() is static since there is exactly one current space in the VM.

Threads and the Scheduler A thread is defined by class Thread:

class Thread {
Thread(Space home); // construct thread

54 Chapter 7: Interfaces to the Services of the Virtual Machine

Space getHome(void); // get home space
};

A thread is passed on construction its home space by argument home. Threads are run
by the VMs scheduler which is an instance of class Scheduler.

Variables The body of a variable is represented by an instance of class Variable:

class Variable {
public:

Variable(Space home); // construct variable
Space getHome(void); // get home space
bool isLocal(Space current);

};

The current space is passed as argument home to the constructor Variable(). A vari-
able is checked to have current as home space with isLocal(). Note the suspension
set is implemented by a suspension list.

Values and Tagged References Nodes in the constraint store are implemented by
tagged references. In case of a variable, a tagged reference implements a part of the
head of the variable referring to an instance of class Variable. A tagged reference
consists of a tag field, denoting the type of the referred value, and a value field, denoting
the value itself.

A tagged reference is an instance of class TR:

class TR {
public:
// value node for integers
TR(int val); // constructor
bool isInteger(void); // type test
int getInteger(void); // access
// variable node for variable head
TR(Variable * var); // constructor
bool isVariable(void); // type test
Variable * getVariable(void); // access
// reference node
TR(TR * tr); // constructor
bool isReference(void); // type test
TR deref(void); // access

};

There are three member functions for every type of value a tagged reference may refer
to: a constructor, a type test, and an access function. A constructor initializes a new
instance of TR and sets the tag field appropriately. Function deref() returns the last
tagged reference of a reference chain.

Trail A trail is defined by class Trail.

class Trail {
public:
void push(TR * var_loc, TR var);

7.2 Constraint Propagation Services 55

};

It records changes to variables by its member function push()which stores the previous
value var in conjunction with the location of var, namely var_loc. This makes it
possible to restore the previous state and to produce a script for restoring the current
state.

Foreign Functions Foreign functions are C-functions that obtain access to the con-
straint store via its arguments. The signature of a foreign function is:

typedef Status (*ForeignFun)(...);

The return value of a foreign function of type Status signals the virtual machine
whether the application of the function was successful (SUCCESS), unsuccessful (FAIL),
or suspended due to still unknown values (SUSPEND).

7.2 Constraint Propagation Services

This section discusses the implementation aspects of the integration of constraint propa-
gation services into the Mozart VM. First, the integration of domain solver independent
parts of constraint variables into the constraint store is explained (Section 7.2.1) followed
by the integration of propagator heads (Section 7.2.2). Then, local propagation engines
for executing propagators are integrated into the VM (Section 7.2.3). Finally, the im-
plementation of a central routine on constraint variables is explained: the imposition of
basic constraints on constraint variables (Section 7.2.4).

The implementation of propagator creator functions and filters for propagators is
explained in Chapter 8 since these issues are subject to the constraint programming in-
terface introduced there.

7.2.1 Constraint Variables

This section discusses the implementation of constraint variables. A constraint variable
consists of a variable head (class CtVariable), a description of the constraint domain
(class CtDescr), a representation of the domain (class Ct), and a set of event lists.
Class CtDescr is the base class of all domain solver descriptions. It defines the type for
the constraint variables (to what domain solver the variables belong to), the universe of
the variables’ domains and the possible events. Furthermore, it defines the name of the
domain solver and the names of the events which are used, e.g., for displaying domains
by the system. There is exactly one instance of CtDescr for every domain solver. Class
Ct is the base class for all domain representations. It provides the minimal functionality
of a domain representation. Class CtEvents is the base class of all constraint events. It
is a set of events which is computed either from (i) a constraint d′ and its profile prof d
or (ii) a constraint d ′ and its previous state d .

A concrete domain solver derives from the classes CtDescr, Ct, and CtEvents
new classes and creates instances from them. Only class CtVariable remains un-
changed for different domain solvers.

56 Chapter 7: Constraint Propagation Services

Representing Constraint Variables The structure of a constraint variable is shown
Figure 7.1. It consists of the variable head and the extensions. The constraint vari-
able head inherits from synchronized situated variables the fields home_space and
susp_list.

class CtVariable:
home_space: S
susp_list: [. . .]

is_trailed: true/false
constr_descr: •

constraint: •

event_lists: •

class CtDescr:
identity: some id
event_name 1: ". . . "

...

event_name n: ". . . "

class Ct:
d

event_list 1: [...]
...

event_list n: [...]

Figure 7.1: Structure of an instance of class CtVariable.

The additional fields are defined by the class CtVariable. Field constraint
refers to the representation of the domain attached to the variable while field
event_lists refers to the set of event lists. Field constr_descr refers to the do-
main solver description which gathers information to define and to identify the respective
domain solver. Field is_trailedmemorizes whether or not the variable is trailed. The
implementation does not need extra memory since the flag is stored in an spare single
bit.

class CtVariable : public Variable {
CtVariable(Space space, // constructor

CtDescr descr, Ct constr);
void updateConstraint(Ct constr); // update constraint
Ct getConstraint(void); // access constraint
void schedule(CtEvents events); // schedule propagator
void setTrailed(void); // set variable ’trailed’
void unsetTrailed(void); // set variable ’untrailed’
bool isTrailed(void); // check if variable is ’trailed’
CtVariable copyVar(void); // copy variable

};

Program 7.1: Class definition of constraint variables.

The interface of class CtVariable is defined in Program 7.1. The constructor cre-
ates a constraint variable according to descr situated in home and with an initial domain

7.2 Constraint Propagation Services 57

constr. Function schedule() schedules propagators in the event lists addressed by
events. Note that isLocal() is inherited from class Variable.

Introducting the class CtVariable requires to extend class TR:

class TR { ...
TR(CtVariable * cvar);
bool isCtVariable(void);
CtVariable * getCtVariable(void);

... };

Representing Domains Class Ct defines the minimal functionality of a class repre-
senting a domain (Program 7.2). A concrete representation of a domain is an instance of
a class derived from Ct.

class Ct {
Ct intersect(Ct constr); // compute intersection with ’constr’
int getCard(void); // return cardinality
TR getValue(void); // convert singleton domain to proper value
CtEvents computeEvents(Ct constr); // events wrt. ’constr’
bool isInDomain(TR val); // check if proper value is contained

};

Program 7.2: Class definition for domains.

Function intersect() returns the intersection of constr and the represented do-
main. The number of elements in a domain can be retrieved by getCard(). It is for the
implementation of the propagation services only important to know whether a domain
is empty, a singleton set or something else. If only one element is left in a domain, it
can be retrieved by getValue(). Function computeEvents() supposes constr to
be a previous state of the constraint and computes the events for the current constraint
relative to constr. Whether a value val is in a domain or not, can be checked with
isInDomain().

7.2.2 Propagators

A propagator consists of a head and a body (Figure 4.3). The propagator head is defined
by class Propagator (Program 7.3). This interface defines the functionality required
by the propagation services. The body of a propagator is an instance of a concrete prop-
agator class derived from class Propagator. The implementation of the propagation
function is discussed in Section 8.5 while the propagator creation is considered in Sec-
tion 8.4.

A propagator is situated and hence, it is initialized with its home space on construc-
tion. The initial execution state is running.

The stability check for propagators has to find out whether a propagator has a global
variable as parameter or not. Hence, references to all propagators with global parame-
ters are stored in their home spaces. During the stability check of a propagator’s home

58 Chapter 7: Constraint Propagation Services

class Propagator {
Propagator(Space home); // construct propagator
Space getHome(void); // get home space
enum PropagatorState // execution states

{ RUNNABLE, RUNNING, SLEEPING, ENTAILED, FAILED };
void setState(PropagatorState state); // set execution state
PropagatorState getState(void); // get execution state
bool schedule(void); // schedule propagator
TR getParameters(void); // get parameters
enum PropagatorStatus // outcome of propagator function

{ SLEEP, FAIL, ENTAIL };
PropagateStatus propagate(void); // propagation function
bool isNonMonotonic(void); // propagator is non-monotonic?
int getPriority(void); // get priority

};

Program 7.3: Class definition for propagators.

space, the propagator’s parameters can be retrieved by getParameters() and checked
whether they refer to global variables or not.

The execution state of propagator is denoted by a value of the enumerable type
PropagatorState correspond to the states in the boxes in Figure 2.4.

A propagator is scheduled by function schedule() which is discussed in detail in
Section 7.2.3.

Constraint propagation of a propagator is performed by the propagation function.
The result is returned as value of the enumerable type PropagatorStatus corre-
sponding to the labels at the edges of Figure 2.4.

Adding Propagator Support to Variables The interface definition for synchronized
and situated variables is extended by:

void Variable::addPropagator(Propagator * p);

which adds an entry for propagator p to the suspension list. Function

void Variable::schedule(Space current);

schedules all propagators of the suspension list which are situated in the space sub-
hierarchy with root current.

The interface of class CtVariable is extended by

void CtVariable::addToEventList(CtEvents e, Propagator * p);
void CtVariable::addPropagator(CtEvents e, Propagator * p) {
if (getHome() == p->getHome())

addToEventList(e, p);
else

Variable::addPropagator(p);
}

7.2 Constraint Propagation Services 59

Function addToEventList adds propagator p to the event lists addressed by e.
According to the discussion of locality of propagator parameters in Section 5.3.3,

a propagator p is only added to the event lists if the propagator has the same home
space as its parameter. Otherwise, p is added to the suspension list inherited from class
Variable.

Further, Table 5.1 on page 39 shows that 47 % of propagator creations result in imme-
diate failure or entailment. Hence, propagators are only added to event resp. suspension
lists if the initial run of the propagation function returns SLEEP.

7.2.3 Executing Propagators

A propagator is executed local to its home space by the local propagation engine of
the home space. A local propagation engine is provided with computation time by an
associated thread, the local propagation engine thread. Using a thread makes it possible
to reuse the thread scheduling infrastructure of the VM.

The implementation of local propagation engines is discussed including their con-
nection with threads and how propagators are passed to a propagation engine.

Local Propagation Engines

The implementation of the execution of monotonic and non-monotonic propagators is
discussed in the following.

Executing Monotonic Propagators A local runnable propagator set is implemented
by a stack of propagators. A propagator stack has the interface:

class PropagatorStack {
public:
void push(Propagator * p);
Propagator * pop(void);
bool isEmpty(void);

};

The definition of the class Space is extended by a local propagation stack (lps) and the
respective operations on it:

class Space { ...
PropagatorStack lps;
void addToLPS(Propagator * p);
Status runLPS(Scheduler sched);
... };

Function addToLPS() adds p to the propagation stack lps. There is a thread (for
short LPS-thread) associated with the non-empty lps. This thread runs runLPS()
which executes the propagators in lps. The LPS-thread ceases to exist as soon as lps
becomes empty. The LPS-thread represents the propagators in lps when the stability
check determines whether or not there are runnable threads or propagators left.

The LPS-thread with home space current is created and immediately scheduled
by:

60 Chapter 7: Constraint Propagation Services

void createRunnableThread(Space current, ForeignFun ffun);

The LPS-thread calls a foreign function that runs the local propagation stack. The defi-
nition of the foreign function is:

Status run_lps(void) {
return Space::getCurrentSpace()->runLPS();

}

The LPS-thread is runnable as long as it exists and as soon as it is preempted, it is
scheduled again. The thread can only be terminated by calling:

void terminateCurrentThread(void);

A propagator is submitted to a local propagation engine of a space S by calling the
following member function of the instance of class Space representing S:

void Space::addToLPS(Propagator * p) {
if (lps.isEmpty())

createRunnableThread(this, run_lps);
lps.push(p);

}

In case lps is empty, the LPS-thread is created to run the foreign function run_lps
with the current space (this). Then propagator p is pushed onto lps.

The execution loop of the local propagation engine is:

Status Space::runLPS(Scheduler sched) {
while (!lps.isEmpty() && !sched.preempt()) {

Propagator * prop = lps.pop();
switch (prop->propagate()) {
case SLEEP: prop->setState(sleeping); break;
case ENTAIL: prop->setState(entailed); break;
case FAIL: prop->setState(failed); return FAIL;
}

}
if (lps.isEmpty())

terminateCurrentThread();
return SUCCEED;

}

The execution loop iterates as long as lps is not empty and the scheduler does not
preempt the currently running thread. This can be checked by:

bool Scheduler::preempt(void);

which returns true if the current thread is preempted. The body of the loop retrieves the
next propagator from lps and runs its propagation function propagate(). The return
value is evaluated by a switch-statement and sets the execution state of the propagator
accordingly. In case a propagators fails, the function returns FAIL which is passed to
the VM as return value of the foreign function. After leaving the loop, the LPS-thread
is terminated in case lps is empty. Finally, runLPS returns SUCCEED, indicating that
running the local propagation engine did not produce a failure.

7.2 Constraint Propagation Services 61

Executing Non-monotonic Propagators Non-monotonic local propagator sets are im-
plemented by priority queues. This is needed to ensure an execution order of non-
monotonic propagators according to their priority. Propagators enqueued with the high-
est priority are dequeued first. The interface for a priority queue is:

class PriorityQueue {
void enqueue(Propagator * p, int priority);
Propagator * dequeue(void);
bool isEmpty(void);

};

Class Space is extended by:

class Space { ...
PriorityQueue nmlpq;
void runNMLPQ(void);
... };

The purpose of nmlpq is to store runnable non-monotonic propagators until stability is
checked in their order of creation. As part of the stability check, function runNMLPQ()
is called which simply transfers the non-monotonic propagators to lps.

void Space::runNMLPQ(void) {
while (!nmlpq.isEmpty())

addToLPS(nmlpq.dequeue());
}

In case nmlpq is empty, the stability check proceeds. Otherwise, the space is unstable
and the stability check fails immediately. Thus, the treatment of non-monotonic propa-
gators is an orthogonal extension of the local propagation engine.

Scheduling a Propagator

A propagator is scheduled by calling either CtVariable::schedule() or Vari-
able::schedule(). These functions traverse the suspension resp. event lists and
apply

bool Propagator::schedule(void) {
if (getState() == runnable)

return false;
setState(runnable);
if (isNonMonotonic())

getHome()->nmlpq->enqueue(this, getPriority());
else

getHome()->addToLPS(this);
return true;

}

on the propagators to be scheduled. In case of event lists, this function is applied to
all propagator suspensions in the respective event lists. For suspension lists, the current
space must be on the path from the home space of the propagator to the root space.

62 Chapter 7: Constraint Propagation Services

The function returns true if the propagator is scheduled by this invocation. In case the
propagator is already scheduled, this function returns false. If this is not the case, the
propagator is set scheduled and added either to the local propagation stack or priority
queue of its home space.

7.2.4 Telling Basic Constraints to Constraint Variables

Telling constraints to constraint variables is a key operation and for example needed by
the finite domain operator x::setdescr (shown in Figure 3.3 on page 18).

The operation is implemented by function imposeConstraint() and uses two
auxiliary functions which trail their changes on global variables. The first function
bind() (Program 7.4) binds a variable to a value and trails the variable if it is global.

void bind(Trail trail, Space current, TR * tr_var, TR tr_val) {
Variable * var = tr_var->getVariable(); // access variable
if (! var->isLocal(current)) // trail ...
trail.push(tr_var, *tr_var); // ... global variable

*tr_var = tr_val; // bind ’tr_var’ to ’tr_val’
}

Program 7.4: Binding a variable.

The second function constraintCtVariable() (Program 7.5) updates the do-
main of a constraint variable and trails the variable in case it is global. None of the
auxiliary functions schedule propagators.

void constrainCtVariable(Trail trail, Space current,
CtVariable cvar, Ct constr) {

if (! cvar.isLocal(current) && // trail only global ...
! cvar.isTrailed()) { // ... untrailed variable

trail.push(var, cvar.copyVar()); // store copy of variable
cvar.setTrailed(); // set variable trailed

}
cvar.updateConstraint(constr); // update constraint

}

Program 7.5: Constraining a constraint variable.

Function imposeConstraint() (Program 7.6) treats three cases:

1. The passed variable is not a constraint variable. The propagators in the suspension
list are scheduled. The variable is bound to a newly created variable with bind().

2. The passed variable is a constraint variable. The intersection of the domain of the
variable and the passed domain constr is computed. If it is empty, the function

7.3 Discussion 63

Status imposeConstraint(Trail trail, Space current,
TR * tr_var, Ct constr, CtDescr descr) {

if (tr_var->isVariable()) { // not a constraint variable
tr_var->getVariable()->schedule(current);
bind(trail, current, tr_var,

TR(new CtVariable(current, descr, constr)));
} else if (tr_var->isCtVariable()) { // a constraint variable
CtVariable cvar = tr_var->getCtVariable()
Ct inter = constr.intersect(cvar.getConstraint());
if (inter.getCard() == 0)
return FAIL;
cvar.schedule(inter.computeEvents(cvar.getConstraint()));
constrainCtVariable(trail, current, cvar, inter);

} else if (!constr.isInDomain(*tr_var)) // a proper value
return FAIL;

return SUCCEED;
}

Program 7.6: Imposing a basic constraints on an individual variable.

fails. Otherwise, compute the resulting events and schedule the sleeping propa-
gators. Finally, update the domain of the variable with the intersection by con-
strainCtVariable().

3. The passed variable denotes a proper value. It tests if the value is in the domain of
the variable and if not, the function fails.

7.3 Discussion

A different approach to implement non-basic constraints are so-called indexicals (see
[145]). This approach is used in many constraint solvers for WAM-based Prolog systems
[149, 3] and was first presented by Codognet and Diaz in [32]. An indexical x in r
constrains the variable x with the range r where r is computed from the current state
of other variables. An indexical is re-executed if a variable in r is changed. Non-basic
constraints expressed in terms of indexicals lead typically for more complex constraints
(e.g., n-ary linear equations [21, 32]) to a large number of indexicals. Hence, complex
constraints are typically realized by library calls. The advantage of indexicals is that the
propagation tasks are more fine-grain while the implementation of sophisticated filter is
not well supported.

Zhou proposes in [151] to extend indexicals to delay-clauses. Additionally to head
and body, a delay clause has a condition and a specification of events. This makes it
possible to express sophisticated filter.

The implementation of constraint variables follows the line of attributed variables as
used by Holzbaur to extend Prolog with constraints [67]. An attributed variable is a logic

64 Chapter 7: Discussion

variable annotated with attributes. An attribute can be for example a suspension list or
a constraint domain. ECLi PSe uses attributed variable directly as a means to implement
new domain solvers [76, 92].

The discussed implementation is optimized for propagation on local variables since
global variables are only 13%. Furthermore, encapsulation is implemented such that
operations on variable domains need not to be aware of trailing.

The VM of Mozart Oz represents finite domain and finite integer set variables more
compact than shown in Figure 7.1. All components are directly stored in the variables
avoiding the overhead of indirect access via references.

Mozart Oz uses a copying garbage collector and a copy-based search scheme. Copy-
ing support is orthogonal to the presented implementation of the propagation services
and can be implemented by adding copy functionality to the respective class definitions.

Chapter 8

The Constraint Propagator Interface of
Mozart

This chapter presents the constraint propagator interface of Mozart (short CPI) which
is a C++ interface providing the substrate for building plug-in domain solvers. The in-
terface connects domain solvers with the propagation services of the Mozart VM (Chap-
ter 7) leading to propagation engines according to the achictecture shown in Figure 6.1
on page 45. Plug-in domain solvers connected by the CPI can cooperate via shared
constraint variables with each other.

The CPI is an instance of the interface design presented in Chapter 6. The provided
interface abstractions correspond to the abstractions proposed in Section 6.6.

This chapter addresses implementation issues of domain solvers as the domain-
dependent extensions of the constraint store (Section 8.2), the definition of propaga-
tor bodies (Section 8.3), the creation of propagators including creator functions (Sec-
tion 8.4), and the definition of propagation functions including the separation of filters
(Section 8.5).

The application of the CPI is illustrated by implementing a plug-in finite domain
solver including a propagator for the constraint x ≤ y + c. This solver is used to analyze
the computational cost imposed by various interfaces in Section 10.3 and can be obtained
from [105].

8.1 Engineering the Concrete Interface

This section discusses design decisions to be made for engineering the CPI (Sec-
tion 8.1.1) and provides an overview over interface abstractions which are explained
in detail in the rest of this chapter (Section 8.1.2).

8.1.1 Design Decisions

Engineering an interface requires a couple of design decisions. First of all, the CPI is
a C++-interface, i.e., the interface abstractions are C++-classes. That makes it possible

66 Chapter 8: The Constraint Propagator Interface of Mozart

to provide functionality but also to insist on functionality to be provided. On one hand,
functionality is provided by interface classes and the user is free to derive new classes
from interface classes. For more flexibility, virtual member functions are used, which
enable dynamic binding of member functions. This makes it possible to control any
concrete instance of a class only by having a pointer to it and thus, separating completely
instances created via the CPI from the virtual machine. On the other hand, it can be
enforced at compile-time that a certain member function is defined. This is achieved
by C++’s abstract base classes which provide only the declaration, i.e., only the type
signature, of certain virtual functions but not their definition. Such a member function is
called pure virtual member function and is annotated with "=0" after its argument list. A
C++-compiler rejects every instance construction of a class that contains a pure virtual
member function [109, 140].

8.1.2 Overview over the Interface Abstractions

The CPI makes it possible to implement new domain solvers, to extend existing domain
solvers by new propagators, and to implement filters such that they can be shared by
different host systems. The corresponding abstractions to fulfill these tasks are shown
in Figure 8.1. The boxes denote components to be provided by a domain solver and
the edges describe the mutual use of the components within a domain solver resp. the
domain solver and the VM. As a convention, the names of CPI-abstractions begin with
"OZ_".

Mozart Oz
virtual machine

constraint variable:
OZ_mkCtVar

creator function:
OZ_CreateProp

propagator definition:
OZ_Propagator

basic constraints:
OZ_CtDescr
OZ_Ct

propagation function:
OZ_CtVar
OZ_CtProfile
OZ_CtEvents

filter:
OZ_Filter

Figure 8.1: Overview of CPI-abstractions. Edges denote usage of abstractions by
other blocks.

Constraint Variable and Basic Constraints A constraint variable is created by apply-
ing the function OZ_mkCtVar(). To create a constraint variable, a domain solver de-
scription is required which is an instance of a class derived from class OZ_CtDescr.

8.2 Constraint Variables, Profiles and Events 67

This class corresponds to class CtDescr in Section 7.2.1. Further, classes derived
from class OZ_Ct represent basic constraints attached to constraint variables. Class
OZ_Ct is an interface to class Ct shown in Program 7.2 on page 57.

Propagator Definition A propagator is defined by a class derived from class
OZ_Propagator. This class is an interface to class Propagator shown in Pro-
gram 7.3 on page 58.

Creator Function The propagator creator function is implemented as foreign function
(Section 7.1). Checking for expected constraints at the parameters and imposing the
propagator on its parameters is done by an instance of class OZ_CreateProp.

Propagation Function The propagation function obtains access to the basic constraints
of the propagator’s parameters by instances of class OZ_CtVar. Further, instances
of this class in conjunction with instances of the classes OZ_CtProfile and
OZ_CtEvents schedules sleeping propagators which wait for events on the param-
eters. Class OZ_CtEvents is an interface to class CtEvents introduced in Sec-
tion 7.2.1.

Filter The CPI provides an interface to filters by the class OZ_Filter.

The CPI-abstractions discussed correspond to interface abstractions proposed in Sec-
tion 6.6. This chapter does not explain every CPI-abstraction in detail. A detailed expla-
nation of all interface abstractions can be found in [103]. Instead, the chapter focuses on
the concepts behind the abstractions.

8.2 Constraint Variables, Profiles and Events

This section demonstrates how classes for a concrete domain solver are derived from the
CPI-classes OZ_Ct, OZ_CtDescr, and OZ_CtEvents. The newly defined classes are
part of a finite domain solver and are used in the following sections to implement a finite
domain propagator including its creator function.

A Finite Domain Constraint A finite domain constraint (for short domain) is a finite
set of integers. It is an instance of class FD.

class FD : public OZ_Ct { . . . };

This class is derived from OZ_Ct. Class FD represents a finite set of integers in three
different ways depending on its concrete value1: As long as the set denotes a range
[l, . . . , u] it is represented only by the lower bound l and upper bound u. As soon as
an individual element e : l < e < u is removed the set is represented either by a bit
vector (if e < threshold) or a list of intervals (if e ≥ threshold). The threshold can be
configured when starting up the system.

Finite Domain Description The constraint variables of the finite domain solver are
identified by a single instance of class FDDescr. There is only one instance of a de-
scription class per domain solver.

1This representation is taken from the built-in finite domain solver of Mozart.

68 Chapter 8: The Constraint Propagator Interface of Mozart

class FDDescr : public OZ_CtDescr {
static int id;

public:
virtual int getId(void) // obtain identity

{ return id; }
virtual char * getName(void) // obtain name of domain solver

{ return "finite domain integer "; }
virtual int getNoEvents(void) // number of possible events

{ return 3; }
virtual char ** getEventNames(void) { // obtain event names

static char * n[3] = { "value", "bounds", "domain"};
return n;

}
};

A domain solver is identified by a unique integer which is obtained by an application of
the function OZ_getUniqueId():

FDDescr::id = OZ_getUniqueId();

The finite domain solver is represented by an instance of class FDDescr:

FDDescr fd_descr;

Events There are three possible events defined in the finite domain description: an
element is removed from a domain (event domain), at least one bound of a domain is
narrowed (event bounds) and a domain is determined to a singleton value (event value).

A set of events is an instance of a class derived from the CPI-class OZ_CtEvents.

class FDEvents : public OZ_CtEvents {
public:
FDEvents(void) { init(); } // construct empty set of events
void addValue(void) { setEvent(0); }
void addBounds(void) { setEvent(1); }
void addDomain(void) { setEvent(2); }
static OZ_CtEvents value(void);
static OZ_CtEvents bounds(void);
static OZ_CtEvents domain(void);

};

It is a set of maximum 32 elements and the integers assigned to the elements (see applica-
tions of setEvent()which are defined by OZ_CtEvents) correspond to the indices of
the array of names returned by FDDescr::getEventNames(). The static functions
value(), bounds(), and domain() denote sets of events for exactly the correspond-
ing events. These functions are used in Section 8.4 for determining the events required
the schedule a sleeping propagator.

Constraint Profile A constraint profile stores sufficient information of a previous state
of a domain needed to compute events from a later state of the same domain. The advan-
tage of a profile is that it takes typically much less memory than the complete domain.

8.2 Constraint Variables, Profiles and Events 69

All constraint profiles are derived from CPI-class CtProfile. The profile for finite
domains is defined by class FDProfile:

class FDProfile : public OZ_CtProfile {
int width, card;
void init(OZ_Ct * c) {

card = ((FD *) c)->getCard();
width = ((FD *) c)->getWidth();

}
public:
FDProfile(OZ_Ct * c) { init(c); }
int getWidth(void) { return width; }
int getCard(void) { return card; }

};

To compute finite domain events for a domain, it is sufficient to store the number of
elements of the previous state of the domain (field card) and the difference of the largest
and smallest elements (field width). Class FD provides the functions getCard() and
getWidth() to obtain the current cardinality and width of a domain.

Computing Events Class OZ_Ct requires to define extra functions for obtaining the
current state of a domain as constraint profile and for computing from the current state
of a domain and a previously taken profile events. In the following, these functions for
the finite domain solver are defined.

The current state of a domain is obtained by the function FD::getProfile()
which returns a constraint profile as instance of OZ_CtProfile. The implementation
of this function uses function FDProfile::init() (see above).

Finite domain events are computed by function FD::computeEvents() from the
current state of a domain and a previously taken profile (argument profile):

OZ_CtEvents FD::computeEvents(OZ_CtProfile * profile) {
FDEvents events;
FDProfile * fdp = (FDProfile *) profile;
if (getCard() == 1 && fdp->getCard() > 1) { // ’value’ event

events.addValue(); events.addBounds(); events.addDomain();
} else if (getWidth() < fdp->getWidth()) { // ’bounds’ event

events.addBounds(); events.addDomain();
} else if (getCard() < fdp->getCard()) // ’domain’ event

events.addDomain();
return events;

}

This function compares the cardinality and width previously stored in a profile with
current values of a domain and sets the corresponding events in the events set events.
Note that a value event includes also bounds and domain events while a bounds event
includes a domain event.

Creating Constraint Variables There is no class representing a constraint variable in
the CPI. Instead, there is function OZ_mkCtVar() for creating a new constraint variable

70 Chapter 8: The Constraint Propagator Interface of Mozart

from a given domain description descr and an initial constraint constr and binding it
to var.

OZ_Return
OZ_mkCtVar (OZ_Term var, OZ_Ct * constr, OZ_CtDescr * descr);

This function is an interface to function imposeConstraint() presented in Pro-
gram 7.6 on page 63.

The return type OZ_Return of OZ_mkCtVar() corresponds to type Status while
argument type OZ_Term denoting a tagged reference corresponds to class TR2 (see Sec-
tion 7.1 for details on both, Status and TR).

8.3 Propagator Definition

A concrete propagator is defined by a class derived from class OZ_Propagator. This
class is an interface to class Propagator shown in Program 7.3. Additionally, class
OZ_Propagator provides extra functionality (for example for execution profiling and
memory management) which is explained in detail in [103].

A finite domain propagator for the x ≤ y + c-constraint is defined. This propagator
stores in its private state references to its parameters x and y and the value of c (_c). The
references to x and y, namely _x and _y, are tagged references of type OZ_Term.

class Leqoff : public OZ_Propagator {
OZ_Term _x, _y;
int _c;

public:
Leqoff(OZ_Term x, OZ_Term y, OZ_Term c)

: _x(x), _y(y), _c(OZ_intToC(c)) { }
virtual OZ_Return propagate(void);
...

};

The constructor receives the parameters and initializes the corresponding fields. Func-
tion OZ_intToC() converts a tagged reference representing an integer to an C-integer.
The constructor is used for creating an instance of the propagator in Section 8.4. The
definition of function propagate() is discussed in detail in Section 8.5.

8.4 Propagator Creation

A propagator is created in three steps according to Figure 5.2 on page 38. The domains
of the parameters are checked to entail the expected constraint (step 1), the creation of
the propagator (step 2), and the imposition of the propagator (step 3). Step 2 is done
by allocating memory for the propagator and calling the constructor of the propagator.
Step 1 and 3 are taken care of by the CPI-class OZ_CreateProp (Program 8.1).

2In Mozart, a tagged reference is represented by an integer value (int) where certain bits are used to
represent the tag and the remaining bits represent the value.

8.4 Propagator Creation 71

class OZ_CreateProp {
OZ_expect_t
expectInt(OZ_Term val); // expect an integer
OZ_expect_t
expectCtVar(OZ_Term v, // expect a constraint variable

OZ_CtDescr * descr,
OZ_CtEvents events);

OZ_expect_t
expectVector(OZ_Term v, // expect vector

OZ_CreatePropMeth f);
bool isSuspending(OZ_expect_t r);
bool isFailing(OZ_expect_t r);
OZ_Return suspend(void); // suspend creator function
OZ_Return fail(void); // fail creator function
OZ_Return impose(OZ_Propagator * prop); // impose ’prop’

};

Program 8.1: Interface of CPI-class OZ_CreateProp.

Expressing the Expected Constraint of a Parameter The expected constraint of a
parameter is checked by an expect-function. Each expect-function corresponds to
a certain expected constraint. For example, a parameter is expected to be an integer
(expectInt()) or a constraint variable of a certain domain solver (expectCtVar(),
descr determines the domain solver). Additionally, there are iterators for compound
values as vectors: the function expectVector() expects the parameter v to be a vector
of values specified by the passed expect function f(). For example,

expectVector(vec, expectInt)

expects vec to be a vector of integers.

Evaluating Constraints at Parameters The return type of an expect-function
OZ_expect_t denotes the number of constraints present (e.g., number of elements of a
vector) and the number of elements entailed by the parameter. This makes it possible to
express propagators which can be nested (see below). A value of type OZ_expect_t is
tested to denote a none-entailed constraint by function isSuspending() and to denote
an inconsistent constraint by function isFailing(). If none of both functions is true,
the expected constraint is entailed and the propagator is imposed on its parameters (see
below).

The creator function is left by calling fail() if the domain at the parameter is
inconsistent with the expected constraint or by calling suspend() in case the parameter
do not entail the expected constraints.

Expecting a Constraint Variable The function expectCtVar() expects a parameter
to be a constraint variable and determines the events the propagator is scheduled on this
parameter (argument events). Further, if the parameter is neither entailed nor failed and

72 Chapter 8: The Constraint Propagator Interface of Mozart

the creator function is not left, the expected constraint3 and the propagator is imposed.
This behavior is used to implement propagators that can be nested, since nesting makes
shared parameters inaccessible, and the creator function has to impose the most universal
domain on the shared parameter.

Propagator Imposition The variables encountered in the course of checking expected
constraints are stored in the instance of OZ_CreateProp together with their events.
The propagator created by the new-operator defined by OZ_Propagator and the con-
structor of the propagator class (see example below).

The propagator is passed to function impose() and the propagation function of the
propagator is initially run. If the function does not indicate that the propagator is entailed
or failed, the propagator is imposed on its parameters by adding entries to the respective
event lists.

Example This example presents the creator function for the x ≤ y + c-propagator. A
creator function is a foreign function as discussed in Section 7.1. The evaluation of the
return values for the individual parameters is done by the macro OZ_EXPECT. A macro
is used to be able to leave the creator function by return-statements. The parameter
O is an instance of class OZ_CreateProp and parameter F an application of a member
function of OZ_CreateProp. The outcome of the application of F is first tested to fail
or then to suspend the creator function.

#define OZ_EXPECT(O, F) \
{ OZ_expect_t r = O.F; \

if (O.isFailing(r)) \
return O.fail(); \

else if (O.isSuspending(r)) \
return O.suspend(); }

Suppose x, y, and c denote the corresponding parameters, the following CPI-code
checks the expected constraints at the parameters, determines the events, creates a new
x ≤ y + c-propagator and imposes the propagator on its parameters:

OZ_CreateProp cp;
OZ_EXPECT(cp, expectCtVar(x, fd_descr, FDEvents::bounds()));
OZ_EXPECT(cp, expectCtVar(y, fd_descr, FDEvents::bounds()));
OZ_EXPECT(cp, expectInt(c));
return cp.impose(new Leqoff(x, y, c));

8.5 Propagation Functions

This section discusses the implementation of propagation functions which proceeds in
three steps: first, access variables which provide access to constraint variables in the
constraint store from within a propagation function (Section 8.5.1) are discussed. Then,
the filter function interface is considered and the implementation of a filter function

3The parameter is constrained to a constraint variable of the domain solver with the most general
domain.

8.5 Propagation Functions 73

(Section 8.5.2) is presented, and eventually access variables and a filter function are
joined to a propagation function (Section 8.5.3).

8.5.1 Access to Constraint Variables

Access variables implement steps 1 and 3 of Figure 5.3 on page 39 to make the execution
of the filter function (step 2) possible.

The Interface An access variable is an instance of a class derived from the CPI-class
OZ_CtVar (Program 8.2).

class OZ_CtVar {
void read(OZ_Term p); // read (effective propagation)
void readEncap(OZ_Term p); // read (encapsulated propagation)
bool leave(void); // write domains to store
void fail(void); // fail access variable

protected:
// handling domains, values, and profiles
virtual OZ_Ct * ctGetConstraint(void) = 0;
virtual void ctSetValue(OZ_Term val) = 0;
virtual OZ_Ct * ctRefConstraint(OZ_Ct * c) = 0;
virtual OZ_Ct * ctSaveConstraint(OZ_Ct * c) = 0;
virtual void ctRestoreConstraint(void) = 0;
virtual OZ_Ct * ctSaveEncapConstraint(OZ_Ct * c) = 0;
virtual void ctSetConstraintProfile(void) = 0;
virtual OZ_CtProfile * ctGetConstraintProfile(void) = 0;

};

Program 8.2: Interface of CPI-class OZ_CtVar.

Step 1 is implemented by read() and readEncap(). All changes to the domain
of a constraint variable read in by read() are visible to the constraint store (effective
propagation). This is in contrast to changes on variables read in by readEncap()which
are invisible to the constraint store and hence providing for encapsulated propagation
used by reified constraints.

Step 3 is implemented by leave() and fail(). While fail() is to be called
for all access variables in case of failure, leave() writes domains to the connected
constraint variable and schedules waiting propagators. The return value of leave()
indicates whether the connected constraint variable is still undetermined (true) or not
(false).

Defining an Access Variable Class

The functions read(), readEncap(), leave(), and fail() are implemented by a
set of auxiliary functions. The definitions of these functions for finite domain constraints
are discussed using the respective definitions from Section 8.2.

74 Chapter 8: The Constraint Propagator Interface of Mozart

Figure 8.2 shows the structure of a finite domain access variable. The domain is only
accessed via the field domain. Depending on the kind of constraint variable (local or
global) and kind of propagation (effective or encapsulated), domain refers directly to
the domain of the constraint variable in the store (➁), to copy in case of a singleton
or a global variable (➀ and ➂), or to encap in case of an encapsulated variable (➃).
The references ➀–➃ are created by auxiliary functions which are explained in the list on
page 75.

constraint store

FDProfile prof
FD copy
FD encap
FD * domain

FD constr
CPI ➁

➀,➂

➃

Figure 8.2: Structure of a finite domain access variable and .

Before the auxiliary functions are discussed, the class for the finite domain access
variables is defined. This definition uses the classes FD (domain representation) and
FDProfile (finite domain constraint profile) which are explained in Section 8.2.

class FDVar : public OZ_CtVar {
FD * domain, copy, encap;
FDProfile prof;

public:
FDVar(OZ_Term t) : OZ_CtVar() { read(t); } // constructor
FD &operator * (void) { return *domain; }
FD * operator -> (void) { return domain; }

protected:
// auxiliary functions go here

};

The field domain is a pointer to be directed to the appropriate domain representation
when constructing an instance of this class. The operators * and -> are used to either
access the domain directly and to apply member functions, respectively. This follows
the convention that an access variable behaves like a pointer to a domain representation.

