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Abstract

Subject of this thesis is the formal verification of pipelined micropro-
cessors. This includes processors with state of the art schedulers, such as
the Tomasulo scheduler and speculation. In contrast to most of the litera-
ture, we verify synthesizable design at gate level. Furthermore, we prove
both data consistency and liveness. We verify the proofs using the theorem
proving system PVS. We verify both in-order and out-of-order machines.
For verifying in-order machines, we extend the stall engine concept pre-
sented in [MP00]. We describe and implement an algorithm that does the
transformation into a pipelined machine. We describe a generic machine
that supports speculating on arbitraty values. We formally verify proofs
for the Tomasulo scheduling algorithm with reorder buffer.

Kurzzusammenfassung

Gegenstand dieser Dissertation ist die formale Verifikation von Mikro-
prozessoren mit Pipeline. Dies beinhaltet auch Prozessoren mit aktuellen
Scheduling-Verfahren wie den Tomasulo Scheduler und spekulativer Aus-
führung. Im Gegensatz zu weiten Teilen der bestehenden Literatur f¨uhren
wir die Verifikation auf Gatter-Ebene durch. Des weitern beweisen wir
sowohl Datenkonsistenz als auch eine obere Schranke f¨ur die Ausfüh-
rungszeit. Die Beweise werden mit dem Theorem Beweissystem PVS
verifiziert. Es werden sowohl in-order Maschinen als auch out-of-order
Maschinen verifiziert. Zur Verifikation der in-order Maschinen erweitern
wir die Stall Engine aus [MP00]. Wir beschreiben und Implementieren ein
Verfahren das die Transformation in die “pipelined machine” durchf¨uhrt.
Wir beschreiben eine generische Maschine die Spekulation auf beliebige
Werte erlaubt. Wir verifizieren die Beweise f¨ur den Tomasulo Scheduler
mit Reorder Buffer.



Extended Abstract

Microprocessors are in use in many safety-critical environments, such as
cars or planes. We therefore consider the correctness of such components
as a matter of vital importance. Testing microprocessors is limited by the
huge state space of modern microprocessors. We therefore think formal
verification is the sole way to obtain a guarantee.

This formal verification should be done such that any third party is able
to verify the correctness with low effort, i.e., we aim to provide a proof
of correctness that can be checked mechanically. In particular, we think
that all critical designs should be delivered in form of a four-tuple: 1)
the design itself, 2) a specification, 3) a human-readable proof, and 4) a
machine-verified proof.

In this thesis, we present proofs of correctness for complex micropro-
cessors. Designing microprocessors is considered an error-prone process.
A well known example for this is the Pentium FDIV bug [Coe95, Pra95].

In this thesis, we provide a rigorously formal approach to hardware veri-
fication. The designs presented in this thesis include state of the art sched-
ulers, such as the Tomasulo scheduler [Tom67] and speculation. In con-
trast to most of the literature, the designs we provide are very close to
gate level. In particular, we are synthesizing some of the designs for the
XILINX FPGA series.

These designs are of high complexity, and so are the proofs. In contrast
to [MP95, Lei99, MP00], the proofs are machine verified using the theorem
proving system PVS [CRSS94]. We do not present the original PVS proof
in this thesis but aim to provide comprehensible paper-and-pencil proofs.

In order to verify sequential machines, we extend the data consistency
invariant given in [MP00] by defining a “correct value” of an implementa-
tion register such asIR:2. Given the correctness of functional components
such as the ALU, this allows for an almost fully automated proof of the
data consistency of the prepared sequential machine using PVS. We ar-
gue that the correct functional components provide correct results if given
correct inputs.

We extend the stall engine concept presented in [MP00] by providing



a fully generic stall engine design. In contrast to [MP00], our stall en-
gine design supports an arbitrary number of stages and allows for stalling
(and therefore clocking) all stages independently. Furthermore, it supports
pipeline bubble removal, i.e., the stages are clocked whenether the in-order
property permits this. This includes that bubbles are removed from the
pipeline if necessary. We formally verify data consistency and liveness
properties for this stall engine.

Using this extended stall engine, we improve the process of transforming
the prepared sequential machine into the pipelined machine by providing
a tool that does this transformation automatically. This includes the gener-
ation for forwarding and interlock hardware.

We then prove the data consistency of the pipelined machine. We do
so by showing that the inputs of the pipeline stages are correct. Using this
fact, we argue the correctness of the output values as we do for the prepared
sequential machine, since the functional components of the machines are
identical.

We present a generic approach to speculative execution and propose a
data consistency criterion for such a machine. We then apply this method
in order to implement and prove DLX pipelines with branch prediction
and precise interrupts. It is a well-known fact that both techniques are im-
plemented using speculation [SP88]. However, to the best of our knowl-
edge, implementing both techniques as an instance of a generic speculation
mechanism is done for the first time.

Besides the in-order pipelines, we verify the correctness of the Tomasulo
scheduling algorithm with reorder buffer as described in [KMP99]. The re-
order buffer realizes in-order termination, which allows implementing pre-
cise interrupts. The proof of correctness covers the arguments neccessary
to show the uniqueness of the tags.

Furthermore, we rigorously prove the liveness of all machines we de-
sign, i.e., we prove that any given instruction sequence is executed within
a finite amount of time. Although critical, liveness issues are often not
covered in the open literature.



Zusammenfassung

Mikroprozessoren werden in vielen sicherheitskritischen Bereichen ein-
gesetzt, wie beispielsweise in Automobilen oder Flugzeugen. Wir erachten
daher die Korrektheit solcher Komponenten als lebenswichtig. Der Test
von Prozessoren ist durch den extrem großen Zustandsraum moderner Pro-
zessoren nur eingeschr¨ankt möglich. Wir sind daher der Meinung, daß
formale Verifikation die einzige M¨oglichkeit darstellt, eine Garantie zu er-
halten.

Diese formale Verifikation sollte so durchgef¨uhrt werden, daß Dritten
die Möglichkeit offen steht, die Korrektheit mit geringen Aufwand nachzu-
vollziehen. Wir wollen daher einen Beweis zur Verf¨ugung stellen, der au-
tomatisiertüberprüft werden kann. Insbesondere sollten alle kritischen De-
signs in Form von vier-Tupeln ausgeliefert werden: 1) das Design selbst,
2) eine Spezifikation, 3) ein manuell nachvollziehbarer Beweis, und 4) ein
maschinell verifizierbarer Beweis.

Gegenstand dieser Dissertation sind Korrektheitsbeweise f¨ur komplexe
Mikroprozessoren. Die Erstellung von Mirkoprozessordesigns gilt als feh-
leranfällig. Ein bekanntes Beispiel ist der Pentium FDIV bug [Coe95,
Pra95].

In dieser Dissertation wird das Problem der Korrektheit von Hardware
streng formal behandelt. Die Designs beinhalten Prozessoren mit aktuellen
Scheduling Verfahren, wie beispielsweise dem Tomasulo Scheduler aus
[Tom67] und spekulativer Ausf¨uhrung. Im Gegensatz zu weiten Teilen
der bestehenden Literatur sind die Designs auf Gatter-Ebene spezifiziert.
Insbesondere werden einige der Designs f¨ur die XILINX FPGA Serie syn-
thetisiert.

Die Designs haben hohe Komplexit¨at, was sich auf die Beweise aus-
wirkt. Im Gegensatz zu [MP95, Lei99, MP00] sind die Beweise mit dem
Theorem Beweissystem PVS verifiziert. Wir geben in dieser Dissertation
nicht den originalen PVS Beweis an, sondern versuchen einen nachvol-
lziehbaren Beweis in ¨ublicher mathematischer Notation anzugeben.

Um sequentielle Maschinen zu verifizieren, erweitern wir die Datenkon-
sistenz-Invariante aus [MP00] indem wir einen “korrekten Wert” eines Im-
plenentation Registers wie beispielsweiseIR:2 definieren. Gegeben die



Korrektheit der funktionalen Komponenten, wie beispielsweise der ALU,
erlaubt uns dies den Beweis der Datenkonsistenz der pr¨apariert sequen-
tiellen Maschine in PVS fast v¨ollig zu automatisieren. Wir argumentieren,
daß die funktionellen Komponenten korrekte Ergebnisse liefern wenn sie
korrekte Eingaben erhalten.

Wir erweitern das Konzept der “stall engine” aus [MP00] indem wir eine
vollständig generische stall engine angeben. Im Gegensatz zu der stall en-
gine aus [MP00], erlaubt unsere stall engine eine beliebige Anzahl von
Stufen und erm¨oglicht es, alle Stufen unabh¨angig voneinander anzuhalten.
Des weiteren unterst¨utzt unsere stall engine das Entfernen von “pipeline
bubbles”. Das bedeutet, daß die Stufen immer dann in Betrieb sind, wenn
dies die in-order Eigenschaft zul¨aßt. Das beinhaltet, daß “pipeline bub-
bles” wenn notwendig aus der Pipeline entfernt werden. Wir verifizieren
die Datenkonsistenz dieser stall engine und geben Eigenschaften an, die es
erlauben Laufzeitschanken zu beweisen.

Mit dieser erweiterten stall engine verbessern wir die Transformation
der präpariert sequentiellen Maschine in die Maschine mit Pipeline in-
dem wir ein Programm implementieren das diese Transformation automa-
tisiert. Dies beinhaltet die Generierung von Forwarding und Interlock
Schaltkreisen.

Anschließen beweisen wir die Datenkonsistenz der Maschine mit Pipe-
line. Dies wird dadurch erreicht, daß wir beweisen, daß die Eingaben der
Pipeline Stufen korrekt sind. Damit k¨onnen wir wie bei der pr¨apariert
sequentiellen Maschine argumentieren, daß die Ausgaben korrekt sind, da
die funktionalen Einheiten identisch sind.

Wir geben einen generischen Ansatz zur Realisierung von spekulativer
Ausführung an und stellen ein Datenkonsistenzkriterium daf¨ur auf. Wir
wenden diese Methode dann an um DLX Pipelines mit Branch Predic-
tion und präzisen Interrupts zu implementieren und zu verifizieren. Es ist
allgemein bekannt, daß beide Techniken mit spekulativer Ausf¨uhrung zu
implementieren sind [SP88]. Nach unserem Wissen ist dies jedoch das er-
ste Mal, daß beide Techniken als Instanz eines generischen Mechanismus’
für spekulative Ausf¨uhrung implementiert werden.

Neben den in-order Pipelines verifizieren wir die Korrektheit des Toma-
sulo Scheduling Algorithmus’ mit Reorder Buffer. Der Reorder Buffer
bewirkt in-order Terminierung, was es erlaubt, pr¨azise Interrupts zu im-
plementieren. Der Korrektheitsbeweis beinhaltet die Argumente, die not-
wendig sind, um die Eindeutigkeit der Tags zu beweisen.

Des weiteren beweisen wir eine obere Schranke f¨ur die Ausführungs-
zeit von Programmen auf allen Maschinen. Obwohl dies eine kritische



Eigenschaft darstellt, wird dieses Thema in oder offenen Literatur oft ¨uber-
gangen.
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Chapter

1
Introduction

1.1 Formal Verification of Microprocessors

N
OWADAYS, microprocessors are in use in many safety-critical envi-
ronments, such as cars or planes. We therefore consider the correct-

ness of such components as a matter of vital importance.

Verifying the correctness of microprocessors used to be done by exten-
sive tests. However, the state space of modern microprocessors is huge and
tests never attain full coverage, especially for 64-bit designs. We therefore
think formal verification is the sole way to obtain a guarantee.

This formal verification should be done such that any third party is able
to verify the correctness with low effort, i.e., we aim to provide a proof of
correctness that can be checked mechanically. In particular, we think that
all critical designs should be delivered in form of a four-tuple: 1) the design
itself, 2) a specification, 3) a human-readable proof, and 4) a machine-
verified proof. Moreover, we think that there will be a considerable market
for such four-tuples.

Let us motivate why we distinguish human-readable proofs and ma-
chine-readable proofs and why we demand for both. This is not a common
demand. In industrial environments, low-effort but automatized verifica-
tion is preferred.
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However, proofs written for theorem proving systems tend to be hard to

read. This becomes worse the higher the grade of automatization of the
theorem proving system is. We think that this leads to two drawbacks:
Without a human-readable proof, one completely depends on the sound-
ness of the theorem proving system. This includes that one depends on the
clarity and accuracy of the specification language of the theorem proving
system.

The second drawback is that automatized design verification is of no
aid in understanding the designs. In contrast to that, we have experienced
that writing proofs, in particular the human-readable proofs, is producing
generic theories and design approaches previously unknown. We therefore
claim that providing human-readable proofs will aid automatizing the ac-
tual design process, since generic theories allow for the development of
non-specialized tools with diversified use.

In this thesis, we present proofs of correctness for complex micropro-
cessors. Designing microprocessors is considered an error-prone process.
Due to the complexity of the designs, errors often remain undiscovered
even in case extensive testing is done. A well known example for this is
the Pentium FDIV bug [Coe95, Pra95].

1.2 Related Work

There are many publications on the formal verification of sequential ma-
chines, e.g., Cohn verified the VIPER processor [Coh87], Joyce verified
the Tamarack [Joy88a, Joy88b], Hunt verified the FM8501 [Hun94], and
Windley verified the AVM-1 [Win95].

In [HP96, PH94], Hennessy and Patterson describe a 32-bit RISC ar-
chitecture, the DLX, which serves as basis for many microprocessor ver-
ification projects. In [MP95], Mueller and Paul describe sequential DLX
designs at gate level, including a machine with precise interrupts.

The formal verification of a pipelined processor is reported in [BS89]:
Bickford and Srivas verify a three stage DLX-like RISC processor. In
[LO96], Levitt and Olukotun verify a five-stage DLX pipeline by trans-
forming it back into a sequential machine by removing stalling and roll-
back logic.

In [Hos00], Hosabettu verifies both in-order and out-of-order DLX im-
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plementations that are not synthesizeable. The pipelined implementation
has a trivial stalling logic. The verification is done using the completion
function approach and PVS.

Further literature on the verification of pipelined machines is [LO96],
which covers automatic verification of pipelined microprocessors, [BM96]
provides a manual proof of a DLX pipeline, Burch, Dill [BD94] verify a
very simple pipeline. Henzinger et.al. [HQR98] use refinement mappings
in order to model-check a RISC pipeline.

Besides PVS, there are more theorem proving systems that are applied
for hardware verification, such as HOL [CGM86] or ACL2 [KM96]. There
has been much success in verifying complete, complex systems using the-
orem provers [BS89, HGS99, SH99]. However, theorem proving systems
always involve much manual work.

Recent papers show the correctness of complex designs or schedulers
in theorem proving systems such as PVS. Hosabettu et al. [HGS99] prove
both safety and liveness of Tomasulo’s algorithm using PVS. Swada and
Hunt [SH99] provide an ACL2 proof of a complete design implementing
a Tomasulo scheduler with reorder buffer.

Henzinger et al. [HQR98] verify a simple pipelined processor using a
model checker. McMillan [McM98] partly automates the proof by refine-
ment of Tomasulo’s algorithm presented in [DP97] with the help of com-
positional model checking. This technique is improved in [McM99b] by
theorem proving methods to support an arbitrary register size and number
of function units.

In the literature cited above, the complex designs are verified at very
high levels of abstraction. In particular, there is even not much litera-
ture on details of actually implementing complex microprocessors. Gate-
level descriptions of microprocessors usually never go beyond simple ma-
chines, with the exception of [Lei99] and [MP00]: In [Lei99], Holger Leis-
ter presents out-of-order designs and evaluates the architectures regarding
hardware cost and performance. The correctness is argued using paper-
and-pencil proofs but not verified by means of machine.

In [MP00], Silvia M. Mueller and Wolfgang J. Paul present gate-level
designs of pipelined DLX implementations including a machine with full
IEEE floating point arithmetic and interrupts. The correctness of the ma-
chines is argued as follows: The authors build a sequential machine but
with the structure of a pipelined machine. This machine is calledprepared
sequential machine. The authors transform this prepared sequential ma-

3
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chine into a pipelined machine by adding interlock and forwarding hard-
ware. This is supported by introducing the concept of astall engine. The
stall engine encapsulates the logic required for generating clock enable
signals for the individual pipeline stages.

The correctness of the pipelined machine is argued as follows: given
the correctness of the prepared sequential machine, the authors prove the
pipeline to be correct by arguing that it simulates the prepared sequential
machine. This is done using ascheduling function. This function maps
a configuration of the physical machine to a configuration of the abstract
reference machine.

1.3 Contribution

In this thesis, we provide a rigorously formal approach to hardware verifi-
cation. The designs presented in this thesis include state of the art sched-
ulers, such as the Tomasulo scheduler [Tom67] and speculation. In con-
trast to most of the literature, the designs we provide are very close to
gate level. In particular, we are synthesizing some of the designs for the
XILINX FPGA series.

These designs are of high complexity, and so are the proofs. In contrast
to [MP95, Lei99, MP00], the proofs are machine verified using the theorem
proving system PVS [CRSS94]. However, we never present the original
PVS proof in this thesis. We aim to provide proofs that come close to
comprehensible paper-and-pencil proofs in the tradition of [KP95, MP95,
MP00]. We aim to maintain the full formal reasoning of the PVS proofs,
to the extent that the proofs are reviewable on a line-per-line basis. This
resulted in several PVS proofs to be re-written due to better readability of
the paper version of the proof.

In order to verify sequential machines, we extend the data consistency
invariant given in [MP00] by defining a “correct value” of an implementa-
tion register such asIR:2. Given the correctness of functional components
such as the ALU, this allows for an almost fully automated proof of the
data consistency of the prepared sequential machine using PVS. We ar-
gue that the correct functional components provide correct results if given
correct inputs.

We extend the stall engine concept presented in [MP00] by providing
a fully generic stall engine design. In contrast to [MP00], our stall en-
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gine design supports an arbitrary number of stages and allows for stalling
(and therefore clocking) all stages independently. We formally verify data
consistency and liveness properties for this stall engine.

Using this extended stall engine, we can significantly improve the pro-
cess of transforming the prepared sequential machine into the pipelined
machine by providing a tool that does this transformation automatically.
This includes the generation for forwarding and interlock hardware. In
particular, the transformation of the PC environment of the DLX with De-
layed PC, i.e., removing theDPC register, turns out to be a special case of
adding forwarding.

We then prove the data consistency of the pipelined machine. We do so
by showing that the inputs of the pipeline stages are correct. Using this
fact, we argue the correctness of the output values as we do for the sequen-
tial prepared machine, since the functional components of the machines
are identical.

We present a generic approach to speculative execution and propose a
data consistency criterion for such a machine. We then apply this method
in order to implement and prove DLX pipelines with branch prediction
and precise interrupts. It is a well-known fact that both techniques are im-
plemented using speculation [SP88]. However, to the best of our knowl-
edge, implementing both techniques as an instance of a generic speculation
mechanism is done for the first time.

Besides the in-order pipelines, we verify the correctness of the Tomasulo
scheduling algorithm with reorder buffer as described in [KMP99]. The re-
order buffer realizes in-order termination which allows implementing pre-
cise interrupts. The proof of correctness covers the arguments neccessary
to show the uniqueness of the tags.

Furthermore, we rigorously prove the liveness of all machines we de-
sign, i.e., we prove that any given instruction sequence is executed within
a finite amount of time. Although critical, liveness issues are often not
covered in the open literature.

1.4 Organization

Chapter 2 describes basic concepts. We introduce the mathematical hard-
ware model, and describe the implementation and verification of basic cir-
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cuits, such as adders. We use these basic circuits in order to implement and
verify an ALU. We then provide a formal specification of a DLX RISC mi-
croprocessor without interrupts and floating point instructions.

In chapter 3, we describe how we model the hardware of a micropro-
cessor. We describe the extended stall engine for the prepared sequential
machine. We introduce the functions used in order to model the registers,
the circuits between the registers and the forwarding logic. We use this
formalism in order to implement and verify a prepared sequential DLX.
We also show the liveness of the prepared sequential machine.

In chapter 4, we describe how the stall engine is modified in order to
get a pipelined machine. We describe how to add the forwarding and in-
terlock hardware and prove the correctness of the pipelined machine. This
comprises of both data consistency and liveness.

In chapter 5, we describe a generic approach to speculative execution.
We prove its data consistency and liveness. We implement two machines as
examples: the first machine guesses whether branches are taken or not. The
second machine guesses whether we have an interrupt or not. We prove
that this realizes precise interrupts according to the specification given in
[MP00].

In chapter 6, we describe the results of verifying an out-of-order DLX
with Tomasulo scheduler as presented in [Kr¨o99].

6
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Basic Concepts

2.1 Specifying Machines

2.1.1 Mathematical Machines

T
HE SUBJECTof this thesis is to present a provably correct micropro-
cessor. A microprocessor is said to be correct if it interprets a given

instruction set architecture (ISA). The instruction set architecture is usually
given as an informal list of registers and instructions, and a specification
of the impact of these instructions on the values of the registers. The im-
plementation of this ISA, the microprocessor, is a piece of hardware.

In order to make a formal proof of the correctness of such a processor,
it is necessary to formalize the specification, the implementation, and the
correctness criterion.

Mathematical machines are a common method to model the behavior of
arbitrary microprocessor systems. There are different definitions of math-
ematical machines. In this thesis, the mathematical machine is used to
specify both the microprocessor hardware and the instruction set architec-
ture. The correctness criterion and its proof then rely on arguments on
these two mathematical machines.

The model used in this thesis is similar to the synchronous transition
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states (STS) model used in [KP96, DP97]. In contrast to [DP97], the math-
ematical machines here work fully deterministic to allow direct hardware
synthesis from the mathematical machine. A very similar approach is also
used in [Cyr93].

A mathematical machine, as used in this thesis, is a tripleM = (C;c0;δ)Definition 2.1
Mathematical Machine

I

that consists of the following components:

� C is the set of all possible configurations ofM. An elementc of C is
called configuration or state of the machine.

� The initial configurationc0 is a configuration ofM.

� The transition functionδ : C!C maps one configurationcT to its
successorcT+1.

The sequencec0, c1, . . . of configurations is called computation ofM. The
configurationcT is called configuration in cycleT. The configurations of
M in cyclesT � 1 are defined recursively as follows:

cT = δ(cT�1)

In the literature, the transition function is often called next state function
[Cyr93].

2.1.2 Notation

Registers Both the specification and the implementation of a micropro-
cessor use registers. A register is a place where a value can be stored and
re-read in later cycles. In terms of mathematical machines, a value of a
register is part of the configurationc.

Let R = fR1; : : : ;Rng be a finite set of registers. Each registerR can
have a value within a finite domainW(R), i.e.,Ri 2W(Ri).

In order to allow an easy identification of the value of a register in the
configuration of a mathematical machine, all valid configurations inC are
expected to be a tuple of the values of all registers:

C = W(R1)�W(R2)� : : :�W(Rn)

8
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The value of a given registerRi can be extracted from a configurationc
with a projection functionϕi. Let c be(a1;a2; : : : ;an).

ϕRi : C!W (Ri); ϕRi(c) = ai

Let c= cT be part of a computation of a mathematical machine. In this
case, letRT be a shorthand forϕR(cT).

Let c:R be a shorthand for the value of the projectionϕR applied toc:

c:R := ϕR(c)

In analogy to that, letδ:R be a shorthand for the restriction of a state
transition function to a register value:

δ:R : C!W (R); δ:R= ϕRÆδ

Signals

A signal s is defined as a mapping from the set of configurations into anJ Definition 2.2
Signalarbitrary domainW (s):

s : C!W(s)

Signals are therefore a shorthand for a calculation on a given configura-
tion.

2.1.3 Bits and Bit Vectors

In order to model gates and wiring between gates in a formal way, the
theorem proving system PVS [CRSS94] provides a bit vector library. Bits
are defined as a boolean value and bit strings are defined as a vector of
boolean values.

An n-dimensional vector on a domainD is a mapping fromfi 2 N0 j i < ng J Definition 2.3
Vectorinto D.

9
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Let an denote the componentn of the vectora:

an := a(n)

A bit is a value in the domainB = f0;1g. The value 0 is called FALSEDefinition 2.4
Bits and Bit Vectors

I

and the value 1 is called TRUE. Ann-bit bit vector is ann-dimensional
vector onB. The numbern is called length of the bit vector. Ifa is ann-bit
bit vector, this is denoted by:

a2 bvec[n]

There is a projection function to get a subpart of ann-bit bit vector. Let
x< n andy� x. The functiona[x : y] takes a bit vectora and returns the
subvector fromax downtoay:

[x : y] : bvec[n] �! bvec[x�y+1]

a[x : y](i) := a(i +y) 80� i � (x�y)

Dots Notation Let Æ be a binary operator on a setT:

Æ : T�T! T

Letn, a, b be nonnegative integers withb�a. LetX be ann-dimensional
vector onT. The following definition is used for the common “dots nota-
tion”:

XaÆXa+1Æ : : :ÆXb := rÆ;a;b(b;X)

The functionrÆ;a;b is defined recursively as follows: Letv[n] denote the
set ofn-dimensional vectors onT.

rÆ;a;b : fa; : : : ;bg�v[b�a+1]! T

rÆ;a;b(i;X) :=

�
Xa : i = a
rÆ;a;b(i�1;X)ÆXi : otherwise

In casea is omitted, zero is assumed:

10
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T = 0 T = 1 T = 2 T = 3 T = 4

AT 0 1 0 1 1
BT 0 0 1 1 1

Table 2.1 The computation of the example machine

rÆ;b : f0; : : : ;bg�v[b+1]! T

rÆ;b(i;X) :=

�
X0 : i = 0
rÆ;b(i�1;X)ÆXi : otherwise

2.1.4 Gates

Using the definition of bits above, the basic gates such as AND and OR are
defined in a obvious way: a gate like AND with two inputs and one output
is a mapping on two bits:

AND : B�B�!B

As an example, consider the following mathematical machine (a two bit
saturating counter): It has two one bit registersR = fA;Bg with W (A) =
W (B) = B. The configuration setC therefore isB2. Let the transition
functionδ be defined as follows:

δ:A(c) = c:A_c:B

δ:B(c) = c:A_c:B

Let the initial configurationc0 be f0;0g. This mathematical machine
models hardware: in order to illustrate the hardware modeled by mathe-
matical machines, the symbols from figure 2.1 are used.

The transition functionδ models two OR-gates and one inverter. The
configuration set models two one-bit registers. In hardware, registers usu-
ally do not have defined initial values. In order to get the initial configu-
rationc0, an external signalreset is assumed. This signal is active during
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oe 0 1

Tristate Driver AND OR XOR Multiplexer

ce

in

out
Inverter NAND NOR XNOR Flip-Flop

Figure 2.1 Symbols of the basic gates

0 1 0 1

A1

0

reset

A

A

B

B1

0

reset

B

BA

Figure 2.2 A two bit saturating counter
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cycle�1. Using multiplexers, this allows calculating the initial configura-
tion.

The hardware modeled by the mathematical machine described above is
illustrated by figure 2.2. Table 2.1 lists the values of the registersA andB
in the configurationsc0 to c4.

2.1.5 Interpretations of Bit Vectors

The interpretation of a bit vectora as a binary number is a mapping from
then-bit bit vectors intof0; : : : :;2n�1g. The mapping is denoted byhain.
If the length of the bit vector argument is obvious in the context, justhai is
used.

hin : bvec[n] �! f0; : : : ;2n�1g

hain :=
n�1X
i=0

ai �2
i

The PVS bit vector library provides the functionbv2nat[n] for this
purpose. The value of this function is defined by a recursive function that
takes an n-bit bit vector and an indexi: the function sums up the firsti
addends of the sum above:

hiin : f0; : : : ;ng�bvec[n] �! f0; : : : ;2n�1g

haiin =

i�1X
j=0

aj �2
j

In PVS, this is defined using a recursion:

haiin :=

�
0 : i = 0
2i�1 �ai�1+ haii�1

n : otherwise

It is easy to prove that both definitions are equivalent and thathainn = hain
holds.

The interpretation of a bit vectora as a two’s complement number is a
mapping from then-bit bit vectors intof�2n�1; : : : ;2n�1�1g:

[ ]n : bvec[n] �! f0; : : : ;2n�1g

13
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[a]n :=�an�1 �2

n�1+ ha[n�2 : 0]in�1

The bitan�1 is calledsign bit.

This allows defining several operations on bit vectors such as addition
and subtraction:

+;� : bvec[n]�bvec[n] �! bvec[n]

a+b := c such that hcin = hai+ hbi mod 2n

a�b := c such that hcin = hai�hbi mod 2n

A similar definition is used for operations on a bit vector and an integer:

+;� : bvec[n]�Z�! bvec[n]

a+b := c such that hcin = hai+b mod 2n

a�b := c such that hcin = hai�b mod 2n

An unary minus on bit vectors is defined as follows:

� : bvec[n] �! bvec[n]

�a := c such that hcin =�hai mod 2n

The functionzero extendk extends a givenn-bit bit vector tok� n bits
by adding zeros:

zero extendk : bvec[n] �! bvec[k]

zero extendk(a)i =

�
ai : i < n
0 : otherwise

The functionsign extendk extends a givenn-bit bit vector tok� n bits
by adding the sign bit:

sign extendk : bvec[n] �! bvec[k]

sign extendk(a)i =

�
ai : i < n
an�1 : otherwise
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2.2 Basic Circuits

2.2.1 Binary Trees

Let n be a power of two, i.e.,n = 2k, k 2 N0. Let Æ : T �T �! T be a J Definition 2.5
Binary Tree Circuitdyadic function that is associative. Let T denote a set and letv[n] denote

the set ofn-dimensional vectors onT.

The binary tree is implemented as follows:

btreeÆ;k : v[2k]�! T

btreeÆ;k(X) =

8<
:

X0 : k= 0
btreeÆ;k�1(X(0); : : : ;X(2k�1�1))Æ : otherwise
btreeÆ;k�1(X(2k�1); : : : ;X(2k�1))

The binary tree circuitbtreeÆ;k : v[n] �! T calculates the following func-J Lemma 2.1
tion:

btreeÆ;k(X) = X0ÆX1Æ : : :ÆXn�1

This is shown by induction onk. For k = 0, the claim is obviously true. PROOF
For k+1, the claim is:

btreeÆ;k+1 = X(0)Æ : : : ÆX(2k+1�1)

By definition ofbtree, this is equivalent to:

btreeÆ;k(X(0); : : : ;X(2k�1))ÆbtreeÆ;k(X(2k); : : : ;X(2k+1�1)) =

X(0)Æ : : :ÆX(2k+1�1)

By the induction premise for bothbtreeinstances, this is equivalent to:

(X(0)Æ : : :ÆX(2k�1))Æ (X(2k)Æ : : :ÆX(2k+1�1))

= X(0)Æ : : :ÆX(2k+1�1)

This is shown by induction using thatÆ is associative.
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2.2.2 Zero Tester

Let n be a power of two. The zero tester is implemented as follows:

zerotester: bvec[n] �!B

zerotester(a) = btreeOR(a)

The zero tester calculates the following function:Lemma 2.2 I

zerotester(a) = (8i : ai)

This is shown by induction onn using lemma 2.1.

2.2.3 Equality Tester

Using the zero tester, an equality tester is constructed as follows:

equalitytester: bvec[n]�bvec[n] �!B

equalitytester(a;b) = zerotester(a�b)

The equality tester is correct:Lemma 2.3 I

equalitytester(a;b) = (a= b)

The correctness is shown easily with lemma 2.2.

2.2.4 Parallel Prefix

Let T denote a set and letv[n] denote the set ofn-dimensional vectorsDefinition 2.6
Parallel Prefix

I

on T. Let Æ : T�T �! T be an associative dyadic function. Then-fold
generic parallel prefix circuitPPÆ;n : v[n] �! v[n] calculates the following
function:

PPÆ;n(X)i = X0ÆX1Æ : : : ÆXi i 2 f0; : : : ;n�1g
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Figure 2.3 The recursive specification of ann-fold parallel prefix circuit

The parallel prefix circuit is implemented by means of a recursive defi-
nition (figure 2.3). Letn be a power of two, i.e.,n= 2K with K 2 N, and
let X 2 v[2K ] be the inputs of the circuit.

The functionppX0Æ calculates the inputsX0
0 to X0

n=2�1 for the next recur-
sion step. The recursion depth is given by the first parameterK:

ppX0Æ : N�v[2K ]�! v[2K�1]

ppX0Æ(K;X)i := X(2� i)ÆX(2� i +1)

Given those inputs, the functionppYÆ calculates the outputsY0 toYn�1. As
above, the recursion depth is given by the first parameterK:

ppYÆ(K;X)i =

8><
>:

X0 i = 0
ppYÆ(K�1; ppX0Æ(K;X)) i�1

2
odd i

ppYÆ(K�1; ppX0Æ(K;X)) i
2�1ÆXi eveni

The outputs of the parallel prefix circuit are the valuesY0 toYn�1:

ppÆ(X)i := ppYÆ(K;X)i

The parallel prefix circuit is correct: J Theorem 2.4
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ppÆ(X)i = X0ÆX1Æ : : : ÆXi

In order to prove theorem 2.4, the definitionpp1 is used. The first pa-
rameter defines the number of inputs, the second parameter is the index of
the output, the third parameter is the input vector.

pp1 :N�f0; : : : ;2K�1g�v[2K ]�! T

pp1(K; i;X) :=

�
X0 : i = 0
pp1(K; i�1;X)ÆXi : otherwise

This definition is equivalent toPPÆ;n, which is an easy proof by induction:Lemma 2.5 I

pp1(K; i;X) = PPÆ;n(X)i

If i is odd, applyingpp1 to X0
0 to X0

(i�1)=2 is equivalent to applyingpp1 toLemma 2.6 I

X0 to Xi:

pp1(K�1;(i�1)=2; ppX0(K;X)) = pp1(K; i;X)

If i is even and not zero, appendingXi to the sequence above on the left
hand side produces the desired result:

pp1(K�1; i=2�1; ppX0(K;X))ÆXi = pp1(K; i;X)

This is shown by induction oni. For i = 0, the claim is obvious. For oddPROOF
i +1, the claim is:

pp1(K�1; i=2; ppX0(K;X)) = pp1(K; i +1;X)

By definition ofpp1, this is equal to:

pp1(K�1; i=2�1; ppX0(K;X))Æ ppX0(K;X)(i=2) = pp1(K; i +1;X)

Unfolding ppX0Æ, this results in:

pp1(K�1; i=2�1; ppX0(K;X))Æ (Xi ÆXi+1) = pp1(K; i +1;X)

SinceÆ is associative, this is equal to:

(pp1(K�1; i=2�1; ppX0(K;X))ÆXi)ÆXi+1 = pp1(K; i +1;X)
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This is shown by unfolding the definition ofpp1on the right-hand side

and by the induction hypothesis for eveni.

For eveni+1, the claim is shown by the definition ofpp1and the induc-
tion premise for oddi.

The parallel prefix circuit computespp1. J Lemma 2.7

8 0� k� K; X 2 v[2k]; 0� i � 2k : ppY(k; i;X) = pp1(k; i;X)

This is shown by induction onk. For k = 0, the claim is obvious. For PROOF
k+1, and after definition unfolding, the claim is:

ppY(k+1; i;X)
!
= pp1(k+1; i;X)

For i = 0, the claim is shown by definition unfolding. Ifi is odd, the
claim is:

ppY(k;(i�1)=2; ppX0(k+1;X))
!
= pp1(k+1; i;X)

This is shown using the induction hypothesis and lemma 2.6.

If i is even, the claim is:

ppY(k; i=2�1; ppX0(k+1;X))ÆXi
!
= pp1(k+1; i;X)

This is shown using the induction premise and lemma 2.6.

2.2.5 Adders

The definitions used in this section are taken from the PVS bit vector li-
brary. In order to define adders, the two functionscout andsumare used.
Using both functions, one gets a fulladder.

The functions take three input bitsa, b, and cin. The functioncout
calculates the carry-out bit of the adder, the functionsumcalculates the
sum bit.

cout;sum: B�B�B!B
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The functions are defined using XOR, AND, and OR gates as follows:

cout(a;b;cin) := (a^b)_ ((a�b)^cin)

sum(a;b;cin) := a�b�cin

Let x andy denote twon-bit bit vectors andcin a single bit. The carry bitsDefinition 2.7
Carry Bits

I

c(0) to c(n�1) are defined as follows:

c(i) :=

�
cout(x0;y0;cin) : i = 0
cout(xi ;yi ;c(i�1)) : otherwise

An n-bit adder implements the following functionadd on two n-bit bitDefinition 2.8
Adder

I

vectorsx, y: The function is defined using the addition on bit vectors as
defined in section 2.1.5.

add : bvec[n]�bvec[n] �! bvec[n]

add(x;y) = x+y

Let c(i) denote thei-th carry bit as in definition 2.7. Ann-bit adder with
carry-in and carry-out implements the following functionaddcon twon-
bit bit vectorsx, y and the carry-in bitcin:

addc: bvec[n]�bvec[n]�B �! bvec[n]�B

addc(x;y;cin) := (result;cout)

with result := (x+y+ hcini);

cout := c(n�1)

The carry chain adder is implemented as follows:

cc : bvec[n]�bvec[n]�B �! bvec[n]�B

cc(x;y;cin) := (result;cout)

i 2 f0; : : : ;n�1g : result(i) :=

�
sum(x0;y0;cin) : i = 0
sum(xi ;yi ;c(i�1)) : otherwise

cout := c(n�1)

The carry chain adder is correct according to definition 2.8.Lemma 2.8 I

The proof for this lemma is already in the PVS bit vector library.
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2.2.6 Verification of a Carry Lookahead Adder

Thecarry lookahead adderprovides both low hardware cost and low depth
[KP95].

Let c(0) to c(n� 1) denote the carry bits as defined in definition 2.7
for the addition of twon-bit bit vectorsa andb and the carry-in bitcin.
The idea is to use a parallel prefix calculation (definition 2.6) in order to
calculate the carry bitsc(i). Using these bits, the carry lookahead adder is
realized as follows:

cla(a;b;cin) = (result;cout)

with result(i) = a(i)�b(i)�

�
cin : i = 0
c(i�1) : otherwise

andcout= c(n�1)

The inputs(gi ; pi) and the associative functionÆ used for the parallel
prefix circuit are taken from [MP00]:

pi := a(i)�b(i)

gi :=

�
((a(i)�b(i))^cin)_ (a(0)^b(0)) : i = 0
a(i)^b(i) : otherwise

(g1; p1)Æ (g2; p2) := (g2_g1^ p2; p1^ p2)

The proof thatÆ is associative is trivial in PVS.

Let G(i) andP(i) denote the outputs of the parallel prefix circuit, i.e.,
according to theorem 2.4 (correctness of the parallel prefix circuit) this is:

G(i) = ((g0; p0)Æ : : :Æ (gi ; pi)):g

P(i) = ((g0; p0)Æ : : :Æ (gi ; pi)):p

We will now show that we get the carry bits by calculatingG(i) as above.

The carry bitsc areG. J Lemma 2.9
c= G
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The proof for this claim is already given in [MP00]. We verify it using

PVS.

The proof proceeds by induction oni. For i = 0, the claim follows byPROOF
definition unfolding.

For i+1, the claim after applying theorem 2.4 (correctness of the parallel
prefix circuit) is:

c(i +1) = ((g0; p0)Æ : : :Æ (gi+1; pi+1)):g

By definition ofÆ, this is equivalent to:

c(i +1) = gi+1_ ((g0; p0)Æ : : : Æ (gi ; pi)):g^ pi+1

By the induction hypothesis, this is equivalent to:

c(i +1) = gi+1_c(i)^ pi+1

By definition of the carry bits, this is equivalent to:

a(i +1)^b(i +1)_ ((a(i +1)�b(i +1))^c(i))

= gi+1_c(i)^ pi+1

This is shown by definition ofgi+1 andpi+1.QED

2.3 Verification of an ALU

2.3.1 Specification

An ALU (arithmetic logical unit) performs operations such as addition,
subtraction, comparisons, and bitwise operations such as AND, OR, and
XOR.

The ALU takes two 32-bit bit vector operandsa andb and additional
five bits f . These bitsf control the operation performed by the ALU. The
ALU returns the result bit vector and an additional bitovf that is set iff an
overflow occurred during an addition or subtraction.
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f[4] f[3] f[2] f[1] f[0] Function

0 * * 0 * a� b[4 : 0]
0 * * 1 0 a� b[4 : 0]
0 * * 1 1 a�a b[4 : 0]
1 0 0 0 0 a+b with overflow test
1 0 0 0 1 a+b without overflow test
1 0 0 1 0 a�b with overflow test
1 0 0 1 1 a�b without overflow test
1 0 1 0 0 a^b
1 0 1 0 1 a_b
1 0 1 1 0 a�b
1 0 1 1 1 b[0 : 15]016

1 1 0 0 0 return zero
1 1 0 0 1 [a]> [b] ? 1 : 0
1 1 0 1 0 a= b ? 1 : 0
1 1 0 1 1 [a]� [b] ? 1 : 0
1 1 1 0 0 a< b ? 1 : 0
1 1 1 0 1 a 6= b ? 1 : 0
1 1 1 1 0 [a]� [b] ? 1 : 0
1 1 1 1 1 return one

Table 2.2 ALU functions
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f [1]

f [0]

sub

Figure 2.4 The ALU implementation

Table 2.2 lists the operations performed by the ALU. It is taken from
[MP95] with small modifications. The notationa� b is used to denote
a left shift of a with shift distanceb, a� b denotes a logic right shift of
a with shift distanceb, a�a b denotes an arithmetic right shift ofa with
shift distanceb.

Overflow Let Æ be an addition or subtraction, i.e.,Æ 2 f+;�g. An over-
flow indicates that the result of[a] Æ [b] is not in the range of the 32-bit
two’s complement numbers. Leta2 Tn denote thata is in the range of the
n-bit two’s complement numbers.

Table 2.2 does not provide overflow test and comparisons for unsigned
binary numbers in contrast to most microprocessors processors such as the
MIPS CPUs or the Intel Pentiums [KH92, Int95b]. We do so in order to
maintain the instruction set used in [MP00].
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2.3.2 Implementation

Figure 2.4 [MP95] gives an overview of the ALU implementation. De-
pending on the signalsf , the result from the appropriate unit is taken.

The addsub unit takes the operandsa andb and one extra input bitsub,
which indicates whether to do an addition or a subtraction. Ifsub is set,
the unit performs a subtraction. Thesubbit is calculated as follows:

sub := f4^ f3^ f2^ f1

The unit returns the result bit vector, and the flag bitsovf andneg. The
ovf bit is supposed to indicate the overflow condition described in the sec-
tion above. Thenegbit is used for the comparison operations and indicates
that [a]Æ [b] is below zero.

The addsub unit is realized as follows: Letop1 andop2 denote the
operands. The second operand is inverted in case of a subtraction.

op1 := a

op2 := b� (sub32)

This is justified by the following lemma:

For all bitvectorsa, inverting and incrementinga implements the unaryJ Lemma 2.10
minus on bitvectors.

(a� (1; : : : ;1))+1=�a

This is shown in the PVS bit vector library.

Using the operands and the sub bit the result is calculated by an adder.
In the following, the carry lookahead adder (section 2.2.6) is used. How-
ever, there is also an implementation and proof of a compound adder, as
described in [MP00], in the PVS tree in order to allow cycle time vs. hard-
ware cost tradeoffs. The implementation and the proof are omitted here.

Thesubbit is passed as carry-in bit to the adder. This realizes the incre-
mentation in case of a subtraction.

addsub(a;b;sub) := (result;ov f;neg)
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with result= cla(op1;op2;sub):result

The bitsov f andnegare calculated as follows:

neg = cla(op1;op2;sub):cout�op1[31]�op2[31]

ovf = neg�cla(op1;op2;sub):result[31]

The calculation ofresult in the addsub unit is correct.Lemma 2.11 I

addsub(a;b;sub):result= aÆb

This is shown using lemma 2.10 and 2.9.

The calculation of theovf signal in the addsub unit is correct.Lemma 2.12 I

addsub(a;b;sub):ovf= ([a]Æ [b]) 62 Tn

The calculation of thenegsignal in the addsub unit is correct.Lemma 2.13 I

addsub(a;b;sub):neg= ([a]Æ [b]) < 0

A proof for the lemmas 2.12 and 2.13 can be found in [MP00]. The full
proof is also in the PVS tree.

An equality tester is realized by testing ifa�b is zero. Using the output
signaleq of the zero tester and the signalsovf andneg from the addsub
unit, the comp unit makes the comparisons as follows:

comp: bvec[5]�B�B�!B

comp( f ;neg;eq) = ( f2^neg)_ ( f1^eq)_ (eq^neg^ f0)

Using the lemmas 2.2, 2.3, 2.12, and 2.13, the correctness of the comp
unit is shown.

The ALU is correct.Lemma 2.14 I

This is shown by a case-split on the operation codef using the lemmas
above. The correctness of the shifter is assumed.
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2.4 Specifying the Reference Machine

2.4.1 DLX Architecture

The reference machine used for all designs in this thesis is the DLX [HP96,
SK96]. However, the DLX architecture serves as an example only. The
algorithms and proof method presented here does not depend on any prop-
erties of the DLX architecture.

The DLX architecture is a load/store architecture with support for integer
and floating point arithmetic. The DLX instruction set (appendix B) is a
RISC instruction set and is similar to the MIPS instruction set.

The DLX architecture provides three register files:

� Thegeneral purpose register file(GPR) consists of 32 integer reg-
isters (R0,...,R31), each of which is 32 bits wide. The registerR0 is
defined to be always zero. The general purpose registers are used for
all integer operations and memory addressing purposes.

� Thefloating point register file (FPR) consists of 32 single precision
floating point registers (FGR0,...,FGR31), each of which is 32 bits
wide. These registers can also be accessed as 16 double precision
floating point registers (FPR0, FPR2,...,FPR30), each of which is 64
bits wide. The registerFPR0 is mapped onto the single precision
registersFGR0 andFGR1, and so on:

FPR0(i) =

�
FGR0(i) : i < 32
FGR1(i�32) : i � 32

The floating point registers are used by FPU (floating point unit)
instructions only.

� Thespecial purpose register file(SPR) consists of several registers
needed for special purposes such as flags and masks. An example is
the IEEE floating point flags register.

2.4.2 Configuration of an Integer DLX with Delayed PC

The configuration set of the DLX specification machine consists of the
visible registers (register files RF), the program counter (PC) registers, and
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the main memory (MEM) of the machine:

CDLX = W (RF)�W(RPC)�W(MEM)

The DLX implementation presented in chapter 3 implements integer op-
erations only and no interrupts. The floating point and special purpose
registers are not needed therefore. The machine is called DLXσ.

RF = fGPR[0]; : : : ;GPR[31]g

W (GPR[i]) = B32

In order to implement pipelining at a high performance level without
the need for a branch prediction mechanism, the DLX implemented in this
thesis uses the concept ofdelayed PCs[MPK00, MP00]: all modifications
to the PC register are delayed by one instruction, not just taken branches.
This is realized by buffering the PC register in a register called DPC (“de-
layed PC”). The Delayed PC technique is provably equivalent to the de-
layed branch semantics. The delayed branch semantics is, for example,
used in the MIPS [KH92], the SPARC [SPA92] and the PA-RISC [Hew94]
instruction set.

In order to implement the Delayed PC technique, two PC registers are
required:DPC, the delayed PC, andPC0:

RPC= fDPC;PC0g

W (DPC) = W (PC0) = B32

The main memory of the DLX specification machine consists of 230

memory cells, each of which is 32 bits wide. That accounts for a total of
four gigabytes RAM:

MEM= fMEM[0]; : : : ;MEM[230�1]g

W (MEM[i]) = B32

2.4.3 Initial Configuration

The GPR registers and the main memory of the DLXσ machine are ini-
tialized with arbitrary but fixed values. The PC registersDPC andPC0 are
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initialized as follows [MPK00]:

c0:DPC = 0

c0:PC0 = 4

2.4.4 Transition Function

The DLXσ machine provides control instructions (conditional branch and
jump), ALU instructions such as add and compare, and the memory in-
structions load and store. The instruction that is to be executed is encoded
in a 32-bit instruction word. This instruction word is fetched from the in-
struction memoryIM , which is assumed to be constant in this thesis. The
instruction memory is not part of the configuration therefore.

Let the signalI denote the instruction word fetched. The address used
to fetch I is taken from the register DPC, as required by the Delayed PC
technique [MPK00]:

I(c) = IM(c:DPC)

I-type

R-type

J-type

26

ImmediateRD

Function

6

SA

55

RDRS2

55

RS1

6

Opcode

6

Opcode PC Offset

Opcode

6

RS1

5 5 16

Figure 2.5 Integer instruction formats of the DLX

The DLX architecture provides three instruction formats for integer in-
structions (figure 2.5): the I-type format provides a 16-bit immediate con-
stant and two register addresses, the R-type format provides three regis-
ter addresses, a 5-bit immediate constant and an additional 6-bit function
code. The J-type format provides a 26-bit immediate constant, which is
used as PC offset.
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The coding of the instructions is given in appendix B. In order to decode

the instruction wordI , the following functions are used: The functions
I rtype, I jtype, I itype indicate an R-type, J-type, and I-type instruction,
respectively:

I rtype(I) = (=I31^=I30^=I29^=I28^=I27^=I26)_

(=I31^ I30^=I29^=I28^=I27^ I26)

I jtype(I) = (=I31^=I30^=I29^=I28^ I27)_

(I31^ I30^ I29^ I28^ I27)

I itype(I) = I jtype(I)^ I rtype(I)

The functionI ID extracts the index of the destination register from the
instruction word:

I RD(I) =

8<
:

I [20 : 16] : I itype(I)
I [15 : 11] : I rtype(I)
05 : otherwise

The functionsI RS1 andI RS2 extract the index of the first and second
operand from the instruction word, respectively:

I RS1(I) = I [25;21]

I RS2(I) = I [20;16]

The functionI immediateextracts the immediate constant from the in-
struction word:

I immediate(I) =

8>><
>>:

sign extend32(I [15;0]) : I itype(I)
zero extend32(I [10;6]) : I rtype(I)
sign extend32(I [25;0]) : I jtype(I)
0 : otherwise

This allows defining the values of the source operands: the integer DLX
instructions can have up to two source operands. Letop1andop2denote
the values of these operands. If the address of the operand is zero, the value
of the operand is zero by convention:

op1(c) =

�
0 : I RS1(I) = 0
c:GPR[I RS1(I)] : otherwise

(2.1)

op2(c) =

�
0 : I RS2(I) = 0
c:GPR[I RS2(I)] : otherwise

(2.2)
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Branch Mechanism The DLX architecture provides two instructions to
modify thePC0 register: the branch instructions test a given register for a
condition and add the offset given as immediate constant if the condition
holds; the jump instructions always set thePC0 register to the given value.

In order to determine the instruction coded by an instruction wordI , a
boolean function is defined for each instruction. The equations for these
functions are generated from the instruction set in appendix B and are in
the PVS tree. A list of the functions is also in appendix B.

The functionsI j(I) andI jr (I) return true iff the instruction is a jump
instruction. In case ofI j(I), the immediate constant is used as offset to
the PC, in case ofI jr (I) the jump target is the value of the first operand.
The functionI branch(I) is used to detect a branch. If the instruction is
a branch,I branch eq(I) indicates that the branch is to be taken if the
operand is zero. IfI branch eq(I) does not hold, the branch is to be taken
if the operand is not zero.

Let GPRabe the value of the operand. The functionb jtaken(I ;GPRa)
is true iff the given instructionI is a taken branch or jump:

b jtaken: bvec[32]�bvec[32] �!B

b jtaken(I ;GPRa) = I j(I)_ I jr (I)_ (I branch(I)^

(I branch eq(I)� (GPRa= 0)))

The functionnext pccalculates the new value ofPC0 given the instruction
word I , the value of the first operandGPRaand the old value ofPC0:

next pc(I ;GPRa;PC0) =8<
:

GPRa : b jtaken(I ;GPRa)^ I jr (I)
PC0+ I immediate(I) : b jtaken(I ;GPRa)^ I jr (I)
PC0+4 : otherwise

δ:PC0(c) = next pc(I ;op1(c);c:PC0) (2.3)

According to the Delayed PC technique, the new value forDPC is the
old value ofPC0:

δ:DPC(c) = c:PC0 (2.4)

In case of a jump and link instruction, which is indicated byI link(I),
the old value ofPC0 plus four is stored in the destination register:

δ:GPR[I RD(I)](c) = c:PC0+4
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ALU Instructions The functionALUfunction(I)extracts the ALU func-
tion code from the instruction word. The ALU function codes are given in
table 2.2, page 23.

ALUfunction(I) : B32�!B5

ALUfunction(I) =

8<
:

1 I30 I [28 : 26] : I itype(I)
I5 I3 (I2^ I5) I [1 : 0] : I rtype(I)
05 : otherwise

The ALU performs the DLX ALU instructions such as addition and
compare operations, which are indicated byI ALU (two register operands)
and I ALUi (one register operand and one immediate constant operand).
Furthermore, the shift operations are performed by the ALU. The shift op-
erations are indicated byI shi f t (two register operands) andI shi f ti (one
register operand and one immediate constant operand).

In case of an ALU or shift operation with two register operands, the
transition function for the destination register is:

δ:GPR[I RD(I)](c) = ALU(op1(c);op2(c);ALUfunction(I))

In case of an ALU or shift operation with one register operand and one
immediate constant operand, the transition function for the destination reg-
ister is:

δ:GPR[I RD(I)](c) =

ALU(op1(c); I immediate(I);ALUfunction(I))

Memory Instructions In order to access off-chip memory, the DLX ar-
chitecture provides load and store instructions. The load instructions copy
a value of a memory cell into a register. The store instructions copy the
value of a register into a memory cell.

As described in section 2.4.2, the DLX memory is organized in 32-bit
words. The address that is to be accessed is computed as follows: the
value of the first operand and the immediate constant provided in the in-
struction word are added. LetEA (effective address) denote this address.
It is defined using the addition on bit vectors as defined in section 2.1.5:

EA := op1+ I immeditate(I)
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EA[1:0] = 00

EA[1:0] = 00 EA[1:0] = 10

EA[1:0] = 00

lw

lb EA[1:0] = 01 EA[1:0] = 10 EA[1:0] = 11

lh

0 1 2 30 8 16 24 32

Figure 2.6 The possible alignments for memory instructions

The DLX architecture supports memory accesses with variable widths:
byte (8 bits), half word (16 bits), and word (32 bits) accesses are allowed.

The bitsEA[31 : 2] are used to select the word that is to be accessed.
The DLX architecture does not support non-aligned accesses, i.e., memory
accesses must not cross a memory cell boundary. In case of a word access,
this implies thatEA[1 : 0] must be zero. In case of a byte or half word
access,EA[1 : 0] is used to specify the bytes in the memory cell. Figure
2.6 shows the allowed positions of the memory operand within a memory
cell.

In case of a load instruction, the 32 bits of the destination register are
always written. In case of a byte or half word load instruction, the memory
operand is stored in the register beginning with the least significant bits
and either a zero or a sign extension is performed. In case of the lh and
lb instructions, sign extension is performed, in case of the lhu and lbu
instructions, zero extension is performed.

In case of a store instruction, the machines presented in the following
chapters assume full word accesses. This restriction will be removed in
chapter 6.

2.5 Literature

Besides the basic ciruits presented here, there are more advanced circuits,
e.g., adders [LF80, Min95]. There are also HDL generators available for
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arithmetic circuits such as adders and multipliers [PA96]. Basic circuits
with proofs in PVS language are covered by [BJK01].

Fully automated verification of combinational circuits such as adders has
been reported using BDDs (binary decision diagrams) [Bry86, FFK88].
The BDDs of some circuits, such as multipliers, grow exponentially in
the number of inputs bits. A lot of literature addresses this issue [Bur91,
JNFSV97].

Barrett et.al. [BDL98] extend an equivalence-checker by decision proce-
dures for bit vector arithmetic and verify components of a microprocessor
such as an instruction fetch unit automatically. The decision procedures
are similar to those used in PVS.

The specification of microprocessors as mathematical machine is a com-
mon technique [Gau95].
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3.1 The Prepared Sequential Machine

I
N THIS CHAPTER, an implementation machine is built that works as fol-
lows: the calculation of a configuration of the specification machine is

split in n arbitrary phases, calledstages. In each phase, the values of a
subset of the registers of the configuration of the specification machine are
calculated. The implementation machine performs the phases round-robin
and needs one transition for each phase, i.e., the implementation machine
needsn times as many transitions to do the same calculation as the speci-
fication machine.

The calculation is still done in a sequential way, at no time two con-
figurations ofMS are calculated in parallel. However, the structure of the
machine will match the structure of the pipelined machine described in the
next chapter. The machine is calledprepared sequential[MP00] machine
or Mσ therefore.

Let MS and MI be mathematical machines. LetMS = (CS;c0
S;δS) be

a specification machine and letMI = (CI ;c0
I ;δI ) be the implementation

machine. LetRS be the registers of the specification machine andRI be the
registers of the implementation machine. The following sections describe
how to build a prepared sequential machine that provably simulates the
specification machine.
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3.2 How Hardware is Specified

3.2.1 A Simple Hardware Description Language

The hardware of the implementation machine consists of the registers of
the machine and of the data paths, which calculate the values of the regis-
ters. The registers are modeled by the configuration set of the mathematical
machine, and the data paths are modeled by the transition functionδ. The
configuration set and the transition functionδ are defined using a simple
hardware description language that is similar to a register transfer language
(RTL).

For example, in a register transfer language the new value for theDPC
register is specified as follows:

DPC := PC0

In this example, the value ofPC0 is used in order to specify the new value
of DPC. Formally, suppose the goal is to calculate the valueDPC has in
configurationci

S with i > 0. In this case, the value used forPC0 is the value
the registerPC0 has in configurationci�1

S . Thus, the following is supposed
to hold for all i > 0:

ci
S:DPC = ci�1

S :PC0

A very similar definition is in [KP95].

In the example above, two things happen:

� The old value ofPC0 is read.

� The new value ofDPC is written.

The hardware description language used in this thesis makes use of the
following language elements:

1. The configuration set is defined using a list of registers and addi-
tional information on the registers such as their domain. This is
described in the next section.

2. The transition functionδ, i.e., the function computed by the gates
between the registers, is defined using a set of functions. This is
described in the sections 3.2.4 and 3.2.6.
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3.2.2 The Register Set of the Implementation Machine

For all registersR of the implementation machine, letR2 out(k) denote
that the registerR is updated by stagek2 f0; : : : ;n�1g.

The registers of the implementation machine include all registers of theJ Definition 3.1
Specification Registerspecification machine. These registers are calledspecification registers.

The fact thatR2RI is a specification register is denoted byR2 spec.

By convention, a specification registerR2RI can be updated by exactly
one stage only. Let the stagek = stage(R) be the stage that updatesR. In
this case, the registerR is also denoted byR:(k+1). This convention and
the notation is taken from [MP00].

In order to store temporary values used for the calculation, further registersJ Definition 3.2
Implementation Registerare added to the machine. These registers are calledimplementation regis-

ters. The fact thatR is an implementation register is denoted byR2 impl.

For example, if a processor fetches an instruction word from the instruc-
tion memory and stores it in the instruction word register, this instruction
word is an intermediate result of the computation of the next state of the
reference machine.

In contrast to specification registers, instancesR:k of implementation
registersR can be present in multiple stages. The functionstage(R) is
defined to be the first stage an instance of the implementation register is
present in:

8R2 impl : stage(R) = minf k j R:(k+1) 2 out(k) g

The property of a register whether it is an implementation or specifica-
tion register is calledclassof the register.

Thus, the configuration set is defined by listing the names of the reg-
isters, their types (i.e., domain), and their classes. Furthermore, for each
register the stage(s) are given. In case of a specification register, only one
stage is allowed. In case of an implementation register, multiple stages are
allowed.

In addition to that, the command used in order to define a register is also
used in order to specify the value the register has in the initial configura-
tion.
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T = 0 T = 1 T = 2 T = 3 T = 4 T = 5 T = 6

ueT
0 1 0 0 0 1 0 0

ueT
1 0 1 0 0 0 1 0

ueT
2 0 0 1 0 0 0 1

ueT
3 0 0 0 1 0 0 0

Table 3.1 The sequential scheduling of a four stage pipeline

3.2.3 Scheduling of the Prepared Sequential Machine

The next step is to define the transition functionδ of the machine. The
registers of the prepared sequential machine are updated round-robin. In
each transition, the registers of only one stage are updated. The update
of the registers inout(k) of a stage is controlled by a signaluek (update
enable). Iffuek is one, the registers inout(k) are updated. Table 3.1 gives
an example of the values ofuek for a four stage pipeline. The same concept
is used by [MP00].

The stage that is updated before stagek is calculated by the function
prev(k):

prev: f0; : : : ;n�1g! f0; : : : ;n�1g

prev(k) =

�
k�1 : k 6= 0
n�1 : k= 0

Stagek is said to be updated in cycleT iff ueT
prev(k) = 1 holds.

