
Formal Verification of a
Fully IEEE Compliant

Floating Point Unit

Dissertation

zur Erlangung des Grades
Doktor der Ingenieurswissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I der
Universität des Saarlandes

Christian Jacobi
cj@cs.uni-sb.de

Saarbücken, April 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

iii

Dekan: Prof. Dr. Philipp Slusallek
Erstgutachter: Prof. Dr. Wolfgang J. Paul

Zweitgutachter: Prof. Dr. Harald Ganzinger
Tag des Kolloquiums: 25. Oktober 2002

Hiermit erkläre ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die
aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im
Ausland in gleicher oder ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Saarbrücken, im April 2002

iv

v

Mathematical proofs, like diamonds, are
hard as well as clear, and will be touched

with nothing but strict reasoning.
— John Locke

There’s always one more bug.
— Murphy

Danke
An dieser Stelle möchte ich allen danken, die zum Gelingen der vorliegenden
Arbeit beigetragen haben.

Mein Dank gilt zunächst meinen Eltern, die mich während der gesamten Zeit
meiner Ausbildung gefördert haben.

Herrn Prof. Paul danke ich für die Unterstützung während meines Studiums und
meiner Promotion.

Danken möchte ich meinen Freunden

• Christoph Berg und Jochen Preiß für viele hilfreiche Diskussionen, das
Korrekturlesen der Arbeit und die vielen Skat-Abende;

• Christoph Berg, Sven Beyer, Daniel Kröning, Dirk Leinenbach und Carsten
Meyer für die hervorragende Zusammenarbeit im VAMP Projekt;

• allen Mitarbeitern des Lehrstuhls Paul für das gute Arbeits-Klima;

• Jan Pessenlehner für den Gas-Herd.

vi

vii

Abstract

In this thesis we describe the formal verification of a fully IEEE compliant floating
point unit (FPU). The hardware is verified on the gate-level against a formalization
of the IEEE standard. The verification is performed using the theorem proving
system PVS. The FPU supports both single and double precision floating point
numbers, normal and denormal numbers, all four IEEE rounding modes, and ex-
ceptions as required by the standard.

Beside the verification of the combinatorial correctness of the FPUs we pipe-
line the FPUs to allow the integration into an out-of-order processor. We formally
define the correctness criterion the pipelines must obey in order to work properly
within the processor. We then describe a new methodology based on combining
model checking and theorem proving for the verification of the pipelines.

Kurzzusammenfassung

Die vorliegende Arbeit behandelt die formale Verifikation einer vollständig IEEE-
konformen Floating Point Unit (FPU). Die Hardware wird auf Gatter-Ebene ge-
gen eine Formalisierung des IEEE Standards verifiziert. Zur Verifikation wird das
Beweis-System PVS benutzt. Die FPU unterstützt Fließkommazahlen mit einfa-
cher und doppelter Genauigkeit, normale und denormale Zahlen, alle vier Run-
dungsmodi und alle Exception-Signale.

Neben der Verifikation der kombinatorischen Schaltkreise werden die FPUs ge-
pipelined, um sie in einen Out-of-order Prozessor zu integrieren. Die Korrektheits-
Kriterien, die die gepipelineten FPUs befolgen müssen, um im Prozessor korrekt
zu arbeiten, werden formal definiert. Es wird eine neue Methode zur Verifikati-
on solcher Pipelines beschrieben. Die Methode beruht auf der Kombination von
Model-Checking und Theorem-Proving.

viii

Extended Abstract

In this thesis we report on the verification of a fully IEEE compliant floating point
unit (FPU). The verification is performed on the gate level against a formalization
of the IEEE standard by means of the theorem proving system PVS [OSR92]. The
design of the FPU and the formalization of the IEEE standard are based on the
textbook on computer architecture by Müller and Paul [MP00]. We extend their
work by formally verifying the designs and the formalization of the standard. We
have found several errors in the designs as well as in the theory.

The verification is divided into three parts. We first describe the formaliza-
tion of the IEEE standard. This includes a formalization of normal and denormal
numbers and the normalization algorithm. We then define the rounding function.
All four rounding modes from the IEEE standard are captured. We prove that the
rounding function conforms to the standard. Next, we define the five exceptions
from the standard and exponent wrapping. We then describe the concept of α-
equivalence from [EP97, MP00]. α-equivalence partitions the real numbers into
equivalence classes such that equivalent numbers are rounded the same and yield
the same IEEE exceptions, which is also formally proved. We then describe the en-
coding of floating point numbers in bitvectors and formally define the correctness
of the supported floating point operations.

The second part of this thesis covers the verification of the actual floating point
hardware against the formalization presented before. We verify three separate
FPUs, one for addition and subtraction, one for multiplication and division, and
one for comparisons, format conversions, and various miscellaneous operations.

Each FPU is divided into three parts which are verified separately and then
are combined to the complete FPU. The first part is an unpacker which converts
the operands into some more convenient internal format. It follows the computa-
tion unit which performs the actual operation, e.g., an addition or division. The
computation units do not need to compute an exact result, but an α-equivalent
approximation. The approximations are fed into the rounding unit which com-
putes the correctly rounded result and the exception flags. By the properties of
α-equivalence it follows that the approximation is rounded to the same result as
the exact result would have been.

The decomposition of the FPUs into unpacker, computation unit, and rounding
unit eases the verification, since each part can be verified separately. Using the
precise, mathematical specifications of each part, the parts can then be composed
in a rigorous way.

The verified FPUs are used in an out-of-order processor. In order to exploit the
capabilities of this processor, the FPUs are pipelined. The pipelines may process
multiple instructions simultaneously, may have variable latency, and may reorder
instructions internally. For the iterative division algorithm, the pipeline has a cy-
cle in the pipeline structure. We formally describe the correctness criterion the
pipelined FPUs shall obey in order to work properly inside the processor. We have

ix

developed a new methodology based on combining model checking and theorem
proving for the verification of the pipelines.

This thesis is part of a larger project at Saarland University which aims at the
formal verification of a complete microprocessor including caches and the floating
point units from this thesis. Our group has developed a tool which automatically
translates hardware specifications from the theorem prover PVS to the hardware
description language Verilog. Using this tool, we have implemented and tested the
FPU and the complete processor on a Xilinx FPGA. We give a detailed project
description and status at the end of this thesis.

x

Zusammenfassung

Die vorliegende Arbeit behandelt die formale Verifikation einer vollständig IEEE-
konformen Floating Point Unit (FPU). Die Hardware wird auf Gatter-Ebene ge-
gen eine Formalisierung des IEEE Standards verifiziert. Zur Verifikation wird das
Beweis-System PVS [OSR92] benutzt. Das FPU-Design und die Formalisierung
des IEEE Standards basieren auf dem Lehrbuch über Computer-Architektur von
Müller und Paul [MP00]. Wir erweitern die Arbeit von Müller und Paul, indem wir
die Designs und die Formalisierung des Standards formal verifizieren. Wir haben
mehrere Fehler in den Designs und in der Theorie gefunden.

Die Verifikation ist in drei Teile aufgeteilt: zunächst beschreiben wir die For-
malisierung des IEEE Standards. Diese beinhaltet eine Formalisierung von norma-
len und denormalen Zahlen und des Normalisierungsalgorithmus’. Danach definie-
ren wir die Rundungsfunktionen. Alle vier Rundungsmodi aus dem Standard wer-
den behandelt. Wir beweisen, dass die Rundungsfunktionen dem Standard entspre-
chen. Anschließend definieren wir alle fünf Exceptions aus dem Standard und Ex-
ponent Wrapping. Wir beschreiben dann das Konzept der α-Äquivalenz aus [EP97,
MP00]. α-Äquivalenz partitioniert die reellen Zahlen in Äquivalenz-Klassen, so
dass äquivalente Zahlen gleich gerundet werden und die selben Exceptions aus-
lösen. Dies wird ebenfalls formal bewiesen. Danach beschreiben wir die Einbet-
tung von Fließkommazahlen in Bitvektoren und definieren formal die Korrektheit
der unterstützten Operationen.

Der zweite Teil der Arbeit behandelt die Verifikation der eigentlichen Fließ-
komma-Hardware bezüglich der vorher beschriebenen Spezifikation. Wir verifi-
zieren drei getrennte FPUs: eine für Addition/Subtraktion, eine für Multiplikati-
on/Division, und eine für Vergleich/Konvertierung und einige weitere Operationen.

Jede FPU ist in drei Teile zerlegt, die separat verifiziert werden und später
zur kompletten FPU zusammengesetzt werden. Der erste Teil ist der Unpacker,
der die Operanden in ein geeigneteres internes Format umwandelt. Es folgt die
Berechnungs-Einheit, die die eigentliche Operation ausführt. Die Berechnungs-
Einheit braucht nicht das exakte Ergebnis zu berechnen, sondern nur eine α-äquiva-
lente Approximation. Diese Approximation wird dann an den Runder übergeben,
der das korrekt gerundete Ergebnis und die Exceptions berechnet. Die Eigenschaf-
ten der α-Äquivalenz garantieren, dass die Approximation genauso gerundet wird
und die selben Exceptions auslöst, wie es dass exakte Ergebnis würde.

Die Zerlegung der FPUs in Unpacker, Berechnungs-Einheit und Runder er-
leichtert die Verifikation, da jeder Teil einzeln verifiziert werden kann. Die Teile
werden dann mit Hilfe ihrer präzisen mathematischen Spezifikation zusammenge-
setzt.