Auxiliary Functions for Constraint Profiles The field prof stores the constraint pro-
file needed to compute the events for scheduling propagators. The following auxiliary
functions initialize resp. retrieve the constraint profile.

virtual void FDVar::ctSetConstraintProfile(void) {
prof = domain->getProfile();

}
virtual OZ_CtProfile * FDVar::ctGetConstraintProfile(void) {
return &prof;

}

8.5 Propagation Functions 75

Auxiliary Functions for Domains Function ctGetConstraint() is internally used
to obtain access to the domains. It is defined as:

virtual OZ_Ct * FDVar::ctGetConstraint(void) { return domain; }

The remaining auxiliary functions are explained in correspondence to the references ➀–
➃ in Figure 8.2 and defined for finite domain access variables.

➀ The parameter is a singleton value. Function ctSetValue() initializes copy to
a singleton domain containing val and directing domain to the location of copy.

virtual void FDVar::ctSetValue(OZ_Term val) {
copy.initDescr(val);
domain = ©

}

The function FD::initDescr() initializes the domain according to the set of
integers described by an Oz-value (see Figure 3.3 on page 18).

➁ The parameter is a local variable. The field domain is directed to the location of
the constraint representation in the store (passed by constr) by function ctRe-
fConstraint().

virtual OZ_Ct * FDVar::ctRefConstraint(OZ_Ct * c) {
return domain = (FD *) c;

}

➂ The parameter is a global variable. The field copy is updated by function ct-
SaveConstraint() with the domain of the connected constraint variable. The
current state of copy is written to the connected global constraint variable by func-
tion constrainCtVariable() (Program 7.5) when leaving the propagator.

virtual OZ_Ct * FDVar::ctSaveConstraint(OZ_Ct * c) {
copy = * (FD *) c;
return ©

}

➃ The parameter is encapsulated, i.e., constraint propagation is invisible to the con-
straint store. Hence, the field encap is updated by function ctSaveEncapCon-
straint() with the domain of the connected constraint variable. All constraint
propagation is done on encap.

virtual OZ_Ct * FDVar::ctSaveEncapConstraint(OZ_Ct * c) {
encap = * (FD *) c;
return &encap;

}

In case a parameter is a top-level variable, it is treated like a local variable (➁). Since the
domain of a top-level variable must never become empty, the original domain is copied
(i.e., backed up) to the field copy and in case of a failure, written back to the store by
ctRestoreConstraint().

76 Chapter 8: The Constraint Propagator Interface of Mozart

virtual void FDVar::ctRestoreConstraint(void) { *domain = copy; }

Note that there have to be separate fields for global and encapsulated parameters since
both kinds of parameters can occur in a propagator at the same time (see Section 9.4.2
for more details).

8.5.2 Filter Interface

The filter sub-interface of the CPI provides a uniform way to communicate results and
requests of a filter function to the invoking propagator function. Redefining the abstrac-
tions of the filter interface makes the application of existing filter functions in different
host solvers straightforward avoiding to re-implement the complicated filter algorithms.

The interface defines class OZ_Filter which communicates results and requests of
a filter function to the host solver.

The definition of class OZ_Filter is presented as an instance of the a template class
Filter to emphasis the independence of the host solver. The interface of class Filter
is shown in Program 8.3.

template <class AccVar, class AccVarIt, class Evts, class Prop>
class Filter {
public:

// communicating filtering results
Filter &fail(void); // indicate failed filter
Filter &entail(void); // indicate entailed filter
Filter &leave(int vars_left = 0);
// propagator and parameter manipulation
Filter &drop_parameter(AccVar &var);
Filter &add_parameter(AccVar &var, Evts events);
Filter &impose_propagator(Prop * prop);
Filter &replace_propagator(Prop * prop);

};

Program 8.3: Interface of template class Filter (AccVar denotes an access
variable, AccVarIt an access variable iterator, Evts a set of
events, and Prop a propagator).

The class OZ_Filter is defined corresponding to the following type definition:

typedef Filter<OZ_CtVar, OZ_CtEvents,
OZ_ParamIterator, OZ_Propagator> OZ_Filter;

A filter class for a different host solver can be defined by providing a type definition
for the respective host solver. The following discussion refers to the CPI-instantiation
OZ_Filter of class Filter.

The Actual Filter Function The following signature of a filter function filter is
used for defining filter functions:

8.5 Propagation Functions 77

OZ_Filter &filter(OZ_Filter &service, . . .);

An instance of OZ_Filter is passed as first argument and returned as return value to
free the filter function entirely from the management of instances of class OZ_Filter.
The ellipsis (". . . ") is a placeholder for the access variables to be passed. The mem-
ber functions of class Filter (Program 8.3) have the return type Filter to make it
possible to call them in a return-statement leaving a filter function with the proposed
signature.

Communicating Filtering Results The outcome of running a filter function is com-
municated to the host system by applying fail() and entail() with the suggested
meaning. Function leave() takes an integer denoting the number of undetermined
parameters left to still entail the propagator running the filter. Otherwise, the host prop-
agator is set to execution state sleeping.

Propagator and Parameter Manipulation A filter function can drop a pa-
rameter by function drop_parameter() and can add an extra parame-
ter by add_parameter(). Further, a filter can impose a propagator (im-
pose_propagator()) resp. replace its host propagator by another propagator
(replace_propagator()).4 The host solver is responsible for providing means to
impose a propagator on a set of access variables similar to creator functions.

8.5.3 An Example of a Propagation Function

This section combines access variables and the filter function to define the propagation
function for the x ≤ y + c-constraint. First, the filter function is defined. Then, the defi-
nition of class OZ_Filter is extended by Mozart-specific functionality and eventually
the propagation function of the x ≤ y + c-propagator is defined.

Filter Function The propagation rules to be implement are:

x ≤ y + c −→ > (8.1)

x > y + c −→ ⊥ (8.2)

x ≤ y + c (8.3)

x − c ≤ y (8.4)

The lower (upper) bound of a finite domain variable x is denoted x (x). Rule 8.1 detects
entailment while rule (8.2) fires on failure. Constraint propagation on the upper bound
of x is done by rule (8.3). The lower bound of y is constrained by rule (8.4). This rule
subsumes the failure rule (8.2). It produces under the condition of the failure rule an
empty domain of y which raises a failure.

The filter function is a template function parameterized over the types of the filter
class (FILTER) and the finite domain access variable (FDVAR). Using templates has the
advantage that filter implementations are independent from the names of classes used on
a host solver and thus, can be used without any changes. Remember the convention, that
an access variable behaves like a pointer to a finite domain representation FD. The opera-
tor FD::operator >= (FD::operator <=) constrains the lower (upper) bound of a

4Function replace_propagator() is typically used in propagators for reified constraints.

78 Chapter 8: The Constraint Propagator Interface of Mozart

finite domain while function FD::getMinElem() (FD::getMaxElem()) obtains the
minimum (maximum) element of a finite domain. The definition of the filter function is
a direct implementation of the propagation rules.

template <class FILTER, class FDVAR>
FILTER &filter_leqoff(FILTER &s, FDVAR &x, FDVAR &y, int c) {
FailOnEmpty(*x <= (y->getMaxElem() + c)); // (8.3)
FailOnEmpty(*y >= (x->getMinElem() - c)); // (8.4) and (8.2)
if (x->getMaxElem() <= y->getMinElem() + c) // (8.1)

return s.entail();
return s.leave();
failure:
return s.fail();

}

Filter Functions for Propagators The filter interface in Program 8.3 defines only the
functionality from the perspective of a filter function. A host solver needs additional
facilities, as in case of Mozart, a constructor and a operator to realize the requests and to
compute the return value for the propagation function.

class OZ_Filter { ...
OZ_Filter(OZ_Propagator * prop, // constructor

OZ_ParamIterator * iter);
OZ_Return operator (); // realize requests and compute

// return value of propagation function
}

The constructor is passed the host propagator (prop) to be able to process requests as
propagator replacement and an iterator over the access variables of parameters (iter).

class OZ_ParamIterator {
public:
virtual OZ_Return leave(int vars_left = 0) = 0;
virtual OZ_Return entail(void) = 0;
virtual OZ_Return fail(void) = 0;

};

A parameter iterator is an instance of a class derived from OZ_ParamIterator and
applies the corresponding functions of all the access variables it is initialized with. The
propagator function for the x ≤ y + c-propagator uses the parameter iterator ParamIt-
erator_V_V taking care of two finite domain access variables. It provides a constructor
and the functions leave(), entail() and fail().

Propagation Function The propagation function Leqoff::propagate() is a com-
bination of previously defined abstractions.

OZ_Return Leqoff::propagate(void) {
FDVar x(_x), y(_y);
ParamIterator_V_V params(x, y);
OZ_Filter s(this, ¶ms);
return filter_leqoff(s, x, y, _c)();

}

8.6 Discussion 79

First, the access variables for the parameters x and y are initialized with the tagged
references _x and _y stored in the propagator. Then, the parameter iterator params is
constructed. It is passed to the constructor of the OZ_Filter instance which connects
the propagator with filter function filter_leqoff(). Finally, the filter function is
called and the return value of the propagation function is computed by applying the ()-
operator to the returned value of s.

8.6 Discussion

All domain solvers for Mozart are implemented with the CPI. The CPI provides ab-
stractions which free the programmer from issues depending on particularities of the
host system Mozart. These particularities are for example local and global propagator
parameters. The programmer can entirely focus on domain solver-related issues as filter
algorithms and the like. Particularly the separation of filters from to remaining solver im-
plementation increases the degree of potential reuse of solver components significantly.
The CPI is an C++-interface in a similar fashion as ILOG SOLVER but in contrast to ILOG

SOLVER [73, 117, 116], it makes it possible to implement complete domain solver and
not only new propagators for existing ones.

The CPI provides additional abstractions for implementing built-in domain solver as
finite domains constraints [150] and finite integer set constraints (Part II) by predefined
classes for access variables and domain representations. These predefined classes avoid
some overhead imposed by the generality of the other interface abstractions. Section 10.3
discusses the impact of the interfaces by comparing the built-in finite domain solver with
the plug-in solver presented in this chapter.

80 Chapter 8: The Constraint Propagator Interface of Mozart

Chapter 9

Aliasing of Constraint Variables

Mozart represents equality of values directly in the constraint store. The operation equat-
ing constraint variables is called aliasing. Hence, taking equality of constraint variables
into account requires to extend propagation engines to be able to alias constraint vari-
ables and to cope with aliased variables.

This chapter discusses the integration of aliasing of constraint variables in propa-
gation services including the domain solver interface CPI and the impact on domain
solvers. The integration is an orthogonal extension to the propagation engines presented
in the previous chapters and is designed to not cause any performance penalty if not
used.

The integration touches all parts of the design and the implementation of propagation
engines. First the architecture of the propagation services including the domain solver
interface is extended (Section 9.1). Then aliasing is integrated in propagation services
(Section 9.2). Next, the way how propagation functions can benefit from aliased pa-
rameters is illustrated (Section 9.3). Finally, the implementation aspects for propagation
services and for the CPI are explained (Section 9.4).

9.1 Extending the Architecture of Propagation Services

Aliasing requires to extend the propagation services architecture (Chapter 4) and the
domain solver interface architecture (Chapter 6).

Propagation Services According to Section 4.2.1, a constraint variable is represented
by a head and a body where the head refers to the body. Aliasing redirects the head of the
bound variable to the head of the remaining variable. The head of the bound variable
is transparent and both variables have the same identity. That means in the extended
architecture a variable head can refer to another variable head. Thus, aliased variables
are explicitly represented in the constraint store. The treatment of the domains and the
connected propagators sets is up to the respective domain solver (see below).

Figure 9.1 shows aliasing of constraint variables. Variable v1 is the bound variable
and variable v2 is the remaining variable. The domain of the remaining variable is the
intersection of the domains of the aliased variables. Figure 9.1 shows only one set of

82 Chapter 9: Extending the Architecture of Propagation Services

domain dv1

variable
head v1

set of sleeping
propagators spv1

v1 = v2
variable
head v1

−→

domain dv2

domain:
dv1,2 = dv1 ∩ dv2

variable
head v2

variable
head v2

set of sleeping
propagators spv2

set of sleeping
propagators:
spv1,2

= (spv1
∪ spv2

)\

sprunnable

Figure 9.1: Aliasing of constraint variables.

connected propagators, but multiple sets are treated accordingly. The set of connected
propagators of the remaining variable is the union of the sets of the aliased variable
without the propagators scheduled (sprunnable in the figure) because of events caused by
intersecting the domains.

Domain Solver Interface Aliasing requires a domain-dependent intersection operation
which has to be provided by the domain solver. As consequence, the domain solver
interface is extended to request the intersection operation from the domain solver as
shown in Figure 9.2.

propagation service passed messages domain solver

aliasing of constraint variables
x = y:

constraint store:
x ∈ dx y ∈ dy

run intersection

procedure of domain

representation

interface

dx , dy

dx ∩ dy

Figure 9.2: Aliasing of constraint variables.

The intersection routine is called by the aliasing routine of the propagation services
and passes the involved domains (dx and dy) to the intersection routine and obtains the
intersection of the domains (dx ∩ dy).

9.2 Integrating Aliasing in Propagation Services 83

9.2 Integrating Aliasing in Propagation Services

The integration of aliasing in propagation service has to be compatible with computation
spaces and synchronization (in particular propagators). The constraint store introduced
in Section 5.1.1 needs not to be extended to represent aliased variables.

The compatibility with spaces requires to trail bindings and to maintain a binding
order which is compliant with stability checking of computation spaces. The binding
order (see [128, Section 13.6] and [97, Section 7.3.4]) ensures that a less global variable
is bound to a more global variable.1 This subsumes that a global variable stays global
and is not replaced by a local one.2

Threads and propagators can synchronize on constraint variables to become aliased.
The suspensions for the "aliased event" are stored in the suspension list of a constraint
variable which it inherits from a variable (see Section 5.2.1). Persistent propagator sus-
pensions need extra care since they are not removed when the corresponding propagator
is scheduled. Propagator suspensions are copied resp. moved to the remaining variable
to keep the synchronization imposed on the variables.

Aliasing constraint variables proceeds in three steps:

1. Compute the intersection of the domains of the variables. Signal failure if the
computed domain is empty.

2. Bind variables according to their situatedness:

local vs. local Bind one variable to the other one. An optimization imposes a
total order on all variables and binds always in a certain order to avoid reference
chains. Move all suspension and event sets to the remaining variable.

local vs. global Bind local variable to global one. Move all suspension and event
set to global variable.

global vs. global Bind the more local variable to the more global variable. In case
both variables have the same space and the computed domain is equal to one of
the domains of the global variables, bind toward the variable with the equal
domain to avoid extra trailing (see condition of trailing at step 3). Otherwise the
optimization mentioned for the local-local is applied. Copy all suspension and
event sets to the remaining variable.

Binding a global constraint variable has to be trailed as for a conventional global
variable.

3. Update domain of the remaining constraint variable. If the remaining variable is
global, trail the update if the computed domain is not equal to the domain of the
remaining variable. Schedule propagators waiting for caused events and schedule
all propagators in the suspension set inherited from the synchronized variable.

1A variable x is more global than a variable y if x’s space is closer to the root space than y’s space.
This condition ensures that the space of the less global variable is not detected as stable too early (see
[128, Section 13.6.1] for a detailed discussion).

2The aliasing procedure given by Würtz in [150, Section 11.3] does it not correctly since it introduces
local variables.

84 Chapter 9: Implementation Aspects

9.3 Aliased Parameters in Propagation Functions

Aliased variables occur as aliased parameters in propagation functions of propagators.
The implementation of access variables (see Section 9.4) ensures that access variables
referring to aliased parameters behave identically.

This section discusses extensions of the CPI to take aliased parameters into account.

Extending Access Variables Access variables have an additional ==-operator to check
if two access variables are connected to the same constraint variable in the store. Further,
the CPI provides a class OZ_CtVarVector for efficiently (in linear time) checking for
aliased parameters. Function

int * OZ_CtVarVector::find_equals(int * pa)

updates (and returns) the integer vector pa with the indexes (starting with 0) of the first
occurrences of individual constraint variables in the vector. A non-variable is indicated
by −1. As example, consider the vector x = 〈a, b, 2, a〉 with the variables a and b and
the integer value (singleton) 2. Then pa is updated to 〈0, 1,−1, 0〉.

Detecting Aliased Parameters Detecting aliased parameters can be beneficial for
detecting failure earlier. Regard the alldiff -constraint alldiff (x1, . . . , xn) ≡ ∀i, j ∈

{1, . . . , n} : i 6= j ∧ xi 6= x j which fails if two variables xi and x j are aliased even
if xi and x j are not yet determined: alldiff (x1, . . . , xn) ∧ ∃i, j : xi = x j −→ ⊥.

Using find_equals() makes the implementation of the simplification rule of the
alldiff -constraint straightforward:

int * e = x.find_equals();
for (int i = n; i-;)
if ((e[i] != i && e[i] >= 0)) {

fail propagator
}

As soon as ei is not i and not less than 0, then the access variable xi is a multiple occur-
rence of the variable xei in the store and the if-statement fires and fails the propagator.

9.4 Implementation Aspects

The implementation of propagation services is extended for aliased constraint variables
in three ways (i) the aliasing procedure, (ii) detection of aliased parameters by access
variables, and (iii) detection of aliased parameters in vectors of access variables.

9.4.1 Aliasing Procedure for Constraint Variables

The aliasing procedure for constraint variables is hooked into the unification procedure
of Mozart which is used to impose equality on sub-graphs of the value graph in the
constraint store (see Section 5.1.1) by adding necessary edges to the value graph us-
ing binding operations.3 The aliasing procedure implements the algorithm presented in

3Unification is explained in detail in Mehl’s thesis [88, Section 2.6.1].

9.4 Implementation Aspects 85

Section 9.2.

9.4.2 Handling of Aliased Parameters by Access Variables

The implementation of the CPI is mainly independent from the underlying virtual ma-
chine apart from access variables. Access variables have to be able to handle aliased
parameters which can be local, global and encapsulated variables. All these cases are
reflected in the implementation scheme for access variables presented in this section.

The CPI has to ensure that various parameters accessing the same domain variable
compute on the the same domain representation. This is straightforward for local param-
eters but not for global and encapsulated parameters. Furthermore, dropping parameters
requires to be informed about how many references to a single variable exist. To detect
this in linear time, a tagging scheme is used that adds to OZ_CtVars a pointer to every
domain variable CtVariable (see Section 5.2.1). This pointer is accommodated in the
field cpi. The implementation shares the field cpi with an already existing field which
is saved as soon as an instance of OZ_CtVar and the like accesses a domain variable
and restored when leave() or fail() is applied (see Section 8.5.1). That a domain
variable is accessed by the CPI is memorized in a spare single bit of the domain variable.

Additionally to the data structure presented in Figure 8.2 on page 74, there are three
extra fields: field var to the domain variable, forward points to the access-variable
which accessed the domain variable first (called first access variable), and nbref de-
notes the number of references to the domain variable. Note that only the first access-
variable is fully initialized and its forward-field refers to itself.

In the following, three different situations of how domain variables can be accessed
are discussed. Common to all situations is that the cpi-field of the domain variable
and the forward-fields of the access-variables point to access variable X. Furthermore,
nbref of X is set to 2 and nbref of Y is not incremented.

Local Parameters Accessing parameters referring to local variables is straightfor-
ward. Suppose aliased variables X and Y are parameters
of propagator P in a space SA (see figure on the right).

SA : X=Y ∧ {P . . . X Y . . .}

Since both variables are local the field domain points directly to the domain representa-
tion in the store, as shown in Figure 9.3.

Global Parameters The initialization of an access-variable by functions read() or
readEncap() for a global domain variable (see figure on
the right) copies the constraint d to the field copy of the
access-variable and refers domain to the copy. This means
that domain reduction is performed on this copy of d and

SA : X=Y

SB : {P . . . X Y . . .}

when calling leave() and d was transformed to d ′ by removing elements, d ′ is told
to the domain variable using function imposeConstraint() (Program 7.6). Initial-
ization of Y directs domain to the field copy of X (Figure 9.4) to ensure that domain
reductions on parameters referring to the same domain variable are performed on the
same constraint representation.

Global and Encapsulated Parameters The last situation deals with two aliased global

86 Chapter 9: Implementation Aspects

X

Y

X:
var
encap
copy
domain
forward
nbref 2

· · ·

constraint
store

CPI

constr d
cpi

· · ·

Y:
var
encap
copy
domain
forward
nbref 0

· · ·

Figure 9.3: Accessing aliased local variables by the CPI .

X

Y

X:
var
encap
copy d
domain
forward
nbref 2

· · ·

constraint
store

CPI

constr d
cpi

· · ·

Y:
var
encap
copy
domain
forward
nbref 0

· · ·

Figure 9.4: Accessing aliased global variables by the CPI .

variables where one of them (X) is determined for encap-
sulated propagation as it occurs for reified constraints
(see figure on the right). This example clarifies why
there are two distinct fields for dealing with global vari-

SA : X=Y

SB : X=({P . . . Y . . .})

ables (copy) and encapsulation (encap). The implementation of the CPI maintains the

9.4 Implementation Aspects 87

invariant to have one access-variable to represent all parameters referring to the same
variable. Since a single variable in the store can occur as a global parameter and an
encapsulated parameter, the field copy is already used for the global parameter and the
field encap is needed. Note that this does not increase the memory consumption since
access-variables are allocated in a kind of "short-term memory" only active while the
propagation function is running.

Upon initialization of encapsulated access-variable X, the constraint d of the domain
variable is copied to field encap of access-variable X and domain refers to encap (see
Figure 9.5). Initialization of an encapsulated parameter with a local variable is the same.

The initialization of Y copies the domain variable’s d to the first access-variable, i.e.
X and refers field domain of Y to the copy copy in X.

X

Y

X:
var
encap d
copy d
domain
forward
nbref 2

· · ·

constraint
store

CPI

constr d
cpi

· · ·

Y:
var
encap
copy
domain
forward
nbref 0

· · ·

Figure 9.5: Accessing aliased global and encapsulated variables by the CPI .

The constraints of the encapsulated parameter X are not told to the store whereas the
constraints of Y are told by function imposeConstraint() (Program 7.6).

Limitations The presented implementation of access variables is limited in the sense
that instances of OZ_CtVar are not allowed to be assigned to each other. This may
be a undesired since filters may want to partition sets of parameters. This situation can
be cured by introducing an extra level of indirection: instances of class OZ_CtVar are
accessed by pointers to them. These pointers can be hidden by class OZ_CtVarVector
and vectors of access variables can be easily partitioned by pointer assignement.

9.4.3 Detection of Aliased Parameters in Vectors

The implementation of the function OZ_CtVarVector::find_equals() uses the
forward-field of an access variable to compute the corresponding index in the returned

88 Chapter 9: Discussion

index vector. Access variables in a vector are initialized starting from index 0. Since the
forward-field of an access variable points to the first access variable of a parameter,
the order of initialization maintains the invariant that every forward-field points to an
access variable in the vector with a smaller or equal index. Due to this invariant, the
index of the first occurrence in the vector is simply the difference between the address
of the first access variable (i.e., the forward-field) and the address of the first access
variable in the vector.

9.5 Discussion

This chapter shows that aliasing constraint variable is orthogonal to propagation services
and this orthogonality is reflected in the architecture and the implementation. The treat-
ment of aliased constraint variable certainly imposes some computational overhead, but
this chapter proposes implementation techniques to minimize this overhead. That this
was successful can be seen by the benchmark results in Section 10.2.

Chapter 10

Comparison and Evaluation

This chapter consists of three parts. The first part compares Mozart Oz qualitatively to
other solvers while the second part compares the propagation performance of Mozart Oz
with other solvers. The third part analyses the impact of the interfaces on the perfor-
mance of Mozart Oz’s solver.

10.1 Comparison with Other Solvers

This section compares Mozart Oz qualitatively with other solvers. Various constraint
solver are characterized and relevant features are compared.

It is impossible to consider all existing constraint solvers; there are too many. Hence,
solvers are considered that: (i) are easily accessible and their implementation has been
presented to the scientific community, (ii) are still maintained and work out-of-the-box,
and (iii) present the state-of-the-art. Finally, to be considered, a solver must be able to
run the benchmarks in Section 10.2 with reasonable effort.

Other Solvers

Solvers are provided either as part of a programming language (typically Prolog) or as a
library for a certain host language (typically C++).

Programming Languages The constraint solvers of the following Prolog systems are
considered: GNU PROLOG 1.2.1 [38] (which is the successor of clp(FD) [32]), SIC-
STUS 3.8.5 [74], and ECLiPSe 5.2 [76]. Other Prolog-influenced solvers are cc(FD)
[145] and CHIP [40].

The closest relative to Mozart is AKL(FD) [22, 20] where the constraint solver is in-
tegrated in a committed-choice language too. AKL(FD) implements an indexical-based
finite domain solver in a concurrent constraint setting with encapsulated computation.
Hence, there are similarities in the handling of variables and suspensions of different
computation spaces. The integration of constraints is not as tight as in Oz. But unfortu-
nately, AKL(FD) is no longer maintained.

90 Chapter 10: Comparison with Other Solvers

Using Prolog as host language determines the available search strategies to depth-
first search. An in-depth discussion of the search facilities of various systems can be
found in [128].

Libraries Constraint libraries provide abstraction to implement constraint solver, i.e.,
search engines and propagation engines. The first constraint libraries, as e.g. SCREAMER

[136, 135], were implemented in Lisp (including ILOG SOLVER’s predecessor PECOS

[114]). Nowadays, the dominating host language is C++. The commercial C++-library
ILOG-solver [73, 117, 116] is considered which can be used as target for the high-level
language OPL [142] making it possible to express problems in terms of set expressions
and predefined search strategies.

There are constraint libraries developed as research platforms. The C++ constraint li-
brary FIGARO [64] is designed to experiment with various search schemes and constraint
solving techniques. The finite domain library CHOCO [83] is developed as platform of
experimentation and targeted to the language CLAIRE [26]. CLAIRE is successfully used
to solve hard combinatorial problems [29, 28].

Comparison of Features

Constraint Domains All mentioned constraint solvers support finite domain con-
straints. Table 10.1 given an overview over other domain solver available.

domain solver Mozart ECLi PSe SICSTUS GNU PROLOG ILOG

finite domain ✓ ✓ ✓ ✓ ✓

finite Herbrand sets ✓

finite integer sets ✓ ✓ ✓

rationals ✓ ✓

reals ✓ ✓ ✓ ✓

Table 10.1: Overview of available domain solvers.

Gervet pioneered finite set constraints by introducing finite sets over Herbrand terms
[55]. She implemented the solver CONJUNTO for ECLiPSe which in the meantime is
replaced by the finite integer set solver fd_set [75]. See for further discussion Sec-
tion 13.4.

ECLi PSe and SICSTUS provide additionally for an implementation of constraint
handling rules (CHR) ([51], see Section 14.5 for a brief discussion).

Mozart provides constraints over reals as plug-in library [104] and additionally
record constraints [123, 138].

Constraints Constraints with sophisticated filter algorithms are the key for solving
hard combinatorial problems. They were pioneered by CHIP [10, 11]. All considered
constraint solvers provide propagators with sophisticated filter, especially for schedul-
ing applications, except GNU PROLOG. ILOG provides an extra supplementing library,
called ILOG SCHEDULER [72].

10.1 Comparison with Other Solvers 91

Additionally, all considered solvers provide propagators for reified constraints.

Hybrid Solver A solver consisting of cooperating sub-solvers is called a hybrid solver
[13, 121]. Typically, mathematical programming solvers (as CPLEX [70]) are con-
nected to propagation-based constraint solvers. ILOG provides through its CONCERT-
technology [71] a uniform C++-interface to propagation-based constraint solvers (ILOG

SOLVER) and mathematical solvers (CPLEX).
ECLi PSe provides an interfaces to CPLEX by its library EPLEX [75]. Further, it

provides the concept of a so-called simplex daemon which collects linear constraints and
re-solves these constraint whenever their bounds change or new constraints appear [122].

Mozart is able to cooperate with other solvers. It encapsulates a solver in a propaga-
tor. The cooperation with a CPLEX-solver is presented in [104, Chapter 3].

Extensibility Constraint solvers have to be extensible to meet the requirements of in-
creasingly demanding applications. Table 10.2 provides an overview of possible exten-
sions. GNU PROLOG does not provide any these extensions and hence, is omitted.

extension Mozart ECLi PSe SICSTUS ILOG

new constraint domain ✓ ✓ ✓

new (global) constraints ✓ ✓ ✓ ✓

language C++ PROLOG PROLOG C++

Table 10.2: Overview of possible extensions.

ILOG makes it only possible to implement new constraints for existing constraint do-
mains. New constraints are defined by C++-classes which naturally implement global
constraints. Additionally, there is dedicated support for implementing reified con-
straints1.

Apart from the CPI, Mozart provides built-ins for watching finite domains. Such
built-ins suspend the computation of a thread until a certain event occurred on a fi-
nite domain variable. This makes it possible to implement finite domain propagators
by recursive procedures in Oz itself. This can be useful for implementing prototypi-
cal propagators. The possibility that a propagator replaces itself by another one makes
the implementation of propagators for reified constraints straightforward. As for ILOG,
representing a propagator by an instance of a C++-class supports naturally the imple-
mentation of constraints with sophisticated filters.

The library FIGARO supports the same extensions as ILOG but implements propagator
in same fashion as Mozart. Additionally, it features a filter interface called GIFT [111]
which implements the same concepts as proposed in Section 8.5.2. That makes the reuse
of filters straightforward.

ECLi PSe and SICSTUS provide an attributed variable interface [67] for implement-
ing new constraint domains. The programmer has to take care of handling sleeping
constraints and the like. In contrast, the CPI fulfills this task in a self-acting way. Ad-

1The ILOG terminology for a reified constraint is meta constraint.

92 Chapter 10: Benchmarking Propagation Efficiency

ditionally, ECLiPSe provides a library called RANGE [75] which simplifies the imple-
mentation of numerical domain solvers. SICSTUS provides an additional interface for
implementing finite domain propagators [24].

ILOG and Mozart implement constraints by C++-propagator [117, 116, 108] in con-
trast to ECLi PSe, SICSTUS, and GNU PROLOG which use indexicals [145].

10.2 Benchmarking Propagation Efficiency

The conducted benchmarks compare the pure propagation performance of state-of-the-
art constraint solvers with Mozart Oz 1.2.0. The propagation performance is measured
by imposing an inconsistent constraint and measuring the time until the inconsistency is
detected.

10.2.1 An Inconsistent Benchmarking Constraint

This evaluation simulates typical situations of solvers by varying the number of imposed
propagators and the number of runnable propagators. Accordingly, the used benchmark-
ing constraint can be configured to impose a given number of propagators and to have a
given number of propagators runnable at a time.

The constraint has to detect the inconsistency in a predictable number of propagator
invocations. Hence, the constraint is over a domain of discrete values, namely a finite
domain constraint. The time to set up the solver is neglected since it is small against
the time to detect the inconsistency. Further, it is possible to implement the constraint
with reasonable effort for various solvers and the used propagators have to be primi-
tive in the sense that no sophisticated propagation algorithms are used. The idea for the
constraint is a closed chain of <-constraints. To control the number of runnable propa-
gators, several closed chains are connected via a maximum-constraint such that to detect
the inconsistency propagation of all chains is required:

inconsistent(m, n) : z = less(n, x1, z) ∧ . . . ∧ z = less(n, xm, z) ∧ maxN(z, x1, . . . , xm)

(10.1)

less(n, x1, y) : xn+1 < y ∧ i ∈ {1, . . . , n} : xi < xi+1 (10.2)

maxN(y, x1, . . . , xn) : y = max(x1, y1) ∧ . . . ∧ yn−1 = max(xn−1, yn) ∧ yn = xn (10.3)

The constraint (10.1) consists of m chains of<-constraints of length n (constraint (10.2))
connected by the shared variable z and the maximum-constraint (10.3) which is realized
by ternary maximum-constraints available in all regarded solvers. The time taken to
detect the inconsistency depends on m and n and additionally on the initial domains of
variables. The initial domains are intervals without holes having a size greater than n to
make many propagator invocations necessary to detect the inconsistency.

The way the constraint works can be best understood regarding the analyzing corre-
sponding constraint graph in Figure 10.1.

The upper bound of z is propagated starting from xi,n through the <-chains to xi,1

where i = 1, . . . ,m. The maximum-constraints pass the upper bounds of the xi,1 on to

10.2 Benchmarking Propagation Efficiency 93

z max xm,1 < xm,2 < · · · < xm,n−1 < xm,n

<

max xm−1,1 < xm−1,2 < · · · < xm−1,n−1 < xm−1,n

<

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. z

max <

max x2,1 < x2,2 < · · · < x2,n−1 < x2,n

<

x1,1 < x1,2 < · · · < x1,n−1 < x1,n

Figure 10.1: Constraint graph of the inconsistent constraint for measuring propa-
gation performance.

z thus closing the chain. The maximum constraints pass on the upper bound only if all
chains propagated through.

The number of propagators of the benchmark constraint is m × n + m − 1 while
the number of propagators being runnable at once is m. In the following, the number of
propagators is referred to by m × n (omitting the number of maximum propagators).

10.2.2 Conducting the Benchmarks

The following systems are chosen for comparison: ILOG SOLVER 5.0, GNU PROLOG

1.2.1, SICSTUS 3.8.5, and ECLiPSe 5.2. These systems are used in real-world appli-
cation programs and mark the state-of-the-art. The benchmarks were conducted on a
machine running Linux with kernel 2.2.16-22, 256MB, AMD Athlon 700MHz.

Every benchmark was run 20 times and the arithmetic mean was used to compute
the speed-ups against Mozart Oz 1.2.0. A speed-up factor greater 1 means Mozart Oz
1.2.0 is faster by that factor. Otherwise, Mozart Oz 1.2.0 is slower and the factor is given
as a power of −1, e.g., 2−1 if Mozart Oz 1.2.0 is two times slower. The results of all
individual benchmarks including the corresponding variation coefficients can be found
in Table A.1 on page 185 while in this chapter the results are presented in a condensed
way by diagrams.

The individual benchmarks were done for all combinations of m and n where m × n
does not exceed 100.000 and m and n are powers of 10. Occasionally, some solver
failed for certain combinations of m and n. This is pointed out in the discussion of the
individual solver comparisons.

Two types of diagrams are used: the first one depicts speed-ups vs. the number of
propagators (m × n-diagram) while the second one depicts speed-ups vs. the number of
propagators runnable at a time (m-diagram). A vertical bar in a m×n-diagram represents
the arithmetic means of the speed-ups of the benchmarks for the corresponding value m×

n. Since a single bar typically represents the speed-ups of all combinations of m and n
for a given value m×n, the minimum and maximum speed-ups of these combinations are

94 Chapter 10: Benchmarking Propagation Efficiency

provided for convenience. The varying speed-ups are due to the different set ups of the
solvers by the parameters m and n of the benchmark constraint (10.1). The coefficients
of variation are provided for the individual benchmarks in Table A.1. An m-diagram
is analog to a m × n-diagram. A vertical bar in a m-diagram represents the arithmetic
means of all speed-ups for the corresponding value m while the minimum and maximum
speed-ups for varying values of n for a given m are provided analogously to m × n-
diagrams.

The programs implementing the benchmark constraint for the regarded solvers can
be found at [105].

Benchmarking against ILOG SOLVER ILOG SOLVER 5.0 is the only solver (apart from
Mozart Oz) that is able to handle all benchmarks. But for m × n = 1 × 100.000 and
m × n = 10 × 10.000, ILOG SOLVER shows a significant performance loss of being
244 resp. 26 times slower than Mozart Oz 1.2.0 (see right-most column in Table A.1 on
page 185). These benchmarks are excluded from the diagrams.

1

2

3

4

5

sp
ee

du
p

2.17

1

1.90

1.64

2.15

10

2.00

1.80

2.14

100

2.60

2.23

3.00

1000

3.55

2.83

4.90

10000

4.15

2.94

4.89

100000

m × n

Figure 10.2: Benchmark results of ILOG SOLVER 5.0 (m × n-diagram).

Figure 10.2 shows that ILOG SOLVER 5.0 performs worse as the number of propa-
gators increases. Otherwise, Figure 10.3 shows that the number of propagators being
runnable at a time does not have a direct impact on the solver’s performance. To sum-
marize, ILOG SOLVER 5.0 is in general about 2 to 4 times slower than Mozart Oz 1.2.0.

Benchmarking against GNU PROLOG GNU PROLOG 1.2.1 performs very well on
the conducted benchmarks and is in one third of the cases between 2.3 up to 3.7 times
faster than Mozart Oz 1.2.0. In another third GNU PROLOG 1.2.1 and Mozart Oz 1.2.0
are equally efficient, i.e., speed-ups are between 1.6 and 1.5−1.

GNU PROLOG 1.2.1 does not show a performance loss if the number of propagators
runnable at a time increases (Figure 10.5). Unfortunately, GNU PROLOG 1.2.1 is not
able to handle the benchmarks where m × n = 100.000 and crashes. Hence, those tests
have been ignored in the charts in Figure 10.4 and Figure 10.5. GNU PROLOG 1.2.1
provides one of the most efficient finite domain solvers but fails to run the benchmarks

10.2 Benchmarking Propagation Efficiency 95

1

2

3

4

5
sp

ee
du

p

2.72

2.14

4.90

1

2.25

1.64

2.83

10

3.12

1.80

4.89

100

3.86

3.00

4.61

1000

3.58

2.99

4.16

10000

2.94

100000

m

Figure 10.3: Benchmark results of ILOG SOLVER 5.0 (m-diagram).