In analogy to the functionprev, the functionnext(k) calculates the stage
that is updated after stagek:

next: f0; : : : ;n�1g ! f0; : : : ;n�1g

next(k) =

�
k+1 : k 6= n�1

0 : otherwise

In order to allow the machineMI to keep track of the stage that is
currently processed, an 1-bit registerf ull : j is added to each stagej 2
f1; : : : ;ng. If f ull : j is set, the calculation of the registersR: j is finished.
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In the initial configuration, only the full bit of the last stage is set:

c0: f ull : j =

�
1 : j = n
0 : otherwise

In addition to that, asignal f ullk is defined for each stagek2 f0; : : : ;n�1g
as follows:

f ullk(c) =

�
c: f ull :n : k= 0
c: f ull :k : otherwise

If f ullk(cT
I ) holds, it is said that stagek is full during cycleT.

In general, the registers inout(k) are updated ifff ullk is active. How-
ever, some operations on the registers might take more than one cycle,
like an access to slow off-chip memory. This requires means to stall the
machine. This is realized by a signalstallk for each stage. If active, the
stage is stalled. The signaluek is active iff the stage is full and not stalled,
therefore:

uek = f ullk^stallk

By convention, the stall signal of a given stagek must not be active if theJ Convention 3.1
stage is not full:

f ullk =) stallk

The transition functions of the full bits are defined as follows: a full bit
is set iff the stage was updated or the stage was full in the previous cycle
and the stage was stalled:

1� k< n : δ(c): f ull :k = uek�1(c)_ (c: f ull :k^stallk(c))

k= n : δ(c): f ull :n = uen�1(c)_ (c: f ull :n^stall0(c))

Sincestallk(c) implies f ullk(c) (convention 3.1), this definition can be
simplified to:

1� k< n : δ(c): f ull :k = uek�1(c)_stallk(c)

k= n : δ(c): f ull :n = uen�1(c)_stall0(c)

A stage is full iff it is updated or stalled in the previous cycle. J Lemma 3.2

f ullT+1
k = ueT

prev(k) _stallTk
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R:1full:11

R:21 full:2

ue1

full1

full0

f1

f0ue0

ue1

ue0

R:n

fn�1

full:n1 uen�1

stall0

stall1

stall2

stall0uen�1

Figure 3.1 The prepared sequential machine

40



Section 3.2

HOW HARDWARE IS

SPECIFIED

This is shown by unfolding the definition of the full signalf ullk and of
prev(k).

Figure 3.1 shows the registers of a prepared sequential machine and the
clock enable signals that are used for them. As described in chapter 2, the
circuits used in order to realize the calculation of the new values for the
initial statec0 are omitted.

3.2.4 The Transition Function

As described above, a register value is supposed to be written only if the
update enable signal of its stage is active. The value of the register should
remain unchanged otherwise. The overall transition functionδ:R for a reg-
ister R2 out(k) therefore is generated as follows: if the update enable
signal is not active, the old value is taken. If the update enable signal is
active, the value provided by a functionωkR(c) is taken, which is defined
later.

δ:R(c) =

�
ωkR(c) : uek(c) = 1
c:R : otherwise

The functionsωkR are mappings from the configuration of the imple-
mentation machine into the domain of the registerR. These functions are
generated from the hardware description language using the two simple
elements: write accesses and read accesses. The accesses are kept in a list.
In addition to the data of the read or write access, which is described below,
the list contains a flag for each access that specifies whether the access is a
read or write access.

A write access without write addressis a five-tuple (R:(k+1), fkR,
dep(R;k), fkRwe, dep we(R;k)) (write accesses with write address are
used in order to provide an address for memories or register files and will
be described in the next section).

The first element specifies the instance of the register that is written to.
We require that exactly one write access is given for each instanceR:(k+1)
of each register.

The second element, the functionfkR, provides the value that is written
into the registerR:(k+1), i.e., the range of the function is the domain of
the register. The function is calledregister transition function. The register
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transition functions basically model the combinatorial circuits between the
pipeline stages. As an example, this includes the ALU, FPU and so on.

A register transition function takes the values of several registers as ar-
guments. These registers are listed indep(R;k). Let a registerR0 be in the
list of a registerR. In this case, it is said that the calculation ofR depends
onR0. Letdep(R;k) denote the list of registers the calculation ofRdepends
on:

dep(R;k) = (R01; : : : ;R
0
j) with R0l 2R

This allows defining the domain and range of the functionsfkR:

fkR : W (R01)� : : :�W(R0i)�!W (R)

Furthermore, a functionfkRwemay be provided as element four. The
function fkRweis calledwrite enablesignal and can be used in order to re-
alize updates of the given register instance that are only performed under a
certain condition. As an example, consider that in case of a microprocessor
most registers are only changed by certain instructions. The write enable
function allows modeling this. This function may become non-trivial, for
example if writing the register is to be suppressed in case of an interrupt.

The range of the functionfkRweis B. If it returns one, the write access
is to be done. If the value is zero, the write access is suppressed. The
domain of the function is defined in analogy to the domain offkR using a
list of input registers nameddep we(R;k):

dep we(R;k) = (S01; : : : ;S
0
o) with S0l 2R

fkRwe: W (S01)� : : :�W(S0m)�! B

Let the functionsγkR andγkRwedenote thevaluesof the arguments of
the functionsfkR and fkRwe. These functions are defined later using the
read accesses.

The effect offkRwedepends on whetherR is an implementation or speci-
fication register. In case of a specification register, the following behaviour
is used: If the function returnsfkRwetrue, the updating ofR:(k+ 1) is
performed. If the function returns false, the updating is suppressed and the
value in the register does not change. Thus, ifR is a specification register,
ωkR is defined as:

ωkR(c) =

�
fkR(γkR(c)) : fkRwe(γkRwe(c))
c:R : otherwise
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Note that we have actually two signals that are used in order to determine
whether a specification register is to be clocked or not: both the update
enable and the write enable signals must be active, i.e., the clock enable
signal of a specification registerR2 out(k) is:

uek^ fkRwe(γkRwe(c))

This method is taken from [MP00]. It allows us to specify the stall
engine as a module as done in the previous section.

If the write enable signal is false andR is an implementation register, the
following behavior is used: the value from the register in the previous stage
is written into the register. If there is no instance of the implementation
register in the previous stage, a pre-defined default value, e.g., zero, is
taken. Thus, ifR is a specification register,ωkR is:

ωkR(c) =

8<
:

fkR(γkR(c)) : fkRwe(γkRwe(c))
c:R:k : R2 out(k�1)
0 : otherwise

This is illustrated in figure 3.2: As an example, consider a processor with
an ALU in stage 2. The results are stored in instances of implementation
registersC. In case of an ALU instruction,f2Cweholds and we store the
output of the ALU in the registerC:3. If not so, the value inC:2 is taken.
The ALU is modeled by the functionf2C. The multiplexer selecting the
appropriate value is modeled by the functionω2C.

If no function fkRweis provided, the constant value true is taken instead,
i.e., the updating is performed unconditionally.

3.2.5 Inputs

The functionsfkR and fkRweabove require certain inputs in order to pro-
vide a meaningful value, i.e., it is left to define the functionsγkRandγkRwe.
Formalizing the inputs of a register transition function is the most impor-
tant concept of this thesis, since most of our arguments are used in order
to justify how to get those inputs. In particular, we will realize forward-
ing in pipelined machines and speculation by adjusting these functions ac-
cordingly, i.e., the functions model the forwarding logic and speculation
circuits.
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ALU

0 1 f2Cwe

C:3ue2

δ

ω2C

f2C

C:2

Figure 3.2 Example forfkR, fkRwe, andωkR
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FO
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R
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Stage 1

R:3

R:4

R:5

A:2

γ1A
γ1B

B:2

Figure 3.3 Example for the input generation functions

This is illustrated in figure 3.3: it depicts a pipeline that reads two values
in stage 2 that require forwarding. The forwarding logic is modeled by the
functionsγ1A andγ1B.

The register transition functions depend on a set of input registers. The
functionsγkRandγkRweprovide the whole set. LetgkR0 be a function that
extract the value of asingleinput registerR0 from the configuration of the
implementation macine.

gkR
0 : C�!W(R)

We will later on definegkR0. Using gkR0, we definegk, which takes a
configuration and a list of registers. It returns the input values provided by
gkR0:

gk(c;(R
0
1;R

0
2; : : : ;R

0
j)) = (gkR

0
1(c);gkR

0
2(c); : : : ;gkR

0
j(c))

Let fkR be the register transition function anddep(R;k) be the list of
input registers(R01; : : : ;R

0
j), as above. Usinggk, we defineγkR:

γkR : C�!W (R01)� : : :�W(R0j)
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γkR(c) = gk(c;dep(R;k))

The functionsγkRweandγkRreare defined in analogy to this definition.

It is left to define the functionsgkR0, which calculate the actual input
value. As described above, calculating such input values may be complex,
for example in machines with forwarding or speculation. In the sequential
prepared machine, we neither need forwarding nor speculation. Thus, we
define rather simple functionsgkR0 for this machine.

In the hardware description language, the definition ofgkR is done using
read accesses. Aread access without read addressis a four-tuple (R0, k,
fkR0re, dep re(R0;k)) (read accesses with read address will be described
in the next section). For each stage and for each register that is input of
the stage, exactly one read access must be defined. The first element is the
register (not an instance thereof), the second element is the stage that de-
pends on the register, the third element is a read enable function in analogy
to the write enable for write accesses. The functionfkR0re also depends on
registers:

dep re(R0;k) = (U 0
1; : : : ;U

0
q) with U 0

l 2R

fkR
0re : W (U 0

1)� : : :�W(U 0
q)�! B

As above,γkR0re is used in order to denote the input arguments offkR0re.
In order to prevent this definition from becoming recursive, it is required
that the read accesses to those registers indep re(R0;k) or in depwe(R;k)
have no read enable signal.1

The read enable function has the following purpose: If the read enable
signal fkR0re is not active, a default value, e.g., zero, is used as input.
This allows us to state whether we actually need an input or not. In case
of a microprocessor, not all instructions have an equal number of input
registers, some take one GPR operand, some two, and so on. The benefit of
knowing when we do not need an input becomes obvious if one considers a
machine with forwarding: in case forwarding fails because of data hazards,
we do not have to stall if the input is not used anyway.

If no function fkR0re is provided, the constant value true is taken instead,
i.e., the read access is performed unconditionally.

1It is feasible to extend this definition in order to allow a recursion. However, no mi-
croprocessor design implemented for this thesis requires it.
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If the read enable signal is active, the value provided bygkR0 is the value
of the register. As described above, this simple definition only works in the
prepared sequential machine. We will re-definegkR0 for faster machines
later on.

The formal definition ofgkR0 depends on whetherR0 is an implementa-
tion or specification register. Letw bestage(R0).

If R0 is an implementation register, an instance ofR0 is expected to be
in the previous stage. If there is no instance ofR0 2 out(k�1), instances of
the registerR0 are added toout(w+1); : : : ;out(k�1) if not already present.
These registers are called “buffer registers”. The transition function for
these additional registers is:

ωpR0(c) = c:R0:p for p2 fw; : : : ;k�1g

After this is done, an instance ofR0 is in out(k�1). The value is read
directly from the registerR0:k.

gkR
0(c) =

�
c:R0:k : fkR0re(γkR0re(c))
0 : otherwise

If R0 is a specification register, there is only one instance ofR, by def-
inition. In this case, the value in this register is taken. It is required that
w� k holds (this limitation is removed in chapter 5).

Thus,gkR0 is defined as follows:

gkR
0(c) =

�
c:R0:(w+1) : fkR0re(γkR0re(c))
0 : otherwise

Figure 3.4 shows an example how the functionsfkRandgkR0 are used in
order to model hardware. It shows the hardware for an unconditional write
access to a registerR:(k+1) that depends on two implementation registers
R01 andR02. The read accesses toR01 andR02 are both unconditional.

3.2.6 Register Files and Memory

In hardware implementations of microprocessors, on-chip memory is used
to realize register files. In addition to that, microprocessors provide an
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R0

2:k
uek�1

gkR0
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ωk�1R0

2

R0

1:k
uek�1

gkR0

1

ωk�1R0

1

fkR

ωkR

uek

γkR= gk(cI ;dep(R;k))

)
dep(R;k)

R:(k+1)

Figure 3.4 The input and output functions for an unconditional write access to a
registerR:(k+1) that depends on two implementation registersR01 andR02. The
read accesses toR01 andR02 are both unconditional.
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interface to off-chip memory in order to store larger amounts of data. The
microprocessor usually reads or writes only a small part of these memories
in each cycle.

In theory, accesses to these memories could be modeled as follows: the
complete contents are read, some parts are modified and re-written. How-
ever, in hardware the access to both memory and register files is limited.
For write accesses to register files or memory, the transition functions are
therefore expected to provide the value that is to be written, the address of
the register or memory cell that is to be modified, and a write enable signal.
For read accesses, the transition functions must provide the address and a
read signal. The functionsωkR defined above model the behavior of the
hardware, but are not suited for synthesizing hardware as soon as memory
or register files are involved.

The definition of the functionωkR is therefore changed if a register file
or memory is accessed. This is done by extending the hardware description
language using read and write accesses with address. It is presumed that
implementation registers are never in a register file or part of a memory.

A write access with write address is defined like a write access without
write address but with additional elementsfkRwaanddep wa(R;k), i.e.,
it is a seven-tuple. The write address functionfkRwatakes the registers in
the listdep wa(R;k) as arguments, as done with the arguments offkR. The
function returns the address that is to be used. The range of the function
therefore is the set of possible addresses of the access. LetWa(R) denote
this range.

dep wa(R;k) = (V 0
1; : : : ;V

0
r ) with V 0

l 2R

fkRwa: W (V 0
1)� : : :�W(V 0

r )�!Wa(R)

The range of the functionfkR has to be adjusted accordingly such that
it matches the range of a single memory cell or register of the register file;
e.g., if a 32x32 bit register file namedGPR:5 is accessed,f4GPRreturns a
32-bit vector. LetWr(R) denote this range. In the example, the function
f4GPRwareturns a five-bit vector.

dep(R;k) = (R01; : : : ;R
0
j) with R0l 2R

fkR : W (R01)� : : :�W(R0i)�!Wr(R)

The value provided by the functionfkRweenables (return value one) or
disables the write access (return value zero) to the register or memory cell.
This value is taken as write enable signal.
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The behavior of the memory or register file is modeled by the function
ωkR as follows: let the brackets[ ] denote a projection used in order to
access a single memory cell or register of a register file and let the function
γkRwadenote the function that calculates the arguments of the function
γkR0waas described in section 3.2.4.

8 x2Wa(R) :

ωkR(c)[x] =

8<
:

fkR(γkR(c)) : fkRwe(γkRwe(c))^
: x= fkRwa(γkRwa(c))

c:R[x] : otherwise

Furthermore, a read address can be supplied for each read access to a
specification register that is a register file or memory. Such a read access
is called read access with read address. In analogy to the write address
functions fkRwa, this index is supplied by an additional functionfkR0ra,
called read address. The function takes arguments as described above for
fkR0re. The list of registers is denoted bydep ra(R;k). The range of the
function isWa(R), as described above.

Let the functionγkR0ra denote the function that calculates the arguments
of fkR0ra as described in section 3.2.4. The functiongkR for a conditional
specification register read access with read address is:

gkR
0 : C�!Wr(R)

gkR
0(c) =

�
c:R[ fkR0ra(γkR0ra(c))] : fkR0re(γkR0re(c))
0 : otherwise

The generation of the hardware of the implementation machine can now
be done automatically by a program that reads the following:

� The program reads the register list including the domain, type, class,
and initial value of the register.

� The program reads the list of read and write accesses.

In the following section, the hardware description language above will
be used in order to implement a sequential DLX. This is followed by a
proof that this implementation simulates the specification as given in chap-
ter 2.
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3.2.7 Multiport Read Accesses

In case of a microprocessor, we can have multiple read accesses to the same
register file in the same stage. For example, in a DLX implementation we
have two read accesses to the general purpose register file. We support
separate read enable and read address functions for these read access. Let
Rbe the register that is read.

By convention, we name these functions as follows: the read enable
function of the first access is namedfkRa re, the read enable function of
the second access is namedfkRb re. In analogy to that, the read address
function of the first access is namedfkRa ra, the read address function of
the second access is namedfkRb ra. The list of inputs these functions de-
pend on is denoted bydep re(Ra;k), dep re(Rb;k), and so on. In analogy
to that, the function that provides the inputs tofkRa re is namedγkRa re,
and so on.

Since we have separate read enable and read address functions, we also
get different input values. We denote the value generated for the first read
access byg1Raand the value generated for the second read access byg1Rb.

As an example, consider two read accesses in stage 1 to theGPRregister
file. The read enable functions are namedf1GPRare and f1GPRbre. The
input generation functions are namedg1GPRaandg1GPRb.

3.2.8 Notation

For sake of simplicity, we introduce the following shorthand for formulas
that will be used very often in the rest of this thesis: Consider two functions
fkQ andγkQ. Let x be a tuple of arguments ofγkQ. In this thesis, we will
often need the valuefkQ of γkQ of x:

fkQ(γkQ(x))

We will denote this byf γkQ(x):

f γkQ(x) := fkQ(γkQ(x))

For example, the function compositions used in the previous section will
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be shortened as follows:

f γkR(c) := fkR(γkR(c)) (3.1)

f γkRre(c) := fkRre(γkRre(c)) (3.2)

f γkRwe(c) := fkRwe(γkRre(c)) (3.3)

f γkRra(c) := fkRra(γkRra(c)) (3.4)

f γkRwa(c) := fkRwa(γkRwa(c)) (3.5)

3.3 Precomputed Control

In the sections above, the signalsfkRwa, fkRwe, fkRra, and fkRreare used
in order to specify which register is read or written. The functions that
calculate these signals can take an arbitrary number of registers as input
just as the functionsfkR.

Consider a write enable signal of stage 4 in a five stage pipeline. Let
this write enable signal depend on an instruction word that is calculated by
stage 0. In order to read this instruction word in stage 4, one has to add
buffer registers for the stages 1 to 4. These registers are quite expensive. In
order to save hardware cost, one can calculate the value of the write enable
signal already in stage 0 or 1, thus saving the buffer registers.

In order to get the value of the write enable signal, registers for the write
enable signal are added instead. However, this requires only a one-bit
register for each stage. This is less expensive than the registers for the
full instruction word. This can be also done for other signals such as the
read/write address.

This method is calledprecomputed control[PH94, MP00]. If the value
of a control signal is calculated as described above, it is said that the signal
is precomputed.

Naming Convention Let sbe the name of a precomputed control signal,
e.g., f4GPRwe. The registers added in order to store the value of the signal
will be nameds:k with k being the number of the stage the register is an
input of, i.e.,s:k2 out(k�1). All registers containing precomputed control
are summarized by the registerP:k.

For example, the registers containing the precomputed versions of the
write enable signalf4GPRweare calledf4GPRwe:1, f4GPRwe:2, and so
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on. Note that these registers are treated like implementation registers. In
particular, there are corresponding functionsfkRfor each precomputed sig-
nal R.

3.4 Implementing the Prepared Sequential DLX

3.4.1 Structure

The prepared sequential machine DLXσ is the first approach to implement
the DLX defined in chapter 2. The execution of an instruction in the DLXσ
is done in five stages. The organization of the stages is similar to the
pipeline of a MIPS R2000/R3000 [KH92] and also used in [HP96, MP00]:

� In stage 0 (IF), the instruction fetch is done.

� In stage 1 (ID), the instruction word is decoded and the operands of
the instruction are fetched.

� In stage 2 (EX), the ALU calculation is done.

� In stage 3 (M), the memory access for load and store instructions is
done.

� In stage 4 (WB), the result of the instruction is written into the reg-
ister file.

Figure 3.5 shows all registers of the machine DLXσ and the stage they
belong to. As described above, the signals used for precomputed control
are summarized as registerP. Furthermore, the main components such as
ALU and memory are depicted. Table 3.2 lists the stages and summarizes
the registers that are written in and read in a given stage, respectively.

Initial Configuration and Transition Function In the initial configura-
tion, the values of specification registers of the DLXσ machine are identical
to the values of the corresponding registers of the specification machine.
The implementation registers are initialized with zero.

The transition function of the DLXσ machine is defined using register
transition functions as described in section 3.2.4.
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Figure 3.5 The prepared sequential DLX. The registersP:k summarize the regis-
ters used for precomputed control.
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Stage Reads Writes

0 DPC IR
1 IR, PC0, DPC, PC0, Aad,

GPR[Aad] = GPRa, Bad, A, B, C
GPR[Bad] = GPRb

2 IR, A, B C, MAR, MDRw
3 IR, MAR, MDRw, C, C, MARh, DM[MAR[31 : 2]],

DM[MAR[31 : 2]] MDRr
4 MDRr, MAR, IR GPR

Table 3.2 The registers the stages of the prepared sequential machine read and
write, without precomputed control

3.4.2 The Instruction Fetch Stage

The instruction fetch stage IF reads the delayed PC registerDPC uncondi-
tionally and fetches the instruction memory cell thatDPC points to. This
value is stored in the only output register of the stage, the IR implemen-
tation register, unconditionally. The register transition function for IR.1
therefore is:

f0IR(DPC) = IM [DPC] (3.6)

3.4.3 The Instruction Decode Stage

The instruction decode stage ID reads the instruction word in the register
IR and decodes it.

The operand registers of the instruction are read and stored in two imple-
mentation registers A and B. This is realized by means of two conditional
read accesses with read address toGPR. The naming conventions for such
multiport accesses is described in section 3.2.7.

The read enable functions for these read accesses depend on the instruc-
tion word and on the source address of the operand: we need to test the
instruction word in order to determine whether the instruction requires the
operand or not. This is determined by testing the instruction word read
from IR using the functions defined in chapter 2.
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In addition to that, we test the address. If the address is zero, the read
access is not necessary, since theGPRregister with address zero has the
constant value zero, as required by the DLX specification. If the read en-
able function is not active, the value zero is passed to the register transition
function by convention. This is exactly the value required by the specifi-
cation. Thus, we omit an extra multiplexer in order to get zero in case of a
read access toGPR[0].

The first operand is required by loads, stores, ALU instructions, branch
instructions, and the jump register instructions. Thus, the read access is
performed if the following condition holds:

f1GPRare(IR) = (I load(IR)_ I store(IR)_
I ALUi(IR)_ I branch(IR)_
I jr (IR)_ I shi f t(IR)_
I ALU(IR)_ I shi f ti(IR))^
(I RS1(IR) 6= 0)

(3.7)

The second operand is required by ALU instructions that do not use the
immediate constant as second argument and by store instructions. In case
of store instructions, the address of the second operand is stored in the RS2
location of the instruction word and not in the RD location (appendix B).

f1GPRbre(IR) = (I shi f t(IR)_ I ALU(IR)_ I store(IR))^
(I store(IR)?I RD(IR) : I RS2(IR)) 6= 0)

(3.8)

The indices of the read accesses are calculated from the instruction word
in IR: In case of the first operand,I RS1 provides the address. In case of
the second operand, it is necessary in order to distinguish store instructions
from ALU instructions:

f1GPRara(IR) = I RS1(IR)

f1GPRbra(IR) =

�
I RD(IR) : I store(IR)
I RS2(IR) : otherwise

(3.9)

The result of the instruction is buffered in the implementation registerC.
In the decode stage, only the result of jump and link instructions is known
already, which isPC0+4. This value is stored inC therefore if the instruc-
tion is a jump and link instruction. This is realized using a conditional
write access toC:2.

f1C(PC0) = PC0+4 (3.10)

f1Cwe(IR) = (I jr (IR)_ I j(IR))^ I link(IR) (3.11)
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4

NextPC

0 1

Add

0 1

GPRa

PC0

I immediate(IR)

b jtakenimp

nextpcimp(IR;GPRa;PC0)

I jr (IR)

Figure 3.6 The implementation ofnext pc

Furthermore, the decode stage calculates the new values for the PC reg-
istersDPC and PC0 according to the Delayed PC technique. LetGPRa
denote the value of the first operand, as calculated byg1GPRa.

f1DPC(PC0) = PC0 (3.12)

f1PC0(IR;GPRa;PC0) = next pcimp(IR;GPRa;PC0) (3.13)

The functionnext pcimp is implements thenext pccalculation as defined
in chapter 2. It is defined in the obvious way using a zero tester in order to
calculate theb jtakensignal, as defined in section 2.4.4:

b jtakenimp(IR;GPRa)

:= I j(IR)_ I jr (IR)_ (I branch(IR)^ (3.14)

(I branch eq(Iw)�zerotesterimp(GPRa)))

By using the correctness of the zero tester (lemma 2.2), one easily shows
the correctness of the circuit that calculatesb jtaken:

The calculation of theb jtakensignal is correct: J Lemma 3.3

b jtakenimp = b jtaken

Using theb jtakenimp signal and a carry lookahead adder as described
in section 2.2.6, we calculate the new PC (figure 3.6). In case of a jump
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register instruction, we take the value of the GPR operand. In case of a
taken branch, we add the old PC and the PC offset from the instruction
word. In any other case, we take the old PC incremented by four.

The calculation of the new PC is correct:Lemma 3.4 I

next pcimpl = next pc

This is shown easily using the correctness of the adder circuit.

Precomputed Control In addition to that, the decode stage also does
the precomputation of several control signals. The following signals are
precomputed in the decode stage:

� The write enable signal and write address used in the write back
stage,

� the write enable signals of allC registers.

The formulae for these signals are given in the sections of the stages the
registers belong to for sake of simplicity. Note that the circuits calculating
the signal values actually belong to the decode stage. In the later stages,
the signal is just taken from the register holding the precomputed signal
and no calculation is performed.

3.4.4 The Execute Stage

In the execute stage, the result of all ALU instructions is computed. This
includes the integer instructions such as addition and subtraction, the shift-
ing instructions, and the compare instructions. Furthermore, the address
computation for memory instructions is performed.

The stage reads the values of the operands from implementation regis-
tersA:2 andB:2. However, both the memory instructions and the ALU
instructions with immediate constant (e.g., addi) take the immediate con-
stant from the instruction word as second operand. Letaluop2 denote the
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value of the second operand:

aluop2(IR;B) =

8<
:

B : I ALU(IR)_
I shi f t(IR)

I immediate(IR) : otherwise
(3.15)

The functionaluop2 is used as a shorthand for this text only; in the PVS
tree, the expanded form is always used.

In case of ALU instructions, the operation that is to be performed is
provided by the functionALU f unction. This function is defined in section
2.4.4. In case of memory instructions, as indicated byI load andI store,
an addition is performed in order to compute the effective address.

alu f(IR) =

�
(1;0;0;0;0) : I store(IR)_ I load(IR)
ALU f unction(IR) : otherwise

The implementation registerC:3 holds the result provided by the ALU.
It is only written on ALU instructions.

f2C(IR;A;B) = ALU(A;aluop2(IR;B);alu f(IR)):result

f2Cwe(IR) = I ALU(IR)_ I ALUi(IR)_

I shi f ti(IR)_ I shi f t(IR)

In case of a memory instruction, the result (i.e., the address of the mem-
ory operand) is stored in the registerMAR:3.

f2MAR(IR;A;B) = ALU(A;aluop2(IR;B);alu f(IR)):result

In the registerMDRw:3, the second operand is stored, which is the value
to be stored in memory in case of a store instruction.

f2MDRw(B) = B

3.4.5 The Memory Stage

In the memory stage, the memory access for load and store instructions is
performed. In order to realize load instructions, a conditional read access
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with read address toDM is performed. The read access is performed iff
the instruction is a load instruction. The read address is the high-order 30
bits of the effective memory address stored inMAR.

f3DMre(IR) = I load(IR)

f3DMra(MAR) = MAR[31 : 2]

This result is stored in the registerMDRr. The result of the read access,
as provided byg3DM, is namedDMemout.

f3MDRr(DMemout) = DMemout

The registerC is passed to the next stage without modification. The
write enable function of the write access toC:4 is constant false therefore
(compare the definition of conditional write accesses on page 43).

f3Cwe(IR) = 0

In order to realize store instructions, a conditional write access toDM
is performed. The value read from the registerMDRw is written iff the
instruction is a store instruction. The address of the write access is the
upper 30 bits of the effective memory address, as above.

f3DMwe(IR) = I store(IR)

f3DMwa(MAR) = MAR[31 : 2]

f3DM(MDRw) = MDRw

3.4.6 The Write Back Stage

In the write back stage, the result of the instruction is stored in the register
file. In case of a load instruction, the data word fetched from the data
memory present in MDRr is shifted and masked prior to write back. This
is done using the functionshi f t4load, which is defined in section 2.4.4.
In case of any other instruction, the result is read from the implementation
register C.

f4GPR(C; IR;MAR;MDRr) =�
shi f t4load(MAR;MDRr; IR) : I load(IR)
C : otherwise
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The write access to the register file is conditional; the condition is that
the instruction has a GPR destination operand. This is true for ALU/shift
instructions, loads, and jump and link instructions. Thus, the write enable
signal is:

f4GPRwe(IR) = I ALU(IR)_ I ALUi(IR)_ I load(IR)_

I shi f ti(IR)_ I shi f t(IR)_

((I j(IR)_ I jr (IR))^ I link(IR))

Furthermore, the write access has a write address. As defined in chapter
2, the functionI RD(IR) determines the address destination register.

f4GPRwa(IR) = I RD(IR)

Both the write enable and the write address signals are precomputed in
the decode stage as described in section 3.3, i.e., the calculation is done in
the decode stage and the result is buffered using additional registers. In the
write back stage, one just takes the values from the registers.

Note that the cost savings of precomputing these signals are low in the
prepared sequential machine. However, in the pipelined machine presented
in the next chapter, we will need the signals in multiple stages for forward-
ing. In this case, precomputing the signals saves a significant amount of
hardware since the computation has to be done only once. In order to pre-
vent that we need to make changes to the machine due to pipelining, we
already introduce the precomputed control in this chapter.

3.5 Data Consistency Proof

3.5.1 Properties of the Full Bits

Using the equations for the full bits and update enable signals, it is easy to
conclude the following properties:

If a stage is full, either the same or the previous stage was full in theJ Lemma 3.5
previous cycle.

f ullT+1
k =) f ull T

k _ f ull T
prev(k)
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PROOF By lemma 3.2 (page 39), one can conclude fromf ullT+1
k that

ueT
prev(k) or stallTk holds. IfueT

prev(k) holds, f ull T
prev(k) holds by definition of

theuesignals. IfstallTk holds, f ull T
k holds by convention 3.1.

If a stage is full, either the same or the next stage is full in the next cycle.Lemma 3.6 I

f ull T
k =) f ull T+1

k _ f ull T+1
next(k)

Assume neitherf ullT+1
k nor f ull T+1

next(k) holds. Using lemma 3.2 for stagesPROOF
k andnext(k), one concludes that neitherueprev(k), nor ueprev(next(k)) , nor
stallTk , norstallTnext(k) holds.

By definition ofueT
k , it is concluded thatueT

k holds. An easy proof shows
thatprev(next(k)) = k. This allows concluding thatf ullT+1

next(k) holds, which
is a contradiction to the assumption.

If a stagek becomes full in cycleT +1, the previous stageprev(k) wasLemma 3.7 I

full in the previous cycle and the output registers of the stageprev(k) were
updated.

f ull T
k ^ f ull T+1

k =) f ull T
prev(k) ^ueT

prev(k)

By lemma 3.2,ueT
prev(k) or stallTk holds. By convention 3.1,ueT

prev(k) isPROOF

concluded. The first claim,f ullT
prev(k), is concluded by definition ofue.

In every cycle, exactly one stage is full.Lemma 3.8 I

9! k : f ull T
k

The proof proceeds by induction onT. For T = 0, the claim obviouslyPROOF
holds. ForT +1, one has to prove that at least one full bit is set and that
this full bit is unique.

It is easy to show that at least one full but is set by a case split on the
stall signal of the stage with the full bit set. Let stagek be this stage. If the
stage is stalled, in cycleT +1 the full bit of the same stage is set. If the
stage is not stalled, the full bit of stagenext(k) is set in cycleT +1.

This full bit is unique, i.e.,f ullT+1
x ^ f ull T+1

y implies thatx is equaly.
Assume thatx 6= y holds. According to lemma 3.5, there are four cases:
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1. f ull T
x ^ f ull T

y

2. f ull T
prev(x) ^ f ull T

y

3. f ull T
x ^ f ull T

prev(y)

4. f ull T
prev(x) ^ f ull T

prev(y)

The cases one and four are disproved by the induction premise. Let case
2 hold (otherwise, swapx and y). According to the induction premise,
y= prev(x) must hold. Using lemma 3.7,ueT

y is concluded, which is equal

to f ullT
y ^stallTy by definition.

Since prev(y) 6= y, and because of the induction premise,f ullT
prev(y)

holds. This allows concluding thatueT
prev(y) holds. Sincef ull T+1

y is ac-

tive, this is a contradiction tostallTy according to lemma 3.2.

3.5.2 Scheduling Functions

Unless stalled, the implementation machine calculates parts of the con-
figurationsc0

S;c
1
S; : : : of the specification machine. Ascheduling function

[MP00] specifies which configuration is being calculated by the machine
in a given stage and cycle. If stagek is full during cycleT, let

sI(k;T) = i

denote that the implementation machine is performing a part of the com-
putation of configurationci+1

S in stagek during cycleT.2

In case of a microprocessor, let

I0; I1; I2; : : :

denote an instruction sequence. In this case, the configurationci+1
S of the

specification machine provides the values of the registersafter executing
instructionIi, i.e., instructionIi transforms configurationci

S into ci+1
S :

c0
S

I0�! c1
S

I1�! c2
S: : :c

i
S

Ii�! ci+1
S : : :

2The function is namedsI and notI , as in [MP00], becauseI is used as the identity in
PVS.
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This is different from the notation used in [MP00]. In [MP00],ci+1

denotes a value before the execution ofIi+1.

If sI(k;T) = i holds and if stagek is full during cycleT, it is said that
instructioni is in stagek during cycleT [MP00].

For this thesis, the domain of the function above is extended to cyclesT
in that the stagek is not full in order to simplify some proofs. If the stage
k was never full before cycleT, sI(k;T) is supposed to be zero. If the
stagek was full before cycleT, the supposed value of the functionsI(k;T)
is defined using the value the function had in the last cycleT 0 < T such
that f ullT 0

k holds. In this case,sI(k;T) is supposed to besI(k;T 0)+1 in
anticipation of the next instruction in the stage. In contrast to the definition
of the scheduling function in [MP00], such a scheduling functionsI is total.

A scheduling function of the prepared sequential machine is constructed
as follows: The following properties of the scheduling function should
hold obviously:

1. During cycle 0, all stages are in the initial configuration:

8k : sI(k;0) = 0

2. If the output registers of a stagek are not updated during cycleT�1
(i.e., ueT�1

k = 0), the stage was either not full or stalled. The stage
was inactive; the value of the scheduling function should not change
either.

ueT�1
k = 0 ) sI(k;T) = sI(k;T�1)

3. If the output registers of a stagek are updated during cycleT �1
(i.e., ueT�1

k = 1), the registers are updated with values of the same
configuration that is in the previous stage, i.e., stagek� 1. The
scheduling function must reflect this.

k� 1^ueT�1
k = 1 ) sI(k;T) = sI(k�1;T�1)

In case of the first stage (k= 0), the computation of the next config-
uration of the specification machine is started:

ueT�1
0 = 1 ) sI(0;T) = sI(0;T�1)+1
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T = 0 T = 1 T = 2 T = 3 T = 4 T = 5 T = 6

sI(0;T) 0 1 1 1 1 2 2
sI(1;T) 0 0 1 1 1 1 2
sI(2;T) 0 0 0 1 1 1 1
si(3;T) 0 0 0 0 1 1 1

Table 3.3 The values ofsI in a four stage sequential machine in the absence of
stalls

This allows for a recursive definition of the scheduling function of the
prepared sequential machine:

sI(k;T) =

8>>><
>>>:

0 : T = 0

sI(k;T�1) : T 6= 0^ueT�1
k

sI(0;T�1)+1 : T 6= 0^ueT�1
k ^k= 0

sI(k�1;T�1) : T 6= 0^ueT�1
k ^k 6= 0

Table 3.3 illustrates the values ofsI(k;T) for the first seven cycles as-
suming four stages and that the stall signals are never active.

3.5.3 Properties of the Scheduling Function

If the update enable signal of a stage is active in cycleT �1, the value J Invariant 3.1
of the scheduling function for that stage increases by one. If the update
enable signal of a stage is not active, the value does not change. ForT > 0:

sI(k;T) =

�
sI(k;T�1) if ueT�1

k = 0
sI(k;T�1)+1 if ueT�1

k = 1

Given a cycleT, the values of the scheduling functions of two adjacentJ Invariant 3.2
stages are either equal or the value of the scheduling function of the earlier
stage is greater by one.

The value of the scheduling function of the earlier stage is greater by oneJ Invariant 3.3
iff the full bit of the later stage is set. Fork> 0:

f ullT
k = 1, sI(k�1;T) = sI(k;T)+1
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Negating both sides of the last equation and applying invariant 3.2 results
in:

f ull T
k = 0, sI(k�1;T) = sI(k;T)

The proof of the invariants proceeds by induction. LetPi(T) denote thatPROOF
invarianti holds for cycleT. The claim is concluded as follows:

Invariant 3.1 for cycleT is shown using invariant 3.3 for cycleT � 1.
Invariant 3.2 for cycleT is shown using invariant 3.1 in cycleT and invari-
ant 3.3 in cycleT�1. Invariant 3.3 is shown using invariant 3.1 in cycle
T and invariant 3.2 in cycleT�1.

P3(T�1) =) P1(T)

P1(T)^P2(T�1)^P3(T�1) =) P2(T)

P1(T)^P2(T�1)^P3(T�1) =) P3(T)

Proof of Invariant 3.1 The claim for the caseueT�1
k = 0 holds by defini-

tion of sI. Let ueT�1
k = 1 hold. For the casek= 0, the claim follows from

the definition ofsI. Fork> 0, the claim is:

sI(k;T) = sI(k;T�1)+1

According to the definition ofsI(k;T), this is equivalent to:

sI(k�1;T�1) = sI(k;T�1)+1

According to invariant 3.3 for cycleT�1, this is equivalent tof ullT�1
k = 1.

This is true because of the definition ofueT�1
k .

Proof of Invariant 3.2 For cycleT = 0, the claim holds by definition of
sI(k;0).

For T > 0, let us consider the stagesk�1 andk with k > 0. There are
four cases regarding the update enable signalsueT�1

k andueT�1
k�1 of these

stages:

1. Let both update enable signals be active. According to the definition
of the update enable signals, this is a contradiction to the fact that at
most one full bit is active in a given cycle (lemma 3.8).
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2. Let both update enable signals be not active. According to invariant
3.1, the values of the scheduling function do not change and the
claim follows from invariant 3.2 for cycleT�1 therefore.

3. Let the update enable signal of stagek be active and the update en-
able signal of stagek�1 be not active. Let the first case given by
invariant 3.2 for cycleT�1 hold:

sI(k�1;T�1) = sI(k;T�1)

Using lemma 3.1 for stagek on the right-hand side, one concludes:

sI(k�1;T�1) = sI(k;T)�1

According to the definition ofsI(k;T), this is equal to:

sI(k�1;T�1) = sI(k�1;T�1)�1

This is a contradiction. The case above therefore never happens.

Let the second case given by invariant 3.2 for cycleT�1 hold, i.e.,

sI(k�1;T�1) = sI(k;T�1)+1

holds. Using invariant 3.1 for both stagesk andk�1, sI(k�1;T) =
sI(k;T) is concluded.

4. Let the update enable signal of stagek be not active and the update
enable signal of stagek� 1 be active. Let the first case given by
invariant 3.2 for cycleT �1 hold, i.e.,sI(k�1;T �1) is equal to
sI(k;T �1). Using invariant 3.1,sI(k�1;T) = sI(k;T)+1 is con-
cluded.

Let the second case given by invariant 3.2 for cycleT�1 hold, i.e.,
sI(k�1;T�1) = sI(k;T�1)+1 holds. According to invariant 3.3,
f ullT�1

k holds. According to the definition of the update enable sig-
nals, f ull T�1

k�1 also holds. This is a contradiction to lemma 3.8.

Proof of Invariant 3.3 ForT = 0, the claim is shown using the definition
of sI. ForT > 0, according to lemma 3.2, the claim is equivalent to:

ueT�1
prev(k)_stallT�1

k () sI(k�1;T) = sI(k;T)+1

Sinceprev(k) = k�1 for all k> 0, this is equivalent to:

ueT�1
k�1 _stallT�1

k () sI(k�1;T) = sI(k;T)+1

67



Chapter 3

A SEQUENTIAL

IMPLEMENTATION

MACHINE

The proof proceeds by a full case split on the values of the update enable
bits ueT�1

k�1 andueT�1
k , as done in the proof of invariant 3.2. There are four

cases:

1. If both update enable signals are on, this is a contradiction to the fact
that at most one full bit is on (lemma 3.8).

2. If ueT�1
k�1 is on andueT�1

k is off, the left side of the equivalence eval-
uates to true and the claim is equal to:

sI(k�1;T) = sI(k;T)+1

Invariant 3.1 for cycleT and stagesk�1 andk is used to show that
the claim is equal to:

sI(k�1;T�1)+1 = sI(k;T�1)+1

Obviously, this claim is equal to:

sI(k�1;T�1) = sI(k;T�1)

Assume this claim does not hold. In this case, invariant 3.2 states
that

sI(k�1;T�1) = sI(k;T�1)+1

holds. According to invariant 3.3 for cycleT �1, this implies that
f ullT�1

k holds. Sincef ull T�1
k�1 also holds because of the definition of

ueT�1
k�1 , this is a contradiction to the fact that at most one full bit is on

(lemma 3.8).

3. If ueT�1
k�1 is off andueT�1

k is on, it is left to show that

stallT�1
k () sI(k�1;T) = sI(k;T)+1

holds. Using invariant 3.1 for stagesk� 1 andk and cycleT one
shows that this is equal to:

stallT�1
k () sI(k�1;T�1) = sI(k;T�1)+2

According to the definition of the update enable signalueT�1
k , the

stall signalstallT�1
k cannot be active. Invariant 3.2 shows thatsI(k�

1;T � 1) = sI(k;T � 1) + 2 never holds. Thus, both sides of the
equivalence are false.
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4. If both update enable signals are off, invariant 3.1 shows that the
claim is equal to:

stallT�1
k () sI(k�1;T�1) = sI(k;T�1)+1

Using invariant 3.3 for cycleT�1, one shows:

sI(k�1;T�1) = sI(k;T�1)+1 () f ullT�1
k

Thus, the claim is equivalent to:

stallT�1
k () f ull T�1

k

By definition ofueT�1
k , f ull T�1

k impliesstallT�1
k if ueT�1

k is off. The
opposite direction is given by convention 3.1. QED

Invariant 3.3 can be extended to multiple stages inductively, which re-
sults in the following claim:

Let k andl be stage numbers andl > k. If the full bit of all stages betweenJ Lemma 3.9
k and l (including stagel , not including stagek) is not set, the scheduling
functions for stagek andl are equal:

(8m jm> k^m� l : f ull T
m) =) sI(k;T) = sI(l ;T)

The claim is shown by induction onl using invariant 3.3. PROOF

Let stagek be full in cycleT. In this case, stages after stagek contain J Lemma 3.10
the values of the same configuration and stages prior to stagek contain the
values of the next configuration.

T > 0^ f ull T
k =) sI(l ;T) =

�
sI(k;T)+1 l < k
sI(k;T) otherwise

This lemma is the central lemma for showing the correctness of the
operands read. The lemma is almost identical to the dateline lemma pre-
sented in [MP00].

Lemma 3.10 is illustrated by figure 3.7: Letf ullT
2 hold andsI(2;T) be

i. In this case, the output registers of the stages 0 and 1 already contain the
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Figure 3.7 Calculation of the configurations in the sequential prepared machine.
In the current cycle, instructionIi is in stage 2.
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values of configurationci+1. The stages 2, 3, and so on still contain the
values of configurationci .

PROOF For l = k, the claim is obvious. Forl < k, the claim is

sI(l ;T) = sI(k;T)+1

According to invariant 3.3,sI(k�1;T) = sI(k;T)+1 holds, which shows
the claim forl = k�1. Forl < k�1, lemma 3.8 states that the full bits are
not set. Thus, lemma 3.9 can be used in order to show the claim.

For l > k, lemma 3.8 states that the full bits of these stages are not set
either. Lemma 3.9 shows the claim. QED

Stagek is full at the earliest in cyclek. J Lemma 3.11

f ullT
k =) T � k

The proof proceeds by induction overT. ForT = 0, the claim is concluded PROOF
by the fact that during cycle 0, only full signalf ull0 is active.

Assuming the lemma for cycleT, the claim forT +1 is shown as fol-
lows: Fork= 0, the claim is obvious. Thus, the claim is shown fork> 0.

If f ullT
k or f ull T

k�1 holds, one simply uses the induction premise. If
f ull T

k and f ull T
k�1 do not hold, one shows thatf ullT+1

k cannot hold using
lemma 3.2:

f ull T+1
k = ueT

k�1_stallTk

Applying the definition ofueT
k�1, this results in:

f ull T+1
k = ( f ull T

k�1^stallTk�1)_stallTk

= stallTk

According to convention 4.2,stallTk cannot be active. QED

3.5.4 Data Consistency Proof Strategy

The correctness criterion for the machines presented in this thesis is based
on the scheduling function: the values of the specification registers of the
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implementation machine must match the values of the corresponding reg-
isters in the specification machine. Given a stagek and a cycleT, the
scheduling function provides the configuration of the specification ma-
chine to compare with.

Thus, the correctness of the complete machine is asserted in the follow-
ing theorem:

The value of a given specification registerR2 out(k) during cycleT inTheorem 3.12 I

the implementation machine must match the value of the same register in
the specification machine in the configurationci

S with i = sI(k;T).

RT
I = Ri

S

This data consistency criterion is taken literally from [MP00]but with
index shift. This index shift arises from a notational difference: in [MP00],
Ri denotes the value ofR afterthe execution ofIi . In this thesis,Ri

S denotes
ci

S:R, which is the value ofR beforethe execution ofIi . This difference can
be adjusted by takingRi+1

S . Thus, the correctness criterion of [MP00] in
the notation of this thesis is:

RT+1
I = Ri+1

S

Furthermore, in [MP00], the criterion is shown for cyclesT with ueT
k

only. Using invariant 3.1, one can conclude that for this casesI(k;T +1) =
i +1 holds. Inserting this into the equation above results in:

RT+1
I = RsI(k;T+1)

S

This is exactly the correctness criterion as given above despite that the
criterion in [MP00] does not cover the values of the registers during cycle
0 (initial configuration).

The proof of the correctness criterion proceeds by induction onT. For
the PVS tree, an automated tool developped by the autor generates this
proof. In the following, the generic algorithm used in order to generate the
proof is described.

Step 1 For all implementation registersR of the implementation ma-
chine, a functionΩkR(c) is defined. This function maps a configuration
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c of thespecificationmachine on the domainW (R) of the registerR and
provides the “correct” value ofR. It is not necessary to define this function
for specification registers, since the correct value of a specification register
is defined by the specification machine.

For intuition, take the prepared sequential machine and remove all im-
plementation registers. The inputs of the registers are connected to the
outputs (figure 3.8). The remaining specification registers share a common
clock. This machine processes one configuration of the specification ma-
chine with each cycle unless stalled. The configuration set of this machine
exactly matches the configuration set of the specification machine. Letc be
such a configuration. In this machine, one can get the value ofΩk�1R0(c)
right at the point where the registerR0:k formerly was.

Formally, the functionsΩkR are defined recursively: in analogy tog
and γ (section 3.2.4), functionsG and Γ are defined, which provide the
correct input values for a register transition functionf . In analogy to the
function ω, the functionΩ is defined. The definition ofΩ is identical to
the definition ofω except for thatΓ is used instead ofγ.

GkR : CS�!W (R)

Let Gk(c;(R01;R
0
2; : : : ;R

0
j)) denote aj-tuple of values calculated as follows:

Gk(c;(R
0
1;R

0
2; : : : ;R

0
i)) = (GkR

0
1(c);GkR

0
2(c); : : : ;GkR

0
i(c))

Let Γ be a function that maps a configuration of the specification ma-
chine to the correct input values of a register transition function. Let
dep(R;k) be(R01; : : : ;R

0
i).

Γ : CS�!W(R01)� : : :�W(R0i)

ΓkR(c) = Gk(c;dep(R;k))

The functionsGkR can now be specified recursively: IfR is a specifica-
tion register,GkR is:

GkR(c) = c:R

This allows a straightforward definition ofGkR if R is an implementation
register. Since an instance ofR must be in the previous stage, the correct
value ofR:k is used, i.e.,Ωk�1R(c):

GkR(c) = Ωk�1R(c)

73



Chapter 3

A SEQUENTIAL

IMPLEMENTATION

MACHINE

R0
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uek�1

gkR0

2

ωk�1R0

2

R0

1:k
uek�1

gkR0

1

ωk�1R0

1

fkR

ωkR

uek

γkR= gk(cI ;dep(R;k))

)
dep(R;k)

R:(k+1)

Sequential prepared machine

)
dep(R;k)R0

2:k

Ωk�1R0

2

R0

1:k

GkR0

1

Ωk�1R0

1

fkR

ΓkR= Gk(cS;dep(R;k))

R:(k+1)

ΩkR

GkR0

2

Machine without implementation registers

Figure 3.8 Relationship betweenωkR, gkR0 and ΩkR, GkR0, depicted for two
stagesk andk+ 1. Let R01 andR02 be implementation registers and letR be an
implementation register that depends onR01 andR02. The read accesses toR01 and
R02 are unconditional.
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Remember thatf ΓkRre(c) is just a shorthand for

fkRre(ΓkRre(c))

as described in section 3.2.8 (page 51).

For a conditional read access to a specification register,GkR is defined
as follows:

GkR(c) =

�
c:R : f ΓkRre(c)
0 : otherwise

For a read access with read address to a specification register,GkR is
defined as follows:

GkR(c) =

�
c:R[ f ΓkRra(c)] : f ΓkRre(c)
0 : otherwise

Step 2 A set of lemmas is claimed and asserted later. For each specifica-
tion registerR2 out(k), one lemma is used:

Using the correct input values, the register transition function
fkR provides the correct output value.

Let the inputs be calculated using values from configurationci
S. In this

case, the output values can be found in configurationci+1
S of the specifica-

tion machine.

These lemmas assert the correctness of the non-scheduled implementa-
tion described above, i.e., the sequential machine that performs the calcu-
lation of a configuration of the specification machine within one transition
without implementation registers. The lemmas are therefore calledregister
transition function correctness lemmas.

If the write access to the register is neither conditional nor has a writeJ Lemma 3.13
address, the claim is:

ci+1
S :R = f ΓkR(c

i
S)

If the write access to the register is conditional, the value of the transition
function is used only if the write enable signal is active. If the write enable
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signal is not active, one takes the value from the previous configuration.
The claim therefore is:

ci+1
S :R =

�
f ΓkR(ci

S) : f ΓkRwe(ci
S)

ci
S:R : otherwise

In case of a write access with write address, the claim is for all addresses
possible write addressesx:

ci+1
S :R[x] =

8<
:

f ΓkR(ci
S) : f ΓkRwe(ci

S)^
f ΓkRwa(ci

S) = x
ci

S:R[x] : otherwise

Step 3 Let T be a cycle. Astage correctness predicatePk(T) is defined
for each stage. It will be used later on in the proofs of all central claims.

The predicatePk(T) holds iff the values of the registers of stagek are
correct cycleT. This comprises both the implementation and the specifi-
cation registers. LetsPk(T) denote the stage correctness predicate for the
specification registers and letiPk(T) denote the stage correctness predicate
for the implementation registers:

Pk(T) () sPk(T)^ iPk(T)

The stage correctness predicatesPk(T) for the specification registers is
given in analogy to the data consistency criterion in theorem 3.12: the val-
ues of the specification registers must match the values of the correspond-
ing registers in the configuration of the specification machine indicated by
the scheduling function. Thus, for all specification registersR2 out(k) the
following condition must hold:

RT
I = RsI(k;T)

S

The stage correctness predicate for the implementation registers is given
using the notion of a correct implementation register as defined in step 1.
For all implementation registersR2 out(k) the following condition must
hold:

RT
I :(k+1) =

(
0 : sI(k;T) = 0

ΩkR(c
sI(k;T)�1
S ) : otherwise
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Ii

Figure 3.9 Illustration of the values in the registers if instructionIi is in stagek
(i.e., sI(k;T) = i). Q is a specification register inout(k�1), R is a specification
register inout(k).

The stage correctness predicate for the implementation registers is mo-
tivated as follows: The stage correctness predicate for the implementation
registers is supposed to provide information about the value of an imple-
mentation registerR2 out(k) during cycleT, i.e., aboutRT

I :(k+ 1). In
case ofsI(k;T) = 0, the register has never been written before, i.e., it has
still the initial value, which is zero by definition:

RT
I :(k+1) = 0

If i = sI(k;T) > 0, the last time the register was written was on calcu-
lating a part of configurationci (figure 3.9). Suppose this was done during
cycleT 0. By definition of the transition function, the following value was
written:

ωkR(cT 0

I )

This value was not changed since cycleT 0, thus, it is still in the register
during cycleT:

RT
I :(k+1) = ωkR(c

T 0

I )

In case of correct calculations, the inputs used byωkR for the transition
function fkRduring cycleT 0 while calculating configurationci were taken
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from configurationci�1. Thus, the right-hand side is:

RT
I :(k+1) = ΩkR(c

i�1
S )

This motivates the stage correctness predicate for implementation regis-
ters.

All stage correctness predicates hold for the initial cycle, i.e.,Pk(0) holdsLemma 3.14 I

for all stagesk.

In the initial cycle, the value of all stage scheduling functions is zero.PROOF
One therefore has to show that the values of the specifications registers in
the implementation machine during cycle 0 match the values of the corre-
sponding registers in the specification. Since this is exactly the definition
of c0

I , the claim follows immediately.QED

3.5.5 Correctness of the Transition Functions

The register transition function lemmas, as defined in step 2, hold.Lemma 3.15 I

The stages IF and EX do not write any specification register, thus, there isPROOF
nothing to show.

Note that the following proofs are given here for illustration only. In
PVS, the proofs are much simpler, since PVS is able to expand the def-
initions of the functionsfkR, ΓkR, andGkR automatically. Furthermore,
the lemmas that show the correctness of circuits such as the ALU can be
applied automatically. The proofs rely on definition expansion and trivial
use of lemmas only, thus, the proofs below have just a few lines in PVS
and require almost no manual interaction.

Stage ID Stage ID writes the specification registersDPC andPC0. The
claim of the register transition function lemma for registerDPC is:

f1DPC(Γ1DPC(ci
S))

!
= ci+1

S :DPC

Expanding the functionΓ1DPC on the left hand side, this is equal to:

f1DPC(G1(c
i
S;PC0))

!
= ci+1

S :DPC
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Expanding the functionG1 on the left hand side, this is equal to:

f1DPC(G1PC0(ci
S))

!
= ci+1

S :DPC

SincePC0 is a specification register, by definition ofG1PC0 this is equal
to:

f1DPC(ci
S:PC0)

!
= ci+1

S :DPC

Since f1DPC is just the identity (equation 3.12 page 57), this claim sim-
plifies to:

ci
S:PC0 !

= ci+1
S :DPC

This holds because of the definition ofci+1
S :DPC (equation 2.3 page 31).

The claim of the register transition function lemma for registerPC0 is:

f1PC0(Γ1PC0(ci
S))

!
= ci+1

S :PC0

The calculation ofPC0 depends on the first GPR operand. The functions
for this operand useGPRaas register and not GPR in order to distinguish
them from the functions of the second GPR operand.

Repeatedly expanding definitions as above, the claim is equal to:

f1PC0(G1IR(ci
S);G1GPRa(ci

S);G1PC0(ci
S))

!
= ci+1

S :PC0

By definition of f1PC0 (equation 3.13 page 57), this is equal to:

next pcimp(G1IR(ci
S);G1GPRa(ci

S);G1PC0(ci
S))

!
= ci+1

S :PC0

By lemma 3.4 (correctness ofnext pcimpl), this is equal to:

next pc(G1IR(ci
S);G1GPRa(ci

S);G1PC0(ci
S))

!
= ci+1

S :PC0

There are three cases:
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� If the instruction is a jump register or branch instruction, the register
transition functionf1PC0 readsIR, the first GPR operand, and the
old value of thePC0 register. These values are passed to the function
next pc.

One easily shows the correctness of theIR argument by expanding
definitions, sinceIR is an implementation register:

G1IR(ci
S) = Ω0IR(ci

S)

= f0IR(ci
S:DPC)

= IM [ci
S:DPC]

The correctness of thePC0 argument is shown easily:

G1PC0(ci
S) = ci

S:PC0

The correctness of the GPR operand is assured as follows: the first
GPR operand is read using a conditional read access with address.
In case the read enable signal holds (equation 3.7), the GPR register
with addressI RS1(IR) is read (equation 3.9):

G1GPRa(ci
S) = ci

S:GPR[I RS1(IM [ci
S:DPC])]

This is exactlyop1, as required by the specification (equation 2.1
page 30).

If the condition does not hold, zero is returned by theG1 function:

G1GPRa(ci
S) = 0

In case of a jump register or branch instruction this happens only
if I RS1(IR) is zero. In this case, registerGPR0 is read, which is
always zero when read, as required by equation 2.1.

� If the instruction is neither a jump nor branch instruction, the value
of IR, zero, and the old value ofPC0 is passed tonext pc. In this
case,next pcignores the value of the second argument and returns
the correct result therefore.

� If the instruction is a jump instruction,next pcdoes not use the sec-
ond argument, the GPR operand. The offset to the PC is provided
by the immediate constant.
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Stage M The memory stage writes a data word into the main memory
in case of a store instruction. The write access to the data memory is a
conditional write access with write address.

Most transition functions depend on the implementation registerIR. Ex-
emplary, it is shown how to assert the correctness of theIR arguments. By
definition of G3IR, one shows thatΩ2IR(ci

S) is the value read. Repeat-
edly expanding theΩ functions and proceeding as above, one shows the
correctness of the IR arguments:

G3IR(ci
S) = Ω2IR(ci

S)

= Ω1IR(ci
S)

= Ω0IR(ci
S)

= f0IR(ci
S:DPC)

= IM [ci
S:DPC]

As described above, the write access toDM is conditional and has a
write address. In case the write enable signalf3DMwe(G3IR(ci

S)) does
not hold, nothing has to be shown. In the case thatf3DMwe(G3IR(ci

S))
holds, one has to show that the data value written is correct and that the
write address is correct.

The data value written is read from theMDRwregister from the previous
stage. By definition, the correct value of theMDRwregister is the correct
value of theB register written by the decode stage. The decode stage places
the second operand here. The correctness of this operand is asserted as
described in the section above.

The address used for the write access toDM is taken from the func-
tion f3DMwa. The function readsMARfrom the previous stage and strips
the two least significant bits. The correct value of theMAR register is by
definition the output of the ALU. The ALU performs an addition, which
is shown easily using thatf3DMwe(G3IR(ci

S)) holds and using the cor-
rectness of the ALU (lemma 2.14). Furthermore, it is shown easily that the
second operand of the ALU is the immediate constant. The first operand of
the ALU is generated by the decode stage. The correctness of this operand
is shown as in the proof for the stage ID. Thus, exactly the effective ad-
dress, as required by the specification, is used as write address for the write
access.

Stage WB The write back stage writes the GPR destination operand of
the instruction. The proof is similar to the proof used for the memory stage.
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A conditional write access with address to GPR is performed. In the case
that the write enable signal is active, one has to show that the data value
written is correct and that the write address is correct.

In case of a load instruction, the data value is taken from theshi f t4load
circuit, which takesMAR, MDRr, andIR as inputs. The correctness of the
value in theMAR register is asserted as described above. The correctness
of the value in theMDRr register is asserted as follows: the register is
written by the memory stage using a conditional read access with address
to DM. It is easy to show that the read enable signal of this read access
is active using that the write enable signal holds. The correctness of the
address of the memory access is shown as described above.

If the instruction is not a load instruction, the data value is taken from
theC register. TheC register is passed unmodified by the memory stage
from the execute stage. In case of an ALU/shift instruction, the correctness
of this value is asserted as follows: the correctness of the input operands
is asserted as described above; using the correctness of the ALU (lemma
2.14), the correctness of the result is shown.

In case of a jump and link instruction, the execute stage passes the value
of theC register from stage ID. This is the correct value of thePC0 register,
as required by the specification.

The correctness of the index used for the write access to GPR is shown
easily by definition unfolding. The index is written into an implementation
register by stage ID and not changed in any subsequent stage.QED

Correctness of the Functions gkR In the proofs above, the correctness
of the inputs of each stage is assumed. In real hardware, the implementa-
tions of the functionsgkRare used in order to generate the input operands.
It is therefore left to show that the values generated by the functionsgkR
actually match the correct values.