Die verifizierten FPUs werden in einen Out-of-order Prozessor eingebettet. Um
die Möglichkeiten dieses Prozessors auszunutzen, werden die FPUs gepipelined.
Die Pipelines können mehrere Instruktionen gleichzeitig ausführen, haben variable
Latenz, und können die Instruktionen intern umordnen. Die Pipelines haben Zyklen

xi

in ihrer Struktur, um den iterative Divisions-Algorithmus zu implementieren. Wir
definieren formal die Korrektheits-Kriterien, die die gepipelineten FPUs erfüllen
müssen, um innerhalb des Prozessors korrekt zu funktionieren. Wir beschreiben
eine neue Methode zur Verifikation solcher Pipelines. Die Methode beruht auf der
Kombination von Model-Checking und Theorem-Proving.

Die vorliegende Arbeit ist Teil eines größeren Projekts an der Universität des
Saarlandes, welches die formale Verifikation eines kompletten Prozessors zum Ziel
hat. Der Prozessor beinhaltet Caches und die FPUs aus dieser Arbeit. Unsere Grup-
pe hat ein Programm entwickelt, welches Hardware-Spezifikationen in PVS auto-
matisch in die Hardware-Beschreibungssprache Verilog übersetzt. Mit Hilfe die-
ses Programms haben wir die FPU und den gesamten Prozessor auf einem Xilinx
FPGA implementiert. Wir beschreiben das Projekt ausführlich am Ende dieser Ar-
beit.

xii

Contents

1 Introduction 1

2 The Prototype Verification System 3
2.1 Bits and Bitvectors . 3

2.2 Designing Combinatorial Hardware in PVS 5

2.3 Modeling Clocked Circuits . 7
2.4 Related Work . 7

3 Theory of IEEE Rounding 9
3.1 Factorings . 10

3.1.1 Basic Definitions . 10

3.1.2 Normalization . 11

3.1.3 Representable Factorings 13
3.2 Rounding . 13

3.2.1 Definition . 14

3.2.2 Decomposition Theorem 14
3.2.3 Correctness of the Rounding Function 16

3.3 Exceptions and Wrapped Exponents 17

3.3.1 Overflow . 18

3.3.2 Underflow . 19
3.3.3 Wrapped Exponent . 20

3.3.4 Inexact . 21

3.4 α-Equivalence . 21
3.5 Rounding Representatives . 24

3.6 IEEE Number Format . 28

3.7 Floating Point Operations . 30
3.7.1 Basic Operations . 30

3.7.2 Comparison . 32

3.7.3 Conversion . 33
3.8 Related Work . 36

xiv CONTENTS

4 Verification of the Floating Point Hardware 39
4.1 Unpacker . 40

4.1.1 Floating Point Unpacker 40
4.1.2 Fixed Point Unpacker 43

4.2 Rounder . 43
4.2.1 η-Computation Stage . 46
4.2.2 Rep, SigRd and Postnorm Stages 49
4.2.3 AdjustExp, Pack and ExpRd Stages 52

4.3 Multiplicative Floating Point Unit 53
4.3.1 Multiplication/Division Algorithm 53
4.3.2 Hardware Implementation 58
4.3.3 Special Cases . 62
4.3.4 Putting It All Together 63

4.4 Additive Floating Point Unit . 65
4.4.1 Additive FPU Core . 65
4.4.2 Special Cases . 66
4.4.3 The Sign of Addition/Subtraction 67
4.4.4 Putting It All Together 68

4.5 Comparison, Conversion and Miscellaneous Operations 70
4.5.1 Comparisons . 72
4.5.2 Conversion to Floating-Point Formats 73
4.5.3 Conversion to Integer Format 74

4.6 Discrepancies to the IEEE Standard 78
4.7 Related Work . 78

5 Pipelining the FPUs 81
5.1 Pipeline Correctness Criterion 82

5.1.1 Formalization of the EU Interface 83
5.1.2 Correctness Criterion . 84

5.2 Example Pipeline . 86
5.3 Pipeline Verification by Theorem Proving 89
5.4 Pipeline Verification by Model Checking 90
5.5 Translating FairCTL to ∀t form 90

5.5.1 Fixpoints . 91
5.5.2 The FairCTL Operators 92
5.5.3 Proof of µ-Calculus ≡ ∀t-Form 92
5.5.4 Non-Determinism versus Input Sequences 94

5.6 Pipeline Verification using Model Checking and Theorem Proving 95
5.6.1 Separating Pipeline Control and Datapaths 95
5.6.2 Verification of the Pipeline 96
5.6.3 Some Practical Considerations 99

5.7 Putting It All Together . 100
5.8 Related Work . 100

CONTENTS xv

6 The VAMP Project 103
6.1 The VAMP Processor Core . 104
6.2 The Memory Unit . 105
6.3 Verification Effort . 106
6.4 Translating PVS to Verilog . 108
6.5 Experimental Results . 108

6.5.1 Implementation of General-Purpose Circuits 109
6.5.2 Implementation of the Floating Point Units 110
6.5.3 Implementation of the Complete VAMP Processor 111

6.6 Related Work . 113

7 Summary, Discussion and Future Work 115
7.1 Summary . 115
7.2 Discussion . 116
7.3 Future Work . 118

A Floating Point Instruction Set 121

B Proof of Carry-Chain adder 123

C Circuits, Theorems and Lemmas in PVS 129

D Multiplicative Pipeline Control in SMV 133

xvi CONTENTS

List of Figures

2.1 Construction and correctness statement of a full adder 5
2.2 Construction and correctness statement of a carry-chain adder . . 6
2.3 Modeling clocked circuits . 7

3.1 α-equivalence . 22
3.2 Computing representatives by sticky-computation 24
3.3 Embedding of (s, e, f ′) in one bitvector 28

4.1 Top-level view of the floating point units. 39
4.2 Normalization shift in the unpacker 41
4.3 Design of the fixed point unpacker 43
4.4 Top-level view of the rounder. 45
4.5 Computation of OVFbef . 48
4.6 Decomposition of the significand into fhi, least-, round-, and sticky-

bit. 49
4.7 Computation of [q]−(P+1) . 57
4.8 Top-level schematics of the multiplicative funtional unit 58
4.9 Top-level schematics of the Misc-FPU. 71
4.10 Circuit F2I-DECIDE . 75
4.11 Circuit F2I-SMALL . 75
4.12 Circuit RD2INT . 76

5.1 Execution unit interface . 83
5.2 FPU pipeline . 87
5.3 Separating Control and Datapaths 96

6.1 Overview of the VAMP microprocessor 105
6.2 Comparison of the cost of translated designs and optimized macros 109
6.3 Overview of the VAMP processor implementation 112

xviii LIST OF FIGURES

Chapter 1

Introduction

Over the last decades, microprocessors have become commonly used within many
applications. In particular, microprocessors are being used in life-critical environ-
ments such as automobiles, air planes, power plants and medical instrumentations.
Hence, the correctness of microprocessors is of vital importance.

Simultaneously to the upcoming of microprocessors in everyday’s life, the
complexity of the processors grew so large that the traditional way of asserting cor-
rectness by testing and simulation is now unsatisfactory, at least for safety-critical
applications. Furthermore, the cost of errors in microprocessors is gigantic. Prob-
ably the most popular example is the Pentium bug [Pra95], which cost Intel nearly
half a billion dollar in 1995. One may expect that a similar bug today would cost
the tenfold.

Formal verifcation offers a means to rigorously check the correctness of proces-
sors. Our group at Saarland University is currently working on the formal verifica-
tion of a microprocessor called VAMP (for Verified Architecture MicroProcessor).
The VAMP has many complex features also found in contemporary commercial
micropocessors: it features pipelined out-of-order execution, precise interrupts, a
cache hierarchy, and a floating point unit.

In this thesis, we consider the verification of the VAMP floating point unit
(FPU). The FPU is developed in the textbook on computer architecture by Müller
and Paul [MP00]. Along with the complete designs come paper-and-pencil proofs
for the correctness of the circuits. These proofs served as guidelines for the for-
mal verification in the theorem proving system PVS [OSR92]. The FPU is veri-
fied on the gate-level against a formalization of the IEEE standard 754 for binary
floating point arithmetic [IEEE]. The formalization of the IEEE standard is based
on [Min95, EP97, MP00].

The FPU is fully IEEE compliant. It features both single and double preci-
sion operations. All four rounding modes specified in the IEEE standard are im-
plemented. Denormal numbers are handled completely in hardware, and floating
point exceptions are computed as required by the standard. The operations sup-
ported by the FPU are addition, subtraction, multiplication, division, comparison,

2 Introduction

conversions, and various others.

In order to implement the FPU with reasonable cycle time, the FPUs are pipe-
lined. The pipelined FPUs may process multiple operations simultaneously, and
the operations have variable latency. Furthermore, the operations may be reordered
internally, i.e., they need not leave the pipeline in the order they enter it. We have
developed a new methodology combining model checking and theorem proving to
verify the correctness of the pipelines.

The presented FPU is the first formally verified, fully IEEE compliant floating
point unit which is publicly available. The PVS files can be found at our web site1.

Outline

Chapter 2 briefly describes the theorem prover PVS. We present a summary of
PVS’s bitvector library, and describe how combinatorial and clocked hardware is
designed and specified in PVS. As an example, we present the construction of a
simple carry-chain adder.

The main work of this thesis is presented in chapters 3–5. Chapter 3 presents
the formalization of the IEEE standard against which the floating point hardware is
verified. Furthermore, theorems and notations facilitating the hardware verification
are presented. Chapter 4 presents the verification of the combinatorial floating
point hardware. In chapter 5, we describe the verification of the pipelining of the
combinatorial FPUs.