4 -1

3 -1

2 -1

1

2

sp
ee

du
p

1.61

1

2.59 -1

2.94 -1

2.32 -1

10

3.55 -1

3.70 -1

3.31 -1

100

2.29 -1

2.95 -1

1.55 -1

1000

1.04 -1

1.25 -1

1.33

10000

m × n

Figure 10.4: Benchmark results of GNU PROLOG 1.2.1 (m × n-diagram).

with 100.000 propagators.

Benchmarking against SICSTUS PROLOG The benchmark results for varying m
showed such a great deviation that they could not be used to judge the solver. Hence,
m was fixed to 1 to obtain meaningful results. Furthermore, if n was greater than the
size of the initial domains of the variables, it took significantly longer than the time to
impose the propagators to detect the inconsistency. This is peculiar since according to
personal communication with Carlsson [23] every propagator performs an initial run of
the propagation function which ought to detect the inconsistency immediately in this
case. Figure 10.6 shows the results for m = 1.

The solver produced a memory fault for n = 100.000. The variation of the speed-ups
is significant which suggests unpredictable solver behavior. For n = 10, 100, 1000 the
performance is comparable, e.g., to ILOG SOLVER 5.0.

Benchmarking against ECLi PSe ECLi PSe 5.2 shows the same behavior as SICSTUS

96 Chapter 10: Benchmarking Propagation Efficiency

4 -1

3 -1

2 -1

1

2

sp
ee

du
p

1.26 -1

3.67 -1

1.61

1

2.25 -1

3.70 -1

1.25 -1

10

1.95 -1

3.31 -1

1.19 -1

100

1.29 -1

1.55 -1

1.11 -1

1000

1.06 -1

10000

m

Figure 10.5: Benchmark results of GNU PROLOG 1.2.1 (m-diagram).

1

2

3

4

5

6

7

8

9

10

sp
ee

du
p

6.67

1

2.81

10

2.38

100

2.72

1000

11.92

10000

m × n

Figure 10.6: Benchmark results of SICSTUS 3.8.5 (m × n-diagram).

for varying m so that m was fixed to 1 to obtain stable results. For n = 100.000 the
solver failed to detect the inconsistency.

The results in Figure 10.7 show that the propagation performance of Mozart Oz 1.2.0
is at least 8 times faster than ECLi PSe 5.2. For an increasing number of propagators, the
ratio is getting worse for ECLi PSe.

Discussion The implementations of ILOG SOLVER and Mozart are quite similar. Both
solvers are written in C++ and use C++ objects for propagators to represent non-basic
constraints. One reason for the better propagation performance of Mozart might be that
state restoration in Mozart is completely orthogonal to the constraint propagation and
thus, does not impose any computational overhead. The implementation of state restora-
tion of ILOG might impose an overhead which worsens the plain propagation perfor-
mance.

GNU PROLOG is implemented in C and uses indexicals to represent non-basic con-

10.3 Computational Costs of Interfaces 97

1

2

3

4

5

6

7

8

9

10

sp
ee

du
p

8.35

1

8.66

10

8.87

100

9.45

1000

35.53

10000

m × n

Figure 10.7: Benchmark results of ECLi PSe 5.2 (m × n-diagram).

straints. This means that a single propagator is implemented by a set of independent
indexicals. When a variable is constrained, only the directly concerned indexicals is re-
executed and not whole propagators (doing much more computation). This can explain
the better plain propagation performance of GNU PROLOG for the used benchmark con-
straint.

The worse plain propagation performance of SICSTUS PROLOG and ECLi PSe

might be due to the implementation of their propagation engines in Prolog [23, 125].
The implementation of propagation engines uses heavily destructive variable updates
which is in Prolog not as efficient available as in C/C++. In case of ECLi PSe, there
is a complex scheduling engine used [125] which might not be able to demonstrate its
benefits for the use benchmarks.

10.3 Computational Costs of Interfaces

This section analyzes the computational cost imposed by constraint programming inter-
faces. Since an interface adds an extra level of abstraction, a loss in efficiency is caused.
The propagation performance of four variations of a finite domain solver implemented
by the CPI is measured.

Standard solver This is standard finite domain solver of Mozart Oz having the finite
domain constraint variables integrated in the virtual machine and connecting propaga-
tors by the CPI. The propagators do not use the filter interface provided by CPI-class
OZ_Filter (Section 8.5.2).

Standard solver with separate filters This solver is identical to the Standard solver
with the only difference that the filters are connected by the filter interface (class
OZ_Filter).

98 Chapter 10: Computational Costs of Interfaces

External solver This solver is externally implemented, i.e., finite domain constraint
variables and propagators are implemented by the CPI. This situation occurs if a
solver for a constraint domain is implemented which is not supported by the virtual
machine. The propagators do not use the filter interface.

External solver with separate filters This solver is identical to the External solver with
the only difference that the filters are connected by the filter interface.

The implementation of the external finite domain solver is presented as example in Chap-
ter 8. The actual filter algorithms are of course identical.

The same set of benchmarks as for the comparison with other solvers (Section 10.2)
is run to obtain the figures.

Table 10.3 shows the speed-ups obtained by comparing differently implemented fi-
nite domain solver for Mozart Oz.

Standard solver against speed-up
Standard solver with separate filters 1.17−1

External solver 2.21−1

External solver with separate filters 2.38−1

Table 10.3: Slow-down due to filter interface and pure CPI-implementation.

The filter algorithms being used in the inconsistent constraint require small computa-
tional effort. The figures quantifying the overhead imposed by the interfaces is hence an
upper bound estimation, i.e., in real-life applications where more complex propagators
are employed, the overhead of the interfaces will be less relative to the overall computa-
tional effort.

The filter interface by class OZ_Filter imposes an slow-down from 7% (compar-
ing the two different External solvers) to 17%. Note that the implementation of bench-
marked CPI-class OZ_Filter is prototypical and is not yet as efficient as possible.
Furthermore, for scheduling applications employing (computationally demanding) prop-
agators, the overhead of the filter interface is barely measurable according to [111].

The implementation of a plug-in finite domain solver completely over the CPI causes
a slow-down by about factor 2. This ratio will improve for the plug-in solver as soon as
computationally expensive propagators are used. The CPI relies heavily on virtual func-
tions. This disallows C++ compiler optimizations such as inlining which are essential for
highly efficient code. But even solvers being slower by the factors shown in Table 10.3
are still more efficient than all the systems Mozart is compared with in Section 10.2
(except GNU PROLOG).

Part II

Finite Integer Set Constraints

Chapter 11

Constraint Propagation over Finite
Integer Sets

This chapter discusses constraint propagation over finite integer sets. An integer set S
is approximated by a lower bound s1 and an upper bound s2. Additional to bound con-
straints, sets are additionally approximated by lower and upper cardinality bounds.

The idea to approximate a set by lower
and upper bounds is based on works of
Gervet [55]. The lower bound denotes the
elements definitely in S and the upper bound

{1, 2} {1, 2, 3}

{1} {1, 3} {1, 2, 4} {1, 2, 3, 4}

{1, 4} {1, 3, 4}

those elements possibly in S. Such a bound constraint forms a lattice shown as Hasse-
diagram in the figure on the right for s1 = {1} and s2 = {1, 2, 3, 4}. Additional cardinal-
ity propagation cuts off slices from the left and from the right from the lattice.

The figure makes the reason to use a bounds approximation obvious. Representing
every individual element results in unfeasible exponential space demand since the power
set of s2 \ s1 has to be represented (i.e., 2|s2\s1| sets have to be represented).

This chapter presents propagation rules for solving basic (Section 11.1) and non-
basic (Section 11.2) finite integer set constraints and additionally, for connecting fi-
nite integer set constraints with finite domain constraints (Section 11.3). The chapter
closes with an example of set constraint propagation (Section 11.4) and a discussion
(Section 11.5).

11.1 Basic Constraints

Assume a set U = {0, . . . , sup}1 where sup is a sufficiently large integer.2 A finite set
of integers is denoted by d with ∅ ⊆ d ⊆ U . The complement of a set d is defined as
d{ = U \ d . The cardinality of a set d is denoted by |d|. The smallest element of a
domain d is denoted with d and the largest element with d . An integer is denoted by
n = 0, . . . , sup +1.

Basic finite set constraints consist of lower and upper bounds constraints in conjunc-

1The notation {a, . . . , b} denotes the set {e | a ≤ e ≤ b}.
2The integer constant sup is implementation-dependent and is for Mozart 228 − 2.

102 Chapter 11: Basic Constraints

tion with lower and upper bounds cardinality constraints. Further, basic constraints are
closed under conjunction and can be failed.

B ::= d1 ⊆ S ∧ S ⊆ d2 ∧ bounds constraint
n1 ≤ |S| ∧ |S| ≤ n2 cardinality constraint

|||||| B ∧ B conjunction
||| ⊥ failure

Note every individual basic set constraint consists always of bounds and cardinality con-
straints and is initially ∅ ⊆ S ∧ S ⊆ U ∧ 0 ≤ |S| ∧ |S| ≤ sup +1. This is required to
guarantee that the approximated set is finite. Furthermore, the invariants |d1| ≤ n1 and
n2 ≤ |d2| are maintained.

A variable S is called a set variable while |S| is called a cardinality variable. A
cardinality variable |S| is the cardinality variable of S.

A set constraint is determined to d by a constraint B iff:

d ⊆ S ∧ S ⊆ d ∈ B. (11.1)

The following derived forms are defined: n ∈ S is {n} ⊆ S and n /∈ S is S ⊆ U \ {n}

(where U \ {n} is finite since U is finite).

Bounds Propagation Rule (11.2) detects failure if there is a basic constraint which
violates the invariant that the lower bound is a subset or equal to the upper bound.

d1 ⊆ S ∧ S ⊆ d2 ∧ B
⊥

if d1 ⊃ d2 (11.2)

Constraint propagation adds either elements to the lower bound (rule (11.3)) or removes
elements from the upper bound (rule (11.4)).

d1 ⊆ S ∧ d2 ⊆ S ∧ B
d1 ∪ d2 ⊆ S ∧ B

(11.3)
S ⊆ d1 ∧ S ⊆ d2 ∧ B

S ⊆ d1 ∩ d2 ∧ B
(11.4)

Cardinality Propagation Rule (11.5) detects failure if there is a basic constraint which
violates the invariant that the lower bound of the cardinality constraint less than or equal
to the upper bound of the cardinality constraint.

n1 ≤ |S| ∧ |S| ≤ n2 ∧ B
⊥

if n1 > n2 (11.5)

Constraint propagation either raises the lower bound of the cardinality constraint to the
maximum of two individual lower bounds (rule (11.6)) or lowers the upper bound of the
cardinality constraint to the minimum of two individual upper bounds (rule (11.7)).

n1 ≤ |S| ∧ n2 ≤ |S| ∧ B

max(n1, n2) ≤ |S| ∧ B
(11.6)

|S| ≤ n1 ∧ |S| ≤ n2 ∧ B

|S| ≤ min(n1, n2) ∧ B
(11.7)

11.2 Non-basic Constraints 103

Connecting Bounds and Cardinality Propagation The purpose of connecting bounds
and cardinality propagation is to determine sets earlier. The following rules determine a
set by combining a bound constraint and a cardinality constraint.

d1 ⊆ S ∧ S ⊆ d2 ∧ |S| ≤ n ∧ B
d1 ⊆ S ∧ S ⊆ d1 ∧ |S| ≤ n ∧ B

if |d1| = n ∧ d1 ⊂ d2 (11.8)

d1 ⊆ S ∧ S ⊆ d2 ∧ n ≤ |S| ∧ B
d2 ⊆ S ∧ S ⊆ d2 ∧ n ≤ |S| ∧ B

if |d2| = n ∧ d1 ⊂ d2 (11.9)

Rule (11.8) determines a set if the cardinality of the lower bound set is equal to the upper
bound of the cardinality constraint. Rule (11.9) does the same for the upper bound set
and the lower bound of the cardinality constraint.

d ⊆ S ∧ n ≤ |S| ∧ B

d ⊆ S ∧ |d| ≤ |S| ∧ B
if |d| > n (11.10)

S ⊆ d ∧ |S| ≤ n ∧ B

S ⊆ d ∧ |S| ≤ |d| ∧ B
if |d| < n (11.11)

Rules (11.10) and (11.11) maintain for a basic constraint d1 ⊆ S ∧ S ⊆ d2 ∧ n1 ≤

|S| ∧ |S| ≤ n2 the invariant |d1| ≤ n1 ≤ n2 ≤ |d2|. Without this invariant, a basic set
constraint C in normal form can be satisfiable but not failed (⊥ 6∈ C) because rule (11.2)
is not applicable. Note that the condition of the rules (11.10) and (11.11) are needed for
termination.

11.2 Non-basic Constraints

Non-basic constraints include basic constraints, are closed under conjunction and pro-
vide the primitive non-basic constraints S1 ⊇ S2 ∩ S3 and S1 ⊆ S2 ∪ S3.

C ::= B ||| C ∧ C ||| S1 ⊇ S2 ∩ S3 ||| S1 ⊆ S2 ∪ S3

All other desired non-basic set constraints are expressed in terms of C (Figure 11.1).

Bounds Propagation for S1 ⊇ S2 ∩ S3 Rule (11.12) constrains the lower bound of S1

while rule (11.13) constrains the upper bound of S2 resp. S3.

S1 ⊇ S2 ∩ S3 :
d1 ⊆ S1 ∧ d2 ⊆ S2 ∧ d3 ⊆ S3 ∧ C

d2 ∩ d3 ⊆ S1 ∧ d2 ⊆ S2 ∧ d3 ⊆ S3 ∧ C
if d1 ⊂ d2 ∩ d3 (11.12)

Rule (11.12) states that the lower bound of S1 contains all those elements which are in
the lower bound of S2 and S3.

S1 ⊇ S2 ∩ S3 :
S1 ⊆ d1 ∧ di ⊆ Si ∧ d j ⊆ S j ∧ C

S1 ⊆ d1 ∧ Si ⊆ (d j \ d1)
{ ∧ d j ⊆ S j ∧ C

i, j ∈ {2, 3}, i 6= j

(11.13)

if di ⊂ (d j \ d1)
{

104 Chapter 11: Non-basic Constraints

inclusion: S1 ⊆ S2 ≡ S1 ⊆ S2 ∪ S3 ∧ S3 ⊆ ∅

disjoint: S1 ‖ S2 ≡ ∅ ⊇ S1 ∩ S2

union: S1 = S2 ∪ S3 ≡ S1 ⊆ S2 ∪ S3 ∧ S2 ⊆ S1 ∧ S3 ⊆ S1

complement: S1 = S{
2 ≡ ∅ ⊇ S1 ∩ S2 ∧ U ⊆ S1 ∪ S2

intersection: S1 = S2 ∩ S3 ≡ S1 ⊇ S2 ∩ S3 ∧ S1 ⊆ S2 ∧ S1 ⊆ S3

difference: S1 = S2 \ S3 ≡ S1 = S2 ∩ S{
3

partition: S1 = S2] S3 ≡ S1 = S2 ∪ S3 ∧ S1 ‖ S2

Figure 11.1: Expressing set constraints in terms of S1 ⊇ S2 ∩ S3 and S1 ⊆ S2 ∪ S3

.

Rule (11.13) states that the upper bound of Si does not contain those elements which are
in S j but not in S1.

Cardinality Propagation for S1 ⊇ S2 ∩ S3 Cardinality propagation is based on the
number of elements m which can be distributed over S2 and S3 without sharing any
elements. The value of m is m = |d2 ∪ d3| where S2 ⊆ d2 and S3 ⊆ d3.

The following rules propagate on the cardinality constraints:

S1 ⊇ S2 ∩ S3 :
n1 ≤ |S1| ∧ n2 ≤ |S2| ∧ n3 ≤ |S3| ∧ C

n2 + n3 − m ≤ |S1| ∧ n2 ≤ |S2| ∧ n3 ≤ |S3| ∧ C
(11.14)

if n1 < n2 + n3 − m

The lower bound of S1 contains at least as many elements as have to be shared by S2 and
S3. Since m elements can be distributed to S2 and S3 without any sharing, the number of
elements that exceeds m has to be shared (rule (11.14)).

S1 ⊇ S2 ∩ S3 :
|S1| ≤ n1 ∧ ni ≤ |Si | ∧ n j ≤

∣

∣S j
∣

∣ ∧ C

|S1| ≤ n1 ∧ |Si | ≤ m + n1 − n j ∧ n j ≤
∣

∣S j
∣

∣ ∧ C
i, j ∈ {2, 3}, i 6= j

(11.15)

if ni > m + n1 − n j

The inference for the upper bound of the cardinality of Si is defined by rule (11.15)
which can straightforwardly derived from the right hand-side of rule (11.14) by resolving
n1 = n2 + n3 − m to ni .3

3An interpretation of this rule is that ns = m − n1 elements are not shared between S2 and S3. S2 does
not share ns2 = n2 − n1 elements with S3 while S3 does not share ns3 = n3 − n1 elements with S2. The
number of elements that are only in S2 resp. S3 must exceed the maximum number of elements that are
not shared: ns ≥ ns2 + ns3. Expanding this in-equation yields: m − n1 ≥ (n2 − n1) + (n2 − n1) which
can be resolved either to n2 ≤ m + n1 − n3 or to n3 ≤ m + n1 − n2.

11.3 Connecting Finite Integer Sets and Finite Domains 105

Bounds Propagation for S1 ⊆ S2 ∪ S3 The upper bound of S1 is constrained by
rule (11.16) to contain all those elements which are in the upper bounds of S2 or S3.

S1 ⊆ S2 ∪ S3 :
S1 ⊆ d1 ∧ S2 ⊆ d2 ∧ S3 ⊆ d3 ∧ C

S1 ⊆ d2 ∪ d3 ∧ S2 ⊆ d2 ∧ S3 ⊆ d3 ∧ C
if d2 ∪ d3 ⊂ d1 (11.16)

The lower bound of Si is constrained to contain those elements e that are contained in
the lower bound of S1 but not S j (see rule (11.17)). This means, that Si has to contribute
the elements e.

S1 ⊆ S2 ∪ S3 :
d1 ⊆ S1 ∧ di ⊆ Si ∧ d j ⊆ S j ∧ C

d1 ⊆ S1 ∧ d1 \ d j ⊆ Si ∧ d j ⊆ S j ∧ C
i, j ∈ {2, 3}, i 6= j (11.17)

if di ⊂ d1 \ d j

Cardinality Propagation for S1 ⊆ S2 ∪ S3 Cardinality propagation is performed ac-
cording to the following rules:

S1 ⊆ S2 ∪ S3 :
|S1| ≤ n1 ∧ |S2| ≤ n2 ∧ |S3| ≤ n3 ∧ C

|S1| ≤ n2 + n3 ∧ |S2| ≤ n2 ∧ |S3| ≤ n3 ∧ C
if n1 > n2 + n3

(11.18)

The upper bound of the cardinality of S1 is inferred by rule (11.18) and states that S1

must not contain more elements than S2 and S3 together.

S1 ⊆ S2 ∪ S3 :
|S1| ≤ n1 ∧ ni ≤ |Si | ∧ n j ≤

∣

∣S j
∣

∣ ∧ C

|S1| ≤ n1 ∧ n1 − n j ≤ |Si | ∧ n j ≤
∣

∣S j
∣

∣ ∧ C
i, j ∈ {2, 3}, i 6= j

(11.19)

if ni < n1 − n j

The propagation for the lower bound of the cardinality of Si is that Si has to contribute at
least as many elements as lacking between S1 and S j , i.e. n1−n j elements (rule (11.19)).

11.3 Connecting Finite Integer Sets and Finite Domains

Finite integer sets gain extra expressiveness and propagation by combining them with
finite domain constraints. This section discusses various ways of combining both con-
straint systems while Chapter 13 demonstrates programming techniques taking advan-
tage of this combination.

Finite Domain Constraints Basic finite domain constraints are added by:

B ::= . . . ||| I ∈ d

106 Chapter 11: Connecting Finite Integer Sets and Finite Domains

A finite domain variable is denoted by I and denotes a single integer n ∈ d . A finite
domain variable is determined to the integer n if I ∈ {n}.

The following rules describe propagation of basic finite domain constraints:

I ∈ d1 ∧ I ∈ d2 ∧ B
I ∈ d1 ∩ d2 ∧ B

(11.20)
I ∈ ∅ ∧ B

⊥
(11.21)

Rule (11.20) combines two domains d1 and d2 of a single variable I while rule (11.21)
detects failure.

There is a rich set of non-basic constraints available for finite domain constraints.
For propagators implementing non-basic finite domain constraints refer to [46].

Cardinality The following constraint connects a finite domain variable I with the car-
dinality of the set S and propagates forth and back the changes to I and S.

C ::= . . . ||| I = |S|

Propagation is performed by the following rules:

I = |S| :
n ≤ |S| ∧ I ∈ d ∧ C

n ≤ |S| ∧ I ∈ d ∩ {n, . . . , sup} ∧ C
if n > d (11.22)

I = |S| :
|S| ≤ n ∧ I ∈ d ∧ C

|S| ≤ n ∧ I ∈ d ∩ {0, . . . , n} ∧ C
if n < d (11.23)

Rule (11.22) propagates changes of the lower bound of the cardinality constraint of S to
I while the same is done for the upper bound of S rule (11.23).

I = |S| :
n ≤ |S| ∧ I ∈ d ∧ C

d ≤ |S| ∧ I ∈ d ∧ C
if d > n (11.24)

I = |S| :
|S| ≤ n ∧ I ∈ d ∧ C

|S| ≤ d ∧ I ∈ d ∧ C
if d < n (11.25)

Rules (11.24) and (11.25) propagate changes of the cardinality constraint of S to the
domain of I .

Membership As mentioned, n ∈ S is a derived form of d ⊆ S. This derived form can
be generalized to a non-basic constraint:

C ::= . . . ||| I ∈ S

Note that I /∈ S is not considered separately since it is already covered due to I /∈ S ≡

I ∈ S{.
Rule (11.26) propagates the upper bound of S to the domain of I while rule (11.27)

propagates the determined value of I to the lower bound of S.

I ∈ S :
I ∈ d1 ∧ S ⊆ d2 ∧ C

I ∈ d1 ∩ d2 ∧ S ⊆ d2 ∧ C
if d1 ∩ d2 ⊂ d1 (11.26)

I ∈ S :
d ⊆ S ∧ I ∈ {n} ∧ C

d ∪ {n} ⊆ S ∧ I ∈ {n} ∧ C
if n 6∈ d (11.27)

11.4 An Example of Set Constraint Propagation 107

Reification of Membership A reified membership constraint reflects the validity of a
membership constraint I1 ∈ S to a 0/1-variable I2 which can be connected with finite
domain constraints.

C ::= . . . ||| (I1 ∈ S ↔ I2) ∧ I2 ∈ {0, 1}

The following rules detect entailment (rule (11.28)) resp. failure (rule (11.29)) of I1 ∈ S
and reflect the result to I2:

I1 ∈ d1 ∧ d2 ⊆ S ∧ I2 ∈ {0, 1} ∧ (I1 ∈ S ↔ I2) ∧ C

I1 ∈ d1 ∧ d2 ⊆ S ∧ I2 ∈ {1} ∧ C
if d1 ⊆ d2 (11.28)

I ∈ d1 ∧ S ⊆ d2 ∧ I2 ∈ {0, 1} ∧ (I1 ∈ S ↔ I2) ∧ C

I ∈ d1 ∧ S ⊆ d2 ∧ I2 ∈ {0} ∧ C
if d1 ∩ d2 = ∅ (11.29)

Constraining the domain of I2 to a singleton {1} ({0}) replaces (I1 ∈ S ↔ I2) by I1 ∈ S
(I1 /∈ S):

I2 = {1} ∧ (I1 ∈ S ↔ I2) ∧ C

I2 = {1} ∧ I1 ∈ S ∧ C
(11.30)

I2 = {0} ∧ (I1 ∈ S ↔ I2) ∧ C

I2 = {0} ∧ I1 /∈ S ∧ C
(11.31)

Note that until now propagation rules only derived new basic constraints; here they re-
place non-basic constraints.

11.4 An Example of Set Constraint Propagation

This section explains by means of examples constraint propagation and distribution for
finite integer set constraints.

Constraint Propagation As an example for constraint propagation, assume the basic
constraints

∅ ⊆ S1 ∧ S1 ⊆ {1, . . . , 3} ∧ ∅ ⊆ S2 ∧ S2 ⊆ {1, . . . , 4}

in conjunction with the non-basic constraints:

∅ ⊇ S1 ∩ S2 ∧ {1, . . . , 4} ⊆ S1 ∪ S2.

The domain reduction is illustrated for variable S1 by presenting the set constraint as
Hasse-diagram and crossing out removed values. The initial Hasse-diagram of S1 : ∅ ⊆

S1 ∧ S1 ⊆ {1, . . . , 3} is:

{1} {1, 2}

∅ {2} {1, 3} {1, 2, 3}

{3} {2, 3}

108 Chapter 11: An Example of Set Constraint Propagation

Constraint propagation of the non-basic constraints is demonstrated by showing the prop-
agation steps taken in Table 11.1. These steps are caused by sequentially imposing the
basic constraints 1 ∈ S1, 2 /∈ S2, and |S1| ∈ {1, 2}. Table 11.1 shows in column imposed
the imposed basic constraints and in column applied rule the applied rules. The columns
S1 and S2 show how the variables change as result of constraint propagation. For the
sake of a compact representation, a set variable {1, 3} ⊆ S ∧ S ⊆ {1, 2, 3, 4} is depicted
as {1, 2, 3, 4}.

step imposed applied rule S1 S2

0 {1, 2, 3} {1, 2, 3, 4}

1 1 ∈ S1 {1, 2, 3} {1, 2, 3, 4}

2 (11.13) {1, 2, 3} {2, 3, 4}

3 2 /∈ S2 {1, 2, 3} {3, 4}

4 (11.17) {1, 2, 3} {3, 4}

5 1 ≤ |S1| ≤ 2 (11.8) {1, 2} {3, 4}

6 (11.17) {1, 2} {3, 4}

Table 11.1: Finite set constraint propagation.

Step 0 of Table 11.1 shows the initial state and step 1 adds 1 to the lower bound of
S1. The corresponding Hasse-diagram of S1 representation is:

{1} {1, 2}

///////////////∅ ////////////////////////{2} {1, 3} {1, 2, 3}

////////////////////////{3} ////////////////////////////////////{2, 3}

Note that all set values not containing 1 are crossed out in the Hasse-diagram, i.e. re-
moved from the domain. Step 1 causes propagation rule (11.13) of constraint ∅ ⊇ S1∩S2

to be applied (propagation step 2) which removes element 1 from S2.
Step 3 drops 2 from S2 which in turn triggers in step 4 rule (11.17) of constraint

{1, . . . , 4} ⊆ S1 ∪ S2. This rule adds 2 to the lower bound of S1 since it is required to
form the union of {1, . . . , 4}. The corresponding Hasse-diagram of S1 is:

////////////////////////{1} {1, 2}

///////////////∅ ////////////////////////{2} ////////////////////////////////////{1, 3} {1, 2, 3}

////////////////////////{3} ////////////////////////////////////{2, 3}

The last basic constraint is |S1| ∈ {1, 2} (step 5). It determines S1 to {1, 2} since it is the
only value possible. This is caused by rule (11.8) for basic cardinality constraints which
removes the possible value {1, 2, 3}. The Hasse-diagram makes it clear:

////////////////////////{1} {1, 2}

///////////////∅ ////////////////////////{2} ////////////////////////////////////{1, 3} ///{1, 2, 3}

////////////////////////{3} ////////////////////////////////////{2, 3}

11.5 Discussion 109

Finally, also S2 is determined to {3, 4} by rule (11.17). This rule enforces the required
elements 3 and 4 to be in S2 since they are not in S1. In turn, this triggers rule (11.1)
which determines S2.

Distribution In general, constraint propagation is not able to infer a solution or to
detect the absence of a solution. Hence, constraint propagation is supplemented with
making non-deterministic distribution steps. A distribution step computes a branching
constraint (Section 2.1). Alternating constraint propagation and distribution leads to tree
search. Rule (11.32) describes a typical branching algorithm for a distribution step of
finite integer set constraints.

d1 ⊆ S ∧ S ⊆ d2 ∧ C
({n} ∪ d1 ⊆ S ∧ S ⊆ d2 ∧ C) ∨ (d1 ⊆ S ∧ S ⊆ d2 \ {n} ∧ C)

n ∈ d2 \ d1

(11.32)

The set d2 \ d1 is called the undecided set of S. This rule picks an element n of the
undecided set and creates a disjunction which includes n in S in one alternative and
excludes n from S in the other alternative. The exploration algorithm determines the
order of how the alternatives are explored.

∅ ⊆ S ∧ S ⊆ {1, 2}

{1} ⊆ S ∧ S ⊆ {1, 2}

1 ∈ S

S = {1, 2}

2 ∈ S

S = {1}

2 6∈ S

{1} ⊆ S ∧ S ⊆ {1, 2}

1 6∈ S

S = {2}

2 ∈ S

S = ∅

2 6∈ S

Figure 11.2: Search tree over an integer set.

Figure 11.2 shows a typical finite set search tree. The element 1 of the upper bound
of S is assumed to be in (left branch) or not in (right branch). The respective subtrees
continue by picking another element (2) and assuming it to be in or not in S until S is
determined.

11.5 Discussion

The propagation rules presented in this chapter are normalizing, i.e., if there is no rule
applicable the basic constraint is in normal form. A basic constraint is in normal form
if either (i) ⊥ ∈ B or (ii) B =

∧

i di ⊆ Si ∧ Si ⊆ d ′
i ∧ ni ≤ |Si | ∧ |Si | ≤ n′

i , all Si

are pairwise distinct and ∀i : di ⊆ d ′
i ∧ ni ≤ n′

i . In case of (i), B is failed. In case
∀i : di = d ′

i ∧ ni = n′
i , B is solved.

Bound reasoning and cardinality reasoning are orthogonal. They can be indepen-
dently implemented as long as the non-basic constraint I = |S| is available. A set is
then represented by two constraint variables: a bound variable and a cardinality variable.

110 Chapter 11: Discussion

Mozart uses a single variable with bound and cardinality information for the sake of
efficiency.

All available finite set constraint solver provide different degrees of cardinality rea-
soning. CONJUNTO adds cardinality information to the basic constraints by lower and
upper bounds while ILOG SOLVER associates a finite domain variable to every finite set
variable. Thus, the value of a set can be earlier determined by rules (11.8) and (11.9).
Non-basic constraints of CONJUNTO as well as CONJUNTO’s successor fd_sets [125]
do not perform cardinality reasoning. In contrast, the commercial ILOG SOLVER library
[119] and the Cardinal-solver for ECLi PSe of Azevedo and Barahona [8] perform car-
dinality reasoning similar to what is described in this chapter. Azevedo and Barahona
demonstrate in [8] the benefits of cardinality reasoning by benchmarks on digital circuit
diagnosis which show speed-ups of more than an order of magnitude against an equiva-
lent solver without cardinality reasoning.

Set constraints discribed in this chapter lead to (classical) CSPs covered by the semi-
ring constraint solving framework presented in [17, 18, 16]. Thus, the local consistency
properties of the semi-ring framework are inherited.

Chapter 12

Construction of Filter Algorithms

This chapter presents a scheme for automatically constructing filter algorithms for set
constraints which are conjunctions of the primitive non-basic constraints S1 ⊇ S2 ∩ S3

and S1 ⊆ S2 ∪ S3. These two constraints make it possible to express, for example,
standard set operations as shown in Figure 11.1 on page 104.

The proposed scheme constructs from a given set constraint an idempotent filter (see
Section 2.2) which updates basic constraints with constraint projectors. A constraint
projector modifies directly the constraints in the store and is part of the actual implemen-
tation. A constraint projector causes propagation events by modifying the store and is
dependent on propagation events of other projectors. These mutual dependencies make
the construction of filters non-trivial.

The generation of a filter proceeds in three steps.

Derive Constraint Projectors (Section 12.1) Express the constraint to be realized by
a conjunction of constraints S1 ⊇ S2 ∩ S3 and S1 ⊆ S2 ∪ S3. Transform the
conjunction to the corresponding set of constraint projectors.

Derive Events (Section 12.2) Compute for every constraint projector the events it
causes by updating and the events it depends on.

Generate Filter (Section 12.3) Detect dependencies among the projectors by creating a
dependency graph based on the events computed in the previous step and comput-
ing the strongly connected components of this graph. Collect mutually dependent
projectors in loops to obtain propagation fixed-point of these projectors. Order
loops and non-mutually dependent projectors such that dependencies and execu-
tion order are compatible.

This chapter closes by illustrating the generation of a filter for the constraint S1 = S2∩S3

in Section 12.4 and a discussion in Section 12.5.
An implementation of the proposed scheme (called filter generator) generates filter

algorithms in C++ which can be directly used by propagators implemented by the CPI

of Chapter 8. The example filters presented in Section 12.4 were generated by the filter
generator. The filter generator and generated C++-filters for various set constraints are
available at [105].

112 Chapter 12: Computation of Constraint Projectors

12.1 Computation of Constraint Projectors

A constraint projector updates a component (d1, d2, n1 or n2) of a basic set constraint
d1 ⊆ S ∧ S ⊆ d2 ∧ n1 ≤ |S| ∧ |S| ≤ n2.

The components d1, d2, n1 and n2 of the basic constraint can be retrieved by the
following access functions: d1 = bSc, d2 = dSe, n1 = |S| and n2 = |S|.

Basic constraints are imposed on a constraint variable by updating the components
of the constraints. The following constraint projectors are defined:

constraint projector ::= bSc ⊇̇ E S update bSc to bSc ∪ E S

||| dSe ⊆̇ E S update dSe to dSe ∩ E S

||| |S| ≥̇ EC update |S| to max(|S|, EC)

||| |S| ≤̇ EC update |S| to min(|S|, EC)

where E S is a set expression denoting a set and is of the form:

E S ::= bSc ||| dSe ||| d ||| U

||| E S ∪ E S ||| E S ∩ E S ||| E S \ E S

and EC is a cardinality expression denoting an integer and is of the form:

EC ::= |S| ||| |S| ||| n ||| sup
|||

∣

∣E S
∣

∣ ||| EC + EC ||| EC − EC ||| max(EC , EC) ||| min(EC , EC)

The application of a projector may abort a filter algorithm with failure if either rule (11.2)
or (11.5) fires.

The set variable S resp. cardinality variable |S| on the left hand-side of a projector p
is called projection variable of p. Applying a projector ≤̇ or ≥̇ to a set variable S means
implicitly the application to the cardinality variable of S. The set of variables occurring
in a set expression E S is denoted by V(E S) while the set of variables occurring in a
cardinality expression is denoted by V(EC). Note that V(E S) contains only set variables
and the set V(EC) contains set and cardinality variables.

The projectors for the primitive non-basic constraints S1 ⊇ S2 ∩ S3 and S1 ⊆

S2 ∪ S3 are derived from the gray-shaded parts of the conclusions of the propagation
rules (11.12)–(11.19) in Section 11.2. A set of constraint projectors is denoted by P .

Constraint Projectors for S1 ⊇ S2 ∩ S3 Projector (12.1) updates the lower bound set
of S1 and is derived for propagation rule (11.12). Projectors (12.2) and (12.3) are derived
from propagation rule (11.13) and update the upper bound sets of S2 and S3.

The lower bound of the cardinality constraint of S1 is updated by projector (12.4)
which is derived from propagation rule (11.14). The upper bounds of the cardinality
constraints of S2 and S3 are updated by projectors (12.5) and (12.6) which are derived
from propagation rule (11.15).

bS1c ⊇̇ bS2c ∩ bS3c (12.1)

dS2e ⊆̇ (bS3c \ dS1e)
{ (12.2)

dS3e ⊆̇ (bS2c \ dS1e)
{ (12.3)

|S1| ≥̇ |S2| + |S3| − |U | (12.4)

|S2| ≤̇ |U | + |S1| − |S3| (12.5)

|S3| ≤̇ |U | + |S1| − |S2| (12.6)

12.1 Computation of Constraint Projectors 113

The set of projectors for the constraint S1 ⊇ S2 ∩ S3 is denoted by PS1⊇S2∩S3(S1, S2, S3)

where the parameters are accordingly replaced.

Constraint Projectors for S1 ⊆ S2 ∪ S3 Projector (12.7) updates the upper bound set
of S1 and is derived for propagation rule (11.16). Projectors (12.8) and (12.9) are derived
from propagation rule (11.17) and update the lower bound sets of S2 and S3.

The upper bound of the cardinality constraint of S1 is updated by projector (12.10)
which is derived from propagation rule (11.18). The lower bounds of the cardinality
constraints of S2 and S3 are updated by projectors (12.11) and (12.12) which are derived
from propagation rule (11.19).

dS1e ⊆̇ dS2e ∪ dS3e (12.7)

bS2c ⊇̇ bS1c \ dS3e (12.8)

bS3c ⊇̇ bS1c \ dS2e (12.9)

|S1| ≤̇ |S2| + |S3| (12.10)

|S2| ≥̇ |S1| − |S3| (12.11)

|S3| ≥̇ |S1| − |S2| (12.12)

The set of projectors for the constraint S1 ⊆ S2 ∪ S3 is denoted by PS1⊆S2∪S3(S1, S2, S3)

where the parameters are accordingly replaced.

Constraint Projector Sets The set of constraint projectors for a conjunction of S1 ⊇

S2 ∩ S3 and S1 ⊆ S2 ∪ S3 constraints is computed by applying the rules (12.13)
and (12.14).