Let sI(k;T) = i and f ull T
k hold. Assuming that the stage correctness pred-Lemma 3.16 I

icatesPj hold in all cycles up to cycleT, the inputs generated by the func-
tionsgkRduring cycleT are correct:

gkR(c
T
I ) = GkR(c

i
S)

In case of an implementation register, the correct value on the right-handPROOF
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side is defined by the functionΩkR:

gkR(c
T
I )

!
= Ωk�1R(ci

S)

In case of a specification register, the correct value is given in the config-
uration of the specification machine. If the read access is neither indexed
nor conditional:

gkR(c
T
I )

!
= Ri

S

In case of a conditional read access, the correct value is zero if the read
enable signal is not active. If the signal is active, the correct value is the
same as in the case above.

gkR(c
T
I )

!
=

�
Ri

S : f ΓkRre(ci
S)

0 : otherwise

In case of an indexed read access, the correct value is defined using the
correct value of the address. Letx denote this value:

x := f ΓkRra(ci
S)

gkR(c
T
I )

!
=

�
Ri

S[x] : f ΓkRre(ci
S)

0 : otherwise

The proof depends on the type of the register that is read and in which
stage the register is. The first thing is to show the correctness for the case
that neither a condition nor a read address is used.

1. Let the register that is to be read be an implementation register. By
the definition ofgkR, the register from the previous stage is taken:

gkR(c
T
I ) = cT

I :R:k (3.16)

An implementation register is never read in stagek = 0, and one
therefore can use lemma 3.11 and the fact that the full signalf ullT

k is
active in order to conclude thatT � 1 holds. For this case, invariant
3.3 (page 65) states:

sI(k�1;T) = i +1
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The stage correctness predicate forR2 impl, cycleT, and stagek�1
states:

RT
I :k=

(
0 : sI(k�1;T) = 0

Ωk�1R(csI(k�1;T)�1
S ) : otherwise

SincesI(k�1;T) = i +1 is never zero, this simplifies to:

RT
I :k = Ωk�1R(ci

S)

Remember thatRT
I :k just denotescT

I :R:k. Thus, one can insert this
into equation 3.16. This changes equation 3.16 into:

gkR(c
T
I ) = Ωk�1R(ci

S) (3.17)

This is exactly the claim.

2. Let the register that is to be read be a specification register that is in
the same stage in which it is read. By definition ofgkR, the value of
R is read:

gkR(c
T
I ) = cT

I :R:(k+1) (3.18)

By using the stage correctness predicate for specification registerR,
stagek, cycleT, this is transformed into:

cT
I :R:(k+1) = RsI(k;T)

S (3.19)

Sincei = sI(k;T), this is the claim.

3. Let the register that is to be read be a specification register that is
in a later stage than the stage it is read in. Letw be stage(R). By
definition ofgkR, the value ofR is read:

gkR(c
T
I ) = cT

I :R:(w+1) (3.20)

By applying the stage correctness predicate for stagew and cycleT,
this transforms into:

gkR(c
T
I ) = RsI(w;T)

S (3.21)

For cycleT = 0, bothsI(w;0) andsI(k;0) are zero by definition of
sI. Thus, the claim holds.
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For cyclesT > 0, one uses lemma 3.10 for cycleT and stagesk and
w. Because off ull T

k andw> k, lemma 3.10 shows that

sI(w;T) = sI(k;T)

= i

holds. This concludes the claim.

This shows the claim for inputs without index and condition. The claim
for inputs with index or condition is shown as follows: Since the inputs
for the functionsfkRre and fkRra never use a condition or an index, the
correctness of the inputs of these functions can be shown as above. If the
condition does not hold, the claim obviously holds. If the condition holds,
the proof proceeds as above. In case of an indexed access, the claim is
shown using the arguments above and that the index is correct. QED

Let T 0 be greater than zero. Assuming all stage correctness predicates forJ Lemma 3.17
the cycleT 0�1, the predicate for stagek holds for cycleT 0.

(8l : Pl (T
0�1)) =) Pk(T

0)

Let the update enable signalueT�1
k be active. In this case, one uses in- PROOF

variant 3.1 in order to conclude thatsI(k;T�1) = i�1. This allows using
lemma 3.16 for cycleT�1 and configurationi�1. The lemma shows that
the inputs of the stage transition functions are correct. In case of a speci-
fication register, lemma 3.15 is used to show that the output written in the
register is correct. In case of an implementation register, the output value
of the stage matches the correct value by definition of the correct value of
an implementation register.

If the update enable signalueT�1
k is not active, invariant 3.1 is used to

show that the value of the stage scheduling function does not change from
cycle T �1 to cycleT. Since the update enable signal is not active, the
values in the registers do not change from cycleT�1 to cycleT, which
shows the claim. QED

All stage predicates hold for all cycles. J Theorem 3.18

This is shown by induction onT. The caseT = 0 is subsumed by lemma PROOF
3.14, the induction step is shown using lemma 3.17.

Theorem 3.18 obviously implies the data consistency criterion as pro-
posed in theorem 3.12.
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3.6 Liveness

3.6.1 Introduction

The liveness criterion used in this thesis is that the implementation machine
actually calculates any desired configuration of the specification machine
within a finite amount of time. In order to prove the liveness criterion for
the prepared sequential machine, a formal notion of “will happen in finite
time” is required.

A time predicate is a mapping fromN0 to B.Definition 3.3
Time Predicate

I

The constant time predicatesalwaysandneverare defined as follows:

always(T) = true (3.22)

never(T) = f alse (3.23)

Let pred be a time predicate. The following notation is used:

9pred :() 9T 2 N0 : pred(T) (3.24)

The operator9�T0

on a time predicate holds iff the predicate is true for
a timeT � T 0.

9�T0

pred :() 9T 2 N0 : (pred(T)^T � T 0) (3.25)

If there exists a timeT � T 0 with pred(T), also a timeT 00 exists that is theLemma 3.19 I

smallestT 00 � T 0 satisfying the predicate.

Let Sbe the set of natural numbers that are greater or equalT 0 and satisfyPROOF
the predicate. The set is non-empty and has a lower bound. The minimum
min(S) exists therefore and isT 00.

Let pred be a time predicate. The predicate is calledfinite falseiff for allDefinition 3.4
Finite False

I

T 9�T pred holds. This implies that ifpred(T) does not hold for a given
T, there is a finiteT 0 � T such thatpred(T 0) holds. In analogy to that, a
predicate is calledfinite true, iff pred is finite false.
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3.6.2 Liveness Criterion

Let ci
S be any desired configuration of the specification machine. The im-

plementation machine is said to be alive iff for all stagesk there exists a
time T 2 N0 with sI(k;T) = i:

9T 2 N0 : sI(k;T) = i

3.6.3 Liveness Properties of the Scheduling Logic

Let uek denote the time predicate of the update enable signal of stagek.
Let stallk denote the time predicate of the stall signal of stagek.

Let f ull T
k hold for a stagek and a cycleT. Let the stall signalstallk be J Lemma 3.20

finite true (thus, it becomes false within a finite amount of time). This
implies thatuek becomes true within a finite amount of time:

f ull T
k =) 9�Tuek

Sincestallk is finite true, there exists a cycleT 0 � T such that the stall PROOF
signal is not active. LetT 0 be the smallest value with this property. If
T 0 = T, f ull T 0

k holds by premise.

If T 0 > T, assume thatf ull T 0

k does not hold. According to lemma 3.2,
this implies thatstallT

0�1
k does not hold. This is a contradiction to the

assumption thatT 0 is the smallest value.

Since f ullT 0

k = 1 andstallT
0

k = 0, ueT 0

k holds by definition. QED

Assuming that all stall signals are finite true, and that the update enableJ Lemma 3.21
signal of stage 0 will be active within finite time after cycleT, the update
enable signal of stagek will be active within finite time after cycleT.

9�Tue0 =) 9�Tuek

This is shown by induction onk. Fork= 0, the claim is subsumed by the PROOF
premise.
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For k+1, the induction premise states that there is a cycleT 0 � T with
ueT 0

k . By the transition function of the full bits,f ullT 0+1
k+1 holds. Lemma

3.20 concludes the claim.

Assuming that all stall signals are finite true, the update enable signals areLemma 3.22 I

finite false.

The claim forue0 is that for allT there is aT 0 � T such thatueT 0

0 holds.PROOF
This is shown by induction onT. ForT = 0, one uses lemma 3.20 and the
fact that f ull0

0 holds by definition.

ForT+1, lemma 3.21 is used to argue that there exists aT 0�T such that
ueT 0

n�1 holds. According to the transition function of the full bits,f ullT 0+1
0

holds. Lemma 3.20 is used to show the claim.

The claim foruek with k� 1 is shown by induction onk. Fork= 0, the
claim is shown already. Fork+1, the claim is shown as in lemma 3.21.QED

3.6.4 Liveness Proof for the Sequential DLX

Let the update enable signaluek of a stagek be off during the cyclesT 00Lemma 3.23 I

with T 0 > T 00 � T. The value of the scheduling function does not change
from cycleT to T 0.

8T 00jT 0 > T 00 � T : ueT 00

k =) sI(k;T) = sI(k;T 0)

The proof proceeds by induction onT 0 and by definition unfolding.PROOF

Assuming that all stall singnals are finite true, the machine is alive.Theorem 3.24 I

This is shown by induction oni. For i = 0, the claim is that there is aTPROOF
such thatsI(k;T) = 0 holds. By definition ofsI, T = 0 satisfies this.

For i +1, the induction premise states that there is a cycleT such that
sI(k;T) = i holds. According to lemma 3.22), the update enable signaluek

is finite false,

Thus, there is a cycleT 0 � T such thatueT 0

k holds. LetT 0 be the smallest
value that satisfies this. IfT 0 is equal toT, the claim holds by invariant 3.1.
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If T 0 > T, lemma 3.23 states thatsI(k;T) is equal tosI(k;T 0). Invariant
3.1 shows thatsI(k;T 0+1) is i +1.

3.7 Literature

The concept of the prepared sequential machine and the DLX implementa-
tion is taken from [MP00]. There are many publications on the verification
of sequential machines, e.g., Cohn verified the VIPER [Coh87], Joyce ver-
ified the Tamarack [Joy88a, Joy88b], Hunt verified the FM8501 [Hun94],
and Windley verified the AVM-1 [Win95].

There is not much literature on the verification of liveness properties
of microprocessors. However, liveness verification is critical. In [MP96],
deadlocks in the original version of the well known scoreboard scheduler
are described. Furthermore, a corrected version is presented and its live-
ness is proven.
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Chapter

4
Pipelined Machines

4.1 Scheduling the Pipelined Machine

4.1.1 Introduction

T
HE PREPARED SEQUENTIAL MACHINE, as described in the previous
chapter, calculates a configuration of the specification machine within

n transitions if no external stall condition arises, withn being the number
of stages. In each transition of the prepared sequential machine, only one
stage is in use. The data paths of the remaining stages are left idle.

In this chapter, the prepared sequential machineMσ is transformed into
a pipelined machineMπ, which allows running all stages in parallel. This
concept is taken from [MPK00, MP00]. In contrast to the cited literature,
an automated tool is used in order to do the transformation including the
generation of stalling and forwarding logic. Furthermore, the transforma-
tion is not limited to microprocessors. Any prepared sequential machine
as specified in the previous chapter can be transformed into a pipelined
design.

The goal of the transformation is to use the formerly idle data paths
in order to speed up the calculation of the desired configurations of the
specification machine. As before, the registers of all stages are initialized
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cycle

stage 2

0 1 2 3

stage 0

stage 1

c1
S

c1
S

c1
S

c2
S

Figure 4.1 Scheduling of the prepared sequential machine withn= 3 stages in
the absence of external stalls.

with the values ofc0
S and the first stage starts with the calculation ofc1

S. In
the next cycle, the second stage starts with the calculation ofc1

S, as before.
In contrast to the prepared sequential machine, the first stage does not idle
but starts the calculation ofc2

S.

In particular, the calculation of the configurationc2
S starts before the cal-

culation of configurationc1
S is finished since stage 0 calculates only some

parts of the configuration. Figure 4.1 shows how the prepared sequen-
tial machine calculates the configurations, and figure 4.2 shows how the
pipelined machine uses the formerly idle stages to speed up this calcula-
tion.

The calculation of configurationc1
S is finished in cycle 2, as in the se-

quential machine. In contrast to the sequential machine, the calculation is
of configurationc2

S is finished already in cycle 3.

A stage ”runs” if the corresponding update enable signal is active. A
stage is updated if it is full and not stalled. The first step of the transfor-
mation therefore is to modify the machine such that there are as many full
stages as possible.

In the new initial configuration, no full bit is set in contrast to the initial
configuration of the prepared sequential machine. The definition of the
signal f ull0 is changed: the first stage is defined to be always full, since
one can start with the calculation of the next configuration any time the
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cycle
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0 1 2 3

stage 0

stage 1

c1
S c2

S c3
S c4

S

c1
S c2

S c3
S

c1
S c2

S

Figure 4.2 Running all stages in parallel.

T = 0 T = 1 T = 2 T = 3 T = 4 T = 5 T = 6

ueT
0 1 1 1 1 1 1 1

ueT
1 0 1 1 1 1 1 1

ueT
2 0 0 1 1 1 1 1

ueT
3 0 0 0 1 1 1 1

Table 4.1 The update enable signals of a four stage pipeline in the absence of
stalls

stage would be empty otherwise.

f ull0(c) := 1

This is the only change required in order to get a pipelined schedule.
This full bit is propagated to the next stage in each transition just as in the
machineMσ. Thus, if there is no stall signal, the full bits are never cleared
after they are set. Table 4.1 illustrates the values of the update enable
signals for a four stage pipeline and after applying this modification and
assuming that no stall signal is active.

After n transitions, all stages work in parallel therefore. Every stage
calculates a part of a different configuration of the reference machine. For
example, let stage 2 calculate parts ofci

S. In this case, stage 1 calculates
parts ofci+1

S and stage 3 calculates parts ofci�1
S . This is depicted in figure

4.3.
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f ull :2

f ull :n

f ull :3

f ull3

f ull2

f ull1

f ull0

1

1

1

1

R:1

f1

f0

R:2

R:3

f2

fn�1

R:n

ci

ci+1

ci�1

ue0

ue1

ue2

uen�1

Figure 4.3 The structure of the pipelined machine
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T = 0 T = 1 T = 2 T = 3 T = 4 T = 5 T = 6

sI(0;T) 0 1 2 3 4 5 6
sI(1;T) 0 0 1 2 3 4 5
sI(2;T) 0 0 0 1 2 3 4
sI(3;T) 0 0 0 0 1 2 3

Table 4.2 The values ofsI in a four stage pipelined machine in the absence of
stalls

The new values of the update enable signals affect the values of the
scheduling function also since the scheduling function is defined using the
update enable signals. Table 4.2 illustrates the values ofsI(k;T) for the
first seven cycles.

4.1.2 Scheduling Lemmas

The following simple lemmas are concluded from the new definition of the
full signals:

A stage is full iff it was updated or stalled in the previous cycle: J Lemma 4.1

8k� 1 : f ull T+1
k = ueT

k�1_stallTk

The signalf ull0 is always active:

f ull T
0 = 1

All other signalsf ullk are not active during cycle 0:

8k� 1 : f ull0
k = 0

This lemma is a counterpart of lemma 3.2 of the sequential machine.

This lemma is an implication of the transition function of the full bits andPROOF
of the definition of the full signals.

In analogy to convention 3.1, it is required that if a stage is not full, it mustJ Convention 4.2
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not be stalled:

f ull T
k =) stallTk

In addition to that, it is required that if a stage is stalled and the previous
stage is full, the previous stage must be stalled also:

8k� 1 : f ull T
k�1^stallTk =) stallTk�1

Using the lemma and the convention above, it is easy to show that the
pipeline has the same properties like a simple queue: no entry in the queue
is lost and no entry in the queue is duplicated. These properties are sub-
sumed by three trivial lemmas.

The equations for the stall signals of the prepared sequential machine
in chapter 3 also comply with this extended convention, which is shown
easily using lemma 3.8. Thus, all properties of the pipelined machine con-
cluded using this convention also hold in the sequential machine.

If a stage is full and is updated, the next stage is updated, too.Lemma 4.3 I

8k� 1 : f ull T
k ^ueT

k�1 =) ueT
k

This ensures that the contents of a stage are never overwritten without
moving into the next stage.

According to the definition of the update enable signals, it is sufficient toPROOF
show thatf ull T

k andstallTk holds. According to the premise of the lemma,

f ull T
k holds. By the definition of the update enable signalueT

k�1, stallTk�1
and f ull T

k�1 holds. The claim is concluded by convention 4.2.

If a stage is full and if its output registers are not updated, the full bit isLemma 4.4 I

preserved.
8k� 1 : f ull T

k ^ueT
k =) f ull T+1

k

By the definition of the update enable signals, one concludes thatstallTkPROOF
holds. The claim is concluded using lemma 4.1.
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Lemma 4.3 and lemma 4.4 guarantee that no configuration in a given
stage is ever lost.

If a configuration in a stage moves into the next stage (i.e., the outputJ Lemma 4.5
registers of a stage are updated), and if the next configuration is not clocked
into the stage, the full bit is cleared:

8k� 1 : f ull T
k ^ueT

k ^ueT
k�1 =) f ull T+1

k

This lemma guarantees that no configuration is duplicated.

By the definition of the update enable signals, one concludesstallTk . The PROOF
claim is concluded by lemma 4.1.

The following lemma is the counterpart of lemma 3.11 in the sequential
machine.

Stagek is full at the earliest in cyclek. J Lemma 4.6

f ullT
k =) T � k

The proof proceeds by induction overT. ForT = 0, the claim is concluded PROOF
from lemma 4.1.

Assuming the lemma for cycleT, the claim forT +1 is shown as fol-
lows: Fork= 0, the claim is obvious. Thus, the claim is shown fork> 0.

If f ullT
k or f ull T

k�1 holds, one simply uses the induction premise. If
f ull T

k and f ull T
k�1 do not hold, one shows thatf ullT+1

k cannot hold using
lemma 4.1:

f ull T+1
k = ueT

k�1_stallTk

The rest of the proof proceeds as the proof of lemma 3.11 (page 71). QED
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4.1.3 The Scheduling Invariants

In order to prove the data consistency of the pipelined machine, the three
scheduling invariants presented for the prepared sequential machine in
chapter 3 (page 65) will be used. We will therefore show that they also
hold for the pipelined machine.

The proof of the invariants proceeds as in chapter 3: LetPi(T) denote thatPROOF
invariant i holds for the pipelined machine for the cycleT. The claim is
concluded as in chapter 3:

P3(T�1) =) P1(T)

P1(T)^P2(T�1)^P3(T�1) =) P2(T)

P1(T)^P2(T�1)^P3(T�1) =) P3(T)

The proof of invariant 3.1 is identical to the proof presented in chapter
3. The proof depends on the definition ofsI and invariant 3.3 only.

Proof of Invariant 3.2 The proof of invariant 3.2 presented in chapter 3
depends on lemma 3.8 (“exactly one stage full”), which no longer holds in
the pipelined machine.

Let us consider the stagesk�1 andk with k > 0. There are four cases
regarding the update enable signalsueT�1

k andueT�1
k�1 of these stages:

1. Let both update enable signals be active. According to invariant 3.2,
the values of the scheduling function of the stages in cycleT�1 are
either equal or the value of the scheduling function of stagek�1
is greater by one. According to invariant 3.1, the values of both
scheduling functions increase by one within the step to cycleT. The
claim therefore holds by invariant 3.2 for cycleT�1.

2. Let both update enable signals be not active. According to invariant
3.1, the values of the scheduling function do not change and the
claim follows from invariant 3.2 for cycleT�1 therefore.

3. Let the update enable signal of stagek be active and the update en-
able signal of stagek�1 be not active. This case is argued as in
chapter 3.
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4. Let the update enable signal of stagek be not active and the update
enable signal of stagek� 1 be active. Let the first case given by
invariant 3.2 for cycleT �1 hold, i.e.,sI(k�1;T �1) is equal to
sI(k;T �1). Using invariant 3.1,sI(k�1;T) = sI(k;T)+1 is con-
cluded.

Let the second case given by invariant 3.2 for cycleT�1 hold, i.e.,
sI(k�1;T�1) = sI(k;T�1)+1 holds. According to invariant 3.3,
f ullT�1

k holds. According to lemma 4.3, one can concludeueT�1
k

from f ull T�1
k ^ueT�1

k�1 . This is a contradiction sinceueT�1
k was as-

sumed.

Proof of Invariant 3.3 The proof of invariant 3.3 presented in chapter
3 also depends on lemma 3.8, which no longer holds in the pipelined ma-
chine.

For T = 0, the claim can be shown by definition unfolding and using
lemma 4.6. ForT > 0, according to lemma 4.1, the claim is equivalent to:

ueT�1
k�1 _stallT�1

k () sI(k�1;T) = sI(k;T)+1

The proof proceeds by a full case split on the values of the update enable
bits ueT�1

k�1 andueT�1
k , as done in the proof of invariant 3.2. There are four

cases:

1. If both update enable signals are on, it is left to show that

sI(k�1;T) = sI(k;T)+1

holds. According to invariant 3.1, this is equivalent to:

sI(k�1;T�1)+1 = sI(k;T�1)+2

It is sufficient to show thatf ullT�1
k holds because of invariant 3.3

for the previous cycle. This is done using the definition ofueT�1
k .

2. If ueT�1
k�1 is on andueT�1

k is off, one assumes the claim does not hold.
Using the same arguments as in the proof of invariant 3.3 in chapter
3, one can conclude thatf ullT�1

k holds.

Using lemma 4.3,ueT�1
k is concluded. This is a contradiction to the

assumption above.
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3. If ueT�1
k�1 is off andueT�1

k is on, the rest of the argumentation is iden-
tical to the proof in chapter 3.

4. If both update enable signals are off, the arguments in chapter 3 can
be repeated using convention 4.2.

This concludes the claim.QED

4.2 Forwarding

4.2.1 Introduction

The new scheduling has impact on the calculation of the input values of
the stages. Let stagek read an implementation registerR. Read access to
implementation registers is not affected by the changes to the scheduler,
since according to the requirements of the hardware description language
(section 3.2.4), an instance of the registerRmust be inout(k�1). Thus, the
value of the implementation register has been calculated by the previous
stage. A formal proof for that claim uses the same arguments as given for
the sequential machine.

However, the access to specification registers is affected. For the se-
quential machine, lemma 3.16 (page 82) shows that the value the register
has in the previous configuration of the specification machine (as given by
the scheduling function) is passed as input.

The goal is to modify the functionsgkR such that the same proposition
can be made for the pipelined machine. This allows concluding that the
values the pipelined machine writes into the registers match those written
by the sequential machine. This proof method is taken from [MPK00,
MP00].

Let stagek read specification registerR2 out(w). There are two cases,
ask> w is not allowed so far (section 3.2.5, page 43):

1. If the read access is done in the stage that writes the register, i.e.,
k = w, it is sure that the register still contains the value from the
previous configuration as required. Nothing has to be changed in
this case. The formal proof for this proposition is identical to the
corresponding case in lemma 3.16.
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An example is the read access toPC0 in the decode stage of the DLX
as implemented in chapter 3.

2. If the read access is done in a stage before the stage that writes the
register, i.e.,k < w, the access cannot be done, since the desired
value is not in the register yet.

There are two methods to overcome the limitation in the last case:for-
wardingand, if this fails,stalling. These methods will be described in the
next sections.

4.2.2 Forwarding from the Next Stage

Forwarding makes use of the parallelism of the calculations of the configu-
rations. In the literature, forwarding is often also called bypassing [Fly95].
Let R be the specification register to be read. The technique used here is
presented in [KPM00]. Letstage(R) = w = k+1, i.e., the registerR is
an output register of the next stage and do not let the read access have an
address. There are two cases (figure 4.4):

� If f ull :w is set, the stagewcontains the configuration that the desired
value is part of. Since the full bit is set, the stage is still busy and the
desired value is not yet stored in the register. However, the register
transition function ofR provides the final value. SinceR2 out(w),
ωwR is this value.

� If f ull :w is not set, there is either no previous configuration (the
stage was never used after reset), or the previous configuration is
already in the next stage. In the first case, the stage still contains the
initial values, i.e., the values ofc0

S. In the second case, the calculation
is already done and the result is stored in the register. In both cases,
R:(w+1) contains the desired value.

Thus, in order to realize forwarding from the next stage, it is sufficient
to select betweenωwRandR:(w+1) depending on the signalf ull :w.

This is formalized as follows: The functiongkR is used in order to gen-
erate the input values for the register transition functions. The method
described above allows defininggkR for the pipelined machine for the case
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Figure 4.4 How forwarding is done from the next stage: the calculation ofQ:(k+
1) depends onR:(k+2). If stagek+1 is full, the output of stagek+1 is taken. If
not, the value from the register is taken.
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w= k+1 andR2 spec. If R is an implementation register, no forwarding
is necessary and we usegkR from the prepared sequential machine.

If R is a specification register withw = k+1 and the read access does
not have an address,gkR is:

gkR(c) =

8<
:

R:(w+1) : c: f ull :w^ f γkRre(c)
ωwR(c) : c: f ull :w^ f γkRre(c)

0 : otherwise

The following lemma asserts that the input generation functiongkR de-
fined above provides the correct value. This lemma corresponds to lemma
3.16 (page 82) as used in the sequential machine.

Let sI(k;T) = i and f ull T
k hold. Let R be a specification register andJ Lemma 4.7

w = k+1. Assuming that the stage correctness predicatesPj hold in all
cycles up to cycleT, the inputs generated by the functiongkRduring cycle
T are correct:

gkR(c
T
I ) = GkR(c

i
S)

SinceR is a specification register, the correct valueGkRon the right-hand PROOF
side of the claim is given in the configuration of the specification machine.
Since the read access does not have an address, this is:

gkR(c
T
I )

!
=

�
Ri

S : f ΓkRre(ci
S)

0 : otherwise

The correctness of the read enable signal is asserted as in the proof of
lemma 3.16. After that, the claim is shown for the last stage, which is stage
n�1, then for stagen�2, and so on until the claim is shown for all stages.
In case of the last stage, there is nothing to show since there is no next
stage to forward from. Assuming the claim holds for stagek+1, the claim
is shown for stagek as follows:

There are two cases regarding the full bitf ull :wT :

1. The full bit f ull :wT is set. Thus, invariant 3.3 states:

sI(k+1;T) = i�1
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P:k

Q:(k+1)uek

uek�1

Stagek

R:(k+2)

Stagek+1

uek+1

ci+1
S

ci
S

ci�1
S

uek+2 S:(k+3) ci�2
S

Stagek+2
ωk+2S

ωkQ

ωk+1R

Ii

Ii�2

Ii�1

Figure 4.5 Forwarding multiple times: registerQ depends onR, which depends
onS.

The next thing to show is that the inputs offwRare correct:

γwR(cT
I )

!
= ΓwR(csI(w;T)

S ) (4.1)

This is done as follows: for implementation registers, one applies
lemma 3.16. For specification registers that are in the same stage,
one also uses lemma 3.16. For specification registers that are in
stagew+1, forwarding from the next stage is done. For this case,
the correctness is shown using the induction premise.

This situation is depicted in figure 4.5: registerQdepends on register
R, which depends on registerS. The proof covers this situation by
using induction as described. However, we do not recommend it
since it results in a bad cycle time.

The correctness of the inputs implies that the outputs of the stage
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given byωwR(cT) are also correct. Formally, lemma 3.13 is used.
Let the write enable signalfwRwebe active:

gkR(cT
I ) = ωwR(cT

I ) (by def. ofgkR)
= f γwR(cT

I ) (by def. ofω)

= f ΓwR(csI(w;T)
S ) (eq. 4.1)

= f ΓwR(ci�1
S ) (inv. 3.3)

= Ri
S (lemma 3.13)

If the write enable signalfwRweis not active, the functionωwR takes
the value from the register, i.e.,cT

I :R. According to the stage correct-

ness predicate for stagek+1 and cycleT, this is equal toRsI(w;T)
S .

This is equalRi�1
S because ofsI(w;T) = i�1. This is equal toRi

S
because the registerR is not changed since the write enable signal is
not active. Formally, one uses lemma 3.13.

gkR(cT
I ) = ωwR(cT

I ) (by def. ofgkR)
= cT

I :R (by def. ofω)

= RsI(w;T)
S (stage correctness)

= Ri�1
S (inv. 3.3)

= Ri
S (lemma 3.13)

This concludes the claim.

2. The full bit f ull :wT is not set. In this case,gkR is by definition:

gkR(c
T
I ) = RT

I (4.2)

Using the stage correctness for the value on the right-hand side, this
is transformed into:

gkR(c
T
I ) = RsI(w;T)

S (4.3)

Invariant 3.2 shows thatsI(w;T) is either i or i� 1. Invariant 3.3
shows that it is noti � 1, thus,sI(w;T) is i. This concludes the
claim.

This concludes the correctness of the forwarding from the next stage. QED
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Figure 4.6 Transformation of the PC environment

Example: Forwarding of DPC in the DLX The DLX implementation
in the previous chapter reads the register DPC in the instruction fetch stage
(section 3.4.2 page 55). The register DPC is an output register of the de-
code stage. Thus, the read access to DPC in stage 0 can be realized using
the functiong0DPC as defined above.

According to the definition above, the value read depends on the full bit
of the stage that writes DPC, i.e., it depends onf ull1. If f ull1 is not set, the
value from the register DPC.2 is taken. Iff ull1 is set, the value provided
by the transition function of DPC is taken. The transition function of DPC
reads PC’ and outputs this value unmodified. Iff ull1 is set, one therefore
takes the value of PC’ as input in stage 0.

g0DPC =

�
PC0:2 : f ull1 = 1
DPC:2 : f ull1 = 0

The PC environment before and after the transformation is depicted in
figure 4.6.

However, this does not disprove the correctness of the implementation in
[MP00]: in the pipelined implementation in [MP00], the value ofDPC is
always taken from the registerPC0. This is correct since the stall engine in
[MP00] ensures that the stages 0 and 1 are always clocked simultaneously.
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This implies that the full bitf ull1 is always active iff stage 0 readsDPC
except for the first time after reset. The calculation of the firstDPC is
compensated using the signalreset.

4.2.3 Result Forwarding

In the general case, i.e., ifw > k+1, gkR is still undefined. The method
used for the casew = k+ 1 cannot be used with reasonable effort since
this would require combining the transition functions of two or even more
stages. Besides the extra hardware cost, these combined transition func-
tions would be too deep and would lengthen the cycle time.

However, forwarding over multiple stages is reasonable in one special
case: Microprocessor instruction sets usually offer different kinds of in-
structions, such as ALU and memory instructions. The value that is to be
forwarded is the result of these operations. The different instructions are
processed by different stages, e.g., by an execute stage and by a memory
stage as described in the previous chapter. The result is available in an
early stage therefore. The later stages just pass this result unmodified. The
transition functions that are left to be applied are very simple in this case:
they are just the identity.

In a sequential machine, it is possible to write the result in the register
file as soon as it is calculated. However, as shown by the example in figure
4.7, it is not possible to do so in the pipelined machine. Consider two
instructionsI1 andI2:

I1 : R1 := DM[0]

I2 : R1 := R2+R3

If each instruction writes its result into the register file as soon as it is
available, the registerR1 would contain the result of the memory instruc-
tion I1 instead of the ALU instructionI2. The result is written in the last
stage (WB) therefore and not as soon as available. This is shown in figure
4.8.

In a pipelined implementation, the result therefore must be buffered in
an implementation register. The value of this implementation register is
written into the register file in the last stage.

In order to realize forwarding of results that are available in an early
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IF D Ex

IF D M

t

M

Ex

writing R1

writing R1

I2: R1 := R2+R3

I1: R1 := M[0]

Figure 4.7 Write back as soon as possible.

IF D Ex

IF D

M WB

M WBEx

t

writing R1

writing R1

I1: R1 := M[0]

I2: R1 := R2+R3

Figure 4.8 Write back in program order.
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Stage Alias

2 (EX) C:3=a GPR
3 (M) C:4=a GPR

Table 4.3 Write aliases for the DLX

stage, it is necessary to specify which implementation register holds the
intermediate result of a specification register.

Let R denote a specification register andQ with Q 2 out(k) denote an J Definition 4.1
Write Aliasimplementation output register of stagek. In this case, letQ=a R denote

thatQ is used in order to buffer the final value ofR. The registerQ is called
awrite alias for R.

The list of write aliases is added to the hardware description file.

Example: Result Forwarding in the DLX Consider the prepared se-
quential DLX as defined in chapter 3. Consider an ALU instruction, e.g.,
addi. The final result written into GPR, i.e., the sum, is known already in
stage 2. The result of the ALU instruction is written into the registerC:3
(figure 3.5, page 54). Thus, one can defineC:3=a GPR.

Table 4.3 shows the list of all write aliases defined for the DLX design.

As soon as a value is written into a write alias registerQ with Q=a R, it J Definition 4.2
Valid Valuesis assumed that this value matches the final value ofR in the configuration

that is being calculated. Such a value is calledvalid value.

A registerQ:(l +1) is written iff the write enable signal of the register
is active. The write enable signal ofQ:(l +1) is fl Qwe. Thus, a value in
a registerQ:(k+1) is valid iff any write enable signalfl Qweof the alias
registerQ of stagel � k is active.

The hardware transformation program uses the list of write aliases in orderJ Definition 4.3
Valid Signalsto generate a set of additional signalsQkvalid(cI ) for eachQ=a R.

In the following, it is assumed that precomputed versions of all write
enable signalsfl Qweexist (see section 3.3, page 52). These precomputed
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values are stored in implementation registers. Remember that these regis-
ters are named just like the signal. We will use these registers in order to
calculate the valid signals in an obvious way:

Qkvalid : CI �!B

Qkvalid(cI ) :=
k_

l=stage(Q)

cI : fl Qwe:k

This definition is slightly different from the definition of the valid signals
in [MP00]. The valid signals from [MP00] are on even if the instruction
does not writeGPR, e.g., in case of a store instruction, which writes to the
data memory only. However, this does not disprove the correctness of the
hardware in [MP00], since special care is taken for instructions that do not
write GPR.

However, there is no guarantee that a value written into an alias register
matches the value finally written into the register that is to be forwarded.
Thus, this assumption must be proved for eachQ=a R.

This is formalized as follows: LetcS be a configuration of the specifi-
cation machine. In analogy to the valid signals above, we define acorrect
valid signal. The predicateQkValid(cS) holds iff a correct write enable
signals fl Qweof the alias registerQ of stagel � k holds.

As described in section 3.3, the registers holding the precomputed ver-
sions of control signals are treated just like implementation registers. Thus,
the definition of a correct value of a register, as given in section 3.5.4 (page
71), also applies for these registers. Thus, one can use the correct value of
the registers holding precomputed signals in order to define the correct
value of the valid signals.

The register holding the precomputed version of a signal is named just
like the signal, i.e., if the name of the write enable signal isfl Qwe, so is the
name of the register. The correct value of a registerR:k is Ωk�1R. Thus,
the predicateQkValid is defined as follows:

QkValid : CS�!B

QkValid(cS) :=
k_

l=stage(Q)

Ωk�1 fl Qwe(cS)
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Example: Result Forwarding in the DLX Consider the prepared se-
quential DLX as defined in chapter 3. Let

I0; I1; I2; : : :

denote an instruction sequence, as in section 3.5.2 (page 63). As described
above, ifIi is an ALU instruction, the final result written into GPR is known
already in stage 2. The result of the ALU instruction is written into the
registerC:3. In this case,C2Valid(ci

S) holds because the write enable signal
f2Cweis active.

Let Ii be a load instruction. In this case,C2Valid(ci
S) does not hold

because neitherf2Cwenor f1Cweare active.

Let w= stage(R) hold. The following statement is shown for eachQ=a R: J Lemma 4.8
if the valid predicate of a registerQ holds, the correct value written in
this implementation register has to match the final value generated by the
register transition function ofR. The correct value written intoQ:(k+1)
is given byΩkQ(ci

S) (section 3.5.4 page 71).

If the write access toRdoes not have an address:

QkValid(ci
S) =) ΩkQ(ci

S) = ci+1
S :R

If the write access toRhas an address, we assume that the control signals
for the write addressfwRwaare also precomputed. The correct value of
this address is just the correct value of implementation register holding the
precomputed write address.

QkValid(ci
S) =) ΩkQ(ci

S) = ci+1
S :R[Ωk�1 fwRwa(ci

S)]

This is illustrated in figure 4.9 for stagek = 2 (EX). In this stage, the
result, which is to be forwarded, is provided by the ALU. This isΩ2C.
This result is calculated using the values in the registers inout(1) as in-
puts. Thus, the address is also taken from a register inout(1), which is
f4GPRwa:2. The correct value off4GPRwa:2 is given byΩ1 f4GPRwa.

The same method is used in [MP00] with a different notation: the re-
sult provided by the ALU is denoted byC0:2. The address is taken from
f4GPRwa:2, which is a precomputed version of the write address used for
writing GPR. In correspondence to lemma 4.8, [MP00] provides a lemma
in order to argue that the value ofC0:2 matches the final value assuming
the valid signal is active.
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ALUEX

ID Ω1C

Ω2C

Ω1 f4GPRwa

Ω2 f4GPRwa

A;B PC0 DPC

MAR:3

C:2

MDRw:3 C:3 IR:3

IR:2

f4GPRwa:3

f4GPRwa:2

Figure 4.9 ALU results and the register address in the machine without imple-
mentation registers

Lemma 4.8 is shown for the write aliases for the pipelined DLX as definedPROOF
in table 4.3.

ForC:3=a GPR, the claim is:

C2Valid(ci
S) =) Ω2C(ci

S) = ci+1
S :GPR[Ω1 f4GPRwa(ci

S)] (4.4)

The first step is to conclude that the write enable signalf4GPRweis
active using thatC2Valid(ci

S) holds, i.e., one shows that an instruction in
stage EX that is valid actually writes a GPR. Remember that the write
enable signal ofGPR:4 is precomputed in the decode stage (section 3.3,
page 52), i.e.,f4GPRwejust takes the value from the registerf4GPRwe:4.
The correct value of this register isΩ3 f4GPRwe(ci

S):

f4GPRwe(Ω3 f4GPRwe(ci
S)) = Ω3 f4GPRwe(ci

S)

By repeatedly expanding the definition the function on the right-hand
side, one gets:

f4GPRwe(Ω3 f4GPRwe(ci
S)) = Ω3 f4GPRwe(ci

S)

= Ω2 f4GPRwe(ci
S)

= Ω1 f4GPRwe(ci
S)

= f1 f4GPRwe(Ω0IR(ci
S))

One proves this by expanding the definition of the correct valid signal:

C2Valid(ci
S) = Ω1 f1Cwe(ci

S)_Ω1 f2Cwe(ci
S)

= f1 f1Cwe(Ω0IR(ci
S))_ f1 f2Cwe(Ω0IR(ci

S))
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As defined in section 3.4.3 (page 55),f1 f1Cwe(Ω0IR(ci

S)) holds if the
instruction Ii is a jump and link instruction. The write enable function
f1 f2Cwe(Ω0IR(ci

S)) holds if Ii is an ALU/shift instruction (section 3.4.4).
This allows concluding thatf1 f4GPRwe(Ω0IR(ci

S)) holds (section 3.4.6,
page 60). Thus,Ω3 f4GPRwe(ci

S) holds.

This allows concluding that the write enable signal with correct input
f4GPRwe(Ω3 f4GPRwe(ci

S)) is active, which is equivalent tof Γ4GPRwe.
We conclude the claim using lemma 3.15: Since the write enable signal
f Γ4GPRwe(ci

S) is active, lemma 3.15 (page 78, the generic claim is in
lemma 3.13 page 75) states for all addressesx:

ci+1
S :GPR[x] =

�
f Γ4GPR(ci

S) : x= f Γ4GPRwa(ci
S)

ci
S:GPR[x] : otherwise

(4.5)

By expanding definitions, one shows thatf Γ4GPRwa(ci
S) is equal to

the precomputed version, which isΩ1 f4GPRwa(ci
S). Using that equality,

equation 4.5 withx= Ω1 f4GPRwa(ci
S) is:

ci+1
S :GPR[Ω1 f4GPRwa(ci

S)] = f Γ4GPR(ci
S) (4.6)

By inserting equation 4.6 into the claim (equation 4.4), the claim is trans-
formed into:

Ω2C(ci
S)

!
= f Γ4GPR(ci

S) (4.7)

This new claim is shown as follows: the first step is to show that the in-
struction is not a load instruction, as indicated byI load(Ω1IR(ci

S)). This
is done using thatC2Valid(ci

S) holds. One shows that the instruction coded
by Ω1IR(ci

S) is either a jump and link or ALU/Shift instruction. Thus, it
cannot be a load instruction. One easily shows thatΩ1IR is equal toΩ3IR,
thus,I load(Ω3IR(ci

S)) is also not active.

The proof proceeds by expanding the definition ofΓ4GPRon the right-
hand side of the claim (equation 4.7):

Ω2C(ci
S)

!
= f4GPR(Γ4GPR(ci

S))

= f4GPR(Ω3C(ci
S);Ω3IR(ci

S); (4.8)

Ω3MAR(ci
S);Ω3MDRr(ci

S))

One then expands the definition off4GPR (section 3.4.6). Since the
instruction is not a load instruction (I load(Ω3IR(ci

S)) does not hold), the
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function f4GPR returns the value of theC register. This transforms the
claim into:

Ω2C(ci
S)

!
= Ω3C(ci

S) (4.9)

This is shown by expanding the definition ofΩ3C(ci
S) on the right-hand

side.

Very similar arguments are used in order to show the claim forC:4 =a

GPR.QED

Implementing Result Forwarding Thus, if such aQkValid predicate
holds, it is possible to take the result written into theQ:(k+1) register as
the value for a read access. This is done only if the instruction in a given
stage actually writes the desired register. A signal is defined that is active
if this holds. This signal is calledhit signal.

Let stagek depend on a specification registerR that is an output register ofDefinition 4.4
Hit Signals

I

stagew with w� (k+1). In addition to the valid signals, a set of hit signals
is defined as follows: if the write access toRdoes not have an address:

8 j 2 fk+1; : : : ;wg :

Rkhit[ j](cI ) := f ull j (cI )^ fwRwe: j

We use the precomputed version of the write enable signal ofR in order
to determine if the instruction in the given stage writesR. If the write ac-
cess has an address, it is necessary to check the address of the write access
in addition to the conditions above. As above, we use the precomputed
version of the write address.

8 j 2 fk+1; : : : ;w�1g :

Rkhit[ j](cI ) := f ull j(cI )^ fwRwe: j ^

( f γkRra(cI ) = fwRwa: j)

In case of stagew, the address and write enable signals are taken from
the write access directly:

Rkhit[w](cI ) := f ullw(cI )^ f γwRwe(cI )^

( f γkRra(cI ) = f γwRwa(cI ))
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A very similar definition is in [MP00]. If any hit signal of a stagej is

active, lettopdenote the smallest suchj, i.e., the topmost stage with active
hit signal:

top := minf j 2 fk+1; : : : ;wg j Rkhit[ j](cI )g

This is undefined if no signalRkhit[ j] is active. The signal

Rkhit[top]

is calledtopmost hit signal.

Using this definition, one can now define the forwarding functiongkR.
For sake of simplicity, let us assume that the read enable signalf γkRre(cI )
is active. If not,gkR returns zero and no forwarding is necessary.

If the topmost hit signal is in stagew, i.e., the stage that actually outputs
R, one just takes the value written intoR, which is provided byfwR. If the
topmost hit signal is in a stagej < w, one takes the value written into the
alias register, i.e.,ω jQ(cI ). If no hit signal is active, one takes the value
from R.

If the write access toRdoes not have an address,gkR is:

gkR(c) =

8>><
>>:

f γwR(c) : Rkhit[w](c)^w= top
ω jQ(c) : j 2 fk+1; : : : ;w�1g^

Rkhit[ j](c)^ j = top
R:(w+1) : otherwise

(4.10)

If the read access has an address,gkR is defined using the read address.
Let x := f γkRra(c) be the address.

gkR(c) =

8>><
>>:

f γwR(c) : Rkhit[w](c)^w= top
ω jQ(c) : j 2 fk+1; : : : ;w�1g^

Rkhit[ j](c)^ j = top
R:(w+1)[x] : otherwise

(4.11)

The same forwarding method is used in [MP00]. As in [MP00], the
comparisonj = top is realized using a chain of multiplexers (in PVS, IF
: : : THEN : : : ELSIF : : : ENDIF is used). This is depicted exemplary in
figure 4.10.1

1In larger pipelines, the delay of this circuit grows linear with the pipeline size. For
large pipelines, a find first one circuit is faster.
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0 1

0 1

0 1

hit[2]

hit[3]

hit[4]

R:5 ω4R

ω3C

ω2C

Figure 4.10 Implementation of 3-stage forwarding

Observe that the forwarding from the next stage, as described in section
4.2.2, is just a special instantiation of the more general forwarding method
described in this section.

In case of a hit in a stage, lemma 4.8 will be used in order to argue about
the value read from the given stage. However, if the hit signal is not active,
one has to argue that one can safely ignore the contents of the stage in
order to do forwarding. This is asserted by the following lemma. In terms
of microprocessors, the lemma asserts that the instruction in a given stage
does not update the register that is to be forwarded if the hit signal is off.

Let Q =a R hold and letQ 2 out( j) andR2 out(w) hold. Consider theLemma 4.9 I

correct value of the precomputed write enable signal ofR.

If the write access toR does not have an address, the registerR is not
modified if the write enable signal is not active:

Ω j�1 fwRwe =) ci
S:R= ci+1

S :R

Observe thatΩ j�1 fwRweis just the correct version of the hit signal (def-
inition 4.4). Thus, it is calledcorrect hit signal(the full signal is ommited
because the configurationcS does not have full bits; it processes one in-
struction in one cycle).

If the write access toR has an address, in analogy to definition 4.4, the
addressx is compared with the correct precomputed address, as defined by
Ω j�1 fwRwa(cS).
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Thus, in terms of microprocessors, if the addresses are not equal or if

the write enable function returns false, the instruction in stagej does not
update the desired register.

8x2Wa(R) : x 6= Ω j�1 fwRwa(ci
S)_Ω j�1 fwRwe

=) ci
S:R[x] = ci+1

S :R[x]

The lemmas 4.8 and 4.9 are calledwrite alias correctness lemmas.

Lemma 4.2.3 is shown for the write aliases for the pipelined DLX as de-PROOF
fined in table 4.3.

ForC:3=a GPR, the claim is:

8x2Wa(GPR) : x 6= Ω1 f4GPRwa(ci
S)_Ω1 f4GPRwe(ci

S)
!

=) ci
S:GPR[x] = ci+1

S :GPR[x]

There are two cases regarding the value off Γ4GPRwe(ci
S). If it is off,

the claim directly follows from lemma 3.15 (page 78).

Thus, let f Γ4GPRwe(ci
S) hold. From this, we easily show by expanding

definitions thatΩ1 f4GPRwe(ci
S) holds:

f Γ4GPRwe(ci
S) = f4GPRwe(Γ4GPRwe(ci

S))

= f4GPRwe(Ω3 f4GPRwe(ci
S))

= Ω3 f4GPRwe(ci
S)

= Ω2 f4GPRwe(ci
S)

= Ω1 f4GPRwe(ci
S)

This transforms the claim into:

8x2Wa(GPR) : (x 6= Ω1 f4GPRwa(ci
S))

!
=) ci

S:GPR[x] = ci+1
S :GPR[x]

Let ind be a shorthand forf Γ4GPRwa(ci
S). Since the write enable signal

is active, lemma 3.15 states for all addressesx:

ci+1
S :GPR[x] =

�
f4GPR(Γ4GPR(ci

S)) : x= ind
ci

S:GPR[x] : otherwise
(4.12)
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By inserting this into the claim, the claim is transformed into:

8x2Wa(GPR) : (x 6= Ω1 f4GPRwa(ci
S))

!
=) ci

S:GPR[x] =

�
f4GPR(Γ4GPR(ci

S)) : x= ind
ci

S:GPR[x] : otherwise

We will now concludex 6= ind usingx 6= Ω1 f4GPRwa(ci
S):

ind = f Γ4GPRwa(ci
S)

= f4GPRwa(Γ4GPRwa(ci
S))

= f4GPRwa(Ω3 f4GPRwa(ci
S))

= Ω3 f4GPRwa(ci
S)

= Ω2 f4GPRwa(ci
S)

= Ω1 f4GPRwa(ci
S)

6= x

This concludes the claim. Very similar arguments are used in order to
show the claim forC:4=a GPR.QED

Consider a hit in stagetopand that the valid signal of that stage, as given
by definition 4.3, does not hold. In this case, one cannot use lemma 4.8 to
argue that the values in the stage are valid. Lemma 4.9 cannot be used,
either, in order to argue that the stage can be ignored, since there is a hit in
the stage. In this case, forwarding, as described above, fails completely.

4.3 Stalling

If forwarding fails, the calculation of the input values of the stage is not
possible. It is necessary to delay the calculation in a stage until the data
is available. Since the result of prior stages has to be stored somewhere,
these stages have to wait also. In contrast to that, later stages must not be
stalled since these stages calculate the desired inputs. The mechanism used
to realize this is calledstall engineand is introduced in [MP00]. In con-
trast to the stall engine in [MP00], the stall engine presented here supports
independent stall signals for each stage.

The stall engine is implemented by re-defining the signalsstallk. In the
prepared sequential machine the stall signals are only used in order to obey
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external stall conditions such as caused by slow memory. In the pipelined
machine,internal stall conditionsare added.

In order to calculate the signalsstallk, a signal is required that indicates
whether a given stage has to wait for an input value. The signaldhazk
(data hazard) is active iff stagek is waiting for an input operand. The stage
k must be stalled ifdhazk is active and if the stage is full. This is called a
data hazard stall.

Furthermore, the stage must be stalled if the next stage (stagek+1) is
stalled because the necessary data paths and registers are not available in
this case. This case is called astructural hazard stall.

Let extk denote the disjunction of the external stall signals of stagek,
e.g., used for memory. Letintk denote the disjunction of the internal stall
signals. Since the last stage (stagen�1) has no next stage, the definition
of the signalintk depends on the stage number:

k 6= n�1 : intk := dhazk_stallk+1

intn�1 := dhazn�1 (4.13)

This allows defining the stall signalstallk:

stallk := f ullk^ (extk_ intk) (4.14)

This definition of the stall signal obviously conforms to the stall signal
convention 4.2 (page 95)2.

As described above, forwarding fails if there is a hit in stagetopand the
valid signal of the stage does not hold. For each input that requires result
forwarding, a separate data hazard signal is defined. LetR2 out(w) be a
specification register that is read by stagek. The data hazard signal for this
input is then calledRkdhaz. The data hazard signal of stagek, which is
dhazk, is the disjunction of these data hazard signals.

In case of the DLX, we have two read accesses to the general purpose
register file. In analogy to the naming convention described in section 3.2.7
(page 51),GPRaandGPRbare used for the GPR operands:

dhaz1 := GPRa1dhaz_GPRb1dhaz

2In the PVS tree, this is shown in form of a TCC (type-correctness condition).
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The data hazard signalsRkdhazare defined as follows: if there is no hit
signal active, no data hazard is indicated. If there is a hit in any stage, the
stage given bytop is examined. As in [MP00], a data hazard is indicated
if the stage is not valid. In case of stagew = stage(R), there is no valid
signal. In stagew, the result is written into the register and the result is
therefore known in stagew at the latest. Thus, there is no need for a valid
signal in stagew.

In addition to that, a data hazard is also indicated if the data hazard signal
of the stagetop is active:

Rkdhaz(cI ) :=

8>><
>>:

dhazw(cI ) : Rkhit[w](cI )^w= top
dhazj (cI )_ : j 2 fk+1; : : : ;w�1g^
Qjvalid(cI ) Rkhit[ j](cI )^ j = top

0 : otherwise

This addition to [MP00] is motivated as follows: If the valid signal of
the stage is active, one uses lemma 4.8 in order to show that the output
of the stage matches the value finally written in the register that is read.
However, the output value of the stage is only correct if the inputs of the
stage are correct. Assume the stage uses forwarding in order to get one or
more inputs. These inputs are only correct if the forwarding does not fail.

It will turn out that forwarding fails iff the data hazard signal is active.
Thus, the data hazard signal is checked.

This does not disprove the correctness of the implementation of the for-
warding logic in [MP00]: in [MP00], data is forwarded from stages 2 to
4. For the calculation of GPR results, these stages never use forwarding in
order to get inputs.

This also applies to the pipelined DLX presented in this chapter: stages
2 to 4 never use result forwarding, the data hazard signals of stages 2 to 4
are always false therefore.

In hardware, the comparison of the stage number withtop is done with
multiplexers as described in section 4.2.3.

4.4 Implementing the DLX π

The implementation of the DLXπ is completely identical to the implemen-
tation of the machine DLXσ as described in the previous chapter except for
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the following changes:

1. The definition off ull0 and the stall signals are changed as described
in sections 4.1.1 and 4.3.

2. Forwarding logic is added for the stages IF and ID as described in
section 4.2.

The complete process of introducing the new stalling and forwarding
logic is completely automated.

4.5 Data Consistency

The following lemmas assert the correctness of the result forwarding mech-
anism as presented in the previous sections. These lemmas correspond to
lemma 3.16 (page 82) of the sequential machine. They assert that the in-
puts generated during cycleT�1 are correct. They will be used in order
to show that the values of the registers during cycleT are correct.

Let sI(k;T) = i and f ull T
k hold. LetR2 out(w) be a specification registerJ Lemma 4.10

with w> k and let the stage correctness predicatesPj hold in all cycles up
to cycleT. If there is no hit signal active, registerR is not modified from

configurationcsI(w;T)
S to configurationci

S:

RsI(w;T)
S = Ri

S

If the read access has an address, the claim is that the register with the
given address is not modified. Letx denote the address.

x := f ΓkRra(ci
S)

RsI(w;T)
S [x] = Ri

S[x]

The first step is to assert the correctness of an address value, if present:PROOF

f ΓkRra(ci
S)

!
= f γkRra(cT

I )

Thus, one has to show:

ΓkRra(ci
S)

!
= γkRra(cT

I )
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This is done as in the proof of lemma 3.16 (page 82). By definition, the
inputs required in order to calculate the address do not require forwarding.

The claim is then shown easily by a full case split on the full bits of
the stagesk+1 to w. As soon as fixed values for the full bits are given,
the scheduling invariants can be used in order to determine the value of
sI(w;T) relative tosI(k;T) (T > 0 is shown easily using lemma 4.6).

For example, if all full bits are off, one easily shows thatsI(w;T) =
sI(k;T) = i holds. In this case, the claim above obviously holds.

If the full bit of one or more stages is set, let

diff := sI(k;T)�sI(w;T)

denote the difference between the values of the scheduling function. Using
the scheduling invariants 3.2 and 3.3, one easily shows that there are as
many active full bits as given bydiff .

For each active full bitf ull T
l , one argues that

RsI(l ;T)
S = RsI(l ;T)+1

S

holds. If the read access has an address, it is argued that

RsI(l ;T)
S [x] = RsI(l ;T)+1

S [x]

holds. This is done using the fact that the hit signalRkhit[l ] is off and by
lemma 4.9 ifl 6= w and by lemma 3.13 ifl = w.

This can be donediff -times and concludes the claim.QED

Let sI(k;T) = i and f ull T
k hold. LetR2 out(w) be a specification registerLemma 4.11 I

with w> k and let the stage correctness predicatesPj hold in all cycles up
to cycleT. If there is an active hit signal, registerR is not modified from
configurationcsI(top;T)+1

S to configurationci
S:

RsI(top;T)+1
S = Ri

S

If the read access has an address:

x := f ΓkRra(ci
S)

RsI(top;T)+1
S [x] = Ri

S[x]
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It is not surprising that one argues aboutRsI(top;T)+1
S . In case of an active

hit signal, the forwarding hardware takes theoutputof the stagetop. If
instruction IsI(top;T) is in stagetop, the outputs of the stage are part of

configurationcsI(top;T)+1
S . Let j = sI(top;T) hold:

cj
S

I j
�! cj+1

S

This is shown with the same method as used in the proof of lemma 4.10.PROOF

For example, iftop= k+1, i.e., the hit is in the next stage, one easily
shows thatsI(top;T)+1 = i holds using invariant 3.3 and thatf ullT

top is
active.

Let top bek+2 and f ullT
k+1 not hold. In this case, one uses invariants

3.2 and 3.3 in order to show thatsI(top;T)+1 = i. If a full bit is active,
one uses lemma 4.9, as above. QED

Let sI(k;T) = i and f ull T
k hold and let the data hazard signaldhazTk be not J Lemma 4.12

active. LetR2 out(w) be a specification register withw > k and let the
stage correctness predicatesPj hold in all cycles up to cycleT. Let there
be no hit signal active.

The claim is that the inputs generated by the functiongkR during cycle
T are correct:

gkR(c
T
I ) = GkR(c

i
S)

SinceR is a specification register, the correct value on the right-hand sidePROOF
of the claim is given in the configuration of the specification machine. If
the read access does not have an address, this transforms the claim into:

gkR(c
T
I )

!
=

�
Ri

S : f ΓkRre(ci
S)

0 : otherwise

In case of a read access with address, the correct value is defined using
the correct value of the address, as in lemma 3.16 (page 82):

x := f ΓkRra(ci
S)

gkR(c
T
I )

!
=

�
Ri

S[x] : f ΓkRre(ci
S)

0 : otherwise
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The first step is to assert the correctness of an address value, if present,
as done in the proof of lemma 4.10:

f ΓkRra(ci
S) = f γkRra(cT

I )

By the same arguments, one shows the correctness of the inputs of the
read enable functionfkRre. Let the read enable signalfkRre be active.
Otherwise, the claim is trivial since zero is returned and no forwarding is
required. This transforms the claim into:

no address: gkR(cT
I )

!
= Ri

S

with address: gkR(cT
I )

!
= Ri

S[x]
(4.15)

Since no hit signal is active, by definition ofgkR (equation 4.10),RT
I is

read:

gkR(c
T
I ) = RT

I

If the read access has an address, the correct address is used (equation
4.11):

gkR(c
T
I ) = RT

I [x]

Using the stage correctness predicate for cycleT and stagew, one easily
transforms the right-hand side of both equations into:

no address: gkR(cT
I ) = RsI(w;T)

S

with address: gkR(cT
I ) = RsI(w;T)

S [x]
(4.16)

This allows transforming the claim into:

no address: RsI(w;T)
S

!
= Ri

S

with address: RsI(w;T)
S [x]

!
= Ri

S[x]
(4.17)

This is concluded using lemma 4.10.QED

Let sI(k;T) = i and f ull T
k hold and let the data hazard signaldhazTk be notLemma 4.13 I

active. LetR2 out(w) be a specification register withw > k and let the
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stage correctness predicatesPj hold in all cycles up to cycleT. Let there
be an active hit signal.

The claim is that the inputs generated by the functiongkR during cycle
T are correct:

gkR(c
T
I ) = GkR(c

i
S)

SinceR is a specification register, the correct value on the right-hand sidePROOF
of the claim is given in the configuration of the specification machine. If
the read access does not have an address, this transforms the claim into:

gkR(c
T
I )

!
=

�
Ri

S : f ΓkRre(ci
S)

0 : otherwise

In case of a read access with address, the correct value is defined using
the correct value of the address, as in lemma 3.16 (page 82):

x := f ΓkRra(ci
S)

gkR(c
T
I )

!
=

�
Ri

S[x] : f ΓkRre(ci
S)

0 : otherwise

The claim is shown inductively beginning with the last stage and pro-
ceeding from stagek+1 to stagek. In case of the last stage, which is stage
n�1, there is nothing to show since there is no stage below to forward
from. Assuming the claim holds for stagesk0 with k< k0 < n, the claim is
shown for stagek as follows:

As in the proof of lemma 4.12, one asserts the correctness of the address
value and that the read enable signal is active.

As required in the premise, the data hazard signalRkdhazT is not active.
By definition of the data hazard signal, this implies that the valid bit of the
stagetop is active and that the data hazard signal of stagetop is not active.

As described above, one assumes the correctness of the inputs of the
stagesk0 > k in order to show the correctness of the inputs of stagek.
Sincetop> k, one can apply the induction premise for stagetop. This
shows the correctness of the inputs of the stagetop:

γtopR(c
T
I ) = ΓtopR(c

sI(w;T)
S ) (4.18)
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The claim is now shown by a case split on the value oftop (in PVS, a
separate lemma is used for the possible values oftop).

Let top = w hold, i.e., the hit is in the stage that writesR. Sincetop=w,
gkR returns the value written intoR:(w+1). If the write access does not
have an address, this is (equation 4.10):

gkR(c
T
I ) = f γwR(cT

I ) (4.19)

As described above, one uses that the inputs of stagetop are correct.
Formally, one uses equation 4.18, which transforms the last equation into:

gkR(c
T
I ) = f ΓwR(csI(w;T)

S ) (4.20)

Using this equation, the claim is transformed into:

no address: f ΓwR(csI(w;T)
S )

!
= Ri

S

with address: f ΓwR(csI(w;T)
S )

!
= Ri

S[x]
(4.21)

One easily shows thatf ΓwRwe(csI(w;T)
S )) holds by using that the hit sig-

nal Rkhit[w] is active (definition 4.4). If the read access does not have an
address, lemma 3.13 states:

RsI(w;T)+1
S = f ΓwR(csI(w;T)

S ) (4.22)

This allows transforming the claim into:

RsI(w;T)+1
S

!
= Ri

S (4.23)

This is concluded by lemma 4.11.