We present an overview of the VAMP project in chapter 6. Chapter 7 sum-
marizes the thesis and discusses benefits and drawbacks of our approach to the
verification and implementation of complex hardware. Finally, we give a brief
outlook to future work.

Related work is discussed at the end of each chapter.

1http://www-wjp.cs.uni-sb.de/∼cj/PhD/, see also the VAMP homepage
http://www-wjp.cs.uni-sb.de/projects/verification/

Chapter 2

The Prototype Verification
System

The Prototype Verification System (PVS) [OSR92] is a general-purpose interactive
theorem prover developed at SRI International. The PVS system is based on typed
higher-order logic within a Genzen-like sequent calculus [Gen35]. PVS features
an expressive specification language, powerful decision procedures, e.g., for linear
arithmetic, and a µ-calculus model-checker [RSS95]. We will not describe PVS in
detail here; we refer the reader to various tutorials and manuals on PVS [COR+95,
OSRSC99a, OSRSC99b, SORSC99].

In the following, we will give a brief overview of PVS’s bitvector library which
we use throughout this thesis. We then describe how combinatorial and sequential
hardware is modeled in PVS. Exemplarily, we describe the construction of a carry-
chain adder. This is not intended to provide a deep understanding of PVS, but only
to give an idea of the way we design and verify hardware.

Except for the construction of the carry-chain adder in section 2.2 we use stan-
dard mathematical notation instead of the PVS syntax throughout this thesis. The
proofs in this thesis are proofs in mathematical textbook fashion which are ex-
tracted from the actual PVS proofs. Using standard mathematical notation eases
readability of the definitions and proofs. For reference, we list the PVS names of
all lemmas and theorems from this thesis in Appendix C.

2.1 Bits and Bitvectors

In this section, we give a short summary of PVS’s bitvector library [BMS+96].
The type of bits is defined as B := {0,1}. The set of bitvectors of length n ∈ N +

is denoted by B n. PVS distinguishes bitvectors of length 1 from single bits; for
the sake of readability we ignore this distinction in this thesis.

Let bv, bv′ be bitvectors. The ith bit of bitvector bv is denoted by bv[i]. The
sub-bitvector bv[j] . . . bv[i] is denoted by bv[j : i]. The concatenation of bv and

4 The Prototype Verification System

bv′ is denoted by bv ◦ bv′. A bitvector of length n consisting solely of b’s (b ∈ B)
is denoted by bn. The bit-wise connectives ∧,∨,⊕, and ¬ on bitvectors of equal
length are defined in the usual way.

Number Representations. The natural number represented by bv ∈ B n is de-
fined as

〈bv〉 :=

n−1∑

i=0

2i · bv[i]. (2.1)

The two’s complement value of bv is

[bv] :=

{
〈bv〉 if 〈bv〉 < 2n−1,

〈bv〉 − 2n otherwise.
(2.2)

The range of the n-bit two’s complement numbers is

Tn := {−2n−1, . . . , 2n−1 − 1}. (2.3)

The proof that Tn indeed is the range of the n-bit two’s complement numbers can
be found in the bitvector library.

The PVS bitvector library provides a large number of lemmas on bitvectors and the
numbers represented by them. For instance, one of the most-often used lemmas
states for bitvectors bv ∈ B n, bv′ ∈ B m:

〈
bv ◦ bv′

〉
= 〈bv〉 · 2m +

〈
bv′

〉
. (2.4)

In the following, we will often use the lemmas from the bitvector library without
explicitly quoting them.

The rest of this section is not part the PVS bitvector library. For the definition
of IEEE floating point numbers in section 3.6 we need one further integer number
format, namely biased integer format. For n-bit numbers, let biasn := 2n−1 − 1.
The biased integer value of bv ∈ B n is defined as

[bv]bias := 〈bv〉 − biasn. (2.5)

Furthermore, we need a notion of binary fractions. Let bv ∈ B n. When bv
shall be interpreted as a number with k digits behind the binary point, its value
is 〈bv〉 · 2−k. In order to use the large number of bitvector lemmas, we do not
introduce a new type for binary fractions, but reuse the standard definition (2.1)
and scale by 2−k.

We often write bv ∈ B m+k to denote bitvectors which are interpreted as binary
fractions with m bits before and k bits behind the binary point. The formal meaning
of B m+k is exactly the same as B n for n = m+ k; B m+k is only a notational hint
that bv should be interpreted as a binary fraction.

2.2 Designing Combinatorial Hardware in PVS 5

�

� ��

��� �	� ���
��

fulladder(a, b, c: bit): bvec[2] =
LET x = a XOR b IN

((a AND b) OR (c AND x)) o
(x XOR c);

fa_correct: LEMMA
FORALL(a,b,c: bit):
bv2nat(fulladder(a,b,c)) =

bv2nat(a) + bv2nat(b) + bv2nat(c)

’o’ means bit-concatenation. bvnat(·) reflects the binary value, i.e., 〈·〉.

Figure 2.1: Construction and correctness statement of a full adder

Notation. For reasons of readability, we often intermix bitvectors and the num-
bers represented by them in the text. For example, f may denote both the signifi-
cand’s value or the signficand’s bitvector representation of a floaiting point number.
If the precise distinction of numbers and their bitvector representation is beneficial
for the understanding, we use narrow letters f for numbers, and bold letters f for
bitvectors.

2.2 Designing Combinatorial Hardware in PVS

In this section, we briefly describe how combinatorial hardware is designed in PVS.
As an example we use a simple carry-chain adder.

The PVS language supports the (recursive) definition of functions which call
other functions similar to a functional programming language. We use functions to
model combinatorial hardware modules. For example, a full adder can be seen as a
function which maps three inputs a, b, c ∈ B to a 2-bit output s ∈ B 2. Figure 2.1
compares the construction of such a full adder using schematics and using the PVS
language. The correctness of the full adder is asserted in the lemma fa correct

also shown in figure 2.1.
Analogously, an n-bit carry-chain adder can be seen as a function which maps

the input bitvectors a, b ∈ B n and the carry-in cin ∈ B to a sum-bitvector s ∈
B n+1. Figure 2.2 shows schematic and PVS constructions of a carry-chain adder.

6 The Prototype Verification System

��� ���

��� ���

� � �
��� 	�
����

��������
-bit Adder

��� 	

FA

FA� � ���

� � ���

FA

� � ���

� � ���

� � 	�� � � 	�
����

� � 	�
����

carry_chain(n: posnat, a, b: bvec[n], cin: bit):
RECURSIVE bvec[n+1] =
IF n = 1 THEN

fulladder(a(0), b(0), cin)
Else

LET
chain = carry_chain(n-1, aˆ(n-2, 0), bˆ(n-2, 0), cin)
IN

fulladder(a(n-1), b(n-1), chain(n-1)) o
chainˆ(n-2,0)

ENDIF
MEASURE n;

cc_adder_correct: THEOREM
FORALL(n: posnat, a,b: bvec[n], cin:bit):
bv2nat(carry_chain(n, a, b, cin)) =

bv2nat(a) + bv2nat(b) + bv2nat(cin)

In the definition of carry chain, ’o’ means bit-concatenation, and
’ˆ(·, ·)’ means sub-bitvector extraction. bvnat(·) reflects the binary
value.

Figure 2.2: Construction and correctness statement of a carry-chain adder

Note that the function carry chain has an additional parameter n used to parame-
terize the size of the adder. The lemma cc adder correct asserts the correctness
of the adder for all widths n. The transcript of the PVS proof of this lemma can be
found in Appendix B.

The correctness statements of the full adder and the carry-chain adder relate
the hardware implementations to mathematical specifications of the form 〈sum〉 =
〈a〉 + 〈b〉 + 〈cin〉. Having precise specifications of the modules enables the com-
position of components to more and more complex hardware, and the rigorous
mathematical reasoning about these compositions.

2.3 Modeling Clocked Circuits 7

(a)

���

�

� ��� �	��

����

(b)

����� �����

����� �! �#"

��$ "��$

�%$

Figure 2.3: Modeling clocked circuits

2.3 Modeling Clocked Circuits

The subset of PVS which we use to model combinatorial hardware is similar to a
functional programming language, thus offering no direct support for state-holding
variables, as opposed to conventional programming or hardware description lan-
guages. Therefore, the concept of registers needs some extra consideration in PVS.

We may regard a clocked circuit as a circuit with only one state-holding reg-
ister R (which may consist of many bits), and a combinatorial circuit ns (cf. Fig.
2.3a). The circuit ns takes as inputs the current state of register R and some ex-
ternal inputs, and computes some outputs and the next state of register R. The
combinatorial circuit ns can be represented as a PVS function as described in the
previous section:

ns : State × Input → State × Output

(current state, inp) 7→ (next state, out)

The State, Input, and Output types may be arbitrarily nested records of bitvec-
tors.

Multiple clocked circuits can be combined to one larger clocked circuit by
interconnecting inputs and outputs, and using the cartesian product of the state
types as new state type (cf. figure 2.3b). In this way, e.g., we embed the FPU into
the processor. The result is one single combinatorial next-state function operating
on the state of the processor and the state of the FPU.

2.4 Related Work

Formalizing combinatorial and clocked circuits in a functional programming lan-
guage style, and verification of the hardware using a theorem prover is by no means
new. For example, [HD85,KSK93,Mel93,SRC97] design, specify and verify hard-
ware in PVS or other theorem provers in a very similar way.

8 The Prototype Verification System

Chapter 3

Theory of IEEE Rounding

This chapter presents the theory of rounding which has been used in the verifi-
cation of the floating point hardware. The theory consists of a formalization of
the IEEE standard 754 [IEEE] (mostly simply called “the standard” in this thesis),
and notations and theorems facilitating the verification of the actual floating point
hardware.