S1 ⊇ S2 ∩ S3 ∧ C,P
C,PS1⊇S2∩S3(S1, S2, S3) ∪ P

(12.13)
S1 ⊆ S2 ∪ S3 ∧ C,P

C,PS1⊆S2∪S3(S1, S2, S3) ∪ P
(12.14)

Normal Form of a Constraint Projector Set A constraint projector set P is in normal
form if

1. for every projection variable S resp. |S| of a projector there is at most one con-
straint projector of the form bSc ⊇̇ E S and dSe ⊆̇ E S resp. |S| ≥̇ EC and
|S| ≤̇ EC .

2. in set and cardinality expressions on the right hand-side of projectors every access
function is only applied to a set variable S resp. cardinality variable |S|, i.e. only
these applications bSc, dSe, |S| and |S| are allowed .

A normal form of a set of projections P is computed in two steps. At step 1, the
rules (12.15)–(12.18) are applied to P to enforce condition 1. The rules (12.15)
and (12.16) join two projectors to bound sets in the same fashion as the propaga-
tion rules (11.3) and (11.4) join basic bound constraints. Analogously, rules (12.17)
and (12.18) correspond to the propagation rules (11.6) and (11.7).

114 Chapter 12: Computation of Events

{bSc ⊇̇ E S
1 , bSc ⊇̇ E S

2 }] P

{bSc ⊇̇ E S
1 ∪ E S

2 }] P
(12.15)

{dSe ⊆̇ E S
1 , dSe ⊆̇ E S

2 }] P

{dSe ⊆̇ E S
1 ∩ E S

2 }] P
(12.16)

{|S| ≥̇ EC
1 , |S| ≥̇ EC

2 }] P

{|S| ≥̇ max(EC
1 , EC

2)}] P
(12.17)

{|S| ≤̇ EC
1 , |S| ≤̇ EC

2 }] P

{|S| ≤̇ min(EC
1 , EC

2)}] P
(12.18)

Step 2 moves in the set expressions and cardinality expressions of all projectors p ∈ P

the applications of the access functions to the variables to meet condition 2. The rules
in Figure 12.1 take care of set expressions E S. The rules (12.19) and (12.23) remove
access function applications from set values.

{bdc}] P

{d}] P
(12.19)

{
⌊

E S
1 \ E S

2

⌋

}] P

{
⌊

E S
1

⌋

\
⌈

E S
2

⌉

}] P
(12.20)

{
⌊

E S
1 ∩ E S

2

⌋

}] P

{
⌊

E S
1

⌋

∩
⌊

E S
2

⌋

}] P
(12.21)

{
⌊

E S
1 ∪ E S

2

⌋

}] P

{
⌊

E S
1

⌋

∪
⌊

E S
2

⌋

}] P
(12.22)

{dde}] P

{d}] P
(12.23)

{
⌈

E S
1 \ E S

2

⌉

}] P

{
⌈

E S
1

⌉

\
⌊

E S
2

⌋

}] P
(12.24)

{
⌈

E S
1 ∩ E S

2

⌉

}] P

{
⌈

E S
1

⌉

∩
⌈

E S
2

⌉

}] P
(12.25)

{
⌈

E S
1 ∪ E S

2

⌉

}] P

{
⌈

E S
1

⌉

∪
⌈

E S
2

⌉

}] P
(12.26)

Figure 12.1: Normalization rules for set expressions.

All rules not explicitly mentioned move access function applications to the set vari-
ables.

The rules in Figure 12.2 take care of cardinality expressions EC . The rules (12.27)
and (12.33) remove access function applications from integers. Note that rules (12.28)
and (12.34) branch to the set of rules for normalizing set expressions.

All rules not explicitly mentioned move access function applications to cardinality
of set variables.

If none of the rules (12.19)–(12.38) can be applied, for any constraint projector p ∈

P , P is in normal form.

12.2 Computation of Events

Applying a propagation projector p : S � E with � ∈ {⊆̇, ⊇̇, ≤̇, ≥̇} causes events on
the projection variable S. These events are called propagation events and denoted by
E�(S,�) (or for short E�(p)).

A projector p : S � E with � ∈ {⊆̇, ⊇̇, ≤̇, ≥̇} has to be re-executed if certain events
on variables of its right hand-side expression (V(E)) occur. These events are called
re-execution events and are denoted by E�(�, E) (or for short E�(p)).

12.2 Computation of Events 115

{n}] P

{n}] P
(12.27)

{
∣

∣E S
∣

∣}] P

{
∣

∣

⌊

E S
⌋∣

∣}] P
(12.28)

{
∣

∣EC
1 + EC

2

∣

∣}] P

{
∣

∣EC
1

∣

∣+
∣

∣EC
2

∣

∣}] P
(12.29)

{
∣

∣EC
1 − EC

2

∣

∣}] P

{
∣

∣EC
1

∣

∣−
∣

∣EC
2

∣

∣}] P
(12.30)

{min(
∣

∣EC
1

∣

∣ ,
∣

∣EC
2

∣

∣)}] P

{min(
∣

∣EC
1

∣

∣,
∣

∣EC
2

∣

∣)}] P
(12.31)

{max(
∣

∣EC
1

∣

∣ ,
∣

∣EC
2

∣

∣)}] P

{max(
∣

∣EC
1

∣

∣,
∣

∣EC
2

∣

∣)}] P
(12.32)

{n}] P

{n}] P
(12.33)

{
∣

∣E S
∣

∣}] P

{
∣

∣

⌈

E S
⌉∣

∣}] P
(12.34)

{
∣

∣EC
1 + EC

2

∣

∣}] P

{
∣

∣EC
1

∣

∣+
∣

∣EC
2

∣

∣}] P
(12.35)

{
∣

∣EC
1 − EC

2

∣

∣}] P

{
∣

∣EC
1

∣

∣−
∣

∣EC
2

∣

∣}] P
(12.36)

{min(
∣

∣EC
1

∣

∣ ,
∣

∣EC
2

∣

∣)}] P

{min(
∣

∣EC
1

∣

∣,
∣

∣EC
2

∣

∣)}] P
(12.37)

{max(
∣

∣EC
1

∣

∣ ,
∣

∣EC
2

∣

∣)}] P

{max(
∣

∣EC
1

∣

∣,
∣

∣EC
2

∣

∣)}] P
(12.38)

Figure 12.2: Normalization rules for cardinality expressions.

Possible Events An event denotes a certain kind of update to a variable. The following
events are defined for a variable S resp. |S|: update the lower bound set (denoted by
Se(b·c)), update the upper bound set (denoted by Se(d·e)), update the lower bound of the
cardinality (denoted by Se(|·|)), and update the upper bound of the cardinality (denoted
by Se(|·|)).

Propagation Event Sets A propagation event set defines possible events caused on
a projection variable by applying a propagation projector. The following propagation
event sets are defined.

E�(S, ⊆̇) = {Se(d·e), Se(|·|), Se(b·c)} (12.39)

E�(S, ⊇̇) = {Se(b·c), Se(|·|), Se(d·e)} (12.40)

E�(S, ≤̇) = {Se(|·|), Se(d·e)} (12.41)

E�(S, ≥̇) = {Se(|·|), Se(b·c)} (12.42)

The events Se(|·|) and Se(|·|) in sets (12.39) and (12.40) are due to the invariants main-
tained by the propagation rules (11.10) and (11.11) on page 103. Event Se(d·e) in the
sets (12.40) and (12.41) is caused by propagation rule (11.8) while event Se(b·c) in the
sets (12.39) and (12.42) is caused by propagation rule (11.9). (See page 103 for the rules
(11.8)–(11.11).)

Note that a propagation event set E�(S,�) with � ∈ {⊆̇, ⊇̇, ≤̇, ≥̇} contains only
events on S.

116 Chapter 12: Computation of Events

Re-execution Event Sets A re-execution event set of an expression (a set expression
E S or a cardinality expression EC) contains those events which may have an impact on
the outcome of the evaluation of the expression. Hence, the events in a re-execution
event set trigger the re-execution of the respective expression.

A set of events is denoted by E . A set of re-execution events collects events which
either increase or decrease the valuation of the expression. The valuation of a set expres-
sion E S increases if val(E S) ⊆ val(E S)E where val(E S) is the valuation of E S before
and val(E S)E is the valuation of E S after an event e ∈ E occurred. Analogously, The
valuation of a set expression E S decreases if val(E S) ⊇ val(E S)E .

The projector dSe ⊆̇ E S updates S in case of events on V(E S) which decrease the
valuation of E S (equation (12.43)) while the projector bSc ⊇̇ E S updates S in case of
events on V(E S) which increase the valuation of E S (equation (12.44)).

E�(⊆̇, E S) = E ↓ E S (12.43) E�(⊇̇, E S) = E ↑ E S (12.44)

The actual re-execution event set for a set expression ES is recursively described by the
rules in Figure 12.3. Rules (12.45)–(12.47) and (12.51)–(12.53) define the events having
an impact on variables and constants while rules (12.48)–(12.50) and(12.54)–(12.56)
compose the event set according to the valuation and the possible set operators (∪, ∩

and \).

∅ ↑ d (12.45)

{Se(b·c)} ↑ bSc (12.46)

{Se(d·e)} ↓ dSe (12.47)

E1 ↑ E S
1 E2 ↑ E S

2
E1 ∪ E2 ↑ E S

1 ∪ E S
2

(12.48)

E1 ↑ E S
1 E2 ↑ E S

2
E1 ∪ E2 ↑ E S

1 ∩ E S
2

(12.49)

E1 ↑ E S
1 E2 ↓ E S

2
E1 ∪ E2 ↑ E S

1 \ E S
2

(12.50)

∅ ↓ d (12.51)

∅ ↓ bSc (12.52)

∅ ↑ dSe (12.53)

E1 ↓ E S
1 E2 ↓ E S

2
E1 ∪ E2 ↓ E S

1 ∪ E S
2

(12.54)

E1 ↓ E S
1 E2 ↓ E S

2
E1 ∪ E2 ↓ E S

1 ∩ E S
2

(12.55)

E1 ↓ E S
1 E2 ↑ E S

2
E1 ∪ E2 ↓ E S

1 \ E S
2

(12.56)

Figure 12.3: Rules for deriving re-execution event sets for set expressions.

The re-execution event set for a cardinality expressions is defined analogously to
set expressions. The valuation of a cardinality expression EC increases if val(EC) ≤

val(EC)E where val(EC) is the valuation of EC before and val(EC)E is the valuation of
EC after an event e ∈ E occurred. Analogously, the valuation of a cardinality expression
EC decreases if val(EC) ≥ val(EC)E .

The projector |S| ≤̇ EC updates S in case of events on V(EC) which decrease the

12.3 Filter Generation 117

valuation of EC (equation (12.57)) while the projector |S| ≥̇ EC updates S in case of
events on V(EC) which increase the valuation of EC (equation (12.58)).

E�(≤̇, EC) = E ↓ EC (12.57) E�(≥̇, EC) = E ↑ EC (12.58)

Event sets for cardinality expressions are described in an analogous way as for set ex-
pressions by the rules in Figure 12.4. Rules (12.59)–(12.61) and (12.67)–(12.69) de-
fine the events having an impact on variables and constants while rules (12.63)–(12.66)
and (12.71)–(12.74) compose the event set according to the valuation and the arithmetic
operators and functions (+, −, min and max). Rules (12.62) and (12.70) branch to the
rules in Figure 12.3 for computing the valuation of the set expression argument of the
cardinality operator (

∣

∣E S
∣

∣).

∅ ↑ n (12.59)

{Se(|·|)} ↑ |S| (12.60)

{Se(|·|)} ↓ |S| (12.61)

E ↑ E S

E ↑
∣

∣E S
∣

∣

(12.62)

E1 ↑ EC
1 E2 ↑ EC

2
E1 ∪ E2 ↑ EC

1 + EC
2

(12.63)

E1 ↑ EC
1 E2 ↓ EC

2
E1 ∪ E2 ↑ EC

1 − EC
2

(12.64)

E1 ↑ EC
1 E2 ↑ EC

2
E1 ∪ E2 ↑ min(EC

1 , EC
2)

(12.65)

E1 ↑ EC
1 E2 ↑ EC

2
E1 ∪ E2 ↑ max(EC

1 , EC
2)

(12.66)

∅ ↓ n (12.67)

∅ ↓ |S| (12.68)

∅ ↑ |S| (12.69)

E ↓ E S

E ↓
∣

∣E S
∣

∣

(12.70)

E1 ↓ EC
1 E2 ↓ EC

2
E1 ∪ E2 ↓ EC

1 + EC
2

(12.71)

E1 ↓ EC
1 E2 ↑ EC

2
E1 ∪ E2 ↓ EC

1 − EC
2

(12.72)

E1 ↓ EC
1 E2 ↓ EC

2
E1 ∪ E2 ↓ min(EC

1 , EC
2)

(12.73)

E1 ↓ EC
1 E2 ↓ EC

2
E1 ∪ E2 ↓ max(EC

1 , EC
2)

(12.74)

Figure 12.4: Rules for deriving re-execution event sets for cardinality expressions.

Note that a re-execution event set E�(�, E) with � ∈ {⊆̇, ⊇̇, ≤̇, ≥̇} contains only
events on V(E).

12.3 Filter Generation

The constraint projectors realizing a given constraint are arranged such that a the result-
ing filter is idempotent. But projectors typically depend on each other so that idempotent
behavior is achieved by looping over mutually dependent constraint projectors and by

118 Chapter 12: Filter Generation

ordering projectors such that the dependencies and the execution order go in the same
direction.

Constraint projectors are executed top-down, i.e., the top projector ptop is executed
first and the bottom projector pbottom is executed last. The execution order is expressed
by an order on projectors ptop < . . . < pbottom.

Dependent Constraint Projectors A constraint projector p1 depends on a projector p2

if E�(p1) 6 ‖ E�(p2). In words, the set of propagation events E�(p2) shares events with
the set of re-execution events E�(p1) and the shared events E�(p1) ∩ E�(p2) may have
an impact on p1.

Consider the example in Figure 12.5, where p1 depends on p2 because of the upwards
dependency caused by the event Se(d·e)

2 . Hence, p1 and p2 are re-ordered to execute p2

before p1 and thus, the upwards dependency is avoided.

p1 : dS1e ⊆̇ dS2e

p2 : dS2e ⊆̇ dS1e

Se(d·e)
2

−→

p2 : dS2e ⊆̇ dS1e

p1 : dS1e ⊆̇ dS2e

Se(d·e)
2

Figure 12.5: Resolving upwards-dependent constraint projectors by re-ordering.

Mutually dependent constraint projectors cannot be resolved by re-ordering. See the
example in Figure 12.6. The projectors p1 and p2 are looped over until they reach a
fixed-point, i.e., no event Se(d·e)

2 occurs because p2 does change dS2e anymore.

p1 : dS1e ⊆̇ dS2e

p2 : dS2e ⊆̇ dS1e

Se(d·e)
2

Se(d·e)
1

Figure 12.6: Mutally dependent constraint projectors.

Graph-based Analysis Figures 12.5 and 12.6 suggest to represents constraint projec-
tors and the dependencies among them as graph. This graph is called dependency graph
and denoted by G = (N , E) where N is the set of nodes and E the set of directed edges.
A node n p ∈ N represents a constraint projector p. A directed edge (npi , n p j) denotes
that projector p j depends on updates of projector pi . The set of edges is constructed by

E = {(n pi , n p j) | E�(pi) 6 ‖ E�(p j)} (12.75)

12.3 Filter Generation 119

The execution order on constraint projectors represented by a graph G is obtained by
topologically sorting G. In case an topological order is found, the projectors are se-
quentially arranged according to that topological order. In case no order is found, i.e.,
the dependency graph contains cycles, the set of strongly connected components SCCG

(see for example [34]) of G are computed. Projectors Pscc represented by a strongly
connected component Sscc ∈ SCCG where |Sscc| > 1 are mutually dependent with each
other and are executed in a loop until a fixed-point is detected.

Generating Loops There is a loop for every strongly connected component Sscc ∈

SCCG where |Sscc| > 1. The nodes of Sscc represent the projectors in Pscc. It is desirable
to find an order for the projectors inPscc such that the number u of upwards dependencies
is minimal because u is a measure for the complexity of the test for detecting the fixed-
point. Unfortunately, finding the minimal u is NP-hard due to the underlying linear-
ordering problem [57] (see Section 12.5 for a discussion). Because of the complexity for
finding an optimal ordering, the projectors in Pscc are arbitrarily ordered ∀p1, . . . , pn ∈

Pscc : p1 < . . . < pn.

Events and Profiles A loop has reached its fixed-point if no fixed-point events have
occurred during an iteration. Fixed-point events state an upwards dependency between
ordered projectors. The set of fixed-point events Efix is computed by:

Efix =
⋃

pi ,p j∈P:pi<p j

E�(pi) ∩ E�(p j) (12.76)

The occurrence of fixed-point events is detected using constraint profiles which are
collected in the set of fixed-point profiles Tfix. The set of fixed-point profiles Tfix is
created by mapping fixed-point events Se(�) ∈ Efix to the corresponding profiles S p(�):

Tfix = {S p(�) | Se(�) ∈ Efix} (12.77)

At the beginning of a loop, all components of basic constraints which produce fixed-
point events are profiled. At the end of the loop, the profiles are used to test if the
respective component is unchanged, i.e. has not caused an fixed-point events. This

is done by the predicate S = S p(�∈{b·c,d·e,|·|,|·|}) which is true if the component � to
be tested is unchanged since the profile S p(�) has been taken. If no fixed-point event
occurred, the loop is left. Looping is done by a modified repeat-until-loop:

repeat[Tfix]{
p1 ∈ Pscc

...
pn ∈ Pscc

} until (
∧

S p(�)
∈Tfix

S = S p(�));

The semantics of this loop is as follows. Take at the beginning of every iteration every
profile in Tfix (Tfix is computed for Pscc). Then execute the projectors p1 to pn. Even-
tually, test if fixed-point events occurred by comparing the profiles with the respective
components. The loop is left if no fixed-point events occurred. Else reiterate.

120 Chapter 12: An Example for Filter Construction

Generating a Sequential Algorithm After determining fixed-point loops, a graph
G ′ is constructed where the nodes are the collapsed strongly connected components
Sscc ∈ SCCG and the edges are those edges of G connecting the strongly connected
components. The modified dependency graph G ′ is topologically sorted. Note that a
node of G ′ denotes either a single constraint projector or a loop. The topological or-
der of G′ determines the sequential order of the constraint projectors and loops in the
generated algorithm.

Compiling the Algorithm The algorithm for constructing filter algorithms is shown
in Figure 12.7. It comprise all steps from the initial set constraint to be realized till the
generated filter algorithm.

Integrating Filter Algorithms in Propagators Filters are straightforwardly integrated
into propagators. The issues are failure, entailment and propagator scheduling. A gen-
erated filter detects automatically failure and entailment if all parameters are determined
(conditions (adequate.1) and (adequate.2) on page 11). Failure is detected by the projec-
tors if either rule (11.2) or (11.5) fires (conditions (adequate.1)). A propagator is entailed
if its filter determines all its parameters and does not fail (conditions (adequate.2)). A
propagator p has to be scheduled if any of the re-execution events of the projectors of
its filter occur on its parameters. Propagator p schedules other propagators if Fp causes
the respective events on its parameters. This functionality is encapsulated in the access
variables defined for finite set variables.

12.4 An Example for Filter Construction

This section illustrates the algorithm in Figure 12.7 by constructing a filter algorithm
performing bound propagation for the set expression S1 = S2 ∩ S3. Additionally, a filter
algorithm performing bound and cardinality propagation for the same constraint is given.

A Filter for Bounds Propagation The expression S1 = S2 ∩ S3 can be straightfor-
wardly rewritten to S1 ⊇ S2 ∩ S3 ∧ S1 ⊆ S2 ∧ S1 ⊆ S3 (see Figure 11.1). The
corresponding set of constraint projectors P consists of the following projectors:

➀ bS1c ⊇̇ bS2c ∩ bS3c

➁ bS2c ⊇̇ bS1c

➂ bS3c ⊇̇ bS1c

➃ dS1e ⊆̇ dS2e ∩ dS3e

➄ dS2e ⊆̇ (bS3c \ dS1e)
{

➅ dS3e ⊆̇ (bS2c \ dS1e)
{

Note that dS1e ⊆̇ dS2e and dS1e ⊆̇ dS3e are collapsed to dS1e ⊆̇ dS2e ∩ dS3e (see
rule (12.16)).

Next, the dependency graph is constructed from P and topologically sorted. Since
there is no topological order, all strongly connected components are computed. The
edges inside strongly connected components are solid while the other edges are dashed:

12.4 An Example for Filter Construction 121

Input: a non-basic constraint C as defined in Section 11.2
Output: a filter algorithm

1. Expand C by the rules (12.13)–(12.14) to P and normalize P by the
rules (12.15)–(12.38) to P ′.

2. Compute for every p ∈ P ′ the set of re-execution events E�(p) and the set
of propagation events E�(p).

3. Construct the dependency graph G = (N , E) where N is the set of nodes
representing the constraint projectors and E is the set of directed edges
(see equation (12.75)) referring from a projector-node causing propagation
events to the projector-node where these events have an impact (i.e., the
projector has to be re-executed).

4. Sort G topologically:

(a) If a topological order is found then there are no cycles in G. Arrange
the constraint projectors sequentially according to the topological or-
der. Stop.

(b) If no topological order is found then G contains cycles. Compute the
set SCCG of strongly connected components of G:

i. Every element Sscc ∈ SCCG denotes a sequence of constraint
projectors being subject to fixed-point iteration. Create a loop
for every Sscc ∈ SCCG . The fixed-point profiles are computed
by mapping the fixed-point event set of Sscc to the corresponding
profile set (see equations (12.76) and (12.77)).

ii. Collapse all Sscc ∈ SCCG to single nodes and sort the collapsed
dependency graph G ′ topologically. Arrange the loops and the
constraint projectors sequentially according to the topological or-
der. Stop.

Disconnected sub-graphs of the dependency graph can be arranged in any order.

Figure 12.7: Algorithm for the generation of filter algorithms.

1 2 3 4 5 6

The left strongly connected component SsccA contains the projectors ➀, ➁, and ➂ while
the right strongly connected component SsccB contains projectors ➃, ➄, and ➅. Collaps-
ing SsccA and SsccB to single nodes and topologically sorting the collapsed dependency

122 Chapter 12: An Example for Filter Construction

graph determines SsccA to be placed before SsccB .
Finally, the fixed-point profile sets are computed. The projectors are arranged in the

following execution order: SsccA : ➁ < ➂ < ➀ and SsccB : ➄ < ➃ < ➅. The generated
filter algorithm for the constraint S1 = S2 ∩ S3 is shown in Program 12.1.

S1 = S2 ∩ S3:
repeat [S1

p(b·c)] {
bS2c ⊇̇ bS1c;
bS3c ⊇̇ bS1c;
bS1c ⊇̇ bS2c ∩ bS3c;

} until (S1 = S1
p(b·c));

repeat [S1
p(d·e)] {

dS2e ⊆̇ bS3c
{ ∪ dS1e;

dS3e ⊆̇ bS2c
{ ∪ dS1e;

dS1e ⊆̇ dS2e ∩ dS3e;
} until (S1 = S1

p(d·e));

Program 12.1: Filter algorithm for S1 = S2 ∩ S3 with bounds reasoning.

A Filter for Bounds and Cardinality Propagation Adding cardinality propagation
produces a dependency graph being a single strongly connected component. This results
in a filter algorithm consisting of a single iteration loop as shown in Program 12.2.

S1 = S2 ∩ S3:
repeat [S3

p(|·|),S1
p(b·c),S1

p(d·e),S3
p(b·c),S1

p(|·|),S3
p(|·|),S1

p(|·|),S3
p(d·e),S2

p(d·e)] {
|S2| ≤̇ |dS2e ∪ dS3e| + |S1| − |S3|;
|S2| ≥̇ |S1|;

dS2e ⊆̇ bS3c
{ ∪ dS1e;

bS2c ⊇̇ bS1c;
|S1| ≤̇ min(|S2|, |S3|);
|S1| ≥̇ |S2| + |S3| − |dS2e ∪ dS3e|;
dS1e ⊆̇ dS2e ∩ dS3e;
bS1c ⊇̇ bS2c ∩ bS3c;
|S3| ≤̇ |dS2e ∪ dS3e| + |S1| − |S2|;
|S3| ≥̇ |S1|;

dS3e ⊆̇ bS2c
{ ∪ dS1e;

bS3c ⊇̇ bS1c;
} until (S3 = S3

p(|·|) ∧ S1 = S1
p(b·c) ∧ S1 = S1

p(d·e)

∧ S3 = S3
p(b·c) ∧ S1 = S1

p(|·|) ∧ S3 = S3
p(|·|)

∧ S1 = S1
p(|·|) ∧ S3 = S3

p(d·e) ∧ S2 = S2
p(d·e));

Program 12.2: Filter algorithm for S1 = S2 ∩ S3 with bounds and cardinality
reasoning.

12.5 Discussion 123

12.5 Discussion

The implementation of the filter generator orders projectors to minimize the complexity
of the detection of loop fixed-points. This is done in a naïve way by testing all permuta-
tions up to a certain number of projectors. Beyond this number no ordering is done since
finding an optimal solution of the underlying linear-ordering problem is NP-hard [57].
Otherwise, the obtained benefit of the optimization is not clear due to the computational
cost of projectors within the loops.

Filter generation compiles constraints to projectors. The idea of compiling con-
straints has previously been used in indexical-based finite domain solvers as discussed
by Codognet and Diaz [32] and Carlson and Carlsson [21, Section 3]. Like projectors,
indexicals compute basic constraints and write them to the constraint store. But indexi-
cals are submitted to a run-time system which takes care of computing a fixed-point by
using a scheduling mechanism similar to the one use for propagators in Part I. Hence,
no analysis during compilation of indexicals is needed for ensuring a propagation fixed-
point.

Georget and Codognet encode in [53] global constraints by set-based semi-rings (em-
ploying the semi-ring constraint solving framework presented in [17, 18, 16]). It is not
obvious if the filter discussed in this chapter are covered by the semi-ring based con-
straint solving framework.

124 Chapter 12: Discussion

Chapter 13

Programming with Finite Integer Sets
in Mozart

This chapter demonstrates finite integer set constraint programming in Mozart. It in-
troduces the finite integer set library and illustrates problem solving with finite set con-
straints by several case studies. Furthermore, the connection with finite domain con-
straints for attributing individual elements of sets and breaking symmetry is discussed.
This chapter is closed with a performance evaluation and a discussion of related work.

13.1 The Finite Integer Set Constraint Library

Finite integer set constraints are integrated into Mozart Oz by the finite integer set con-
straint library (short set library). This section gives an overview over the provided func-
tionality and explains abstractions used later in this chapter. This library can be divided
into three parts: basic constraints (Section 13.1.1), propagators, and distribution (Sec-
tion 13.1.4). The discussion of propagators covers standard set relations (Section 13.1.2)
and propagators connecting finite set with finite domain constraints (Section 13.1.3). A
complete reference to the finite integer set constraint library can be found in Section 7 in
[46].

13.1.1 Imposing and Reflecting Basic Constraints

Basic constraints can be imposed by the abstractions shown the following table:

abstraction basic constraint
{FS.var.lowerBound S D} d ⊆ S
{FS.var.upperBound S D} S ⊆ d
{FS.cardRange N1 N2 S} n1 ≤ |S| ≤ n2

D is bound to an Oz term denoting a setdescr which represents a set of integers (see
Figure 3.3 on page 18 for details). FS.var.lowerBound and FS.var.upperBound
synchronize on D to be determined and FS.cardRange synchronizes on N1 and N2 to
be determined to integer.

126 Chapter 13: Programming with Finite Integer Sets in Mozart

A determined set variable can be created by {FS.value.make setdescr S} which
constrains S to the set of integers described by setdescr and synchronizes on setdescr.
Frequently occurring sets as the empty set (∅) and the universal set (U) are provided by
the value constants FS.value.empty and FS.value.universal, respectively.

Reflection of Basic Constraints The reflection of basic constraints is done by the li-
brary abstraction shown in the following table:

abstraction reflected basic constraint
{FS.reflect.lowerBound S D} d ⊆ S
{FS.reflect.upperBound S D} S ⊆ d
{FS.reflect.unknown S D} d1 ⊆ S ⊆ d2 ∧ d = d2 \ d1

The abstractions above bind D to a compact1 setdescr value denoting the corresponding
set of integers.

The basic cardinality constraint N1 ≤ |S| ≤ N2 can be reflected by the abstraction
{FS.reflect.card S R} where R is bound to R=N1#N2.

Note that the result of all reflection abstractions is dependent on the current state of
the constraint store.

13.1.2 Propagators for Standard Set Operators

The set library provides a comprehensive set of propagators for set operators. Such
a propagator can be nested, i.e., it synchronizes on n − 1 of its n parameters to be
constrained by a finite integer set constraint. The parameter, say x , left unconstrained
is automatically constraint to ∅ ⊆ x ⊆ U . The following table shows some of the
propagators provided:

propagator set operator
{FS.intersect X Y Z} Z = X ∩ Y
{FS.union X Y Z} Z = X ∪ Y
{FS.diff X Y Z} Z = X \ Y
{FS.disjoint X Y} X ‖ Y
{FS.subseteq X Y} X ⊆ Y

Generic Propagators Many applications require to have n-ary versions of the standard
set operators. Such generic propagators make it possible to determine the number of
parameters at run-time. This library provides for various set operators generic versions.

propagator set operator
{FS.intersectN 〈X1 . . .Xn〉 Z} Z = ∩n

i=1 Xi

{FS.unionN 〈X1 . . .Xn〉 Z} Z = ∪n
i=1 Xi

{FS.disjointN 〈X1 . . .Xn〉} i, j ∈ {1, . . . , n} : Xi,i 6= j ‖ X j

{FS.partition 〈X1 . . .Xn〉 Z} Z =]n
i=1 Xi

1Suppose the set {1, 2, 3, 4, 7}. A compact list representation is [1#4 7]. There are corresponding
reflection abstractions returning an expanded representation ([1 2 3 4 7]) which are useful for pro-
gramming iterations over individual elements of a set.

13.1 The Finite Integer Set Constraint Library 127

All propagators for standard set operators perform cardinality reasoning based on the
rules given in Section 11.2.

13.1.3 Connecting Finite Domain and Finite Integer Sets

This section shows how the constraints proposed in Section 11.3 and some extensions
are provided in the finite integer set library.

Membership and Cardinality The abstraction {FS.include I S} imposes the
constraint I ∈ S while {FS.exclude I S} imposes I /∈ S. The abstraction
{FS.card I S} imposes the cardinality constraint I = |S|. All three propagators
are nestable.

Integer Domain as Ordered Domain The set library provides a variety of propagators
for constraints that take the integer domain as an ordered domain. The most prominent
of them are presented.

The propagator {FS.int.match S 〈I1 . . .In〉} implements the match-constraint
S = {I1, . . . , In}. It connects the elements of S with finite domain variables in a vec-
tor (Section 13.2.1). The propagators {FS.int.min S I} and {FS.int.max S I}
constrain I to be the minimum resp. maximum element of S.

The propagator {FS.int.convex S} constrains the set S to contain for I A, IB ∈ S
all I between IA and IB . The sequence propagator {FS.int.seq 〈S1 . . .Sn〉} im-
poses an order on sets in a vector: ∀i, j ∈ {1, . . . , n}, i < j : ∀m ∈ Si ,∀n ∈ S j :

m < n. These two propagators are particularly useful in linguistic applications (see
Section 13.2.3).

Reification of Membership Reified constraints can be used to bind a 0/1-variable to
1 (0) when a constraint is entailed (dis-entailed). Otherwise, reification can be used to
determine at run-time whether a constraint c or its complement ¬c is eventually imposed.
For that purpose, the propagator {FS.reified.include I S J} is provided which
implements the constraint I ∈ S ↔ J .

The propagator {FS.reified.isIn I S J} implements directed reification of
I ∈ S, i.e. I ∈ S → J, which does not impose I ∈ S or I /∈ S if J is bound.

The propagator {FS.reified.areIn 〈I1 . . .In〉 S 〈J1 . . .Jn〉} is added for the
programmer’s convenience and imposes {FS.reified.isIn Ii S Ji} for all i ∈

{1, . . . , n}.

13.1.4 Distribution

The implementation of branching and exploration algorithms (see Section 2.1) in finite
set constraint programs is supported by the abstraction

{FS.distribute Strategy 〈S1 . . .Sn〉}

which is highly configurable. The first argument Strategy determines the branching
and exploration algorithm used while the second argument is a vector of finite integer set
variables to distribute on.

128 Chapter 13: Programming with Finite Integer Sets in Mozart

The most straightforward distribution strategy is called naïve (Strategy=naive)
which takes the left-most variable S1 with d1 ⊆ S ⊆ d2 of the vector and creates the
disjunction n ∈ S1 ∨ n /∈ S1 where n = min(d2 \ d1) and min(S) returns the smallest
integer of S (see Figure 11.2 on page 109 for an example). It distributes a variable until
it is determined and then moves on to the next variable in S.

The value of Strategy may control the selection of the next variable and next
element taken from this variable to distribute on. This selection process may additionally
take into some attribution of the elements. There are for most common cases predefined
functioned strategies but FS.distribute is flexible enough to accept also self-defined
abstractions for new strategies.

Further, it can be controlled that a selected variable is either completely distributed
before moving on to the next variable or that a new variable is selected for every distri-
bution step. An application of this feature is demonstrated in Section 13.2.2 for imple-
menting a round-robin distribution strategy.

It is possible to pass a procedure to FS.distribute which is applied as soon as
propagation reaches its fixed-point. The default procedure is proc {$} skip end.
This feature is particularly useful for programming with first-class constraints as dis-
cussed in Section 14.3.

13.1.5 Implementation Aspects

The implementation of the finite integer set solver consists of three parts: basic con-
straints, propagators and distribution as discussed in the following.

Basic Constraints Basic finite integer set constraints are fully integrated in the virtual
machine of Mozart which is justified by the obtained gain in efficiency (Section 10.3).
A finite integer set variable is derived from a constraint variable (Section 7.2.1). The
attached event lists make it possible to trigger propagators if the bounds of the set con-
straint have been constrained resp. the constraint is constrained to denote a set value. The
lower and upper bound finite integer sets of the actual basic constraint (Section 11.1) are
implemented as described in Section 8.2. The cardinality constraint is represented by a
pair of integers denoting the lower and upper bound.

The unification procedure of the VM is extended for finite integer set variables fol-
lowing the rules (11.3–11.2) on page 102. The library abstractions for imposing and
reflecting basic constraints are implemented by foreign functions (Section 5.1).

Propagator All set propagators are implemented via the CPI (Chapter 8). The CPI is
extended by classes for set values, set constraints, and access variable for set constraints,
to make the implementation of set propagators possible. The filter of the propagators
for the standard set operators are based on filter algorithms generated with the scheme
presented in Chapter 12. They perform bounds and cardinality reasoning.

Distribution The library abstraction for distribution (FS.distribute) is completely
implemented in Oz itself. It uses finite domain distribution in conjunction with the reified
membership propagator FS.reified.include.

13.2 Case Studies 129

13.2 Case Studies

This section discusses three case studies for programming with finite integer set con-
straints in Mozart Oz. The first one, the ternary Steiner problem, has its origin in combi-
natorial mathematics. It is used to demonstrate how symmetry breaking constraints for
finite sets can be implemented and what effect they may have (see also Section 13.3 on
that). The second case study computes a schedule for a golf tournament. It turned out that
only set constraint formulations of the problem are able to compute tournament sched-
ules for a period of nine weeks. This example is also used to demonstrate how individual
elements of a set can be attributed. The last case study discusses the computer linguistic
application of dependency parsing. This application heavily benefits from Mozart’s set
propagators over the integer domain.

13.2.1 The Ternary Steiner Problem

The ternary Steiner problem belongs to a class of block theory problems from combi-
natorial mathematics which deal with hyper-graphs2. Beldiceanu discussed the problem
the first time in computer science in [10]. A ternary Steiner problem of order n asks for
n(n − 1)/6 sets the si ⊂ {1, . . . , n} with cardinality 3 such that every two of them share
at most one element. It has been proved that for a solution to exist n mod 6 must be 1
or 3.

Function SteinerConstraints creates first a list of n(n − 1)/6 variables Ss.

fun {SteinerConstraints N} Ss = {MakeList (N*(N-1)) div 6} in

Next the variables Si of Ss are constrained to ∅ ⊆ Si ⊆ {1, . . . , n} and |Si | = 3.

{ForAll Ss
proc {$ S} {FS.var.upperBound 1#N S} {FS.card S 3} end}

The nested loops ForAllTail and ForAll impose on all distinct pairs of Si ,S j ∈ Ss
the constraints 0 ≤

∣

∣(Si ∩ S j)
∣

∣ ≤ 1. Finally, the problem variable Ss is returned.

{ForAllTail Ss proc {$ S1|Sr}
{ForAll Sr proc {$ S2} S3 in

{FS.intersect S1 S2 S3}
{FS.cardRange 0 1 S3}

end}
end}

Ss
end

The function Steiner below maps an integer N to an (anonymous) procedure which
models the Steiner problem of order n. Procedure SteinerConstraints imposes the
constraints for the Steiner Problem. Finally, the distribution strategy is specified to al-
ways pick the leftmost undetermined S of Ss and the smallest integer n of the undecided
set d of S, and then to distribute the choice point n ∈ S ∨ n /∈ S where n min(d) (similar
to Figure 11.2).

2A hyper-graph is a graph where edges may connect more than two nodes.

130 Chapter 13: Programming with Finite Integer Sets in Mozart

fun {Steiner N}
proc {$ Ss}

{SteinerConstraints N Ss}
{FS.distribute naive Ss}

end
end

For example, to solve the Steiner problem of order 9, one may invoke Mozart Oz’s single
solution search engine by executing {SearchOne {Steiner 9} Sol} which binds
the solution to Sol.