In case of a read access with address, the last thing is to show that the
address given byx matches the address actually used for the final write
access toR, as given by lemma 3.13:

f ΓwRwa(csI(w;T)
S )

!
= x

= f γkRra(cT
I )

The value on the right-hand side is equal tof γwRwa(cT
I ) because the

signal Rkhit[w] is active (definition 4.4, page 114). This transforms the
claim into:

f ΓwRwa(csI(w;T)
S )

!
= f γwRwa(cT

I )
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Thus, it is sufficient to assert that the inputs offwRwaare correct:

ΓwRwa(csI(w;T)
S )

!
= γwRwa(cT

I )

This is done as described above for the inputs offwR.

Let top 6= w hold, i.e., the hit is not in the stage that writesR. Since
top 6= w, there must be a write alias forR for the stage. Let the registerQ
be the alias register (i.e.,Q=a R).

In this case,gkR returns the value written intoQ:(top+1) (by definition
of gkR, equation 4.11):

gkR(c
T
I ) = ωtopQ(cT

I ) (4.24)

As above, one argues that the inputs offtopQ are correct. Thus, the
output is correct.

ωtopQ(cT
I ) = ΩtopQ(csI(top;T)

S ) (4.25)

This allows transforming the claim into:

no address: ΩtopQ(csI(top;T)
S )

!
= Ri

S

with address: ΩtopQ(csI(top;T)
S )

!
= Ri

S[x]
(4.26)

Using lemma 4.11, the claim is transformed into:

no address: ΩtopQ(csI(top;T)
S )

!
= RsI(top;T)+1

S

with address: ΩtopQ(csI(top;T)
S )

!
= RsI(top;T)+1

S [x]
(4.27)

Since there is a hit in stagetop, one concludes that the valid signal
Qtopvalid(cT

I ) is active. Using this, one easily shows that the correct valid

bit QtopValid(csI(top�1;T )�1
S ) holds:

Qtopvalid(cT
I )) =

top_
l=stage(Q)

cT
I : fl Qwe:top

One transforms the right hand sind by applying the stage correctness
predicate for implementation registers, stagetop�1 and cycleT:

Qtopvalid(cT
I )) =

top_
l=stage(Q)

Ωtop�1 fl Qwe(csI(top�1;T)�1
S )

= QtopValid(csI(top�1;T)�1
S )
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Since stagetop is full, one can apply scheduling invariant 3.3 in order to
conclude that

sI(top�1;T)�1 = sI(top;T)

holds. Thus,QtopValid(csI(top;T )
S ) holds.

This allows using lemma 4.8 for stagetop and configurationsI(top;T).
If the read access does not have an address, this concludes the claim.

In case of a read access with address, lemma 4.8 states:

ΩtopQ(csI(top;T)
S ) = RsI(top;T)+1

S [Ωtop�1 fwRwa(csI(top;T)
S )] (4.28)

This transforms the claim into:

RsI(top;T)+1
S [x]

!
= RsI(top;T)+1

S [Ωtop�1 fwRwa(csI(top;T)
S )] (4.29)

It is therefore left to show that the addresses match:

Ωtop�1 fwRwa(csI(top;T)
S )

!
= x

= f γkRra(cT
I )

The value on the right-hand side is equal tofwRwa:topT
I because the

signalRT
k hit[top] is active (definition 4.4). This transforms the claim into:

Ωtop�1 fwRwa(csI(top;T)
S )

!
= fwRwa:topT (4.30)

By using the stage correctness predicate for cycleT and stagetop�1,
the right-hand side is transformed into:

Ωtop�1 fwRwa(csI(top;T)
S )

!
= Ωtop�1 fwRwa(csI(top�1;T)�1

S )

As above, one can use invariant 3.3 in order to show thatsI(top;T) is
equal tosI(top�1;T)�1. This concludes the claim.QED

The following lemma corresponds to lemma 3.17 (page 85) in the se-
quential machine:

Let T 0 be greater than zero. Assuming all stage correctness predicates forLemma 4.14 I

the cycleT 0�1, the predicate for stagek holds for cycleT 0.

(8l : Pl (T
0�1)) =) Pk(T

0)
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PROOF The proof proceeds as the proof of lemma 3.17. However, for
the casei > 0 andueT�1, one uses lemmas 4.12 and 4.13 for operands that
require forwarding. This lemma requires that the data hazard signal is not
active. This is shown easily by definition of the stall and data hazard signal
and using that the update enable signal is active. QED

4.6 Liveness

4.6.1 Introduction

The liveness criterion of the pipelined machine is identical to the liveness
criterion of the prepared sequential machine as presented in chapter 3:

Let ci
S be any desired configuration of the specification machine. The

implementation machine is said to be alive iff for all stagesk there exists a
time T 2 N0 with sI(k;T) = i:

9T 2 N0 : sI(k;T) = i

As in chapter 3, this is shown by arguing that the update enable signal
is alive, as done in lemma 3.22. This lemma has the premise that all stall
signals are finite true. In the prepared sequential machine, only external
stall signals exist and this property was assumed. This is no longer true for
the pipelined machine since internal stall conditions were added (section
4.3).

Thus, a proof that the stall signals are finite true has to be given for the
pipelined machine. According to equation 4.14 (page 119), there are three
possible reasons for an active stall signal, given that the stage is full:

1. one of the external stall signals is active,

2. the data hazard signal is active,

3. the stall signal of the next stage is active.

Consider the following proof strategy: Beginning with the last stage,
which has no next stage, we will argue that the stall signals are finite true.
The external stall signals are still assumed to have this property. Further-
more, one shows that the data hazard signal is finite true, which can be
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SignalA_B

SignalB

SignalA

t

Figure 4.11 Two alternating, finite true signalsA andB. The disjunction is not
finite true but constant true.

done easily. It is now tempting to conclude that the disjunction of finite
true signals is also finite true.

However, this is wrong. A finite true signal is guaranteed to eventually
become false. The problem is that there is no guarantee that a signal that
is finite true stays false for more than one cycle once it becomes false. In
particular, one can think of two alternating signals that are both finite true
(figure 4.11). The disjunction never becomes false and therefore cannot be
finite true.

“Finite true” therefore is too weak. For the three signals above, one
needs a stronger property such that one can conclude that the disjunction
is finite true. In case of stall conditions, one needs that the signal actually
stays false once it became false until all conditions are false. As soon as all
conditions are false, the update enable signal becomes active and the stage
therefore proceeds calculating.

4.6.2 Extended Liveness Calculus

The property of a signal that it “stays until” a given event (i.e., signal) is
formalized as follows:

Let pred and predu be time predicates andT be a cycle. The predicateDefinition 4.5
Stays Until

I

pred is said tostay until predu from cycleT, iff the following holds: Given
an arbitrary cycleT 0 � T such thatpredu does not hold for cyclesT 00 with
T � T 00 < T 0, the predicatepredholds for all cyclesT 00 with T � T 00 � T 0.

staysuntil(pred;T; predu) :()
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Signalpredu

Signalpred

t

T 0T

Figure 4.12 Two signals satisfyingstaysuntil(pred;T; predu). A signal shown
as a hatched box means that the value of the signal during this cycle does not
matter.

8T 0 j T 0 � T : (8T 00 j T � T 00 < T 0 : predu(T 00))

=) (8T 00 j T � T 00 � T 0 : pred(T 00))

This is illustrated in figure 4.12. If a signal is shown as a hatched box
this means that the value of the signal during this cycle does not matter.

Note that it is not required that signalpredu ever becomes true after cycle
T. In particular, ifpredu never becomes true after cycleT, pred is required
to hold for all cyclesT 0 � T (one easily shows this using induction).

Let predandpredu be time predicates andT be a cycle. LetT 0 be a cycle J Lemma 4.15
with T 0 � T. Let predstay untilpredu after cycleT. If predu is off during
cyclesT 00 with T � T 00 < T 0, predalso stays untilpredu from cycleT 0:

staysuntil(pred;T; predu)^

8T 00 j T � T 00 < T 0 : predu(T 00) (4.31)

=) staysuntil(pred;T 0; predu)

By definition 4.5,staysuntil(pred;T 0; predu) is equivalent to: PROOF

8t 0 j t 0 � T 0 : (8t 00 j T 0 � t 00 < t 0 : predu(t 00))
=) (8t 00 j T 0 � t 00 � t 0 : pred(t 00))

(4.32)

By definition ofstaysuntil, staysuntil(pred;T; predu) is equivalent to:

8t 0 j t 0 � T : (8t 00 j T � t 00 < t 0 : predu(t 00))
=) (8t 00 j T � t 00 � t 0 : pred(t 00))

(4.33)
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SinceT 0�T, one can instantiate formula 4.33 witht 0 from formula 4.32.
This results in:

(8t 00 j T � t 00 < t 0 : predu(t 00))
=) (8t 00 j T � t 00 � t 0 : pred(t 00))

(4.34)

Obviously, the implication of equation 4.34 will conclude the claim as
given by the implication of equation 4.32. However, it is left to show that
the premise of the implication of equation 4.34 holds:

8t 00 j T � t 00 < t 0 : predu(t 00) (4.35)

This is done as follows: ift 00 � T 0, one takes the premise in equation 4.32
in order to showpredu(t 00). If t 00 < T 0, predu(t 00) holds according to the
premise in equation 4.31.QED

Let pred1, pred2, andpredu be time predicates. LetT be a cycle. IfLemma 4.16 I

pred2 impliespred1 for all cyclesT 00 with T 00 � T, andpred2 stays until
predu after cycleT, pred1 also stays untilpredu after cycleT.

(8T 00 j T 00 � T : pred2(T 00) =) pred1(T 00))^

staysuntil(pred2;T; predu)

=) staysuntil(pred1;T; predu)

This lemma is shown easily by expanding the definition ofstaysuntil.PROOF

Let pred1, pred2, andpredu be time predicates. LetT be a cycle. If bothLemma 4.17 I

pred1 andpred2 stay untilpredu after cycleT, the conjunctionpred1^
pred2 also stays untilpredu after cycleT.

staysuntil(pred1;T; predu)^staysuntil(pred2;T; predu))

=) staysuntil(pred1^ pred2;T; predu)

This lemma is shown easily by expanding the definition ofstaysuntil. AnPROOF
example for the lemma is given in figure 4.13.

Let pred and predu be two time predicates. In analogy to the definitionDefinition 4.6
9�T(pred; predu)

I

of 9�T 0

(equation 3.25, page 86), one defines an operator that holds iff
the predicatepredeventually becomes true in a cycleT � T 0 beforepredu
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Signalpredu

Signalpred1^ pred2

Signalpred2

Signalpred1

T T0

Figure 4.13 Three signalspred1, pred2, and predu satisfying the premise of
lemma 4.17: sincestaysuntil(pred1;T; predu) andstaysuntil(pred1;T; predu)

hold, alsostaysuntil(pred1^ pred2;T; predu) holds.

does. Furthermore, it is required that it stays true untilpredu becomes true,
as defined in definition 4.5:

9�T(pred; predu) :() 9T 0jT 0 � T : pred(T 0)^

8T 00jT � T 00 < T 0 : predu(T 00)^

staysuntil(pred;T 0; predu)

This definition is illustrated in figure 4.14.

One easily shows that for any time predicatepredu, 9�T(pred; predu) J Lemma 4.18
implies that9�T pred holds:

9�T(pred; predu) =) 9�T pred

A time predicatepred is said to befinite false and stays untila given J Definition 4.7
Finite False
and Stays Until

predicatepredu, iff 9�T(pred; predu) holds for allT. In analogy to that,
pred is said to befinite true and stays until predu iff pred is finite false and
stays untilpredu.
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Figure 4.14 Two signals satisfying9�T(pred; predu)

The following lemmas are shown easily using lemma 4.18:

Let pred and predu be time predicates. Ifpred is finite false and staysLemma 4.19 I

until predu, it is also finite false as defined in definition 3.4 (page 86).

Let predandpredu be time predicates. Ifpred is finite true and stays untilLemma 4.20 I

predu, it is also finite true.

Given two time predicatespred1 andpred2 with 9�T(pred1; predu) andLemma 4.21 I

9�T(pred2; predu), the conjunction eventually holds afterT and before
predu, and stays untilpredu.

9�T(pred1; predu) ^ 9
�T(pred2; predu)

=) 9�T(pred1^ pred2;T; predu)

By expanding the definition of9�T(pred1^ pred2;T; predu), one gets:PROOF

9T 0jT 0 � T : pred1(T 0)^ pred2(T 0)^

8T 00jT � T 00 < T 0 : predu(T 00)^ (4.36)

staysuntil(pred1^ pred2;T 0; predu)

Since9�T(pred1; predu) and9�T(pred2; predu) hold, there are cycles
t 01� T andt 02� T such thatpred1(t 01) andpred2(t 02) hold. Lett 01� t 02 hold
(otherwise, swappred1 andpred23). An example for this situation is given
in figure 4.15.

3In PVS, one actually shows the caset 0

1 < t 0

2 by replaying the proof.
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t

Signalpredu

Signalpred1^ pred2

Signalpred2

Signalpred1

T t01t 02

Figure 4.15 Illustration of the proof of lemma 4.21

We will now show thatt 01 satisfies equation 4.36, i.e.:

pred1(t 01)^ pred2(t 01)^

8T 00jT � T 00 < t 01 : predu(T 00)^ (4.37)

staysuntil(pred1^ pred2; t 01; predu)

This conjunction consists of four parts, which are now shown separately:

1. As described above,pred1(t 01) holds by definition oft 01.

2. The second part,pred2(t 01), is shown using9�T(pred2; predu): As
described above,pred2(t 02) holds witht 02 � t 01. Furthermore,pred2
stays active untilpredu holds, which is aftert 01. Thus, pred2(t 01)
holds.

3. One easily shows8T 00jT � T 00 < t 01 : predu(T 00) by expanding the
definition of9�T(pred1; predu).

4. Using lemma 4.15 withpred2 andpredu and cyclesT and t 01, one
concludes:

staysuntil(pred2; t 01; predu) (4.38)

This allows using lemma 4.17 forpred1 andpred2 and cyclet 01:

staysuntil(pred1^ pred2; t 01; predu) (4.39)
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This concludes the claim.

Using lemma 4.21, one easily shows:

Given two time predicatespred1 andpred2 that are both finite false andLemma 4.22 I

stay untilpredu, the conjunctionpred1^ pred2 is also finite false and stays
until predu.

Given two time predicatespred1 andpred2 that are both finite true andLemma 4.23 I

stay untilpredu, the disjunctionpred1_ pred2 is also finite true and stays
until predu.

Lemma 4.23 is shown easily using lemma 4.22 and the fact thatPROOF

pred1_ pred2 = pred1^ pred2 (4.40)

holds.QED

The following two lemmas obviously hold (PVS shows them automati-
cally):

The predicatealways(equation 3.22 page 86) is finite false and stays untilLemma 4.24 I

any predicate.

The preciatenever(equation 3.23 page 86) is finite true and stays untilLemma 4.25 I

any predicate.

The following lemma is shown easily (PVS shows it automatically):

Let pred1 andpred2 be two time predicates. Ifpred1 holds eventuallyLemma 4.26 I

after cycleT, the disjunctionpred1_ pred2 also holds eventually after
cycleT:

9�T pred1 =) 9�T(pred1_ pred2)

136



Section 4.6

LIVENESS

t

Signalpredu

Signalpred1_ pred2

Signalpred2

Signalpred1

T T0

1 T 0

2

Figure 4.16 Illustration of lemma 4.29

Using lemma 4.26, one easily concludes:

Let pred1 andpred2 be two time predicates. Ifpred1 is finite false, the J Lemma 4.27
disjunctionpred1_ pred2 is also finite false.

Using lemma 4.27 and the definition of finite true, one easily concludes:

Let pred1 andpred2 be two time predicates. Ifpred1 is finite true, the J Lemma 4.28
conjunctionpred1^ pred2 is also finite true.

Assume one has the disjunction of two signals. One signal is finite true
and stays untilpredu, the other one is just finite true but impliespredu.
In this case one can conclude that the disjunction is finite true. This is
illustrated in figure 4.16.

Let pred1, pred2, andpredu be time predicates. Ifpred1 is finite true J Lemma 4.29
andpred2 is true false and stays untilpredu, andpred1 impliespredu, the
disjunctionpred1_ pred2 is finite true.

The claim is equivalent to: PROOF

8T9�T pred1(T)_ pred2(T) (4.41)
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By definition of9�T , this is equivalent to:

8T9T 0 � T : pred1(T 0)_ pred2(T 0) (4.42)

Obviously, this is equivalent to:

8T9T 0 � T : (pred1(T 0)^ pred2(T 0)) (4.43)

According to the premise of the lemma, there is a cycleT 0
1 � T 0 such

that pred2 holds and stays untilpredu. Furthermore, there is also a cycle
T 0

2 � T 0
1 such thatpred1 holds. LetT 0

2 be the smallest such cycle.

We will now show that cycleT 0
2 satisfies the claim (equation 4.43), i.e.,

it is left to show thatpred2(T 0
2) holds. This holds sincepred2 is finite true

and stays untilpredu. The signalpredu cannot have been active yet, since
pred1 is impliespredu andT 0

2 is the smallest cycle afterT 0
1 such thatpred1

holds.QED

4.6.3 Liveness Proof

In order to prove the liveness of the machine, we have to show that the stall
signal of stagek is finite true. Assuming stagek is full, the stall signal is
a disjunction of the external stall signalsextk and the internal stall signals
intk (equation 4.14). We will need to argue that the internal stall signalintk
is finite true and stays untiluek.

This will be done by induction. The following lemma will be used in
order to do the induction step. It states that if one stalls an arbitrary stage
for a time that is long enough, eventually all stages below become empty,
i.e., the pipeline drains. Let the time predicatebelow emptyk(T) hold iff
all stages below stagek are empty during cycleT:

below emptyk(T) := 8 j j k< j < n : f ull T
j (4.44)

Let k be a stage number, i.e.,k 2 f0; : : : ;n�1g. Let the stall signals ofLemma 4.30 I

all stages below stagek be finite true and letT be a cycle. This implies
that there is a cycleT 0 � T such that if the update enable signal is off from
cycle T to T 0�1, the full bits of the stages below stagek are off during
cycleT 0.

9T 0 j T 0 � T :

(8T 00 j T � T 00 < T 0 : ueT 00

k ) =) below emptyk(T
0)
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PROOF As before, this is shown by induction onk beginning withn�1
and proceeding fromk+1 to k. For k = n�1, there is nothing to show
since there are no stages below. Concluding fromk+ 1 to k is done as
follows:

Since the stall signals of stages below stagek are assumed to be finite
true, stall signalstallk+1 is also finite true. Thus, there is a cycleT 0

1 � T

such that the stall signalstall
T 0

1
k+1 is not active. LetT 0

1 be the smallest such

cycle. According to the premise of the lemma, we haveue
T 0

1
k . Accoring to

lemma 4.1, this implies

f ull T 0+1
k+1 :

Thus, stagek+1 is empty during cycleT 0+1.

We now apply the induction premise in order to show that the stages be-
low stagek+1 eventually also become empty. According to the induction
premise, there is a cycleT 0

2 � T 0
1 +1 such that if the update enable signal

uek+1 is off from cycleT 0
1 +1 to T 0

2�1, all full signals below stagek+1
are off.

We will now show that during cycleT 0
2 all stages below stagek are

empty. The first step is to show that the full signal of stagek+ 1 actu-
ally stays empty until cycleT 0

2:

8T 00 j T 0
1 +1� T � T 0

2 : f ull T 00

k+1 (4.45)

This is done easily by induction onT 00. For T 00 = T 0
1 +1, we already

showed the claim above. For cycleT 00+1, one uses the fact that the full
signal is not active in cycleT 00. Thus, the stall signal cannot be active. The
update enable signal is not active by the premise of the lemma. Thus, the
claim can be concluded using lemma 4.1.

It is left to show that the the update enable signal of stagek+1 is not
active from cycleT 0

1 + 1 to cycleT 0
2�1. This is easily argued since the

stage is not full. This concludes the claim. QED

Let k be a stage number but not the last stage. If all stages below stagek J Lemma 4.31
are empty during cycleT, this stays so until the output registers of stagek
are updated.

below emptyk(T) =) staysuntil(below emptyk;T;uek)
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PROOF By definition ofstaysuntil (definition 4.5, page 130), we have
to show:

8T 0 j T 0 � T : (8T 00 j T � T 00 < T 0 : uek(T 00)) (4.46)

=) (8T 00 j T � T 00 � T 0 : below emptyk(T
00)) (4.47)

This is done by induction onT 0. ForT 0 = T, the claim holds according
to the premise of the lemma. The claim for cycleT 0+1 is concluded as
follows: The claim is:

8T 00 j T � T 00 � (T 0+1) : below emptyk(T
00) (4.48)

For T � T 00 � T 0, this holds according to the induction premise. Thus,
it is left to show this forT 00 = T 0+1. By definition ofbelow emptyk, the
claim is equal to:

8 j j k< j < n : f ull T 0+1
j (4.49)

Case one:If j is equal tok+1, we showf ullT 0+1
k+1 as follows: according

to lemma 4.1, a stage becomes full if it was either stalled or if the output
registers of the previous stage were updated. The update enable signal of
the previous stage, which is stagek, is not active according to the premise
of the lemma.

f ullT 0+1
k+1 = ueT 0

k _stallT
0

k+1 by lemma 4.1

= stallT
0

k+1 because ofueT 0

k

The stall signalstallT
0

k+1 cannot be active since stagek+1 is not full during

cycleT 0 according to the induction premise. Thus,f ullT 0+1
k+1 is not active.

Case two: If j is not equal tok+1, we showf ullT 0+1
j as follows:

f ullT 0+1
j = ueT 0

j�1_stallT
0

j by lemma 4.1

= ( f ull T 0

j�1^stallT
0

j�1)_stallT
0

j because of def. ofue

The stall signalstallT
0

j cannot be active since stagej is not full during

cycleT 0 according to the induction premise. The full signalf ullT 0

j�1 is also
not active because of the induction premise. This concludes the claim.QED

Assuming that the external stall signals are finite true and stay untiluek,Lemma 4.32 I

the disjunction of the external stall signalsextk is finite true.
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PROOF Using lemma 4.23 one concludes that the disjunction is finite
true and stays untiluek. Using lemma 4.20, one concludes thatextk is
finite true.

Let k be a stage number but not the last stage. If the stages below stagek J Lemma 4.33
are empty, the internal stall signalintk is off.

below empty(k;T) =) intT
k

By definition, intk is: PROOF

intT
k = dhazTk _stallTk+1

If the stages below stagek are empty,dhazTk cannot be active by defini-
tion (empty stages never generate a data hazard). If the stages below stage
k are empty, so is stagek+1. Thus,stallTk+1 cannot be active according to
the stall signal convention (convention 4.2). QED

In the following, we will conclude thatstallk is finite true from the same
claim for stalll with l > k. The signalstallk includes the internal signal as
defined in equation 4.13. Thus, one has to show that the internal stall signal
eventually gets deactivated and stays so until the update enable signal is
activated. This is done as follows:

The internal stall signal of stagek is deactivated if the stages
below stagek are empty,at the latest.

The term “at the latest”, as used in the last sentence, will be formalized
by the next lemma. In the last sentences, three time predicates are used:

1. “The internal stall signal: : : is deactivated” will be referred to by
time predicatepred1,

2. “the update enable signal is activated” will be referred to by time
predicatepredu,

3. “the stages below stagek are empty” will be referred to by time
predicatepred2.
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Figure 4.17 Illustration of lemma 4.34: Sincepred2 implies pred1 andpred2
becomes active,pred1 also becomes active.

According to lemma 4.33,pred2 obviously impliespred1 (empty stages
never generate a hazard or stall signal). Furthermore, one easily shows that
predu also impliespred1 (the update enable signal is not active as long as
the stage is stalled). The notion “at the latest” will now be formalized
as follows:pred1 holds if pred2 holds “at the latest” means that assuming
pred1 does not hold for a time that is long enough,pred2 holds eventually.
Now there are two cases:

a) The predicatepred2 becomes true. Sincepred2 impliespred1, one
can conclude thatpred1 will hold eventually. This case is illustrated
in figure 4.17.

b) The predicatepred1 becomes true beforepred2. However, this does
not imply thatpred2 will hold eventually. This case is illustrated in
figure 4.18.

The following lemma formalizes this claim:

Let T be a cycle,pred1, pred2, andpredu time predicates. Furthermore,Lemma 4.34 I

let the following conditions hold:

1. Let bothpredu andpred2 imply pred1 after cycleT.

8T 00 j T 00 � T : predu(T 00) =) pred1(T 00)

8T 00 j T 00 � T : pred2(T 00) =) pred1(T 00)
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Figure 4.18 Illustration of lemma 4.34:pred1 becomes active beforepred2.

2. Let there be a cycleT 0
1 � T such that ifpredu holds for all cyclesT 00

with T � T 00 < T 0
1 thenpred2(T 0

1) holds.

9T 0
1 j T

0
1 � T : 8T 00 j T � T 00 < T 0

1 : predu(T 00) =) pred2(T 0
1)

3. If pred2 holds in any given cycleT 0 � T, it is supposed to stay until
predu afterT 0.

8T 0 j T 0 � T : pred2(T 0) =) staysuntil(pred2;T 0; predu)

The claim is that this implies9�T(pred1; predu).

By expanding the definition of9�T(pred1; predu), one gets: PROOF

9T 0jT 0 � T : pred1(T 0)^

8T 00jT � T 00 < T 0 : predu(T 00)^

staysuntil(pred1;T 0; predu)

Let 9�T predu hold. In this case, there is a cycleT 0 � T such thatpredu

is active. Let this be the smallest cycle with this property, which exists
according to lemma 3.19. We will now show that this cycle satisfies the
claim. According to the first condition above,pred1(T 0) holds. SinceT 0

is the smallest cycle such thatpredu is active,

8T 00jT � T 00 < T 0 : predu(T 00)

obviously holds. One easily shows

staysuntil(pred1;T 0; predu)
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by using the fact thatpredu(T 0) holds. If9�T predu holds, this concludes
the claim.

Assume9�T predu does not hold. In this case,predu never holds in any
cycle T 0 � T. This allows using the second condition above in order to
conclude that there is a cycleT 0

1 � T such thatpred2(T 0
1) holds. We will

now show that this cycle satisfies the claim.

According to the first condition above,pred1(T 0
1) holds. As9�T predu

does not hold, one can conclude that

8T 00jT � T 00 < T 0
1 : predu(T 00)

holds. Using the third condition above, one easily concludes that

staysuntil(pred2;T 0
1; predu)

holds. Using the first condition and lemma 4.16, one shows that

staysuntil(pred1;T 0
1; predu)

holds. This concludes the claim.QED

Assuming that the external stall signals are finite true and stay untiluek,Lemma 4.35 I

the stall signal is finite true.

The proof proceeds by induction onk. We begin with the last stage. ThePROOF
induction step is done by concluding the claim for stagek from the claim
for stagesl > k.

For stagek= n�1 (i.e., for the last stage), the claim is shown as follows:
in case of the last stage, no forwarding is done, i.e.,dhazn�1 is always false.
Thus, the stall signal of the last stage is:

stallTn�1 = f ull T
n�1^extTn�1 (4.50)

According to lemma 4.32, this is finite true.

The induction claim for stagek< (n�1) is shown as follows: The stall
signal of stagek is:

stallTk = f ull T
k ^ (extTk _ intT

k ) (4.51)

Using lemma 4.28, one concludes that it is sufficient to show that

extTk _ intT
k (4.52)
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is finite true. This is concluded by lemma 4.29 using the predicatesextk,
intk, and uek. In order to apply lemma 4.29, one has to show that the
premises of the lemma hold. These premises are:

� The predicateextk must be finite true,

� the predicateintk must be finite true and stay untiluek,

� the predicateextk must implyuek.

The first premise holds according to lemma 4.32. The third premise
holds according to the definition ofuek andstallk. It is left to show that the
second premise holds, i.e., thatintk is finite true and stay untiluek. This is
done by using lemma 4.34 as described above.

One now easily concludes the liveness criterion for the pipelined ma-
chine:

Assuming that the external stall signals of stagek are finite true and stayJ Theorem 4.36
until uek for all stagesk, the pipelined machine is alive.

Using lemma 4.35, one concludes that the stall signals are finite true. AsPROOF
in theorem 3.24 (page 88), one concludes that the machine is alive.

4.7 Performance

The machine presented in this chapter almost matches the pipelined DLX
presented in [MP00]. One major difference is the stall engine. The stall
engine in [MP00] uses only two different clock enable signals. The first
clock enable signal controls stages 0 and 1 and the second clock enable
signal controls the rest of the pipeline. Thus, stages 0 and 1 are always
clocked simultaneously. The same holds for stages 2, 3, and 4.

In contrast to that, the stall engine used in this thesis supports stalling
all stages independently. This improves performance. Consider the fol-
lowing example in a five stage integer DLX: The first instruction is a load
instruction (LW). Let the destination register of this instruction beR1. The
second instruction is an ALU instruction that calculates the disjunction of
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Cycle 1 2 3 4 5 : : : 10 11 : : :

IF LW ORI ADD ADD ADD SUB XOR
ID LW ORI ORI ORI ADD SUB
EX LW Bubb. Bubb. : : : ORI ADD

MEM LW LW Bubb. ORI
WB LW Bubb.

Figure 4.19 Scheduling in [MP00]: The cache miss in the MEM stage stalls the
pipeline completely.

Cycle 1 2 3 4 5 : : : 10 11 : : :

IF LW ORI ADD ADD SUB XOR SW
ID LW ORI ORI AND SUB XOR
EX LW Bubb. ORI : : : ADD SUB

MEM LW LW ORI ADD
WB LW ORI

Figure 4.20 Scheduling in this thesis: the bubble introduced because of the data
hazard is removed. The execution differs from [MP00] beginning with cycle 5.

a register value and an immediate constant (ORI). Let registerR1 be the
source register. In stage ID, the machine is supposed to read the operand
register. However, this register is not yet available in this stage because the
load has not yet completed. Thus, in both machines a pipeline bubble is
inserted (figure 4.19, cycle 4).

Assume that load instruction causes a data cache miss in stage MEM.
The machine in [MP00] stalls the execution completely. In contrast to that,
the machine presented in this thesis keeps stages 0 to 2 running for one
cycle more by removing the pipeline bubble in stage 2 (figure 4.20, cycle
5). Assume that the data word required for the load instruction is available
by cycle 10 in both machines. In the machine presented in [MP00], the
bubble proceeds until it reaches the end of the pipeline.

In order to quantify the performance impact of the new stall engine, we
performed simulations using the SPEC92 benchmarks as a workload. In
case of integer-only workload, the new stall engine speeds up execution
on the five stage DLX pipeline by approximately 1.1%. The speedup in-
creases the more long latency instructions, in particular floating point in-
structions, are involved. Appendix C gives more details on the simulation
environment and the results.
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4.8 Literature

The concept of the transformation of a prepared sequential machine into a
pipelined machine is taken from [MPK00, MP00]. In addition to that, the
design of the pipelined DLX used as example is taken from [MP00].

Flynn’s classic textbook [Fly95] on pipelined processors states the fol-
lowing on interlock hardware:

“As any pipelined processor designer knows, a great deal of
engineering effort is required to efficiently realize a fully func-
tional set of interlocks.”

However, to best of our knowledge, in most of the literature the details
of implementing forwarding and interlock hardware are skipped over, in-
cluding [Fly95]. An exception is [MP00], which presents the interlock and
forwarding logic at gate level. The stalling mechanisms described in the
literature including those in [MP00] usually assume that a pipeline bubble
floats through the complete pipeline [Fly95, HP96]. In contrast to that, the
stall engine presented in this thesis supports removal of pipeline bubbles,
which speeds up the execution.

In [LO96], Levitt and Olukotun verify a five-stage DLX pipeline by
transforming it back into a sequential machine by removing stalling and
rollback logic. Liveness is not argued.

In [Hos00], Hosabettu verifies a simple five stage DLX that is not syn-
thesizeable. It has a trivial stalling logic. Stalls caused by slow memory
are not covered. The verification is done using the completion function
approach and PVS. Liveness is not argued.

Further literature on the verification of pipelined machines is [BM96],
which provides a manual proof of a DLX pipeline, Burch, Dill [BD94]
verify a very simple pipeline. Henzinger et.al. [HQR98] use refinement
mappings in order to model-check a RISC pipeline. Liveness is not argued.
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5
Speculative Execution

5.1 Introduction

S
PECULATIVE EXECUTION is a technique to avoid stalling the pipeline
because of data dependencies in situations that do not permit forward-

ing. Thus, instead of stalling, the calculation is continued with a value that
is guessed. As soon as the correct value is available, the correct value and
the guessed value are compared. If both are equal, the calculations made
with the guessed value are also correct.

If the guessed value and the correct value are different, all calculations
made with the guessed value are usually false. This is calledmisspec-
ulation. In this case, the calculation has to be restarted at the stage the
guessing is made. This process is calledrollback (in the literature, the
term squashingis often used [LO96]). It includes that all changes made
to the state of the machine based on false data have to be reverted. The
extra cycles required for the rollback and the wrong calculation are called
misspeculation penalty.

In this chapter, we will describe a generic method that allows to specu-
late on arbitrary values. The method includes automatic generation of the
circuits necessary to detect a misspeculation and to do the rollback in case
of a misspeculation. We will then use the method in order to implement
branch prediction and precise interrupts.
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Figure 5.1 Execution of the instructionsI0 to I3 in a pipelined machine with
speculation. Let thePC of I1 be misspeculated. This is detected in stage 2 during
cycleT = 3, as illustrated by the flash symbol. Stages that are full are hatched.

Example Consider a pipelined machine with five stages. Let us guess
(i.e., speculate on) the correct value of the memory address used for the
instruction fetch (denoted byPC) in stage 0. Assume that the correct value
is available in stagek= 1 (decode).

Figure 5.1 gives an example what can happen in such a machine: let the
mechanism guess the value ofPC of the instructionI0 correctly but not
of instruction I1. The machine runs as usual until cycleT = 2. In cycle
T = 2, instructionI1 is in stage 1 and the misspeculation is detected. Thus,
instruction I1 has to be restarted completely. Assume that this takes one
cycle.

In cycle T = 3, instructionI1 therefore is in stage 0 again. The cal-
culation re-starts using the correct value ofPC that is now known. The
instructionI2 is completely evicted from the pipeline. Note that, however,
instructionI0 proceeds (and terminates) as before. This is justified by the
fact that instructionI0 does not depend on any data that was misspeculated.
Table 5.1 shows the schedule of this example.

However, the instructionI1 might have made changes to the registers in
out(0). InstructionI1 usually relies on the original values, i.e., the values
written by I0. Thus, one has to ensure that instructionI1 calculates its
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T = 0 T = 1 T = 2 T = 3 T = 4 T = 5

sI(0;T) 0 1 2 1 2 3
sI(1;T) 0 0 1 1 1 2
sI(2;T) 0 0 0 1 1 1
sI(3;T) 0 0 0 0 1 1
sI(4;T) 0 0 0 0 0 1

Table 5.1 The values ofsI in a five stage pipelined machine with speculation

inputs using the values written byI0 and notI1. We will now describe how
such a mechanism is implemented.

5.2 Stall Engine with Speculation

In this section, we will describe a simple generic speculation mechanism
that allows speculating on values of arbitrary implementation registers.
The first step is to modify the stall engine such that we can evict instruc-
tions from the pipeline in case of misspeculation. For this purpose, we
introduce signalsrollbackk with k 2 f0; : : : ;n�1g. The signalrollbackk

is to be activated if misspeculation is detected in stagek. We will later on
describe how we detect misspeculation.

Using these signals, a set of signalsrollback0k is defined. The signal
rollback0k is active if the instruction in stagek has to be squashed because
of misspeculation. Assume a signalrollbackk is active. In this case, one
has to evict all instructions in the stages 0 tok. Thus,rollback0k is active if
a rollback signal of any later stage is active:

rollback0k =

n�1_
i=k

rollbacki (5.1)

One easily speeds up this computation using the parallel prefix circuit
as described in section 2.2.4. Using the signalsrollback0, we make the
following changes to the stall engine:

� The update enable signal of a stagek is deactivated if the rollback
signal is active. Letue0k denote the old update enable signal as used
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in the previous chapters. Letuek denote the new update enable sig-
nal. The new update enable signal is:

uek := ue0k^ rollback0k (5.2)

� The transition function for the full bits is changed as follows: Let
δ0: f ull :k denote the old transition function and letδ: f ull :k denote
the new one. The new transition function fork2 f1; : : : ;n�1g is:

δ: f ull :k := δ0: f ull :k^ rollback0k (5.3)

The following simple lemmas are concluded from the new definition of
the signals and the new transition functions:

A stage is full iff it was updated or stalled in the previous cycle and if thereLemma 5.1 I

was no rollback:

8k� 1 : f ull T+1
k = (ueT

k�1_stallTk )^ rollback0Tk

The signalf ull0 is always active:

f ull T
0 = 1

All other signalsf ullk are not active during cycle 0:

8k� 1 : f ull0
k = 0

This lemma is a counterpart of lemma 4.1 of the pipelined machine with-
out speculation.

If a stage is full and is updated, the next stage is updated, too.Lemma 5.2 I

8k� 1 : f ull T
k ^ueT

k�1 =) ueT
k

This lemma is a counterpart of lemma 4.3 of the pipelined machine with-
out speculation.

According to the definition of the update enable signals, we have to showPROOF
1) f ull T

k , 2) stallTk , and 3)rollback0Tk .
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According to the premise of the lemma,f ullT
k holds. We showstallTk as

in the proof of lemma 4.3.

We showrollback0Tk as follows: assumerollback0Tk holds. In this case,
rollback0Tk�1 also holds. Thus,ueT

k�1 cannot be active. This is a contradic-
tion to the premise of the lemma.

If a stage is full and if its output registers are not updated and if no rollbackJ Lemma 5.3
is made, the full bit is preserved.

8k� 1 : f ull T
k ^ueT

k ^ rollback0Tk =) f ull T+1
k

By the definition of the update enable signals, one concludes thatstallTk PROOF
holds. The claim is concluded using lemma 5.1.

If a configuration in a stage moves into the next stage (i.e., the outputJ Lemma 5.4
registers of a stage are updated), and if the next configuration is not clocked
into the stage, the full bit is cleared:

8k� 1 : f ull T
k ^ueT

k ^ueT
k�1 =) f ull T+1

k

By the definition of the update enable signals, one concludesstallTk and PROOF

rollback0Tk . The claim is concluded by lemma 5.1.

The following lemma is the counterpart of lemma 4.6 in the pipelined
machine without speculation. The proof is proceeds as in chapter 4.

Stagek is full at the earliest in cyclek. J Lemma 5.5

f ullT
k =) T � k

5.3 Schedule with Speculation

Using the signalsrollback0k, it is possible to give a recursive specification
of a scheduling functionsI(k;T) for the pipelined machine with specula-
tion that reflects the changes caused by a rollback.
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It is constructed as follows: In “normal operation”, i.e., if no speculation
is made, the scheduling function should match the scheduling function of
the pipelined machine without speculation. However, in case of a rollback,
the scheduling function must provide values such that the instructions that
are evicted never entered the pipeline.

This allows for a recursive definition of the scheduling function of the
prepared sequential machine: For sake of simplicity, we split the definition
of the function into three cases: 1) T=0, 2) a rollback is made, and 3) no
rollback is made.

If T = 0 holds,sI(k;T) is zero, just as before:

sI(k;0) := 0 (5.4)

If T 6= 0 holds and if no rollback is made, i.e.,rollback0T�1
k does not

hold, we use the definition from chapter 3:

sI(k;T) :=

8><
>:

sI(k;T�1) : ueT�1
k

sI(0;T�1)+1 : ueT�1
k ^k= 0

sI(k�1;T�1) : ueT�1
k ^k 6= 0

If T 6= 0 holds and a rollback is made, i.e.,rollback0T�1
k holds, we aim

to provide values as if the instructions that are evicted never were put into
the pipeline.

Assume the following example: InstructionI0 does not use speculation
and proceeds through the pipeline as usual. InstructionI1 uses speculation
and we misspeculate. This is detected in cycleT = 3 and stagek = 2. In
table 5.2, we depict a standard pipelined schedule such thatI1 is not put
into the pipeline before cycleT = 4. In table 5.3, we depict a schedule
such thatI1 uses speculation instead. Note that the schedules match after
the rollback in cycleT = 4.

In this example, during cycleT = 3, the following signals are active:
because of the misspeculation,rollback3

2 is active. This implies that the
signalsrollback00 to rollback02 are active by definition of these signals.

We construct the scheduling function for this case as follows: for all
stages with rollback, we take the value of the scheduling function from cy-
cleT�1 from the last stage in that we detect a rollback. Ifrollback0n�1 is
active, this is stagen�1. If not so, this is stagek such thatrollback0k holds
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T 0 1 2 3 4 5 6 7 8

sI(0;T) 0 1 1 1 1 2 3 4 5
sI(1;T) 0 0 1 1 1 1 2 3 4
sI(2;T) 0 0 0 1 1 1 1 2 3
sI(3;T) 0 0 0 0 1 1 1 1 2
sI(4;T) 0 0 0 0 0 1 1 1 1

Table 5.2 The values ofsI in a five stage pipelined machine without speculation.
InstructionI1 is delayed until cycle 5.

T 0 1 2 3 4 5 6 7 8

sI(0;T) 0 1 2 3 1 2 3 4 5
sI(1;T) 0 0 1 2 1 1 2 3 4
sI(2;T) 0 0 0 1 1 1 1 2 3
sI(3;T) 0 0 0 0 1 1 1 1 2
sI(4;T) 0 0 0 0 0 1 1 1 1

Table 5.3 The values ofsI in a five stage pipelined machine with speculation. We
misspeculate on instructionI1 and detect this in cycle 4. In cycle 5, the execution
proceeds as if instructionI1 was delayed until cycle 5.
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T = 0 T = 1 T = 2 T = 3 T = 4 T = 5

sI(0; T ) 0 1 2 3 1 2
sI(1; T ) 0 0 1 2 1 1
sI(2; T ) 0 0 0 1 1 1
sI(3; T ) 0 0 0 0 1 1
sI(4; T ) 0 0 0 0 0 1

Table 5.4 Illustration of the recursion made forsI(k;4) in case of a rollback.

but rollback0k+1 does not. We use the predicateρ(k;T) as a shorthand:

ρ(k;T) :() rollback0Tk ^ (k= n�1_ rollback0Tk+1)

We assert the claim above in the following lemma:

The construction described above provides the last stage with active roll-Lemma 5.6 I

back signal.

ρ(k;T) =) k= maxf j 2 f0; : : : ;n�1g j rollbackT
j g

One easily shows this inductively using the fact that ifrollback0k+1 isPROOF
active, this implies that the signalrollback0k is also active.

Thus, ifρ(k;T�1) holds, we takesI(k;T�1) as value forsI(k;T). If it
does not hold, we use recursion in order to get the desired value: we walk
down the pipeline fromk to k+1 until ρ(k;T�1) holds:

sI(k;T) :=

�
sI(k;T�1) : ρ(k;T�1)
sI(k+1;T) : otherwise

Obviously, this simplifies to:

sI(k;T) :=

(
sI(k;T�1) : k= n�1_ rollback0T�1

k+1
sI(k+1;T) : otherwise

This recursion is illustrated in table 5.4. It is no longer obvious that this
recursion terminates for all valuesk andT. One argues as follows: the
recursion terminates as soon asT = 0 is reached. In case of no rollback,T
decreases by one. In case of a rollback, eitherT decreases ork decreases.
However,T decreases if the end of the pipeline is reached at the latest, i.e.,
if k= n�1 holds.
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5.4 Scheduling Invariants

In this section, we will show that the scheduling invariants presented in
chapter 3 still hold for the stall engine of the pipelined machine with in-
terrupts. We have to make a small change to invariant one for the rollback
case. Invariants two and three still hold without any change.

Assume that the rollback signalrollback0T�1
k+1 is not active or thatk is the J Invariant 5.1

last stage. If the update enable signal of stagek is active in cycleT�1,
the value of the scheduling function for that stage increases by one. If the
update enable signal of the stage is not active, the value does not change.
For T > 0:

sI(k;T) =

�
sI(k;T�1) if ueT�1

k = 0
sI(k;T�1)+1 if ueT�1

k = 1

Given a cycleT, the values of the scheduling functions of two adjacentJ Invariant 5.2
stages are either equal or the value of the scheduling function of the earlier
stage is greater by one. This also holds in case of a rollback.

The value of the scheduling function of the earlier stage is greater by oneJ Invariant 5.3
iff the full bit of the later stage is set. Fork> 0:

f ullT
k = 1, sI(k�1;T) = sI(k;T)+1

Negating both sides of the last equation and applying invariant 5.2 results
in:

f ull T
k = 0, sI(k�1;T) = sI(k;T)

This also holds in case of a rollback.

The proof of the invariants proceeds as in chapter 3: LetPi(T) denote that PROOF
invariant i holds for the pipelined machine with speculation for the cycle
T. The claim is concluded as in chapter 3:

P3(T�1) =) P1(T)

P1(T)^P2(T�1)^P3(T�1) =) P2(T)

P1(T)^P2(T�1)^P3(T�1) =) P3(T)
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Proof of Invariant 5.1 We make a case split on the value of the rollback
signalrollback0T�1

k :

1. Let the rollback signalrollback0T�1
k be active. Sincerollback0T�1

k+1 is
not active ork is the last stage, stagek is the last stage with active
rollback signal. The update enable signalueT�1

k is not active in this
case by definition. Thus, the claim is:

sI(k;T) = sI(k;T�1)

This holds by definition ofsI(k;T).

2. Let the rollback signalrollback0T�1
k be not active. As we exclude

the case of a rollback, the proof proceeds as the proof of invariant
3.1 presented in chapter 3.

Proof of Invariant 5.2 Let us consider the stagesk�1 andk with k> 0.
Let rollback0T�1

k be active. We start with the induction claim:

sI(k�1;T) = sI(k;T)+1
_ sI(k�1;T) = sI(k;T)

(5.5)

The second equation holds because of the definition ofsI(k�1;T) and
because the rollback signal is active.

Let rollback0T�1
k be not active. In this case,k is either the last stage

or rollback0T�1
k+1 is not active. Thus, no rollback is involved and the proof

proceeds as the proof of invariant 3.2 in chapter 4.

Proof of Invariant 5.3 For T = 0, the claim can be shown by definition
unfolding and using lemma 5.5. ForT > 0, according to lemma 5.1, the
claim is equivalent to:

(ueT�1
k�1 _stallT�1

k )^ rollback0T�1
k () sI(k�1;T) = sI(k;T)+1

As before, the proof in chapter 4 can be repeated if the rollback signal
rollback0T�1

k is not active. Thus, letrollback0T�1
k hold. This implies that

sI(k�1;T) is equal tosI(k;T). Thus, the right hand side of the equivalence
in the claim cannot hold. The left hand side of the equivalence also does
not hold becauserollback0T�1

k holds. This concludes the claim.QED
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5.5 Speculative Inputs

For sake of simplicity, we restrict ourselves to the case that the speculation
is done in the first stage. LetR be a denominator for a value we want to
guess. LetR2 σ denote this fact. The speculation mechanism is added in
three steps:

1. The first step is to add functions that do the guessing of the value. We
name those functionsf0Rsby convention. These functions are called
speculation functionsand can take arbitrary specification registers as
arguments as described in section 3.2.4 (page 41). In analogy to the
notation used in the previous chapters, this set of registers is denoted
by dep s(R;0). All other notation used for register transition func-
tions also applies for the speculation functions.

2. We add registers that record whether we still have to speculate or
whether the real value is already known. We denote this register by
cR. The domain of this register is one bit. If it is set, the correct
value ofR is known. If not, we have to speculate. We initialize these
registers with zero.

We furthermore add registers that save the real value in case of a
rollback. The registers are namedR and have the same domain as
the value we are guessing. These registers are initialized with an
arbitrary value, e.g., zero.

3. We make the guessed value provided byf0Rsavailable as input for
the register transition functions of stage 0. We do not allow a re-
cursion here, i.e., the input of a speculation function must not be a
speculative value.

The input generation functiong0R for such a speculative value is
defined as follows: in case the bit incR is set, we return the value in
c:R. If not so, we guess the value usingf0Rs.

g0R(cT
I ) :=

�
cT

I :R : cT
I :cR= 1

f γ0Rs(cT
I ) : otherwise

(5.6)

5.6 Detecting Misspeculation

The mechanism above allows guessing a register value. The guessed value
can be used as normal input to register transition functions. However, we
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g0R

R:1

R:2

R:3

Figure 5.2 The speculative valueR is guessed by stage 0 and then stored in
registersR:1, R:2, and so on.

have to detect and handle the case that the speculation fails. In order to
detect that we misspeculated, it is necessary to store the value guessed to
have it available later on. ForR2 σ, we do so by adding instances of an
implementation register namedR, i.e.,R:1, R:2, and so on.

If ue0 is active and such a registerR:1 with R2 σ is updated, one simply
writes the value provided byg0R into the register, i.e., the guessed value.
In case of registersR:k with R2 σ andk > 1, we just take the value from
the previous stage, i.e., fromR:(k�1). This is depicted in figure 5.2.

In addition to the check for misspeculation, the value in these registers
can be used in order to read the speculative value in stages other than the
first stage. This is handled just like a normal read access to an implemen-
tation register.

A misspeculation is detected as follows: letR2 out(k) be an instance of
such a register. If a value is written into the register by write accesses as
used in the previous chapters, this value is compared with the value that is
in the instance of the register in the previous stage. If they do not match, a
misspeculation is detected and a rollback is signaled.

For this purpose, we define a misspeculation signalRkmisspecfor each
such registerR:(k+1). It is active if the value provided by the write access
and the value in the register do not match and if the stage is full but not
stalled.

Rkmisspec(cI ) := ( f γkR(cI ) 6= cI :R:k)^
f ullk^stallk

(5.7)

This is depicted in figure 5.3. The test for the stall signal is motivated as
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eq

f γkR

f ullk

stallk

Rkmisspec

R:k

R:(k+1)

Figure 5.3 The speculative valueR is compared with the value provided by the
register transition function. If they do not match, a misspeculation is signaled.

follows: the function fkR takes inputs. These inputs might be forwarded.
Thus, they are only guaranteed to be valid if the stall signal is not active.
Furthermore, we require that the functionsfkR do not depend on values
that are guessed.

We use these signals in order to calculate the rollback signal of stagek:
It is just the disjunction of theRkmisspecsignals:

rollbackk(cI ) :=
_

R:k2σ

Rkmisspec(cI ) (5.8)

5.7 Rollback

During rollback, we have to revert changes to the machine made by the
instructions that used misspeculated data. Thus, the state of the machine
has to be changed as if the instructions that used misspeculated data never
entered the machine.

The rollback is realized as follows: the original values of the registers
that are changed during the speculation are saved in temporary registers.
All calculations store their results in the original place as before. If the
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M
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PC0 oPC0
:2

oPC0:3

oPC0:4

Figure 5.4 Saving the original value ofPC0:2 in oPC0 for reading or rollback by
stages 2, 3, and 4.

speculation fails, the original values are restored from the temporary regis-
ters. If the speculation turns out to be correct, the values in the temporary
registers are just ignored. By convention, we name the temporary register
oQ if the name of the original register isQ.

In order to save hardware cost,we restore specification registers only.
In particular, we do not restore the implementation registers in case of a
rollback. The only justification for this is saving the gates and latches
required for the rollback in case of implementation registers. The price
paid for this is extra proof effort, since we have to argue that not restoring
implementation registers does not affect data consistency.

Example Consider a pipelined machine and a specification registerPC0

that is written by stage 1 (decode). In the same cycle in that one clocks a
new value intoPC0:2, the old value of the register is saved in animplemen-
tation register calledoPC0:2 (figure 5.4).

If this value is required in any later stage for rollback or any other pur-
pose, extra instances can be added to the stages in between. This is the
usual method to add instances of implementation registers, as already de-
scribed in chapter 3. Note that duplicatingQ into oQ is expensive regarding
hardware cost. We therefore assume thatQ is neither a register file nor a
memory.

Remember thatωkQ denotes the value clocked into registerQ. In or-
der to realize rollback, we change the functionωkQ as follows: in case no
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rollback is made, the function returns the same value as before. In case a
rollback is made, we have to select the appropriate instance of the register
oQ. Note that actually more than one rollback signal can be active simul-
taneously. In this case, we have to take the original values from the latest
stage with active rollback signal. Remember that we usedρ( j;T) in order
to denote that stagej has this property. We now change the new value
clocked intoQ:(k+1) as follows:

ωkQ(cT
I ) :=

8<
:

f γkQ(cT
I ) : uek = 1

oQT : j : ρ( j;T)
QT�1:(k+1) : otherwise

(5.9)

We implement this using multiplexers (figure 5.5). This implementa-
tion is similar to the circuit in figure 4.10 (page 116) we use in order to
implement the minimum required for forwarding in chapter 4.

The implementation described here takes one cycle in order to detect
misspeculation and handle the rollback. The calculation of the next con-
figuration begins in the next cycle. In some designs, in particular in case
of branch prediction, the calculation of the next configuration begins in the
same cycle the misspeculation is detected. This saves one cycle but may
increase cycle time. Thus, this is a CPI vs. cycle time tradeoff. However,
we do not further evaluate this.

5.8 Extended Read Access Semantics

5.8.1 Specification Registers

In chapter 3, we did not allow read accesses to specification registersR in
stagesk> stage(R). We now define semantics for such read accesses. This
is not related to speculation. In fact, one can define the same semantics for
the prepared sequential and pipelined machine without speculation. The
only reason why we did not introduce it in one of the previous chapters is
that we did not need such read accesses.

We aim to define read accesses to specification registersR in stagesk>
stage(R) such that the claim of the input correctness lemmas still holds:

gkR(c
T
I )

!
= RsI(k;T)

S
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Figure 5.5 Selecting the correct value for restoringQ:2 in case of a rollback.
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We realize this by reading the implementation registeroR:k, as intro-
duced above. However, we do not define such read accesses with address.

We have to prove the claim above: in order to do so, we extend the stage
correctness predicates as introduced in chapter 3. The claim for registers
oR:(k+1) 2 out(k) is:

oRT :(k+1) =

(
RsI(k;T)�1

S : sI(k;T)> 0
0 : otherwise

Assuming this stage correctness predicate, we easily show that inputs cal-
culated according to the rules above are correct:

Let f ullT
k hold and letR be a specification register andk > stage(R). J Lemma 5.7

Assuming that the stage correctness predicatePk�1 holds in cycleT, the
inputs generated by the functionsgkRduring cycleT are correct:

gkR(c
T
I )

!
= RsI(k;T)

S

By definition ofgkR, the value ofoR:k is read: PROOF

gkR(c
T
I ) = cT

I :oR:k (5.10)

By using the stage correctness predicate for registerR, stagek�1, cycle
T, we transform the right hand side:

gkR(c
T
I ) = RsI(k�1;T)�1

S (5.11)

According to invariant 5.3, we havesI(k�1;T) = sI(k;T) +1. Thus,
we get:

gkR(c
T
I ) = RsI(k;T)

S (5.12)

This is the claim. QED

5.8.2 External Signals

We further extend the read access semantics by definingexternal signals.
We allow accessing external signals by adding the name of the signal to
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the list of registers a register transition function depends on. LetR be an
external signal that is read by stagek. The signal has an arbitrary domain
W (R). We assume a mapping from the instruction numbers intoW (R)
that defines the value of the signal in the specification machine:

RS : N �!W (R)

Thus, the correct value of an external inputR in stagek is:

GkR(cS) := RS(cS)

We have to assume that we get exactly the correct value if an instruction
in stagek readsR. This is done if stagek is full and not stalled.

f ull T
k ^stallTk =) gkR(c

T
I ) = GkR(sI(k;T))

Obviously, this is inconsistent if the same signal is read in multiple
stages. We therefore assume that a signal is read in exactly one stage.

5.9 Branch Prediction

5.9.1 The DLX without Delayed PC

Many microprocessors do not use delayed branch semantics because of
binary compatibility with earlier, sequential versions. One well-known ex-
ample is the Intel x86 family [Yeu84, Int95b]. Removing the delayed PC
from the specification significantly complicates a pipelined implementa-
tion.

In this section, we will give a specification of a DLX without Delayed
PC. We will then use speculation as described above in order to build a
pipelined DLX that provably implements this specification.

The first step is to remove the registersPC0 andDPC from the specifica-
tion. We add a single registerPC instead. The other registers (GPR, DM)
remain unchanged. As in chapter 2, let the signalI denote the instruction
word fetched. The address used to fetchI is taken from the registerPCand
no longer fromDPC:

I(c) = IM(c:PC) (5.13)
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Figure 5.6 Instruction fetch and next PC calculation in a prepared sequential
DLX without Delayed PC

The transition function for the registerPC is the same as forPC0:

δ:PC(c) = next pc(I ;op1(c);c:PC) (5.14)

The transition functions ofDM andGPRremain unchanged. In case of
a jump and link instruction, we takePC+4 and no longerPC0+4.

5.9.2 The Sequential DLX without Delayed PC

Implementing and verifying a prepared sequential machine without de-
layed PC is trivial. One takes the prepared sequential machine from chapter
3 with minimal modifications. One just renamesPC0 into PC and removes
theDPC register. The instruction fetch is made usingPC as register (fig-
ure 5.6). No speculation is necessary. The proof of correctness follows the
proof given in chapter 3.
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Figure 5.7 Instruction fetch and next PC calculation in a pipelined DLX without
Delayed PC and without speculation

5.9.3 The Pipelined DLX without Delayed PC

In chapter 4, we transformed the prepared sequential machine with De-
layed PC into a pipelined machine. This is still feasible for the machine
without Delayed PC. However, we have to forward registerPC:2 into the
instruction fetch stage (figure 5.7). According to the forwarding mecha-
nism as given in the previous chapter, we have to select between the value
in the registerPC:2 and the value written intoPC:2 depending on the value
of the full bit f ull :1.

If the decode stage is full, which is the common case, we have to use the
value provided by thenextpccircuit as address for the instruction fetch.
In particular, thenext pccircuit uses the first GPR operand as input. This
operand might be forwarded, too. We therefore get a data path that passes
the ALU and thenextpccircuit and the instruction memory. We consider
such a path to be too long.

A common approach to this problem is usingbranch prediction. The
problem is the GPR operand. The GPR operand is used in order to decide
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whether the branch is taken or not in case of a branch instruction. In case
of a jump register instruction, the operand value is used as target address.

The idea of branch prediction is to guess whether a branch is taken or
not. There are various methods to realize this. Implementing branch pre-
dictors lies beyond the scope of this thesis. There is a vast amount of
literature on sophisticated branch predictors, e.g. [Smi81, LS84, YP92,
CHYP94, PS94].

However, branch prediction is of no use regarding jump register in-
structions. Since jump register instructions are much less common than
branch instructions, a feasible solution is to stall the execution until the
GPR operand is available. Another solution is to guess the branch target,
too. This is what we implement. As for the branch predictor, we do not
elaborate how to implement the target predictor.

We implement branch prediction as follows: the first step is to move
registerPC from stage 1 (decode) to stage 0 (fetch). This allows reading
the PC register in stage 1 without any forwarding. The next PC is now
calculated as follows: if the instruction fetched is neither a branch or jump,
we just take the old value and increment it by four. If it is a branch, we
guess whether it is taken or not. If it is a jump register instruction, we guess
the branch target. We denominate these guessed values bybranch taken
andbranch target. We pass the address of the instruction to the predictor
(figure 5.8). Figure 5.9 shows how the new PC is calculated using the
guessed values.

We instantiate the rollback mechanism as described in section 5.7 (page
161). The old PC value is stored in a registeroPC:1. This allows restoring
the PC in case of a rollback (figure 5.10). Thus, the registerPC:1 is clocked
if ue0 is active or if the rollback signalrollback01 is active. The update
enable signal is used in order to select the appropriate source.

The registeroPC:1 is also used for reading thePC register in stage 1 (de-
code stage): we read thePC register for jump and link instructions. Since
1> stage(PC) = 0, we have to use the extended read access semantics as
introduced above.

As described in section 5.6 (page 159), the guessed values are stored
in instances of implementation registers. In case of the DLX with branch
registers these registers arebranch taken:1 andbranch target:1. In stage 1
(decode), we can calculate the correct values. We add a write access to the
registerbranch taken:2. The value written is justb jtakenimp as defined
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0 1

nextpc’

PC:1 PC:1

IM spec

IR bt btarget

IR:1 PC:1 bt, btarget

Figure 5.8 Instruction fetch and next PC calculation in a pipelined DLX without
Delayed PC and with speculation. Letbt be a shorthand forbranchtakenand
btargetbe a shorthand forbranchtarget. The prediction unit is denoted byspec.
The circuits for providing the old PC value in case of a rollback are omitted.

4

NextPC’

Add

0 1

1 0

branchtarget

PC

I jr (IR)

I immediate(IR)
I j(IR)

I branch(IR)

branchtaken

Figure 5.9 Calculating the next PC using speculation
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ue1

f0PC

oPC:1PC:1

Figure 5.10 Restoring thePC register in case of a rollback: The registerPC is
clocked ifue0 or rollback01 is active or in case of a reset. Ifue0 is active, the next
PC is clocked intoPC:1 and the old PC is clocked intooPC:1. If ue0 is not active,
the old PC fromoPC:1 is clocked intoPC:1. The multiplexer used in order to
handle the reset case is omitted.

in the previous chapter:

f1branch taken(IR;GPRa) = b jtakenimp(IR;GPRa)

Given correct inputs, the function above calculates the correct value ofJ Lemma 5.8
branch taken. We denote this correct value byΩbranch taken(cS):

Ωbranch taken(cS) := b jtaken(I(cS);op1(cS))

The functionsb jtaken, I , andop1 are defined in chapter 2.