The theory presented in this chapter is primarily based on the work of Even
and Paul [EP97] and Müller and Paul [MP00, Chap. 7]. The paper-and-pencil
proofs in [MP00] served as guidelines for the formal proofs. Here, their work
is extended in that we formally verify the theory in PVS. The definition of the
rounding function in this chapter is based on Miner’s formalization of the IEEE
standard in PVS [Min95].

In section 3.1, we define the notion of factorings. Factorings are a numerical
abstraction of bitvector-represented floating point numbers. The abstraction eases
the verification, since one may argue about numbers instead of single bits and
bitvectors. We proceed in section 3.2 with the definition of the rounding function
and the proof of the decomposition theorem of rounding, which allows to split
the rounding process into three steps. This enables a decomposition of the actual
rounding hardware in a similar fashion, which in turn simplifies the design and the
verification of the rounding hardware (see chapter 4). In section 3.3 we define the
floating point exceptions and exponent wrapping.

The concept of α-equivalence is defined in section 3.4. α-equivalence is a
concise way to talk about sticky-bit computations. The real numbers are parti-
tioned into equivalence classes by means of α-equivalence. The salient property
of this partitioning is that for appropriate α, α-equivalent numbers are rounded
to the same floating point number, which is proved in section 3.5. α-equivalence
enables a decomposition of the FPU into computation units (e.g., adder, divider)
and a rounding unit. The computation unit delivers a result to the rounder which
needs not be exact but only α-equivalent to the exact result. The rounder therefrom
computes the correct floating point result and the exception signals. The decom-
position simplifies the design and the verification of the FPU, since one can handle

10 Theory of IEEE Rounding

the units separately and then compose them using the theorems on α-equivalence
and rounding.

In section 3.6 we describe the encoding of floating point numbers in the bitvec-
tor representation defined in the standard. We also introduce the special values
infinity and Not-a-Number (NaN). The supported floating point operations are de-
scribed in section 3.7. We give a correctness predicate for the basic operations
(+,−,×,÷) on non-special operands. We then define the result of comparisons be-
tween floating point numbers, and of conversions between different floating point
formats and between floating point numbers and integers. Section 3.8 discusses
related work.

Sections 3.1–3.5 of this chapter are a revised version of [Jac01], which has
been presented as a poster at TPHOLs 2001.

3.1 Factorings

3.1.1 Basic Definitions

We abstract IEEE numbers as defined in the standard to factorings. A factoring is a
triple (s, e, f) with sign bit s ∈ {0, 1}, exponent e ∈ Z , and significand f ∈ R ≥0.
Note that exponent range and significand precision are unbounded. The value of a
factoring is

[[s, e, f]] := (−1)s · 2e · f.

The standard introduces an exponent width N , from which constants emin :=
−2N−1 + 2 and emax := 2N−1 − 1 are derived. These constants are used to bound
the exponent range.

We call a factoring (s, e, f) normal if e ≥ emin and 1 ≤ f < 2. A factoring is
called denormal if e = emin and 0 ≤ f < 1. We call a factoring an IEEE factoring
if it is either normal or denormal.

The following lemmas list some basic facts about factorings. We omit the
proofs since they are fairly simple.

Lemma 3.1 A factoring (s, e, f) has zero value, iff f = 0.

Lemma 3.2 Let (s, e, f) and (s′, e′, f ′) be factorings with 1 ≤ f, f ′ < 2. It holds

e > e′ =⇒ |[[s, e, f]]| > |[[s′, e′, f ′]]|

The property also holds for IEEE factorings.

Lemma 3.3 Let (s, e, f) and (s′, e′, f ′) be IEEE factorings. It holds

|[[s, e, f]]| > |[[s′, e′, f ′]]| ⇐⇒
(
e > e′ ∨ (e = e′ ∧ f > f ′)

)
.

The next lemma states that nonzero IEEE factorings are unique:

3.1 Factorings 11

Lemma 3.4 Let (s, e, f) and (s′, e′, f ′) be IEEE factorings with nonzero value. It
holds

[[s, e, f]] = [[s′, e′, f ′]] ⇐⇒ (s, e, f) = (s′, e′, f ′).

Zero has two IEEE factorings (0, emin, 0) and (1, emin, 0), called +0 and −0, re-
spectively.

3.1.2 Normalization

Next, we define the normalization algorithm. We start by defining a function n̂orm
which maps nonzero factorings to factorings with significand between 1 and 2:

n̂orm(s, e, f) := (s, e + blog2 fc , f · 2−blog2 fc).

We proceed with the definition of the function norm, which maps any (possibly
zero) factoring to an IEEE factoring. Let (ŝ, ê, f̂) := n̂orm(s, e, f):

norm(s, e, f) :=

(ŝ, ê, f̂) if f 6= 0 and ê ≥ emin,
(ŝ, emin, f̂ · 2ê−emin) if f 6= 0 and ê < emin,
(s, emin, 0) if f = 0.

The following lemma summarizes the most important properties of the normaliza-
tion functions:

Lemma 3.5 Let (s, e, f) be an arbitrary factoring. It holds:1

(i) [[n̂orm(s, e, f)]] = [[s, e, f]] if f 6= 0,

(ii) 1 ≤ n̂ormf (s, e, f) < 2 if f 6= 0,

(iii) [[norm(s, e, f)]] = [[s, e, f]],

(iv) norm(s, e, f) is an IEEE factoring.

Having defined the normalization algorithm, we define conversion functions η and
η̂, which assign factorings to reals x:

η̂(x) := n̂orm(sign(x), 0, |x|) for x 6= 0,

η(x) := norm(sign(x), 0, |x|) for arbitrary x,

where sign(x) = 0 if x ≥ 0, and sign(x) = 1 otherwise.2

Lemma 3.6 Let x ∈ R . It holds:

(i) x = [[η̂(x)]] if x 6= 0,

1 �normf (s, e, f) denotes the f -component of the triple �norm(s, e, f); analogous for other func-
tions and components.

2We distinguish +0 and −0 in our theory of factorings, but for the conversion from reals to
factorings we convert 0 ∈

�
to +0.

12 Theory of IEEE Rounding

(ii) x = [[η(x)]]

Lemma 3.7 Let x ∈ R with x 6= 0 in the context of η̂. It holds:

(i) η̂e(x) = blog2 |x|c

(ii) η̂f (x) = |x| · 2−η̂e(x)

(iii) ηe(x) =

{
blog2 |x|c if x 6= 0 and blog2 |x|c ≥ emin,

emin otherwise.

(iv) ηf (x) = |x| · 2−ηe(x)

The above lemmas all follow easily by expanding definitions and applying some
basic arithmetic.

Lemma 3.8 Let (s, e, f) be an arbitrary factoring with value x := [[s, e, f]], x 6=
0. It holds

(i) |x| ≥ 2emin =⇒ η(x) = η̂(x), i.e., η and η̂ coincide for normal numbers.

(ii) If 1 ≤ f < 2, it holds (s, e, f) = η̂([[s, e, f]]).

(iii) If (s, e, f) is an IEEE factoring, it holds (s, e, f) = η([[s, e, f]]).

(iv) η̂e(x) ≤ ηe(x)

Proof: Statements (i),(ii) and (iv) are simple consequences of lemma 3.7. State-
ment (iii) is proved by using lemma 3.4 with (s′, e′, f ′) = η([[s, e, f]]). ut

Lemma 3.9 Let x ∈ R and (s, e, f) = η(x). It holds:

(i) (s, e, f) is normal, iff |x| ≥ 2emin ,

(ii) (s, e, f) is denormal, iff |x| < 2emin .

Proof: It suffices to prove the first part, the second then follows directly, since
η(x) is either normal or denormal by definition of IEEE factorings. If x = 0,
the claim holds trivially. If (s, e, f) is normal, it holds e ≥ emin and f ≥ 1, hence
2e ·f ≥ 2emin . From lemma 3.6(ii) and the definition of [[·]] we conclude |x| ≥ 2emin .
Assume otherwise that |x| ≥ 2emin . From lemma 3.8(i) we know (s, e, f) = η̂(x).
The claim now follows from lemmas 3.5(ii) and 3.7(i). ut

3.2 Rounding 13

3.1.3 Representable Factorings

Let P be the significand precision as defined in the standard. A significand f is
called representable, if f has at most P − 1 digits behind the binary point, i.e.,
if 2P−1 · f ∈ N 0. We call an IEEE factoring (s, e, f) semi-representable, if f is
representable. We call an IEEE factoring representable, if it is semi-representable,
and furthermore e ≤ emax holds. We call a real x (semi-)representable, if η(x) is
(semi-)representable.

Representable numbers exactly correspond to the representable numbers as de-
fined in the standard (cf. lemmas 3.36 and 3.37). Common values for (N,P) are
(8, 24) and (11, 53), called single and double precision, respectively. However, the
theory described here is not limited to these values of N and P . We only assume
N > 2 and P > 1. The standard defines an encoding of single and double preci-
sion IEEE factorings into bitvectors of length 32 and 64, respectively (cf. section
3.6). The idea behind factorings is to leave the bitvector level and argue about the
more abstract factorings in order to ease the verification of hardware.

The following lemma bounds (semi-)representable numbers.

Lemma 3.10 Let (s, e, f) be a semi-representable factoring, and i > e be an
integer. It holds

(i) f ≤ 2 − 21−P ,

(ii) |[[s, e, f]]| ≤ 2i − 2i−P ,

(iii) Xmax := 2emax · (2 − 21−P) is the largest representable number.