Ordering Sets to Break Symmetries

Problem formulations asking for a collection of sets run into the risk of having numerous
symmetric solutions. This can be avoided if an order on sets is available. Such an order
can, for example be given in terms of an integer rank rank(s) associated with every set
s.

An immediate way of defining a rank is to interpret the characteristic function of
every set as a bit string resp. as a binary number.

(b0, b1, . . . , bsup)2 where bi ∈ {0, 1} and bi = 1 iff i ∈ s

For large sup, however, this function is impractical since it takes huge values of order
O(2sup). Further, the obtained constraint propagation is not satisfactory.

In case the cardinality of all relevant sets is fixed, say for some s to k such that
s = {n1, . . . , nk}, one can do much better by ordering the integers n1 through nk and
interpreting them as a number to the base sup +1.3

(n1, . . . , nk)sup +1 (13.1)

Having references N1 through Nk to the elements n1 through nk one can state the fact
that they must be ordered through the finite domain integer propagators

N1 <: N2 <: . . . <: Nk . (13.2)

This gives strong constraint propagation whenever the bounds of some Ni are narrowed.
The library procedure {FS.int.match S DV} supports the rank function (13.2) more
immediately.

{FS.int.match S DV} ≡ S = {I1, . . . , In} ∧ DV = 〈I1, . . . , In〉 ∧ |S| = n

∧ I1 ∈ S ∧ . . . ∧ In ∈ S ∧ I1 < I2 ∧ . . . ∧ In−1 < In

Informally, FS.int.match constrains the elements of the list DV to the n elements of
S and vice versa. The propagator for the rank-function for subsets of {1, . . . , n} with
(uniformly) fixed cardinality 3 can now be implemented as follows.

3Note that this does not require all sets to have the same fixed cardinality!

13.2 Case Studies 131

fun {Rank N S} X1 X2 X3 R in
{ForAll [X1 X2 X3 R] FD.decl}
{FS.int.match S [X1 X2 X3]}
{FD.sumC [N*N N 1] [X1 X2 X3] ’=:’ R} R

end

Function Rank first defines its local variables and constrains them to finite domains.
Then, the variables X1, X2 and X3 are matched against the three individual elements of
set S. Finally, R is constrained to the rank R = N2 × X1 + N × X2 + X3 and returned.

The effect of this rank function is examined by reconsidering the Steiner problem.
The procedure BreakSymmetries imposes an ascending order on the individual sets.
Note that this has to be compatible with the distribution strategy. This is the case for
naïve distribution since it starts with the smallest element of the first set and carries on
with the next bigger element at the next set.

proc {BreakSymmetries N Ss} Rs in
Rs = {Map Ss fun {$ S} {Rank N S} end}
{ForAllTail Rs
proc {$ T} case T of R1|R2|_ then R1 <: R2 else skip end
end}

end

First, a list Rs of all ranks is constructed by mapping the individual set S of Ss to their
corresponding ranks via Rank. Then, the order on the sets is established by imposing the
<:-constraint on all two adjacent corresponding ranks R1 and R2 using ForAllTail
and a pattern matching case-statement.

The script for the Steiner problem can now be improved by applying BreakSymme-
tries:

fun {Steiner N}
proc {$ Ss}

{SteinerConstraints N Ss}
{BreakSymmetries N Ss}
{FS.distribute naive Ss}

end
end

These (logically) redundant ordering constraints significantly reduce memory consump-
tion and runtime for this problem: The speed-up factor for the Steiner problem of order 9
is 6.3 and memory consumption reduces by a factor of 5.9. Table 13.1 shows the num-
ber of choice points and failures of formulations of the Steiner problem with and without
ordering constraints. The columns labelled steiner(n)∗ refer to formulations using the
redundant ordering constraints while columns labelled steiner(n) refer to the implemen-
tations using no ordering constraints.

13.2.2 Scheduling a Golf Tournament

This section discusses a program that finds a schedule for a golf tournament. The
problem was initially posted on the newsgroup comp.constraints and sci.

132 Chapter 13: Programming with Finite Integer Sets in Mozart

problem steiner(7) steiner(7)∗ steiner(9) steiner(9)∗

choice points 20 15 4545 565
failures 6 1 4521 541

Table 13.1: Comparing the number of choice points and failures for formulations
of the Steiner problem with and without ordering constraint.

op-research by Harvey. Suppose there are 32 golfers who play in groups of 4, so-
called foursomes. For every week of the golf tournament new sets of foursomes are to
be compiled. The task is to assign foursomes for a maximum number of weeks such that
no golfer plays with another golfer in a foursome twice.

The Upper Bound for Number of Weeks The upper bound for the number of weeks is
10 weeks due to the following argument: There are

(32
2

)

= 496 pairing of players. Each
foursome takes 6 pairings and every week consists of 8 foursomes, hence, every week
occupies 48 pairings. Having only 496 pairings available, at most b496/48c = 10 weeks
can be assigned without duplicating foursomes.

Modeling the Problem A foursome is modeled as a set of cardinality 4. A week is a
collection of foursomes and all foursomes of a week are pairwise disjoint and their union
is the set of all golfers. This leads to a partition constraint. Furthermore, each foursome
shares at most one element with any other foursome because a golfer must never meet
another golfer twice in a foursome. Therefore, the cardinality of the intersection of a
foursome with any other foursome of the other weeks has to be either 0 or 1.

The distribution strategy is crucial for this problem. It was proposed by Novello: A
player is taken and assigned to all possible foursomes. Then the next player is taken and
assigned and so on. This player-wise distribution makes it possible to solve instances
of the golf problem for up to 9 weeks. The approach which is usually coming to mind
first, namely to explore all possible foursomes of a variable before moving on to the next
variable, fails even for smaller instances of the problem.

The Propagation Algorithm The procedure GolfSolver implements the propa-
gation algorithm. It obtains the number of weeks (NbWeeks), the number of four-
somes per week (NbFourSomes) and the number of players (NbPlayers), and re-
turns the list of weeks of length NbWeeks. Every week is represented by a list of
NbFoursomes foursomes. An individual foursome is a set with cardinality 4 and
a subset of {1, . . . ,NbPlayers}. Each golfer is identified by an individual integer
i ∈ {1, . . . ,NbPlayers}.

proc {GolfSolver NbWeeks NbFourSomes NbPlayers Weeks}
Weeks = {MakeList NbWeeks}
{ForAll Weeks
proc {$ Week}

Week = {MakeList NbFourSomes}
{ForAll Week proc {$ FourSome}

{FS.var.upperBound 1#NbPlayers FourSome}
{FS.cardRange 4 4 FourSome}

13.2 Case Studies 133

end}
{FS.partition Week {FS.value.make 1#NbPlayers}}

end}

Procedure GolfSolver creates first a list Weeks holding NbOfWeeks weeks and each
element of Weeks is constrained to a list of NbOfFourSomes foursomes. Every four-
some FourSome is constrained to ∅ ⊆ FourSome ⊆ {1, . . . ,NbOfPlayers} ∧

|FourSome| = 4 by the finite set library abstractions FS.var.upperBound and
FS.cardRange, respectively. All foursomes of a week partition the set of all play-
ers {1, . . . ,NbOfPlayers}.

The following nested ForAllTail- and ForAll-loops impose that every foursome
shares at most one element with any other foursome of other weeks.

{ForAllTail Weeks
proc {$ WTails}

case WTails
of Week|FolWeeks then

{ForAll Week
proc {$ FourSome}

{ForAll FolWeeks
proc {$ FourSomesOfWeek}

{ForAll FourSomesOfWeek
proc {$ FourSomeOfWeek}

{FS.cardRange 0 1
{FS.intersect FourSome FourSomeOfWeek}}

end}
end}

end}
else skip end

end}
end

The outermost ForAllTail-loop in conjunction with the case-statement iterates over
the weeks and extracts the current week Week and the following weeks FolWeeks.
The ForAll-loops iterate over the foursomes in Week and enforce that all foursomes in
Week do not share more than one player with the foursomes in FolWeeks.

The Distribution Algorithm The procedure DistrPlayers implements the player-
wise distribution strategy (round-robin).

proc {DistrPlayers NbPlayers Weeks}
{For 1 NbPlayers 1
proc {$ I}

{ForAll Weeks
proc {$ AllFoursomes}

{ForAll AllFoursomes
proc {$ FourSome}

{FS.distribute generic(element: fun {$ _} I end
rrobin: true)

134 Chapter 13: Programming with Finite Integer Sets in Mozart

[FourSome]}
end}

end}
end}

end

The outer-most For-loop4 iterates over all players while the ForAll-loops iterate over
the individual foursomes. The inner-most loop calls the finite set library abstraction
FS.distribute for a single foursome Foursome. The distribution strategy is in-
structed to branch over I (element: fun {$ _} I end) and to proceed to the next
variable after every distribution step (rrobin: true).

Combining Propagation and Distribution to a Solver The solver is obtained by com-
bining propagation and distribution algorithms in the function Golf which returns an
instance of a solver for a given number of weeks (NbWeeks) and foursomes (NbFour-
Somes).

fun {Golf NbWeeks NbFourSomes}
proc {$ Weeks} NbPlayers = 4*NbFourSomes in

{GolfSolver NbWeeks NbFourSomes NbPlayers Weeks}
{DistrPlayers NbPlayers Weeks}

end
end

To find a solution for 9 weeks and 8 foursomes in Mozart Oz, simply invoke the solver
by {SearchOne {Golf 9 8}}.

Discussion Walser conducted tests with CPLEX [70] but running his program for hours
produced no solution for more than 8 weeks and failed to find a solution for 9 weeks
[147]. In Mozart Oz, the program discussed in this section finds a solution for 9 weeks
and 8 foursomes in a couple of seconds producing a search tree with 215 choice points
and a depth of 200. To the authors’ best knowledge, no solutions for more than 9 weeks
have been found by now and solutions for 9 weeks were only found by set constraint
solvers.

Sets with Attributed Elements

Many practical problems require an association of set elements with some attributes. In
the golf scheduling example every foursome may be required to contain an instructor to
make sure that every golfer in a foursome behaves appropriately. The list Instruc-
torList defines for every player whether he or she is an instructor or not.

InstructorList = [0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1
0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1]

A golfer represented by an integer i is identified to be an instructor if the i-th element of
InstructorList is 1. Otherwise, i.e. the i-th golfer is no instructor, the i -th element
is 0.

4{For 1 n 1 P} ≡ {P 1} {P 2} . . . {P n − 1} {P n}

13.2 Case Studies 135

Procedure Instructors enforces that every foursome contains at least one golf
instructor.

proc {Instructors NbPlayers Weeks InstructorList}
{ForAll Weeks
proc {$ AllFoursomes}

{ForAll AllFoursomes
proc {$ FourSome} BL in

{FS.reified.areIn 1#NbPlayers FourSome BL}
{FD.sumC InstructorList BL ’>=:’ 1}

end}
end}

end

The nested ForAll-loops iterate over every foursome FourSome. A golfer i in a
foursome is attributed with the information whether or not he or she is an instruc-
tor by reification. That means, the membership of i is reflected to a 0/1-variable bi :
(i ∈ FourSome → bi = 1) ∨ (i /∈ FourSome → bi = 0). To enforce the at least
one instructor is in each foursome, this variable is multiplied with the corresponding i -th
element in the InstructorList and the sum of the products must be equal or greater
than 1:

NbPlayers
∑

i=1

InstructorListi × BLi ≥ 1

The library procedure call {FS.reified.areIn 1#NbPlayers FourSome BL}
realizes this constraint: for all i ∈ {1, . . . ,NbPlayers} the membership i ∈ FourSome
is reflected in the corresponding 0/1-variable in the list BL. The in-equation is imple-
mented by the finite domain propagator {FD.sumC ai xi ’>=:’ c} which imple-
ments the constraint

∑

i ai × xi ≥ c.

Extending the Solver The solver for the golf scheduling problem can be extended to
a solver taking the instructor constraints into account by simply calling the procedure
Instructors:

fun {GolfInstructor NbWeeks NbFourSomes}
proc {$ Weeks} NbPlayers = 4*NbFourSomes in

{GolfSolver NbWeeks NbFourSomes NbPlayers Weeks}
{Instructors NbPlayers Weeks InstructorList}
{DistrPlayers NbPlayers Weeks}

end
end

13.2.3 Dependency Parsing

This section illustrates the benefits of finite set constraint programming and in particular
the unique features of Mozart’s finite integer constraint library in the area of computer
linguistics. To this end, some key ideas described by Duchier in [44] for building a

136 Chapter 13: Programming with Finite Integer Sets in Mozart

dependency parser are reproduced here. The dependency parser finds possible readings
of a phrase in a natural language.

Duchier proposes to use mutually dependent trees to obtain these readings: a syntax
tree (ID tree) and a topological tree per reading (LP tree). While a syntax tree does
not reflect any ordering on words, a topological tree represents a possible reading of the
phrase by imposing an ordering on the words of the phrase.

Suppose the following German phrase (taken from [44]): "(dass) Maria einen Mann
wird lieben können". This phrase has various readings:

1. "(dass) Maria einen Mann lieben können wird"
2. "(dass) Maria einen Mann wird lieben können"
3. "(dass) Maria wird einen Mann lieben können"

Figure 13.1 shows the ID tree for the example phrase.

(dass) Maria einen Mann wird lieben können

subject

det
object

vinf
vinf

Figure 13.1: ID tree.

LP trees represent possible linear word ordering of this phrase as shown in Fig-
ure 13.2. In an LP tree, the edges and nodes are labelled.

Thereby, an LP tree has to obey a configuration in conjunction with an order on the
labels of the tree. A configuration is defined by a lexicon and determines the number
of outgoing edges per node and the labels of the edges. A label of an edges is called
external label taken from LLP = {df,mf, vc, xf} while a label of a node is called internal
label taken from LINT = {d, n, v} (dotted vertical lines in Figure 13.2). The disjoint
union of the labels is totally ordered and in the example: LLP] LINT : df < d < n <
mf < vc < v < xf. This order induces a left-to-right precedence on a given node and its
the daughter nodes. This precedence is partial since daughters with same labels can be
freely permuted. As example, consider the top-most node of Figure 13.2(c) which obeys
the total order: mf < v < xf. Moving on to the right-most node, the obeying order is: mf
< vc < v. The total order on the labels is met by all nodes and their outgoing edges.

This section discusses (i) how these trees can be represented by finite integer set
constraints and (ii) how they can be made ordered and projective to represent a valid
word ordering for a certain reading. A formal discussion of the described scheme is
given by Duchier in [44].

Labeled Trees

ID trees and LP trees are labeled trees. T(V,L) denotes the set of finite trees (V,E) with
nodes V, labeled edges E ⊆ V × V × L and set of labels L. A node represents a word

13.2 Case Studies 137

(dass) Maria einen Mann lieben können wird

n
d

n
v

v
v

mf

df
mf

vc
vc

(a) 1st reading .

(dass) Maria einen Mann wird lieben können

n
d

n
v

v
v

mf

df
mf

vc
xf

(b) 2nd reading .

(dass) Maria wird einen Mann lieben können

n
v

d
n v

v

mf

df

mf vc

xf

(c) 3rd reading .

Figure 13.2: LP trees corresponding to readings of enumerated list on page 136.

w of a phrase and is identified with an integer. For every label ` ∈ L there is a function
`(w) = {w′ | (w,w′, `) ∈ E} denoting a set of words reachable directly by `-edges from
w. Function `(w) is the base for the functions stating the well-formedness condition of a
labelled tree shown in Figure 13.3. This condition has to met by a graph (V,E) to belong
to T(V,L). Representing the `s and ws with integers leads to a finite integer set CSP.

ψ(V,L) ≡

root ⊆ V ∧ |root| = 1
∧ V = root]]{daughters(w) | w ∈ V }

∧ ∀w ∈ V
eqdown(w) = {w}] down(w)

∧ down(w) = ∪{eqdown(w′) | w′ ∈ daughters(w)}
∧ equp(w) = {w}] up(w)
∧ up(w) = ∪{equp(w′) | w′ ∈ mother(w)}
∧ daughters(w) =]{`(w) | l ∈ L}

∧ mother(w) ⊆ V ∧ |mother(w)| ≤ 1
∧ ∀w′ ∈ V w′ ∈ daughters(w) ≡ w ∈ mother(w′)

Figure 13.3: Well-formedness condition of labeled trees.

138 Chapter 13: Programming with Finite Integer Sets in Mozart

Imposing Linear Precedence

An LP-tree is required to be projective and well-ordered to obtain a continuous ordering
on the words of a phrase. This is achieved by linear precedence trees (V,E, I,≺) where
(V,E) is a labelled tree in T(V,L), I : V → LINT is a function mapping nodes to internal
labels, and ≺ is a total order on V.

Projective An LP-tree is projective if

∀w ∈ V eqdown(w) is ≺-convex in V (13.3)

where a set S is ≺-convex in V iff ∀x, y ∈ S ⊆ V, ∀z ∈ V x ≺ z ≺ y ⇒ z ∈ S relative
to a total order ≺ on V . The intuition behind this condition is to have no gap in the
orderings denoted by any subtree of the LP tree. Since words are identified with integers,
this condition is directly provided by the set library propagator FS.int.convex.

Well-ordered. The total order ≺ on V is defined by:

∀S1, S2 ⊆ V : S1 ≺ S2 ≡ ∀w1 ∈ S1,∀w2 ∈ S2 w1 ≺ w2.

A tree is well-ordered if whenever `1 < `2 the downset at label `1 precedes the downset
at label `2 according to the order ≺. The down set down(w)` for an internal label ` is
{w} if I(w) = ` (and ∅ otherwise) while for an external label `, the down set is the set
of all words of the subtree connected by the `-edge, i.e., down`(w) = ∪{eqdown(w′) |

w′ ∈ `(w)}. The down sets have to meet an well-ordering condition according to the
order on the labels: LLP] LINT = {`1, . . . , `n} : `1 < . . . < `n:

down`1(w) ≺ · · · ≺ down`n(w) (13.4)

The order condition (13.4) can be directly encoded by the FS.int.seq-propagator
because of the integer encoding of individual words. The well-formedness condition
in conjunction with conditions (13.3) and (13.4) form again a CSP over finite sets of
integers.

Discussion This section discusses a part of a constraint model for a dependency parser
to emphasize the benefits of using finite integer set constraints for an implementation
of such a parser. The complete parser has been conveniently implemented in Mozart
Oz. The main advantage of using Mozart is the availability of set propagators taking
the integer domain into account, as FS.int.seq and FS.int.convex. As reported
in [44], the implemented parser finds in many cases different readings without any failed
nodes in the search tree.

13.3 Performance Evaluation

This section compares the performance of the finite integer set constraint solver of
Mozart Oz to the finite integer set solvers of ILOG SOLVER 5.0 and ECLi PSe 5.2. The
measurements are conducted on the same platform as in Section 10.2, i.e., Linux with

13.3 Performance Evaluation 139

kernel 2.2.16-22, 256MB, Athlon 700MHz. In contrast to Section 10.2, the efficiency
of solving application programs including search is compared rather than measuring the
plain propagation performance. First, the efficiency of solving instances of the Steiner
problem (Section 13.2.1) and the golf tournament scheduling problem (Section 13.2.2)
with Mozart Oz 1.2.0 is compared with the corresponding solvers of ILOG SOLVER 5.0
and ECLi PSe 5.2. Second, alternative Mozart solvers for the Steiner problem and the
golf scheduling problem are compared with Mozart solvers based on finite integer set
constraints. The programs used for benchmarking can be found at [105].

Benchmarking against ECLiPSe and ILOG SOLVER The finite set solver of Mozart is
compared with the solver fd_sets of ECLiPSe and the set solver of ILOG SOLVER. An
instance of the Steiner problem for n = 9 and no symmetry breaking is used. The used
instance of the golf scheduling problem employs a naïve distribution strategy and finds
a solution for 5 weeks and 8 foursome per week. The benchmark programs were run ten
times to obtain stable results. Table 13.2 shows the speed-ups against the corresponding
Mozart solvers. A speed-up "factor" annotated with "factor−1" means the corresponding
solver is better than Mozart. Otherwise Mozart is faster. The re-computation depth of
the Mozart search engines is 1. The figures in the row "steiner∗" were generated with the
Steiner formulation using the symmetry breaking constraint.

problem ECLi PSe 5.2 ILOG SOLVER 5.0
steiner 3.74 4.73−1

steiner∗ 16.66 1.06−1

golf 3.58 2.29−1

Table 13.2: Speed-ups against ILOG SOLVER 5.0 and ECLi PSe 5.2 .

The fd_sets-solvers of ECLi PSe are constantly slower than the corresponding
Mozart solvers for Steiner and golf solvers. This is not surprising when considering
the results on plain propagation performance discussed in Section 10.2.2. ILOG SOLVER

performs better on the given problems especially for the golf scheduling problem. The
Steiner solver performs almost no propagation (it checks the cardinality of intersections)
while the golf solver can do much better due to the partitioning constraints. A possible
reason for this behavior is that Mozart uses copy-based search which performs poorly on
solvers with little propagation and goes well for strongly propagating solvers. This is be-
cause a whole computation space is copied per distribution step no matter of how many
variables have been changed. Further, a re-computation depth of 1 requires the most
copying and tuning this parameter could certainly improve the performance. The fig-
ures for the Steiner formulation with the symmetry breaking constraint (row "steiner∗")
show that this deficiency can be cured by sophisticated propagation algorithms taking
advantage of the domain of integers. These constraints are unique to Mozart.

Although ILOG SOLVER runs faster than the finite integer set solver of Mozart, the
Mozart solver has proved to be competitive with available state-of-the-art solvers.

Comparing Different Set Solvers in Mozart Solvers based on the finite integer set

140 Chapter 13: Programming with Finite Integer Sets in Mozart

library are compared with solvers based on characteristic functions of sets. A charac-
teristic function is a vector of 0/1-variables for every possible element of a set. The
implementation is straightforward with finite domain constraints but for sets with larger
cardinalities inefficient w.r.t. memory consumption. Characteristic function solvers for
the Steiner problem and the golf scheduling problem are implemented for comparison.

Table 13.3 shows the speed-ups and the heap factor obtained by comparing the dif-
ferent solvers. A heap factor denotes the factor of memory used to solve a problem
compared to the implementation using the finite set library.

problem speed-up heap factor
steiner (characteristic function) 1.45 1.51
golf (characteristic function) 15.6 8.55

Table 13.3: Comparing run-time (speed-up) and heap memory consumption (heap
factor) of various solvers for the steiner and the golf problem.

While the characteristic function solver for Steiner is equally efficient as the finite
set solver, due to only ternary sets in the Steiner problem, the solver for the golf problem
makes the deficiencies of the characteristic function implementation obvious. More than
8 times the memory is needed slowing down the whole solver by a factor of about 16.
Hence, straightforward implementations of solvers based on characteristic function are
not suitable for general finite set solver. For certain problems, however, solvers based on
characteristic function may be worth to be considered.

13.4 Related Work

Finite Sets

Available finite set constraint solvers are solvers over finite sets of integers as the set
solver of ILOG SOLVER [73, 115] and the fd_sets solver of ECLi PSe [76]. The
fd_sets solver is the successor of Gervet’s finite set constraint solver over Herbrand
terms CONJUNTO 5 [54] which was the first available solver. This situation supports
the claim that finite integer sets provide the expressiveness required by todays practical
constraint problems.

Finite set constraints have been successfully used for applications in computer lin-
guistics [48, 80, 45] as demonstrated in Section 13.2.3. Mozart’s set constraint solver
is particularly well-suited for these applications since only this solver provides special
propagators (namely FS.int.convex and FS.int.seq) designed for computer lin-
guistic applications.

For applications which naturally come in mind, as plain set partitioning, set con-
straints cannot compete with integer linear programming techniques [65, 66] for large

5This solver handles even power sets of Herbrand terms.

13.4 Related Work 141

instances of such problems. A case study about the achievable performance of finite in-
teger set constraint solving for set partitioning problems [100] confirmed that. Although
a sophisticated pre-processing technique and tailored filters have been proposed, the size
of the instances is orders of magnitudes smaller than for linear integer programming
techniques.

Other Approaches

More complex systems provide for a regular set description language. This includes the
work by Walinsky on CLP(6∗)[146] which deals with regular sets of words, as well as
Foster’s CLP(SC) [49] (proposed by Kozen [81]), which deals with regular sets of trees.
Regular sets of trees have been particularly prominent in static program analysis (see
[113] for overviews and references) and several specialised solvers have been developed.
In this domain, constraint solving usually means testing satisfiability of a constraint, or
emptiness of a set variable in all solutions (or a distinguished solution) of a constraint.

A third approach allows set descriptions of the form {X,Y } (also called set terms)
where X and Y are variables denoting elements, and provide an associative, commuta-
tive, and idempotent unification procedure. This is the approach of systems like CLPS
[84], {log} [43], CLP(SET) [42], and others [9, 82, 139]. Yet different approaches al-
low set comprehensions like {x | p(x)} with an intensional semantics [19], or consider
non-standard set domains for interpretation of cyclic set descriptions like X = {X, {X}}

[86].

142 Chapter 13: Programming with Finite Integer Sets in Mozart

Part III

First-class Constraints

Chapter 14

Promoting Constraints to First-class
Citizens

This chapter promotes non-basic constraints to first-class citizens, short first-class con-
straints. After presenting the idea, an abstract data type for first-class constraints is
defined and syntactic support for them in the language Oz is proposed. Then, various
programming techniques for first-class constraints are presented which demonstrate the
benefits with the help of case studies. These case studies have been programmed using
a prototype implementation of first-class constraints for Mozart. The integration of first-
class constraints into an existing solver is discussed next. Finally, this chapter closes
with discussing related work.

14.1 The Idea

Traditionally, constraint propagation of non-basic constraints reasons about the values
their parameters can take, called domain propagation. This can be limited through the
restricted view of the individual non-basic constraints.

Promoting constraints to first-class citizens overcomes this deficiency by adding an
extra level of propagation to the constraint solver, so-called symbolic propagation. Con-
straints being first-class citizens are called first-class constraints.

inference rules: if lhs = rhs1 ∧ lhs = rhs2 then rhs1 = rhs2

propagators: x + y = 2 z ∧ x + y = z + 1

constraint store: x ∈ {0, 1} ∧ y ∈ {0, 1} ∧ z ∈ {0, 1}

symbolic

propagation

domain

propagation

Figure 14.1: Idea of first-class constraints: combining domain propagation and
symbolic propagation to hybrid propagation.

146 Chapter 14: Constraints as Values

Figure 14.1 demonstrates the use of first-class constraints. Regard the constraints:

x + y = 2z ∧ x + y = z + 1 ∧ x ∈ {0, 1} ∧ y ∈ {0, 1} ∧ z ∈ {0, 1}.

Traditional domain propagation leaves the domains of x , y, and z untouched. Performing
symbolic propagation, the right hand-sides of the constraints x + y = 2z and x + y =

z + 1 are equated to a new constraint 2z = z + 1. Domain propagation of 2z = z + 1
determines z to 1 and eventually, x to 1 and y to 1. Results of symbolic propagation
are immediately visible for domain propagation and vice verse. This combination of
symbolic propagation and domain propagation is called hybrid propagation.

The availability of symbolic propagation makes new propagation techniques possible
which are developed in the referred sections.

Early Failure Detection (Section 14.3.1) Due to the limited view of a single constraint
on the constraint store, reasoning and especially failure detection is limited. Often
recognizing a certain constraint pattern makes it possible to spot an inconsistency
much earlier than constraint propagation can do and sometimes constraint propagation
on its own is not able to detect the inconsistency at all. For example x < y ∧ y < x is
obviously inconsistent. But the time ordinary finite domain propagation takes to detect
the inconsistency is proportional to the domain size of x and y, and hence, can be quite
long. Reasoning about the constraints themselves can detect the unsatisfiability of this
constraint immediately.

Constraint Optimization (Section 14.3.2) Constraints fed into a constraint solver can
often be improved regarding their propagation behavior. Common sub-constraints, for
example, can be collapsed and constraints can be reformulated to provided for better
domain pruning.

Garbage Collection (Section 14.3.3) Usually constraints are garbage collected as soon
as they are entailed by the constraint store. But typically that requires the parameter of
the constraints to be determined. In many cases constraints could be discarded earlier.
Consider the finite domain constraint x + 1 = z ∧ x ≤ z. The constraint x ≤ z can be
discarded since it is implied by x + 1 = z.

Smallest Sets of Inconsistent Constraints (Section 14.3.4) Like every kind of pro-
gramming, constraint programming is prone to error. A common programming error
is to put up an incorrect model a given problem or to implement a constraint model
incorrectly. This frequently results in inconsistent constraints which cause immediate
failure. Debugging such symptoms is supported by finding sets of constraints that are
responsible for the inconsistency.

14.2 Constraints as Values

This section introduces first-class constraints as values of an abstract data type. A first-
class constraint is implemented by a first-class propagator.

First-Class Propagators A first-class propagator is a value of an abstract data type and
is hence defined in terms of its operations. It can be handled like any other primitive

14.2 Constraints as Values 147

value, i.e, it can be part of composite data structures or can be used in applications or
expressions.

Creation First-class propagators are created by imposing propagators using

prop [inactive] {Cs} σ end

where Cs is constrained to a list of first-class propagators referring to the propagators
imposed by σ on the current thread. If σ does not impose any propagator on the current
thread then Cs is nil. In case inactive is added, the propagators are imposed with
propagation turned off. Otherwise propagation is turned on by default.

Abstract Data Type The abstract data type for first-class propagators provides the
following abstractions:

Constraint.is: Propagator → Boolean
Checks a value to be a propagator.

Constraint.activate: Propagator
Activates propagation of a propagator.

Constraint.deactivate: Propagator
Deactivates propagation of a propagator.

Constraint.discard: Propagator
Discards a propagator.

Constraint.isEntailed: Propagator → Boolean
Checks a propagator for entailment.

Constraint.getName: Propagator → Atom
Obtains the name of a propagator.

Constraint.getParameters: Propagator → List of Value
Obtains the parameters of a propagator.

Constraint.getKey: Propagator → Atom
Obtain key for a propagator.

Constraint.identifyParameters: List of Value → List of Integer
Identifies aliased parameters.

Constraint.reflectSpace: List of Value → List of Value × List of Propagator
Reflects all variables and propagators of a space reachable from a given list of
variables.

Note that reflective operations are typically non-monotonic, i.e., the produced result de-
pends on the current state of the solver. Hence, these operations can be safely applied
only if propagation has reached a fixed-point. This has to be taken into account when
adding new basic constraints to the constraint store while reasoning over first-class con-
straints. Adding new basic constraints typically requires the re-computation of the fixed-
point resulting in a changed set of first-class constraints to reason about.

Type Test A variable can be checked to refer to a propagator by

{Constraint.is C B}

where B is bound to true if C refers to a propagator and to false otherwise.

148 Chapter 14: Constraints as Values

Controlling Propagation Propagation of a propagator referred to by C can be turned
on by {Constraint.activate C} while {Constraint.deactivate C} turns
propagation off.

Entailment Programming with first-class propagators typically involves rewriting sets
of propagators to more efficient formulations. That requires discarding the redundant
propagator which is replaced. Furthermore, reasoning about propagators may take
into account that a propagator has already become entailed by the constraint store,
i.e., can be ignored. A propagator referred to by C is explicitly entailed by {Con-
straint.discard C}, i.e., C is discarded from the computation space. By discarding
a propagator, its whole host space may become entailed. A propagator C can be checked
to be entailed by {Constraint.isEntailed C B} which binds B to true if C is
entailed, no matter whether explicitly by discard or by entailment through the con-
straint store. If C is not yet entailed B is bound to false.

Reflection In the course of symbolic propagation, propagators and their parameters
have to be identified and reflected to primitive values.

The name of a propagator referred to by C can be obtained by

{Constraint.getName C N}

which binds N to an atom representing the name of C. The parameters of a propagator
can be retrieved by {Constraint.getParameters C Ps} which binds Ps to the
parameters of C.

Additionally, the proposed operations are useful and convenient in the applica-
tions discussed in Section 14.3. A key of a propagator can be obtained by {Con-
straint.getKey C K} which binds K to an atom representing a key for C. Such
a key makes efficient storage and retrieval of first-class propagators (Section 14.3.2) by
dictionaries possible because propagators with the same name identically imposed on
the same variables produce the same key.

It is often convenient to obtain all propagators of the current computation space at
once. That can be done by

{Constraint.reflectSpace Rs Vs Cs}

which takes a list Rs of variables. It collects all propagators of the current space that have
at least one undetermined variable of Rs as a parameter. Furthermore, reflectSpace
collects propagators which share undetermined parameters with collected propagators.
Thus, the transitive closure of all propagators "reachable" from Rs is computed. The
collected propagators are returned as list Cs. Additionally, Vs is bound to the list of all
undetermined variables occurring as parameters of the propagators in Cs. Reflecting a
whole space makes it possible to use first-class propagators in an orthogonal way since
the original constraint program needs not be modified to obtain first-class propagators
referring to the propagators in the current computation space.

Synchronization The operations activate, deactivate, discard, isEn-
tailed, getName, getParameters, and getKey synchronize on their parameter
C to be bound to a first-class propagator.

14.3 Programming 149

Identification The ==-operator (Figure 3.1 on page 16) has been extended to identify
first-class propagators to refer to identical propagators.

Variables can be identified by

{Constraint.identifyParameters Vs Ids}

which maps the list of variables Vs to a list of integer identifiers Ids by assigning to
each element in Vs the index of its first occurrence in Vs. Thus aliased variables can be
detected easily. (Note that as discussed in Section 9.3, the same idea is used by the CPI

to detect aliased variables in vectors of parameters.)

14.3 Programming

This section discusses several programming techniques for first-class constraints and
demonstrates their benefits by various case studies. These presented techniques perform
either some reasoning about a set of constraints in the same fashion as inference rules
or take advantage of the possibility to turn propagation of individual propagators on and
off. The programs presented in this section can be found at [105].

14.3.1 Early Failure Detection

One of the major goals of constraint programming is to avoid exploration of parts of the
search tree that do not contain any solutions. But there are cases where propagation takes
significant time to detect failure or is even unable to do so. An example for potential long
lasting propagation are the finite domain constraints x < y ∧ y < x and 2x = y ∧ 2u =

v ∧ y + 1 = v assuming sufficiently large domains. An example for an unsatisfiable
constraint that cannot be spotted without any meta reasoning is x, y, z ∈ {0, 1} ∧ x 6=

y ∧ x 6= z ∧ y 6= z.
This section demonstrates how meta constraint programming can be used to detect

unsatisfiable constraints where ordinary constraint propagation fails to do so. Thus the
search tree can be significantly pruned and bigger instances of the problem can be solved.

A modified Hamiltonian path problem is used as example, where the aim is to find a
path through a given directed graph from an arbitrary starting node to an arbitrary ending
node such that all nodes of the graph are visited once and the path is valid for the reverse
direction too.

The Constraint Model and its Implementation The problem data is given as set Arcs
of 2-tuples arc(f, T), where the set T ⊆ {1, . . . , n} contains all nodes t ∈ T such that
there is an arc from node f to t . Every of the n nodes of the graph is represented by
a finite domain variable xi ∈ {1, . . . , n} which represents the position of the i th node;
the variables have to be pairwise distinct (constraint (14.1)). Constraint (14.2) expresses
the path from the starting node to the ending node. Node xi is the successor of x f if
xi = x f + 1 holds. Note the extra clause for the ending point. The constraint (14.3) is
dual to constraint (14.2) and models the reverse path.

150 Chapter 14: Programming

distinct(x1, . . . , xn) (14.1)

∀ arc(f, T) ∈ Arcs :
∨

i∈T

(xi = x f + 1) ∨ x f = n (14.2)

∀ arc(f, T) ∈ Arcs :
∨

i∈T

(xi + 1 = x f) ∨ x f = 1 (14.3)

The constraint model is implemented one-to-one with Mozart finite domain con-
straints and uses disjunctive combinators producing choice-points to obtain the same
behavior as the program used in [61]. The search strategy is naïve, i.e., it picks from the
left-most finite domain variable xl the minimum element m and creates a choice-point
xl = m ∨ xl 6= m.

Deriving an Early-Failure Criterion Deriving a criterion is a creative process and it
is hard to give any guidelines. But it is helpful to have a tool handy that displays the
constraints in a node of the search tree. The Propagator Viewer1 in combination with the
Oz Explorer offers this functionality.

Figure 14.2: The Propagator Viewer.

The Propagator Viewer in Figure 14.2 shows a part of the constraints of a node
of the search tree without early failure detection. One may notice the constraints
distinct(. . . , x3, . . . , x10, . . .) ∧ 1 − x2 + x3 = 0 ∧ 1 − x2 + x10 = 0 (last two lines).
Substitution of the two equations yields x3 = x10, which contradicts the constraint
distinct(. . . , x3, . . . , x10, . . .) (top line). Generalization of this observation leads to an

1The Propagator Viewer is another application for programming with first-class constraints and origi-
nated as byproduct while researching the case studies of this section.

14.3 Programming 151

early failure detection criterion: the set δ contains all indices of variables required to be
pairwise distinct (derived from the parameters of the distinct-constraint). The criterion
is: ∃c1, c2 : c1 ≡ 1 + ai xi + a j x j = 0 ∧ c2 ≡ 1 + ak xk + al xl = 0 ∧ ai, j,k,l 6= 0 ∧ i =

k ∧ j 6= l ∧ j, l ∈ δ ∧ a j = al → failure.