The claim is thatf1branch takenreturns this value given correct inputs:

f Γ1branch taken(ci
S) = Ωbranch taken(ci

S)

By expandingf Γ1branch taken, we get the following claim: PROOF

b jtakenimp(Ω0IR(ci
S);G1GPRa(ci

S))
!
= Ωbranch taken(ci

S)

Using lemma 3.3 (page 57), we transform this into:

b jtaken(Ω0IR(ci
S);G1GPRa(ci

S))
!
= Ωbranch taken(ci

S)
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By definition ofΩbranch taken, the claim is equal to:

b jtaken(Ω0IR(ci
S);G1GPRa(ci

S))
!
= b jtaken(I(ci

S);op1(ci
S))

This is concluded as in lemma 3.15 (correctness of the transition func-
tions of the DLX without branch prediction): The first step is to assert that
Ω0IR(ci

S) is equal toI(ci
S). In case the instruction coded byI(ci

S) is a jump
instruction, the claim immediately follows from the definition ofb jtaken.
In case of a branch instruction, one asserts thatG1GPRa(ci

S) is equal to
op1(ci

S).QED

Furthermore, we add a write access to the registerbranchtarget. The
value written isGPRa(the first GPR operand) if we have a jump register
instruction and zero otherwise:

f1branch target(IR;GPRa) =

�
GPRa : I jr (IR)
0 : otherwise

As above, we define a correct value forbranchtarget. This is the GPR
operand in case of a jump register instruction. In case of any other instruc-
tion, we use zero.

Ωbranch target(ci
S) =

�
op1(ci

S) : I jr (I(ci
S))

0 : otherwise

Given correct inputs,f1branch target calculates this value:Lemma 5.9 I

f Γ1branch target(ci
S) = Ωbranch target(ci

S)

By expanding f Γ1branch target and swapping left hand side and rightPROOF
hand side for readability, we get the following claim:

Ωbranch target(ci
S)

!
=

�
G1GPRa(ci

S) : I jr (Ω0IR(ci
S))

0 : otherwise

One easily asserts thatΩ0IR(ci
S) is equal toI(ci

S). This transforms the
claim into:

Ωbranch target(ci
S)

!
=

�
G1GPRa(ci

S) : I jr (I(ci
S))

0 : otherwise
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In caseI jr (I(ci
S)) does not hold, one easily concludes the claim by

expanding the definition ofΩbranch target. In caseI jr (I(ci
S)) holds, one

expandsΩbranch target and gets the following claim:

op1(ci
S)

!
= G1GPRa(ci

S)

One asserts this easily using that we have a jump register instruction. QED

5.10 Data Consistency

5.10.1 Data Consistency Criterion

The data consistency criterion for both sequential and pipelined machines
is that we match values of the registers in the implementation machine
with values taken from the specification machine. This no longer works
in a machine with speculation. As an example, consider thePC register
in the pipelined machine without Delayed PC. If the speculation fails, we
actually write wrong values into this register. This wrong value might
never occur in the specification machine.

This gets even worse if one considers a machine that detects the mis-
speculation in even later stages, e.g., in stage 3 or 4. In such a machine,
subsequent instructions are fetched using a wrong PC. This might lead to
completely undefined results. This is illustrated in figure 5.11: assume in-
structionI0 does not require speculation and that we misspeculated while
instruction I1 was in stage 0. IfI1 is in stage 3, we have the following
situation: in registersR:k with k> 3, there is still correct data. In registers
R:3, we have the misspeculated data. In registersR:k with k< 3, we have
data calculated using misspeculated data.

The last stage that contains misspeculated data is calledspeculation
stage. In the example above, this is stage 3. If no misspeculation is done,
this is stage 0. In analogy to the scheduling functionI(k;T), let Σ(T) de-
note the number of this stage during cycleT.

Σ : N0 �! f0; : : : ;n�1g

We now adjust our data consistency criterion as follows: we no longer
claim anything for registersR:k with k < Σ(T). For registersR:k with
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Stage 1

Stage 2
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Stage 4

contains misspeculated
data

contains data calculated
using misspeculated data

contains correct
data

Stage 0

Stage 5

R:2
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R:3

R:4
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R:5

R:6

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

I4

I3

I2

I0

I1

Figure 5.11 Illustration of the data consistency criterion for machines with spec-
ulation: let stage 3 be the latest stage with misspeculated data. Stages 4 and 5
contain correct data, stages 1 and 2 contain data that were calculated using mis-
speculated data.
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k > Σ(T), we use the very same criterion as before. For the registersR:k
with k= Σ(T), we need to distinguish the registers.

Obviously, there are some registersR:k that contain wrong data, in par-
ticular the implementation registers that hold the misspeculated data, i.e.,
the registersR:k with R2 σ. But there may be more registers with wrong
data, namely those that have been calculated using the misspeculated data
as input. We denote the set of registersR:(k+1) that is calculated using
speculated data byσ(k). Note that if one uses a speculative inputR2 σ
in a stage later or equal than the misspeculation is detected, it is no longer
considered a speculative input. This is motivated as follows: if the input
value is used for subsequent calculations, we know it is correct. Otherwise,
we make a rollback and the value is not used.

For all registersR:k that are not element ofσ(k� 1), we maintain the
original correctness criterion. Formally, we redefine the stage correctness
predicates introduced in chapter 3 as follows: the stage correctness pred-
icate Pk no longer contains a claim about registers that are involved in
speculation, i.e., those that are element ofσ(k).

As before, letsPk(T) denote the stage correctness predicate for the spec-
ification registers and letiPk(T) denote the stage correctness predicate for
the implementation registers. The new stage correctness predicatePk for
the output registers of stagek holds if bothsPk andiPk hold, as before:

Pk(T) () sPk(T)^ iPk(T)

The stage correctness predicatesPk(T) for the specification registers is
the same as before but without the registers involved in speculation: Thus,
for all specification registersR2 out(k) andR 62 σ(k) the following condi-
tion must hold:

RT
I = RsI(k;T)

S

Furthermore, we modify the claim for implementation registers. We
have to do so because we do not restore implementation registers in case
of a rollback. As described in section 5.7 (page 161), this is motivated by
saving hardware cost. LetR:(k+1) be an implementation register. The
claim depends on the full bitf ullT

k+1. If it is active, the claim forRT
I stays

the same as before. If it is not active, we just do not claim anything for
RT

I . Thus, for all implementation registersR2 out(k) andR 62 σ(k) the
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following condition must hold:

f ull T
k+1 =) RT

I :(k+1) =

(
0 : sI(k;T) = 0

ΩkR(c
sI(k;T)�1
S ) : otherwise

If f ullT
k+1, we havesI(k;T) = sI(k;T) + 1 according to invariant 5.3.

Thus,sI(k;T) = 0 cannot happen iff ullT
k+1 holds. The condition above

therefore simplifies to:

f ull T
k+1 =) RT

I :(k+1) = ΩkR(c
sI(k;T)�1
S )

In case of a rollback, the full bits of the affected stages are cleared. Thus,
we no longer have to show anything for the implementation registers in
those stages until new values are stored there. However, this new induc-
tion premise is weaker than the old one. We have to verify that it is still
sufficient for showing that the inputs of the transition functions are correct.

One easily asserts this. The lemmas used to argue the correctness of
input registers have the premise that the full bit is active (e.g., lemma 3.16,
page 82, lemma 4.7, page 103).

For the registers that are calculated using speculative values, we define
a separate predicateP0

k(T). The predicate holds iff the values in the reg-
isters that are inσ(k) are correct. In case of specification registers, the
correctness criterion is as before: we use the value provided by the spec-
ification machine. In case of implementation registers, we used to define
the correct value using a definition for correct inputs. However, the imple-
mentation registersR:(k+1) 2 σ(k) depend on speculative values.

We therefore need a notion of a correct speculative value. As described
above,the functionΩR(cS) denotes the correct value of a speculative value
R2 σ given a configuration of the specification machine. Using that func-
tion, we define the correctness predicate for speculative implementation
registers as before.

This also allows defining a predicateS�1(T), which holds iff we specu-
late correctly during cycleT. The predicate is used for the speculation in
done stage 0 only. Formally, this is done using the functionΩR(cS). We
speculate correctly iff the input generation circuit provides this value for
all registersR2 σ:

S�1(T) :() 8R2 σ : g0R(cT
I ) = ΩR(csI(0;T)

S )

176



Section 5.10

DATA

CONSISTENCY

As described above, the guessed values are stored in implementation
registers and are propagated by adding instances of these implementation
registers. We therefore define a correctness predicateSk(T) for those reg-
istersR with R2 σ andR2 out(k). The predicate is defined in analogy to
the predicateiPk for implementation registers. As for the implementation
registers, we only claim anything if the full bit is active:

Sk(T) :()
�

f ull T
k+1 =) RT

I :(k+1) = ΩR(csI(k;T)�1
S )

�

Examples The use of the stage correctness predicates is illustrated in
figures 5.12, 5.13, and 5.14: In all figures, we summarize four classes of
registers:

� By S:k, we summarize the non-speculative specification registers,

� by S0:k, we summarize the speculative specification registers,

� by I :k, we summarize the implementation registers that are not spec-
ulative, i.e., they are not element ofσ(k�1),

� by I 0:k, we summarize the implementation registers that are specu-
lative, i.e., they are element ofσ(k�1).

If the box of the register is drawn using stronger lines, this denotes that the
correctness of the value in the register is claimed.

In figure 5.12, we show the transition from cycleT to cycle T + 1 if
instruction I0 moves from stage 0 to 1 and does not misspeculate. The
speculation functionΣ is zero in both cycles. In cycleT, we claim the cor-
rectness of the specification registers only, i.e., of the registersS:k andS0:k.
Since no full bit is set, we do not claim anything for implementation regis-
ters. As soon asI0 is in stage 1, the full bitf ull1 is set. Thus, we claim the
correctness of the implementation registersI :1 during cycleT +1. Since
Σ(T +1) is zero, we did not misspeculate. We therefore also claim the
correctness of the speculative implementation registersI 0:1 during cycle
T +1. Since we always claim the correctness of the registersS:k, we omit
those registers in later figures.

In figure 5.13, we show the case that we misspeculate. The speculation
functionΣ therefore is 1 in cycleT +1. We therefore no longer claim that
the values inS0:1 or I 0:1 are correct. However, we still claim that the values
in I :1 are correct: these values do not depend on the guessed values.
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Figure 5.12 Claim of correctness in case we do not misspeculate.Σ(T) points
to the speculation stage. We claim correctness for registers drawn with stronger
lines.
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Figure 5.13 Claim of correctness in case we misspeculate

178



Section 5.10

DATA

CONSISTENCY

k= 0

k= 1

k= 2

k= 3

k= 4

S0:1

S0:2

S0:3

S0:4

S0:5

I :1

I :2

I :3

I :4

I :5

I 0:2

I 0:3

I 0:4

I 0:1

I 0:5

cycleT +1

S0:1

S0:2

S0:3

S0:4

S0:5

I :1

I :2

I :3

I :4

I :5

I 0:2

I 0:3

I 0:4

I 0:1

I 0:5

cycleT

Σ(T)

Σ(T +1)
Ii+3

Ii+2

Ii

Ii�1

Ii

Ii�1Ii�2

Figure 5.14 Claim of correctness in case we do a rollback. After a rollback,Σ is
zero.

In figure 5.14, we show the rollback case. The speculation functionΣ is
2 in cycleT and we detect the misspeculation in that cycle, as indicated by
the flash symbol. Thus, the speculation function is again 0 in cycleT +1.
As before, for cycleT and stageΣ(T) = 2, we only claim the correctness
of the values inI :2. For all later stages, we claim the correctness of the
values inS0:k, andI :k/I 0:k iff the stage is full. In the example, stages 3 and
4 are full, we therefore claim the correctness of the values inI :3, I 0:3, I :4,
andI 0:4.

Registers of the DLX without Delayed PC As an example, consider
the pipelined DLX without Delayed PC described above. We have three
specification registers, which arePC, GPR, andDM. Of these registers,
only the registerPC depends on speculative inputs since we detect any
misspeculation in stage 1. Thus, we have:

PC2 σ(0)

Thus, we remove the claim forPC from sP0 and add it tosP0
0 instead:

sP0
0(T) :() PC:1T = PCsI(k;T)

S
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We have speculative valuesbranch takenandbranch target. The pred-
icateS�1(T) therefore is:

S�1(T) :() g0branch taken(cT
I ) = Ωbranch taken(csI(0;T)

S )^

g0branch target(cT
I ) = Ωbranch target(csI(0;T )

S )

In out(0), we have instances of the speculative valuesbranch takenand
branch target. The claim for those registers is in the predicateS0(T):

S0(T) :()

( f ull T
k+1 =) branch takenT :1= Ωbranch taken(csI(0;T)�1

S )^

branch targetT :1= Ωbranch target(csI(0;T )�1
S ))

5.10.2 Properties of the Pipeline

In this section, we conclude basic data consistency properties. We start
with a lemma that asserts that the machine is initialized properly:

The predicatesPk(T), P0
k(T), andSk(T) hold for cycleT = 0 andk� 0.Lemma 5.10 I

One easily asserts this lemma using thatsI(k;0) = 0 holds.PROOF

For the following data consistency properties, we define a shorthand for
the term “the inputs of stagek are correct”. In analogy to the stage cor-
rectness predicates, we use two predicates: one for inputs not affected by
misspeculation, and one for inputs affected by misspeculation.

Let I k(T) denote that the inputs of stagek that are not affected by mis-
speculation are correct during cycleT. One shows this using the input
correctness lemmas. These lemmas in turn depend on certain stage cor-
rectness predicates. In order to argue the correctness of the inputs of stage
k, we need the stage correctness predicatesP of the stagesk�1 and later
stages. In addition to that, we can use the stage correctness predicatesP0

for stagek and later ones:

I k(T) :() (8l : l � k�1 =) Pl (T)) ^
(8l : l � k =) P0

l (T))
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In analogy to that, letI 0k(T) denote that the inputs of stagek that are
affected by misspeculation are correct during cycleT. The inputs affected
by misspeculation depend on the stage. In case of stagek= 0, we have the
guessed data, i.e., we use the predicateS�1(T). In case of stagesk> 0, we
use the predicatesSk�1(T) andP0

k�1(T):

I 0k(T) :()

�
Sk�1(T) : k= 0
Sk�1(T)^P0

k�1(T) : otherwise

Let the non-speculative inputs of stagek be correct during cycleT and let J Lemma 5.11
the output registers of stagek be not affected by a rollback. In this case,
the stage correctness predicatePk holds during cycleT +1.

(k = n�1_ rollback0Tk+1)^ I k(T) =) Pk(T +1)

Let all inputs of stagek be correct during cycleT and let the output regis-J Lemma 5.12
ters of stagek be not affected by a rollback. In this case, the stage correct-
ness predicateP0k holds during cycleT +1.

(k = n�1_ rollback0Tk+1)^ I k(T)^ I 0k(T) =) P0
k(T +1)

One easily asserts lemmas 5.11 and 5.12 as done in the pipelined ma-
chine without speculation.

Obviously, if one combines the lemmas 5.11 and 5.12, one gets that
correctness of all inputs implies the correctness of all outputs unless there
is a rollback.

If the update enable signaluek is off and if the output registers of stagek J Lemma 5.13
are not affected by a rollback, all predicates that hold in cycleT also hold
in cycleT +1:

Pk(T) =) Pk(T +1)

P0
k(T) =) P0

k(T +1)

Sk(T) =) Sk(T +1)

The proof is trivial and uses the fact that neither the values in the registersPROOF
nor the predicates change from cycleT to T +1.
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For all machines with speculation, we assume that there is a stage in that
we detect any misspeculation at the latest. For example, in the DLX with-
out Delayed PC, we detect the branch missprediction in stage 1 (decode)
at the latest. We denote the number of this stage byλ.

If the update enable of stageλ is active, and if the non-speculative inputsLemma 5.14 I

of the stage are correct, we did not misspeculate, i.e., the registersR:λ
holding the propagated speculative values have correct values.

ueT
λ ^ Iλ(T) =) Sλ�1(T)

Remember thatSλ�1(T) is defined as follows:PROOF

f ull T
λ =) RT

I :λ = ΩR(csI(λ�1;T)�1
S )

SinceueT
λ holds, f ull T

λ also holds. Thus, we have to show:

RT
I :λ

!
= ΩR(csI(λ�1;T)�1

S )

According to invariant 5.3, we havesI(λ;T) = sI(λ�1;T)�1. Thus,
the claim is transformed into:

RT
I :λ

!
= ΩR(csI(λ;T)

S )

This lemma is shown easily using the fact thatueT
λ implies that the roll-

back signalrollbackT
λ cannot be active. Furthermore,stallTλ is not active

and f ullT
λ is active. Thus, the signalsRλmisspecT are also not active for

speculative registersR. Thus, by definition of themisspecsignal, we have:

f γλR(cT
I ) = RT

I :λ

Since the inputs are correct, we have:

f ΓλR(csI(λ;T)
S ) = RT

I :λ

This allows transforming the claim into:

f ΓλR(csI(λ;T)
S )

!
= ΩR(csI(λ;T)

S )

For the pipelined machine with branch prediction, we have two specula-
tive registersR, which arebranch takenandbranch target.

The claim above forbranch takenis concluded by lemma 5.8, and the
claim for the registerbranch target is concluded by lemma 5.9.
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The following lemma asserts that the guessed data is passed correctly
from one stage to the next if the update enable signal is active. Note that
this includes the case that the guessed data is wrong.

If the update enable signal of stagek is active and if the non-speculativeJ Lemma 5.15
inputs of stagek are correct, the predicatesSk(T+1) holds iff the predicate
Sk�1(T) holds.

ueT
k ^ I k(T) =) Sk(T +1) = Sk�1(T)

One easily asserts this lemma by expanding the predicatesS.

Let there be a rollback in stagek� 1 and cycleT. If the values in the non-J Lemma 5.16
speculative output registers of stagek�1 are correct, we do the rollback
correctly, i.e., the correctness predicates for the output registers of stages
l < k hold during cycleT +1.

ρ(k;T)^Pk�1(T)

=) 80� l < k : Pl (T +1)^P0
l (T +1)^Sl(T +1)

One easily asserts this by expanding the predicates. For implementationPROOF
registers, we do not have to show anything, because the rollback clears the
full bits. For specification registers, we use the predicatePk�1(T).

Let stagek be full during cyclesT andT+1. If the update enable signal ofJ Lemma 5.17
the stage is not active and if the output registers of stagek are not affected
by a rollback, the predicateSk(T) is equal toSk(T +1).

ueT
k ^ (k= N�1_ rollback0Tk+1)^ f ull T

k+1^ f ull T+1
k+1

=) Sk(T) = Sk(T +1)

One easily shows this by arguing as follows: Since the update enablePROOF
signal is off and there is no rollback, the values of the registers do not
change. The claims of the predicates do not change either, since the full
bit is active in both cycles.

If a rollback0k signal is active, there is a stagej such that this is the lastJ Lemma 5.18
stage with activerollback0 signal.

rollback0Tk =) 9 j � k : ρ( j;T)
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PROOF One easily shows this lemma using induction. One starts with
stagek and proceeds fromk to k+1 until one either reaches the end of the
pipeline or a stage without activerollback0 signal.

5.10.3 Data Consistency Invariants

We introduced the speculation stage functionΣ(T) above without giving
a definition. In analogy tosI(k;T), we now give a recursive definition
of Σ(T). The recursive definition is constructed as follows: During cycle
T = 0, we obviously haveΣ(T) = 0, i.e., no instruction with misspeculated
data is in the pipeline.

The definition ofΣ(T) for T > 0 is constructed as follows: we consider
the stage thatΣ(T�1) points to. There are three cases:

1. If the update enable signal of the stage is not active and if the stage is
not affected by a rollback, the value of the speculation stage function
must stay the same, i.e.,Σ(T) = Σ(T�1).

2. If the update enable signal of the stage is active, the instruction in
the stage moves into the next stage. In case of stageΣ(T �1) = 0,
we need to distinguish whether we misspeculated or not. We mis-
speculated iffS�1(T�1) does not hold. If we misspeculated,Σ(T)
must be one. If not so,Σ(T) remains zero.

In case of stageΣ(T�1) > 0, we already know that we misspecu-
lated, i.e.,Σ(T) = Σ(T�1)+1.

In addition to that, we define an upper bound forΣ(T) that isλ. In
caseΣ(T�1) is greater or equal thanλ, we defineΣ(T) to be zero.

3. In case of a rollback, as indicated byrollback0T�1
Σ(T�1), the speculation

stage function becomes zero.

Thus, we defineΣ(T) for T > 0 as follows: IfueT�1
Σ(T�1) holds,Σ(T) is:

Σ(T) :=

8<
:

1 : Σ(T�1) = 0^S�1(T�1)
Σ(T�1)+1 : 0< Σ(T�1)< λ
0 : otherwise

184



Section 5.10

DATA

CONSISTENCY

If ueT�1
Σ(T�1) does not hold,Σ(T) is:

Σ(T) :=

(
0 : rollback0T�1

Σ(T�1)

Σ(T�1) : otherwise

Using this recursive definition forΣ(T), we conclude several properties.

The latest stage we detect misspeculation in, i.e., stageλ, is an upper J Lemma 5.19
bound for the speculation stage function.

Σ(T) � λ

One easily shows this using the definition of the speculation stage functionPROOF
above.

The stageΣ(T) is full during cycleT, i.e., there is an instruction in theJ Lemma 5.20
last stage containing misspeculated data.

f ullT
Σ(T)

The claim is shown using induction onT. For T = 0, one easily asserts PROOF
the claim using thatΣ(T) is zero and thatf ull0 is always active.

For T +1, we show the claim by a case split on the value ofueT
Σ(T).

� If ueT
Σ(T) holds, we have to show eitherf ullT+1

Σ(T)+1 or f ull T+1
0 . The

later claim holds becausef ull0 is always active. We showf ullT+1
Σ(T)+1

by applying lemma 4.1:

f ull T+1
Σ(T)+1 = (ueT

Σ(T)_stallTΣ(T)+1)^ rollback0TΣ(T)+1

SinceueT
Σ(T) holds, therollback0 signal cannot be active and we get

that f ull T+1
Σ(T)+1 holds.

� If ueT
Σ(T) does not hold and we have a rollback, we have to show that

f ull T+1
0 , which one easily asserts as above.

If ueT
Σ(T) does not hold and we do not have a rollback, we have to

show thatf ull T+1
Σ(T) holds. This follows directly form lemma 4.4 for

cycleT and stageΣ(T). QED
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The following lemma is easily concluded from lemma 5.13 and lemma
5.15:

If we have correct inputs (both speculative and non-speculative) duringLemma 5.21 I

cycle T, and the values in the speculative output registers of stagek are
correct during cycleT, the values are also correct during cycleT +1.

(k= n�1_ rollback0Tk+1)^ I 0k(T)^ I k(T)^Sk(T) =) Sk(T +1)

We now claim two speculation invariants. We will later on show these
invariants using induction.

If Σ(T) is not zero, at least one speculative register of the output registersInvariant 5.4 I

of stageΣ(T)�1 has wrong values:

Σ(T)� 1 =) ST
Σ(T)�1

We will later on use this invariant in order to claim that we actually are
able to detect misspeculation. The following invariant is the data consis-
tency claim as introduced above:

The data consistency predicates of all registers that are outputs of stagesInvariant 5.5 I

k � Σ(T) hold during cycleT. In addition to that, the predicate for the
non-speculative registers that are output registers of stageΣ(T)�1 holds.

k� Σ(T)�1 =) Pk(T)

k� Σ(T) =) P0
k(T)

k� Σ(T) =) Sk(T)

One easily asserts the following two claims by expanding the predicates:

Let invariant 5.5 hold for cycleT. For all stagesk � Σ(T), the non-Lemma 5.22 I

speculative inputs of stagek are correct.

k� Σ(T) =) I k(T)

Let invariant 5.5 hold for cycleT. For stagesk > Σ(T), the speculativeLemma 5.23 I

inputs of stagek are correct.

k> Σ(T) =) I 0k(T)
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The following lemma will be used as the induction step for showing
invariant 5.4:

Let both speculation invariants hold during cycleT. This implies that J Lemma 5.24
invariant 5.4 holds during cycleT +1.

We do a case split on the values of the update enable signalueT
Σ(T) and PROOF

rollback0TΣ(T).

If ueT
Σ(T) holds, there are three cases forΣ(T):

1. Let Σ(T) be zero. IfS�1(T) holds, Σ(T + 1) is also zero and we
have nothing to show.

Thus, letS�1(T) not hold. In this case, we haveΣ(T +1) = 1 and
we therefore have to disproveS0(T +1). This is easily done using
lemma 5.15 and lemma 5.22.

2. LetΣ(T)�λ hold. In this case,Σ(T+1) is zero and we have nothing
to show.

3. Let 0< Σ(T)< λ hold. In this case, we haveΣ(T +1) = Σ(T)+1.
We have to disproveSΣ(T)+1(T +1). As before, this is done using
lemma 5.15 and lemma 5.22.

Let ueT
Σ(T) not hold and letrollback0TΣ(T) hold. In this case,Σ(T +1) is

zero and we have nothing to show.

Let bothueT
Σ(T) androllback0TΣ(T) not hold. In this case,Σ(T+1) is equal

to Σ(T). We have to disproveSΣ(T)�1(T +1). According to lemma 5.17
for stageΣ(T)�1, we have:

SΣ(T)�1(T +1) = SΣ(T)�1(T)

The right hand side does not hold because of the induction premise.
However, we have to prove the premises of lemma 5.17: We disprove
ueT

Σ(T)�1 as follows: according to lemma 5.20, stageΣ(T) is full during

cycle T. SinceueT
Σ(T) is not active, we would overwrite the contents of

stageΣ(T). This is not possible, as asserted by lemma 4.3.

In addition to that, we have to show that bothf ullT
Σ(T) and f ull T+1

Σ(T) hold,
which is easily done using lemma 5.20. QED
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The following lemma will be used as induction step for the case thatueT
k

does not hold.

Let the speculation invariants hold in cycleT. Let the update enable signalLemma 5.25 I

ueT
k be not active. This implies thatSk(T +1) andP0

k(T +1) hold if k�
Σ(T) and thatPk(T +1) holds if k� Σ(T)�1:

k� Σ(T)�1 =) Pk(T +1)

k� Σ(T) =) P0
k(T +1)

k� Σ(T) =) Sk(T +1))

Note that the claim of this lemma is not identical with speculation invari-
ant 5.5. On the left hand side, we haveΣ(T) and on the right hand side, we
have the predicates for cycleT +1.

If the output registers of stagek are affected by a rollback, we concludePROOF
that there is a last stagel � k+1 with active rollback signal (lemma 5.18).
We then use lemma 5.16 in order to conclude the claim.

If the output registers of stagek are not affected by a rollback, we use
lemma 5.12 in order to conclude the claim.QED

Let the speculation invariants hold in cycleT. This implies thatS0
k(T +1)Lemma 5.26 I

andP0
k(T +1) hold if k� Σ(T)+1 and thatPk(T +1) if k� Σ(T):

k� Σ(T) =) Pk(T +1)

k� Σ(T)+1 =) P0
k(T +1)

k� Σ(T)+1 =) Sk(T +1)

If ueT
k does not hold, we use lemma 5.25 in order to conclude the claim.PROOF

Thus, letueT
k hold. This implies that the output registers of stagek are

not affected by a rollback. We concludePk(T +1) using the lemma 5.22
(non-speculative inputs correct) and lemma 5.11. We concludeP0

k(T +1)
using lemma 5.22 and lemma 5.23 (speculative inputs correct), and lemma
5.12. We concludeSk(T +1) using lemma 5.15.QED

The following lemmas are the induction step for showing invariant 5.5.
For sake of simplicity, we case-split using the values of the update enable
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and rollback signals. Lemma 5.27 shows the claim ifueT
Σ(T), lemma 5.28

shows the claim ifrollback0TΣ(T) is active, and lemma 5.29 shows the claim
if neither signal is active.

Let both speculation invariants hold during cycleT and let the updateJ Lemma 5.27
enable signalueT

Σ(T) be active. This implies that invariant 5.5 holds during
cycleT +1.

We do a case split onΣ(T) and onΣ(T +1). PROOF

1. If both Σ(T) andΣ(T +1) are zero, we conclude the claim as fol-
lows: we concludePk(T +1) for k� 0 using lemma 5.22 (inputs
correct) and lemma 5.11.

We concludeP0
k(T + 1) for k > 0 using lemma 5.23, 5.22 (inputs

correct) and lemma 5.12. Fork = 0, we concludeS�1 using the fact
thatΣ(T +1) is zero. We can then apply lemma 5.12.

We concludeSk(T +1) for k� 0 using lemma 5.21. The premises
of this lemma are shown as before.

2. Let Σ(T) beλ andΣ(T +1) be zero. In this case, we conclude the
claim using lemma 5.22 (inputs correct) and lemma 5.14.

3. LetΣ(T)> λ hold. This is disproved using lemma 5.19.

4. The case 0< Σ(T) < λ andΣ(T +1) = 0 is a contradiction to the
definition ofΣ.

5. LetΣ(T+1) be not zero. In this case,Σ(T+1)=Σ(T)+1 must hold
because of the active update enable signal. Because ofΣ(T +1) =
Σ(T)+1, we can conclude the claim using lemma 5.26.

This concludes the claim. QED

Let both speculation invariants hold during cycleT and let the updateJ Lemma 5.28
enable signalueT

Σ(T) be not active and let the rollback signalrollback0TΣ(T)
be active. This implies that invariant 5.5 holds during cycleT +1.

Sincerollback0TΣ(T) holds, we haveΣ(T +1) = 0. Thus, we have to show PROOF
all three predicates for allk� 0.
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Since we have an active rollback signal, there is a stagej � Σ(T) that
signaled the rollback, as asserted by lemma 5.18. There are three cases
regarding the value ofj:

1. Letk= j hold. In this case, we have the stage in which the rollback
is detected. The output registers of this stage are not updated, i.e.,
ueT

k does not hold. We therefore are able to apply lemma 5.13, which
shows the claim.

2. Let k > j hold. In this case, we conclude the claim using lemma
5.26. This is feasible because ofj � Σ(T).

3. Let k < j hold. In this case, the output registers of stagek are af-
fected by the rollback and claim follows from lemma 5.16.QED

Let both speculation invariants hold during cycleT and let the updateLemma 5.29 I

enable signalueT
Σ(T) and the rollback signalrollback0TΣ(T) be not active.

This implies that invariant 5.5 holds during cycleT +1.

Since the update enable signalueT
Σ(T) and the rollback signalrollback0TΣ(T)PROOF

are not active, we haveΣ(T +1) = Σ(T).

If ueT
k does not hold, we conclude the claim using lemma 5.25.

If ueT
k holds, we obviously havek 6= Σ(T). For k > Σ(T), we conclude

the claim using lemma 5.26. Fork < Σ(T)�1, there is nothing to show.
Fork=Σ(T)�1, we argue thatueT

Σ(T)�1 cannot hold. According to lemma

5.20, f ullT
Σ(T) holds. This is a contradiction to lemma 5.2.QED

Both speculation invariants hold.Lemma 5.30 I

Note that speculation invariant 5.2 implies the data consistency of the
specification registers.

We show this by induction onT. For cycleT = 0, one easily concludesPROOF
the claim using thatΣ(0) = 0 and using lemma 5.10. The claim forT +1
is concluded from the claim for cycleT using the lemmas 5.24, 5.27, 5.28,
and 5.29.
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5.11 Liveness

5.11.1 Liveness Proof Strategy

As for the pipelined machine without speculation, we desire to prove that
the pipelined machine with speculation is alive. We maintain the very same
liveness criterion as we used for the prepared sequential and pipelined ma-
chine without speculation.

Unfortunately, we cannot repeat the liveness arguments of the pipelined
machine without speculation. This arises from the fact that the machine
with speculation restarts instructions in case of misspeculation. We will
therefore have to argue that this does not cause an infinite loop of rollbacks.

Informally, we argue as follows: in case there is no rollback, the exe-
cution proceeds as in the machine without speculation. In case there is
a rollback, we argue that we will not misspeculate on the same instruc-
tion twice. However, this only holds for rollbacks in the speculation stage
(lemma 5.16). For rollbacks in earlier stages, we cannot make any claim.
We therefore only consider the latest stage that is full. In case there is a
rollback in the latest stage that is full, we can claim that this must be the
speculation stageΣ in case of a rollback.

Formally, we define a functionM(T) that maps a cycleT to the number
of the latest full stage:

M(T) := maxfk j f ull T
k g

In order to show liveness, we have to show that for all instructionsi and
stagesk there is a cycleT such thatsI(k;T) = i holds. We consider the
instruction in stageM(T). Let this be instructioni. We will show that
this instruction will eventually arrive in the last stage using the arguments
above. We will then conclude that instructioni must have been in all stages
below at least once, which satisfies our claim.

After that, we argue that the instruction in the last stage will eventually
leave the pipeline. After that, there must be a stage such that instruction
i+1 is the last stage in the pipeline. This is the first stage in the worst case.
We can now repeat the arguments made for instructioni for instructioni+1
and so on.

This proof strategy is illustrated in figure 5.15: in cycleT1, we have
instructionIi in stagek=2. This is also the latest full stage, i.e.,M(T1) =2.
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Figure 5.15 Illustration of the liveness proof strategy for machines with specula-
tion. M(T) points to the latest full stage.

This instruction will eventually arrive in the last stage. Let this be true in
cycleT2. The instruction will eventually leave the pipeline. Let this be true
in cycleT3. Then there is a stage such that instructionIi+1 is in the last full
stage. In the example, this is stagek= 3.

We will now formalize this proof.

5.11.2 Properties of M(T)

We conclude a set of trivial lemmas from the definition ofM(T):

This maximum exists for allT.Lemma 5.31 I

One easily concludes this using thatf ullT
0 is active for allT by definitionPROOF

of the signal.

For T = 0, M(T) is zero:Lemma 5.32 I

M(0) = 0
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One easily asserts this by the definition of the initial values of the full

bits.

StageM(T) is full during cycleT, which one concludes by definition ofJ Lemma 5.33
max:

f ullT
M(T)

All stages below stageM(T) are not full. J Lemma 5.34

k> M(T) =) f ull T
k

The predicatebelow emptyk(T) (page 138) withk = M(T) holds for all J Lemma 5.35
cyclesT.

8T : below emptyM(T)(T)

One easily concludes this by using lemma 5.34 and the definition of
below empty.

A stage is the latest full stage iff the stage is full and all stages below areJ Lemma 5.36
empty.

M(T) = k () f ull T
k ^below emptyk(T)

In caserollback0TM(T) holds, M(T + 1) is zero. If ueM(T) is active and J Lemma 5.37
M(T) is the last stage, we do not claim anything. IfueM(T) is active and
M(T) is not the last stage, we claim thatM(T +1) is M(T) +1. In any
other case, we claim thatM(T +1) is equal toM(T).

ueT
M(T)^M(T) = n�1

=) M(T +1) =

8><
>:

0 : rollback0TM(T)

M(T)+1 : ueT
M(T)

M(T) : otherwise

We do a case split on the values ofrollback0TM(T) andueT
M(T). PROOF
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1. Let ueT
M(T) hold. Thus, we only have to considerM(T) 6= n�1. In

this case, we claim that

M(T +1)
!
= M(T)

holds.

We instantiate lemma 5.36 with cycleT + 1 and stageM(T) + 1.
This is:

M(T +1) = M(T)+1

() f ull T+1
M(T)+1^below emptyM(T)+1(T +1)

Thus, the claim holds iff the right hand side of the equivalence above
holds. We showf ullT+1

M(T)+1 using lemma 4.1 (full bit transition func-
tion):

f ull T+1
M(T)+1 = (ueT

M(T)_stallTM(T)+1)^ rollback0TM(T)+1

As ueT
M(T) holds, this simplifies to:

f ull T+1
M(T)+1 = rollback0TM(T)+1

We conclude that this rollback signal cannot be active sinceueT
M(T)

is active.

It is left to show thatbelow emptyM(T)+1(T +1) holds, i.e., that all
stages below stageM(T)+1 are empty during cycleT +1:

8 j j j > M(T)+1 : f ull T+1
j

We apply lemma 4.1, which replacesf ullT+1
j :

8 j j j > M(T)+1 : ueT
j�1_stallTj )^ rollback0Tj

This simplifies to:

8 j j j > M(T)+1 : (ueT
j�1^stallTj )_ rollback0Tj

We disproveueT
j�1 using that stagej�1 is not full during cycleT.

We disprovestallTj using that stagej is not full during cycleT. This
concludes the claim.

194



Section 5.11

LIVENESS
2. Let rollback0TM(T) hold. In this case, we claim that

M(T +1)
!
= 0

holds, i.e., we have to show that stage 0 is full and all stages below
are empty. One easily asserts this by using the fact that the rollback
clears all full bitsf ullT+1

j with 0< j �M(T) and thatf ullT+1
0 holds

by definition.

3. Let bothrollback0TM(T) andueT
M(T) not hold. In this case, we claim

that

M(T +1)
!
= M(T)

holds, i.e., that the number of the last full stage does not change
from cycleT to cycleT +1. We use lemma 5.36 with cycleT +1
and stageM(T). This is:

M(T +1) = M(T)

() f ull T+1
M(T)^below emptyM(T)(T +1)

Thus, the claim holds iff the right hand side of this equivalence
holds. ForM(T) = 0, this claim holds by definition of the full signal.
For M(T) > 0, we showf ullT+1

M(T) using lemma 5.3 (full bits do not
get lost) for stageM(T) and cycleT:

( f ull T
M(T)^ueT

M(T)^ rollback0TM(T) =) f ull T+1
M(T)

One easily concludes thatf ullT
M(T) holds by lemma 5.33.

It is left to show thatbelow emptyM(T)(T +1) holds, i.e., that all
stages below stageM(T) are empty during cycleT +1:

8 j j j > M(T) : f ull T+1
j

One asserts this using the transition function as above. QED

5.11.3 Rollback Properties

The last stage with activerollback0 signal is full and not stalled. Remem-J Lemma 5.38
ber that we usedρ(k;T) as a shorthand for the fact that stagek is the last
stage with active rollback signal.

ρ(k;T) =) f ull T
k ^stallTk
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PROOF One easily concludes this from the definition of therollback
signals. Themisspecsignals are only active if the stage is full and not
stalled. Since we have the last full stage, there cannot be an instruction
below that causes a rollback.

If we do a rollback in stageM(T) during cycleT, this is the last stage withLemma 5.39 I

activerollback0 signal.

rollback0TM(T) =) ρ(M(T);T)

One easily concludes this using the fact that all stages below stageM(T)
are empty.

We have to argue that we only do a rollback in case of a misspeculation.
Furthermore, we have to argue that the correct value is saved in case of a
misspeculation. We do this using the following two lemmas:

Let T > 0 be a cycle and let stagek be the last stage with activerollback0Lemma 5.40 I

signal during cycleT �1. This implies that the values of the scheduling
function for stagesl � k during cycleT match the number of the instruction
in stagek during cycleT�1.

T > 0^ρ(k;T�1)^ l � k =) sI(l ;T) = sI(k;T�1)

We prove this claim using induction onl . The induction starts withl = kPROOF
and proceeds froml to l �1.

For l = k, we conclude the claim by expanding the definition ofsI(k;T).

For l �1, we have the following claim:

sI(l �1;T)
!
= sI(k;T�1)

According to the induction premise, we have:

sI(l ;T) = sI(k;T�1)

This allows transforming the claim into:

sI(l �1;T)
!
= sI(l ;T)

One easily asserts thatrollback0T�1
l holds using the definition of the

signal. After that, one expands the definition ofsI(l � 1;T) on the left
hand side. This concludes the claim.QED
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The following lemma argues about the correctness of the rollback mech-

anism. Given correct non-speculative inputs, we claim that we only roll-
back in case of misspeculation. Furthermore, we claim that we correctly
restore the registers destroyed by the misspeculation.

If stagek is the last stage with activerollback0 signal during cycleT and if J Lemma 5.41
the non-speculative inputs of this stage are correct, we have two claims: a)
we misspeculated, and b) the correct values are in the speculative registers
in cycleT +1.

ρ(k;T)^ I k(T) =) Sk�1(T)^S�1(T +1)

We show that we misspeculated as follows: because of rollback in stagek, PROOF
at least onemisspeck signal must be active. LetRkmisspecbe that signal.
Thus, we have:

f γkR(c
T
I ) 6= R:kT

Since fkR does not depend on inputs that are speculative by definition,
we can argue thatfkR gets correct inputs. For example, in the DLX with
branch prediction, these functions useIR andGPRaas inputs. These reg-
isters are not calculated using the guessed values. Thus, we have:

f ΓkR(c
sI(k;T)
S ) 6= R:kT

Using the correctness offkR (lemmas 5.8 and 5.9 for the DLX with
branch prediction), we get that the correct value ofR is different from the
value inR:k during cycleT:

ΩR(csI(k;T)
S ) 6= R:kT

Since we have a rollback, we can conclude that stagek is full using
lemma 5.38. This allows applying invariant 3.3, which transforms this
into:

ΩR(csI(k�1;T)�1
S ) 6= R:kT

Becausef ull T
k holds, this implies thatSk�1(T) does not hold (compare

the definition ofS as given in section 5.10.1). This concludes the first
claim.
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We show that we store the correct values in the speculative registers as
follows: By definition ofS�1(T +1), we have to show for the speculative
valuesR:

g0R(cT+1
I )

!
= ΩR(csI(0;T+1)

S )

One easily shows that in case of a rollbackg0R returns the values inR:

cT+1
I :R

!
= ΩR(csI(0;T+1)

S )

These registers hold the value provided byfkR in case of a rollback by
definition. Thus, the claim is transformed into:

f γkR(c
T
I )

!
= ΩR(csI(0;T+1)

S )

As above, we argue that the inputs offkR are correct, which transforms
the claim into:

f ΓkR(c
sI(k;T)
S )

!
= ΩR(csI(0;T+1)

S )

As above, we apply the lemma that shows the correctness offkR, which
transforms the claim into:

ΩR(csI(k;T)
S )

!
= ΩR(csI(0;T+1)

S )

It is left to show thatsI(k;T) is equal tosI(0;T +1). This is easily done
using lemma 5.40.QED

Consider the following situation: Let us have a rollback in cycleT. Us-
ing the lemma above, we can conclude that we have the correct data in
the registerscI :R during cycleT + 1. Now let stage 0 be stalled during
cycleT +1 for any reason. We now have to argue that the correct data is
preserved for subsequent cycles until another rollback happens or the up-
date enable signal gets activated. If not so, we could get an infinite loop of
rollbacks if we “forget” the correct data because of stalls.

Given that bothueT
0 and rollback0T0 are not active and we have no mis-Lemma 5.42 I

speculation, we also have no misspeculation in cycleT +1.

ueT
0 ^ rollback0T0 ^ST

�1 =) ST+1
�1
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PROOF By definition ofS�1, the claim is:

g0R(cT
I ) = ΩR(csI(0;T)

S )
!

=) g0R(cT+1
I ) = ΩR(csI(0;T+1)

S )

One easily concludes this claim as follows: Using invariant 5.1, one
argues thatsI(0;T) = sI(0;T +1) holds. This transforms the claim into:

g0R(cT
I )

!
= g0R(cT+1

I )

One easily asserts this using the fact that the registersg0R depends on
do not change from cycleT to T +1 because of the disabled rollback and
update enable signals. QED

We now define a predicateMc(T) that holds if we have a guarantee that
the instruction in stageM(T) will not rollback. We argue that once an
instruction causes a rollback, we have a guarantee that it will not do so
a second time. Thus, we will later on prove thatMc(T) implies that the
rollback signal of stageM(T) is not active during cycleT.

We provide a recursive definition forMc(T) in analogy to the scheduling
functionsI(k;T). In cycleT = 0, we have no guarantee that instructionI0
will not cause a rollback. Thus, we defineMc(0) to be false.

For T > 0, we defineMc(T) using the rollback and update enable sig-
nals. If rollback0T�1

M(T�1) holds, we have a rollback and we argue that the
instruction in stageM(T�1) during cycleT�1 will not rollback a second
time. Because of the rollback, that instruction is in stage 0 during cycle
T. Because the rollback happened in the latest full stage, all stages later
than stage 0 are empty during cycleT. Thus, the instruction that caused
the rollback is still in the latest full stage. Thus, we defineMc(T) to be
true for this case.

rollback0T�1
M(T�1) =) Mc(T) = 1

In case the update enable of stageM(T � 1) is active, the instruction
proceeds into the next stage. We claim that the guarantee is maintained,
i.e., thatMc(T) = Mc(T �1) holds. In case there is no next stage, i.e.,
in case of stageM(T � 1) = n� 1, the instruction we have a guarantee
for leaves the pipeline. In this case, we no longer have a guarantee and
therefore defineMc(T) to be false.

ueT�1
M(T�1)^M(T�1) 6= n�1 =) Mc(T) = Mc(T�1)

ueT�1
M(T�1)^M(T�1) = n�1 =) Mc(T) = 0
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In case neither rollback nor update enable is active, we claim thatMc(T)
is Mc(T�1). In order to summarize, the complete definition ofMc(T) is:

Mc(T) =

8>>><
>>>:

0 : T = 0
1 : rollback0T�1

M(T�1)

0 : ueT�1
M(T�1)^M(T�1) = n�1

Mc(T�1) : otherwise

Let T andT 0 be cycles withT 0 � T. Given that both the update enable andLemma 5.43 I

rollback0 signals of stageM(T) are not active during cyclesT � T 00 < T 0,
M(T 0) is equal toM(T) andMc(T 0) is equal toMc(T).

(8T � T 00 < T 0 : ueT 00

M(T)^ rollback0T
00

M(T))

=) M(T) = M(T 0)^Mc(T) = Mc(T 0)

We show this claim using induction onT 0. For T 0 = 0, we haveT = T 0PROOF
and the claim obviously holds. ForT 0+1, we easily conclude the claim as
follows:

1. We concludeM(T 0+1) = M(T 0) by using lemma 5.37 and the fact
that the update enable androllback0 signals are not active. We then
use the induction premise in oder to concludeM(T 0) = M(T).

2. We concludeMc(T 0+1) = Mc(T 0) by expanding the definition of
Mc(T 0+1) and the fact that the update enable androllback0 signals
are not active. We then use the induction premise in oder to conclude
Mc(T 0) = Mc(T).QED

For all stagesk, let the external stall signals of stagek be finite true andLemma 5.44 I

stay untiluek. For all cyclesT, the stall signal of stageM(T) eventually
gets deactivated after cycleT.

9�TstallM(T)

Remember that the stall signal is calculated using internal and externalPROOF
stall signals:

stallTk = f ull T
k ^ (extTk _ intT

k )

The internal stall signals handle data hazards and pipeline stalls, the ex-
ternal stall signals are used for caches, for example. According to lemma
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4.32 (page 140), the disjunction of the external stall signalsextk is finite
true. Thus, there is a cycleT 0 � T such thatextT

0

M(T) is not active. LetT 0 be
the earliest such cycle.

Observe that both lemma 4.33 (page 141) and lemma 4.31 (page 139)
hold also in the pipelined machine with speculation (the proof uses the
same arguments).

According to lemma 5.35, we havebelow empty(M(T);T). Accord-
ing to lemma 4.31, the stages below stageM(T) stay empty at least until
ueM(T) becomes active. One easily concludes that this does not happen
before cycleT 0 because before cycleT 0, the external stall signal is active.
Thus, we havebelow empty(M(T);T 0).

Lemma 4.33 states that empty stages do not cause internal stall signals.
According to this lemma, the internal stall signals of stageM(T) cannot be
active during cycleT 0 because the stages below stageM(T) are empty.

Thus, bothextk andintk are not active during cycleT 0. This implies that
the stall signal is not active and the claim holds. QED

Informally, consider an instruction in a stage. Assuming the stall signal
of the stage will eventually be deactivated, the instruction in the stage either
moves into the next stage or gets evicted because of a rollback.

Formally, let stagek be full during cycleT. Let there be a cycleT 0 � T J Lemma 5.45
such that the stall signalstallk is not active. This implies that either the
update enable signal of stageM(T) or therollback0 signal of stageM(T)
eventually gets activated.

f ull T
k ^ 9

�Tstallk =) 9�T(uek_ rollback0k)

The proof is done in analogy to the proof of the counterpart lemma of thePROOF
machine without speculation, lemma 3.20 (page 87).

For all cyclesT, either the update enable signal of stageM(T) or the J Lemma 5.46
rollback0 signal of stageM(T) eventually gets activated.

9�T(ueM(T)_ rollback0M(T))
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PROOF This claim is shown by instantiating lemma 3.20 with stage
M(T). We showf ull T

M(T) using lemma 5.33. We show that the stall signal
will eventually be deactivated by using lemma 5.44.

The speculation stageΣ(T) is always above or equal to the last full stage.Lemma 5.47 I

Σ(T) � M(T)

According to lemma 5.20, stageΣ(T) is full during cycleT. Thus, thisPROOF
cannot be below the last full stage.

The non-speculative inputs of stageM(T) are always correct.Lemma 5.48 I

IM(T)(T)

By definition ofIM(T)(T), we have to show:PROOF

(8l : l �M(T)�1 =) Pl (T)) ^

(8l : l �M(T) =) P0
l (T))

Remember thatPl (T) denoted non-speculative output registers of stagel
andP0

l (T) denoted the output registers of stagel that depend on speculative
registers. We easily conclude both claims using the data consistency of the
machine (invariant 5.5, page 186) andΣ(T)�M(T) (lemma 5.47).QED

If Mc(T) holds, the speculation registers that are output of stageM(T)�1Lemma 5.49 I

hold correct values.

Mc(T) =) SM(T)�1(T)

We show this claim by induction onT. For T = 0, we have nothing toPROOF
show sinceMc(0) does not hold.

For T +1, we show the claim as follows:

In case we have a rollback, i.e., ifrollback0TM(T) is active, we haveM(T+
1) = 0 and we have to showS�1(T +1), which is easily done using lemma
5.41.
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In case we do not have a rollback but an active update enable signal

ueT
M(T), we haveMc(T +1) = Mc(T). In caseMc(T +1) does not hold,

there is nothing to show. Thus,Mc(T) holds, and we therefore have
SM(T)�1(T). Using lemma 5.15, we concludeSM(T)(T +1). According to
lemma 5.37, we haveM(T +1) = M(T)+1, and thereforeSM(T+1)�1(T +
1), which concludes the claim.

In case both signals are not active, we have to do a case split on the
value ofM(T): In caseM(T) is zero, we conclude the claim using lemma
5.42. If not so, we argue thatueT

M(T)�1 cannot be active using lemma 4.3.
According to lemma 5.37, we haveM(T +1) = M(T), thus, we have to
showSM(T)(T+1), which is easily done using lemma 5.13 for stageM(T).

QED

The following lemma shows that the “intended meaning” ofMc(T) is
achieved, i.e., thatMc(T) implies that we do not have a rollback in stage
M(T).

If Mc(T) holds, therollback0 signal of stageM(T) cannot be active duringJ Lemma 5.50
cycleT.

Mc(T) =) rollback0TM(T)

According to lemma 5.49, we haveSM(T)�1(T). PROOF

Assumerollback0TM(T) is active. Using lemma 5.39, we can conclude that
ρ(M(T);T) holds, i.e., stageM(T) is the last stage with activerollback0

signal. Using lemma 5.48, we concludeIM(T)(T). This allows applying
lemma 5.41 for stageM(T).

Lemma 5.41 states thatSM(T)�1(T) cannot hold, which is a contradic-
tion. QED

We now proceed in the liveness proof as follows: we show that an in-
struction in the last full stage is live, i.e., eventually moves into the next
stage. The first step is to show this assuming we have a guarantee that the
instruction will not cause a rollback. One easily shows this.
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The next step is to conclude that this also happens in case we do not have
that guarantee. We do this by arguing that the instruction will rollback at
most once in the worst case.

Assume we have a guarantee that the instruction in stageM(T) will notLemma 5.51 I

rollback. In this case, we claim that there is a cycleT 0 � T such that the
update enable signal is active and no rollback is signaled during cyclesT
to T 0.

Mc(T) =) 9T 0 � T : ueT 0

M(T)^8T � T 00 � T 0 : rollback0T
00

M(T)

According to lemma 5.46, we have a cycleT 0 � T such that either thePROOF
rollback signalrollback0M(T) or the update enable signalueM(T) is active.
Let T 0 be the smallest such cycle.

We will disprove thatrollback0M(T) can be active. Using lemma 5.43,
we conclude thatMc(T 0) holds. Using lemma 5.50, we conclude that
rollback0M(T 0) cannot be active.

Thus,ueM(T) must be active during cycleT 0. We will show that cycleT 0

satisfies the claim. It is left to show thatrollback0M(T) is not active from
the cyclesT to T 0. For cycleT 0, we conclude this from the definition of
the update enable signal (the update enable signal is not active in case of
a rollback). For cyclesT 00 with T � T 00 < T 0, we conclude this from the
fact thatT 0 is the smallest cycle such that eitherrollback0M(T) or ueM(T) is
active.QED

The following lemma is the counterpart of lemma 3.23 (page 88) for the
machine without speculation. The proof is done in analogy to the proof of
lemma 3.23.

Let T and T 0 � T be cycles. Let the update enable signaluek and theLemma 5.52 I

rollback0k signal of a stagek be off during the cyclesT 00 with T 0> T 00 � T.
The value of the scheduling function does not change from cycleT to T 0.

8T 00jT 0 > T 00 � T : ueT 00

k ^ rollback0T
00

k =) sI(k;T) = sI(k;T 0)

Given thatMc(T) holds, there is a cycleT 0 � T such that the next instruc-Lemma 5.53 I

tion is in stageM(T).

Mc(T) =) 9T 0 � T : sI(M(T);T 0) = sI(M(T);T)+1
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PROOF Let T 00 be the earliest cycle with active update enable signal
according to lemma 5.51, i.e., we haveueT 00

M(T). Using lemma 5.52, we
conclude that the value of the scheduling function for stageM(T) does not
change from cycleT to T 00:

sI(M(T);T) = sI(M(T);T 00)

We then use invariant 5.1 in order to conclude that the value of the
scheduling function for stageM(T) increases by one from cycleT 00 to
cycleT 00+1:

sI(M(T);T 00+1) = sI(M(T);T 00)+1

Thus, cycleT 00+1 satisfies our claim. QED

Let Mc(T) hold, i.e., we have a guarantee that the instruction in stageJ Lemma 5.54
M(T) will not rollback. Furthermore, let this stage not be the last stage,
i.e.,M(T)< n�1. In this case, there is a cycleT 0 such that the instruction
in stageM(T) during cycleT is now in stageM(T)+1. Furthermore, the
last full stage during cycleT 0 is stageM(T)+1 and the instruction in that
stage is guaranteed not to rollback.

=) 9T 0 � T : sI(M(T)+1;T 0) = sI(M(T);T)^

M(T 0) = M(T)+1^

Mc(T 0)

Let T 00 be the earliest cycle with active update enable signal according toPROOF
lemma 5.51, i.e., we haveueT 0

M(T). We will show thatT 00+1 satisfies the
claim above. We show the three parts of the claim separately.

1. We showsI(M(T)+1;T 00+1) = sI(M(T);T) as follows: Using the
same arguments as in the proof of lemma 5.53, we conclude:

sI(M(T);T 00+1) = sI(M(T);T)+1

One easily shows that the full signalf ullT 00+1
M(T)+1 is active using that

the update enable signal is active. We then apply invariant 5.3, which
states:

sI(M(T);T 00+1) = sI(M(T)+1;T 00+1)+1

Thus, the first part of the claim is satisfied byT 00+1.
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2. We showM(T 00+1) = M(T)+1 as follows: Using lemma 5.43, we
conclude thatM does not change from cycleT to T 00. Using lemma
5.37, we concludeM(T 00+1) = M(T 00)+1. Thus,T 00+1 satisfies
the claim.

3. We showMc(T 00+1) as follows: Using lemma 5.43, we conclude
thatM does not change from cycleT toT 00. By definition ofMc(T 00+
1), we concludeMc(T 00+1) = Mc(T 00). Thus,T 00+1 satisfies the
claim.QED

We can extend the claim of lemma 5.54 to multiple stages using induc-
tion:

Let Mc(T) hold, i.e., we have a guarantee that the instruction in stageLemma 5.55 I

M(T) will not rollback. Consider a stagek � M(T). The claim is that
there is a cycleT 0 � T such that the instruction in stageM(T) during cycle
T is in stagek during cycleT 0. Furthermore, we claim that stagek is the
last full stage during cycleT 0 and that the instruction will not rollback.

k�M(T) =) 9T 0 � T : sI(k;T 0) = sI(M(T);T)^

M(T 0) = k^

Mc(T 0)

We show the claim by induction onk. Fork= M(T), the claim obviouslyPROOF
holds. For the step fromk to k+1, we apply lemma 5.54.

The following lemma has the very same claim as lemma 5.53. However,
we no longer premise that the instruction in stageM(T) is guaranteed not
to rollback.

For all cyclesT, there is a cycleT 0 � T such that the next instructionLemma 5.56 I

moves into stageM(T).

9T 0 � T : sI(M(T);T 0) = sI(M(T);T)+1

We use lemma 5.46 in order to conclude that there is a cycleT 00 � T suchPROOF
that either the update enable orrollback0 signal is active. LetT 00 be the
earliest such cycle. In case the update enable signal is active, we conclude
the claim as done in the proof of lemma 5.53.
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In case the rollback signal is active, we conclude the claim as follows:

Using lemma 5.52, we conclude that the value of the scheduling function
for stageM(T) does not change from cycleT to T 00:

sI(M(T);T) = sI(M(T);T 00)

We then use lemma 5.43 in order to conclude thatM(T 00) = M(T). This
allows applying lemma 5.39. Lemma 5.39 states that stageM(T) is the
last stage with active rollback signal during cycleT 00. This allows applying
lemma 5.40 withl = 0. Lemma 5.40 states thatsI(0;T 00+1) is equal to
sI(M(T);T 00).

Because of the rollback, we haveM(T 00+1) = 0 by lemma 5.37. Thus,
we have:

sI(M(T);T) = sI(M(T 00+1);T 00+1)

Since we have a rollback, we now have a guarantee that the instruction in
stageM(T 00+1) during cycleT 00+1 will not rollback. Thus, we can apply
lemma 5.55 in order to conclude that this instruction eventually moves into
stageM(T). Let t be that cycle.

sI(M(T);T) = sI(M(T); t)

We will then use lemma 5.53 in order to conclude that the value of the
scheduling function will eventually increase by one. Lett 0 be that cycle.

sI(M(T);T)+1 = sI(M(T); t 0)

Thus, cyclet 0 satisfies the claim. QED

The following lemma has a similar claim as lemma 5.54. However, we
do not premise that we have a guarantee that the instruction in stageM(T)
will not rollback.

Let M(T) not be the last stage. There is a cycleT 0 � T such that theJ Lemma 5.57
instruction in stageM(T) during cycleT is in stageM(T)+1 during cycle
T 0. Furthermore, stageM(T)+1 is the last full stage during cycleT 0.

M(T)< n�1=) 9T 0 � T : sI(M(T)+1;T 0) = sI(M(T);T)^

M(T 0) = M(T)+1
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k f ullk sI(k;T)
0 1 4
1 1 3
2 0 3
3 1 2
4 1 1
5 1 0  �M(T)
6 0 0
7 0 0  � n�1

Table 5.5 Illustration of lemma 5.59: In a pipeline withn = 8 stages, we have
M(T) = 5 and thereforesI(5;T) = sI(7;T).

The proof follows the same pattern as the proof of the lemma 5.56: in casePROOF
the update enable signal becomes active, we argue as in lemma 5.54. If not
so, we have a rollback and continue as in lemma 5.56.

The following lemma is an inductive extention of lemma 5.57.

Consider an instruction in the last full stage during cycleT. There is aLemma 5.58 I

cycleT 0 such that this instruction is in the last stage and such that the last
stage is the last full stage.

9T 0 : sI(n�1;T 0) = sI(M(T);T)^

M(T 0) = n�1

Let k be the number of the last full stage. One easily concludes this claimPROOF
by induction onk. One starts with the last stage and proceeds inductively
from stagek to stagek�1 until the desired stage is reached. The induction
step is argued using lemma 5.57.QED

The value of the scheduling functionsI(M(T);T) is equal to the value ofLemma 5.59 I

the scheduling function in the last stagesI(n�1;T).

sI(M(T);T) = sI(n�1;T)

This lemma is illustrated exemplary in table 5.5.
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PROOF Let k be the number of the last full stage. One easily concludes
this claim by induction onk. One starts with the last stage and proceeds
inductively from stagek to stagek�1 until the desired stage is reached.
The induction step fromk to k�1 is argued as follows: sincef ullk does
not hold, one can use the scheduling invariants 5.2 and 5.3 in order to argue
that

sI(k;T) = sI(k�1;T)

holds. QED

For all instructionsIi , there is a cycleT such that the value of the schedul-J Lemma 5.60
ing function for the last stage and cycleT is i.