The following lemma characterizes the minimum distance between distinct semi-
representable factorings:

Lemma 3.11 Let (s, e, f) and (s′, e′, f ′) be semi-representable factorings with
values x := [[s, e, f]] and x′ := [[s′, e′, f ′]], let x 6= x′, and i be an integer. It
holds

e ≥ i and e′ ≥ i =⇒ |x − x′| ≥ 2i−(P−1).

The following lemma states that semi-representability is not disturbed by multipli-
cation with powers of 2:

Lemma 3.12 Let (s, e, f) be a semi-representable factoring, and n ∈ N 0. Then
η(2n · [[s, e, f]]) is a semi-representable factoring.

3.2 Rounding

Since (semi-)representable numbers are not closed under arithmetic operations
(e.g., addition, division), the IEEE standard defines four rounding modes: round
to nearest, round up, round down, and round to zero. In this section, we define
the rounding function, which maps arbitrary reals to semi-representable numbers
according to the standard. The definition is similar to Miner’s definition [Min95];
it only differs in cases of overflow and underflow (Sect. 3.3).

14 Theory of IEEE Rounding

3.2.1 Definition

We start with the definition of a function rint(· ,M) for each rounding mode M ∈
{near, up, down, zero}, which rounds reals x to integers:

rint(x, up) := dxe

rint(x, down) := bxc

rint(x, zero) := (−1)sign(x) · b|x|c

rint(x, near) :=

bxc if x − bxc < dxe − x,
dxe if x − bxc > dxe − x,
x if bxc = dxe ,
2 bdxe /2c otherwise.

Note that x − bxc and dxe − x are simply the fraction of x and its complement,
respectively.

By scaling by 2P−1, reals are rounded to rationals with P − 1 fractional digits:

rrat(x,M) := 2−(P−1) · rint(x · 2P−1,M).

Further scaling with 2e, e := ηe(x), yields the IEEE rounding function:

rd(x,M) := 2e · rrat(x · 2−e,M).

It is not obvious that this definition conforms with the IEEE standard. In section
3.2.3 we prove a theorem to convince the reader of the conformance.

3.2.2 Decomposition Theorem

The decomposition theorem we prove in this section decomposes the computation
of the rounding function into three steps: η-computation (sometimes called pre-
normalization in the literature), significand rounding, and a post-normalization.
The benefit of having the decomposition theorem is that it simplifies the design
and verification of rounder implementations. Furthermore, it is a powerful tool in
other proofs, e.g., in theorem 3.28.

The η-computation step computes the IEEE factoring X = η(x), where x is
the number to be rounded. The significand round step then rounds the significand
computed in the η-computation to P − 1 digits behind the binary point. This is
formalized in the function sigrd:

sigrd(X,M) :=
∣∣rrat

(
(−1)s · f,M

)∣∣ ,

where X = (s, e, f) is an IEEE factoring, and M is a rounding mode. The follow-
ing lemma states some properties of the sigrd function:

Lemma 3.13

(i) sigrd(X,M) = |rd([[X]],M)| · 2−e,

3.2 Rounding 15

(ii) 0 ≤ sigrd(X,M) ≤ 2,

(iii) 1 ≤ f =⇒ 1 ≤ sigrd(X,M),

(iv) 1 > f =⇒ 1 ≥ sigrd(X,M),

(v) sigrd(X,M) · 2P−1 is an integer.

Proof: Part (i) follows by expanding the definitions of sigrd and rd. For parts (ii)–
(iv) one expands the definition down to rint and applies basic properties of the floor
and ceiling functions. Part (v) is a direct consequence of the definition of rrat. ut

In the case that the significand rounding returns 0 or 2, the factoring has to
be post-normalized. If the significand round returns 0, the sign bit is forced to
0 in order to yield η(0). In case the significand round returns 2, the exponent is
incremented, and the significand is forced to 1:

postnrom(X,M) =

(s, e, sigrd(X,M)) if 0 < sigrd(X,M) < 2,
(s, e + 1, 1) if sigrd(X,M) = 2,
(0, emin, 0) if sigrd(X,M) = 0.

Lemma 3.14 The result postnrom(X,M) of the post-normalization is a semi-
representable IEEE factoring.

Proof: The case sigrd(X,M) ∈ {0, 2} is trivial. Assume 0 < sigrd(X,M) < 1.
By lemma 3.13(iii) we know f < 1, and hence e = emin since X is an IEEE fac-
toring. Therefore postnrom(X,M) is an IEEE factoring, and with lemma 3.13(v)
it is a semi-representable factoring.

Now assume 1 ≤ sigrd(X,M) < 2. Since the input X is an IEEE factoring,
we know e ≥ emin, and hence (s, e, sigrd(X,M)) = postnrom(X,M) is an IEEE
factoring; semi-representability now follows from lemma 3.13(v). ut

Lemma 3.15 [[postnrom(X,M)]] = rd([[X]],M).

Proof: Apply lemma 3.13(i) and expand definitions. ut

Theorem 3.16 (Decomposition Theorem) For any real x, and rounding mode
M ∈ {near, up, down, zero}, it holds

postnrom
(
η(x),M

)
= η

(
rd(x,M)

)
.

Proof: For nonzero rounding results, the claim follows from lemmas 3.8(iii) and
3.15. Otherwise, the claim follows by expanding the definitions of norm, η, and
postnrom. ut

The IEEE factoring of the rounding result can therefore be computed by first
computing the IEEE factoring η(x) of x, then rounding the significand, and finally

16 Theory of IEEE Rounding

post-normalizing the result. This decomposition of the rounding function is well
known [Gol96], but has been (paper-and-pencil) proved explicitly for the first time
in [MP00]. We extend this work by formally verifying the decomposition theorem.

The following lemma is our first application of the decomposition theorem as
a proof utility:

Lemma 3.17 Let x ∈ R and (s, e, f) = η(x). It holds:

(s, e, f) is denormal =⇒ ηe(rd(x,M)) = emin.

Proof: Since (s, e, f) is denormal, it holds e = emin, f < 1. By lemma 3.13(iv)
and the definition of post-normalization, it follows postnrome(η(x),M) = emin.
The claim now follows by application of the decomposition theorem 3.16. ut

3.2.3 Correctness of the Rounding Function

We now demonstrate that the definition of the IEEE rounding function rd conforms
with the IEEE standard. The specification of the round to nearest mode in the
standard is as follows:

(. . .) In this mode the representable value nearest to the infinitely pre-
cise result [of any floating point operation] shall be delivered; if the
two nearest representable values are equally near, the one with its
least significant bit [digit] zero shall be delivered. (. . .)

Since our formal definition of the function rd does not obviously coincide with
this informal definition, the following theorem is proved. This theorem hopefully
convinces the reader of the conformance of our rounding definition.

Theorem 3.18 Let x, x′ ∈ R and x′ be a semi-representable number.

(i) For any rounding mode M, rd(x,M) is semi-representable.

(ii) rd(x, near) is a nearest semi-representable number:
|x − x′| ≥ |x − rd(x, near)|.

(iii) If there are two nearest numbers, then the one with least significant digit
zero is chosen: x′ 6= rd(x, near) and |x − x′| = |x − rd(x, near)| implies
ηf (rd(x, near)) · 2P−1 is even.

Proof: Part (i) is a trivial consequence of lemma 3.14 and theorem 3.16. Part (ii)
and (iii) rely on the following fact proved by Miner in PVS [Min95]:

|x − rint(x, near)| ≤ 1
2 and

|x − rint(x, near)| = 1
2 =⇒ rint(x, near) is even.

3.3 Exceptions and Wrapped Exponents 17

Let (s, e, f) = η(x) and (s′, e′, f ′) = η(x′). It is easy to adopt the above fact to
the rd-function:

|x − rd(x, near)| ≤ 2e−P and (3.1)

|x − rd(x, near)| = 2e−P =⇒
(
rd(x, near) · 2−(1+e−P)

)
is even.

We now prove part (ii). We may assume that x′ 6= rd(x, near), since otherwise
the claim is trivial. From the decomposition theorem and the definition of the post-
normalization we know that ηe(rd(x, near)) ≥ e. Now assume e′ ≥ e. Using
lemma 3.11 (where we set (s, e, f) = η(rd(x, near)), (s′, e′, f ′) = η(x′), and
i = e) results in

|rd(x, near) − x′| ≥ 2e−(P−1) = 2 · 2e−P . (3.2)

Using the triangle inequality, (3.1) and (3.2) together yield

|x − x′| ≥ 2e−P . (3.3)

Equations (3.1) and (3.3) yield part (ii). Assume otherwise that e′ < e. Since
emin ≤ e′ we have emin < e, and therefore f ≥ 1, since (s, e, f) and (s′, e′, f ′)
are IEEE factorings. Hence |x| ≥ 2e. Lemma 3.10(ii) with i = e gives |x′| ≤
2e − 2e−P . Together this implies

|x′ − x| ≥ 2e−P . (3.4)

Again, (3.1) and (3.4) yield part (ii). The proof of part (iii) is similar. ut

Similar informal specifications exist in the standard for the three remaining round-
ing modes, and conformance theorems for these have been proved in PVS.

The following theorem states that the semi-representable numbers are exactly
the fixpoints of the rounding function:

Theorem 3.19 For any real x and rounding mode M, x is semi-representable iff
rd(x,M) = x.