Adding the Early Failure Detection Criterion The early failure detection code is
completely factored out. It is embedded in the procedure DetectFailureEarly
which is applied as soon as constraint propagation reaches a fixed-point, i.e., right before
the creation of a new choice-point. Note that Mozart Oz provides means to synchronize
on reaching a propagation fixed-point: A procedure can be passed to the search engine
(by FD.distribute and FS.distribute) and this procedure is applied to the so-
lution variable of a search problem as soon as a fixed-point is reached (Section 3.2).
The procedure DetectFailureEarly reflects the constraints to their first-class rep-
resentation Cs according to a normal form. The variable EqCs refers to the equational
constraints and the variable DistinctCs to the pairwise distinct constraints. Then for
each distinct-constraint a set δ is computed and stored in the list of sets values Dis-
tinctSets (see Part II for details on integer sets). Here the implementation is more
general than required for this example.

proc {DetectFailureEarly RootVars}
Cs = {Constraint.reflectSpace RootVars _}
EqCs = {FilterEqualityConstraints Cs}
DistinctCs = {FilterDistinctConstraints Cs}
DistinctSets = {ComputeDistinctSets DistinctCs}

Then two nested loops (procedures ForAllTail and ForAll applying anonymous
procedures $) try to match the appropriate equational constraints according to the early
failure detection criterion. An equational constraint is represented by a tuple ’=:’(P
LHS RHS)where P is a reference to the actual constraint and LHS (RHS) is the left hand-
side (right hand-side) of the equation. The left resp. right hand-side is represented by a
list of addend tuples addend(Sign Coeff Var) where Sign is the sign (−1 or 1),
Coeff is the absolute value of the coefficient, and Var is a reference to the variable.

Constraints of form 1+ax +by = 0 are isolated by pattern matching and the pattern
for such a constraint is ’=:’(_ [A1 A2 A3] 0)2 as it can be found in the case-
statements.

in
{ForAllTail EqCs
proc {$ Tail}

case Tail of (’=:’(_ [A X1 X2] 0)) | T then
{ForAll T
proc {$ TC}

case TC of ’=:’(_ [B Y1 Y2] 0) then

After isolating two matching equational constraints the constant addends are compared
and it is checked if the variables are in a δ-set. The predicate Some is true if at least

2Note that there is an order on the addends: the first one is constant, the next ones contain variables
and the variables are subject to a certain order.

152 Chapter 14: Programming

one of the elements of the list passed (here DistinctSets) evaluates the 2nd argu-
ment function to true. The boolean expression e1 andthen e2 is equivalent to if e1
then e2 else false end.

if A == B andthen
{Some DistinctSets
fun {$ Set}

{VarIsInSet X1 Set}
andthen {VarIsInSet X2 Set}
andthen {VarIsInSet Y1 Set}
andthen {VarIsInSet Y2 Set}

end}
then

Here the anonymous function $ checks if the variables of the addends are in one and the
same δ-set. It uses the predicate VarIsInSet which checks if a variable is in a given
set. The connector andthen is a short-circuit conjunction.

if {IsEqAddend X1 Y1}
andthen {IsNeqAddend X2 Y2}

orelse {IsEqAddend X1 Y2}
andthen {IsNeqAddend X2 Y1}

orelse {IsEqAddend X2 Y1}
andthen {IsNeqAddend X1 Y2}

orelse {IsEqAddend X2 Y2}
andthen {IsNeqAddend X1 Y1}

then fail % raise failure
end

end
end % case

end}
end % case

end}
end % DetectFailureEarly

Finally, the variables of the addends are tested to meet the early failure detection cri-
terion and if so, failure is raised by the statement fail. The predicate IsEqAddend
(IsNeqAddend) tests if two addends are equal (not equal). The individual applications
of IsEqAddend are connected by the short-circuit disjunction orelse.3

Evaluation The evaluation was done on a set of Hamiltonian path problems with the
number of nodes ranging from 10 to 50 (it is the same set of problems as used in [61],
the problem can be found at [105]). Table 14.1 shows the effectiveness of the presented
technique impressively. Entries ’-’ indicate that after 100.000 nodes of the search tree
no solution was found and search was aborted.

By accident the results for problems with 40 and 50 nodes are identical. The first
solution was found on a 200MHz Pentium Pro in a range from a tenth of a second till

3The boolean expression e1 orelse e2 is equivalent to if e1 then true else e2 end.

14.3 Programming 153

no early failure detection with early failure detection
nodes solution found after solution found after # detected

choices/# failures # choices/# failures failures
10 72/52 72/52 0
20 - 160/124 1
30 - 298/244 68
40 - 499/406 162
50 - 499/406 162

Table 14.1: Effectiveness of early failure detection.

less than a minute depending on the problem. But the benchmarks aim at demonstrat-
ing the effectiveness of the technique, and the early failure detection code has not been
particularly optimized.

Early failure detection requires constraints to be first-class citizens in order to reflect
the state of the constraint solver for making symbolic detection of inconsistent con-
straints possible.

14.3.2 Constraint Optimization

This section demonstrates another constraint programming technique made possible by
first-class constraints. It is not unusual that a constraint model and consequently its
implementation contains redundant constraints or constraints in a formulation that does
not allow for the strongest possible propagation.

Consider the constraint x + x = y ∧ x ∈ {1, 2} ∧ y ∈ {3, 4}. Without exploiting the
aliasing of the two variables on the left hand-side the constraint cannot deduce that the
only valid instantiation is x = 2 ∧ y = 4. Hence the optimization x + x = y → 2x = y
improves constraint propagation significantly.

This section reuses the Hamiltonian path problem defined in Section 14.3.1 but
uses reified constraints (see page 18) instead of disjunctive combinators. Constraints
c1, . . . , cn can be disjunctively connected by reifying them and summing up the
0/1-variables to 1: (c1 ↔ b1) ∧ . . . ∧ (cn ↔ bn) ∧ b1 + . . .+ bn = 1.

The Constraint Model and its Implementation The constraint model expresses the
disjunctions by reified constraints. The parentheses "()" enclosing the equations indicate
reification. Constraint (14.5) stands for the path from the starting to the ending node and
constraint (14.6) for the same path in reverse direction.

distinct(x1, . . . , xn) (14.4)

∀ arc(f, T) ∈ Arcs :

(

(x f = n)+
∑

i∈T

(xi = x f + 1)

)

= 1 (14.5)

∀ arc(f, T) ∈ Arcs :

(

(x f = 1)+
∑

i∈T

(xi + 1 = x f)

)

= 1 (14.6)

154 Chapter 14: Programming

Deriving an Optimization Rule In this case finding a suitable rule is easy. Re-
gard the lines in the figure starting
with the variables x16 and x3. In
both cases the corresponding con-
straints reify 1 + x1 − x2 = 0.
That makes it possible to equate
x16 and x3 and to discard a copy
of 1 + x1 − x2 = 0. In gen-
eral ∃(ci ↔ bi), (c j ↔ b j) :

ci = c j → bi = b j ∧

discard(c j).
The proposed optimization has two effects: it removes redundant propagation by

discarding superfluous constraints, and aliases variables.

Adding Constraint Optimization Constraint optimization is executed whenever prop-
agation reaches its fixed-point. It reflects the constraints of a computation space with
Constraint.reflectSpace to obtain direct access to the constraints, and function
FilterReified filters out all reified constraints (c ↔ b) since the other constraints
are of no interest. The result is stored in ReCs. Furthermore, FilterReified gener-
ates a key for c using Constraint.getKey which is used as index for the dictionary
Dict to easily identify reified constraints which are identical modulo the 0/1-variable
b. A dictionary is an abstract data type encapsulating mutable state making it possible
to store and retrieve values indexed by keys. Dictionaries are provided by Mozart’s base
environment [47]. The following operations on dictionaries are used: creating a dic-
tionary (Dictionary.new), storing a value indexed by a key (Dictionary.put),
retrieving a value indexed by a key (Dictionary.get), and checking if a key exists
(Dictionary.member).

fun {OptimizeAndCollect RootVars}
ReCs = {FilterReified

{Constraint.reflectSpace _ RootVars}}
Dict = {Dictionary.new}

in

For each reified constraint the actual optimization is done in a ForAll loop which calls
an anonymous procedure $. This procedure accesses the components of its argument
by pattern matching: I is the textual representation index, P is a reference to the reified
constraint itself, C the reified constraint, and B is a 0/1-variable. Note that # is the
infix tuple constructor and hence I#reified(P C B) is a 2-tuple matched against the
argument passed to the anonymous procedure.

{ForAll ReCs
proc {$ I#reified(P C B)}

if {Dictionary.member Dict I} then
reified(P1 C1 B1) = {Dictionary.get Dict I} in
B1 = B {Constraint.discard P}

else

14.3 Programming 155

{Dictionary.put Dict I reified(P C B)}
end

end}
% return 0/1-variables of the reified constraints
{RetrieveBools Dict}

end % OptimizeAndCollect

Using Dictionary.member the procedure checks if a reified constraint is already
stored under the textual representation index I. If so, the individual components of the
entries are retrieved by pattern matching4, the 0/1-variables are equated, and the con-
straint referred to by P is discarded by Constraint.discard. That is exactly what
the optimization rule requires. In case the reified constraint is not yet stored in Dict
a new entry is created by Dictionary.put. Finally, the 0/1-variables of the reified
constraints are retrieved and returned by RetrieveBools.

The search strategy branches over the 0/1-variables of the reified constraints (14.5)
and (14.6) returned by OptimizeAndCollect to stay as close as possible to the pro-
gram used in Section 14.3.1.

Evaluation The evaluation was done on the same set of problems as in Section 14.3.1.
The number of 0/1-variables coming from the reified constraints is significantly reduced
by optimization. In combination with the additional variable aliasing, this leads to an
enormous reduction of choice points (see Table 14.2), even better than for early failure
detection in Section 14.3.1.

no optimization with optimization
nodes solution found after solution found after # optimized

choices/# failures # choices/# failures constraints
10 292/288 4/2 26
20 - 19/0 60
30 - 19/94 118
40 - 2673/2632 158
50 - 122/73 199

Table 14.2: Effectiveness of constraint optimization.

Only for the graph with 40 nodes the number of choice points is much greater. This
indicates that the search strategy used is not stable enough against variations of the prob-
lems, but this is not the focus of this thesis.

Constraint optimization requires constraints to be first-class values in order to re-
flect the state of the constraint solver and thus making symbolic constraint optimization
possible.

4The return value of the function application {Dictionary.get Dict I} is matched against the
tuple reified(P1 C1 B1) and the newly introduced variables P1 C1 B1 are bound accordingly.

156 Chapter 14: Programming

14.3.3 Garbage Collection of Constraints

Usually constraint solvers collect redundant constraints as they become entailed by the
constraints in the store. Even if their memory is not freed due the implementation of
the solver, they are at least not rerun anymore if their parameters receive new basic
constraints. For example, consider x ≤ y ∧x ∈ {0, . . . , 3}∧ y ∈ {3, . . . , 6}, and suppose
the ≤-constraint is entailed by the basic constraints x ∈ {0, . . . , 3} ∧ y ∈ {3, . . . , 6} and
is garbage collected. That is not always the case, as demonstrated for the nonoverlap-
constraint in the tiling problem.

The Problem Description and the Constraint Model A given number of square tiles
has to be placed on a master plate (see figure). The tiles must not
exceed the master plate along the x- and y-axis. This is enforced by
the capacity-constraint which is not of interest here. Furthermore, the
tiles must not overlap which is enforced by the nonoverlap-constraint.
Consider the square tiles T1 and T2 with length l1 and l2. Their posi-
tions on the master plate are determined by their left lower corners (x1, y1) and (x2, y2)

which results in the nonoverlap-constraint

x1 + l1 ≤ x2 ∨ x2 + l2 ≤ x1 ∨ y1 + l1 ≤ y2 ∨ y2 + l2 ≤ y1. (14.7)

The constraint (14.7) is encoded by the reified constraint

(x1 + l1 ≤ x2)+ (x2 + l2 ≤ x1)+ (y1 + l1 ≤ y2)+ (y2 + l2 ≤ y1) ≥ 1.

Note the ≥-constraint which is necessary since two tiles can be non-overlapping in both
the x- and y-axis. This constraint causes the trouble regarding garbage collection since as
soon as one of its reified constraints is valid the remaining three constraints could be dis-
carded. But this is impossible without first-class constraints because a reified constraint
cannot be discarded, it just reduces to its embedded positive or negative constraint.

Implementation Issues The encoding of the nonoverlap-constraint by the procedure
ImposeNonOverlap catches the references to the individual constraints involved,
i.e., the reified ≤-constraints and the ≥-constraint. This is achieved by using the
prop...end statement. The nonoverlap-constraint returns these references wrapped
in the tuple nonoverlap(P0 [P1 P2 P3 P4]).

fun {ImposeNonOverlap X1 Y1 L1 X2 Y2 L2}
B1 B2 B3 B4 P0 P1 P2 P3 P4

in
prop {[P1]} (X1 + L1 =<: X2) = B1 end
prop {[P2]} (X2 + L2 =<: X1) = B2 end
prop {[P3]} (Y1 + L1 =<: Y2) = B3 end
prop {[P4]} (Y2 + L2 =<: Y1) = B4 end
prop {[P0]} B1 + B2 + B3 + B4 >=: 1 end

nonoverlap(P0 [P1 P2 P3 P4]) % return value
end

14.3 Programming 157

The procedure CollectNonOverlapConstraints is called when propagation has
reached a fixed-point. It receives as its argument a list of tuples produced by Im-
poseNonOverlap and checks for all tuples if the enclosed ≥-constraint is entailed
by applying Constraint.isEntailed to P0. If so, the remaining reified constraints
are discarded by Constraint.discard.

proc {CollectNonOverlapConstraints NonOverlapConstraints}
{ForAll NonOverlapConstraints
proc {$ nonoverlap(P0 Ps)}

if {Constraint.isEntailed P0} then
{ForAll Ps proc {$ P}

if {Constraint.isEntailed P} then skip
else {Constraint.discard P} end

end}
end

end}
end

Evaluation Table 14.3 shows the number of reified ≤-constraints garbage collected for
different instances of the tiling problem.

tiles # collected constraints saved memory
6 18 5K
9 44 11K

17 197 100K
21 1528 1.7M

Table 14.3: Effectiveness of constraint garbage collection.

The third column shows the amount of memory saved which is in balance with the
overhead imposed by the extra data structures used.

The proposed garbage collection scheme relies on first-class constraints for detecting
redundant constraints and for explicitly discarding such constraints since they cannot be
garbage collected yet by entailment.

14.3.4 Smallest Sets of Inconsistent Constraints

First-class constraints can be used to find smallest subsets of inconsistent constraints of
a given set of inconsistent constraints (for short SIC). In this section, a set of constraints
is called inconsistent if constraint propagation causes a failure.5 A SIC I is the smallest
if as soon as any ci ∈ I is removed from I , no failure is caused anymore by constraint
propagation. Note that there may be more than one smallest SICs which are pairwise
mutually not inclusive.

5It does not mean that a set of constraints which is not detected as inconsistent by constraint propaga-
tion is consistent.

158 Chapter 14: Programming

Smallest SICs are interesting for debugging constraint programs. For example, Ueda
et al. use smallest SICs in [30, 5, 4] to spot the reason for programs not being well-
moded resp. well-typed. Another example is that the first run of a constraint program
frequently results in an immediate failure of the solver. This is caused by a SIC which is
usually large. But only a subset causes the failure and hence, being able to find smallest
inconsistent subsets of a given SIC may simplify debugging significantly.

Algorithm The algorithm for finding smallest SICs consists of two parts: part (i) finds
an initial smallest SIC and part (ii) finds another smallest SIC which is mutually not
inclusive with all already found smallest SICs. Part (ii) of the algorithm is iterated until
no further smallest SICs are found.

Ueda et al. give an algorithm6 for finding a smallest sub-SIC for a given SIC I =

{c1, . . . , cn} [30, 5, 4]. This algorithm requires k iterations over the n constraints where k
is the number of constraints in the smallest SIC. This results in an asymptotic complexity
of O(k × n × f (n)) if checking consistency is assumed to have a complexity of f (n).
The algorithm in Program 14.1 needs exactly one iteration over the ci , i.e., it runs in
O(n × f (n)). This algorithm speculatively removes every constraint ci and checks if the
resulting constraint in I ′ is still inconsistent. The function application is_inconsistent(I ′)

performs consistency checking on I ′ (for example by running the consistency algorithm
in Program 2.1 on page 10)

I = {c1, . . . , cn}

for (i = 1; i ≤ n; i = i + 1) {
I ′ = I \ {ci }

if (is_inconsistent(I ′))
I = I ′

}

Program 14.1: Finding a smallest set of inconsistent constraints.

Part (ii) of the algorithm searches for new smallest SICs by activating resp. de-
activating individual constraints ci . Branch-and-bound search uses the ordering con-
straint (14.8) to find a smallest SIC (O is the current SIC and N denotes a new SIC).

N ⊂ O (14.8)

Let P denote the set of previously found smallest SICs Pi . To ensure that the new
subset N is mutually not inclusive to the already found smallest SICs Pi ∈ P , the con-
straint (14.9) is added to the search problem:

∀Pi ∈ P : Pi \ (Pi ∩ N) 6= ∅ ∧ N \ (Pi ∩ N) 6= ∅ (14.9)

Note that for every iteration of part (ii) of the algorithm, P is updated with the new
smallest SIC N .

6A dedicated algorithm for finding efficiently an initial subset is needed since using naïve search in-
cluding resp. excluding constraints ci has exponential complexity.

14.3 Programming 159

Implementation Constraints in a SIC are implemented by first-class propagators. The
idea of the implementation is to connect the first-class propagators with 0/1-control vari-
ables. Constraining a control variable to 0 discards the connected propagator while con-
straining the variable to 1 activates the propagation of the connected propagator. Proce-
dure ImposeConstraint connects a propagator with a control variable.

proc {ImposeConstraint P B}
prop inactive {[C]} {P} end
B :: 0#1
thread

if B == 1 then {Constraint.activate C}
else {Constraint.discard C} end

end
end

The first parameter P of ImposeConstraint is a procedure7 which imposes a prop-
agator with deactivated propagation. Applying P within a prop ... end statement
binds C to the corresponding first-class propagator. The if-statement is run on a sepa-
rate thread to avoid the execution of the procedure ImposeConstraint blocking.

A SIC is represented by a finite set of integers. Every propagator p representing a
constraint in the SIC I is identified by a unique integer ip. The subset of inconsistent
constraints is the set of identifiers i p represented by a finite set of integers (see Part II).
Adding i p to I turns propagation of p on and constrains the control variable of p to 1.
Removing i p from I turns propagation of p off and constrains the control variable of p
to 0. This works also in the other direction (similar to reified constraints) by binding the
control variable.

Part (i) of the algorithm implements Program 14.1. The application of the function
is_inconsistent() is encapsulated by the negation combinator (Section 3.3.2) to catch
and detect failure. The result is a set of integer identifiers referring to the constraints
contained in the initial smallest set of inconsistent constraints.

Part (ii) of the algorithm implements branch-and-bound search using Mozart’s search
facilities (Section 3.3.1). The search problem consists of a SIC I , the constraint (14.9),
and the ordering constraint (14.8). Again, the SIC is encapsulated by the negation com-
binator.

Distribution over first-class propagators is done by distributing over their 0/1-
control variables using the finite domain library abstraction FD.distribute. The
constraints (14.8) and (14.9) can be straightforwardly expressed by finite set constraints
(Part II).

Example Consider the inconsistent set of constraints {x < y, y < z, z < x, z < u, u <
x}. As one can easily see, there are two different smallest sets of inconsistent constraints:
I1 = {x < y, y < z, z < x} and I2 = {x < y, y < z, z < u, u < x}. As expected, the
search routine finds two smallest SICs I1 and I2.

The first solution, corresponding to I1, is shown as a graph in Figure 14.3(a) where

7An example for P is proc{P} {FD.lessEqOff A B C} end where the propagator application
{FD.lessEqOff A B C} imposes the constraint A ≤ B + C .

160 Chapter 14: Implementation

* X{0#10}

* Y{0#10}

* Z{0#10}

* U{0#10}

(a) Parameter graph where failed propagator edges are thick solid line.

FD.lessEqOff
failedset.oz:42

FD.lessEqOff
failedset.oz:41

FD.lessEqOff
failedset.oz:39

FD.lessEqOff
failedset.oz:38

FD.lessEqOff
failedset.oz:37

(b) Constraint graph where nodes of failed propagators are shaded.

Figure 14.3: First solution I1.

the nodes of the graph denote variables and edges represent propagators. Thick solid
edges stand for propagators that are part of the SIC. Figure 14.3(b) depicts SIC I1 as
graph where nodes denote propagators and edges denote variables shared between prop-
agators. Propagators that are part of the SIC are shaded. The second solution, corre-
sponding to I2, is shown in Figure 14.4.

The graphs in Figures 14.3 and 14.4 were generated by the interactive con-
straint debugging tool Investigator which is presented in Chapter 15. The annotations
FD.lessEqOff of the nodes in Figure 14.3(b) and Figure 14.4(b) refer to the propa-
gators which realizes the <-constraint. The Investigator can be used to debug an im-
mediately failing constraint program: after the propagators responsible for failure are
identified, their occurrence in the source code can be easily spotted by clicking on the
corresponding propagator nodes in the Investigator (see Figure 15.6 on page 173).

First-class constraints are the key to this application since with them one can search
over constraints by explicitly turning propagation on and off.

14.4 Implementation

Adding first-class propagators to the propagation services presented in Part I requires
only conservative extensions which do not impose any performance penalties if first-
class propagators are not used.

Propagators as Values A first-class propagator is a reference to a propagator and is rep-
resented by a new class of heap objects. The operations are passed on via the first-class

14.4 Implementation 161

* X{0#10}

* Y{0#10}

* Z{0#10}

* U{0#10}

(a) Parameter graph where failed propagator edges are thick solid line.

FD.lessEqOff
failedset.oz:42

FD.lessEqOff
failedset.oz:41

FD.lessEqOff
failedset.oz:39

FD.lessEqOff
failedset.oz:38

FD.lessEqOff
failedset.oz:37

(b) Constraint graph where nodes of failed propagators are shaded.

Figure 14.4: Second solution I2.

propagator to the actual propagator which implements the operation by corresponding
functions. A first-class propagator is created by an extended creator function which im-
poses the actual propagator and returns the first-class propagator by an extra argument.
The prop...end-operator directs the compiler to call such extended creator functions
instead of the standard ones.

Controlling Constraint Propagation Constraint propagation of a propagator is con-
trolled by an extra flag which indicates whether propagation is turned on or turned off.
A deactivated propagator is cannot be scheduled, i.e., it remains in the execution state
sleeping. If a propagator’s propagation is turned on, it is immediately scheduled.

Entailment A propagator is entailed by setting its execution state to entailed. Noth-
ing else needs to be done. To find out whether a propagator is entailed or not simply
requires to check the execution state of the propagator.

Reflection Obtaining the name and the parameters of a propagator is already supported
by the corresponding functions of a propagator. The implementation of the reflection of
a whole computation space (Constraint.reflectSpace) maintains a set of prop-
agators SP and a set of variables SV . First, it adds the given variables in Rs to SV and
adds the propagators in the event lists of the variables in SV to SP . It proceeds by adding
the parameters of newly found propagators to SV and the propagators in the event lists of
newly found variables to SP . Thus the whole constraint graph is traversed until no new
propagators and variables are found. Detecting the membership of a variable in SV or a
propagator in SP has to be efficient. Hence, the sets SV and SP are implemented by hash
tables.

162 Chapter 14: Related Work and Discussion

Identification First-class propagators can be identified to refer to the same propagator
simply comparing their references. The identification of individual variables in a list of
variables collects the variables in a dictionary data structure. The keys of the dictionary
are the locations of the variables. A variable newly added to the dictionary is assigned an
incremented counter value while an already contained variable takes the assigned integer
as identifier.

14.5 Related Work and Discussion

Some of the programming techniques discussed in this chapter have been successfully
applied in the area of constraint-supported proof planning as presented in [93, 94]. The
benefit of first-class constraints was the ability to concurrently perform domain and sym-
bolic reasoning.

The idea to combine symbolic and domain reasoning has been used by Hong to im-
plement solver over complex functions [69] and non-linear constraints over real numbers
[68]. The solvers have been implemented using computer algebra systems. First-class
constraints seem to be suitable for this kind of constraint solvers but this has to be proved
by future research (see Section 16.2).

One approach at gaining more control and expressiveness over constraints was
the idea to exploit a constraint’s truth value as proposed for the cardinality constraint
in [143]. Applying arithmetic and boolean operations to constraint’s truth values was
explored in [12]. These constraints are usually called meta or reified constraints. They
are available in nearly all current constraints solvers.

Meta-programming as known from Lisp or Prolog means manipulating a program by
another program. Therefore, the program code is represented as a term of the respective
programming language and then submitted to a meta-interpreter written in this language.
Such a scheme for the constraint programming language CLP(R) is proposed in [62].
They use quote and eval functions which are analogous to the corresponding Lisp
functions.

Solvers dedicated to a certain set of constraints can of course do the same analysis as
discussed in this chapter. Harvey and Stuckey describe in [61] a propagation based solver
for linear (in-, dis-)equations which is able to detect failure as early as the approach
described in Section 14.3.1.

ILOG SOLVER [73] is a C++ library for constraint programming in C++. It does
not support first-class constraints as presented but ILOG SOLVER 5.0 allows the user to
define a new constraint by defining a new class of constraints derived from the library
class IlcConstraintI. It is straightforward to provide the required extra functionality
according to Section 14.4 by adding appropriate member functions to the class definition
of the new constraint.

Constraint Handling Rules (CHR) [51] are a committed-choice language for rewrit-
ing constraints towards a solved form which eventually denotes a solution. A CHR
program is a set of guarded rules of the form H op G | B where op ∈ {<=>,==>},
H = H1, . . . , Hi , G = G1, . . . ,G j , and B = B1, . . . , Bk . A multi-head H is a se-

14.5 Related Work and Discussion 163

quence of CHR, the guard G is a sequence of built-in constraints, and the body B is
a sequence of CHR and built-in constraints. A rule fires as soon as a the CHR store
implies H and the constraint store implies G. Then the CHR and constraint store are
extended by B. A propagation rule (op = ==>) extends the appropriate stores by redun-
dant constraints B. A simplification rule (op = <=>) behaves like a propagation rule
but additionally removes H from the CHR store. CHR can be used to implement the
techniques proposed in Section 14.3.1 and Section 14.3.2 due to the multi-heads of the
rules. For example, the inconsistent constraint x < y ∧ y < x can be detected by the
following CHR rule: less(x,y),less(y,x) <=> true | false.

The programming techniques presented in Section 14.3 need to detect the fixed-point
of constraint propagation. Hence the constraint solver has to provide means that allows
the programmer to synchronize computation with reaching a propagation fixed-point.
The implementation of such a check is straightforward and simply tests the number of
runnable propagators.

None of the above-mentioned approaches offers the same expressiveness or general-
ity as the scheme proposed in this thesis, to promote constraints to first-class citizens.

164 Chapter 14: Related Work and Discussion

Chapter 15

Debugging Constraints

This chapter develops a debugging scheme based on a graph view metaphor. Based on
this scheme, an interactive debugging tool, called Constraint Investigator, is presented
and demonstrated by an example debug session with a prototype implementation of the
Investigator1. This implementation was intended to successfully prove the concept of
the debugging scheme and is another case study that demonstrates the benefits of using
first-class constraints in programming.

15.1 Overview

Propagator-based constraint solvers are able to tackle large instances of combinatorial
problems. But developing solvers for such problems has only limited support by de-
bugging tools. This deficiency has been identified and dedicated projects (as DiSCiPl
[41, 37]) have been set up.

The first step to be taken when solving a combinatorial problem is to design a con-
straint model of the respective problem, i.e., to find a problem formulation in terms of
constraints. Next this model is implemented by some constraint solver. Testing the im-
plementation reveals quite frequently that no solution can be found, the solution found is
not correct, or the solution found still contains undetermined variables. These situations
suggest that the constraint model or its implementation do not reflect the combinatorial
problem to be solved. To support the development process at this stage, the programmer
needs adequate interactive debugging tools which are currently not available.

Current constraint debugging tools focus on improving search behavior (e.g., [126,
91, 134]), i.e., on finding most suitable branching and exploration algorithms. There is
a lack of intuitive interactive tools for debugging the correctness of constraint models
and/or their implementations. In particular, large problems need tools with a sophisti-
cated presentation to handle the overwhelming amount of information. Hence, providing
an appropriate metaphor to present the data is crucial. The model of data presentation
proposed in this thesis is derived from graph-based visualization, as proposed by Carro

1The source code of the Investigator can be obtained via [105].

166 Chapter 15: Debugging Constraints

and Hermengildo in [25]. The graph metaphor was first formally introduced in constraint
programming by Montanari and Rossi in [96].

This chapter develops different graph-based views for correctness debugging con-
straint programs and a debugging methodology based on these views for frequently oc-
curring incorrect behavior of constraint programs. Further, techniques for handling large
problems are proposed.

The viability of the approach is proved by designing and prototypically implementing
an interactive tool, the Constraint Investigator, that allows the user to investigate the state
of constraints and variables in a constraint solver by analyzing the corresponding graph
views. The Investigator is characterized by the following points:

– It is not restricted to any specific constraint domain.
– It relies on a propagation-based constraint solver.
– It provides intuitive data presentation and interaction, while affording detailed in-

sights about the solver.
– It is fully configurable by the user and requires no changes to the actual constraint

program.
– It is suitable for users at different levels of expertise.
– It reveals operational aspects of the solver by displaying the events that trigger

constraints.

A prototype of the Constraint Investigator is implemented in Mozart and the visualization
of the graph views relies on daVinci [50, 36]. The Investigator complements the Oz
Explorer as plug-in. Both tools form the base of an integrated constraint debugging
environment.

The Constraint Investigator can be also useful for performance debugging. For ex-
ample, its graph views can be aumented with execution costs of constraints such that the
program code causing these costs can be identified. Furthermore, operational aspects
of constraint execution (see Section 2.3 about events) are revealed and can be used to
improve execution performance.

15.2 Debugging Constraints

Debugging an application focuses first on correctness and then on performance. Ap-
proaches to debugging can be identified as experimental and analytic [91]. Experimental
debugging, i.e., modifying the program text until it seems to work, requires a large set of
methods to experiment with. In contrast, analytic debugging needs to obtain a detailed
description of the state of the constraint solver. Such a description has to be presented to
the programmer by a debugging tool in a way that supports program analysis in the best
possible fashion.

After designing and implementing the constraint model of a given problem, testing
the implementation typically produces erroneous situations as:

– The solver fails immediately, i.e., the constraints are inconsistent. Either the im-
plementation of the constraint model is incorrect or the model itself is. It is often

15.3 Graph-based Visualization of Constraints 167

the case that by accident the constraint model is over-constrained though the com-
binatorial problem is not. For example, the model states an equivalence where an
implication is required. In such a case, if a solution is available (perhaps manually
derived), it is a promising strategy to debug this situation by adding this solution
to the constraint statements. The propagator which is observed to fail is not nec-
essarily the culprit for the bug in the implementation but it helps to track down the
problem in the constraint model.

– Propagation is incomplete in the sense that some solution variables remain unde-
termined. This is an indicator that the implementation or the model is incomplete.

– The solution found is wrong. Either the constraint model is incorrect or if this is
not the case, the implementation of the model is incorrect.

The proposed debugging approach and the corresponding tool are aimed at analytic cor-
rectness debugging, i.e., to spot bugs in the constraint model and its implementation.

Analytic debugging requires an interactive tool that enables the programmer to an-
alyze the actual constraints in the solver. The amount of information, i.e., typically the
number of variables and constraints, is huge. The way these data are presented in ana-
lytic debugging is important since constraint programs are data-driven and an appropriate
presentation helps the programmer to draw the right conclusions. Hence, data repre-
sentation has to match the programmer’s intuition of constraints in a constraint solver.
Consequently, the graph-based metaphor is chosen for representation since it makes it
possible to emphasize different aspects of the state of a constraint solver appropriately
(see the different views presented in Section 15.3) and to relate the program structure to
the representation (see Section 15.4.2).

15.3 Graph-based Visualization of Constraints

In this section, different graph views are illustrated using a trivial scheduling application.
The problem is to serialize two tasks, such that they do not overlap. The first (second)
task starts at starting time T1 (T2) and has a fixed duration of D1 (D2). The correspond-
ing constraint model is the disjunction T1 + D1 ≤ T2 ∨ T2 + D2 ≤ T 1. The concrete
implementation uses reified constraints to implement the disjunction. A reified constraint
has an extra boolean parameter that reflects the validity of the constraint, i.e., whether
it is entailed or failed. For example, B1 = (T1 + D1 ≤ T2) is the reified version of
T1 + D1 ≤ T2 and if this constraint is entailed (failed) B1 is bound to 1 (0). Conversely,
in case B1 is bound to 1 (0) the constraint T1 + D1 ≤ T2 (T1 + D1 > T2) is stated. The
(exclusive) disjunction of the constraints can be implemented by stating that the sum of
the boolean variables associated with the reified constraints is 1. The following Oz code
implements the serialization constraint for two tasks2:

B1 =: (T1 + D1 =<: T2) % implemented by FD.reified.sumC
B2 =: (T2 + D2 =<: T1) % implemented by FD.reified.sumC

2Note that D1 and D2 refer to integers and all other variables are finite domains. The =-constraint is
implemented by Oz’s finite domain operator =: (and ≤ by =<:).

168 Chapter 15: Graph-based Visualization of Constraints

B1 + B2 =: 1 % implemented by FD.sumC

Four different views of the above constraint program are presented. The shape of a
node represents its kind: a propagator node is a rectangle, a variable node is an ellipse,
and an event node is a rhombus. A propagator node is annotated with the name of
the respective propagator and the location of the propagator invocation in the source
program, i.e., the file name and the line number. A variable node is annotated with the
name of the respective variable and if the variable is constrained, the basic constraint
connected to the variable is also shown. Note that there are no variable nodes for D1 and
D2 since they denote integers.

Preliminaries The constraints of a problem instance can be regarded as a network of
propagators P , variables V , and events E . The variables in V are the parameters of
the propagators in P . The events in E denote the changes to the basic constraints that

trigger a propagator to be scheduled. A propagator p(v
e1∈E p

1 , . . . , v
en∈E p
n) has a set

of parameters Vp = {v1, . . . , vn} ⊆ V and is triggered by the events E p ⊆ E . The

notation v
ei ∈E p

i means that the propagator p is scheduled as soon as event ei occurs

at parameter vi . A variable v(pe1∈Ev
1 , . . . , pem∈Ev

m) is a parameter of the propagators
Pv = {p1, . . . , pm} ⊆ P and changes to the basic constraint at v can cause the events
Ev ⊆ E . The notation pei∈Ev

i means that the propagator pi is scheduled as soon as event
ei occurs at the variable v.

The Propagator Graph View A propagator graph (Figure 15.1) is the graphical repre-
sentation of a propagator net, i.e., the propagators are the nodes. Note that the edges are
not directed since data flow between propagators is bidirectional. This, for example, is
different for a constraint solver using indexicals [32] because an indexical is a function
rather than a relation. For instance, the leftmost node corresponds to the propagator
FD.sumC which happens to occur at line 260 of file opi.oz (the location of FD.sumC
while producing the example graph views). This annotation depends on the concrete
location of a propagator in a source file. An edge between two nodes means that the
propagators share at least one variable parameter.

FD.reified.sumC
opi.oz:258

FD.reified.sumC
opi.oz:259

FD.sumC
opi.oz:260

Figure 15.1: A Propagator Graph View.

Using the sets P , V , and E defined in this section, a propagator graph pg(Ppg) con-
sists of nodes Npg = Ppg and edges Epg = {(pi , p j)|Vpi ∩ Vp j 6= ∅ ∧ i < j}.

The Single Propagator Graph View A single propagator view (Figure 15.2) presents a
single propagator and its parameters as a tree. The parameters are grouped by the events.

15.3 Graph-based Visualization of Constraints 169

Note a variable may occur several times as parameter. The single propagator graph
view of FD.reified.sumC shows that the propagator waits for two events, namely
the bounds-event, i.e., the bounds of the domain are narrowed, and the any-event, i.e.,
an arbitrary element is removed from the domain. Furthermore, the view shows that a
bounds event at the parameters T1 resp. T2 and an any event at B1 cause the propa-
gator to be scheduled. A variable node is annotated, as for example the node for T1:
T1{0#5}. This means that T1 takes a value from {0, 1, 2, 3, 4, 5}. The asterisk (’’)
denotes a variable passed directly by the user to the Investigator in contrast to variables
collected while traversing the constraint network.

* T2{0#5}

* T1{0#5}

bounds

* B1{0#1}any

FD.reified.sumC
opi.oz:258

Figure 15.2: A Single Propagator Graph View.

More formally, a single propagator graph spg(p) for a propagator p is a tree with
a root node Rspg = p, connected to the root node are event nodes Espg = E p and
connected to the event nodes variable nodes Vspg = Vp. An edge between an event node
and a variable node is established if the events of the event node and variable node are
the same.

The Variable Graph View A variable graph view (Figure 15.3) is dual to the propaga-
tor graph view. The nodes represent the variables. An edge between two variable nodes
indicates that the variables are simultaneously constrained by one or more propagators.
The information of what propagators are concerned is available by a menu associated
with the edge. The variable graph view shows that in the example, all variables are
connected with each other.

The formal description of a variable graph makes the duality to a propagator graph
obvious: a variable graph vg(Vvg) is composed by the nodes Nvg = Vvg and the edges
Evg = {(vi , v j)|PVi ∩ PV j 6= ∅ ∧ i < j}. An edge between two variable nodes is present
if the respective variables share at least one propagator.

The Single Variable Graph View A single variable graph view (Figure 15.4) repre-
sents a constraint variable, events it can cause and the propagators waiting for these
events to happen. One can see that the two reified propagators wait for the bounds event
and no propagator waits either for the any event nor for the val event.