9T : sI(n�1;T) = i

One shows this claim using induction oni. For i = 0, T = 0 satisfies the PROOF
claim.

For i + 1, we show the claim as follows: According to the induction
premise, there is a cycleT such thatsI(n� 1;T) = i holds. Accord-
ing to lemma 5.59, we have instructionIi also in the last full stage, i.e.,
sI(M(T);T) = i.

We use lemma 5.58 in order to argue that instructioni is eventually in the
last stage, i.e., we have a cycleT 0 such thatsI(n�1;T 0) = i andM(T 0) =
n�1. We then use lemma 5.56 in order to conclude that there is a cycle
T 00 such thatsI(n�1;T 00) = i +1. Thus, cycleT 00 satisfies the claim. QED

5.11.4 Liveness Proof

Using lemma 5.60, we show that for all instructionsIi, there is a cycleT
such that this instruction is in the last stage of the pipeline. However, our
liveness criterion as proposed in chapter 3 is stronger: it requires that we
can provide such a cycleT for each stage and not just for the last stage.
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We will now argue as follows: given that an instruction is in the last
stage, there must be cyclesT 0 such thatIi was in all stagesk< n�1 before.
For intuition, this means that instructions never skip over a stage.

Let k > 0 be a stage. LetIi be the instruction given bysI(k;T). In thisLemma 5.61 I

case, there is a cycleT 0 such thatsI(k�1;T 0) is i. For intuition, if you
have an instruction in a stagek > 0, there must be an earlier cycle such
that this instruction is in the previous stage.

k> 0 ^ sI(k;T) = i =) 9T 0 : sI(k�1;T 0) = i

We show this claim using induction onT. ForT = 0, T 0 = 0 satisfies thePROOF
claim since we havesI(k;0) = sI(k�1;0) = 0.

For T +1, we have the following claim:

k> 0 ^ sI(k;T +1) = i
!

=) 9T 0 : sI(k�1;T 0) = i

We show the claim as follows: Assume we havek< n�1 and an active
rollback0k+1 signal during cycleT. We will show that cycleT +1 satisfies
sI(k�1;T +1) = i. By definition of therollback0 signals,rollback0k must
be active during cycleT. This implies thatsI(k� 1;T + 1) is equal to
sI(k;T +1) by definition ofsI(k�1;T +1).

Let k = n�1 or rollback0Tk+1 hold. If the update enable signalueT
k is

active, the desired instruction was in stagek�1 during cycleT, which sat-
isfies the claim. If the update enable signalueT

k is not active, the instruction
was in stagek during cycleT. In this case, we apply the induction premise,
which provides a cycleT 0 that satisfies the claim.QED

We extend the argument of the previous lemma inductively for multipleLemma 5.62 I

stages: Letk and l � k be stages and letIi be the instruction given by
sI(k;T). In this case, there is a cycleT 0 such thatsI(l ;T 0) is i.

sI(k;T) = i ^ l � k =) 9T 0 : sI(l ;T 0) = i
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PROOF We show the claim using induction onl . We start withl = k and
proceed froml to l �1. Forl = k, the claim obviously holds. For the step
from stagel to l �1 we apply lemma 5.61.

For all instructionsIi and stagesk, there is a cycleT such thatsI(k;T) is J Theorem 5.63
equal toi. This is the liveness criterion proposed in chapter 3.

9T : sI(k;T) = i

Using lemma 5.60, we conclude that there is a cycleT 0 such thatsI(n� PROOF
1;T 0) = i holds. Fork= n�1, this satisfies the claim.

Thus, letk 6= n� 1 hold. In this case, we apply lemma 5.62, which
provides us with a cycleT 00 that satisfies the claim. QED

5.12 Precise Interrupts

5.12.1 Definition

Interrupts are events that change the flow of control of a program by means
other than a branch instruction [MP00]. They are used in order to realize
virtual memory, fast I/O, and arithmetic error handling.

In case of an interrupt, the state of the machine is saved and the execution
proceeds with an interrupt service routine (ISR). After the interrupt service
routine is done, the state of the machine is restored and the execution of
the program proceeds.

An interrupt between instructionIi�1 and Ii is precise if instructionsI0
to Ii�1 are completed before starting the ISR and later instructions (Ii ; : : :)
did not change the state of the machine [SP88, M¨ul97].

5.12.2 The DLX with Interrupts

The specification of a DLX with interrupts used in the following section is
taken from [MP00]. Interrupts are events other than branches that modify
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Table 5.6 Special purpose registers used for exception handling

address name meaning

0 SR status register
1 ESR exception status register
2 ECA exception cause register
3 EPC the exception PC
4 EDPC the exception delayed PC
5 EDATA exception data register

the flow of control. Each such event is assigned a number inf0;1; : : :g.
If such an event occurs, the next instruction fetched and executed is taken
from a special interrupt service routine. The address of this interrupt ser-
vice routine is denoted bySISR. After the interrupt service routine is done,
there are three ways to resume the execution:

1. The interrupted instruction is repeated.

2. The execution is continued with the instruction that follows the in-
terrupted instruction.

3. The program execution is aborted.

In order to support interrupt handling, the instruction set architecture of
the machine is extended. A set of registers is added to the configuration
of the machine: the registers are calledspecial purpose registersand are
listed in table 5.6. Each register is 32 bits wide.

In order to access these new registers, two instructions are added: the
instructionmovs2i reads a special purpose register and stores the value in
a GPR register. The instructionmovi2s reads a GPR register and stores the
value in a given special purpose register. The transition functionδ:GPRis
changed accordingly. Given an instruction wordI , these instructions are
indicated byI movi2s(I) andI movs2i(I).

The special purpose registerSRis used in order to mask interrupts. If
bit j in the registerSRis set, the interrupt numberj is handled. If bit j is
not set, the interrupt is suppressed. However, not all interrupts can be sup-
pressed usingSR. Interrupts that can be suppressed are calledmaskable.

Table 5.7 lists the interrupts supported by the DLX without floating point
instructions. This list is taken from [MP00]. The reset interrupt occurs
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Interrupt Symbol Priority Resume Maskable

reset reset 0
illegal instruction ill 1 abort
misaligned access mal 2
page fault IM ip f 3 repeat no
page fault DM dp f 4
trap trap 5
FXU overflow ov f 6 continue yes
external I/O ex[ j] 7+ j

Table 5.7 The Interrupts and their priority

directly in the initial configuration of the machine. Thus, we start the ex-
ecution after reset at the interrupt service routine and no longer at address
zero.

The illegal instruction interrupt occurs iff the instruction word fetched
does not encode a valid instruction. The misaligned access interrupt occurs
iff the instruction fetch or if the data memory access is not well-aligned.
The page fault IM/DM interrupts occur iff the memory system signals a
page fault during an instruction fetch or data memory access, respectively.
The trap interrupt is caused by a special instructiontrap. It can be used for
system calls, for example. The trap instruction allows passing an immedi-
ate constant as parameter.

The FXU overflow interrupt occurs if an unmasked overflow occurs dur-
ing an ALU instruction. The external I/O interrupts occur if an external
signalexS[ j] with j � 0 is active. These external interrupts can be used in
order to realize fast I/O such as access to hard disks or networks.

Let CA denote a 32-bit signal that is defined as follows: iff an interrupt
with number j occurs, bitj of this signal is active. Letc be a configuration
of the specification machine. UsingCA, the 32-bit signalMCA is defined
as follows:

MCA(c)[ j] :=

�
CA(c)[ j] : if interrupt j is not maskable
CA(c)[ j]^SR[ j] : if interrupt j is maskable

Thus, an interrupt is handled if there is at least one bit inMCA(c) set.
This is indicated by the one bit signalJISR:

JISR(c) := 9 j 2 f0; : : : ;31g : MCA(c)[ j]
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If multiple interrupts occur, the interrupt with the lowest number is han-
dled with priority. The interrupt that is handled is indicated by a 32-bit
signal il (interrupt level). If no interrupt is to be handled, all bits ofil are
zero. If there is an interruptj to handle, exactly bitj is set.

il (c)[ j] :=

8<
:

1 : JISR(c)^
j = minfi 2 f0; : : : ;31g jMCA(c)[i]g

0 : otherwise

The same interrupt service routine is used in order to handle all inter-
rupts. Thus, in order to enable this interrupt service routine to distinguish
the events that cause interrupts, a new special purpose registerECA is
added to the configuration set of the machine. In case of an interrupt,
the value ofMCA(c) is stored inECA. The interrupt service routine is ex-
pected to handle the interrupt event with the smallest numberj such that
the bitECA[ j] is set.

Instruction Fetch We support two interrupts that affect the instruction
fetch. We check whether the instruction word address is misaligned. Given
an effective addressea, the functionimal(ea) holds if we have a misaligned
instruction word:

imal(ea) := ea[0]_ea[1] (5.15)

Furthermore, we support page faults for the instruction memory access.
Page faults are indicated by an external signalip fS(c).

If no page fault happens and if the instruction word is not misaligned,
the instruction wordI(c) is defined as in chapter 2. In particular, we are
back to using Delayed PC and no longer use branch prediction. In case of
a misaligned instruction word or a page fault, we use zero as instruction
word. The instruction encoded by zero actually turns out to be a NOP.

I(c) :=

�
0 : imal(c:DPC)_ ip fS(c)
IM [c:DPC] : otherwise

(5.16)

The transition functions ofPC0 andDPC are changed in order to real-
ize the jump to the interrupt service routine and ther f e instruction. This
instruction is used in order to return from the interrupt service routine. In
case of anr f e instruction, the registersSR, PC0, andDPCare restored from
the corresponding special purpose registers.
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In case of an interrupt, the new value ofPC0 is the address of the interrupt
service routine (SISR) plus four, i.e., the second instruction of the interrupt
service routine. In case of anr f e instruction, the value inEPC is taken.
Otherwise, the next PC is calculated as in the machine without interrupts.
We define a functionnext pc0(I ;op1;PC;EPC) as follows: in case of an
r f e instruction, it returnsEPC. Otherwise, the value provided bynext pc
as defined in chapter 2 is returned:

next pc0(I ;op1;PC;EPC) :=

�
EPC : I r f e(I)
next pc(I ;op1;PC) : otherwise

As before,op1 is the first GPR operand. We use this newnext pc0 func-
tion in order to define the new transition function for thePC0 register:

δ:PC0(c) :=

�
SISR+4 : JISR(c)
next pc0(I ;op1;c:PC0;c:EPC) : otherwise

The transition function ofDPC is no longer the identity. In case of an
interrupt, the new value ofDPC is the address of the interrupt service rou-
tine (SISR), i.e., the first instruction of the interrupt service routine. In case
of an r f e instruction, the value inEDPC is restored. Otherwise, the new
value of DPC is calculated as in the machine without interrupts.

δ:DPC(c) :=

8<
:

SISR : JISR(c)
c:EDPC : JISR(c)^ I r f e(c)
c:PC0 : otherwise

Data Memory Exceptions We have two exceptions that are caused by
data memory accesses: data memory page faults are used in order to im-
plement virtual memory, data memory misalignment interrupts indicate a
misaligned memory access.

Data memory page faults are indicated by an external signaldp f. A
misaligned memory access is detected using the the effective address of
the memory access and the instruction word.

The functionsmemWand memHhold if the memory operand of the
given instruction is of word or half-word size, respectively. In case of
stores, we only support word size accesses.

memW(I) = (I load(Iw)^ I lw(Iw))_ I store(Iw)

memH(I) = (I load(Iw)^ (I lh(Iw)_ Ilhu(Iw)))
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Given an effective addressEA, we have a misaligned address, if we have
a word access with activeEA(0) or activeEA(1) or if we have a half-word
access with activeEA(0). This is indicated bymalAc:

malAc(I ;EA) = (memW(I)^ (EA(0)_EA(1))_

(memH(I)^ (EA(0))

We have a data memory misalignment exception in case of a load or
store instruction with misaligned address:

dmal(Iw;EA) = (I load(I)_ I store(I))^malAc(I ;EA)

Transition Function of the SPRs Let Sj be a special purpose register.
In case there is no interrupt, we define the register transition functionδ:Sj

as follows: we take the first GPR operand in case we have amovi2s in-
struction with appropriate address and the old value otherwise:

JISR(c) =)

δ:Sj(c) =

8<
:

op1(c) : I movi2s(I)^
hI immediate(I)[4 : 0]i= j

c:Sj : otherwise

The transition function in case there is an interrupt depends on the reg-
ister.

As described above, we store the value ofMCA in the registerECA in
case of an interrupt:

JISR(c) =) δ:ECA(c) = MCA(c)

TheEDATAspecial purpose register is used in order to store additional
information about the exception. In case of a trap instruction, the immedi-
ate constant provided with the instruction is stored inEDATA. This allows
passing of an argument to the interrupt service routine. In case of a page
fault or misaligned memory access, the memory address accessed is stored
in EDATA. In case of any other interrupt, we store zero inEDATA.

Let mem(c) indicate that we execute a load or store instruction:

mem(c) := I load(I)_ I store(I) (5.17)
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Let dmemea(c) denote the effective address of a data memory access. In
case of an interrupt, the transition function forEDATAis:

JISR(c) =)

δ:EDATA(c) =

8>><
>>:

c:DPC : imal(c:DPC)_ ip fS(c)
dmemea(c) : dp fS(c)^mem(c)
I immediate(c) : I trap(I)
0 : otherwise

Furthermore, the values of the registersDPCandPC0 are saved in special
purpose registersEDPCandEPC in order to support resuming the instruc-
tion after the execution of the interrupt service routine. This depends on
whether the interrupt is of type repeat or continue. This is indicated by a
one bit signalrepeat:

repeat(c) := (il (c) = 3)_ (il (c) = 4)

If the interrupt is of type repeat, the values ofDPCandPC0 in the current
configuration are taken. If the interrupt is of type continue or abort, the
values are taken that point to the following instruction, as calculated by
next pc0. In case of an interrupt, the transition functions forEPCandEDPC
are:

JISR(c) =)

δ:EPC(c) =

�
c:PC0 : repeat(c)
next pc0(I ;op1;c:PC0;c:EPC) : otherwise

δ:EDPC(c) =

8<
:

c:DPC : repeat(c)
c:EDPC : repeat(c)^ I r f e(I)
c:PC0 : otherwise

In case of an interrupt, the registerSR is set to zero. This masks all
interrupts, which prevents that the interrupt service routine is interrupted:

JISR(c) =) δ:SR(c) = 0

In order to restore the registerSRbefore resuming the program, the value
of SRis saved in the special purpose registerESR. In case of an interrupt
of type repeat, the value from the current configuration is taken. In case
of an interrupt of type continue or abort, the value calculated for the next
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configuration is taken:

JISR(c) =)

δ:ESR(c) =

8<
:

op1(c) : repeat(c)^ I movi2s(I)^
hI immediate(I)[4 : 0]i= 0

c:SR : otherwise

Furthermore, in case of an interrupt of type repeat, the write access to
GPR and to the memory has to be suppressed. This is realized by modify-
ing the transition function for GPR accordingly.

A complete description how the interrupt service routine is to be imple-
mented such that it behaves like a procedure is given in [MP00].

5.12.3 Hardware for the DLX with Interrupts

In this section, we describe small circuits that are used for interrupt han-
dling.

MCA The circuit MCA(CA;SR) calculates the masked cause register
givenCAand the status registerSR:

MCA impl(CA;SR)[i] :=

�
CA[i]^SR[i] : 6� i < 32
CA[i] : otherwise

The circuitMCA is correct:Lemma 5.64 I

MCA impl(cS) = MCA(CA(cS);cS:SR)

One easily asserts this claim by expanding the definitions of the functionsPROOF
MCA impl andMCA.

JISR We calculate theJISRsignal using a zero tester andMCA:

JISRimpl(MCA) := zerotester(MCA)

The calculation ofJISRis correct:Lemma 5.65 I

JISRimpl(MCA(cS)) = JISR(cS)
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One easily asserts this claim by expanding the definition of both func-
tions and by applying lemma 2.2 (correctness of the zero tester, page 16).

repeat We calculate the repeat signal as done in [MP00]:

repeat impl(MCA) := (MCA[0]_MCA[1]_MCA[2])

^(MCA[3]_MCA[4])

The circuitrepeat impl is correct: J Lemma 5.66

repeat impl(MCA(cS)) = repeat(cS)

Let MCA(cS) be zero. In this case, one easily asserts that the bit pro-PROOF
vided byrepeat impl is not active. Furthermore, one asserts thatJISR(cS)
does not hold. This implies thatil (cS) is also zero by definition. Thus,
repeat(cS) does not hold, which concludes the claim forMCA(cS) = 0.

Let MCA(cS) be not zero. In this case, one easily asserts thatJISR(cS)
is active. Furthermore, there is a smallestj such thatMCA(cS)[ j] holds.
If this j is smaller than 3 or greater than 4, we do not have an interrupt of
type repeat. One easily asserts thatrepeat impl(MCA(sS)) does not hold
in this case.

If it is equal to 3 or 4, we have an interrupt of type repeat. One easily
asserts thatrepeat impl(MCA(sS)) holds in this case. QED

Decoder In order to realize the special purpose register file, we need a
decoder:

Let k be an integer andn be 2k. A decoder is a circuit with inputsa 2 J Definition 5.1
Decoderbvec[k] and outputsb2 bvec[n] such that for alli

bi = 1 () hai= i:

An implementation can be found in [MP95]. A PVS proof is covered by
[BJK01].
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5.12.4 Configuration of the Pipelined DLX with Interrupts

We implement the pipelined DLX with interrupts using speculation. Us-
ing the generic speculation mechanism from this chapter, and the generic
forwarding mechanism from chapter 4, implementing the pipelined DLX
with interrupts is quite easy. We do this in three steps:

1. We start with the pipelined machine without interrupts as presented
in chapter 4. We add the special purpose registers, as described
above, to the configuration set.

2. We add two speculative values: the first value,JISR, is a one bit
register that indicates an interrupt. The second value,repeat, is a
one bit register that is set iff the interrupt is of typerepeat. Given
those two speculative inputs, we can almost copy the specification
above in order to get an implementation.

3. We add write accesses toJISRand repeat in order to detect any
misspeculation.

Figure 5.16 gives an overview of the DLX pipeline with precise inter-
rupts. We now describe the changes to the pipelined machine in detail.

Configuration Set We extend the configuration set of the pipelined ma-
chine without interrupts by the special purpose registers as given by the
specification of the DLX with interrupts. We furthermore add a set of im-
plementation registers that we will describe later on.

Initial Configuration As before, the initial values ofGPRandDM are
arbitrary but fixed. The registerDPC is initialized withSISR, the register
PC0 with SISR+4. This will cause the ISR to be executed. All special
purpose registers except forECA are initialized with zero. The register
ECA is initialized with one in order to indicate the reset.

5.12.5 Transition Functions of Stage 0

In stage 0, we do the instruction fetch. This is done by a write access to
the IR register. The write access depends onDPC and onip f . We follow
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Figure 5.16 Overview of the DLX pipeline with precise interrupts. The registers
I 0 are a shorthand for the speculative valuesJISRandrepeat. Thespecenviron-
ment does the speculation.
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the definition ofI(c) as given in the specification:

f0IR(DPC; ip f ) =

�
0 : imal(DPC)_ ip f
IM [DPC] : otherwise

The calculation of the instruction word is correct:Lemma 5.67 I

Ω0IR(ci
S) = I(ci

S)

If one expands the left hand side of the claim, one gets:PROOF

f0IR(ci
S:DPC; ip f (ci

S))
!
= I(ci

S)

One easily asserts this claim by expandingf0IR on the left hand side and
I on the right hand side.QED

Exceptions We collect the interrupt cause bits CA in separate implemen-
tation registers. In the registerCAimal, we store whether we have an in-
struction word misalignment. The same applies forCAip f andCAex. We
assume an external signalex that is a bitvector. The bits of the bitvector
indicate the individual external interrupts. In contrast to [MP00], we detect
the external interrupts in stage 0.

f0CAimal(DPC) = imal(DPC) (5.18)

f0CAip f(ip f ) = ip f (5.19)

f0CAex(ex) = ex (5.20)

In addition to that, we speculate two valuesJISRandrepeat. We spec-
ulate that we have an interrupt if we have an instruction memory page
fault, a trap instruction, a misaligned instruction word, or an external in-
terrupt. We detect external interrupts using a zero tester. Remember that
the function used for speculatingR is called f0Rs. Thus, the function for
speculatingJISRis:

f0JISRs(ip f ;DPC;ex) = ip f _ I trap( f0IR(DPC; ip f ))_

imal(DPC)_zerotester(ex)

We speculate that we have an interrupt of type repeat if an instruction
memory page fault is signaled and if there is no instruction word misalign-
ment:

f0repeats(ip f ;DPC) = ip f _ imal(DPC)
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This implementation differs from the implementation given in [MP00]:
in [MP00], the execution is started always assuming that no interrupt hap-
pens. This includes the interrupts that can be detected in early stages.

As an example, consider atrap instruction. The machine in [MP00] ex-
ecutes the instructions followed by thetrap instruction as if no interrupt
happens. In stage 3, the misspeculation is detected and the instructions fol-
lowing trap are evicted from the pipeline. In contrast to that, the machine
presented here never misspeculates ontrap instructions. Thus, no rollback
is necessary. Following thetrap instruction, the instructions of the inter-
rupt service routine are executed. We therefore waste no cycles in case of
the interrupts given above.

Obviously, this speeds up execution. The price paid for this is extra
complexity. In particular, we have to forward the effect of interrupts. This
includes that interrupts modify all special purpose registers. In [MP00], the
authors remark that “forwarding the effect of this looks like a nightmare”.
We will later on describe the forwarding hardware we use for this.

5.12.6 Transition Functions of Stage 1

In stage 1, we do the operand fetching, the calculation of the new PC regis-
ters, and the calculation of the precomputed control signals. As in chapter
3, let us define the precomputed control signals in the stages that use them.

PC’ In order to calculate the new value of thePC0 register, we implement
the functionnext pc0 as given by the specification as follows:

� In case of anr f e instruction, we take the value of theEPC input.

� In case of any other instruction, we use the value provided by the old
next pcimpl circuit, as defined in chapter 3.

Thus,next pc0 impl is:

next pc0 impl(IR;GPRa;oldPC;EPC) :=�
EPC : I r f e(IR)
next pcimpl(IR;GPRa;oldPC;EPC) : otherwise
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The following lemma asserts that the circuitnext pc0 impl complies with
the specificationnext pc0.

The calculation of the new PC is correct:Lemma 5.68 I

next pc0 impl = next pc0

If I r f e(I) holds, the claim obviously holds. If not so, one asserts thePROOF
claim using lemma 3.4.

In the specification, we passop1(ci
S) as parameter tonext pc. In the im-Lemma 5.69 I

plementation, we passGPRaas input. Given that this input is correct, the
next pcfunction returns the same value in both cases.

next pc(I(ci
S);G1GPRa(ci

S);c
i
S:PC0) = next pc(I(ci

S);op1(ci
S);c

i
S:PC0)

One asserts this claim in analogy to the proof of lemma 3.15 (correctnessPROOF
of the transition functions of the sequential DLX).

For next pc0 impl, we need the value ofEPC in case of anr f e instruc-
tion. We realize this by a conditional read access toEPC. The read enable
function returns true iff we have anr f e instruction:

f1EPCre(IR) = I r f e(IR) (5.21)

This allows defining the register transition function forPC0 in analogy
to the specification:

f1PC0(IR;JISR;PC0;EPC;GPRa) =�
SISR+4 : JISR
next pc0 impl(IR;GPRa;PC0;EPC) : otherwise

Assuming correct inputs, the calculation of the new value ofPC0 is correct:Lemma 5.70 I

ci+1
S :PC0 = f Γ1PC0(ci

S)

By expanding the definition ofci+1
S on the left hand side, we get:PROOF

δ:PC0(ci
S)

!
= f Γ1PC0(ci

S)
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The function f1PC0 usesJISRas input. The correct value of theJISR
input given configurationci

S is:

G1JISR(ci
S) = JISR(ci

S)

Let JISR(ci
S) hold. In this case, bothf1PC0 andδ:PC0 returnSISR+4

and the claim holds.

Let JISR(ci
S) not hold. In this case, we assert the correctness of the GPR

operand as in the proof of lemma 3.15, which is the corresponding lemma
for the machine without interrupts. We then apply lemma 5.68, which
concludes the claim. QED

DPC For defining the register transition function forDPC, we need the
registerEDPC for r f e instructions. As above, we realize this by a condi-
tional read access toEDPC. The read enable function returns true iff we
have anr f e instruction:

f1EDPCre(IR) = I r f e(IR) (5.22)

This allows defining the register transition function forDPC in analogy
to the specification:

f1DPC(IR;JISR;PC0;EDPC) =

8<
:

SISR : JISR
EDPC : I r f e(IR)
PC0 : otherwise

The following lemma asserts the correctness of this circuit.

Assuming correct inputs, the calculation of the new value ofDPC is cor- J Lemma 5.71
rect:

ci+1
S :DPC = f Γ1DPC(ci

S)

By expanding the definition ofci+1
S :DPC on the left hand side, we get: PROOF

δ:DPC(ci
S)

!
= f Γ1DPC(ci

S)

By expanding the definition off Γ1DPC on the right hand side, we get:

δ:DPC(ci
S)

!
= f1DPC(Ω0IR(ci

S);JISR(ci
S);c

i
S:PC0;ci

S:EDPC)
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By applying lemma 5.67, we get:

δ:DPC(ci
S)

!
= f1DPC(I(ci

S);JISR(ci
S);c

i
S:PC0;ci

S:EDPC)

One easily asserts this by expanding the functionsδ:DPC and f1DPC.QED

We precompute the values to be written into the special purpose regis-
ters EPC and EDPC. This saves hardware cost, since this computation
depends on many registers. Furthermore, it allows forwarding these regis-
ters. This includes the effect of interrupts. As the registerC is responsible
for forwardingGPRregisters, the registersCepcandCedpcare responsi-
ble for forwardingEPCandEDPC. The new values are already available
in the decode/issue stage. Thus, the write condition is always true.

The new value ofEPCis precomputed as follows: In case of an interrupt
of type repeat, we writePC0. In case of any other interrupt, we write the
new value ofPC0 without interrupt, which is given bynext pc0impl. In case
there is no interrupt, we returnGPRain order to handlemovi2s with EPC
as destination.

f1Cepc(IR;JISR; repeat;GPRa;PC0;EPC) =

8<
:

PC0 : JISR̂ repeat
next pc0impl(IR;GPRa;PC0;EPC) : JISR̂ repeat
GPRa : otherwise

f1Cepcwe(IR;JISR) = 1

The write enable signal ofEPC is precomputed as follows: we write to
EPC in case of amovi2s with appropriate destination and in case of an
interrupt.

f1 f4EPCwe(IR;JISR) = JISR_ (I movi2s(IR)^hI immediate(IR)[4 : 0]i= 3)
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The new value ofEDPC is precomputed as follows: in case of an inter-
rupt of type repeat, we writeDPC. In case of any other interrupt and anr f e
instruction, we writeEDPC. In case of any other interrupt and any other
instruction, we writePC0. In case there is no interrupt, we returnGPRain
order to handlemovi2s with EDPCas destination.

f1Cedpc(IR;JISR; repeat;GPRa;DPC;EDPC;PC0) =8>><
>>:

DPC : JISR̂ repeat
EDPC : JISR̂ repeat̂ I r f e(IR)

PC0 : JISR̂ repeat̂ I r f e(IR)
GPRa : otherwise

The write enable signal ofEDPC is precomputed as follows:

f1 f4EDPCwe(IR;JISR) = JISR_ (I movi2s(IR)^hI immediate(IR)[4 : 0]i= 4)

We will show the correctness of these values when we describe the tran-
sition functions of stage 4.

Forwarding Logic for EPC/EDPC Using these precomputed values,
we get the following forwarding hardware for readingEPC and EDPC
in stagek = 1: We show this exemplary forEPC. The circuits forEDPC
are identical. As before, we calculate hit signalsRkhit[ j]. Thus, the signals
are namedEPC1hit[ j]. The hit signal is active iff the full bit of stagej and
the precomputed write enable signal ofEPC in stagej are active:

EPC1hit[ j](cI ) := f ull j(cI )^ f4EPCwe: j

Using the hit signals, we calculate the forwarded value. This is done us-
ing multiplexers, as illustrated in figure 5.17. The proof correctness of this
logic is similar to the proof of correctness for forwardingGPRregisters.
However, we do not have to argue about an address.

Note that we need only very little effort in order to realize an instruction
fetch with interrupts. In particular, we only need a few arguments in or-
der to show correctness as we only instantiate the generic forwarding and
speculation mechanisms.

In stage 1, we fetch the operands. This is done exactly as in chapter 3
with the exception that we need the first GPR operand also in case of a
movi2s instruction.
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EPC:5 ω4EPC
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ω2Cepc

EPC1hit[2]

EPC1hit[3]

EPC1hit[4]

Figure 5.17 Implementation ofEPC forwarding

Note that we do not fetch the source operand ofmovs2i instructions in
stage 1 in contrast to the machine presented in [MP00]. We do so in order
to illustrate read accesses to registers other than in the decode stage. This
has both advantages and disadvantages: obviously, we save the forwarding
logic. The disadvantage is that an instruction that follows themovs2i and
uses the destination of themovs2i as source has to be stalled. However,
we do not see a severe performance impact of doing so. Furthermore,
if one desires forwarding, our generic forwarding approach will generate
appropriate forwarding hardware.

Exceptions In stage 1, we decode the instruction word and signal an il-
legal instruction word exception if necessary. Given an instruction word
IR, the functionill (IR) indicates that it is illegal. LetI be the set of in-
structions. The functionill is defined using the predicatesI x as defined in
chapter 2:

ill (IR) :=
_
x2I

I x (5.23)

We store this bit in an implementation registerCAill :

f1CAill(IR) = ill (IR) (5.24)

We do not do this in stage 0 because the calculation ofill (IR) might get
slow in case that there are many instructions. Furthermore, we consider
illegal instruction exceptions to be rare. Thus, the price for misspeculation
is not often paid.
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5.12.7 Transition Functions of Stage 2

In this stage, we do the ALU calculation. The transition functions from
chapter 3 are taken without modification. We store a bit indicating an ALU
overflow in a registerCAov f:

f2CAov f(IR;A;B) = ALU(A;aluop2(IR;B);alu f(IR)):ov f

The functionsaluop2 andalu f are taken from chapter 3.

5.12.8 Transition Functions of Stage 3

In this stage, we do the data memory access. Most transition functions
from chapter 3 are taken without modification. We store a bit indicating a
data memory page fault in a registerCAdp f:

f3CAdp f(IR;dp f) = dp f^ (I load(IR)_ I store(IR))

We store a bit indicating a data memory misalignment exception:

f3CAdmal(IR;MAR) = dmal(IR;MAR)

Furthermore, we do not enable the data memory write enable signal in
case we have one of these exceptions.

Cause Collection In stage 3, all exceptions are now known. This allows
us to calculate theMCA register: we do this by reading allCA registers and
calculatingCA. As a shorthand, letCAargsdenote the list of arguments
used in order to calculateCA (in the PVS tree, we always use the expanded
form). This is:

CAargs:= (IR;CAill ;CAimal;MAR;CAip f;dp f;CAtrap;CAov f;CAex)
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The functionCA impl takes these inputs and providesCA:

CA impl(CAargs)[i] :=8>>>>>>>>>><
>>>>>>>>>>:

0 : i = 0
CAill : i = 1
CAimal_dmal(IR;MAR) : i = 2
CAip f : i = 3
(I load(IR)_ I store(IR))^dp f : i = 4
CAtrap : i = 5
CAov f : i = 6
CAex(i�7) : otherwise

Using the CA bits, we calculateMCAusing theMCA impl circuit:

f3MCA(SR;CAargs) = MCA impl(CA impl(CAargs);SR)

Forwarding Logic for SR The register transition functionf3MCA de-
pends onSR, i.e., we have a read access toSR:4 in stage 3. This requires
forwarding. The forwarding mechanism described in the previous chapter
(forwarding from the next stage, page 101) generates the following hard-
ware (the definition of the functionω4SRis expanded):

g3(cI ) =

�
f γ4SR(cI ) : f ull4(cI )^ f γ4SRwe(cI )
cI :SR:4 : otherwise

Thus, in case stage 4 is full and the write enable signal ofSR:4 is active,
we use the value written intoSR:4. This holds in particular if there is an
instruction in stage 4 that causes an interrupt or is amovi2s instruction
writing SR.

In any other case, we use the value in the registerSR:4. The proof that
this is the correct input is given in chapter 4 (lemma 4.7).

The following lemma asserts that the implementation registerMCAcon-
tains the correct value, as defined using the configuration of the specifica-
tion machine.

The calculation of the next value of MCA is correct:Lemma 5.72 I

Ω3MCA(ci
S) = MCA(ci

S)
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PROOF By expanding the functionΩ3MCA(ci
S) on the left hand side, we

get (we omit the parameter list):

f3MCA(: : :)
!
= MCA(ci

S)

By definition of f3MCA, we get:

MCA impl(CA impl(G3(c
i
S;CAargs));ci

S:SR)
!
= MCA(ci

S)

By applying lemma 5.64, we get:

MCA impl(CA impl(: : :);ci
S:SR)

!
= MCA impl(CA(ci

S);c
i
S:SR)

Thus, the claim is shown ifCA impl(: : :) is equal toCA(ci
S). We show

this by a case split on the number of the exception, i.e., we show

CA impl(G3(c
i
S;CAargs))[i]

!
= CA(ci

S)[i]

for all i 2 f0; : : : ;31g. We show the claim exemplary for the external inter-
rupts. The proofs for the other exceptions follow the same pattern.

For i � 7 (external interrupts), we have the following claim:

Ω2CAex(ci
S)[i]

!
= exS(c

i
S)

By expanding the functions on the left hand side, we get:

Ω1CAex(ci
S)[i]

!
= exS(I(c

i
S))

Ω0CAex(ci
S)[i]

!
= exS(I(c

i
S))

f0CAex(exS(c
i
S))[i]

!
= exS(I(c

i
S))

This is concluded by expandingf0CAex. QED

Detecting Misspeculation UsingMCA, we can also calculate the correct
value ofJISRandrepeat, thus, we can detect any misspeculation in stage
3. In case ofJISR, we use theJISRimpl circuit as defined above.

The new value ofJISRis correct. J Lemma 5.73

f Γ3JISR(ci
S) = JISR(ci

S)
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One asserts this lemma using lemma 5.72 (correctness ofMCA) and
lemma 5.65.

In case of therepeat register, we calculate the correct value using the
circuit repeat impl.

The new value ofrepeatis correct.Lemma 5.74 I

f Γ3repeat(ci
S) = repeat(ci

S)

We assert this lemma using lemma 5.72, which shows the correctness of
MCA, and lemma 5.66.

5.12.9 Transition Functions of Stage 4

In analogy to lemma 5.67, one easily shows thatIR read in stage 4 is the
instruction word:

The calculation of the instruction word is correct:Lemma 5.75 I

Ω3IR(ci
S) = I(ci

S)

Write Access to GPR In this stage, the result of the instructions is writ-
ten into the destination register. In case of ALU instructions or load in-
structions, we do this as in chapter 3. However, we have to change the
transition function ofGPRin order to realizemovs2i.

As described above, we read the source operand in stage 4. We just pass
the values of the special purpose registers as parameters to the transition
function. After that, we use a decoder (definition 5.1) in order to generate
select signals for multiplexers. Letdecoderimpl be an implementation of
a decoder according to the definition.

SAdec(IR) = decoderimpl(I immediate(IR)[4 : 0])
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We define a shorthandSPRsrc, which denotes the value of the SPR
source operand:

SPRsrc(IR;SR; : : : ;EDATA) =

8>>>>>>>><
>>>>>>>>:

SR : SAdec(IR)[0]
ESR : SAdec(IR)[1]
ECA : SAdec(IR)[2]
EPC : SAdec(IR)[3]
EDPC : SAdec(IR)[4]
EDATA : SAdec(IR)[5]
0 : otherwise

This allows defining the register transition function forGPR:

f4GPR(C; IR;MAR;MDRr;SR; : : : ;EDATA) =

8<
:

shi f t4load(MAR;MDRr; IR) : I load(IR)
SPRsrc(IR;SR; : : : ;EDATA) : I movs2i(IR)
C : otherwise

In addition to that, we modify the precomputed version of the write en-
able signalf4GPRwesuch that it is active in case of amovs2i instruction.
Furthermore, we disable it in case of an interrupt of type repeat, as indi-
cated byrepeat:

f1 f4GPRwe(IR; repeat) = (I ALU(IR)_ I ALUi(IR)_ I load(IR)_

I shi f ti(IR)_ I shi f t(IR)_ I movs2i(IR)

_((I j(IR)_ I jr (IR))^ I link(IR)))

^repeat

One easily asserts the correctness of thef4GPRfunction in analogy to
the proof of lemma 3.15.

In addition to the write access toGPR, we also have the write accesses
to the special purpose registers in stage 4.

Write Access to SR We perform a conditional write access toSR: in
case of an interrupt, as indicated byJISR, we write zero. In case of anr f e
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instruction, we writeESR. Otherwise, we have amovi2s instruction and
write the value in theC register, which is theGPRoperand:

f4SR(C; IR;JISR;ESR) =

8<
:

0 : JISR
ESR : I r f e(IR)
C : otherwise

f4SRwe(IR;JISR) = JISR_ I r f e(IR)_

(I movi2s(IR)^SAdec(IR)[0])

The correct value ofC matches the GPR operand in case of amovi2sLemma 5.76 I

instruction.

I movi2s(I(ci
S)) =) Ω3C(ci

S) = op1(ci
S)

Because we have amovi2s instruction, we haveΩ3C(ci
S) = G1GPRa(ci

S).PROOF
This transforms the claim into:

I movi2s(I(ci
S)) =) G1GPRa(ci

S) = op1(ci
S)

One concludes this claim by expanding the definition ofG1GPRaon the
right hand side.QED

The value written byf4SRis correct.Lemma 5.77 I

ci+1
S :SR =

�
f Γ4SR(ci

S) : f Γ4SRwe(ci
S)

ci
S:SR : otherwise

Let us expand the definition of the write enable signalf Γ4SRwe:PROOF

f Γ4SRwe(ci
S) = ci

S:JISR_ I r f e(Ω3IR(ci
S))_

(I movi2s(Ω3IR(ci
S))^SAdec(Ω3IR(ci

S))[0])

By applying lemma 5.75, this is transformed into:

f Γ4SRwe(ci
S) = ci

S:JISR_ I r f e(I(ci
S))_

(I movi2s(I(ci
S))^SAdec(I(ci

S))[0])
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Using the correctness of the decoder circuit, this is transformed into:

f Γ4SRwe(ci
S) = ci

S:JISR_ I r f e(I(ci
S))_

(I movi2s(I(ci
S))^hI immediate(I(ci

S))[4 : 0]i= 0

By expanding the definition ofci+1
S on the left hand side of the claim (as

given in lemma 5.77), we get:

δ:SR(ci
S)

!
=

�
f Γ4SR(ci

S) : f Γ4SRwe(ci
S)

ci
S:SR : otherwise

Let the write enable signalf Γ4SRwe(ci
S) be not active. In this case, one

easily asserts the claim by expanding the definition ofδ:SR.

Let the write enable signalf Γ4SRwe(ci
S) be active. By expanding the

definition of f Γ4SR, we get:

δ:SR(ci
S)

!
= f4SR(Ω3C(ci

S);Ω3IR(ci
S);JISR(ci

S);c
i
S:ESR)

Using lemma 5.75, we get:

δ:SR(ci
S)

!
= f4SR(Ω3C(ci

S); I(c
i
S);JISR(ci

S);c
i
S:ESR)

By expanding the definition off4SR, we get:

δ:SR(ci
S)

!
=

8<
:

0 : JISR(ci
S)

ci
S:ESR : I r f e(I(ci

S))
Ω3C(ci

S) : otherwise

In case ofJISR(ci
S) or I r f e(I(ci

S)) the claim holds by definition ofδ:SR.
In any other case, we can conclude that we have amovi2s instruction be-
cause the write enable signal is active. This allows applying lemma 5.76
and we get:

δ:SR(ci
S)

!
= op1(ci

S)

This is concluded by expanding the definition ofδ:SR. QED
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Write Access to ESR We perform a conditional write access toESR: in
case of an interrupt of type repeat, as indicated byJISRand repeat, we
write SR. In case of any other interrupt, we writeC if we have amovi2s
instruction that usesSRas destination, andSRotherwise. In case there is
no interrupt, we returnC in order to handlemovi2swith ESRas destination.

f4ESR(C; IR;JISR;SR; repeat) =

�
C : sel
SR : otherwise

with a signalsel in analogy to [MP00]:

sel = JISR_ (repeat̂ I movi2s(IR)^SAdec(IR)[0])

The write enable signal is active in case of an interrupt or amovi2s in-
struction with destinationESR.

f4ESRwe(IR;JISR) = JISR_

(I movi2s(IR)^SAdec(IR)[1])

The value written byf4ESRis correct.Lemma 5.78 I

ci+1
S :ESR =

�
f Γ4ESR(ci

S) : f Γ4ESRwe(ci
S)

ci
S:ESR : otherwise

The proof proceeds in analogy to the proof of lemma 5.77.PROOF

Write Access to ECA We perform a conditional write access toECA: in
case of an interrupt, we writeMCA. In case there is no interrupt, we return
C in order to handlemovi2s with ECAas destination.

f4ESR(C; IR;JISR;MCA) =

�
MCA : JISR
C : otherwise

f4ECAwe(IR;JISR) = JISR_

(I movi2s(IR)^SAdec(IR)[2])

The value written byf4ECA is correct.Lemma 5.79 I

ci+1
S :ECA =

�
f Γ4ECA(ci

S) : f Γ4ECAwe(ci
S)

ci
S:ECA : otherwise

The proof proceeds in analogy to the proof of lemma 5.77. However, wePROOF
need the correctness of theMCA input, which we assert using lemma 5.72.
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Write Access to EPC We perform a conditional write access toEPC.
We already precomputed the value to be written and the write enable signal
in stage 1.

The value written byf4EPC is correct. J Lemma 5.80

ci+1
S :EPC =

�
f Γ4EPC(ci

S) : f Γ4EPCwe(ci
S)

ci
S:EPC : otherwise

As in the proof of lemma 5.77, let us expand the definition of the writePROOF
enable signalf Γ4EPCwe(including the functions used to pass the precom-
puted signals):

f Γ4EPCwe(ci
S) = ci

S:JISR_

(I movi2s(Ω1IR(ci
S))^

hI immediate(Ω1IR(ci
S))[4 : 0]i= 3)

One easily assertsΩ1IR(ci
S) = I(ci

S), which transforms the last equation
into:

f Γ4EPCwe(ci
S) = ci

S:JISR_

(I movi2s(I(ci
S))^hI immediate(I(ci

S))[4 : 0]i= 3)

Using the correctness of the decoder circuit, this is transformed into:

f Γ4EPCwe(ci
S) = ci

S:JISR_

(I movi2s(I(ci
S))^hI immediate(I(ci

S))[4 : 0]i= 3)

By expanding the definition ofci+1
S on the left hand side of the claim (as

given in lemma 5.80), we get:

δ:EPC(ci
S)

!
=

�
f Γ4EPC(ci

S) : f Γ4EPCwe(ci
S)

ci
S:EPC : otherwise

Let the write enable signalf Γ4EPCwe(ci
S) be not active. In this case,

one easily asserts the claim by expanding the definition ofδ:EPC.

Let the write enable signalf Γ4EPCwe(ci
S) be active. By expanding the

definition of f Γ4EPC (including the functions that pass the precomputed
value), we get:

δ:EPC(ci
S)

!
= f1Cepc(Ω1IR(ci

S);JISR(ci
S); repeat(ci

S);

G1GPRa(ci
S);c

i
S:PC0;G1EPC(ci

S))
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By expanding the definition off1Cepc, we get:

δ:EPC(ci
S)

!
=

8<
:

ci
S:PC0 : JISR(ci

S)^ repeat(ci
S)

newpc0 impl(: : :) : JISR(ci
S)^ repeat(ci

S)
G1GPRa(ci

S) : otherwise

We handle the three cases above separately:

1. In case of an interrupt of type repeat, one concludes the claim by
expanding the definition ofδ:SR.

2. In case of any other interrupt, the claim is transformed into (we omit
the parameter list):

δ:EPC(ci
S)

!
= newpc0 impl(: : :)

By expanding the definition ofδ:EPC(ci
S) on the left hand side and

by applying lemma 5.68, one gets:

next pc0(I(ci
S);op1(ci

S);c
i
S:PC0;ci

S:EPC)
!
= next pc0(I(ci

S);G1GPRa(ci
S);c

i
S:PC0;G1EPC(ci

S))

In case we have anr f e instruction, one asserts thatG1EPC(ci
S) (cor-

rect value if readingEPC) is equal toci
S:EPC because the read en-

able function holds. The claim is then easily concluded by expand-
ing the definition ofnext pc0.

In case we do not have anr f e instruction, we conclude the claim by
expanding the definition ofnext pc0 and by applying lemma 5.69.

3. In case we do not have an interrupt, we can conclude that we have a
movi2s instruction because the write enable signal is active. In this
case, the claim is easily concluded by expandingG1GPRa.QED

Write Access to EDPC We perform a conditional write access toEDPC:
We already precomputed the value to be written and the write enable signal
in stage 1.

The value written byf4EDPC is correct.Lemma 5.81 I

ci+1
S :EDPC =

�
f Γ4EDPC(ci

S) : f Γ4EDPCwe(ci
S)

ci
S:EDPC : otherwise

The proof proceeds as the proof of lemma 5.80.
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Write Access to EDATA In stage 4, we perform a conditional write ac-
cess toEDATA: in case of a data memory page fault interrupt, we write
MAR. In case of a trap instruction, we write the immediate constant. In
case of any other interrupt, we write zero. In case there is no interrupt, we
returnC in order to handlemovi2s with EDATAas destination.

f4EDATA(C; IR;JISR;CAdp f;CAtrap;MAR) =

8>><
>>:

MAR : JISR̂ CAdp f
I immediate(IR) : JISR̂ CAdp f^CAtrap
0 : JISR̂ CAdp f^CAtrap
C : otherwise

f4EDATAwe(IR;JISR) = JISR_ (I movi2s(IR)^SAdec(IR)[5])

The following lemma asserts the correctness of the transition function
for EDATA.

The value written byf4EDATAis correct. J Lemma 5.82

ci+1
S :EDATA =

�
f Γ4EDPC(ci

S) : f Γ4EDATAwe(ci
S)

ci
S:EDATA : otherwise

The proof proceeds as the proof of lemma 5.77. However, we useMAR
as input in case of a data memory page fault.

5.12.10 Data Consistency and Liveness

One concludes the data consistency and liveness of the pipelined machine
with interrupts just as we concluded the data consistency of the pipelined
machine with branch prediction.

Note that in particular PVS almost fully automates the proofs for the
lemmas given above in order to show the pipelined machine with specula-
tion.
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5.13 Literature

In the open literature, speculation is a common approach for implementing
processors without delay slot: Levitt et.al. use a predict-not-taken scheme
[LO96] in a DLX implementation. Boerger and Mazzanti provide two
DLX implementations [BM96]: the first assumes an empty instruction af-
ter jumps/branches. The second implementation stalls the instruction fetch
for one cycle. Saxe et.al. [SGGH94] also use speculation.

In [VB00], Velev and Bryant extend Burch and Dill’s pipeline flushing
technique in order to automatically verify a dual-instruction issue, in-order
DLX with five stages and branch prediction. Misspedicted branches are
detected late, A generic speculation approach or a stall engine is not used.
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6
Out-of-Order Execution

6.1 Introduction

I
N THE PREVIOUS SECTIONS, we presented various implementations of
pipelined RISC processors. These implementations strictly processed

the instructions in program order. However, the performance of these de-
signs drops as soon as long latency instructions such as memory accesses
are involved. For example, consider a load instruction with cache miss in
the memory stage. Thus, the stall signal of the stage is activated and the
instructions above the memory stage are stalled.

Furthermore, consider an ALU instruction that follows the load in the
execute stage:

EX: R3:=R1+R2
M: R4:=Mem[R5]

If there is no data dependency, the result of the ALU instruction is al-
ready known in the execute stage and could be written into the register file.
However, the in-order execution rule prohibits this and the ALU instruction
has to wait for the load.

Thus, dropping this rule can result in better performance. This technique
is calledout-of-order execution. The most popular out-of-order execution
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Figure 6.1 Basic structure of a microprocessor with Tomasulo Scheduler and
reorder buffer

algorithms is the Tomasulo scheduling algorithm [Tom67]. It is one of the
most competitive scheduling algorithms and provides CPI rates down to
1.1 on a single-instruction issue machine [Ger98, Del98, MLD+99]. The
algorithm is widely used, e.g., by IBM PowerPC, Intel Pentium-Pro or
AMD K5 [Mot97, CS95]. The original Tomasulo scheduler uses out-of-
order termination and therefore does not support precise interrupts with-
out extra hardware. We support precise interrupts by adding areorder
buffer[SP88]. The reorder buffer sorts the instructions in program order
before termination.

In this chapter, we describe the results of implementing and verifying a
DLX with Tomasulo scheduler, precise interrupts and floating point unit
using PVS. The designs, the scheduling protocols, and most proofs are
taken from [KMP99, Krö99].

6.2 The Tomasulo Algorithm with Reorder Buffer

Figure 6.1 depicts the basic structure of a microprocessor with Tomasulo
scheduler and reorder buffer. The execution begins with the instruction
fetch, as in the in-order machine. The Tomasulo scheduling algorithm
does not cover this phase; it is assumed that the instruction fetch is done in
program order. We will use the very same instruction fetch mechanism as
in the pipelined in-order machines described in the previous chapters.
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In the next stage, the instruction is decoded. This includes fetching the
operands if available. The instruction and the operands are then passed to
a reservation station(RS). This is calledissue. The reservation stations
are the central data structure of the Tomasulo scheduling algorithm. The
reservation stations act as queue for the instructions and are between the
decode/issue stage and the functional units. Note that the instruction is
passed to the reservation station even if forwarding fails. This is in contrast
to the in-order machine, which stalls in this case.

As soon as all operands are available, the instruction is passed from the
reservation station to the functional unit. This is calleddispatch. This
is done without obeying the program order of the instructions, i.e., the
instructions can overtake each other at this point. After the function unit
has finished the execution, the result of the instruction is passed to a special
register, calledproducer.

In case the producer holds an instruction, it requests a result bus, called
common data bus(CDB). As soon as the request is acknowledged, the re-
sult is put on this bus. This is calledcompletion. In contrast to commerical
designs such as the IBM’s PowerPC, we support only one CDB. The bus
is used for two purposes: 1) The instruction is passed to the reservation
stations that wait for the result because of a data dependency, and 2) the
result is passed to the reorder buffer.

The reorder buffer re-sorts the instructions back in program order. The
benefit of this is that we can write the results into the register file in pro-
gram order (in-order termination). This allows precise interruptions of the
instruction stream.

In the following sections, we will describe the data structures and proto-
cols used to realize this in detail.

6.3 Tomasulo Data Structures

6.3.1 Reorder Buffer

The reorder buffer [SP88] is a ring-buffer that serves two purposes in a
machine with Tomasulo scheduler. The main purpose is to re-sort the in-
structions such that the instructions terminate in program order. For that
purpose, each reorder buffer entry provides space to store the result of an
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Figure 6.2 Illustration of the reorder buffer pointers

instruction. We support instructions that write multiple registers. This is
useful for supporting double precision floating point instructions.

Furthermore, each reorder buffer entry has avalid bit. The bit indicates
that the result of the instruction is in the reorder buffer entry. A reorder
buffer entry with active valid bit is called valid reorder buffer entry.

The second purpose of the reorder buffer is to provide means to assign
a tag to each instruction. The tag is assigned during instruction issue and
stays unique until the instruction terminates. The tag is the address of the
reorder buffer entry of the instruction. Letϑ denote the number of tag (i.e.,
ROB address) bits. Thus, the reorder buffer has

Θ := 2ϑ

entries. We denote the value of the ROB entry with addresstag during
cycleT with ROB[tag]T .

The reorder buffer is accessed using to pointers, the head and tail point-
ers. These pointers are stored inϑ-bit registers. We denote the value of
the head pointer during cycleT by ROBheadT , and the value of the tail
pointer byROBtailT . Instructions are put in the ROB entryROBtailpoints
to, and removed from the entryROBheadpoints to. After an instruction is
put in the ROB, theROBtail pointer is increased. After an instruction is
removed from the ROB, theROBheadpointer is increased. The pointers
wrap-around if they reach the end of the ROB. This is illustrated in figure
6.2.

Let issue(T) denote that we issue an instruction during cycleT. This
allows defining the values ofROBtail recursively. We initialize the ROB
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pointers with zero. TheROBtail pointer is increased iff we issue an in-
struction.

ROBtailT :=

8<
:

0 : T = 0
ROBtailT�1+1 : issue(T �1)
ROBtailT�1 : otherwise

Note that the incrementation for the caseissue(T �1) holds is a bitvec-
tor operation as described in chapter 2. Thus, theROBtail pointer wraps
around.

In analogy to that, letwriteback(T) denote that we terminate an instruc-
tion during cycleT. This allows defining the values ofROBheadrecur-
sively.

ROBheadT :=

8<
:

0 : T = 0
ROBheadT�1+1 : writeback(T �1)
ROBheadT�1 : otherwise

As above, the incrementation for the casewriteback(T �1) holds is a
bitvector operation as described in chapter 2. Thus, theROBheadpointer
wraps around.

6.3.2 Register File Extentions

As before, the register file holds the values of the specification registers of
the machine. We still denote the set of registers byR (in PVS, we just
number the registers). We denote the value of the registerr 2 R during
cycleT by R[r]T :data. We assume that all registers have a common width.
We denote the set of possible values of a register byW(R).

The register file is extended with aproducer table. The producer table
records which instruction in the machine writes a given register. For that
purpose, the producer table contains two data items for each register.

The first is a valid bit. We denote the value of the valid bit of registerr
during cycleT with R[r]T :valid. If it is set, there is no instruction currently
executing with the register as destination. If it is not set, there is such an
instruction. In this case, the second item, a reorder buffer tag, points to the
last instruction with the register as destination. We denote the value of this
tag byR[r]T :tag.
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6.3.3 Reservation Stations

The reservation stations act as queue for the instructions and their source
operands. We give each reservation station a number. We denote the values
in reservation station numberrs during cycleT by RS[rs]T . Each reserva-
tion has a full bitRS[rs]: f ull . It indicates that the reservation station is in
use. In addition to that, we store the tag of the instruction in the reservation
station inRS[rs]:tag.

We support instructions with an arbitrary number of source operands.
Let x denote the number of a source operand. For each source operand,
we store a valid bitRS[rs]:op[x]:valid. If the bit is set, the value of the
operand is stored inRS[rs]:op[x]:data. If it is not set, we store the tag of
the instruction producing the value inRS[rs]:op[x]:tag.

6.3.4 Producers

The producers buffer the results from the function units until the CDB
is available. We have a separate producer for each function unit. Each
producer consists of a full bit, a tag, and the result. We denote these items
of producerf u by P[ f u]: f ull , P[ f u]:tag, andP[ f u]:result.

6.3.5 Initial Configuration

We make the following assumptions about the initial values of those regis-
ters.

� The valid bits of the registers must be set in the initial configuration.
We do not make an assumption on the values of the registers or the
tags.

� The full bits of the reservation stations must not be set. We do not
make any assumptions about the other values in the reservation sta-
tions.

� The full bits of the producers must not be set. We do not make any
assumptions about the other values in the producers.
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It is important that we do not make to many assumptions on initial val-
ues, since realizing fixed initial values in hardware is expensive regarding
hardware cost. In particular, assuming initial values of a register usually
prohibits implementing the register as RAM. In particular, note that we do
not make any assumption about the initial values of the ROB entries.

6.4 Tomasulo Protocols

6.4.1 Formalization

In this section, we describe the protocols of the Tomasulo Scheduling al-
gorithm. These protocols form the transition function of a generic and
abstract microprocessor with Tomasulo scheduler. The configuration set
of this machine comprises of the reservation stations, the reorder buffer
including the pointers, the register files, the producers, and the producer
tables.

We denote the configuration of this machine during cycleT by cT
aI (ab-

stract implementation).

The transition function of the machine is denoted byδaI . It maps the
configuration of the machine during cycleT to the next configuration of
the machine during cycleT + 1. We will compose this function using
functional specifications of the Tomasulo protocols, which are issue, CDB
snooping, dispatch, completion, and writeback. We name the functions for
these protocolsissue, snoop, dispatch, completion, andwriteback. These
functions are called protocol functions.

δaI := issueÆsnoopÆdispatchÆcompletionÆwriteback

Thus, the issue protocol has priority over CDB snooping and so on. This
is important if two protocols change the same register value in the same
cycle. The final value in the register is the value provided by the proto-
col with the higher priority. We omit the transition function for the ROB
pointers, since we already specified the values of those pointers above.

Notation We specify the protocols using a notation similar to the nota-
tion used in [KMP99]. The notation is also very similar to the notation
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used in PVS. Consider the following example:

R[4]:data := R[3]:data

This is a shorthand forR[4]T+1:data= R[3]T :data.

As before, we consider a stream of instructionsI0, I1, : : :. Each instruc-
tion has source and destination registers. ByS(i;x), we denote the number
of register that is the source operandx. By D(i;x), we denote the number
of register that is the destination operandx.

By dest(i; r), we denote the fact that instructionIi hasr as destination
register, i.e., that there is ax with D(i;x) = r.

Embedding Convention In a machine with Tomasulo Scheduler and re-
order buffer, there are different places where results are stored or propa-
gated before writing the results into the register file. These are the pro-
ducers, the CDB, and the ROB. We support multiple destination registers
for a single instruction. By convention, each destination register is on a
well-defined part of the result bus or registers. For example, consider the
DLX with floating point instructions. That machine has a maximum of
three results for each instruction. Thus, the result busses and registers have
space for three 32-bit registers,result[0], result[1], andresult[2].

In case of the DLX, we embed the results as follows: By convention, all
floating point registers with odd numbers are onresult[1], all other “nor-
mal” registers are onresult[0]. In order to handle exceptions, we define a
dummy registerCA, which is onresult[2]. This allows handling the IEEE
flags register and exceptions.

For example, the result of a double precision floating point instruction
with destination registerFPR0 is embedded as follows: The lower part
of the result, i.e., the part that is written intoFGR0, is on result[0]. The
higher part, i.e., the part that is written intoFGR1, is on result[1]. The
exceptions/IEEE flags are onresult[2].

Formally, we define an embedding function. Letd denote the maximum
number of destination operands. The embedding functionemaps a register
to a number inf0; : : : ;d�1g. Thus, destination registerr is onresult[e(r)].
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6.4.2 Issue

Let Ii be the instruction to be issued during cycleT (figure 6.3). The first
step is to invalidate the destination registers of instructionIi . Thus, we clear
the valid bit of all registersR[r] with dest(i; r) and set the tag of registerr
to ROBtailT .

In contrast to the issue protocols given in [MPK00], we cover two differ-
ent ways to issue an instruction: the first way is as described in [MPK00]
and as done by the original Tomasulo scheduling algorithm. During is-
sue, the instruction is stored in a reservation station along with the source
operands that are available.

The second way is to skip the reservation stations and to store the result
of the instruction in the reorder buffer directly. This speeds up the execu-
tion of simple instructions. Examples for this are branches, jumps, and the
trap instruction.

The result of these instructions is already known in the issue stage. We
indicate these instructions by the predicateissuewith result(i). In case of
such an instruction, the reservation stations are not modified by the issue
protocol. However, we set the valid bit of the ROB entryROBtail points
to and store the result in theresult data item. We denote this result by
issueresult(i). For example, this could be thePC address in case of a
jump-and-link instruction.

Machines that support instructions that are directly issued into the ROB
are usually not covered in the open literature. The Tomasulo implementa-
tion in [Krö99] uses this feature. However, the proof does not cover it.

In caseissuewith result(T) does not hold, we clear the valid bit of the
ROB entryROBtailT . Let issuers(T; rs) hold iff reservation stationrs
is used for issue during cycleT. We initialize this reservation station as
follows: we set the full bit of the reservation station and store theROBtail
pointer in the tag data item. Besides the full bit and tag, the reservation
station holds the source operands.

The Tomasulo scheduling algorithm with reorder buffer supports differ-
ent places to forward the source operands from. For each operand of the
instruction three sources have to be checked:

1. The operand might be in the register file. In this case, the valid bit
of the register is set. If it is not in the register file, the producer table
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provides the tag of the last instruction writing it.

2. The operand might be on the CDB. In order to determine which
instruction is on the CDB, the result on the CDB comes with a valid
bit and a tag. If the valid bit is set, the tag indicates the instruction
on the CDB. Thus, we check the valid bit and compare the tag on the
CDB with the tag from the producer table. If they match, we take
the result on the CDB as source operand according to the embedding
convention.

3. The operand might be in the reorder buffer. This is indicated by the
valid bit of the reorder buffer entry that the tag in the producer table
points to. If the bit is set, we take the result from the ROB according
to the embedding convention.