Proof: If rd(x,M) = x, x is semi-representable by theorem 3.18(i). Conversely,
if x is semi-representable and M = near, then the round result must equal x by
theorem 3.18(ii) with x′ = x. The claim for the remaining rounding modes follows
analogously from their respective conformance theorems. ut

3.3 Exceptions and Wrapped Exponents

The IEEE standard defines five exceptions: invalid operation (INV), division by
zero (DIVZ), overflow (OVF), underflow (UNF), and inexact result (INX). In this
section, we define the OVF, UNF, and INX exceptions. The INV and DIVZ excep-
tions will be defined later.

The standard requires that each occurrence of an exception shall set a status flag
and call a trap handler. The trap handler can be disabled on user request. We do

18 Theory of IEEE Rounding

not describe the actual handling of the status flags and the trap handling, since this
is part of the CPU instead of the FPU. However, since the detection of exceptions
as well as the final result of floating point operations depend on whether the trap
handlers are enabled or disabled, we need the enable flags for the overflow and
underflow exceptions OVFen and UNFen, respectively. They are provided by the
CPU.

3.3.1 Overflow

The standard defines the overflow exception as follows:

The overflow exception shall be signaled whenever the destination for-
mat’s largest finite number is exceeded in magnitude by what would
have been the rounded floating-point result were the exponent range
unbounded. (. . .)

In lemma 3.10 we proved that Xmax = 2emax · (2 − 21−P) is the format’s largest
representable value. Since our rounding function by definition rounds as if the ex-
ponent range were unbounded above, we can define the OVF exception as follows:

OVF(x,M) := (|rd(x,M)| > Xmax) .

Here, x is the exact result of a floating point operation. The OVF exception depends
on the rounding mode, since different rounding modes round numbers slightly out-
side the representable range (|x| = Xmax + ε) differently to either Xmax, or to the
next value outside the format’s range.

Lemma 3.20 It holds

OVF(x,M) ⇐⇒ ηe(rd(x,M)) > emax.

Proof: The ⇒ direction follows from lemma 3.10 and theorem 3.18(i), the ⇐
direction from lemma 3.2. ut

For the implementation of the OVF test in the actual hardware, it is beneficial to
differentiate between overflows which are apparent before rounding, and overflows
which just arise during rounding:

OVFbef(x) := ηe(x) > emax,

OVFaft(x,M) := ηe(x) = emax ∧ sigrd(η(x),M) = 2.

In the first case we say the overflow occurs before rounding, in the latter case we
say after rounding.

Lemma 3.21 An overflow occurs, iff it occurs before or after rounding:

OVF(x,M) ⇐⇒ OVFbef(x) ∨ OVFaft(x,M)

Proof: By lemma 3.20 we have OVF(x,M) ⇐⇒ ηe(rd(x,M)) > emax. The
claim now follows from the decomposition theorem 3.16 and the definition of
postnrom. ut

3.3 Exceptions and Wrapped Exponents 19

3.3.2 Underflow

The standard defines the underflow exception as follows:

Two correlated events contribute to underflow. One is the creation of
a tiny nonzero result between ±2emin (. . .) The other is extraordinary
loss of accuracy (. . .)
When an underflow trap (. . .) is not enabled (. . .), underflow shall be
signaled when both tininess and loss of accuracy have been detected.
When an underflow trap (. . .) is enabled, underflow shall be signaled
when tininess is detected regardless of loss of accuracy. (. . .)

For each of the contributing events, the standard leaves the choice between two dif-
ferent implementations. We use tininess before rounding (instead of after rounding)
and inexact result as loss of accuracy (instead if denormalization loss). Tininess
before rounding occurs

(. . .) when a nonzero result computed as though both exponent range
and the precision were unbounded would lie strictly between ±2emin .

This is formalized as

TINY(x) := (x 6= 0 ∧ |x| < 2emin) .

Here again, x is the exact result of a floating point operation, and therefore is
“computed as though both exponent range and the precision were unbounded.” An
inexact result occurs

(. . .) when the delivered result differs from what would have been com-
puted were both exponent range and precision unbounded.

We formalize this as

LOSS(x,M) := (rd(x,M) 6= x) .

Loss of accuracy only syntactically depends on the rounding mode, since this
is a required parameter to the rd-function. From theorem 3.19 it easily follows
LOSS(x,M1) = LOSS(x,M2) for distinct rounding modes Mi.

Lemma 3.22 Let x ∈ R and (s, e, f) = η(x). It holds

LOSS(x,M) ⇐⇒ (sigrd((s, e, f),M) 6= f) .

Proof: By definition of LOSS and lemma 3.4 we have

LOSS(x,M) ⇐⇒ (η(rd(x,M) 6= eta(x)).

The claim now follows from the decomposition theorem 3.16 and the definition of
postnrom. ut

20 Theory of IEEE Rounding

Having defined tininess and loss of accuracy, we can define the underflow ex-
ception:

UNF(x,M, UNFen) := TINY(x) ∧ (LOSS(x,M) ∨ UNFen) .

As mentioned above, the standard leaves other choices for the definition of
TINY and LOSS. We refer the reader to [Har99, MP00] for lemmas about the rela-
tions between the different definitions.

3.3.3 Wrapped Exponent

In case of an overflow or underflow with corresponding trap enabled, the standard
requests to deliver a biased result to the trap handler:

Trapped overflows (. . .) shall deliver to the trap handler the result ob-
tained by dividing the infinitely precise result by 2A and then rounding.
The bias adjust A is 192 in the single, 1536 in the double format. (. . .)

Note that A = 3 · 2N−2 with exponent width N = 8 and N = 11, respectively.
Analogously to overflows, trapped underflows shall deliver the result obtained by
multiplying the exact result with 2A and then rounding. This is captured in the
following definition. Again, x is the exact result of a floating point operation:

wrapped(x,M, OVFen, UNFen) :=

x · 2−A if OVF(x,M) and OVFen,

x · 2A if UNF(x,M, UNFen) and UNFen,

x otherwise.

Now we are ready to define the floating point result of operations with exact result
x:

result(x,M, OVFen, UNFen) := rd
(
wrapped(x,M, OVFen, UNFen),M

)

For the sake of conciseness, we sometimes omit the OVFen and UNFen parameters
in applications of the wrapped and result function.

The idea behind exponent wrapping is that multiplying the result with 2±A

before rounding scales the result into the representable range. The FPU returns
the wrapped and rounded result to the trap handler, which can use the result in
subsequent operations.

If an overflow is detected with disabled trap, the result definition above returns
a result exceeding Xmax. The standard however requests a final result of either
±Xmax or ±∞, depending on the sign and the rounding mode. This will be speci-
fied as a case-split in section 3.7.1.

3.4 α-Equivalence 21

3.3.4 Inexact

The standard defines the inexact exception as follows:

If the rounded result of an operation is not exact or if it overflows
without an overflow trap, then the inexact exception shall be signaled.
(. . .)

It is not clear if the “rounded result” is meant to be rd(x,M) without being
wrapped, or result(x,M), which potentially has been wrapped. In Harrison’s for-
malization of the IEEE standard [Har99] exponent wrapping is not considered, and
thus the inexact exception is defined as

INX(x,M, OVFen) := LOSS(x,M) ∨ (OVF(x,M) ∧ OVFen).

In contrast, a test3 on Intel’s Pentium II with the operation x := Xmin/2 with
enabled underflow trap and M = up did not yield an INX signal (where Xmin is
the smallest representable value). If x is not being wrapped before rounding, then
rounding up x yields Xmin. Hence, if the INX signal was computed as rd(x,M) 6=
x, the rounded result would differ from x and so the INX signal should be set.
Otherwise, x · 2A is a representable number, and hence rounding does not change
x · 2A. Consequently, if the “rounded result” in the IEEE standard is meant to be
the wrapped and rounded result, then no INX signal should be set.

In contrast to Harrison [Har99], we define the inexact exception as

INX(x,M, OVFen, UNFen) := LOSS(wrapped(x,M, OVFen, UNFen),M)

∨(OVF(x,M) ∧ OVFen).

This is the definition also used in IBM’s S/390 [IBM00, Pg. 19-22] and in [MP00],
e.g. It has the advantage that programs can distinguish exact (except for exponent
wrapping) from inexact computations in case of trapped overflows and underflows.
For example, the above computation x := Xmin/2 can be represented exactly after
having been multiplied with 2A.

We believe that the IEEE standard is ambiguous in this point.

3.4 α-Equivalence

We now formalize the concept of α-equivalence4 and α-representatives from [EP97,
MP00]. This concept is a very concise way to speak about sticky-bit computations.

Let α be an integer. Two reals x and y are said to be α-equivalent (x ≡α y), if
x = y or if there exists some q ∈ Z with q · 2α < x, y < (q +1) · 2α , i.e., if both x

3The test-program is available at our website:
http://www-wjp.cs.uni-sb.de/∼cj/PhD/

4The term α-equivalence is not related to the term as used in λ-calculus (see e.g. [Bar90]).

22 Theory of IEEE Rounding

�� �

� ������ � � �	�
� � � �

��
�

0 �
�

�
�

�� �
���

�������� �
�

Figure 3.1: α-equivalence

and y lie in the same open interval between two consecutive integral multiples of
2α (cf. figure 3.1). Clearly, if such a q exists, it must be qα(x) := bx · 2−αc. The
α-representative of x is defined as

[x]α :=

{
x if x = qα(x) · 2α,(
qα(x) + 1

2

)
· 2α otherwise.

If x is an integral multiple of 2α, the representative of x is x itself, and the midpoint
of the interval between the surrounding multiples of 2α otherwise. The following
lemma summarizes some important facts:

Lemma 3.23 Let x, y be reals, and α, k be integers.