170 Chapter 15: Correctness Debugging with the Constraint Investigator

* B1{0#1}

* B2{0#1}

* T1{0#5}* T2{0#5}

Figure 15.3: A Variable Graph View.

any

FD.reified.sumC
opi.oz:258

FD.reified.sumC
opi.oz:259

bounds

val

* T1{0#5}

Figure 15.4: A Variable Graph View.

A single variable graph svg(v) of a variable v is a tree with a root node Rsvg = v.
Event nodes Esvg = Ev are connected to the root node. Furthermore, each event node
of an event e is connected to the propagator nodes Pe

svg = {pe|pe ∈ Pv}, i.e., an edge
between an event node and a propagator node is established if the propagator waits for
this event to happen to this variable.

15.4 Correctness Debugging with the Constraint Inves-
tigator

This section introduces the Constraint Investigator as an interactive tool for debugging
practical constraint problems. Using the Investigator does not require any changes to
the constraint program. The program has to be recompiled with appropriate compiler
switches.

15.4.1 An Example Session with the Investigator

This section starts off with a deliberately buggy constraint model and program and
demonstrate how to track down two hidden bugs. Of course, the bugs are trivial to fix

15.4 Correctness Debugging with the Constraint Investigator 171

for experienced programmers but the approaches demonstrated are suitable for handling
real-life situations.

The Problem Consider the following bin-packing problem: a given set of weighted
items I has to be assigned to three bins b1,2,3, without exceeding the maximum capacity
of each bin. All bins have the same maximum capacity c. Furthermore, as soon as at
least two items are put into a bin one extra unit of packaging material must be added as
protection. Moreover, the bins must be color-coded to indicate the presence of a fragile
item.

The Constraint Model The given problem is a set partitioning problem of three sets
with extra constraints. Each bin bn is modeled as set sn and each item i ∈ I has a weight
wi .

I =]sn (1) |sn| ≥ 2 ↔ packaging material ∈ sn (2)
6∀i∈snwi ≤ c (3) ifragile ∈ sn → color(sn) = red (4)

where n = 1, 2, 3.

(1) states a set partitioning and (2) adds extra packaging if necessary. Furthermore,
(3) enforces that the capacity of the bins is not exceeded and takes also into account
packaging material added by (2). The coloring of the bins is modeled by (4). The model
is not quite correct as will become clear later on.

The Implementation of the Constraint Model The implementation of the presented
model is based on finite set constraints (Part II), i.e., a set value is approximated by a
lower bound set and a upper bound set. The constraint solver has been implemented by
the procedure BinPacking:

proc {BinPacking Weights Capacity Sol}

The argument Weights is a list of pairs Id#Weight. The variable Capacity deter-
mines the maximum capacity of the bins. The solution is returned in Sol and contains
the colored bins with the assigned items.

The procedure starts with variable definitions: it declares the variables Red and
Green for the bin-coloring constraint for the fragile item defined by Fragile. Next, it
adds for the packaging material an extra item (Packaging=100) with weight 1 to the
list of all weighted items AllWeights. The list of Items is extracted from the weight
list (AllWeights).

Red = 0 Green = 1 Fragile = 1 Packaging = 100
WeightedPackaging = [Packaging#1]
AllWeights = {Append WeightedPackaging Weights}
Items = {Map AllWeights fun {$ E} E.1 end}

in

The body of the procedure starts by creating the solution list Sol of length 3. Each
list element represents a bin as a record bin(items:S color:C) where S is the set
of items and C is the color of the bin. The application of {FS.var.upperBound
Items} constrains S to the set constraint ∅ ⊆ S ⊆ setof (Items).

Sol = {List.make 3}
{ForAll Sol fun {$} S = {FS.var.upperBound Items} C in

172 Chapter 15: Correctness Debugging with the Constraint Investigator

C :: [Red Green]
bin(items: S color: C)

end}

Next the partitioning constraint is stated (FS.partition). The Map function extracts
the sets that form the partition from the bin records. The variable Items is converted to
a set value by FS.value.make representing the set to be partitioned.

% constraint (1): partitioning
{FS.partition
{Map Sol fun {$ S} S.items end} {FS.value.make Items}}

The weight restriction constraint maps the presence of elements to the list of boolean
variables BL by FS.reified.areIn. The constraint {FD.sumC ... ’=<:’ ...}
enforces that the scalar product of the list of boolean variables BL and the corresponding
list of weights (produced by Map) does not exceed Capacity.

% constraint (3): enforce weight restriction in bins
{ForAll Sol proc {$ S} BL in

{FS.reified.areIn Items S.items BL}
{FD.sumC {Map AllWeights fun {$ E} E.2 end}
BL ’=<:’ Capacity}

end}

The constraints for adding packaging material and assigning the bin color close the
procedure and use reified constraints. Reified propagators are used to conditionally
state constraints according to (2) in the constraint model. As soon as the cardinality
of S.items is at least 2 the item Packaging is added to S.items. This is caused by
the connection through the boolean variables of the reified constraints.

% constraint (2): add extra packaging material
{ForAll Sol proc {$ S}

({FS.card S.items} >=: 2) =:
{FS.reified.include Packaging S.items}

end}

The constraint for coloring the bins also uses reified constraints and implements the
"→"–operator of (4) by the implication constraint FD.impl3.

% constraint (4): assign colors to bins
{ForAll Sol proc {$ B} {FD.impl

{FS.reified.include Fragile B.items}
(Red =: B.color) 1}

end}
end % BinPacking

The code for controlling search is omitted since it is not of interest here and an adequate
search strategy is assumed. Now the bin-packing solver is submitted to a search engine,
like the Oz Explorer (see Figure 3.6 in Section 3.3.1):

{ExploreOne {BinPacking [1#3 2#2 3#2 4#6 5#2 6#4 7#3 8#5] 10}}

3This is a reified constraint such that the last parameter 1 is required.

15.4 Correctness Debugging with the Constraint Investigator 173

This results in an immediately failed search tree. The Investigator is now demonstrated
in a prototypical debugging session.

The Implementation is not Faithful to the Constraint Model Invoking the Investi-
gator from the failed node switches the Investigator to the single propagator graph view
(see Figure 15.5). The node representing the failed propagator is colored red throughout
the session.

Figure 15.5: Single propagator view of the failed propagator FS.partition.

The single propagator graph view in Figure 15.5 shows the partition propagator with
its parameters connected via the lowerbound event. The parameters are set constraint
variables and are represented by S{{100}..{1#8 100}}#{2#9}4. This corresponds
to the basic constraint {100} ⊆ S ⊆ {1, . . . , 8, 100} ∧ 2 ≤ |S| ≤ 9. One can see that all
three parameters contain at least element 100. Hence, the partitioning propagator must
fail. This reveals an incorrectness but this is not necessarily the actual bug. A single
click on the propagator node highlights the line of source code where the partitioning
propagator is stated (Figure 15.6).

Figure 15.6: Associating the failed propagator to the source program.

4That all variables have the same name S does not mean that they are aliased. The name is de-
rived from the source code of constraint (1), i.e., {FS.partition {Map Sol fun {$ S} S.items
end} ...}.

174 Chapter 15: Correctness Debugging with the Constraint Investigator

The parameters concerned are the sets of items for each of the bins in the solution
Sol. Checking the program text suggests that only the implementation of the packaging
(3) adds to all item fields of Sol the element Packaging (which is 100). Verifying the
code for adding extra packaging material reveals the bug in the implementation: instead
of using different packaging material for each bin, the same material is used for all bins.
This is not the intention of the constraint model and hence an implementation bug. The
bug fix simply consists of using different packaging material items for each bin and
modifies the ForAll – loop5 to select for different bins different packaging material.

% packaging material for every bin
WeightedPackaging =
[(Packaging+1)#1 (Packaging+2)#1 (Packaging+3)#1]

...
{List.forAllInd Sol
proc {$ I S} % ‘I’ counts from 1 to length of ‘Sol’

% select different packaging material by the index I
({FS.card S.items} >=: 2) =:

{FS.reified.include 100+I S.items} end}

After fixing the implementation bug,

Sol = [bin(color:0 items:{1#3 5 101}#5)
bin(color:_{0#1} items:{4 7 102}#3)
bin(color:_{0#1} items:{6 8 103}#3)]

is obtained as solution and where not all variables are bound to a single value (observe
the color fields). The next section demonstrates how to track down the reason for this
problem.

Identification of Remaining Propagators A solution with unbound variables suggests
that there is a lack of propagation. The variable graph view shown in Figure 15.7 is
produced when starting the Investigator from the solution node of the Explorer.

Figure 15.7: Initial view.

5{List.forAllInd [X1. . .Xn] P} ≡ {P 1 X1} {P 2 X2}. . . {P n Xn}

15.4 Correctness Debugging with the Constraint Investigator 175

The variable Sol is not displayed because it is bound to the solution list and hence
no variable anymore. One can find remaining propagators starting from one of the vari-
able nodes. Assume one decides to switch to the variable graph view of all reachable
variables (Figure 15.8(a)), to get an overview over all variables left unbound. The menu
associated with an edge between two variable nodes (Figure 15.8(b)) offers to switch to
a single propagator graph view of a propagator being imposed upon two variables.

(a) Variable graph view of all reach-
able variables.

(b) Edge menu of the variable graph
view.

Figure 15.8: Variable graph view.

Since remaining propagators are to be found, it makes sense to switch to the offered
single variable graph view of a reified sum propagator (Figure 15.9).

Figure 15.9: Single propagator graph view.

A click on the propagator node immediately reveals the suspicious program text:
the assignment of the bin colors seems to be too weak whenever a fragile item is not
contained in a bin (implementation of (4)). The problem can be fixed by replacing the
implication by an equivalence (FD.equi). The correct (4) in the constraint model is
∀n : ifragile ∈ sn ↔ color(sn) = red. That means that the implementation was correct

176 Chapter 15: Correctness Debugging with the Constraint Investigator

but the constraint model had a flaw. After applying the fix the solver produces a proper
solution.

15.4.2 Approaches for Dealing with Realistic Applications

Realistic problems may have thousands of propagators and variables. It is impossible
and without any practical use to represent all at once. This section proposes techniques
for selecting problem-relevant fractions of propagators or variables. This scheme allows
for a user-controlled incremental exploration of the graphs which is essential for the
investigation of large problems.

A common approach of designing a constraint model is to decompose the problem
into subproblems and to decompose these subproblems until predefined propagators can
be used. Since procedures implement subproblems, it seems reasonable to structure
propagators, sub-procedures, and variables according to the procedures which stated
them. This requires the introduction of procedure nodes to the graph views. A procedure
node is depicted as circle.

Selection via the Tree of Execution Traces The tree representation of a constraint pro-
gram’s execution trace is used to select propagators and variables. A node represents a
procedure execution imposing propagators. By clicking on a node, a possible action is
to select the propagators created by the corresponding procedure invocation. Incremen-
tal expansion of the tree makes possible to handle large collections of propagators and
variables. Different selection schemes, e.g., all propagators stated by a procedure with
respectively without their sub-procedures, extend the functionality.

Collapsing and Expanding Propagator and Procedure Nodes A common technique
for handling large collections of data represented by graphs is to collapse and expand ap-
propriate subsets of nodes to single nodes. The propagator graph view is proposed to be
partitioned into subsets of nodes according to the procedures which created correspond-
ing propagators. That means a collapsed node represents a collection of propagators
and sub-procedures. This is very close to the model the programmer has in mind when
structuring the problem and hence, is very intuitive.

A procedure node represents a collection of propagator nodes and sub-procedure
nodes. It takes as its parameters the union of the parameters of all represented propaga-
tors and sub-procedures.

Figure 15.10 shows the expansion of the marked procedure node to a collection of
propagator nodes. Expansion can be undone by collapsing propagator and procedure
nodes to a single procedure node.

Filtering Propagators and Variables Another interesting feature is the option of dis-
playing only those propagators resp. variables which meet a criterion specified by the
user. For example, it might be interesting to limit the investigation to those propagators
that are connected to boolean variables when symptoms of a bug suggest that.

15.4 Correctness Debugging with the Constraint Investigator 177

proc {Hamilton}
hamil.oz:2

proc {Before}
hamil.oz:10

proc {After}
hamil.oz:16

proc {Before}
hamil.oz:10

proc {After}
hamil.oz:16

(a) Fully collapsed procedure graph, i.e., all propagator nodes are collapsed.

FD.reified.sumC
hamil.oz:18

FD.reified.sumC
hamil.oz:18

FD.sumC
hamil.oz:17

proc {Hamilton}
hamil.oz:2

proc {Before}
hamil.oz:10

proc {Before}
hamil.oz:10

proc {After}
hamil.oz:16

(b) Partially collapsed propagator graph, i.e., a procedure’s node is expanded to its propa-
gator nodes.

Figure 15.10: Transition of a graph view by expanding a procedure node.

15.4.3 Additional Features

This section discusses features of the Investigator not covered before but important for
effective use of the tool.

Navigating Through Graphs Navigation through the different graph views is done by
menus associated with nodes and edges of the respective views. Figure 15.11 shows pos-
sible transitions from one view to another one. A history mechanism is also available,
allowing to recall previous views by moving in the chain of views produced so far.

To further improve navigation and to keep track of a certain node in different views,
the Investigator is able to mark nodes in graph views which then remain marked through-
out all views. Additionally, the Investigator automatically marks nodes of variables with
which the session was initiated (Figure 15.7) and in case there is a failed propagator, the
node of this propagator (Figure 15.5).

Changing the Representation of Nodes The Investigator provides a plug-in mecha-
nism for changing the representation of variables and propagators. This enables the user
to produce a more obvious and intuitive representation. For example, a propagator for a

178 Chapter 15: Implementation

* N11{1#9}

* N12{1#9}

N13{1#9}

N21{1#9}

N22{1#9}

N23{1#9}

N31{1#9}

N32{1#9}

N33{1#9}

Sum{3#27}

Variable Graph View

Sum{3#27} N32{1#9} N22{1#9} * N12{1#9}

bounds

FD.sumC
opi.oz:54

Single Propagator Graph View

any

FD.sumC
opi.oz:54

FD.sumC
opi.oz:50

bounds

FD.distinct
opi.oz:58

val

* N12{1#9}

Single Variable Graph View

FD.sumC
opi.oz:54

FD.sumC
opi.oz:50

FD.distinct
opi.oz:58

FD.sumC
opi.oz:56

FD.sumC
opi.oz:55

FD.sumC
opi.oz:52

FD.sumC
opi.oz:57

FD.sumC
opi.oz:53

FD.sumC
opi.oz:51

Propagator Graph View

Figure 15.11: Navigation overview.

constraint in a scheduling application might be represented as Gantt-chart, reflecting its
role in the concrete application.

15.5 Implementation

The Investigator is implemented in Mozart Oz and uses the graph visualization system
daVinci [36]. The implementation consists of two parts: first, the reflection of variables
and propagators in the solver into Oz data structures, and second, the construction of the
graphs and the generation of the corresponding daVinci terms.

Reflection The reflection part uses {Constraint.reflectSpace Rs Vs Cs}
(see Section 14.2) which takes a list of variables Rs and returns a list denoting the set
of propagators Cs reachable from Rs and a list denoting the set of variables Vs occur-
ing as parameters in Cs. The elements of Vs are reflected variables and the elements of
Cs are reflected propagators. A reflected variable stores the name, the basic constraint,
the references to the propagators that are waiting for the variable’s basic constraint to
change, and the actual variable. A reflected propagator stores the propagator’s name and
parameters and a reference to the actual propagator.

The list Vs and Cs are translated into compact representations for the connections
between propagators and variables using sets of integers. Each propagator and variable is
assigned a unique integer. A reflected propagator stores its parameters as an integer set,
also a reflected variable stores the propagators for which it is a parameter as an integer
set. The resulting data structures make explicit the connections between propagators
and variables, i.e., which are variables acting as parameters of propagators and which
propagators are waiting for a variable’s basic constraint to change.

Graph Generation The edges and nodes of the individual graph views are computed by

15.6 Related Work and Discussion 179

the set operations described in Section 15.3 and are further translated to daVinci terms.
The daVinci terms are augmented by menus to allow for comfortable user interaction.

The complexity of the graph-generation algorithm is quadratic in the worst case and
depends in practice on the degree of connectivity of the constraint network, i.e., if the
propagators can be stated in reasonable time then the corresponding graph can be com-
puted in reasonable time too.

Collapsing and expanding of procedures and propagators required extra data struc-
tures for procedures. These are an extension of the data structures used for propagators
and contain additionally references to sub-procedures and propagators stated by the re-
spective procedure. Due to the set-based implementation, the changes can be factorized
out nicely.

15.6 Related Work and Discussion

The tools discussed in this section focus on improving performance. Since the presented
approach is orthogonal, it can be used to supplement existing tools.

The GRACE constraint debugger by Meier [91] supplements the Prolog-based con-
straint programming system ECLiPSe [76] and is intended to support performance de-
bugging of finite domain constraint programming. The constraint program has to be
appropriately instrumented to be run under GRACE. The debugging model of GRACE is
based upon the Prolog-box-model. It is able to follow individual propagation steps in the
trace and to inspect the backtrack stack of finite domain variables. Furthermore, GRACE

is highly configurable by assigning user-written code to each propagation step.
The Oz Explorer is a graphical search engine which visualizes the search tree as

search proceeds. It allows the user to control search, e.g. one can interrupt search and
can resume search from a branch different from the branch explored last. The Explorer
is extendable by plug-ins, to provide different views of nodes in the search tree. The
Explorer is particularly useful for optimizing search heuristics according to the topology
of the search tree. In conjunction with the Investigator, debugging performance and
correctness issues of constraint programs is actively supported.

The search tree debugger of CHIP [134, 40] is largely influenced by the Oz Explorer.
Its focus is performance debugging. It provides different types of views, mostly in a com-
pact matrix-like fashion, to provide the user with more detailed information about search
and constraint propagation. A nice feature is to analyze the evolution of constraints
and variables along a search path. This is certainly most valuable for optimizing search
heuristics.

Section 15.4.2 points out the difficulties of presenting a large number of propagators
to the user no matter what kind of representation is used. The idea to represent a set
of propagators by a single propagator is quite natural. Goulard and Benhamou follow
this idea too and propose so-called S-boxes [56]. An S-box represents a set of individ-
ual propagators and can be interactively defined during a debugger session. An S-box
appears like a single propagator, i.e., it has a number of parameters and implements a
certain constraint. An S-box can create another S-box and so on leading to a hierarchy

180 Chapter 15: Related Work and Discussion

of S-boxes. This hierarchy is similar to the tree of execution traces but the way an S-box
can be defined is more flexible. Thus, S-boxes are an ideal supplement to the selection
of propagators by a tree of execution traces. The Investigator can benefit from using
S-boxes as another alternative way to handle large numbers of propagators.

Chapter 16

Conclusion

This chapter summarizes the contributions presented in this dissertation (Section 16.1)
and proposes future work extending and continuing the presented research (Sec-
tion 16.2).

16.1 Contributions

Constraint Propagation Engines

Model An architecture for propagator-based constraint solver including an interface
for separating propagation services and domain solver is developed. The interface sep-
arates filter algorithms from propagators to make host solver independent filter design
and implementation possible.

Integration and Implementation Propagation services for the Mozart virtual machine
are designed and implemented. The implementation is completely orthogonal to the
implementation of the rest of the virtual machine. A high-level C++-constraint pro-
gramming interface CPI for implementing domain solvers for Mozart is designed and
implemented. The interface supports host system-independent implementation of filters.

Combining the propagation services with a finite domain solver implemented by the
CPI results in a finite domain propagation engine being more efficient w.r.t. to plain
propagation performance than today’s best commercial systems. The implemented prop-
agation engines meet the standards of production-quality systems and are successfully
used in industrial applications.

Performance Evaluation The propagation performance of the propagation engines of
various solvers with Mozart by using a configurable inconsistent constraint is compared
and evaluated. Further, the impact of various interfaces on the propagation performance
of Mozart is analyzed in detail.

182 Chapter 16: Future Work

Finite Integer Set Constraints

Filter Generation A scheme for generating filter algorithms for finite integer set con-
straints performing bounds and cardinality reasoning is developed and implemented.

A Finite Integer Set Solver for Mozart An expressive, efficient, production-quality
finite integer set constraint domain solver for Mozart is designed and implemented. Set
constraints taking the integer domain into account are introduced. This leads to new
techniques for breaking symmetries. The new functionality opens finite set constraint
programming for computer linguistic applications apart from combinatorial optimization
problems.

First-class Constraints

Constraints as First-class Citizens Constraints are introduced as first-class citizens
to constraint programming. Novel constraint programming techniques, as early fail-
ure detection, constraint optimization, and explicit garbage collection are developed, to
demonstrate the benefits of using first-class constraints. First-class constraints are proto-
typically integrated in Mozart as a natural and orthogonal extension of the architecture
presented in Part I.

Debugging Propagator-based Solvers A novel debugging scheme based on graph
views for propagator-based constraint solvers is developed and a usable prototype of
an interactive debugging tool is implemented. This tool is based on graph views and
is implemented using first-class constraints. The debugging tool is not restricted to any
constraint domain, features intuitive data presentation and user interaction. Further, dif-
ferent approaches for handling constraint engines with a large number of propagators
and constraint variables are proposed.

16.2 Future Work

Scheduling Strategies for Propagators The strategies for scheduling propagators are
not yet very well investigated. Laburthe proposes in [83] a scheduling heuristics which
assigns propagators priorities according to their computational complexity and the events
they are waiting for. Mozart provides more restricted control by two sets of runnable
propagators. Other schemes are thinkable and open for investigation and analysis.

Libraries The presented implementation and interface models for propagation engines
including their integration into Mozart as described in Part I have proved to be very
successful. Using the developed concepts to build a constraint library is a demanding
task. Such a library is free to drop obstacles as variable equality represented in the
constraint store to further improve performance and to simplify the implementation. The
development of the constraint library FIGARO [64] is an instance of such a project.

Formal Justification of the Filter Generation Scheme Propagators using filters gen-
erated by the scheme presented in Chapter 12 provide evidence that the scheme is useful.

16.2 Future Work 183

A formal justification of the presented scheme would guarantee provable properties and
is still open.

Filter Generation for Generic Finite Set Constraints The scheme to generate filter
algorithms for finite set operators is not able to generate filters for generic set operators
where the number of parameters is not fixed. Extending the presented scheme in this
direction would be extremely useful.

Filters Generation for Other Constraint Domains It would be interesting to investi-
gate the application of the filter generation scheme to other constraint domains than finite
integer sets. For example, the generation of filter algorithms for arithmetic constraints
over a numerical domain (e.g., finite domains ad reals) seems promising.

First-class Constraints Part III promotes constraints to first-class citizens and devel-
ops novel programming techniques on top of them. I am convinced that there are more
promising techniques and application areas to be explored. For example, taking advan-
tage of first-class constraints in search strategies appears to be promising (see [93, 94] for
applications in proof-planning). The work of Hong on RISC-CLP(Real) [68] and RISC-
CLP(CF) [69] opens a promising field for combining symbolic and domain reasoning
which seems to be suitable for being tackled with first-class constraints.

Hybrid Solvers A hybrid solver consists of various sub-solver with different strength-
ens and weaknesses. It is desirable to automatically submit constraints to the most ap-
propriate solver or to combine solvers depending on the currently present constraints in
a solver. First-class constraints provide the right expressiveness to build such solvers and
open an existing direction of research.

Constraint Debugging The combination of the constraint debugging scheme based on
graph views presented in Chapter 15 with the concept of S-boxes [56] is worth investigat-
ing to improve the capabilities to handle large applications. Further, automatic analysis
of erroneous solvers (à la the computation of smallest inconsistent sets with first-class
constraints in Section 14.3.4) might lead to novel debugging schemes and tools.

184 Chapter 16: Future Work

Appendix A

Performance Figures Summary

m×n Mozart Oz 1.2.0 ECLi PSe 5.2 SICSTUS 3.8.5 GNU PROLOG 1.2.1 ILOG SOLVER 5.0
1×1 (2.47%) 8.35 (0.07%) 6.67 (0.78%) 1.61 (0.21%) 2.17 (0.08%)
1×10 (2.60%) 8.66 (0.09%) 2.81 (0.15%) 2.32 -1 (0.22%) 2.15 (0.03%)
1×100 (2.85%) 8.87 (0.18%) 2.38 (0.20%) 3.67 -1 (0.48%) 2.14 (3.26%)
1×1000 (2.24%) 9.45 (0.48%) 2.72 (2.32%) 2.95 -1 (10.27%) 2.23 (1.80%)
1×10000 (1.35%) 35.53 (1.17%) 11.92 (1.78%) 1.33 (0.81%) 4.90 (0.95%)
1×100000 (0.77%) – – core dump 244.27 (0.88%)

10×1 (2.37%) – – 2.94 -1 (0.34%) 1.64 (0.11%)
10×10 (2.77%) – – 3.70 -1 (0.53%) 2.05 (0.46%)
10×100 (1.42%) – – 2.72 -1 (11.51%) 2.47 (3.03%)
10×1000 (2.55%) – – 1.25 -1 (0.40%) 2.83 (0.71%)
10×10000 (1.16%) – – core dump 26.57 (1.32%)

100×1 (3.26%) – – 3.31 -1 (7.72%) 1.80 (5.33%)
100×10 (2.93%) – – 2.55 -1 (9.38%) 2.72 (4.27%)
100×100 (1.65%) – – 1.19 -1 (0.52%) 3.08 (0.76%)
100×1000 (0.50%) – – core dump 4.89 (0.15%)

1000×1 (3.33%) – – 1.55 -1 (4.50%) 3.00 (1.93%)
1000×10 (2.06%) – – 1.11 -1 (0.74%) 3.96 (1.18%)
1000×100 (0.62%) – – core dump 4.61 (0.31%)

10000×1 (1.45%) – – 1.06 -1 (0.41%) 2.99 (0.52%)
10000×10 (1.84%) – – core dump 4.16 (0.50%)

100000×1 (2.09%) – – core dump 2.94 (0.58%)

Table A.1: This table contains the speedup figures and the corresponding coeffi-
cients of variation for all benchmarked systems. The row for Mozart
Oz 1.2.0 contains only the coefficients of variation since the speedup
is of course always 1. An entry ’–’ means the benchmark was not done
due to too significant variation of the measured results. An entry ’core
dump’ means that the program terminated by dumping a core file, i.e.,
the program crashed.

186 Appendix A: Performance Figures Summary

Bibliography

[1] Emile Aarts and Jan Karel Lenstra. Local Search in Combinatorial Optimization.
John Wiley, 1997.

[2] Abderrahamane Aggoun and Nicolas Beldiceanu. Time Stamps Techniques for
the Trailed Data in Constraint Logic Programming Systems. In S. Bourgault and
M. Dincbas, editors, Actes du Séminaire 1990 de programmation en Logique,
pages 487–509, Trégastel, France, May 1990. CNET, Lannion, France.

[3] Hassan Aït-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. Logic
Programming Series. The MIT Press, Cambridge, MA, USA, 1991.

[4] Yasuhiro Ajiro and Kazunori Ueda. Kima – an automated error correction
system for concurrent logic programs. In Mireille Ducassé, editor, Proceed-
ings of the Fourth International Workshop on Automated Debugging (AADE-
BUG 2000), August 2000. Available at http://www.irisa.fr/lande/
ducasse/aadebug2000/proceedings.html.

[5] Yasuhiro Ajiro, Kazunori Ueda, and Kenta Cho. Error-correcting source code.
In Michael Maher and Jean-François Puget, editors, Proceedings of the Forth In-
ternational Conference on Principles and Practice of Constraint Programming,
volume 1520 of Lecture Notes in Computer Science, pages 40–54, Pisa, Italy,
October 1998. Springer-Verlag.

[6] D. Applegate and W. Cook. A computational study of the job-shop schedul-
ing problem. Operations Research Society of America, Journal on Computing,
3(2):149–156, 1991.

[7] Krzysztof R. Apt. The role of commutativity in constraint propagation algorithms.
ACM Transactions on Programming Languages and Systems, 22(6):1002–1036,
November 2000.

[8] Francisco Azevedo and Pedro Barahona. Modelling digital circuits problems with
set constraints. In John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Kerber,
Kung-Kiu Lau, Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and
Peter J. Stuckey, editors, Proceedings of the First International Conference on
Computational Logic – CL2000, volume 1861 of Lecture Notes in Artificial Intel-
ligence, pages 414–428, London, UK, July 2000. Springer Verlag.

188 Bibliography

[9] C. Beeri, S. Nagvi, O. Shmueli, and S. Tsur. Set constructors in a logic database
language. Journal of Logic Programming, 10(3):181–232, 1991.

[10] Nicolas Beldiceanu. An example of introduction of global constraints in CHIP:
Application to block theory problems. Technical Report TR-LP-49, ECRC, Mu-
nich, Germany, May 1990.

[11] Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in
CHIP. Journal of Mathematical and Computer Modelling, 20(12):97–123, 1994.

[12] Frédéric Benhamou and William J. Older. Applying interval arithmetic to real, in-
teger and boolean constraints. Journal of Logic Programming, 32(1):1–24, 1997.

[13] Henri Beringer and Bruno de Backer. Combinatorial problem solving in constraint
logic programming with cooperating solvers. In C. Beierle and L. Plümer, editors,
Logic programming: Formal methods and practical applications, pages 245–272.
Elsevier, 1995.

[14] Christian Bessière and Marie-Odile Cordier. Arc-consistency and arc-consistency
again. In AAAI-93: Proceedings 11th National Conference on Artificial Intelli-
gence, Washington, DC, 1993.

[15] Christian Bessière, Eugene Freuder, and Jean-Charles Régin. Using inference to
reduce arc consistency computation. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 592–598, Montréal, Québec, Canada,
1995.

[16] Stefano Bistarelli, Helene Fargier, Ugo Montanari, Francesca Rossi, Thomas
Schiex, and Gerard Verfaillie. Semiring-based csps and valued csps: Frameworks,
properties, and comparison. Constraints, 4(3), September 1999.

[17] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Constraint solving over
semirings. In Chris S. Mellish, editor, Proceedings of the International Joint
Conference on Artificial Intelligence, pages 232–238, Montréal, Québec, Canada,
August 1995. Morgan Kaufmann Publishers, San Mateo, CA.

[18] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based con-
straint solving and optimization. Journal of the ACM, 44(2):201–236, March
1997.

[19] P. Bruscoli, A. Dovier, E. Pontelli, and G. Rossi. Compiling intensional sets in
CLP. In Proceedings of the International Conference on Logic Programming,
pages 647–661. MIT Press, January 1994.

[20] Björn Carlson. Compiling and Executing Finite Domain Constraints. Disserta-
tion, Computing Science Department, Uppsala University, and SICS – Swedish
Institute of Computer Science, Box 311 S-751 05 Uppsala, Sweden, 1995. Upp-
sala Theses in Computing Science 21, and SICS Dissertation Series 18.

Bibliography 189

[21] Björn Carlson and Mats Carlsson. Compiling and executing disjunctions of finite
domain constraints. In ICLP’95, International Conference on Logic Program-
ming, MIT Press Series in Logic Programming, Kanagawa, Japan, 1995. The MIT
Press.

[22] Björn Carlson, Mats Carlsson, and Sverker Janson. The implementation of
AKL(FD). In Proceedings of the International Logic Programming Symposium,
pages 227–241, Portland, OR, USA, 1995. The MIT Press, Cambridge.

[23] Mats Carlsson. Personal communication, February 2001.

[24] Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite do-
main constraint solver. In Proceedings of the International Symposium on Pro-
gramming Language Implementation and Logic Programming, volume 1292 of
Lecture Notes in Computer Science, pages 191–206, Southampton, UK, 1997.
Springer.

[25] Manuel Carro and Manuel Hermenegildo. Some design issues in the visualiza-
tion of constraint logic program execution. In AGP 1998, Joint Conference on
Declarative Programming, Corunna, Spain, July 1998.

[26] Yves Caseau, François-Xavier Josset, and François Laburthe. CLAIRE: Com-
bining sets, search and rules to better express algorithms. In Danny De Schreye,
editor, Proceedings of the 1999 International Conference on Logic Programming,
pages 245–259, Las Cruces, NM, USA, November 1999. The MIT Press.

[27] Yves Caseau and François Laburthe. Improved CLP scheduling with task in-
tervals. In Proceedings of the International Conference on Logic Programming,
pages 369–383, 1994.

[28] Yves Caseau and François Laburthe. Cumulative scheduling with task intervals.
In Joint International Conference and Symposium on Logic Programming, 1996.

[29] Yves Caseau and François Laburthe. Solving various weighted matching prob-
lems with constraints. In Gert Smolka, editor, Principles and Practice of Con-
straint Programming—CP97, Proceedings of the Third International Conference,
Lecture Notes in Computer Science 1330, pages 17–31, Schloss Hagenberg, Linz,
Austria, October/November 1997. Springer-Verlag, Berlin.

[30] Kenta Cho and Kazunori Ueda. Diagnosing non-well-moded concurrent logic
programs. In Michael Maher, editor, Proceedings of the Joint International Con-
ference and Symposium on Logic Programming, pages 251–229, Bonn, Germany,
1996. The MIT Press, Cambridge.

[31] Vašek Chvátal. Linear Programming. W.H. Freeman and Company, 41 Madison
Avenue, New York 10010, 1983.

190 Bibliography

[32] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(FD). Journal
of Logic Programming, 27(3):185–226, June 1996.

[33] Alain Colmerauer. Equations and inequations on finite and infinite trees. In Pro-
ceedings of the 2nd International Conference on Fifth Generation Computer Sys-
tems, pages 85–99, 1984.

[34] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge;London, 1990.

[35] George B. Dantzig. Linear Programming and Extensions. Princeton Landmarks
in Mathematics and Physics. Princeton University Press, Princeton, NJ, 1963.

[36] The graph visualization system daVinci. http://www.informatik.
uni-bremen.de/~davinci/, 2000.

[37] Pierre Deransart, Manuel V. Hermenegildo, and Jan Małuszyński, editors. Analy-
sis and Visualization Tools for Constraint Programming: Constraint Debugging,
volume 1870 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany, 2000.

[38] Daniel Diaz. GNU Prolog 1.2.1 – A Native Prolog Compiler with Constraint
Solving over Finite Domains. http://www.gnu.org/software/prolog,
July 2000.

[39] Daniel Diaz and Philippe Codognet. The GNU prolog systems and its implemen-
tation. In ACM Symposium on Applied Computing, Como, Italy, 2000. Documen-
tation and system available at http://www.gnu.org/software/prolog.

[40] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The constraint logic programming language CHIP. In Proceedings of the In-
ternational Conference on Fifth Generation Computer Systems FGCS-88, pages
693–702, Tokyo, Japan, December 1988. Institute for New Generation Computer
Technology (ICOT),Tokyo, Japan.

[41] DiSCiPl. Debugging systems for constraint programming. http://discipl.
inria.fr/, 1999.

[42] Agostino Dovier, Enrico Pontelli, Carla Piazza, and Gianfranco Rossi. Sets and
constraint logic programming. ACM Transactions on Programming Languages
and Systems, 22(5):861 – 931, September 2000.

[43] Agostino Dovier and Gianfranco Rossi. Embedding Extensional Finite Sets in
CLP. In Proceedings of the International Logic Programming Symposium, pages
540–556, Vancouver, Canada, 1993.

[44] Denys Duchier. Lexicalized syntax and topology for non-projective dependency
grammar. Submitted, April 2001. Available at http://www.ps.uni-sb.de/
Papers/abstracts/duchier-fgmol2001.html.

Bibliography 191

[45] Denys Duchier and Claire Gardent. A constraint-based treatment of descriptions.
In H.C. Bunt and E.G.C. Thijsse, editors, Third International Workshop on Com-
putational Semantics (IWCS-3), pages 71–85, Tilburg, NL, January 1999.

[46] Denys Duchier, Leif Kornstaedt, Tobias Müller, Christian Schulte, and Pe-
ter Van Roy. System Modules. The Mozart Consortium – Mozart Oz 1.2.0,
May 2001. Available at http://www.mozart-oz.org/documentation/
system/index.html.

[47] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment.
The Mozart Consortium – Mozart Oz 1.2.0, May 2001. Available at http://
www.mozart-oz.org/documentation/base/index.html.

[48] Denys Duchier and Joachim Niehren. Dominance constraints with set opera-
tors. In John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Kerber, Kung-
Kiu Lau, Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Proceedings of the First International Conference on Computa-
tional Logic (CL2000), volume 1861 of LNCS, pages 326–341, London, UK, July
2000. Springer.

[49] Jeff Foster. CLP(SC): Implementation and efficiency considerations. In Proceed-
ings of the Set-Constraint Workshop at the 1996 CognitivePsychology, Boston,
Massachusetts, 1996.

[50] M. Fröhlich. Inkrementelles Graphlayout im Visualisierungssystem daVinci. PhD
thesis, Universität Bremen, Fachbreich 3 – Mathematik und Informatik, Novem-
ber 1997. In German.

[51] Thom Frühwirth. Theory and practice of constraint handling rules. Special Is-
sue on Constraint Logic Programming, Journal of Logic Programming, 37(1–3),
October 1998.

[52] Thom Frühwirth and Slim Abdennadher. Constraint–Programmierung: Grund-
lagen und Anwendungen. Springer-Verlag, Berlin, Germany, 1997.

[53] Yan Georget and Philippe Codognet. Encoding global constraints in semiring-
based constraint solving. In Proceedings of the IEEE International Conference
on Tools with Artificial Intelligence (ICTAI’98), Taipeh, Taiwan, October 1998.
IEEE Press.

[54] Carmen Gervet. Set Intervals in Constraint-Logic Programming: Definition
and Implementation of a Language. PhD thesis, Université de France-Compté,
September 1995. European Thesis.