If none of the three cases above applies, the source register is the desti-
nation of a preceding, incomplete instruction. The tag of this instruction is
in the producer table, and instead of the operand, the tag of this instruction
is stored in the reservation station.

6.4.3 CDB Snooping

During issue, the operands in the reservation station that are not available
are marked as not valid. On completion, the result of an operation is put
on the CDB. Instructions in the reservation stations, which depend on this
result, read the operand data from the CDB (figure 6.4). The reservation
stations identify the results by comparing the tag on the CDB with the tag
in the reservation station.

6.4.4 Dispatch

During instruction dispatch (figure 6.5), an instruction moves from a reser-
vation station entry into the actual function unit. We denote this fact by the
predicatedispatch(T; rs). If the predicate holds, the instruction in reserva-
tion stationrs is dispatched during cycleT.

The reservation stations that are dispatched are determined by the hard-
ware using a fair arbiter, which selects only full reservations with valid
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if issue(T) then
f

RS[rs]: f ull := 1;
RS[rs]:tag := ROBtail;

For all source operands x of Ii , let r be S(i;x):
if R[r]:valid then

RS[rs]:op[x] := R[r];
elsif CDB:tag= R[r]:tag^CDB:valid then

RS:op[x]:valid := 1;
RS:op[x]:data:=CDB:result[e(r)];

elsif ROB[R[r]:tag]:valid then
RS:op[x]:valid := 1;
RS:op[x]:data:= ROB[R[r]:tag]:result[e(r)];

else
RS:op[x]:valid := 0;
RS:op[x]:tag:= R[r]:tag;

endif

For all registers r with dest(i; r):
R[r]:tag := ROBtail;
R[r]:valid := 0;

g

Figure 6.3 Issue protocol for issuing instructionIi during cycleT.

8 operands x of instruction Ii
if RS[rs]: f ull ^=RS[rs]:op[x]:valid^

(RS[rs]:op[x]:tag=CDB:tag)
f

RS[rs]:op[x]:valid := 1;
RS[rs]:op[x]:data :=CDB:result[e(S(i;x))];
g

Figure 6.4 CDB snooping protocol for instructionIi in reservation stationrs
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if dispatch(T; rs) then
f

Pass instruction, operands,
and tag to FU

RS: f ull := 0;

g

Figure 6.5 Dispatch protocol

operands. Thus, we can assume that the reservation stationsrs that are
dispatched are full and have valid operands:

dispatch(T; rs) =) RS[rs]T : f ull ^

8x : RS[rs]T :op[x]:valid

In addition to passing the instruction to the function unit, the reservation
station is freed during dispatch. Note that clearing the full bit may conflict
with setting the full bit as done by the issue protocol. Since the issue
protocol has priority, the full bit is set in this case.

6.4.5 Completion

During completion (figure 6.6), the result and the ROB tag in a producer
P[ f u] are put on the CDB. Let the predicatecompletion(T) hold iff the
machine completes an instruction. Letf u= compl p(T) denote the num-
ber of the producer that holds that instruction. That number is determined
by the hardware among the full producers using a fair arbiter. Thus, we
can assume that the producer is full:

completion(T) =) P[compl p(T)]T : f ull

During completion, the according reorder buffer entry is filled with the
result and the valid bit is set. LetFU [ f u]T :valid denote that the func-
tion unit provides a result. LetFU [ f u]T :result denote that result. Let
FU [ f u]T :tag denote the tag that accompanies the result.

If the function unit provides a new result, this result is stored in the
producer. If not so, the full bit of the producer is cleared.
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if completion(T) then

f

CDBT
:valid = 1;

CDBT
:result= P[compl p(T)]:result;

CDBT
:tag= P[compl p(T)]:tag;

ROB[CDBT
:tag]:valid := 1;

ROB[CDBT
:tag]:result :=CDBT

:result;
g

8 function units f u:

if FU [ f u]T :valid then

f

P[ f u]: f ull := 1;

P[ f u]:result := FU [ f u]T :result;
P[ f u]:tag := FU [ f u]T :tag;

g

elsif completion(T)^compl p(T) = f u then

P[ f u]: f ull := 0;

endif

Figure 6.6 Completion protocol
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if writeback(T)

for all registers r with dest(i; r):
f

R[r]:data:= ROB[ROBhead]:result[e(r)];
if ROBhead= R[r]:tag then

R[r]:valid := 1;

g

Figure 6.7 Retirement / writeback protocol for instructionIi .

6.4.6 Writeback

During writeback (figure 6.7), a result of the instruction in the ROB en-
try that ROBheadpoints to is written into the register file. As introduced
above, we denote this fact by the predicatewriteback(T). We assume that
writeback is done iff the ROB entry is valid and the ROB is not empty. Let
ROBempty(T) denote that the ROB is empty during cycleT. We will later
on define it.

writeback(T) () ROBempty(T)^ROB[ROBhead(T)]T :valid

During writeback, we store the result in the ROB in the registers. Fur-
thermore, we set the valid bit of the register if the tag of the instruction
matches the tag in the producer table.

Note that setting the valid bit may conflict with clearing the valid bit
during issue. As described above, the issue protocol has priority over the
writeback protocol, i.e., the setting of the valid bit is suppressed.

6.5 Data Consistency

6.5.1 Scheduling Functions

We need a formal way to state that “instructionIi is being issued during
cycleT” or “instruction Ii is being dispatched during cycleT”. We do this
in analogy to the previous chapters using ascheduling function. While this
concept was introduced for in-order machines by [MP00], we extend it to
out-of-order machines in the obvious way.
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Issue We recursively define a functionsIissuethat maps a cycleT to
the number of the instruction that is in the issue stage. Since we issue in
program order, that number increases by one in case thatissue(T) holds
and stays unmodified otherwise. We start with instructionI0.

sIissue(T) :=

8<
:

0 : T = 0
sIissue(T �1)+1 : issue(T �1)
sIissue(T �1) : otherwise

Reservation Stations We also desire a way to define the instruction in a
given reservation stationrs during a given cycleT. We do this by defining
a schedule functionsIRS(rs;T) for reservation stations. Instructions are
put in a reservation station during issue. In case an instruction is issued
into reservation stationrs, we take the value ofsIissue(T �1). Otherwise,
the value ofsIRS(rs;T) remains unchanged.

sIRS(rs;T) :=

8<
:

0 : T = 0
sIissue(T �1) : issue(T �1)
sIRS(rs;T�1) : otherwise

Note that the only point we put an instruction into a reservation station
is during issue. This is in contrast to the implementation given [Kr¨o99],
which moves the instructions from one reservation station into the next.

Reorder Buffer In analogy to the schedule of the reservation stations,
we can provide a schedule for the ROB. The functionsIROB(tag;T) de-
notes the instruction that is in the ROB entry with tagtag during cycleT.
We start with�1, which denotes that no instruction is in the ROB entry.
We need this special value because the ROB entries have no such thing like
a full bit.

sIROB(tag;T) :=

8>><
>>:
�1 : T = 0
sIissue(T �1) : issue(T �1)^

tag= ROBtailT�1

sIROB(tag;T�1) : otherwise

Function Units Let dispatch f u(T; f u) denote the number of the reser-
vation station that is used for dispatching an instruction to function unit
f u during cycleT. In hardware, this number is represented unary using
dispatch(T; rs).
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Let sIdispatch( f u;T) denote the number of the instruction passed to
function unit f u during cycleT. This is defined using the schedule of the
reservation station.

sIdispatch( f u;T) := sIRS(dispatch f u(T; f u);T)

We also define schedules for the functional units. LetsI f u( f u;T) denote
the number of the instruction thatleavesfunction unit f u during cycle
T. The most simple functional unit is a combinatorial functional unit that
calculates its result within the same cycle the arguments are passed. The
32-bit ALU presented in chapter 2 is an example. For such a function unit,
sI f u( f u;T) just is:

sI f u( f u;T) := sIdispatch( f u;T)

In case of more complex function units such as floating point dividers,
one has to construct a scheduling function. There are two ways to do so:
1) one constructs the function such that it matches the pipeline structure
of the functional unit, and 2) one defines the schedule using the tags the
function unit provides.

As an example for the first method, consider a function unit with four
stages and a cycle that allows iterating the instruction in stage 2 (figure
6.8). We denote the instruction in stagek of the function unitf u during
cycleT by sIf u(k;T). The instruction in stage 0 of the function unit is the
instruction that is dispatched:

sIf u(0;T) := sIdispatch( f u;T)

This instruction proceeds into stage 1 iff the update enable signaluef u;0

is active. This update enable signal is local to the function unitf u.

sIf u(1;T) :=

8<
:

0 : T = 0
sIf u(0;T�1) : ueT�1

f u;0 = 1
sIf u(1;T�1) : otherwise

This must be changed for stage 2, the stage with the back-cycle.

sIf u(2;T) :=

8>><
>>:

0 : T = 0
sIf u(1;T�1) : ueT�1

f u;1 = 1^selT�1
1 = 0

sIf u(2;T�1) : ueT�1
f u;1 = 1^selT�1

1 = 1
sIf u(2;T�1) : otherwise
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Figure 6.8 Construction of the scheduling function for a function unit with cycles
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For stage 3 of the function unit, the scheduling function is defined in
analogy to the scheduling function of stage 1:

sIf u(3;T) :=

8<
:

0 : T = 0
sIf u(2;T�1) : ueT�1

f u;2 = 1
sIf u(3;T�1) : otherwise

Since this is also the last stage of the function unitf u, we have

sI f u( f u;T) := sIf u(3;T)

Producers In analogy to the scheduling function of the reservation sta-
tions, we define the scheduling function of the producer registers. We
denote the number of the instruction in producer numberf u during cycle
T by sIP( f u;T). In case the function unit provides a result, we take the
value from the schedule of the function unit as defined above. If not so, the
value ofsIP( f u;T) does not change.

sIP( f u;T) :=

8<
:

0 : T = 0
sI f u( f u;T �1) : FU [ f u]T�1:valid = 1
sIP( f u;T�1) : otherwise

As described above, the instruction in producer with the number given
by compl p(T) is put on the CDB during completion. We therefore define
the following shorthand for the instruction on the CDB during cycleT:

sICDB(T) := sIP(compl p(T);T)

Writeback In analogy tosIissue, we recursively define a scheduling
function sIwritebackthat maps a cycleT to the number of the instruc-
tion that is in the writeback stage. Since we writeback in program order,
that number increases by one in case thatwriteback(T) holds and stays
unmodified otherwise. We start with instructionI0.

sIwriteback(T) :=

8<
:

0 : T = 0
sIwriteback(T �1)+1 : writeback(T �1)
sIwriteback(T �1) : otherwise
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6.5.2 Function Unit Axioms

In this section, we describe the assumptions we make regarding data con-
sistency properties of the functional units. We consider the functional units
as a “black box”. In particular, we do not provide implementations for data
memory or floating point function units. The design and verification of a
data memory function unit including virtual memory is subject of the thesis
of Sven Beyer [Bey01]. The design and verification of an IEEE compliant
floating unit including a divider is subject of the thesis of Christian Jacobi
[Jac01].

Inputs and Outputs As described above,FU [ f u]T :valid indicates that
function unit f u provides a result during cycleT. FU [ f u]T :tag denotes
the tag the function unit provides, andFU [ f u]T :result denotes the result
the function unit provides.

Let f uins( f u;T) denote the inputs of function unitf u during cycleT.
This is a defined as follows: Letrs be a shorthand fordispatchrs(T; f u).
This is the reservation station that is used for dispatching to function unit
f u.

f uins( f u;T):valid := dispatchrs(T; rs)

f uins( f u;T):tag := RS[rs]T :tag

f uins( f u;T):source[x] := RS[rs]T :op[x]:data

Tag Consistency Given that the function unit gets correct tags as inputs
upto cycleT, we assume that the function unit provides the correct tag of
the instruction as output during cycleT.

We formalize “gets correct tags as inputs upto cycleT” as follows:

8T 0 � T : f uins( f u;T 0):valid

=) f uins( f u;T 0):tag= I tag(sIdispatch( f u;T 0))

We formalize “provides the correct tag of the instruction” as follows:

FU [ f u]T :valid =) FU [ f u]T :tag= I tag(sI f u( f u;T))
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Operand Consistency Given that the function unit gets correct source
operands as inputs upto cycleT, we assume that the function unit provides
the correct results of the instruction as output during cycleT.

We formalize “gets correct source operand as inputs upto cycleT” as
follows:

8T 0 � T : f uins( f u;T 0):valid

=) f uins( f u;T 0):source= source(sIdispatch( f u;T 0))

We formalize “provides the correct results of the instruction” as follows:

FU [ f u]T :valid =) FU [ f u]T :result= result(sI f u( f u;T))

Phase Consistency In order to show data consistency, we have to argue
that the function units does not generate “garbage output”. We assume two
things: 1) If an instruction leaves the function unit, it entered it before,
and 2) if instructions upto cycleT enter the function unit at most one, the
instructions leave the function unit at most once.

We formalize this as follows: Letin(i;T; f u) denote that instructionIi
enters the function unitf u during cycleT.

in(i;T; f u) :() f uins( f u;T):valid^sIdispatch( f u;T) = i

In analogy to that, letout(i;T; f u) denote that instructionIi leaves the
function unit f u during cycleT.

out(i;T; f u) :() FU [ f u]T :valid^sI f u( f u;T) = i

If instruction Ii leaves function unitf u during cycleT, there must be a
cycleT 0 � T such that it entered the function unit:

out(i;T; f u) =) 9T 0 � T : in(i;T 0; f u)

If the cycleT 0 � T such that instructionIi enters the function unit during
cycleT 0 is unique, then the cycleT 00 � T such that instructionIi leaves the
function unit during cycleT 00 is unique.��fT 0 � T j in(i;T 0; f u)g

�� = 1 =)
��fT 00 � T j out(i;T 00; f u)g

�� = 1
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We do not make further assumptions regarding data consistency. In par-
ticular, this allows that the latency of the function unit is variable and that
the instructions leave the dispatch order within the function unit.

We make further assumptions on the function units in order to show
liveness. We will later on describe these assumptions.

6.5.3 ROB Flags

We need means to determine wether the reorder buffer is full or not. For
this purpose, we take the circuit from [Lei99]. It uses aϑ+1 bit counter
register. The counter is incremented if we issue and instruction and do not
writeback one simulataneously. This is indicated byROBinc(T).

ROBinc(T) = issue(T)^writeback(T)

In analogy to that,ROBdec(T) indicates that we decrement the counter.
This is done if we writeback an instruction but do not issue one simultane-
ously.

ROBdec(T) = issue(T)^writeback(T)

Thus, the value of the counter register during cycleT is defined as fol-
lows:

ROBcount(T) :=

8>><
>>:

0ϑ : T = 0
ROBcount(T�1)+1 : ROBinc(T�1)
ROBcount(T�1)�1 : ROBdec(T�1)
ROBcount(T�1) : otherwise

The ROB is empty iff the counter is zero:

ROBempty(T) = (ROBcount(T) = 0ϑ+1)

The ROB is full iff the counter is the number of ROB entriesΘ. We use
the binary encoding ofΘ.

ROBempty(T) = (ROBcount(T) = 10ϑ)

We make the following assumptions:

261



Chapter 6

OUT-OF-ORDER

EXECUTION

� If we issue an instruction without simultaneous writeback, the ROB
must not be full.

ROBinc(T) =) ROB f ull(T)

� If we writeback an instruction, the ROB must not be empty.

writeback(T) =) ROBempty(T)

6.5.4 ROB Properties

Let tag� i be a shorthand for a tag that is incrementedi times. Formally,Definition 6.1
tag� i

I

this is defined using a recursion and the bit-vector incrementation as de-
fined in chapter 2:

tag� i :=

�
tag : i = 0
(tag� (i�1))+1 : otherwise

Note that we increment a bit vector with limited range. Thus, it will
wrap-around. One easily verifies the following properties of the ROB
pointers:

Let i be the number of the instruction in the issue stage. The ROB tailLemma 6.1 I

pointer has been increasedi times.

ROBtailT = 0ϑ�sIissue(T)

Let i be the number of the instruction in the writeback stage. The ROBLemma 6.2 I

head pointer has been increasedi times.

ROBheadT = 0ϑ�sIwriteback(T)

The proof for both lemmas is easily done using induction onT.

The value in theROBcountregister is smaller or equal than the number ofLemma 6.3 I

ROB entries.

hROBcount(T)i � Θ
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PROOF One verifies this claim by induction onT. ForT = 0, we have

hROBcount(T)i = 0:

For T + 1, we show the claim by a full case split on the values of
ROBinc(T) andROBdec(T).

� If neither ROBinc(T) or ROBdec(T) holds, the value ofROBcount
does not change and the claim is concluded using the induction
premise.

� If ROBinc(T) holds, we assert the claim as follows: in case

hROBcount(T)i < Θ

holds, the claim is easily concluded. Assume

hROBcount(T)i = Θ

holds. In this case, we have a contradiction to the assumption above
sinceROBinc(T) holds and the ROB is full.

� If ROBdec(T) holds, we assert the claim as follows: in case

hROBcount(T)i 6= 0

holds, the claim is easily concluded. Assume

hROBcount(T)i = 0

holds. In this case, we have a contradiction to the assumption above
sinceROBdec(T) holds and the ROB is empty. QED

Let J Lemma 6.4

instr in rob(T) = sIissue(T)�sIwriteback(T)

denote the difference between the number of issued and terminated instruc-
tions, i.e., the number of instructions in the reorder buffer. We claim that
this number is equal to the binary number interpretation of the value of
ROBcount(T):

instr in rob(T) = hROBcount(T)i
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PROOF This claim is asserted by induction onT. ForT = 0 we have

instr in rob(T) = hROBcount(T)i

sIissue(T)�sIwriteback(T) = h0ϑ+1i

0�0 = h0ϑ+1i:

For T +1, we do a full case split on the values of the signalsissue(T)
andwriteback(T).

� If neither issue(T) nor writeback(T) holds, both the values of the
scheduling functions and the ROB counter do not change from cycle
T to T +1. Thus, the claim is concluded by the induction premise.

� If both issue(T) andwriteback(T) hold, both scheduling functions
are incremented by one. Thus, the difference stays the same. The
ROB counter does not change from cycleT to T+1. Thus, the claim
is concluded by the induction premise.

� In caseissue(T) holds andwriteback(T) does not hold, the differ-
ence is increased by one. The ROB couter is also increased by one.
One asserts that the ROB counter does not wrap around by lemma
6.3.

� In caseissue(T) doe not hold andwriteback(T) holds, the differ-
ence is decreased by one. The ROB couter is also decreased by one.
One asserts that the ROB counter does not wrap around using the
assumption that we do not writeback in case of an empty ROB. 6.3.QED

The number of instructions in the ROB is greater or equal than zero.Lemma 6.5 I

instr in rob(T)� 0

One easily asserts this using lemma 6.4.

The number of instructions in the ROB is smaller or equal than the numberLemma 6.6 I

of ROB entries.

instr in rob(T)�Θ

This is easily shown using lemma 6.4 and lemma 6.3.
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The following lemma is easily concluded using lemma 6.5:

The number of issued instructions is greater or equal than the number ofJ Lemma 6.7
terminated instructions.

sIissue(T)� sIwriteback(T)

If we terminate an instruction using cycleT, the number of issued instruc-J Lemma 6.8
tions is greater than the number of terminated instructions.

writeback(T) =) sIissue(T)> sIwriteback(T)

One easily shows this using lemma 6.7, and lemma 6.4, and the fact that
we only writeback if the ROB is not empty.

The number of issued instructions upto cycleT is greater or equal than theJ Lemma 6.9
number of terminated instructions upto cycleT +1.

sIissue(T) � sIwriteback(T +1)

One easily verifies this claim using lemma 6.8 for the casewriteback(T)
and using lemma 6.7 otherwise.

As described above, we assign a tag to each instruction during issue. ThisJ Definition 6.2
I tag(i)is the value of the ROB tail pointer. This pointer is increased by one each

time we issue an instruction. Thus, we define a functionI tag(i), which
denotes the tag of instructionIi , as follows:

I tag(i) := 0ϑ� i

I tag(i) is the value of the ROB tail pointer during issue of instructionIi . J Lemma 6.10

ROBtailT = I tag(sIissue(T))
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This claim is easily concluded using lemma 6.1 and the definition of
I tag.

If an instruction is in ROB entrytag, then the tag of that instruction istag.Lemma 6.11 I

sIROB(tag;T) = i =) tag= I tag(i)

One shows this claim by induction onT. For T = 0, there is nothing toPROOF
show since there is no instruction in the ROB (formally,sIROB(tag;0) is
�1, and there is no instructionI�1).

ForT +1, the claim is concluded by expanding the definition ofsIROB.
If

issue(T)^ tag= ROBtailT

holds, we havesIROB(tag;T +1) = sIissue(T). The claim is then con-
cluded using lemma 6.10.

If not so, we havesIROB(tag;T+1) = sIROB(tag;T). The claim is then
concluded using the induction premise.QED

We will now show that this tag is unique beginning with the cycle the
instruction is issued until the instruction terminates. Formally, this means
that we can assign a single, unique instruction to each such tag.

Let issued(i;T) hold iff instruction Ii is already issued during cycleT.
We define this predicate using the scheduling functionsIissue:

issued(i;T) :() sIissue(T)> i

However, it is not obvious that instructionIi was issued before cycleT
if sIissue(T)> i and vice-versa. It is an implication of in-order issue. The
following lemma asserts one direction.

If issued(i;T) holds, there is a cycleT 0 < T such thatIi is issued duringLemma 6.12 I

cycleT 0.

issued(i;T) =) 9T 0 < T : sIissue(T 0) = i^ issue(T 0)
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PROOF The claim is shown by induction onT. For T = 0, we have
sIissue(0) = 0. Thus,sIissue(0) > i cannot hold and there is nothing to
show.

For T +1, we show the claim using a case split onissue(T).

� If issue(T) holds, we have

sIissue(T +1) = sIissue(T)+1

and thereforesIissue(T) +1 > i. Let sIissue(T) > i hold. In this
case, we can apply the induction premise and the claim holds. Thus,
let sIissue(T) = i hold. In this case, cycleT satisfies the claim.

� If issue(T) does not hold, we havesIissue(T +1) = sIissue(T) and
we can apply the induction premise to show the claim. QED

In analogy toissued(i;T), we define a predicateterminated(i;T) that
holds iff instructionIi already terminated before cycleT.

terminated(i;T) :() sIwriteback(T)> i

Let the predicateτ(i;T) be a shorthand for the fact that instructionIi is
already issued during cycleT but has not yet terminated.

τ(i;T) :() issued(i;T)^ terminated(i;T)

The following lemma will be used in order to show that issue is done in
program order.

Consider the instruction in the issue stage during cycleT. During cycle J Lemma 6.13
T +1, there is the same or a later instruction in the issue stage.

sIissue(T +1) � sIissue(T)

The proof of lemma 6.13 is easily done by expanding the definition of
the scheduling functionsIissue(T +1).

The instructions are issued in order, i.e., during cycleT 0 � T there is the J Lemma 6.14
same or an earlier instruction in the issue stage.

8T 0 � T : sIissue(T 0)� sIissue(T)
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This lemma is easily shown using induction onT and lemma 6.13 as
induction step.

Let i � 0 and j � 0 hold. If one increments a tagi times and after thatjLemma 6.15 I

times, this is equivalent to incrementing the tagi + j times.

(tag� i)� j = tag� (i + j)

This is easily shown by induction onj.

Let T andT 0 � T be cycles.ROBtailT
0

is equal toROBtailT incrementedLemma 6.16 I

sIissue(T 0)�sIissue(T) times.

8T 0 � T : ROBtailT
0

= ROBtailT � (sIissue(T 0)�sIissue(T))

By applying lemma 6.1 twice, the claim is transformed into:PROOF

0ϑ�sIissue(T 0)
!
= (0ϑ�sIissue(T))� (sIissue(T 0)�sIissue(T))

One showssIissue(T 0)� sIissue(T) � 0 using lemma 6.14. This allows
concluding the claim using lemma 6.15.QED

One easily verifies the following property of tag arithmetic (i.e., bit-
vector arithmetic). It applies for incrementing tags as done forROBhead
andROBtail.

If one increments a tagi times, the value of this tag is the value of the oldLemma 6.17 I

tag plusi moduloΘ (number of ROB entries).

htag� ii = htagi+ i modΘ

The following lemma will be used in order to argue that certain entries
in the ROB are not overwritten.

If one increments a tag at least once and less thanΘ times, the incrementedLemma 6.18 I

tag is different from the old tag.

0< j < Θ =) (tag� j) 6= tag
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PROOF According to lemma 6.17, we have

htag� ji = htagi+ j modΘ

Assume(tag� j) = tag holds. In this case, the equation above trans-
forms into:

htagi = htagi+ j modΘ

This only holds if j is a multiple ofΘ (this property of mod is shown in
the PVS libraries). This is a contradiction to the premise of the lemma and
we therefore have(tag� j) 6= tag. QED

Entries in the ROB are overwritten if the ROB tail pointer wraps around.
This happens eachΘ (number of ROB entries) instructions. The following
lemma asserts the fact that instructionIi in the ROB is overwritten only in
this case.

Let instructionIi be issued during cycleT 0. Consider cyclesT > T 0. As J Lemma 6.19
long as no more thanΘ instructions are issued from cycleT 0 to T, the
instruction in the ROB entry during cycleT that ROBtailT

0

points to is
instructioni.

issue(T 0)^sIissue(T 0) = i^sIissue(T)� (i +Θ)

=) sIROB(ROBtailT
0

;T) = i

The proof proceeds by induction onT. ForT = 0, there is nothing to show PROOF
since there is no cycleT 0 � 0 with T > T 0.

For T +1, let us consider the caseT = T 0. In this case, the claim holds
by definition ofsIROB.

The claim for the caseT > T 0 is (we swap left hand side and right and
side):

i
!
= sIROB(ROBtailT

0

;T)

!
=

8<
:

sIissue(T) : issue(T)^

ROBtailT
0

= ROBtailT

sIROB(ROBtailT
0

;T) : otherwise

We argue the two cases above separately. Assume

issue(T) ^ ROBtailT
0

= ROBtailT
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holds. This implies thatsIissue(T + 1) = sIissue(T) + 1 holds because
issue(T) holds. This allows concluding that

sIissue(T)+1� i +Θ

holds. This allows applying lemma 6.18 withj = sIissue(T)� i, which
states:

ROBtailT
0

6= ROBtail(T 0)� (sIissue(T)� i)

According to lemma 6.16 for cyclesT 0 andT, we have

ROBtailT = ROBtailT
0

� (sIissue(T)� i):

Thus, this is a contradiction toROBtailT = ROBtailT
0

. Thus,

issue(T)^ROBtailT
0

= ROBtailT

cannot hold. We therefore only have to showsIROB(ROBtailT
0

;T) = i.
This is done using the induction premise.QED

If instruction Ii has been issued but has not not yet terminated, less thanΘLemma 6.20 I

(number of ROB entries) instructions have been issued sinceIi was issued.

τ(i;T) =) sIissue(T)� i +Θ

This claim is easily concluded using lemma 6.6.

The following theorem provides the unique mapping from tags to in-
structions: we just use the ROB schedule. The tag of an instruction is
unique, if the instruction in the ROB.

If instruction Ii has been issued but has not not yet terminated, the instruc-Theorem 6.21 I

tion in ROB entryI tag(i) is instructioni.

τ(i;T) =) sIROB(I tag(i);T) = i

According to lemma 6.12, there is a cycleT 0 < T such that instructionIiPROOF
is issued during cycleT 0. According to lemma 6.19 for cycleT 0 andT and
instructioni, we have:

sIissue(T)� i +Θ =) sIROB(ROBtailT
0

;T) = i
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We assert the left hand side of the implication using lemma 6.20. Thus,
we have:

sIROB(ROBtailT
0

;T) = i

It is therefore left to show thatROBtailT
0

is equal toI tag(i). This is
done using lemma 6.10. QED

From lemma 6.21, one easily concludes the following claim:

Let Ii and I j be instructions. If the tags of the instructions are equal andJ Lemma 6.22
both unique, instructioni is instruction j.

I tag(i) = I tag( j)^ τ(i;T)^ τ( j;T) =) i = j

In analogy to lemma 6.10, we show:

TheROBheadpointer during cycleT is the tag of the instruction in write-J Lemma 6.23
back stage.

ROBhead(T) = I tag(sIwriteback(T))

One easily concludes this claim using lemma 6.2

If we writeback an instruction during cycleT, that instruction is in theJ Lemma 6.24
ROB entry thatROBheadpoints to.

writeback(T) =) sIwriteback(T) = sIROB(ROBhead(T);T)

Using lemma 6.23, we transform the claim into: PROOF

writeback(T) =) sIwriteback(T) = sIROB(I tag(sIwriteback(T));T)

The claim is concluded using lemma 6.21. It is left to show that the
premise of lemma 6.21 holds, i.e., we have to show that

τ(sIwriteback(T);T)

holds. We show that the instruction is already issued using lemma 6.8.
Furthermore, the instruction is obviously not terminated yet. QED
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6.5.5 Instruction Phases

We distinguish the following phases of executing instructionIi:

� Not issued:Before an instruction is issued, the instruction is in the
”not issued” phase. Formally, this holds ifissued(i;T) holds.

� In RS: During issue, the instruction is stored in a reservation sta-
tion unlessissuewith result(i) holds. Formally, instructionIi is in a
reservation station during cycleT iff

9rs : RS[rs]T : f ull ^sIRS(rs;T) = i

holds.

� In FU: During dispatch, the instruction is passed from the reserva-
tion station to a function unit. Formally, we say an instruction is
dispatched during cycleT iff there is a cycleT 0 < T and a reserva-
tion stationrs such that instructionIi is in reservation stationrs and
the instruction in that reservation station is dispatched.

dispatched(i;T)

:() 9T 0 < T; rs : dispatchrs(T 0; rs)^sIRS(rs;T 0) = i

The instruction leaves the function unit if it is passed to a producer.
Formally, an instruction is executed iff there is a cycleT 0 � T and
a producerf u such that instructionIi is in the producerf u and that
producer is full.

executed(i;T)

:() 9T 0 < T; f u : FU [ f u]T
0

:valid^sI f u( f u;T 0) = i

Formally, instructionIi is in a function unit during cycleT iff

dispatched(i;T)^executed(i;T)

holds. Note that there are function units (ALU, for example), that re-
turn the result in the same cycle they get it. In this case, the condition
above never holds, although the function unit is not bypassed.

� In producer: After leaving the function unit, the result of the in-
struction is stored in a producer. Formally, an instruction is in a
producer iff there is a producerf u such that instructionIi is in the
producerf u and the producer is full.

9 f u : P[ f u]T : f ull ^sIP( f u;T) = i
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Figure 6.9 Instruction phase state diagram

� In ROB: As soon as the producer gets the CDB, the result in the
producer is stored in the ROB. Formally, an instruction is in the ROB
during cycleT iff there is a ROB entrytag such that the instruction
in that entry isIi and the entry is valid and the instruction has not
terminated yet.

9 tag : ROB[tag]T :valid^sIROB(tag;T) = i^ terminated(i;T)

The phases of “normal” instructions, i.e., instructionsIi that are not
issued with result, are processed in the order above. Instructions with
issuewith result(i) skip the phases “in RS”, “in FU”, and “in producer”.
This is illustrated in figure 6.9. The figure shows the different phases and
the transitions between the phases. However, one has to assert this property
of the machine. This is done by the following lemmas.

Let p(i;T) denote that instructionIi is in phasep during cycleT.

Let pred(p) denote the set of predecessor phases of phasep according
to figure 6.9. For example, the “not issued” phase only has itself as prede-
cessor. The “in ROB” phase has three predecessor phases: “in ROB”, “not
issued”, and “in producer”.

In analogy topred(p), let succ(p) denote the set of successor phases of
phasep according to figure 6.9. For example, the “not issued” phase has
two successor phases: “in RS” and “in ROB”.

If instruction Ii is in a given phase during cycleT, and not in any otherJ Lemma 6.25
phase, we show that the instruction is in at most one successor phase during
cycleT +1, i.e., the sucessor phases mutually exclude each other.

For most phases, the claim is trivial, because they only thave themselvesPROOF
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and another state as successors. The only exception is the “not issued”
phase, which has three successors. We therefore show the claim exemplary
for the “not issued” phase.

� If issue(T) andsIissue(T) = i does not hold, one easily concludes
that instructionIi stays in “not issued” phase during cycleT + 1.
Thus, we have to show that it is not in a reservation station or in the
ROB. According to the premise of the lemma, the phases ofIi are
unique during cycleT. Thus,Ii is not in the ROB or in a reservation
station during cycleT. SinceIi is also not issued, one easily verifies
that it does not move into the ROB or into a reservation station.

� If issue(T) andsIissue(T) = i holds, one easily concludes that in-
structionIi either enteres the ROB or a reservation station, depending
on issuewith result(i). If issuewith result(i) holds, one verifies
that the instruction cannot be in a reservation station. If not so, one
verifies that the instruction cannot be in the ROB.QED

If instruction Ii is in a given phase during cycleT +1, we show that itLemma 6.26 I

must have been in one of the predecessor phases as given in figure 6.9
during cycleT:

p(i;T +1) =)
_

p02pred(p)

p0(i;T)

For example, if instructionIi is in phase “not issued” during cycleT +1,
this implies that it must be in phase “not issued” during cycleT.

In PVS, we split this claim into 6 lemmas, one for each phase. We showPROOF
the claim for the “not issued” phase and the “in RS” phase here exemplary.

� The claim for the “not issued” phase is easily asserted by expanding
the definition of “not issued” and by applying lemma 6.13.

� The claim for the “in RS” phase is asserted as follows: according to
the premise, there is a reservation stationrs such that

RS[rs]T+1: f ull ^ sIRS(rs;T +1) = i

holds. Letissuers(T; rs) hold. In this case, we have

sIRS(rs;T +1) = sIissue(T)
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Thus, the instructionIi is in issue stage during cycleT. Thus, it is in
“not issued” phase during cycleT, which concludes the claim.

Let issuers(T; rs) not hold. In this case, one easily asserts that the
full bit RS[rs]T : f ull is active andsIRS(rs;T) = i holds. Thus, the
instruction is in “in RS” phase during cycleT, which concludes the
claim. QED

The phase of instructionIi during cycleT is unique, i.e., the phases aboveJ Lemma 6.27
exclude each other mutually.

One easily shows this claim by induction onT. ForT = 0, one asserts that PROOF
all instructions are in “not issued” phase only.

For T +1, one shows the claim as follows: according to the induction
premise, instructionIi is in at most one phase during cycleT. One applies
lemma 6.25, which shows that the successor states mutually exclude each
other.

Furthermore, the instructionIi cannot be in a phase that is not a successor
phase during cycleT +1, which is asserted by lemma 6.26. QED

6.5.6 Tag Consistency

We will now show that the tags transported in the machine are consistent
with the scheduling functions, i.e., we will show that the tag stored together
with instructionIi is I tag(i).

If a reservation station is full, the tag in that reservation station is the tagJ Lemma 6.28
of the instruction in the reservation station.

RS[rs]T : f ull =) RS[rs]T :tag= I tag(sIRS(rs;T))

The claim is shown using induction onT. For T = 0 there is nothing to PROOF
show because the reservation stations are not full in the initial configura-
tion.

For T +1, we show the claim as follows: If an instructionIi is issued
into reservation stationrs during cycleT, the value of the tag in reservation
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station is defined by the issue protocol:

RS[rs]T+1:tag = ROBtailT

According to lemma 6.1, this is equivalent to 0ϑ� sIissue(T). This is
the definition ofI tag(i).

If no instruction is issued into reservation stationrs during cycleT, we
apply the induction premise.QED

If there is an instruction in a producer, the tag in the producer matches theLemma 6.29 I

tag of the instruction.

P[ f u]T : f ull =) P[ f u]T :tag= I tag(sIP( f u;T))

We show this claim by induction onT. ForT = 0, there is nothing to showPROOF
because the producer is not full in the initial configuration.

For T +1, we show the claim as follows: For the case that the instruc-
tion in the producer did not change from cycleT to T +1, we apply the
induction premise.

If a new instruction moved into the producer, we conclude the claim by
making the following assumption: if the function unit gets correct tags as
inputs for cyclesT 0 with T 0 � T, this implies that the function unit passes
the correct tag during cycleT. We will later on describe how to verify that
property of the function units. We show that the function units get correct
tags forT 0 with T 0 � T using lemma 6.28.QED

The tag on the CDB matches the tag of the instruction on the CDB.Lemma 6.30 I

CDBT:valid =) CDBT :tag= I tag(sICDB(T))

We assume that we only complete instructions from producers that arePROOF
full. Thus, we can apply lemma 6.29. The tag on the CDB matches the tag
from the producer. Furthermore, the instruction on the CDB matches the
instruction in the producer, by definition ofsICDB.QED
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6.5.7 Data Consistency Criterion

In this section we describe our data consistency criterion for the Toma-
sulo protocols. We define a formal notion for the correct input and output
values of an instruction. We do this by defining an abstract machine that
processes an instruction with each transition. We call this machine abstract
specification machine (aS). The configuration set of this machine consists
of the registers.

Given an instruction (configuration of this machine), we define the cor-
rect value of a source registerr to be the value of the registerr if r 6= 0 and
to be zero ifr = 0:

source(i; r) :=

�
0 : r = 0
ci

aS:R : otherwise

The functionsource(i) maps an instruction to the values of all source
operands. Remember thatS(i;x) denotes the number of the register of
source operandx. Let sdenote the number of source registers.

source: N �!W (R)s

source(i)(x) := source(i;S(i;x))

Let fi be the function that maps the values of the source operands of
instruction Ii to the values of the destination operands unless we have
issuewith result(i). Let d denote the number of destination registers.

fi : W (R)s�!W (R)d

Thus, the result of instructionIi is:

result(i; r) :=

�
issueresult(i) : issuewith result(i)
fi(source(i)) : otherwise

This allows defining the configurations of the abstract specification ma-
chine. We start with an initial configurationc0

aS and proceed usingf . If
instructioni�1 has registerr as destination register, then we take the the
new value ofR[r] from the result ofIi�1. If not so, we take the value from
the old configuration.

ci
aS:R[r] :=

8<
:

c0
aS:R[r] : i = 0

result(i�1)[e(r)] : i 6= 0^dest(i�1; r)
ci�1

aS : otherwise
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Proof Strategy We will show the correctness of a DLX implementation
with Tomasulo scheduler as follows:

� We will show that a machine implementing the Tomasulo protocols
given in the previous sections simulates the abstract machineaS.
This is the hardest part of the proof.

� We will show that the DLX implementation with Tomasulo sched-
uler implements the Tomasulo protocols.

We will now conclude several trivial properties of the abstract specifica-
tion machineaS.

If instruction Ii has no destination registerR[r], thenR[r] is not changedLemma 6.31 I

by instructionIi .

dest(i; r) =) R[r]i+1
aS = R[r]iaS

The proof is done by expanding the definition ofR[r]i+1
aS .

Let the predicateL(i; r) hold iff there is an instructionj < i such thatDefinition 6.3
L(i; r)

I

instructionI j has destination registerr.

L(i; r) :() 9 j < i : dest( j; r)

Let i and j � i be instructions. IfL( j; r) holds, so doesL(i; r).Lemma 6.32 I

j � i^L( j; r)) =) L(i; r)

This holds by definition of the predicates.

Let L(i; r) hold. Let last(i; r) denote the number of the last instructionDefinition 6.4
last(i; r)

I

with destination registerr prior to instructionIi. Formally, this is the max-
imum of the set of instructionsI j with j < i anddest( j; r).

last(i; r) := maxf j j j < i^dest( j; r)g

This set is always non-empty because ofL(i; r). Furthermore, the set
is finite and has an upper bound. Thus, the maximum is defined ifL(i; r)
holds.
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The following property is easily shown using the definition oflast and
the definition of max.

If L(i; r) holds, the instructionIlast(i;r) has destination registerr. J Lemma 6.33

L(i; r) =) dest(last(i; r); r)

Let L(i; r) and i � 1 hold. If instructionIi�1 does not have a destinationJ Lemma 6.34
registerr, L(i�1; r) holds.

i � 1^L(i; r)^dest(i�1; r) =) L(i�1; r)

BecauseL(i; r) holds, there must be an instructionI j with j < i and PROOF
dest( j; r). Since this is not instructioni�1, it must be an instruction with
j < i�1. Thus,L(i�1; r) holds.

Let i �1 andL(i; r) hold. If instructionIi�1 does not have a destinationJ Lemma 6.35
registerr, thenlast(i; r) is equal tolast(i�1; r).

i � 1^L(i; r)^dest(i�1; r) =) last(i; r) = last(i�1; r)

Because ofL(i; r), last(i; r) is defined. According to lemma 6.34,L(i� PROOF
1; r) holds. Thus,last(i�1; r) is defined.

Let j be last(i; r). By definition of max, this number is element of
f0; : : : ; i�1g. Because ofdest(i�1; r), j cannot bei�1. Thus, j is equal
to last(i�1; r). QED

Let i � 1 hold. If instructionIi�1 has destination registerr, last(i; r) is J Lemma 6.36
equal toi�1.

i � 1^dest(i�1; r) =) last(i; r) = i�1

This is easily shown by using the definition of max.

Let Ii andI j with j � i be instructions. If all instructionsI j 0 with j � j 0 < i J Lemma 6.37
do not have a destination registerr, the value ofR[r] does not change from
configurationci

aS to cj
aS.

j � i^ (8 j � j 0 < i : dest( j 0; r) =) R[r]iaS= R[r] j
aS

279



Chapter 6

OUT-OF-ORDER

EXECUTION

One easily concludes this using induction oni and the transition function
of R[r].

Let R[r] with r 6= 0 be a register and letL(i; r) hold. In this case, theLemma 6.38 I

correct source register ofIi is the result of the last instruction writingR[r].

r 6= 0^L(i; r) =) source(i; r) = result(last(i; r))[e(r)]

By definition of last(i; r), the instructionsI j with last(i; r) < j < i do notPROOF
have destination registerr. According to lemma 6.37, we have

R[r]iaS = R[r]last(i;r)+1
aS

The left hand side issource(i; r) by definition, and the right hand side is

result(last(i; r))[e(r)] by definition ofR[r]last(i;r)+1
aS .QED

Let there not be an instruction that is issued during cycleT with desti-Lemma 6.39 I

nationR[r]. This implies that the value of source registerr of instruction
Iissue(T) matches the value of source registerr of instructionIissue(T+1).

issue(T)^dest(sIissue(T); r)

=) source(sIissue(T ); r) = source(sIissue(T +1); r)

If issue(T) does not hold, we havesIissue(T) = sIissue(T +1) and thePROOF
claim obviously holds.

If issue(T) holds, we apply lemma 6.37 and expand the definition of
source.QED

6.5.8 Forwarding Tags Consistency

The Tomasulo scheduling algorithm does forwarding at two places: 1) dur-
ing issue, we forward from the CDB and from the ROB, 2) while in a
reservation station, we forward from the CDB.
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Both forwarding from the ROB and from the CDB is done using the tag.
We will now show that the tags used for forwarding are correct.

Let Ii be the instruction in issue stage during cycleT. If a registerR[r] J Lemma 6.40
is marked as “not valid” during cycleT in the producer table, there is an
instruction prior to instructionIi that writesR[r] and the tag of the regis-
ter in the producer table is the tag of the last instruction prior instruction
IsIissue(T) writing R[r].

sIissue(T) = i^R[r]T :valid

=) L(i; r)^R[r]T :tag= I tag(last(i; r))

We verify that claim by induction onT. For T = 0, there is nothing to PROOF
show because we make the valid bits of the registers active in the initial
configuration.

ForT+1, we conclude the claim as follows: In caseR[r]T+1:valid holds,
there is nothing to show. Thus, letR[r]T+1:valid not hold. We distinguish
three cases:

� If an instruction with destination registerR[r] is issued during cycle
T, we easily assertL(i; r), since instructionsIissue(T) satisfies the
claim.

We assertR[r]T :tag= I tag(last(i; r)) as follows: we apply lemma
6.36, which states:

last(i; r) = i�1

Thus, we have to show:

R[r]T+1:tag
!
= I tag(i�1)

During issue, the ROB tail pointer is stored inR[r]:tag. Thus, the
claim is equivalent to:

ROBtailT
!
= I tag(i�1)

According to the definition ofI tagand lemma 6.1, this is equivalent
to:

0θ�sIissue(T)
!
= 0θ� (i�1)

sIissue(T)
!
= i�1
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This is concluded using the fact thati = issue(T +1) holds, and by
expanding the definition ofissue(T +1), and the fact thatissue(T)
holds.

� If an instruction with no destination registerR[r] is issued during
cycleT, considerR[r]T :valid. If R[r]T :valid holds, this implies that
R[r]T+1:valid, which is a contradiction.

Thus,R[r]T :valid does not hold. This allows applying the induction
premise for instructionIi�1 and we get:

L(i�1; r)^R[r]T :tag= I tag(last(i�1; r))

We concludeL(i; r) from L(i�1; r) using lemma 6.32.

As the instruction that is issued during cycleT does not have a des-
tination registerR[r], we haveR[r]T+1:tag= R[r]T :tag, which trans-
forms the claim into:

R[r]T :tag
!
= I tag(last(i; r))

Thus, it is left to show thatlast(i�1; r) = last(i; r) holds. This is
concluded using lemma 6.35.

� If no instruction is issued during cycleT, we assert thatR[r]T :valid
does not hold as in the case above. This allows applying the induc-
tion premise, which concludes the claim.QED

The following lemma will be used for the induction step for the proof of
lemma 6.42.

Let reservation stationrs be full during cycleT +1 and let the operandxLemma 6.41 I

be not valid. There are two possible reasons for this: 1) this was already
true during cycleT, and 2) an instruction was issued into the reservation
station during cycleT.

RS[rs]T+1: f ull ^RS[rs]T+1:op[x]:valid

=) (RS[rs]T : f ull ^RS[rs]T :op[x]:valid)_

(issue(T)^ issuers(T; rs))

One easily asserts this claim by applying the definition of the issue pro-
tocol. Full bits of reservation stations are only set by the issue protocol,
the valid bit of the operand is only cleared by the issue protocol.
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The following lemma will be used to argue the correctness of data that
is forwarded into a reservation station.

Let reservation stationrs be full and let instructionIi be in this reservationJ Lemma 6.42
station. Let operandx be not valid, and letr beS(i;x). This implies that
r is not zero, and that there is an instruction prior to instructionIi with
destinationR[r] and the tag of operandx is the tag of the last instruction
prior to Ii with destinationR[r].

RS[rs]T : f ull ^sIRS(rs;T) = i^RS[rs]T :op[x]:valid

=) r 6= 0^L(i; r)^RS[rs]T :op[x]:tag= I tag(last(i; r)))

One asserts this claim by induction onT. For T = 0, there is nothing to PROOF
show since the full bits of the reservation stations are not set in the initial
configuration.

ForT+1, we show the claim by applying lemma 6.41. Consider the case
that an instruction is issued into the reservation station during cycleT. In
this case, the claim is easily concluded using lemma 6.40 (correctness of
the tags in the producer tables).

If no instruction is issued into the reservation station during cycleT, the
tag in the reservation station does not change and we have

RS[rs]T : f ull ^RS[rs]T :op[x]:valid

according to lemma 6.41. This allows applying the induction premise,
which concludes the claim. QED

6.5.9 Tag Uniqueness

We will now show the tag uniqueness properties for the different places
tags are used in the Tomasulo machine.

Recall that this property was shown in lemma 6.21. This lemma uses
τ(i;T) as premise. Thus, we use “tag is unique” andτ(i;T) synonymously.

Let Ii be the instruction in issue stage and let the valid bit of registerR[r] J Lemma 6.43
be not set. This implies that there is an instruction prior toIi writing R[r]
and the tag of the last such instruction is unique.

sIissue(T) = i^R[r]T :valid =) L(i; r)^ τ(last(i; r);T)
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PROOF This claim is concluded by induction onT. For T = 0, there
is nothing to show since we make the valid bits of all registers set in the
initial configuration.

ForT +1, we apply lemma 6.40, which states that there is an instruction
prior to Ii writing R[r] and that the tag in the producer table is the tag of
instruction j := last(i; r). In order to show the uniqueness of the tag, we
have to assert that instructionI j is already issued but not yet terminated.

One easily asserts that instructionI j is already issued by definition of
last(i; r).

We show that instructionI j is not yet terminated by distinguishing two
cases:

1. If an instruction with destinationR[r] is issued during cycleT, we
show thatj = i�1 holds using lemma 6.36. This instruction cannot
be terminated in cycleT+1, because this is a contradiction to lemma
6.9.

2. If no instruction with destinationR[r] is issued during cycleT, we
assert that the valid bit of registerR[r] is not set during cycleT:

R[r]T :valid

This allows applying the induction premise for the instruction issued
during cycleT (instructionsIissue(T)). Thus, we have:

τ(last(sIissue(T); r);T)

If issue(T) does not hold, we havesIissue(T) = i and the claim is
concluded. Thus, letissue(T) hold. We already showed the claim
for the case that instructionsIissue(T) has destination registerR[r].
For the case it does not have such a destination register, we apply
lemma 6.35, which states that

last(i; r) = last(sIissue(T); r)

holds. Thus, we have:
τ( j;T)

We therefore know that instructionI j did not terminate before cycle
T. It is left show show that it does not terminate during cycleT.
Assume it does terminate during cycleT. One easily asserts that the
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tag in the producer table of registerR[r] is the tag of instructionI j

since it is unique according to the induction premise.

Thus, according to the writeback protocol, the valid bit ofR[r] is set
during cycleT. This is a contradiction to the fact thatR[r]T+1:valid
does not hold. QED

Let Ii be in reservation stationrs and let that reservation station be full.J Lemma 6.44
This implies that the tag of instructionIi is unique.

RS[rs]T : f ull =) τ(sIRS(rs;T);T)

One easily concludes that instructionIi is in phase “in RS”, as formally PROOF
defined above. According to lemma 6.27, the instruction cannot be in two
different phases during cycleT. Thus, it cannot be in “not issued” phase,
which allows concluding that it is already issued.

Furthermore, it cannot be in “terminated” phase. Thus,τ(i;T) holds. QED

Let Ii be an instruction in a full reservation station. Letx be a sourceJ Lemma 6.45
operand that is not valid, andr := S(i;x) be the source register. There is
an instruction prior toIi writing R[r]. Let I j be the last instruction prior to
instructionIi that writesR[r].

We claim that instructionI j is in one of the following phases: 1) it is in
a reservation station, 2) it is in a function unit, or 3) it is in a producer.

This claim is shown by induction onT. For T = 0, there is nothing to PROOF
show since the reservation stations are not full in the initial configuration.

For T +1, we conclude the clain as follows: According to lemma 6.41,
there are two cases: an instruction is issued into reservation stationrs dur-
ing cycleT or the instruction already was in the reservation station during
cycleT.

� If an instruction is issued into the reservation station during cycle
T, one easily asserts that the valid bit of the source register cannot
be active (otherwise, the valid bit of the reservation station source
operand is set and we have nothing to show). This allows applying
lemma 6.40, which states that the tag of the last instruction writ-
ing the register is in the producer table. According to lemma 6.43,
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the tag is unique, i.e., instructionI j is already issued and has not
yet terminated. Futhermore, the instruction is not in the “in ROB”
phase during cycleT and not on the CDB (otherwise, the valid bit
of the reservation station source operand is set and we have nothing
to show). Thus, it must be in a reservation station, function unit or
producer during cycleT.

We conclude the claim as follows: if the instruction is in a reser-
vation station, we use lemma 6.59 in order to conclude that it ei-
ther stays in that phase or enters a function unit. This concludes the
claim.

If the instruction is in a function unit, we use lemma 6.59 in order to
conclude that it either stays in that phase or enters a producer. This
concludes the claim.

If the instruction is in a producer, we use 6.59 in order to conclude
that it either stays in that phase or moves into the ROB. The last case
cannot happen, since this is a contradiction to the fact that the valid
bit of the operand is not active. This is easily concluded since the tag
of I j is valid because the instruction is in the “in producer” phase.

� If no instruction is issued into the reservation station during cycle
T, one applies the induction premise. The induction premise states
that instructionI j is in a reservation station, a function unit, or in a
producer. After that, the claim is concluded as in the case above.QED

Let Ii be an instruction in a full reservation station. Letx be a sourceLemma 6.46 I

operand that is not valid, andr := S(i;x) be the source register. There is
an instruction prior toIi writing R[r]. Let I j be the last instruction prior to
instructionIi that writesR[r]. The tag of that instruction is unique.

RS[rs]T : f ull ^sIRS(rs;T) = i^RS[rs]T :op[x]:valid

=) L(i; r)^ τ( j;T)

One easily asserts this lemma by applying lemma 6.45. According toPROOF
lemma 6.27, the phases exclude each other. Thus,I j cannot be in “not
issued” or “terminated” phase, which concludes the claim.QED

Let Ii be in producerf u and let that producer be full. This implies that theLemma 6.47 I

tag of instructionIi is unique.

P[ f u]T : f ull =) τ(sIP( f u;T);T)
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PROOF The instruction in the producer is in the “in producer” phase. Ac-
cording to lemma 6.27, the phases exclude each other. Thus, the instruc-
tion cannot be in “not issued” or “terminated” phase, which concludes the
claim.

The tag of the instruction on the CDB is unique. J Lemma 6.48

CDBT :valid =) τ(sICDB(T);T)

One easily asserts this lemma by expanding the definition ofsICDB(T)
and by applying lemma 6.47.

6.5.10 Data Consistency Invariants

In order to show data consistency, we claim a set of invariants. As done
in the previous chapters, we will show that all these invariants hold by
induction onT. The invariants are taken from [MPK00].

Let instructionIi be in the issue stage. Letr 6= 0 be a register. Let the validJ Invariant 6.1
bit of registerR[r] be set. In this case, the register data is correct.

sIissue(T) = i^ r 6= 0^R[r]T :valid =) R[r]T :data= source(i; r)

Let reservation stationrs be full and let instructionIi be in reservationJ Invariant 6.2
stationrs. If an input operand of the reservation station is valid, the value
in the operand registers is the correct source operand of instructionIi .

sIRS(rs;T) = i^RS[rs]T : f ull ^RS[rs]T :op[x]:valid

=) RS[rs]T :op[x]:data= source(i)(x)

After all operands are valid, the instruction is passed to the function
unit. Once the instruction leaves the function unit, the result is stored in
a producer. The following invariant asserts that the producer holds the
correct result.

Let producerp be full and let instructionIi be in producerf u. The result J Invariant 6.3
in this producer is the result of instructionIi.

sIP( f u;T) = i^P[ f u]T : f ull =) P[ f u]T :result= result(i)
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Once there is an instruction in a producer, the producer requests the
CDB. After the request is acknowledged, the result is put on the CDB.

Let Ii be on the CDB. The result on the CDB is the result ofIi .Invariant 6.4 I

sICDB(T) = i^CDBT:valid =) CDBT :result= result(i)

While on the CDB, the results are written into the ROB. The following
invariant asserts that the results in the ROB are correct.

Let Ii be in ROB entrytagand let that entry be valid. This implies that theInvariant 6.5 I

result in the ROB entry is the result of instructionIi .

sIROB(tag;T) = i^ROB[tag]T :valid

=) ROB[tag]T :result= result(i)

We now show lemmas that form the induction step of the invariant proof.

Let invariant 6.3 (producer data consistency) hold during cycleT. ThisLemma 6.49 I

implies that invariant 6.4 (CDB data consistency) holds during cycleT.

By definition,CDBT :valid only holds iff we complete an instruction, i.e.,PROOF
iff completion(T) holds. The producer the instruction we complete is in, is
denoted bycompl p(T). We assume that we only complete an instruction
in a producer, if that producer is full. Thus,

P[compl p(T)]T : f ull

holds. This allows applying invariant 6.3, which states that the result in the
producer is correct:

P[compl p(T)]T):result= result(sIP(compl p(T);T))

The term on the left hand side is the result on the CDB by definition.

CDBT :result= result(sIP(T))

288



Section 6.5

DATA

CONSISTENCY

By definition ofsICDB(T), we havesICDB(T) = sIP(compl p(T);T).
This concludes the claim.

Let invariant 6.5 (ROB data consistency) and invariant 6.4 (CDB dataJ Lemma 6.50
consistency) hold during cycleT. This implies that invariant 6.5 (ROB
data consistency) holds during cycleT +1.

In order to show the claim, we distinguish three cases: PROOF

1. Consider the case that an instruction is issued into ROB entrytag
during cycleT, i.e., we have:

issue(T)^ROBtailT = tag

In this case, the ROB entrytag is valid iff we have the result of the
instruction available during issue, i.e., ifissuewith result(T) holds.
Thus, there is nothing to show unlessissuewith result(T) holds.
We easily conclude thatsIROB(tag;T +1) is equal tosIissue(T).
Thus, the result in the ROB is correct by definition.

2. Consider the case that we do not issue an instruction into ROB entry
tagduring cycleT and that we receive a result from the CDB during
cycleT, i.e.:

CDBT :valid^CDBT:tag= tag

In this case, the result on the CDB is stored in the ROB and we have
to argue its correctness:

result(sIROB(tag;T +1))
!
= ROB[tag]T+1:result
!
= CDBT :result

According to invariant 6.4 (CDB data consistency), we have:

CDBT :result = result(sICDB(T))

Thus, the claim holds if we showsIROB(tag;T +1) = sICDB(T),
i.e., it is left to show that the tag maps to the correct instruction.
These arguments are weak in [MPK00].

We show this formally using lemma 6.48. Lemma 6.48 states that

τ(sICDB(T);T)
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holds. This allows applying theorem 6.21, which states:

sIROB(I tag(sICDB(T));T) = sICDB(T)

Thus, it is left to show:

sIROB(tag;T +1)
!
= sIROB(I tag(sICDB(T));T)

According to lemma 6.30, we havetag= I tag(sICDB(T)). This
transforms the claim into:

sIROB(tag;T +1)
!
= sIROB(tag;T)

This is concluded by expanding the definition ofsIROB(tag;T +1).

3. Consider the case that no instruction is issued in ROB entrytag and
that no result for ROB entrytag is on the CDB. We assert this case
using invariant 6.5 for cycleT.QED

Let invariant 6.5 (ROB data consistency) and invariant 6.1 (register fileLemma 6.51 I

data consistency) hold during cycleT. This implies that invariant 6.1 (reg-
ister file data consistency) holds during cycleT +1.

We distinguish three cases:PROOF

1. Consider the case that we issue an instruction with destinationr dur-
ing cycleT. In this case, the valid bitR[r]T+1:valid cannot hold and
there is nothing to show.

2. Consider the case that we writeback an instruction with destinationr
during cycleT and let the valid bit ofR[r] be not active during cycle
T. We only do this writeback if the ROB entry that the ROB head
pointer points to is valid. According to invariant 6.5, this implies
that the result in the rob entry is the result of the instruction. This
transforms the claim into:

result(sIROB(ROBheadT ;T))[e(r)]
!
= source(i; r)

The tag ofR[r] matches the the ROB head pointer, since otherwise
R[r]T+1:valid cannot hold and there is nothing to show.
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According to lemma 6.40, that tag is equal to the tag of the last
instruction prior to instructionissue(T) that writesR[r]. This trans-
forms the claim into:

result(sIROB(I tag(last(sIissue(T ); r);T))[e(r)]
!
= source(i; r)

According to lemma 6.43, that tag is unique. This allows applying
lemma 6.21, which transforms the claim into:

result(last(sIissue(T ); r))[e(r)]
!
= source(i; r)

According to lemma 6.39, we have:

source(sIissue(T ); r) = source(sIissue(T +1); r)

This transforms the claim into:

result(last(sIissue(T ); r))[e(r)]
!
= source(sIissue(T ); r)

This is concluded using lemma 6.38.

3. If we neither issue an instruction with destinationR[r] nor write-
back an instruction with destinationR[r] with R[r]T :valid, assume
R[r]T :valid does not hold. In this case, valid bitR[r]T+1:valid can-
not hold and there is nothing to show.

Thus,R[r]T+1:valid holds. The claim is:

R[r]T :data
!
= source(i; r)

After applying the induction premise, this is transformed into:

source(sIissue(T); r)
!
= source(i; r)

We assert this using lemma 6.39. QED

Let invariant 6.3 (producer data consistency) hold during cycleT and J Lemma 6.52
invariant 6.2 (reservation station data consistency) hold during cyclesT 0

with T 0 � T. This implies that invariant 6.3 (producer data consistency)
holds during cycleT +1.
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PROOF One concludes this claim as follows: if an instruction moves
into the producer during cycleT, we make the assumption that the func-
tion unit delivers a correct result given that it got correct inputs during all
cyclesT 0 � T. This is easily asserted using invariant 6.2 (reservation sta-
tion data consistency). For this, we have to assume that we only dispatch
instructions with valid operands.

If no instruction moves into the producer during cycleT, we conclude

sIP( f u;T) = sIP( f u;T +1):

Furthermore, we conclude thatP[ f u]T : f ull holds and that the value in
P[ f u]:result does not change from cycleT to cycle T + 1. This allows
concluding the claim from invariant 6.3 (producer data consistency) for
cycleT.QED

If the tag on the CDB matches the tag of an instructionIi and the tag ofLemma 6.53 I

that instruction is unique, then the instruction on the CDB is instructionIi .