(i) ≡α is an equivalence relation,

(ii) x ≡α [x]α,

(iii) x ≡α y ⇐⇒ [x]α = [y]α, (representative equivalence)

(iv) x ≡α y ⇐⇒ −x ≡α −y, and [−x]α = −[x]α, (negative value)

(v) x ≡α y ⇐⇒ 2k · x ≡α+k 2k · y, and [2k · x]α+k = 2k · [x]α, (scaling)

(vi) x ≡α y ⇐⇒ x + k · 2α ≡α y + k · 2α, (translation)

(vii) x ≡α y =⇒ x ≡α+k y if k ≥ 0, (coarsening)

(viii) x = 0 ⇐⇒ x ≡α 0 ⇐⇒ [x]α = 0, (zero value)

Proof: Parts (i)-(iv),(viii) are simple consequences of the definition, parts (v)-(vii)
are proved by induction on k. ut

Lemma 3.23(iii) is used in the following to conclude the validity of statements
on α-equivalent numbers x, y from the validity of the same statement on x and its
representative [x]α. For example, we will prove in theorem 3.28 that x and [x]α
round to the same value for appropriate α. From this, one can conclude using
lemma 3.23(iii) that α-equivalent x, y also round to the same number: it holds
[x]α = [y]α and hence rd(x,M) = rd([x]α,M) = rd([y]α,M) = rd(y,M).
We will not explicitly reference any further usage of this proof idea.

3.4 α-Equivalence 23

Lemma 3.24 Let x, y ∈ R , α, k ∈ Z such that x ≡α y and k ≥ α. It holds

x < 2k ⇐⇒ y < 2k.

Proof: The claim is trivial if x = y. We therefore may assume that it exists a q ∈ Z
such that

q · 2α < x, y < (q + 1) · 2α. (3.5)

It cannot hold q < 2k−α < q + 1 since this would enclose the integer 2k−α in
between the two consecutive integers q and q+1. This implies that either q ≥ 2k−α

or 2k−α ≥ q + 1. First assume q ≥ 2k−α, hence q · 2α ≥ 2k. Equation (3.5) now
implies x > 2k and y > 2k. Assume otherwise 2k−α ≥ q+1, i.e., 2k ≥ (q+1)·2α.
Now (3.5) implies 2k < x and 2k < y. ut

The following theorem describes equivalence on factorings:

Lemma 3.25 Let x, x′ ∈ R nonzero, e := ηe(x), e′ := ηe(x
′), ê := η̂e(x), ê′ :=

η̂e(x
′), and α be an integer. It holds

(i) x ≡α y =⇒ sign(x) = sign(x′),

(ii) α ≤ ê and x ≡α x′ =⇒ ê = ê′,

(iii) α ≤ e and x ≡α x′ =⇒ e = e′,

(iv) |x| ≥ 2emin and α ≤ e =⇒ ê = η̂e([x]α),

(v) |x| < 2emin and α ≤ e =⇒ η̂e([x]α) < emin.

Proof: We only prove part (ii). Part (i) is easy, parts (iii)–(v) are similar to (ii).
With lemma 3.23(vii) it suffices to proof the claim for α = ê. By part (i) and

lemma 3.23(iv) we may assume x, x′ ≥ 0.
Since the claim is trivial for x = x′, we further assume that qê(x) · 2ê <

x, x′ < (qê(x) + 1) · 2ê by definition of α-equivalence. From lemma 3.5(ii), we
know 1 ≤ x · 2−ê < 2, and therefore qê(x) =

⌊
x · 2−ê

⌋
= 1. We then have

2ê < x, x′ < 2ê+1, and therefore ê = blog xc = blog x′c. Lemma 3.7 proves the
claim. ut

We now are ready to prove an important theorem, which allows the easy com-
putation of IEEE factorings corresponding to representatives:

Theorem 3.26 Let x ∈ R , let (s, e, f) := η(x) be the corresponding IEEE fac-
toring, and let p ≥ 0 be an integer. The IEEE factoring of [x]e−p can be computed
by computing the representative [f]−p of f :

η([x]e−p) = (s, e, [f]−p).

24 Theory of IEEE Rounding

OR

�������������	��
�
�
��������������������
�
�
�������������	��
�
�
�����

� ������� �����������	��
�
�
��������������������
�
�
�����"!$#&%('$)�*

Figure 3.2: Computing representatives by sticky-computation

Proof: From lemma 3.25(i) and 3.25(iii) we have ηs([x]e−p) = s and ηe([x]e−p) =
e. From lemma 3.7 we know ηf ([x]e−p) = |[x]e−p| ·2

−e. With lemma 3.23(iv) and
3.23(v), we have |[x]e−p| · 2

−e = [|x| · 2−e]−p. Lemma 3.7 gives |x| · 2−e = f , and
hence ηf ([x]e−p) = [f]−p. ut

Next, we show that the representative of f can be computed by a sticky-bit
computation. Let f ≥ 0 be a real in binary format fk, . . . , f0, f−1 . . . , f−l ∈
{0,1}(k+1)+l such that f =

∑k
i=−l fi · 2

i. Let p be an integer, k ≥ −p > −l. The
(−p)-sticky-bit of f is the logical OR of all bits f−p−1, . . . , f−l (cf. figure 3.2):

sticky−p(f) := f−p−1 ∨ . . . ∨ f−l.

Theorem 3.27 With the above definitions, the representative [f]−p of f can be
computed by replacing the less significant bits by the sticky bit:

[f]−p =
k∑

i=−p

fi · 2
i + 2−p−1 · sticky−p(f)

Proof: By definition, q−p(f) = bf · 2pc, and therefore q−p(f) =
∑k

i=−p fi ·

2i+p. Furthermore, f = q−p(f) · 2−p, iff sticky−p(f) = 0. Applying this in the
definition of [·]−p proves the claim. ut

Theorems 3.26 and 3.27 together allow an easy computation of representatives
(respectively their IEEE factorings) by or-ing the less significant bits in an OR tree,
and replacing them by the sticky bit. This technique is well known [Gol96], but the
formalism with α-representatives allows for a very concise argumentation about
these sticky computations. The verification of the adder circuitry in [BJ01,Ber01],
e.g., relies heavily on the concept of α-equivalence.

3.5 Rounding Representatives

The most important property of α-representatives is that rounding and exception-
computation yield the same result on α-equivalent x, x′ for appropriate α. This
will be proved in this section. The proofs in this section are completely different
from the proofs in [EP97, MP00]. There, the proofs are by geometrical arguments
which are not suitable for formal verification.

Theorem 3.28 Let x ∈ R , (s, e, f) := η(x), and M be a rounding mode. It holds

rd(x,M) = rd([x]e−P ,M).

3.5 Rounding Representatives 25

Proof: It is technically very tedious to prove this theorem in PVS. We only give a
sketch of the PVS proof. By theorems 3.16 and 3.26 it suffices to show

sigrd
(
(s, e, f),M

)
= sigrd

(
(s, e, [f]−P),M

)
.

By unfolding the definitions of sigrd and rrat, this is equivalent to

rint
(
(−1)s · f · 2P−1,M

)
= rint

(
(−1)s · [f]−P · 2P−1,M

)
. (3.6)

Since the claim is trivial if [f]−P = f , we can assume by the definition of α-
equivalence that f · 2P /∈ Z , and [f]−P = (q + 0.5) · 2−P with q := q−P (f) =⌊
f · 2P

⌋
. Hence [f]−P = (

⌊
f · 2P

⌋
+ 0.5) · 2−P holds. Substituting this in (3.6)

yields

rint((−1)s · f · 2P−1,M) = rint((−1)s ·
(
(
⌊
f · 2P

⌋
+ 0.5) · 2−1

)
,M)

= rint((−1)s ·
(

1
4 + 1

2

⌊
f · 2P

⌋)
,M). (3.7)

The theorem now follows from the next two lemmas. Lemma 3.29 proves that the
claim is correct if M 6= near. Lemma 3.30 proves that the same cases apply in
the definition of rint(· , near) on both sides of equation (3.7). Then the claim again
follows by lemma 3.29. ut

Lemma 3.29 For all z ∈ (R + \ N) and s ∈ {0, 1}, it holds

b(−1)s · zc =
⌊
(−1)s ·

(
1
4 + 1

2 b2zc
)⌋

,

d(−1)s · ze =
⌈
(−1)s ·

(
1
4 + 1

2 b2zc
)⌉

.

Lemma 3.30 For all z ∈ R +, 2z /∈ Z and s ∈ {0, 1}, set z ′ := (−1)s · z. It holds

⌈
z′

⌉
− z′ > z′ −

⌊
z′

⌋
⇐⇒⌈

z′
⌉
− (−1)s ·

(
1
4 + 1

2 b2zc
)

> (−1)s ·
(

1
4 + 1

2 b2zc
)
−

⌊
z′

⌋
,

⌈
z′

⌉
− z′ < z′ −

⌊
z′

⌋
⇐⇒⌈

z′
⌉
− (−1)s ·

(
1
4 + 1

2 b2zc
)

< (−1)s ·
(

1
4 + 1

2 b2zc
)
−

⌊
z′

⌋
.

Lemma 3.29 can be proved by induction on bzc, and some basic properties
of the floor and ceiling-functions from the PVS library. The proof, however, is
technical and tedious. Lemma 3.30 is proved automatically by the PVS command
(grind).

Corollary 3.31 Let x ∈ R , α ≤ ηe(x) − P , and M be a rounding mode. It holds

rd(x,M) = rd([x]α,M).

In particular, the claim holds for α = η̂e(x) − P .