[55] Carmen Gervet. Interval propagation to reason about sets: Definition and imple-
mentation of a practical language. Constraints, 1(3):191–244, 1997.

192 Bibliography

[56] Frédéric Goualard and Frédéric Benhamou. Debugging constraint programs by
store inspection. In Deransart et al. [37], pages 273–297.

[57] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algo-
rithm for the linear ordering problem. Operations Research Society of America,
Operations Research, 32(6):1195–1220, 1984.

[58] J. Gu. Efficient local search for very large-scale satisifiability problems. SIGART
Bulletin, 3(1):8–12, 1992.

[59] David R. Hanson. C Interfaces and Implementations – Techniques for Creating
Reusable Software. Professional Computing Series. Addison-Wesley Publishing
Company, 1996.

[60] Seif Haridi and Nils Franzén. Tutorial of Oz. The Mozart Consortium –
Mozart Oz 1.1.1, February 2000. Available at http://www.mozart-oz.org/
documentation/tutorial/index.html.

[61] Warwick Harvey and Peter J. Stuckey. Constraint representation for propagation.
In M. Maher and J.-F. Puget, editors, Proceedings of the Fourth International Con-
ference on Principles and Practice of Constraint Programming (CP98), Lecture
Notes in Computer Science, pages 235–249, Pisa, Italy, October 1998. Springer-
Verlag.

[62] Nevin Heintze, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. Meta-
programming in CLP(R). Journal of Logic Programming, 33(3):221–259, De-
cember 1997.

[63] Martin Henz. Objects for Concurrent Constraint Programming, volume 426 of
International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, MA, USA, October 1997.

[64] Martin Henz, Tobias Müller, and Ka Boon Ng. Figaro: Yet another constraint
programming library. In I. de Castro Dutra, V. Santos Costa, G. Gupta, E. Pontelli,
M. Carro, and P. Kacsuk, editors, Proceedings of the Workshop on Parallelism
and Implementation Technology for Constraint Logic Programming, pages 86–
96, New Mexico State University, Las Cruces, New Mexico, December 1999.

[65] Karla L. Hoffman and Manfred Padberg. Solving airline crew scheduling prob-
lems by branch-and-cut. Management Science, 39(6):657 – 682, 1993.

[66] Karla L. Hoffman, Manfred Padberg, and Russell A. Rushmeier. Recent advances
in exact optimization of airline scheduling problems, July 1995.

[67] Christian Holzbaur. Specification of Constraint Based Inference Mechanisms
through Extended Unification. PhD thesis, Technisch-Naturwissenschaftliche
Fakultät der Technischen Universität Wien, October 1990.

Bibliography 193

[68] Hoon Hong. RISC-CLP(Real): Constraint logic programming over real numbers.
In Frédéric Benhamou and Alain Colmerauer, editors, Constraint Logic Program-
ming: Selected Research. MIT Press, 1993.

[69] Hoon Hong. RISC-CLP(CF): Constraint logic programming over functions. In
Logic Programming and Automated Reasoning (LPAR’94), July 1994.

[70] ILOG S.A., http://www.cplex.com/. Using the CPLEX Callable Library
and Base System, Version 5.0, 1997.

[71] ILOG S.A., http://www.ilog.com/. ILOG Concert Technology 1.0, User’s
Manual, August 2000.

[72] ILOG S.A., http://www.ilog.com/. ILOG Scheduler 5.0, User’s Manual,
July 2000.

[73] ILOG S.A., http://www.ilog.com/. ILOG Solver 5.0, User’s Manual, Au-
gust 2000.

[74] Intelligent Systems Laboratory. SICStus Prolog User’s Manual. SICS Research
Report, Swedish Institute of Computer Science, http://www.sics.se/isl/
sicstus.html, 2000.

[75] International Computers Limited and IC-Parc. ECLi PSe, Library Manual, Release
5.0, November 2000.

[76] International Computers Limited and IC-Parc. ECLi PSe, User Manual, Release
5.0, November 2000.

[77] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Pro-
ceedings of the 14th ACM Symposium on Principles of Programming Languages,
pages 111–119, Munich, Germany, January 1987. ACM.

[78] Joxan Jaffar and Michael M. Maher. Constraint logic programming: A survey.
The Journal of Logic Programming, 19 & 20:503–582, May 1994. Special Issue:
Ten Years of Logic Programming.

[79] Raj Jain. The Art of Computer Systems Performance Analysis – Techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley &
Sons, Inc., 1991.

[80] Alexander Koller and Joachim Niehren. Constraint programming in computa-
tional linguistics. In D. Barker-Plummer, D. Beaver, J. van Benthem, and P. Scotto
di Luzio, editors, Proceedings of the eight CSLI Workshop on Logic Language and
Computation. CSLI Press, 2000.

194 Bibliography

[81] Dexter Kozen. Set constraints and logic programming. In Jean-Pierre Jouannaud,
editor, Proceedings of the 1st International Conference on Constraints in Com-
putational Logics, volume 845 of Lecture Notes in Computer Science, München,
1994. Springer Verlag.

[82] Gabriel Kuper. Logic Programming with Sets. Academic Press, New York, N.Y.,
1990.

[83] François Laburthe. CHOCO: implementing a CP kernel. In Nicolas Beldiceanu,
Warwick Harvey, Martin Henz, François Laburthe, Eric Monfroy, Tobias Müller,
Laurent Perron, and Christian Schulte, editors, Proceedings of the Workshop on
Techniques for Implementing Constraint Programming Systems - TRICS, pages
71–85, Singapore, September 2000.

[84] B. Legeard and E. Legros. Short Overview of the CLPS System. In J. Małuszyński
and M. Wirsing, editors, Proceedings of the International Symposium on Pro-
gramming Language Implementation and Logic Programming, volume 528 of
Lecture Notes in Computer Science, pages 431–433, Passau, Germany, August
1991. Springer Verlag.

[85] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

[86] Suresh Manandhar. An attributive logic of set descriptions and set operations. In
Proceedings of the Annual Meeting of the Association of Computational Linguis-
tics, 1994.

[87] Kim Marriott and Peter J. Stuckey. Programming with Constraints. An Introduc-
tion. The MIT Press, Cambridge, MA, USA, 1998.

[88] Michael Mehl. The Oz Virtual Machine - Records, Transients, and Deep Guards.
PhD thesis, Technische Fakultät der Universität des Saarlandes, 1999.

[89] Michael Mehl, Ralf Scheidhauer, and Christian Schulte. An Abstract Machine for
Oz. In M. Hermenegildo and S. D. Swierstra, editors, Programming Languages:
Implementations, Logics and Programs, 7th International Symposium, PLILP’95,
volume 982 of Lecture Notes in Computer Science, pages 151–168, Utrecht, The
Netherlands, 20–22 September 1995. Springer-Verlag, Berlin-Heidelberg.

[90] Kurt Mehlhorn and Sven Thiel. Faster algorithms for bound-consistency of the
sortedness and the alldifferent constraint. In Rina Dechter, editor, Proceedings
of the Sixth International Conference on Principles and Practice of Constraint
Programming – CP 2000, volume 1984 of Lecture Notes in Computer Science,
pages 306–319, Singapore, September 2000. Springer Verlag.

[91] Micha Meier. Debugging constraint programs. In Ugo Montanari and Francesca
Rossi, editors, Proceedings of the First International Conference on Principles

Bibliography 195

and Practice of Constraint Programming, volume 976 of Lecture Notes in Com-
puter Science, pages 204–221, Cassis, France, September 1995. Springer Verlag.

[92] Micha Meier and Pascal Brisset. Open architecture for CLP. Technical Re-
port ECRC-95-10, European Computer-Industry Research Centre, European
Computer-Industry Research Center GmbH, Arabellastrasse 17, D-81925 Mu-
nich, 1995.

[93] Erica Melis, Jürgen Zimmer, and Tobias Müller. Extensions of constraint solving
for proof planning. In Werner Horn, editor, Proceedings of the 14th European
Conference on Artificial Intelligence, pages 229–233, Berlin, August 2000. IOS
Press.

[94] Erica Melis, Jürgen Zimmer, and Tobias Müller. Integrating constraint solving
into proof planning. In Hélène Kirchner and Christophe Ringeissen, editors, Fron-
tiers of Combining Systems – Third International Workshop, FroCos 2000, vol-
ume 1794 of Lecture Notes in Artificial Intelligence, pages 32–46, Nancy, France,
March 2000. Springer Verlag.

[95] Ugo Montanari. Networks of constraints: fundamental properties and application
to picture processing. Information Sciences, 7:95–132, 1974.

[96] Ugo Montanari and Francesca Rossi. True concurrency in concurrent constraint
programming. In Vijay Saraswat and Kazunori Ueda, editors, Proceedings of
the 1991 International Symposium on Logic Programming, pages 694–713, San
Diego, USA, June 1991. The MIT Press.

[97] Johan Montelius. Exploiting Fine-grain Parallelism in Concurrent Constraint
Languages. PhD thesis, SICS Swedish Institute of Computer Science, SICS Box
1263, S-164 28 Kista, Sweden, April 1997. SICS Dissertation Series 25.

[98] David S. Moore and George P. McCabe. Introduction to the Practice of Statistics.
W. H. Freeman and Company, 1999.

[99] Mozart Consortium. The Mozart Programming System 1.2.0. Documentation and
system available from http://www.mozart-oz.org, Programming Systems
Lab, Saarbrücken, Swedish Institute of Computer Science, Stockholm, and Uni-
versité catholique de Louvain, February 2001.

[100] Tobias Müller. Solving set partitioning problems with constraint programming.
In Proceedings of the Sixth International Conference on the Practical Application
of Prolog and the Forth International Conference on the Practical Application of
Constraint Technology – PAPPACT98, pages 313–332, London, UK, March 1998.
The Practical Application Company Ltd.

[101] Tobias Müller. Practical investigation of constraints with graph views. In Rina
Dechter, editor, Proceedings of the Sixth International Conference on Principles

196 Bibliography

and Practice of Constraint Programming – CP 2000, volume 1984 of Lecture
Notes in Computer Science, pages 320–336, Singapore, September 2000. Springer
Verlag.

[102] Tobias Müller. Promoting constraints to first-class status. In John Lloyd, Veron-
ica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi,
Luís Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, Proceedings
of the First International Conference on Computational Logic – CL2000, volume
1861 of Lecture Notes in Artificial Intelligence, pages 429–447, London, UK, July
2000. Springer Verlag.

[103] Tobias Müller. The Mozart Constraint Extensions Reference. The Mozart Con-
sortium – Mozart Oz 1.2.0, May 2001. Available at http://www.mozart-oz.
org/documentation/cpiref/index.html.

[104] Tobias Müller. The Mozart Constraint Extensions Tutorial. The Mozart Consor-
tium – Mozart Oz 1.2.0, May 2001. Available at http://www.mozart-oz.
org/documentation/cpitut/index.html.

[105] Tobias Müller. Supplementary material to the thesis Constraint Propagation
in Mozart, 2001. Available at http://www.ps.uni-sb.de/~tmueller/
thesis/.

[106] Tobias Müller and Martin Müller. Finite set constraints in Oz. In François Bry,
Burkhard Freitag, and Dietmar Seipel, editors, 13. Workshop Logische Program-
mierung, pages 104–115, Technische Universität München, 17–19 September
1997.

[107] Tobias Müller and Jörg Würtz. Extending a concurrent constraint language by
propagators. In Jan Małuszyński, editor, Proceedings of the International Logic
Programming Symposium, pages 149–163, Long Island, NY, USA, 1997. The
MIT Press, Cambridge.

[108] Tobias Müller and Jörg Würtz. Embedding propagators in a concurrent constraint
language. The Journal of Functional and Logic Programming, 1999(Special Is-
sue 1):Article 8, April 1999. Published on the Internet: http://mitpress.
mit.edu/JFLP/, ISSN 1080–5230, MIT Press Journals, Five Cambridge Cen-
ter, Cambridge, USA.

[109] Robert B. Murray. C++ Strategies and Tactics. Professional Computing Series.
Addison-Wesley Publishing Company, 1993.

[110] George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial opti-
mization. John Wiley and Sons, 1988.

[111] Ka Boon Ng, Chiu Wo Choi, Martin Henz, and Tobias Müller. GIFT: a generic in-
terface for reusing filtering algorithms. In Nicolas Beldiceanu, Warwick Harvey,

Bibliography 197

Martin Henz, François Laburthe, Eric Monfroy, Tobias Müller, Laurent Perron,
and Christian Schulte, editors, Proceedings of the Workshop on Techniques for
Implementing Constraint Programming Systems - TRICS, pages 86–100, Singa-
pore, September 2000.

[112] William J. Older and Frédéric Benhamou. Programming in CLP(BNR). In Posi-
tion Papers for the First Workshop on Principles and Practice of Constraint Pro-
gramming, pages 239–249, Bell Northern Research, Computing Research Labo-
ratory, P.O. Box 3511, Station C KIY 4H7 Ottawa, Ontario, Canada, April 1993.
Reference materials for workshop participants only, Organized by Brown Univer-
sity.

[113] Leszek Pacholski and Andreas Podelski. Set constraints: A pearl in research
on constraints. In Gert Smolka, editor, Principles and Practice of Constraint
Programming—CP97, Proceedings of the Third International Conference, vol-
ume 1330 of Lecture Notes in Computer Science, pages 549–561. Springer Verlag,
1997.

[114] Jean-François Puget. PECOS: A high level constraint programming language. In
Proceedings of the First Singapore International Conference on Intelligent Sys-
tems (SPICIS), pages 137–142, Singapore, September/October 1992.

[115] Jean-François Puget. Finite Set Intervals. In Proceedings Workshop on Set Con-
straints, held in Conjunction with CP’96, Boston, Massachusetts, 1996.

[116] Jean-François Puget and Michel Leconte. Beyond the glass box: Constraints as
objects. In John Lloyd, editor, Logic Programming – Proceedings of the 1995
International Symposium, pages 513–527, Portland, OR, USA, December 1995.
The MIT Press, Cambridge.

[117] Jean-François Puget. A C++ implementation of CLP. In Proceedings of the Sec-
ond Singapore International Conference on Intelligent Systems (SPICIS), pages
256–261, Singapore, November 1994.

[118] Jean-François Puget. A fast algorithm for the bound consistency of alldiff con-
straints. In Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI-98), pages 359–366, Madison, WI, USA, July 1998. AAAI Press/The MIT
Press.

[119] Jean-Charles Régin. Personal communication, April 2001.

[120] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pages
362–367, Seattle, WA, USA, 1994. AAAI Press.

[121] Robert Rodošek and Mark Wallace. A generic model and hybrid algorithm for
hoist scheduling problems. In M. Maher and J.-F. Puget, editors, Proceedings

198 Bibliography

of the Fourth International Conference on Principles and Practice of Constraint
Programming (CP98), Lecture Notes in Computer Science, pages 385–399, Pisa,
Italy, October 1998. Springer-Verlag.

[122] Robert Rodošek, Mark G. Wallace, and Mozafar T. Haijan. A new approach to
integrate mixed integer programming with CLP. In Proceedings of the Work-
shop on Constraint Programming Applications, in conjunction with the Second
International Conference on Principles and Practice of Constraint Programming
(CP96), 1996.

[123] Peter Van Roy, Michael Mehl, and Ralf Scheidhauer. Integrating efficient records
into concurrent constraint programming. In International Symposium on Pro-
gramming Languages, Implementations, Logics, and Programs, pages 438–453,
Aachen, Germany, September 1996. Springer-Verlag.

[124] Ralf Scheidhauer. Design, Implementierung und Evaluierung einer virtuellen
Maschine für Oz. PhD thesis, Universität des Saarlandes, Fachbereich Informatik,
Saarbrücken, Germany, December 1998. in German.

[125] Joachim Schimpf. Personal communication, April 2001.

[126] Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee
Naish, editor, Proceedings of the Fourteenth International Conference on Logic
Programming, pages 286–300, Leuven, Belgium, 8-11 July 1997. The MIT Press,
Cambridge.

[127] Christian Schulte. Programming constraint inference engines. In Gert Smolka,
editor, Proceedings of the Third International Conference on Principles and Prac-
tice of Constraint Programming, volume 1330 of Lecture Notes in Computer Sci-
ence, Schloss Hagenberg, Linz, Austria, October 1997. Springer-Verlag, Berlin-
Heidelberg.

[128] Christian Schulte. Programming Constraint Services. Doctoral dissertation, Uni-
versität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrich-
tung Informatik, Saarbrücken, Germany, 2000. To appear in Lecture Notes in
Artificial Intelligence, Springer-Verlag.

[129] Christian Schulte. Oz Explorer - Visual Constraint Programming Support. The
Mozart Consortium – Mozart Oz 1.2.0, May 2001. Available at http://www.
mozart-oz.org/documentation/explorer/index.html.

[130] Christian Schulte and Gert Smolka. Encapsulated search in higher-order concur-
rent constraint programming. In Maurice Bruynooghe, editor, Logic Program-
ming: Proceedings of the 1994 International Symposium, pages 505–520, Ithaca,
NY, USA, November 1994. The MIT Press, Cambridge, MA.

Bibliography 199

[131] Christian Schulte and Gert Smolka. Finite Domain Constraint Programming
in Oz – A Tutorial. The Mozart Consortium – Mozart Oz 1.1.1, February
2000. Available at http://www.mozart-oz.org/documentation/fdt/
index.html.

[132] Christian Schulte, Gert Smolka, and Jörg Würtz. Encapsulated search and con-
straint programming in Oz. In Alan H. Borning, editor, Second Workshop on Prin-
ciples and Practice of Constraint Programming, volume 874 of Lecture Notes in
Computer Science, pages 134–150, Orcas Island, Washington, USA, May 1994.
Springer-Verlag, Berlin-Heidelberg.

[133] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving
hard satisfiability problems. In Proceedings of AAAI-92, pages 440–446, San Jose,
CA, July 1992.

[134] Helmut Simonis and Abder Aggoun. Search-tree visualization. In Deransart et al.
[37], chapter 7, pages 191–208.

[135] Jeffrey Mark Siskind and David Allen McAllester. Nondeterministic lisp as a
substrate for constraint logic programming. In Proceedings of the AAAI Na-
tional Conference on Artificial Intelligence, pages 133–138, Washington, D.C.,
July 1993.

[136] Jeffrey Mark Siskind and David Allen McAllester. Screamer: A portable efficient
implementation of nondeterministic Common Lisp. Technical Report IRCS-93-
03, University of Pennsylvania, Institute for Research in Cognitive Science, 1993.

[137] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Current
Trends in Computer Science, Lecture Notes in Computer Science, vol. 1000, pages
324–343. Springer-Verlag, Berlin, Heidelberg, New York, 1995.

[138] Gert Smolka and Ralf Treinen. Records for logic programming. Journal of Logic
Programming, 18(3):229–258, April 1994.

[139] Frieder Stolzenburg. Membership-constraints and complexity in logic program-
ming with sets. In Franz Baader and Klaus U. Schulz, editors, Frontiers in Com-
bining Systems, pages 285–302. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1996.

[140] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publish-
ing Company, 1997.

[141] Edward Tsang. Foundations of Constraint Satisfaction. Computation in Cognitive
Science. Academic Press, 1993.

[142] Pascal Van Hentenryck. The OPL Optimization Programming Language. The
MIT Press, Cambridge, MA, USA, 1999.

200 Bibliography

[143] Pascal Van Hentenryck and Yves Deville. The cardinality operator: A new logical
connective for constraint logic programming. In Frédéric Benhamou and Alain
Colmerauer, editors, Constraint Logic Programming: Selected Research, pages
383–403. The MIT Press, Cambridge, MA, Cambridge, MA, USA, 1993.

[144] Pascal Van Hentenryck, Yves Deville, and Choh-Man Ten. A generic arc-
consistency algorithm and its specialization. Artificial Intelligence, 57:291–321,
1992.

[145] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementa-
tion, and evaluation of the constraint language cc(FD). Journal of Logic Program-
ming, 37(1–3):139–164, October 1998.

[146] Clifford Walinsky. CLP(6∗): Constraint Logic Programming with Regular Sets.
In Proceedings of the International Conference on Logic Programming, pages
181–190, Lisboa, Portugal, 1989.

[147] Joachim P. Walser. Maximize socializing in golf. http://www.ps.uni-sb.
de/~walser/golf.html, June 1998.

[148] David Waltz. Understanding line drawings of scenes with shadows. In
Patrick Henry Winston, editor, The Psychology of Computer Vision, pages 19–
91. McGraw Hill, 1975.

[149] David H. D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI
International, Artificial Intelligence Center, Menlo Park, CA, USA, October 1983.

[150] Jörg Würtz. Lösen kombinatorischer Probleme mit Constraintprogrammierung in
Oz. PhD thesis, Universität des Saarlandes, Fachbereich Informatik, Saarbrücken,
Germany, January 1998. In German.

[151] Neng-Fa Zhou. A high-level intermediate language and the algorithms for com-
piling finite-domain constraints. In Proceedings of the Joint International Con-
ference and Symposium on Logic Programming, pages 70–84, Manchester, UK,
June 1998. The MIT Press, Cambridge.

Index

Symbols

(c ↔ b), 18
Epg, 168
Espg, 169
Esvg, 170
Evg, 169
Npg, 168
Nvg, 169
Ppg, 168
Pe

svg, 170
Rspg, 169
Rsvg, 170
Vspg, 169
Vvg, 169
down(w)`, 138
eqdown(w), 138
LINT, 136
LLP, 136
Pscc, 119
V(EC), 112
V(E S), 112
U , 101
arc(f, T), 149
Dα , 9
DS , 46
|d|, 101
EC , 112
d{, 101
D, 8
dom(D, x), 8
`(w), 137
E , 116
Efix, 119
Ec, 9
Fc, 9
Nc, 9
≥̇, 112
⊆̇, 112

C , 8
bSc, 112
|S|, 112
d, 101
≤̇, 112
S p(�), 119
cα, 9
E S , 112
sup, 101
Tfix, 119
dSe, 112
|S|, 112
d, 101
⊇̇, 112
val(EC), 116
val(EC)E , 116
val(E S), 116
val(E S)E , 116
Se(|·|), 115
Se(b·c), 115
Se(�), 119
Se(|·|), 115
Se(d·e), 115
E�(S, ≥̇), 115
E�(S, ⊆̇), 115
E�(S, ≤̇), 115
E�(S, ⊇̇), 115
E�(p), 114
E�(⊆̇, E S), 116
E�(⊇̇, E S), 116
E�(≥̇, EC), 117
E�(≤̇, EC), 117
E�(p), 114
V , 8
V (c), 9
bp, 12
bs , 11
d , 101
di , 8

202 Index

e, 12
n, 101
p(ve), 13
pc, 11
pei ∈Ev

i , 168

v
ei ∈E p

i , 168
Sscc, 119
SCCG , 119
::, see FD
P , 112
B, 102
C , 103

A

abstract base classes, 66
access variable, see variable
AKL(FD), 89
algorithm

algorithm, 7
branching, 8
exploration, 7, 8
propagation, 7, 8

alldiff -constraint, 18, 19, 84, 202
arc-consistency, see consistency
atom, 15
attributed variable, see variable

B

benchmarking constraint, see constraint
bind() (C++), 62, 63
bound variable, see variable
branch-and-bound search, see search
branching algorithm, see algorithm
BreakSymmetries (Oz), 131

C

cardinality variable, see variable
cc(FD), 89
CHIP, 2, 89, 90, 179
CHOCO, 90
CHR, 162, 163

CLAIRE, 90
CLP(6∗), 141
CLP(SET), 141
clp(FD), 89
CLP(SC), 141
CLPS, 141
CollectNonOverlapConstraints

(Oz), 157
combinator, see constraint combinator25
computation

concurrent, 16, 36
synchronized, 16, 36, 41

computation space, 19–25
CONCERT, 91
concurrency, see computation
CONJUNTO, 90, 110, 140
consistency

arc-consistency, 9
constrainCtVariable (C++), 62, 63
Constraint (Oz)

activate, 147, 148
deactivate, 147, 148
discard, 147, 148
getKey, 147, 148
getName, 147, 148
getParameters, 147, 148
identifyParameters, 147, 149
isEntailed, 147, 148
is, 147
reflectSpace, 147, 148, 178
activate, 159
discard, 155, 157, 159
getKey, 154
isEntailed, 157
reflectSpace, 151, 154

constraint, 7
basic, 11

finite integer set, 101–103
tell, 37, 62–63

domain, 1
expected, 38
finite domain, 17–19

basic, 17
computation of event, 69
description, 67–68
event, 68
profile, 68–69

Index 203

representation, 67
variable representation, 69–70

finite integer set, 4
first-class, 145
for benchmarking, 92–93
global, 18
hybrid solver, 91
inconsistent, 92–93, 157–160
library, 90
non-basic, 11

finite integer set, 103–107
programming language, 89–90
reified, 18
solver, 89–90

comparison, 90–92
stronger, 9
weaker, 9

constraint combinator, 24–25
negation, 24–25, 159

constraint graph, 12, 29
propagator node, 12
variable node, 12
with events, 13

constraint library
finite integer set constraint, 125

constraint problem, 1
constraint program, 8
constraint programming interface, 45
constraint propagation, 1, 7

a procedure for, 9
constraint propagation services, 55–63
constraint propagator interface, see CPI

constraint satisfaction problem, 8–11
constraint solver, 1

propagation-based, 1, 2
constraint store, see store
Cpi

CPI, 3, 65
CPI, 3, 65–74, 76, 79, 81, 84–87, 91, 97, 98,

111, 128, 149, 181, 203
CPLEX, 91, 134
createRunnableThread (C++), 60
CSP, see constraint satisfaction problem
Ct (C++), 57

computeEvents(), 57, 63
getCard(), 57, 63
getValue(), 57

intersect(), 57, 63
isInDomain(), 57, 63

CtVariable (C++), 56
CtVariable(), 56
addPropagator(), 59
addToEventList(), 59
copyVar(), 56
getConstraint(), 56, 63
isLocal(), 62
isTrailed(), 56, 62
schedule(), 56, 63
setTrailed(), 56, 62
unsetTrailed(), 56
updateConstraint(), 56, 62

current space sub-hierarchy, 41

D

daVinci, 166, 178, 179
dependency graph, see graph
DetectFailureEarly (Oz), 151
determined, 102
directed reification, see reification
distribution, 8, 109

step, 8
distributor, 20
DistrPlayers (Oz), 134, 135
domain, 1, 7

pruning, 9
reduction, 9
representation, 57
variable, 7

domain propagation, see propagation
domain solver, 2, 29

description, 46, 55
domain store, see store

E

engine
propagation, 40

local, 43, 59
non-monotonic propagators, 40

engine constraint graph, 30
entailment, 9

204 Index

EPLEX, 91
event

compute, 37
propagation, 12, 114
re-execution, 114

execution states, 13
exploration, see algorithm

F

failure, 9
fairness, 14
FD (C++), 67

computeEvents(), 69
getCard(), 69
getProfile(), 74
getWidth(), 69
initDescr(), 75

FD (Oz)
::, 18, 19, 62, 159, 172
distinctD, 18
distinct, 18
distribute, 23
sumC, 18, 131, 135, 172
distribute, 151, 159

fd_sets, 110, 139, 140
FDDescr (C++), 68

getEventNames(), 68
getId(), 68
getName(), 68
getNoEvents(), 68
id, 68

FDEvents (C++), 68
FDEvents(), 68
addBounds(), 68, 69
addDomain(), 68, 69
addValue(), 68, 69
bounds(), 68
domain(), 68
value(), 68

FDProfile (C++), 69
FDProfile(), 69
getCard(), 69
getWidth(), 69
init(), 69

FDVar (C++), 74

FDVar(), 74
FDVar, 79
operator *(), 74
operator ->(), 74
ctGetConstraintProfile(), 74
ctGetConstraint(), 75
ctRefConstraint(), 75
ctRestoreConstraint(), 76
ctSaveConstraint(), 75
ctSaveEncapConstraint(), 75
ctSetConstraintProfile(), 74
ctSetValue(), 75

FIGARO, vii, 46, 90, 91, 182
Filter (C++), 76

add_parameter(), 76, 77
drop_parameter(), 76, 77
entail(), 76, 77
fail(), 76, 77
impose_propagator(), 76, 77
leave(), 76, 77
replace_propagator(), 76, 77

filter
algorithm, 2
for S1 = S2 ∩ S3, 120–122
function, 9, 51, 76–79
interface, 3, 72

filter function, 9
filter_leqoff (C++), 78, 79
ForAll (Oz), 17
ForAllTail (Oz), 17
foreign function, 36
ForeignFun (C++), 55
FS (Oz)

cardRange, 125, 129, 133
card, 127, 129, 172, 174
diff, 126
disjointN, 126
disjoint, 126
distribute, 127, 129, 131, 134
exclude, 127
include, 127
intersectN, 126
intersection, 133
intersect, 126, 129
int
convex, 127, 138
match, 127, 130, 131

Index 205

max, 127
min, 127
seq, 127, 138

partition, 126, 133, 172
reflect

card, 126
lowerBound, 126
unknown, 126
upperBound, 126

reified

areIn, 127, 135, 172
include, 127, 172, 174
isIn, 127

subseteq, 126
unionN, 126
union, 126
value

empty, 126
make, 126, 133, 172
universal, 126

var

lowerBound, 125
upperBound, 125, 129, 133, 172

distribute, 151
function

creator, 38
propagation, 42

G

GIFT, 91
GNU PROLOG, 2, 89–98, 185
Golf (Oz), 134
Golf tournament problem, see problem
GolfInstructor (Oz), 135
GolfSolver (Oz), 133–135
GRACE, 179
graph

dependency, 118
value, 35

graph view
propagator, 168
single propagator, 168–169
single variable, 169–170
variable, 169

H

Hamiltonian path problem, see problem

I

ILOG, 90–92, 96
ILOG SCHEDULER, 90
ILOG SOLVER, 2, 79, 90, 91, 93–96, 110,

138–140, 162, 185
ImposeConstraint (Oz), 159
imposeConstraint (C++), 63
imposeConstraint (Oz), 85, 87
ImposeNonOverlap (Oz), 157
indexicals, 63
Instructors (Oz), 135
intersection, 81–83
iterator

list, 17

L

Leqoff (C++), 70
Leqoff(), 70, 72
propagate(), 70

x ≤ y + c-constraint, 3, 65, 70, 72, 77, 78
{log}, 141

M

Map (Oz), 17
module, 18
Money (Oz), 19, 23
MoneyScript (Oz), 23

N

name, 15
narrowing, 2
Negation (Oz), 24
negation combinator, see constraint combi-

nator
node

reference, 35

206 Index

value, 35
variable, 35

nonoverlap-constraint, 156

O

OPL, 90
OptimizeAndCollect (Oz), 154
Oz Explorer (Oz), 24
OZ_CreateProp (C++), 66, 71

expectCtVar(), 71, 72
expectInt(), 71, 72
expectVector(), 71
fail(), 71, 72
impose(), 71, 72
isFailing(), 71, 72
isSuspending(), 71, 72
suspend(), 71, 72

OZ_Ct (C++), 66, 67, 70
OZ_CtDescr (C++), 66–68, 70
OZ_CtEvents (C++), 66–68, 76
OZ_CtProfile (C++), 66, 69
OZ_CtVar (C++), 66, 73, 74, 76

ctGetConstraintProfile(), 73
ctGetConstraint(), 73
ctRefConstraint(), 73
ctRestoreConstraint(), 73
ctSaveConstraint(), 73
ctSaveEncapConstraint(), 73
ctSetConstraintProfile(), 73
ctSetValue(), 73
fail(), 73, 85
leave(), 73, 85
readEncap(), 73
read(), 73

OZ_CtVarVector (C++)
find_equals(), 84, 87

OZ_expect_t (C++), 71, 72
OZ_Filter (C++), 66, 76, 77

OZ_Filter(), 78, 79
operator ()(), 78

OZ_getUniqueId (C++), 68
OZ_intToC() (C++), 70
OZ_mkCtVar() (C++), 70
OZ_mkCtVar() (C++), 66
OZ_ParamIterator (C++), 76

entail(), 78
fail(), 78
leave()), 78

OZ_Propagator (C++), 66, 70, 76
OZ_Return (C++), 70
OZ_Term (C++), 70

P

parameter, 1, 11
enacpsulated, 85–87
global, 85–87
local, 85

ParamIterator_V_V (C++)
ParamIterator_V_V(), 79

pattern matching, 16
PECOS, 90
persistent propagator suspension, see sus-

pension
predefined search engine, see search engine
priority, 43
PriorityQueue (C++), 61

dequeue(), 61
enqueue(), 61
isEmpty(), 61

problem
Golf tournament, 131–135
Hamiltonian path, 149
optimization, 1
Steiner, 129–131

problem variable, see variable
procedure

first-class, 17
procedure store, see store
profile

constraint, 31
propagation

domain, 145
fixed-point, 12
function, 30, 31
hybrid, 146
symbolic, 145

propagation algorithm, see algorithm
propagation engine, 2, 29

local, 59
propagation engine thread

Index 207

local, 59
propagation event, see event
propagation function, 38–39
propagation rules

(I1 ∈ S ↔ I2), 107
I = |S|, 106
I ∈ S, 106–107
S1 ⊆ S2 ∪ S3, 105
S1 ⊇ S2 ∩ S3, 103–104

propagation services, 2, 29, 45, 55–63
Propagator (C++), 58

PropagatorState, 58
PropagatorStatus(), 58
Propagator(), 58
getHome(), 58, 61
getParameters(), 58
getPriority(), 58, 61
getState(), 58, 61
isNonMonotonic(), 58, 61
propagate(), 58, 60
schedule(), 58, 61
setState(), 58, 60, 61

propagator, 1, 11, 30, 57–59
body, 30
connected, 11
creation, 38, 48, 70–72
creation by propagator, 49
execution, 31–32, 38, 40, 49, 59–62

monotonic, 59–60
non-monotonic, 61

finite domain, 18–19
representation, 70

first-class, 146
generic, 126
head, 30
life-cycle, 13
management, 32–33, 39–40, 42–44,

47–48
non-monotonic, 43

priority, 33
nonmonotonic, 38
parameter, 43
parameter access, 49
private state, 30
propagation function, 72–79
representation, 70
schedule, 37, 42, 47, 61–62

scheduling, 14
shared state, 30
stability check, 47

propagator graph view, see graph view
propagator life-cycle, see propagator
propagator node, see constraint graph
propagator set

runnable, 32
sleeping, 30, 32

PropagatorStack (C++), 59
isEmpty(), 59, 60
pop(), 59, 60
push(), 59, 60

pure virtual member function, 66

R

RANGE, 92
Rank (Oz), 131
reference

tagged, 54
reification, 18

directed, 127
remaining variable, see variable
run_lps (C++), 60
runnable propagator set

local, 43
non-monotonic, 43

running, 33

S

Scheduler (C++)
preempt(), 60

scheduler, 36
propagator, 33

SCREAMER, 90
script, 19, 23, 41
search, 1, 21–24

branch-and-bound, 22, 158
engine, 21–22

search engine, 2
predefined, 23–24

SearchAll (Oz), 23
SearchBest (Oz), 23

208 Index

SearchEngine (Oz), 22, 23
SearchOne (Oz), 23
set

inconsistent constraints, 157–160
undecided, 109

SICSTUS PROLOG, vii, 2, 89–93, 95–97,
185

single propagator graph view, see graph
view

single variable graph view, see graph view
situated, 41
situatedness, 41
smallest set of inconsistent constraints, 157
solution, 1, 7
solver

hybrid, 91, 146
Space (C++), 53, 59

addToLPS(), 59–61
createRunnableThread(), 60
getCurrentSpace(), 53, 60
isRoot(), 53
lps, 59
nmlps, 61
runLPS(), 59, 60
runNMLPQ(), 61

Space (Oz)
ask, 20, 22, 24
clone, 20, 22
commit, 20, 22
merge, 21, 22
new, 20, 23

space
de-installation, 41
hierarchy, 20, 40–44
home, 41
installation, 41
op-level, 20
root, 20
status, 20, 42
subordinated, 24
superordinated, 24

stability, 20, 44
stability check, 83
state restoration, 21
statements, 15
Status (C++), 55
Steiner (Oz), 129, 131

Steiner problem, see problem
SteinerConstraints (Oz), 129, 131
store

constraint, 11, 35
domain, 8, 11
procedure, 17

stronger constraint, see constraint
suspension, 36

propagator, 38
persistent, 40

suspension set, 36
synchronization, see computation

T

task interval, 33
terminateCurrentThread (C++), 60
Thread (C++), 54

Thread(), 54
getHome(), 54

thread, 36
scheduling, 36
suspended, 36

time-marking, 42
time-stamping, 42
CtVariable (C++)

getCtVariable(), 57
isCtVariable(), 57

TR (C++), 54
TR(), 54, 63
deref(), 54
getCtVariable(), 63
getInteger(), 54
getVariable(), 54, 62, 63
isCtVariable(), 63
isInteger(), 54
isReference(), 54
isVariable(), 54, 63

Trail (C++), 55
push(), 55, 62

trail, 41–42
entry, 41
untrail, 41

tree
search, 7

Index 209

V

Variable (C++), 54
Variable(), 54
addPropagator(), 58, 59
getHome(), 54, 59
isLocal(), 54, 62
schedule(), 58, 63

variable
access, 39, 73–76

first, 85
implementation, 85–87

aliasing, 11, 81
attributed, 63
body, 30
bound, 81
cardinality, 102
constraint, 1, 30, 37, 47, 55–57

creation, 46
representation, 56–57

control, 159
determined, 7
global, 41
head, 30
local, 41
logic, 15
problem, 7
projection, 112
remaining, 81
root, 20
set, 102
top-level, 20

variable domain, see domain
variable graph view, see graph view
variable node, see constraint graph
vectors, 15
virtual member functions, 66

W

weaker constraint, see constraint