CDBT :valid^CDBT:tag= I tag(i)^ τ(i;T) =) sICDB(T) = i

This is easily shown using lemma 6.30 (uniqueness of CDB tag) and
6.22.

The following two lemmas are used to argue the data consistency of the
reservation stations (invariant 6.2). Since this is where all forwarding is
done, this is the most complicated part of the proof. We therefore split the
proof of invariant 6.2 into two lemmas.

The first lemma shows the claim for the case the operand reading is
done in the issue stage. The second lemma shows the claim for the case
the operand reading is done in the reservation station. The same case split
is also done in [MPK00].

Let invariant 6.2 (reservation station data consistency) and invariant 6.1Lemma 6.54 I

(register file data consistency) and invariant 6.4 (CDB data consistency)
and invariant 6.5 (ROB data consistency) hold during cycleT.

If an instruction is issued into reservation stationrs, invariant 6.2 for
reservation stationrs holds during cycleT +1.
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PROOF We show this claim by a case split on the location the operandx
is read from. LetIi be the instruction in the issue stage and letr = S(i;x)
be a shorthand for the number of the register we read.

� If r = 0 holds, we read zero and the claim holds by definition of
source(i;0).

� Reading from the register file: This is done only iffR[r]T :valid
holds. This allows applying invariant 6.1. This concludes the claim.

� Reading from the CDB: This is done only iffR[r]T :valid does not
hold. This allows applying lemma 6.40, which states that the tag
in the producer table is the tag of the last instruction writingR[r].
According to lemma 6.43, that tag is unique. This allows applying
lemma 6.53, which states that the last instruction writingR[r] is on
the CDB. According to lemma 6.4, the result on the ROB is the result
of that instruction.

Thus, it is left to show:

result(last(i; r))[e(r)]
!
= source(i)(x)

We assert this using lemma 6.38.

� Reading from the ROB: We repeat the arguments from the case
above in order to show that the tag in the producer table is the tag
of the last instruction writingR[r]. Let tag denote the tag. This tag
is unique, and we therefore know that the instruction in ROB entry
tag is the last instruction writingR[r] (lemma 6.21). According to
invariant 6.5, the result in the ROB is the result of this instruction.
As before, we conclude the claim using lemma 6.38. QED

Let invariant 6.2 (reservation station data consistency) and invariant 6.4J Lemma 6.55
(CDB data consistency) hold during cycleT.

If no instruction is issued into reservation stationrs, invariant 6.2 for
reservation stationrs holds during cycleT +1.

Let x be a source operand number. If the valid bit of operandx holds PROOF
during cycleT, one just applies invariant 6.2 for cycleT.

If not so, we snoop an operand from the CDB or we have nothing to
show. The argue the correctness of CDB snooping as follows: Leti be the
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number of the instruction in reservation stationrs during cycleT +1. The
claim of invariant 6.2 is:

RS[rs]T+1:op[x]:data
!
= source(i)(x)

By expanding the definition ofRS[rs]T+1:op[x]:data on the left hand
side, this is transformed into:

CDBT :result[e(S(i;x))]
!
= source(i)(x)

Invariant 6.4 states:

CDBT :result = result(sICDB(T))

Thus, the claim is transformed into:

result(sICDB(T))[e(S(i;x))]
!
= source(i)(x)

Thus, it is left to show that the result of the instruction on the CDB is the
source operand of the instruction in the reservation station. This is argued
as follows: According to lemma 6.38 with instructionsIi andIsICDB(T), the
claim above holds if we show the premises of the lemma. These premises
are:

S(i;x) 6= 0^L(i;S(i;x))^ last(i;S(i;x)) = sICDB(T))

Thus, we have to show that the source register is not register 0 and that
there is an instruction beforeIi that writes the register. One easily argues
this using invariant 6.42.

Furthermore, one has to show that the last instruction beforeIi writing
the register is the instruction on the CDB. We argue this using the fact
that the tag on the CDB matches the tag stored in the reservation station
for the operand. According to invariant 6.42, that tag is the tag of the last
instruction writing the register.

Lemma 6.44 states that the tags in the reservation stations are unique.
This allows applying lemma 6.53, which concludes the claim.QED
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The following lemma combines the claims of lemma 6.54 and lemma
6.55.

Let invariant 6.2 (reservation station data consistency) and invariant 6.1J Lemma 6.56
(register file data consistency) and invariant 6.4 (CDB data consistency)
and invariant 6.5 (ROB data consistency) hold during cycleT. This implies
that invariant 6.2 for reservation stationrs holds during cycleT +1.

This claim is shown using lemma 6.54 and lemma 6.55.

The invariants 6.1 to 6.5 hold. J Theorem 6.57

We show this claim by induction onT. We omit the simple arguments for PROOF
cycleT = 0.

The claim forT +1 is shown by applying lemma 6.50, 6.51, 6.52, and
6.56 for cycleT and lemma 6.49 for cycleT +1. QED

A machine implementing the Tomasulo protocols above, satisfies the fol-J Theorem 6.58
lowing data consistency criterion:

R[r]TaI :data = R[r]sIwriteback(T)
aS

Since all speculation registers are output of the writeback stage, this
criterion exactly matches the data consistency criterion as proposed for
the in-order pipelined machine.

Given the data consistency invariants above, one easily shows this claimPROOF
by induction onT. ForT = 0, we havesIwriteback(T) = 0 and we there-
fore have the claim that the registers are in the initial configuration. We
assume this.

ForT +1, we show the claim as follows: In casewriteback(T) does not
hold, one easily asserts that

sIwriteback(T) = sIwriteback(T +1)

holds and that the registers do not change from cycleT to T +1. Thus, the
claim is concluded using the induction premise. Leti be a shorthand for
sIwriteback(T).
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In casewriteback(T) holds, we do a case split ondest(i; r). If dest(i; r)
does not hold, we easily assert the claim using the induction premise.

If dest(i; r) andwriteback(T) hold, we have the following claim:

ROBT [ROBhead(T)]:result[e(r)]
!
= R[r]i+1

aS

The register on the right hand side expands to the result of instructionIi:

ROBT [ROBhead(T)]:result[e(r)]
!
= result(i)[e(r)]

We assert this using invariant 6.5 for instructionIi and tagROBhead(T),
which holds according to theorem 6.57.

The claim of invariant 6.5 concludes the claim above. It is left to show
the premises of invariant 6.5, which are:

sIROB(ROBhead(T);T) = i^ROB[ROBhead(T)]T :valid

We assert the first part of this claim using lemma 6.24. The valid bit of
the ROB entry holds since we assume that we only writeback if the valid
bit holds.QED

6.6 Liveness

We propose the following liveness criterion for the Tomasulo machine with
reorder buffer: we will show that all instructions will eventually be in the
terminated phase.

We use a similar liveness proof strategy as employed in chapter 4. We
show our claim by induction onT. Thus, the induction step is: given
all instructions up to instructionIi�1 terminated, instructionIi eventually
terminates.

Informally, we show this as follows: We will show that instructionIi
must be in a phase. According to lemma 6.27, that phase is unique. We
do a case split on the phase of instructionIi . If instruction Ii is in “in
ROB” phase, we easily assert that it eventually terminates. If instruction
Ii is in a producer, we assert that it will move into “in ROB” phase. We
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then conclude the claim as before. These arguments are continued until all
phases are covered.

We will now formalize this proof.

If instruction Ii is in phasep during cycleT, this implies that it is in oneJ Lemma 6.59
of the successor phases of phasep during cycleT +1.

p(i;T) =)
_

p02succ(p)

p0(i;T +1)

We show this claim exemplary for phase “not issued”. Thus, we have toPROOF
show that instructionIi is still not issued, in a reservation station, or in the
ROB during cycleT +1.

� If issue(T) andsIissue(T) = i does not hold, one easily concludes
that instructionIi stays in “not issued” phase.

� If issue(T) andsIissue(T) = i holds andissuewith result(i) holds,
one easily shows that instructionIi is in the reorder buffer during
cycleT +1.

� Otherwise, we assume that there is a reservation stationrs such that
issuers(T; rs) holds. One easily verifies that instructionIi is in that
reservation station during cycleT +1. QED

InstructionIi is in at least one phase during cycleT. J Lemma 6.60

The claim is concluded by induction onT. For cycleT = 0, we conclude PROOF
the claim easily since all instructions are in the “not issued” phase.

For T +1, we conclude as follows: According to the induction premise,
instruction Ii is in at least one phase during cycleT. This allows apply-
ing lemma 6.59, which states that instructionIi is in one of the successor
phases of that phase. This concludes the claim. QED

The following lemmas form the induction step for the liveness proof.

If there is a cycle such that instructionIi�1 either not exists or terminatedJ Lemma 6.61
and instructionIi is in “in ROB” phase, instructionIi will eventually termi-
nate.
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PROOF Let T be the cycle given by the premise. According to the
premise, instructionIi is in “in ROB” phase during cycleT. This implies
that it is not terminated yet. Since we either havei = 0 or the previous
instruction is terminated, we have

i = sIwriteback(T)

We show that instructionIi terminates during cycleT, i.e., it is left to
show thatwriteback(T) holds. As described above, we assume that we
always terminate if the ROB is not empty and the ROB entry thatROBhead
points to is valid. One easily asserts that the ROB is not empty during cycle
T using that instructionIi is in “in ROB” phase during cycleT.

According to the premise, there is a ROB entrytag that is valid and such
that

sIROB(tag;T) = i

holds. Using lemma 6.11, we assert thattag is the tag of instructionIi .
Using lemma 6.23, we assert that entrytag is the entryROBhead(T) points
to. Thus, the ROB entryROBhead(T) points to is valid and we writeback.

QED

If producer f u is full during cycleT, then there is a cycleT 0 � T such thatLemma 6.62 I

the instruction is put on the CDB.

P[ f u]T : f ull =) 9T 0 � T : completion(T 0)^

compl p(T 0) = f u^

sIP( f u;T 0) = sIP( f u;T)

In order to show this claim, we make the assumption that the CDB requestsPROOF
are served using a fair arbiter. One has to show that instructionIi stays
in the producerf u until the request is served using induction. For this
purpose, we have to assume that the function unit does not overwrite an
instruction in its producer. This is illustrated in figure 6.10. Formally, the
function unit f u provides a result during cycleT iff FU [ f u]T :valid holds.

The producer generates a stall signal if it is full and does not get the
CDB. Let f uins( f u;T):stall denote the value of this signal during cycle
T.

f uins( f u;T):stall := P[ f u]T : f ull ^

(completion(T)^compl p(T) = f u)
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from reservation station

function
unit

result, tag, flags valid
stall

producer

CDB

Figure 6.10 Interface between function unit and producer

We assume that the function unit does not provide a result if it gets a
stall signal.

f uins( f u;T):stall =) FU [ f u]T :valid

Since the CDB is assigned using a fair arbiter, there is a cycleT 0 such
that the request is acknownledged. Using the assumption on the function
unit above, one easily shows by induction that the instruction stays in the
producer until this happens and is not overwritten. QED

If there is a cycle such that instructionIi�1 either not exists or terminatedJ Lemma 6.63
and instructionIi is in “in producer” phase, instructionIi will eventually
terminate.

Let T be the cycle from the premise of the lemma. Thus, instructionIi PROOF
is in a producer during cycleT. Let this be producerf u. We will show
that this instruction eventually moves into the reorder buffer. Although we
assume that all instructions prior to instructionIi already terminated, this is
not obvious. In particular, there might be instructionslater than instruction
Ii that block the CDB.

According to lemma 6.62, there is a cycleT 0 � T such that the request
is served and the instruction is still in the producer. Formally, we have:

completion(T 0) ^ compl p(T 0) = f u ^ sIP( f u;T 0) = sIP( f u;T)

One easily concludes that instructionIi is in ROB entryI tag(i) dur-
ing cycleT +1. This allows applying lemma 6.61, which shows that the
instruction eventually terminates. QED
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Note that assuming that the CDB is allocated using a fair arbiter is not
necessary for liveness, we do it for sake of simplicity only. If the CDB
is not allocated using a fair arbiter, we can argue as follows: Informally,
assume instructionIi is blocked in a producer by instructions later thanIi .
Since we terminate in-order, there is an upper bound for the number of
these instructions, which is the number of ROB entries. Thus, instruction
Ii will eventually get the CDB.

If there is a cycle such that instructionIi�1 either not exists or terminatedLemma 6.64 I

and instructionIi is in “in FU” phase, instructionIi will eventually termi-
nate.

Let T be the cycle from the premise of the lemma. Thus, instructionIi isPROOF
in a function unit during cycleT. Let this be function unitf u. We will
show that this instruction eventually moves into the producerP. Although
we assume that all instructions prior to instructionIi already terminated,
this is not obvious. In particular, there might be instructionslater than
instructionIi that block the function unit or the producer.

In order to show this claim, we have to make the following assumption
on the functional units: Given that the signalf uins( f u;T):stall is finite
true and that instructionIi entered the function, there is a later cycle such
that the instruction leaves the unit.

8T 09T 00 � T 0 : f uins( f u;T 00):stall^ in(i;T; f u)

=) 9T 000 � Tout(i;T 000; f u)

One easily asserts that the signalf uins( f u;T):stall is finite true using
the fact that the CDB is allocated using a fair arbiter. Thus, we have a cycle
T 000 such that the instruction leaves the function unit. One easily asserts that
this instruction moves into the producer during that cycle. We then apply
lemma 6.63 in order to conclude the claim.QED

In analogy to lemma 6.62, we show:

If a reservation station is full during cycleT, there is a cycleT 0 � T suchLemma 6.65 I

that this reservation station is dispatched during cycleT 0. Furthermore, the
instruction in the RS during cycleT 0 is the same as during cycleT.

RS[rs]T : f ull =) 9T 0 � T : dispatchrs(T 0; rs)^

sIRS(rs;T 0) = sIRS(rs;T)
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PROOF As described above, dispatching is done using a fair arbiter. The
arbiter selects among the reservation stations that are full and valid. The
first thing to assert is that the reservation station is valid. Assume it is
not. In this case, one can apply lemma 6.45, which states that there is
an instructionI j with j = last(i; r) that is in a reservation station, in a
function unit, or in a producer. This is a contradition to the premise that all
instructionsI j with j < i are already terminated.

The function unit provides a stall singal. We denote this stall signal by
FU [ f u]T :stall. Dispatching is only done if the function unit is not stalled.
We assert this using the following assumption on function units: If the stall
singal that is input of the function unit is finite true, then the stall signal
that is output of the function unit is finite true.�

8T 09T 00 � T 0 : f uins( f u;T 00):stall
�

=)
�
8T 09T 00 � T 0 : f uins( f u;T 00):stall

�

One shows that the stall singal that is input of the function unit is finite
true using that the CDB is assigned using a fair arbiter, as above. This
concludes the claim. QED

If there is a cycle such that instructionIi�1 either not exists or terminatedJ Lemma 6.66
and instructionIi is in “in RS” phase, instructionIi will eventually termi-
nate.

Let T be the cycle from the premise of the lemma. We conclude this claimPROOF
easily using lemma 6.65. According to this lemma, there is a cycleT 0 � T
such that the instruction is dispatched. There are two cases:

� The funcition unit returns the result of instructionIi in the same cy-
cle. In this case, one shows that the instruction moves into the “in
producer” phase and uses lemma 6.63 in order to conclude the claim.

� The funcition unit does not return the result of instructionIi in the
same cycle. In this case, one shows that the instruction is in “in FU”
phase during cycleT +1 and uses lemma 6.64 in order to conclude
the claim. QED

If there is a cycle such that instructionIi�1 either not exists or terminatedJ Lemma 6.67
and instructionIi is in “not issued” phase, instructionIi will eventually
terminate.
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PROOF We will show that the instruction eventually either moves into
the ROB or into a reservation station, depending onissuewith result(i).
This happens if the instruction is issued. We then conclude the claim using
lemma 6.61 or 6.66, respectively.

Thus, it is left to show that the instruction is eventually issued. The
issue stage belongs to the in-order part of the machine. As done in the
previous chapters, one easily concludes that this happens if the stall signal
of the stage is finite true. The issue stage is stalled if one of the following
conditions hold [Krö99]:

� The ROB is full. One argues that this cannot be the case since all
instructionsI j prior to Ii terminated. Thus, we have

sIissue(T) = sIwriteback(T);

which implies that the ROB is empty (lemma 6.4).

� There is no reservation station available. One easily concludes that
all reservation stations are empty because all instructions are either
in “not issued” or “terminated” phase during cycleT. Thus, they
cannot be in “in RS” phase according to lemma 6.27.

� In case of the DLX, there are some instructions that require stalling
issue because they depend on registers that the Tomasulo scheduler
cannot forward. In case of a conditional branches or jump register
instruction, one has to wait until the source register is valid. Assume
it is not. In this case, we can apply lemma 6.43, which states that
there is an instructionI j with j = last(i; r) that is already issued but
not yet terminated. This is a contradiction.

� In case the instruction is amovs2i and the source register isIEEE f,
we have to stall issue until the ROB is empty. This arises from the
fact that the Tomasulo scheduling algorithm is not able to forward
this register. As above, one easily concludes that the ROB is empty.

� The desings we verify are based on the designs presented in [Kr¨o99].
The machine stalls issue until the ROB is empty in case the instruc-
tion is anr f e instruction. This arises from the hardware cost con-
straints. We do not have enough read ports for the SPR producer
table to forwardESR, EPC, andEDPC. As above, one easily con-
cludes that the ROB is empty.

Thus, the instruction is issued eventually, which concludes the claim.QED
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Note that in contrast to the machine given in [Kr¨o99], we do not have to
stall issue because of busy instruction memory. This arises from the fact
that our stall engine allows stalling stages indepandantly.

The following lemma forms both the induction step and induction base
for the main liveness claim.

If there is a cycle such that instructionIi�1 either not exists or terminated,J Lemma 6.68
instructionIi will eventually terminate.

Let T be the cycle from the premise. According to lemma 6.60, instructionPROOF
Ii is in a phase. If this is “not issued”, we conclude the claim using lemma
6.67. If it is “in RS”, we conclude the claim using lemma 6.66. If it is “in
FU”, we conclude the claim using lemma 6.64. If it is “in producer”, we
conclude the claim using lemma 6.63. If it is “in ROB”, , we conclude the
claim using lemma 6.61. If it is “terminated”, the claim obviously holds. QED

InstructionIi eventually terminates. J Lemma 6.69

We show this claim by induction oni. For i = 0, we apply lemma 6.68. PROOF
This is also done for the induction step.

6.7 Verifying the DLX Implementation

In this section, we show that the implementation machineI with configu-
rationsc0

I ; : : : complies with the specification.

6.7.1 Implementation Differences

We do not describe the implementation of the DLX with Tomasulo sched-
uler and reorder buffer, since this design is already presented in [Kr¨o99] in
detail including cost and cycle time analysis.

In this section, we describe the differences between the implementation
given in [Krö99] and the implementation used for this thesis. Figure 6.11
shows an overview of the hardware.
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Figure 6.11 Overview of the Tomasulo Hardware
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Instruction Fetch In [Kr ö99], the PC environment from [Lei99] is used.
In order to prevent the destruction of the PC registers, stage 0 and 1 are
always clocked simultaneously. We remove this limitation by using the PC
environment and the stall engine described in chapter 5 (in-order machine
with Delayed PC and speculation) instead.

Issue As described above, we no longer need an issue stall because of
instruction memory stalls. This is a feature of the new stall engine.

Dispatch In contrast to [Krö99], the instructions do not move from one
RS into another. This implementation in [Kr¨o99] is motivated by the live-
ness proof, which uses the fact that one selects the oldest instruction for
dispatch. We use a fair arbiter instead.

Function Units In contrast to [Krö99], we do not implement out-of-
order dispatch for the memory unit. This simplifies implementing paging.
As an example, consider two store instructions. The first one modifies the
page table and the second one modifies a memory cell in a page that is
affected. Passing the instructions in program order to the memory function
unit significantly simplifies the task of building such a functional unit.

CDB In [Kr ö99], we allocated the CDB round-robin. We use a fair ar-
biter instead (this is weaker than round-robin).

6.7.2 Verifying the Instruction Fetch

In the proofs above, we assumed that the instruction fetch is correctly done.
The instruction fetch mechanism in the stages 0 and 1 operates like the in-
order pipelined machine as described in section 5. The verification of the
forwarding ofDPC for the instruction fetch uses the very same arguments
as before.

One combines the two machines as follows: we define that we issue an
instruction if the output registers of the decode/issue stages are clocked.
This happens iffueT

1 is active, as described in the previous chapters.

issue(T) := ueT
1
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For the correctness proof, we argue on the schedules of both parts of the
machine. We argue that the schedule of the issue stage of the Tomasulo
part matches the schedule of the issue stage of the in-order pipeline.

issue(T)
!
= sI(1;T)

We show this claim by inducition onT. ForT = 0, we haveissue(T) = 0
andsI(1;T) = 0.

For T +1, we show the claim by a case-split onueT
1 . If ueT

1 does not
hold, the value of both scheduling functions does not change from cycle
T to T +1 by definition. Thus, the claim is concluded using the induction
premise.

If ueT
1 holds, we have

sI(1;T +1) = sI(1;T)+1

according to invariant 5.1.

By definition, issue(T) holds ifueT
1 holds. Thus, we have

issue(T +1) = issue(T)+1

by definition of issue(T +1). This allows concluding the claim using the
induction premise.

6.7.3 Verifying IEEEf

TheIEEE f (IEEE flags) register is a special case for the correctness proof
of the machine, since the IEEE standard [IEE85] requires that the bits in
this register are sticky. Thus, if a floating point instruction generates a
masked IEEE exception, the bit of this exception is set in theIEEE f reg-
ister. The bits that were set previously are maintained. However, in case of
amovi2s instruction with destinationIEEE f, all bits are overwritten.

One argues the data consistency of the register by induction. As induc-
tion claim we show the data consistency of the complete machine. For
T = 0, we show the correctness of the initialization. ForT +1, we have
the data consistency upto cycleT as premise. The first thing is to argue the
correctness of the interrupt mask inSRT

I . This holds according to the in-
duction premise. Leti be a shorthand forsIwriteback(T). We distinguish
three cases:
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� If we do not writeback an instruction, we have

sIwriteback(T) = sIwriteback(T +1):

The registers also do not change. Thus, the claim holds.

� If we writeback an instruction that ismovi2swith destination register
IEEE f, the correctness is shown as above.

� If we writeback an instruction which sets IEEE flags, we have:

sIwriteback(T +1) = i +1

We assert the correctness of the flags as above using invariant 6.5.
Let ieee f lags(i) denote the IEEE flags generated by instructionIi :

ROB[ROBhead]T :result[2] = ieee f lags(i)

We assert the correctness of the old value in the IEEE flags register
using the induction premise:

IEEE fTI = IEEE fiS

The new value written into the IEEE flags register is the old value
ORthe masked new one.

IEEE fT+1
I = IEEE fTI _ (ROB[ROBhead]T :result[2]^SRT

I )

The claim is that this the correct value:

IEEE fT+1
I

!
= IEEE fi+1

I

One expands the transition function of the specification machine on
the right hand side:

IEEE fT+1
I

!
= IEEE fiI _ (ieee f lags(i +1)^CAi

S)

This is easily concluded using the the equations above.

One cannot forward theIEEE f register using the mechanisms described
above. We therefore stall the issue stage if we read this register until the
ROB is empty. As soon as the ROB is empty, we have

sIissue(T) = sIwriteback(T):

In this case, one easily concludes the correctness of the value in the
register using the data consistency criterion above.
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6.7.4 Verifying Interrupts

In this section, we describe how to verify a machine that generates inter-
rupts. The proof method is taken from [MP00]. We show the data consis-
tency by induction onT. For T = 0, we have the correctness of the ini-
tialization of the machine. Note that we do not process an interrupt during
cycleT. We realize theresetinterrupt by adjusing the initial configuration
accordingly, as done in chapter 5.

Let lastint(T) denote the number of the last cycle before cycleT in
which we processed an interruptplus one (i.e., the maximum value of
lastint(T) is T). In case no such cycle exists, we definelastint(T) to be
zero.

In order to show the claim forT +1, we distinguish two cases:

� If we have an interrupt during cycleT, we argue as follows: accord-
ing to the induction premise, the data consistency for cycleT holds.
The modifications made by an interrupt on the configuration are easy
to verify using this fact.

� If we do not have an interrupt during cycleT, we argue as follows:
We claim that the machine works as the abstract implementation ma-
chine without interrupts above from cyclelastint(T) to cycleT +1.
We initialize the abstract machine without interrupts using the con-

figurationclastint(T)
I :

c0
aI := clastint(T)

I

We then show that the transitions made by both machines are equal
from cycle lastint(T) to cycle T + 1 using induction on the cycle
number. For this one uses the fact that there are no interrupts from
cycle lastint(T) to cycleT +1 by definition oflastint(T).

Liveness Note that the liveness of the machine with interrupts does not
require extra arguments as required in chapter 5. This arises from the fact
that the instruction that generates the interrupt retires as usual and is not
executed a second time. This is in contrast to the implementation of inter-
rupts given in chapter 5.
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LITERATURE
6.8 Literature

In this chapter, we formally verify the Tomasulo scheduling algorithm with
reorder buffer as presented in [MPK00]. In contrast to [MPK00], we verify
the correctness using PVS and argue the uniqueness of the tags.

The parts of the hardware are based on machines described in [Lei99].
The correctness of the designs presented in [Lei99] is not verified by means
of machine.

Hosabettu et.al. verify implementations using a Tomasulo scheduler both
with and without reorder buffer [HGS99, HGS00, Hos00] using the com-
pletion functions approach. The verification is done using PVS at a very
high level of abstraction. Gate-level designs are not verified. The func-
tional units are very simple and do not contain cycles. Despite that, the
size of the PVS proofs in [Hos00] is four times the size of the proofs for
this chapter of this thesis. However, [Hos00] makes extensive use of proof
strategies, which enlarges the PVS proofs significantly.

In [BBCZ98], Clarke et.al. verify out-of-order processors by combin-
ing symbolic model-checking with uninterpreded functions. In [BCRZ99],
Clarke et.al. verify safety properties of a PowerPC, which implements out-
of-order execution and precise interrupts.

Sawada and Hunt [SH99] verify the FM9801, which also features a re-
order buffer, using the theorem proving system ACL2. The number of
lemmas is enormous (nearly 4000).

Henzinger et al. [HQR98] verify a simple out-of-order processor us-
ing a model checker. McMillan [McM98] partly automates the proof by
refinement of Tomasulo’s algorithm presented in [DP97] with the help of
compositional model checking. This technique is improved in [McM99b]
by theorem proving methods to support an arbitrary register size and num-
ber of function units. In [McM99a], McMillan verifies the liveness of a
machine with Tomasulo scheduler using SMV.

Arvind and Shen [AS99] describe how to apply term rewriting systems
in order to model microprocessors. The authors give a simple out-of-order
RISC machine with reorder buffer as an example. The authors suggest the
use of tools such as PVS for verifying large, realistic machines.
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7
Perspective

This thesis covers the verification of in-order and out-of-order micropro-
cessor designs. We develop generic theories for forwarding and specula-
tion and demonstrate how they can be applied to DLX-like RISC proces-
sors. However, several aspects are not covered by this thesis.

7.1 Functional Units

Despite of a simple ALU, the correctness of the functional units is not cov-
ered by this thesis. This ALU needs further enhancements. For example,
the ALU verified in this thesis lacks an integer multiplier. Furthermore, all
ALU instructions assume signed operands. Commercial microprocessors,
such as the MIPS series or the i860 support unsigned operantions, too.

For example, this affects overflow detection. The 29K has three variants
for addition/subtraction operations:

1. Suppress interrupts,

2. signed (interrupt if the result is not in the range of the two’s comple-
ment numbers),



Chapter 7

PERSPECTIVE
3. unsigned (interrupt if the result is not in the range of the binary num-

bers).

This also affects test/set operations. The design presented here offers
both� and� tests, which is superflous since one can get the desired op-
erations by implementing one and swapping operands if necessary. The
test/set instructions implemented in this tesis assume that the operands are
two’s complement numbers. Processors such as the MIPS RISC series
also implement ALU test/set instructions that assume that the operands are
unsigned binaries.

Furthermore, modern microprocessors implement instructions with satu-
ration, i.e., if an overflow occurs, the result is set to the edge of the number
range.

Floating point units are not covered at all by this thesis. The formal veri-
fication of a complete floating unit is subject of the PhD thesis of Christian
Jacobi [Jac01]. The adder is verified by Christoph Berg [Ber01]. The
proofs and designs are taken from [MP00] and verified using the theorem
system PVS. This includes a formalization of the IEEE standard and a
proof that the designs comply with this standard.

The architecture used in this thesis lacks SIMD (single instruction mul-
tiple data) instructions. For example, one can process two single precision
floating point operands within a 64-bit word simultaneously with litte extra
hardware cost.

Furthermore, we do not cover how to build and verify memory inter-
faces. The verification of a memory interface including first level on-chip
cache is subject of the PhD thesis of Sven Beyer [Bey01]. This includes
support for virtual memory, which is implemented using a TLB. The cor-
rectness is verified formally using PVS.

7.2 In-Order Scheduling and Forwarding

Besides the schedulers covered by this thesis, there are more scheduling
methods in use in commercial microprocessors. As for in-order machines,
this includes multiple instruction issue machines, i.e., pipelined in-order
machines with two or more parallel pipelines. These machines are able to
issue multiple instructions within the same cycle. Furthermore, we did not
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verify in-order schedulers for functional units with variable latency, such
as result shift registers, as used in [MP00].

7.3 Speculation

The generic speculation mechanism presented in chapter 5 assumes that
we have a guarantee that an instruction never rollbacks twice. However,
one might want to build machines that require this feature. Note that the
hardware presented in chapter 5 supports it; it is left to show its correctness
for this case.

7.4 Out-of-Order Execution

The out-of-order machine we present uses a reorder buffer and therefore
in-order termination. Machines without reorder buffer and out-of-order
termination are not verified. Furthermore, multiple instruction issue ma-
chines with Tomasulo scheduler are not covered. Furthermore, commercial
designs feature two or more CDBs, which is also not covered. A machine
with Tomasulo scheduler, multiple instruction issue and reorder buffer is
described in [Hil00]. However, the designs are not verified by machine.

7.5 Synthesizing Hardware

Subject of the master’s thesis of Dirk Leinenbach is converting the PVS
hardware specification into synthesizable Verilog HDL. This allows build-
ing hardware implementations of the designs using ASICs or FPGAs. This
allows realistic cost and performance measuring. In particular, it allows
evaluating the real hardware cost in chip area rather than gate count. This
includes that one can take the hardware cost of wiring in account.

The Tomasulo scheduler uses several large bus structures. It is of interest
whether these bus structures have significant impact on the hardware cost
and cycle time of the design. The evaluation in [Kr¨o99] does not cover
this, since the hardware model presented in [MP95] is used. This hardware
model does not take wiring in account.
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Another approach of interest is automated conversion from Verilog or

other hardware description langues into PVS for formal verification. This
approach is used by Russinov in order to verify AMD’s floating point units,
for example. He converts an in-house, synthesizable HDL into ACL2 lan-
guage and verifies the correctness using ACL2. The benefit of this ap-
proach is that it permits verifying existing desings in HDL.
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A
Theorem Index

A.1 The PVS Proof Tree

In this chapter, we provide a mapping from the theorems in this thesis to
the theorems in the PVS proof tree. This mapping is limited, however.
For sake of simplicity, we sometimes present multiple lemmas of the PVS
proof tree as single one in this thesis. For example, we have a single lemma
that states that the initialization of the machine is correct. In the PVS proof
tree, we use a separate lemma for each stage.

The following tables provide the number of the lemma or theorem, the
page number, the file name of the file the lemma is to be found in, and the
lemma name.
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THEOREM INDEX
A.2 Basic Concepts

Th. Page File Name

2.1 15 btree btreelem
2.2 16 zerotester zerotestercorrect
2.3 16 tester equality testercorrect
2.4 17 pp pp correct2
2.5 18 pp pp specequiv lem
2.6 18 pp pp Xp lem
2.7 19 pp pp correct1lem
2.8 20 bvhelp bv addercin is add
2.9 21 cla cla cout lemma
2.10 25 alu addsub alu bv unary minus
2.11 26 alu addsub alu addsubresult correct
2.12 26 alu addsub alu addsubovf correct
2.13 26 alu addsub alu addsubneg correct
2.14 26 dlxalu imp alu correct
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A.3 A Sequential Implementation Machine

Th. Page File Name

Conv. 3.1 39 pipetheory pipe stall correct
3.2 39 pipetheory pipe sequentialfull
3.3 57 bjtakenimpl bjtaken imp correct
3.4 58 nextpcimpl nextpcimp correct
3.5 61 pipetheory schedsequentiallemma1
3.6 62 pipetheory schedsequentiallemma2
3.7 62 pipetheory schedsequentiallemma3
3.8 62 pipetheory schedsequentiallemma4

Inv. 3.1 65 pipetheory schedlemma1
Inv. 3.2 65 pipetheory schedlemma2
Inv. 3.3 65 pipetheory schedlemma3

3.9 69 pipetheory full bit lemma
3.10 69 pipetheory schedsequentiallemma
3.11 71 pipetheory schedpipe start
3.18 85 dlxs lemmas dlxs correct
3.19 86 live calculus weakEafteris strongEafter
3.20 87 pipetheory ue is live IS lem
3.21 87 pipetheory ue is live IS2
3.22 88 pipetheory ue is live seq
3.23 88 pipetheory ue sI lemma
3.24 88 pipetheory Machineis live
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A.4 Pipelined Machines

Th. Page File Name

4.1 95 pipetheory pipe full def
4.3 96 pipetheory schedoverwrite
4.4 96 pipetheory schedfull bits save
4.5 97 pipetheory schedclear full bits
4.6 97 pipetheory schedpipe start
4.15 131 live calculus2 staysuntil gt
4.16 132 live calculus2 staysuntil impl lem
4.17 132 live calculus2 AND staysuntil
4.18 133 live calculus2 weakEafterand staysuntil

IMPLIES weakEafter
4.19 134 live calculus2 finite false and staysuntil

IMPLIES finite false
4.20 134 live calculus2 finite true and staysuntil

IMPLIES finite true
4.21 134 live calculus2 AND weakEafterand staysuntil
4.22 136 live calculus2 AND finite false and staysuntil
4.23 136 live calculus2 OR finite true and staysuntil
4.25 136 live calculus2 neveris finite true and staysuntil
4.24 136 live calculus2 alwaysis finite false and staysuntil
4.27 137 live calculus OR finite false
4.28 137 live calculus AND finite true
4.29 137 live calculus2 finite true OR finite true

and staysuntil lem
4.30 138 pipetheory pipe drain lem
4.35 144 pipetheory pipe stall is finite true
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A.5 Speculative Execution

Th. Page File Name

5.1 152 pipetheoryspec pipe full def
5.2 152 pipetheoryspec schedoverwrite
5.3 153 pipetheoryspec schedfull bits save
5.4 153 pipetheoryspec schedclear full bits
5.5 153 pipetheoryspec schedpipe start
5.11 181 spectheory specpremise1
5.12 181 spectheory specpremise2
5.13 181 spectheory specpremise3
5.14 182 spectheory specpremise4
5.15 183 spectheory specpremise5
5.16 183 spectheory specpremise6
5.17 183 spectheory specpremise7
5.18 183 spectheory rollback stageexists
5.19 185 spectheory specmax lemma
5.20 185 spectheory specfull lemma
5.21 186 spectheory stagespeccorrect lem
5.22 186 spectheory speccorrect inputs lemma
5.23 186 spectheory speccorrectspecinputs lemma
5.24 187 spectheory specmisspecstep
5.25 188 spectheory specdataconsistencylemma2
5.26 188 spectheory specdataconsistencylemma1
5.27 189 spectheory specdataconsistency1
5.28 189 spectheory specdataconsistency2
5.29 190 spectheory specdataconsistency3
5.30 190 spectheory specinv hold
5.31 192 spectheory M max exists
5.32 192 spectheory live M0 lem
5.33 193 spectheory M is full
5.34 193 spectheory g M not full
5.35 193 spectheory M implies below empty
5.36 193 spectheory M lemma0
5.37 193 spectheory M lemma1
5.38 195 spectheory rollback correct
5.39 196 spectheory M rollback
5.40 196 spectheory schedrollback lem4
5.41 197 spectheory specpremise8
5.42 198 spectheory specpremise9
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Th. Page File Name

5.43 200 spectheory ue M lemma
5.44 200 spectheory M stall is finite true lem
5.45 201 spectheory specue is live IS lem
5.46 201 spectheory stageM is live lem
5.47 202 spectheory specle M lem
5.48 202 spectheory M correct inputs lemma
5.49 202 spectheory mc premisespec
5.50 203 spectheory mc premise
5.51 204 spectheory live Mc lem1
5.52 204 spectheory specue sI lemma
5.53 204 spectheory live Mc lem2
5.54 205 spectheory live Mc lem3
5.55 206 spectheory live Mc lem4
5.56 206 spectheory live no Mc lem2
5.57 207 spectheory live no Mc lem3
5.58 208 spectheory live is M lem2
5.59 208 spectheory live sI M is laststagelem
5.60 209 spectheory live is M lem1
5.61 210 spectheory live sI existsIS
5.62 210 spectheory live sI exists lem
5.64 218 interrupts dlx MCA correct
5.65 218 interrupts dlx JISR correct
5.66 219 interrupts dlx repeatcorrect
5.67 222 dlxP f correct dlxP c0 IR correct
5.68 224 nextpcimpl nextpci imp correct
5.69 224 dlxP f correct dlxP c1 nextpccorrect
5.70 224 dlxP f correct dlxP f1 PCpcorrect
5.71 225 dlxP f correct dlxP f1 DPC correct
5.72 230 dlxP f correct dlxP c3 MCA correct
5.73 231 dlxP f correct dlxP f3 JISR correct
5.74 232 dlxP f correct dlxP f3 repeatcorrect
5.75 232 dlxP f correct dlxP c3 IR correct
5.76 234 dlxP f correct dlxP c3 C correct
5.77 234 dlxP f correct dlxP f4 SR correct
5.78 236 dlxP f correct dlxP f4 ESRcorrect
5.79 236 dlxP f correct dlxP f4 ECA correct
5.80 237 dlxP f correct dlxP f4 EPCcorrect
5.81 238 dlxP f correct dlxP f4 EDPCcorrect
5.82 239 dlxP f correct dlxP f4 EDATA correct
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A.6 Out-of-Order Execution

Th. Page File Name

6.1 262 robtheory ROBtail inv
6.2 262 robtheory ROBheadinv
6.3 262 robtheory ROBcountinv
6.4 263 robtheory instr in rob lemma
6.5 264 robtheory min ROB
6.6 264 robtheory max ROB
6.7 265 robtheory sI issuege sI writeback
6.8 265 robtheory sI issuegt sI writeback
6.9 265 robtheory sI issuege sI writeback2
6.10 265 robtheory I tag issuelemma
6.11 266 robtheory ROB lemma
6.12 266 robtheory issuedcorrect
6.13 267 robtheory in order issueaux0
6.14 267 robtheory in order issue
6.15 268 robtheory tag inc sum
6.16 268 robtheory ROBtail diff lemma
6.17 268 robtheory tag inc lemmaaux
6.18 268 robtheory tag inc lemma
6.19 269 robtheory ROB invariant
6.20 270 robtheory ROB count lemma
6.21 270 robtheory tag uniquelemma
6.22 271 robtheory tag uniquelemma2
6.23 271 robtheory I tag writebacklemma
6.24 271 robtheory sI writeback lem
6.27 275 tomistate stateunique
6.28 275 tomcorrect tag RS correct
6.29 276 tomcorrect tag P correct
6.30 276 tomcorrect tag CDB correct
6.31 278 tomspec not instr hasdest lemma
6.32 278 tomspec ldef before
6.33 279 tomspec last hasdest lemma
6.34 279 tomspec last hasnot dest lemmaaux
6.35 279 tomspec last prev hasnot dest lemma
6.36 279 tomspec last prev hasdest lemma
6.37 279 tomspec last lemmaaux
6.38 280 tomspec last lemma
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6.39 280 tomcorrect issuelemma1
6.40 281 tomcorrect prod tag inv
6.41 282 tomcorrect rs tag inv aux1
6.42 283 tomcorrect rs tag inv
6.43 283 tomcorrect tag uniqueR
6.44 285 tomcorrect tag uniqueRS
6.45 285 tomcorrect RS op lemma
6.46 286 tomcorrect tag uniqueRS op
6.47 286 tomcorrect tag uniqueP
6.48 287 tomcorrect tag uniqueCDB
6.49 288 tomcorrect inv P dataIMPL inv CDB data
6.50 289 tomcorrect inv CDB dataIMPL inv ROB valid
6.51 290 tomcorrect inv ROB valid IMPL inv R valid
6.52 291 tomcorrect inv RS valid IMPL inv P valid
6.53 292 tomcorrect CDB tag lemma
6.54 292 tomcorrect inv RS valid proof readissue
6.55 293 tomcorrect inv RS valid proof readsnoop
6.56 295 tomcorrect inv RS valid proof
6.57 295 tomcorrect tom inv
6.58 295 tomcorrect dataconsistency
6.60 297 tomlive hasstate
6.61 297 tomlive livenessstepin ROB
6.62 298 tomlive staysin P
6.63 299 tomlive livenessstepin P
6.64 300 tomlive livenessstepin FU
6.65 300 tomlive staysin RS
6.66 301 tomlive livenessstepin RS
6.67 301 tomlive livenessstepnot issued
6.68 303 tomlive livenessstep
6.69 303 tomlive liveness
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DLX Instruction Set

This instruction set is taken from [MP95, MP00] with minimal modifica-
tions. The architecture was defined in [HP96]. A reference for the instruc-
tion formats and mnemonics is also [SK96].
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DLX I NSTRUCTION

SET

I-type

R-type

J-type

26

FI-type

FR-type

ImmediateRD

Function

6

SA

55

RDRS2

55

RS1

6

Opcode

6

Opcode

6 5 5 16

63

PC Offset

6 55

Opcode RS1 FD Immediate

Opcode FS1 FS2/RS2 FD

5

00 Fmt Function

Opcode

6

RS1

5 5 16

Figure B.1 Instruction formats of the DLX
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SET

IR[31 : 26] Mnem. d Effect

Data Transfer, mem = M[RS1 + imm]
100000 0x20 lb 1 RD=Sext(mem)
100001 0x21 lh 2 RD=Sext(mem)
100011 0x23 lw 4 RD=mem
100100 0x24 lbu 1 RD=024mem
100101 0x25 lhu 2 RD=016mem
101000 0x28 sb 1 mem=RD[7 : 0]
101001 0x29 sh 2 mem=RD[15 : 0]
101011 0x2b sw 4 mem=RD

Arithmetic, Logical Operation
001000 0x08 addi RD=RS1 + imm
001001 0x09 addiu RD=RS1 + imm (no overflow)
001010 0x10 subi RD=RS1 - imm
001011 0x11 subiu RD=RS1 - imm (no overflow)
001100 0x12 andi RD=RS1^ imm
001101 0x13 ori RD=RS1_ imm
001110 0x14 xori RD=RS1� imm
001111 0x15 lhgi RD=imm 016

Test Set Operation
011000 0x18 clri RD=(false ? 1 : 0)
011001 0x19 sgri RD=(RS1> imm ? 1 : 0)
011010 0x1a seqi RD=(RS1= imm ? 1 : 0)
011011 0x1b sgei RD=(RS1� imm ? 1 : 0)
011100 0x1c slsi RD=(RS1< imm ? 1 : 0)
011101 0x1d snei RD=(RS16= imm ? 1 : 0)
011110 0x1e slei RD=(RS1� imm ? 1 : 0)
011111 0x1f seti RD=( true ? 1 : 0)

Control Operation
000100 0x04 beqz PC=PC+4+(RS1= 0 ? imm: 0)
000101 0x05 bnez PC=PC+4+(RS16= 0 ? imm: 0)
000110 0x16 jr PC=RS1
000111 0x17 jalr R31=PC+4; PC = RS1

Table B.1 I-type instruction layout
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SET

IR[31 : 26] IR[5 : 0] Mnem. Effect

Shift Operation
000000 0x00 000000 0x00 slli RD=RS1<<SA
000000 0x00 000001 0x01 slai RD=RS1<<SA (arith.)
000000 0x00 000010 0x02 srli RD=RS1>>SA
000000 0x00 000011 0x03 srai RD=RS1>>SA (arith.)
000000 0x00 000100 0x04 sll RD=RS1<<RS2[4:0]
000000 0x00 000101 0x05 sla RD=RS1<<RS2[4:0] (ar.)
000000 0x00 000110 0x06 srl RD=RS1>>RS2[4:0]
000000 0x00 000111 0x07 sra RD=RS1>>RS2[4:0] (ar.)

Data Transfer
000000 0x00 010000 0x10 movs2i RD=SA
000000 0x00 010001 0x11 movi2s SA=RS1
Arithmetic, Logical Operation
000000 0x00 100000 0x20 add RD=RS1+RS2
000000 0x00 100001 0x21 addu RD=RS1+RS2 (no overfl.)
000000 0x00 100010 0x22 sub RD=RS1-RS2
000000 0x00 100011 0x23 subu RD=RS1-RS2 (no overfl.)
000000 0x00 100100 0x24 and RD=RS1^ RS2
000000 0x00 100101 0x25 or RD=RS1_ RS2
000000 0x00 100110 0x26 xor RD=RS1� RS2
000000 0x00 100111 0x27 lhg RD=RS2[15:0] 016

Test Set Operation
000000 0x00 101000 0x28 clr RD=( false ? 1 : 0)
000000 0x00 101001 0x29 sgr RD=(RS1> RS2 ? 1 : 0)
000000 0x00 101010 0x2a seq RD=(RS1= RS2 ? 1 : 0)
000000 0x00 101011 0x2b sge RD=(RS1� RS2 ? 1 : 0)
000000 0x00 101100 0x2c sls RD=(RS1< RS2 ? 1 : 0)
000000 0x00 101101 0x2d sne RD=(RS16= RS2 ? 1 : 0)
000000 0x00 101110 0x2e sle RD=(RS1� RS2 ? 1 : 0)
000000 0x00 101111 0x2f set RD=( true ? 1 : 0)

Table B.2 R-type instruction layout
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SET

IR[31 : 26] Mnem. Effect

Control Operation
000010 0x02 j PC = PC + 4 + imm
000011 0x03 jal R31 = PC + 4; PC = PC + 4 + imm
111110 0x3e trap trap = 1; EDATA = imm;
111111 0x3f rfe SR = ESR; PC’ = EPC;

DPC = EDPC

Table B.3 J-type instruction layout

IR[31 : 26] Mnem. d Effect

Load, Store
110001 0x31 load.s 4 FD[31 : 0] = mem
110101 0x35 load.d 8 FD[63 : 0] = mem
111001 0x39 store.s 4 m = FD[31 : 0]
111101 0x3d store.d 8 m = FD[63 : 0]

Control Operation
000110 0x06 fbeqz PC=PC+4+(FCC= 0 ? imm: 0)
000111 0x07 fbnez PC=PC+4+(FCC6= 0 ? imm: 0)

Table B.4 FI-type instruction layout
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SET IR[31 : 26] IR[5 : 0] Fmt Mnem. Effect

Arithmetic and Compare Operations
010001 0x11 000000 0x00 fadd FD = FS1 + FS2
010001 0x11 000001 0x01 fsub FD = FS1 - FS2
010001 0x11 000010 0x02 fmul FD = FS1 * FS2
010001 0x11 000011 0x03 fdiv FD = FS1 / FS2
010001 0x11 000100 0x04 fneg FD = - FS1
010001 0x11 000101 0x05 fabs FD = abs(FS1)
010001 0x11 000110 0x06 fsqt FD = sqrt(FS1)
010001 0x11 000111 0x07 frem FD = rem(FS1, FS2)
010001 0x11 11c3c2c1c0 fc.cond FCC=(FS1co FS2)

Data Transfer
010001 0x11 001000 0x08 000 fmov.s FD[31:0]=FS1[31:0]
010001 0x11 001000 0x08 001 fmov.d FD[63:0]=FS1[63:0]
010001 0x11 001001 0x09 mf2i RS = FS1[31:0]
010001 0x11 001010 0x0a mi2f FD[31:0] = RS

Conversion
010001 0x11 100000 0x20 001 cvt.s.d FD = cvt(FS1, s, d)
010001 0x11 100000 0x20 100 cvt.s.i FD = cvt(FS1, s, i)
010001 0x11 100001 0x21 000 cvt.d.s FD = cvt(FS1, d, s)
010001 0x11 100001 0x21 100 cvt.d.i FD = cvt(FS1, d, i)
010001 0x11 100100 0x24 000 cvt.i.s FD = cvt(FS1, i, s)
010001 0x11 100100 0x24 001 cvt.i.d FD = cvt(FS1, i, d)

Table B.5 FR-type instruction layout. Fmt=IR[8:6]

RM Symbol Rounding

00 RZ toward zero
01 RNE to next even
10 RPI toward+∞
11 RMI toward�∞

Bit Symbol Purpose

0 OVF overflow
1 UNF underflow
2 INX inexact result
3 DBZ divide by zero
4 INV invalid operation

Table B.6 Coding of the rounding mode RM and the interrupt flags IEEEf
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SET

IR[31 : 26] IR[5 : 0] Predicate Effect

100*** 0x04 I load load instructions
***000 0x00 I lb byte signed
***001 0x00 I lh halfword signed
***011 0x00 I lw full word
***100 0x00 I lbu byte unsigned
***101 0x00 I lhu halfword unsigned
1010** 0x0a I store store instructions
0*1*** 0x00 I ALUi i-type ALU instr.
0001** 0x01 I branch conditional branch
****1* 0x00 I branch f cc test FCC instead of RS1
*****0 0x00 I brancheq branch if equal
01011* 0x0b I jr jump register instr.
*****1 0x00 I link j/jr is a link instr.
00001* 0x01 I j jump instructions
111110 0x3e I trap trap instruction
111111 0x3f I r f e return from exception
000000 0x00 0000** 0x00 I shi f ti shift instr. with SA
000000 0x00 0001** 0x01 I shi f t shift instr.
000000 0x00 010000 0x10 I movs2i move sp. reg. to GPR
000000 0x00 010001 0x11 I movi2s move GPR to sp. reg.
000000 0x00 10**** 0x02 I ALU ALU instructions

Table B.7 The monomials of the predicates used to decode the instruction word
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Performance of the
Pipelined DLX

Short Pipeline

The first implementation uses a standard five stage pipeline as described
above. All simulations were made using a Pentium-like memory system,
i.e., a 16kb split, two-way level one write-back cache with 32 bytes line
size and 4-1-1-1 bus bursts [Int95a, Int95b]. The cache uses LRU replace-
ment and read/write allocation.

As a workload, we used several benchmarks of the SPEC92 benchmark
suite [SPE91]. Table C.2 shows the benchmarks and performance result.

Instruction Latency Pipelined

addition, subtraction 5 full
conversion 3 full
multiplication 5 full
single precision division 17 five stages
double precision division 21 five stages

Table C.1 Latency of floating point instructions in cycles. Most floating point in-
structions can be executed fully pipelined; divisions and square root iterate except
for five stages.
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Dhaz Dhaz CPIBenchmark Type FP In.
before after before after

Sp.

008 espresso int92 0.0% 2.71% 1.84% 1.3567 1.3516 0.4%
013 spice2g6 fp92 1.6% 2.92% 2.07% 1.8678 1.8496 1.0%
015 doduc int92 8.7% 2.78% 2.11% 2.1027 2.0700 1.6%
022 li int92 0.0% 3.11% 2.64% 1.9056 1.8841 1.1%
023 eqntott int92 0.0% 4.09% 3.49% 1.6930 1.6769 1.0%
026 compress int92 0.0% 2.77% 2.20% 1.6212 1.6052 1.0%
034 mdljdp2 fp92 13.0% 1.83% 1.55% 1.6782 1.6654 0.8%
039 wave5 fp92 18.5% 3.21% 2.93% 1.8741 1.8414 1.8%
047 tomcatv fp92 31.1% 0.19% 0.16% 2.1999 2.1924 0.4%
048 ora fp92 27.6% 4.59% 3.45% 2.8024 2.7836 0.7%
052 alvinn int92 0.7% 3.58% 1.83% 2.3961 2.3520 1.9%
056 ear fp92 17.3% 2.02% 1.61% 2.1931 2.1804 0.6%
072 sc int92 0.0% 2.05% 1.55% 1.4530 1.4437 0.6%
077 mdljsp2 fp92 15.7% 1.26% 1.05% 1.6801 1.6709 0.6%
078 swm256 fp92 44.6% 1.61% 1.63% 2.1808 2.1445 1.7%
085 gcc int92 0.0% 4.74% 3.21% 2.3306 2.3042 1.1%
089 su2cor fp92 18.9% 2.20% 1.80% 2.9223 2.8949 0.9%
090 hydro2d fp92 14.6% 4.18% 4.00% 2.4236 2.3931 1.3%
093 nasa7 fp92 28.5% 0.23% 0.04% 2.0788 2.0786 0.0%
094 fpppp fp92 25.5% 2.58% 2.07% 3.1935 3.1269 2.1%

AVERAGE - - - - 2.0976 2.0755 1.6%

Table C.2 Experimental results gained using simulations on the short pipeline.
In the first column, the benchmark is given, the second column gives the type of
the program, the third column shows the percentage of floating point instructions.
The columns four and five show the percentage of cycles with data hazard stalls
before and after applying bubble removal. The last columns show the CPI values
and the total speedup.

In general, the performance depends on the number of multi-cycle instruc-
tions, in particular floating point instructions. The table therefore gives the
percentage of floating point instructions in the execution stream simulated.
On floating point loads, one can observe a speedup up to two percent. Most
of the speedup results from reduced data hazards. The table therefore gives
the number of cycles spent idle in the decode stage because of data hazards
before and after adding bubble removal.

This performance gain might seem neglectable. However, consider that
the hardware effort for this gain is just a couple of gates.
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CPI CPI
Benchmark

before after
Speedup

008 espresso 2.0853 2.0499 1.7%
013 spice2g6 2.3885 2.2735 5.1%
015 doduc 2.7613 2.5809 7.0%
022 li 2.6438 2.5121 5.2%
023 eqntott 2.2981 2.2024 4.3%
026 compress 2.0625 2.0061 2.8%
034 mdljdp2 2.0084 1.9108 5.1%
039 wave5 2.1896 1.9956 9.7%
047 tomcatv 2.6826 2.4668 8.7%
048 ora 3.2551 3.0940 5.2%
052 alvinn 2.9042 2.7288 6.4%
056 ear 2.8320 2.7181 4.2%
072 sc 2.2510 2.1875 2.9%
077 mdljsp2 2.0336 1.9429 4.7%
078 swm256 2.5566 2.4074 6.2%
085 gcc 2.8373 2.6987 5.1%
089 su2cor 3.4189 3.1873 7.3%
090 hydro2d 2.5153 2.3582 6.7%
093 nasa7 2.1982 2.1567 1.9%
094 fpppp 3.4060 3.0965 10.0%

AVERAGE 2.0976 2.0755 5.5%

Table C.3 Experimental results gained using simulations on the long pipeline

Long Pipeline

In order to achieve high clock frequencies, modern microprocessors fea-
ture very long pipelines with up to twenty stages. However, longer pipe-
lines are also more sensitive to data hazards because of load instructions.
We therefore simulated a RISC pipeline with nine stages total in order to
evaluate the effect of pipeline bubble removal. We expected the benefit of
pipeline bubble removal increase with pipeline complexity.

All other parameters and the workload remain the same. Table C.3
shows the results. Not surprisingly, the CPI rates raise. As expected, the
percental speedup gained by the stall engine also increases. With individ-
ual benchmarks we see speedups up to ten percent and an average of five
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percent. However, the programs used for the nine stage pipeline are the
same as for the five stage pipeline, i.e., they are compiled (and therefore
optimized) for the five stage pipeline. Thus, we expect less CPI and less
speedup with code compiled with optimizations for the nine stage pipeline.
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D
Liveness Verification using
SMV

D.1 Introduction

The idea of Model-checking [CE81b, CES86] is to check the complete set
of reachable states of a state transition system for a desired property, e.g.,
an invariant. However, this approach suffers from the state explosion prob-
lem since the state space grows exponentially with the number of variables.

However, one easily encapsulates the stall engine as a module with well-
defined interface. In this module, the full bits are the only registers. All
other registers of the machine are not required for the stall engine. The
number of full bits is exactly the number of stages. Thus, there are five
one-bit registers in the stall engine for the DLX design discussed in the
previous chapters. Thus, there are 25 possible states. It therefore seems
feasible to verify properties of the stall engine for fixed size pipelines.

In the following, we will apply a well-known symbolic model-checking
system calledSMV by Kenneth McMillan [McM93]. Symbolic model-
checking systems represent the state space as boolean formula. All opera-
tions (property checking) are done on this formula, which usually is much
faster than just enumerating the reachable states.

An introduction of the hardware specification language used by SMV
is beyond the scope of this thesis. Thus, the specification of the stall en-
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gine hardware in SMV language and a small introduction can be found in
appendix D. The specification of the liveness criterion in SMV is done us-
ing temporal operators that are similar to those used in CTL (Computation
Tree Logic) [CE81b]1.

Let p be a time predicate. For the specification of the liveness property,
the following two temporal operators are used:

� The operatorF p holds iff there is a cycleT in the future such that
the predicatep holds. The definition of the operator9�T in chapter
3 is identical to this definition.

� The operatorGpholds iff the predicatep holds for all future cycles.

Applying a CTL operator on a time predicate results in a time predicate.
Thus, the operators can be combined: For example, in SMV,GF pdenotes
a predicatep that is finite true according to definition 3.4.

Thus, the assumption that the external stall signals are finite true is de-
noted as follows in SMV language:

G F :extk (D.1)

We furthermore assume that if all stages below stagek are empty (i.e.,
not full), the data hazard hazard signal of stagek is off (below f ullk holds
iff at least one stage below stagek is full):

G (:below f ullk =):dhazk) (D.2)

Using these assumptions, SMV verifies the following property of the
stall engine logic for a fixed number of stages:

G F uek (D.3)

However, the verification time grows exponentially in the number of
stages. Table D.1 shows experimental results on an AMD machine with
350 MHZ. The liveness of the stall engine of the DLX pipeline with five
stages is verified within a second; however, the run time becomes critical
with 10 stages and beyond. Commercial designs feature up to 30 stages,
which would result in an estimated run time of about 10,000 years. How-
ever, the author’s machine ran out of memory while model-checking the
stall engine with eleven stages or beyond.

1CTL is a subset of a more general temporal logic described in [CE81a], using the
syntax of [BMP81].
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Stages BDD nodes Time [s]

1 14 0.04
2 850 0.07
3 4387 0.10
4 10027 0.34
5 25764 1.15
6 101598 6.12
7 265952 14.68
8 643058 46.97
9 1294767 242.43
10 5008999 833.76

Table D.1 Experimental results for verifying the liveness criterion of the stall
engine using SMV on an AMD machine with 350 MHZ

D.2 Using Induction

In this section, we try to speed up the verification manually. The first step
is to split the proof goal inton subgoals, one subgoal for the correctness
criterion for each stage. This makes the verification both faster and reduces
the memory consumption.

SMV supports a simple form of induction. This can be applied in anal-
ogy to the proof presented in the previous section. By assuming the live-
ness property for stagek+1, one simplifies the proof of the liveness prop-
erty for stagek. This makes the verification both faster and reduces the
memory consumption dramatically. The price for this is dropping the full
automatization of the proof.

Table D.2 and figure D.1 show the run time for verifying the liveness
criterion for a stall engine with up to 18 stages using no induction and
using one stage induction.

Model-checking was initiated by Clarke and Emerson in [CE81b] and
[CES86]. Various authors improved the idea in order to handle larger state
spaces. In order to handle the state explosion problem, BDDs (binary de-
cision diagrams) were applied for model-checking [McM93]. A big con-
tribution to model-checking is from Bryant by his research on BDD tech-
niques [Bry86]. Recently, McMillan applied classical theorem proving
techniques for model-checking, e.g., in [McM98, McM99b].
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no induction 1 stage induction
Stages

BDD nodes Time [s] BDD nodes Time [s]

1 14 0.04 14 0.04
2 237 0.07 237 0.08
3 701 0.16 701 0.16
4 1147 0.25 1147 0.24
5 2154 0.65 2154 0.38
6 10035 1.62 3842 0.63
7 14274 4.91 6747 1.32
8 27142 12.98 10046 2.78
9 36096 26.83 12413 4.25
10 51856 46.26 29375 7.36
11 70591 133.67 49935 15.93
12 98800 212.42 98857 22.70
13 139882 581.36 139945 102.35
14 213847 3096.31 213916 184.58
15 308379 10163.90 308454 386.58
16 444037 37322.40 444118 763.36
17 - - 662026 1729.37
18 - - 1044414 5416.22

Table D.2 Experimental results for verifying the liveness criterion of the stall
engine using SMV. The columns two and three contain the BDD node count and
the runtime in seconds for verifying the liveness criterion for all stages separately
using no induction. The columns four and five contain the BDD node count and
time for verifying using induction.
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one stage induction
no induction
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Figure D.1 Visualization of the experimental results for verifying the stall engine
using SMV in table D.2
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