26 Theory of IEEE Rounding

Proof: The claim follows from theorem 3.28 and lemmas 3.23 and 3.8(iv). ut

Corollary 3.32 Let (s, e, f) be an IEEE factoring. It holds

sigrd((s, e, f),M) = sigrd((s, e, [f]−P),M).

Proof: The claim follows from lemmas 3.13(i) and theorems 3.26 and 3.28. ut

Not only the rounding can be accomplished by using the representative, but
also the detection of exceptions. We first prove this for OVF and UNF:

Theorem 3.33 Let x ∈ R , (s, e, f) := η(x), and M be a rounding mode. It holds

(i) OVF(x,M) ⇐⇒ OVF([x]e−P ,M),

(ii) TINY(x) ⇐⇒ TINY([x]e−P),

(iii) LOSS(x,M) ⇐⇒ LOSS([x]e−P ,M),

(iv) UNF(x,M, UNFen) ⇐⇒ UNF([x]e−P ,M, UNFen),

Analogously to corollary 3.31, the claim holds for finer representatives.

Proof: Part (i) is an immediate consequence of theorem 3.28. Part (ii) follows from
lemmas 3.25(iv) and 3.25(v). Part (iii) is slightly more complicated. We have to
prove

rd(x,M) 6= x ⇐⇒ rd([x]e−P ,M) 6= [x]e−P

By theorem 3.19, this is equivalent to

η(x) is semi-representable ⇐⇒ η([x]e−P) is semi-representable.

By theorem 3.26 and by definition of representability, this is equivalent to

f · 2P−1 ∈ Z ⇐⇒ [f]−P · 2P−1 ∈ Z .

Assume f · 2P−1 ∈ Z . Then q−P (f) =
⌊
f · 2P

⌋
= f · 2P and hence [f]−P = f .

Thus, [f]−P · 2P−1 ∈ Z as well. In the other case f · 2P−1 /∈ Z we have [f]−P =(
q−P (f) + 1

2

)
· 2−P . Hence, [f]−P · 2P−1 = 1

2

⌊
f · 2P

⌋
+ 1

4 /∈ Z .
Part (iv) is a trivial consequence of the former parts. ut

From the above theorem, one can conclude that the wrapped and rounded result
result(x,M) can be computed using equivalence, too. However, in case of trapped
underflow one needs more precision, namely (ê − P)-equivalence instead of (e −
P)-equivalence:

Theorem 3.34 Let x ∈ R , ê := η̂e(x), and M be a rounding mode. It holds

result(x,M) = result([x]ê−P ,M).

3.5 Rounding Representatives 27

Proof: Theorem 3.33 shows that exponent wrapping occurs on x iff it occurs on
[x]ê−P . The claim follows trivially from corollary 3.31 if no wrapping occurs. Oth-
erwise, assume first that an trapped underflow occurs, i.e., UNF(x,M, UNFen) ∧
UNFen. We have to prove

rd(x · 2A,M) = rd([x]ê−P · 2A,M). (3.8)

By lemma 3.23(v) it holds [x]ê−P · 2A = [x · 2A]ê−P+A. Replacing this in (3.8)
yields

rd(x · 2A,M) = rd([x · 2A]ê−P+A,M).

This follows from corollary 3.31 if we prove

ê − P + A = η̂e(x · 2A) − P, (3.9)

which follows from 3.7(i).
The proof for OVF is literally the same with −A for A. ut

Note that in order to prove (3.9), the higher precision of [x]ê−P compared to
[x]e−P is needed: (3.9) would not follow for e and η replaced for ê and η̂, respec-
tively: if ê < emin, then e = emin, and it may happen that emin < ηe(x · 2A) =
η̂(x · 2A) = ê + A 6= e + A. Intuitively, computing the (e − P)-representative of
x kills digits in the significant which have been “shifted out” by denormalizing the
significant. These digits, however, are present in the representative of the scaled
significant, since by scaling these digits are “shifted back”. Therefore, one needs
the (ê − P)-representative, since this does not erase these “shifted out” digits.

We now are ready to prove that the INX exception can be computed on repre-
sentatives, too. Analogously to theorem 3.34, we need the more precise (ê − P)-
representative:

Theorem 3.35 Let x ∈ R , ê := η̂e(x). It holds

INX(x,M, OVFen, UNFen) ⇐⇒ INX([x]ê−P ,M, OVFen, UNFen).

Proof: The proof is a combination of the proofs of 3.33(iii) and 3.34. We omit the
details. ut

Theorems 3.33–3.35 enable a subdivision of a complete FPU into computation
units (e.g., adder, multiplier) and a rounder. The computation units compute a
result which need not be exact, but only an (ê − P)-equivalent approximation of
the exact result. The rounder therefrom rounds to the correct floating point number,
and computes the exceptions. The passing of an (ê−P)-equivalent approximation
saves very large intermediate results, e.g., during addition of the format’s smallest
and largest representable numbers. Furthermore, the sub-division of the FPU into
smaller parts eases the verification of the hardware, since the parts can be verified
separately.

28 Theory of IEEE Rounding

05152

��

62

� �

���

��� �
62 55 3254

63

63

Figure 3.3: Embedding of (s, e, f ′) in one bitvector

3.6 IEEE Number Format

So far, we have only considered factorings which consist of numbers. In order
to implement floating point units in hardware, a definition of a representation of
numbers using bits and bitvectors is needed. The IEEE standard defines these rep-
resentations for floating point numbers. The definition in the standard also features
the special values infinity (∞) and not-a-number (NaN) used to represent results
of certain operations, e.g., division by zero. In this section we describe how we
formalize the number format definitions from the standard in PVS.

For the following, we remind the reader of the notations and definitions of
bitvectors and the numbers represented by them from section 2.1.

An IEEE floating point format is defined by a pair of parameters (N,P) anal-
ogously to the parameters used in the previous sections on factorings. An IEEE
number consists of a sign bit s ∈ B , an N -bit exponent e ∈ B N , and a (P − 1)-bit
“almost-significant” f ′ ∈ B P−1. The actual P -bit significant f is defined as

f =

{
0 ◦ f ′ if e = 0

N ,

1 ◦ f ′ otherwise.

The additional bit f [P − 1] is called hidden bit.
The most important floating point formats are single precision (N,P) = (8, 24)

and double precision (N,P) = (11, 53). The components s, e, f ′ are embedded
into a 64-bit bitvector w according to figure 3.3. We call w the IEEE bitvector of
(s, e, f ′) and identify w and (s, e, f ′).

In the IEEE standard, single precision floating point numbers are embedded
into 32-bit bitvectors. The above embedding equals the embedding in the standard,
except that we append 32 non-specified bits.

IEEE Numbers. If the exponent e satisfies e 6= 1
N , the IEEE bitvector corre-

sponds to a factoring

bv2fact(w) :=

{
(s, emin, 〈f〉 · 2

−(P−1)) if e = 0
N

(s, [e]bias, 〈f〉 · 2
−(P−1)) otherwise,

where emin = −2N−1 + 2 as in the previous sections5 . Note the subtle differ-
ence between the bitvectors (s, e, f) and the corresponding factoring bv2fact(w)

3.6 IEEE Number Format 29

consisting of numbers instead of bitvectors. According to the definitions in sec-
tion 3.1 we call the bitvector w normal or denormal, if the corresponding factoring
bv2fact(w) is normal or denormal, respectively.

Lemma 3.36 Let w = (s, e, f ′) be a (single or double) IEEE bitvector with e 6=
1

N . Then bv2fact(w) is a representable IEEE factoring (with respect to the appro-
priate parameters N and P).

Proof: Let (s, e, f) = bv2fact(w) be the factoring represented by w. Assume e /∈
{0N ,1N}. It holds e = [e]bias = 〈e〉 − biasN ∈ {1− biasN , . . . , 2n − 2− biasN}.
From the definitions of emin, emax, biasN it follows e =∈ {emin, . . . , emax}.

It holds 0 ≤ f < 2, and f < 1 only if e = 0
N . If e = 0

N it holds e = emin.
Hence, (s, e, f) is an IEEE factoring, and e ≤ emax. From the definition of bv2fact
follows that 2P−1 · f ∈ N ; hence (s, e, f) is a representable IEEE factoring. ut

Lemma 3.37 Every representable factoring (s, e, f) has an IEEE bitvector repre-
sentation.

Proof: It is easy to construct an IEEE bitvector w with [[bv2fact(w)]] = [[s, e, f]].
ut

We extend the value operator [[·]] to IEEE bitvectors w satisfying e 6= 1
N :

[[w]] := [[bv2fact(w)]].

Infinity. IEEE bitvectors w = (s, e, f ′) with e = 1
N have the special meaning

infinity or Not-a-Number (NaN). If e = 1
N and f ′ = 0

P−1, then w represents
infinity; depending on the sign bit s, w is either plus infinity (+∞) or minus infinity
(−∞). The central statement about infinity in the IEEE standard is

Infinities shall be interpreted in the affine sense, that is, −∞ < (every
finite number) < +∞.

This defines the result of most operations involving infinite operands.

NaN. If e = 1
N and f ′ 6= 0

P−1, then w represents Not-a-Number (NaN). There
are two kinds of NaNs: signaling NaNs where f ′[P − 2] = 0, and quiet NaNs
where f ′[P − 2] = 1. Operations involving signaling NaN operands shall signal
the invalid-exception INV. Operations involving NaN operands shall return one of
the input NaNs as output. Note that this is not possible in all operations due to
different formats of the operands and results (e.g., in conversions).

For later use, we introduce predicates number(w), inf(w), inf+(w), inf−(w),
nan(w), nans(w) and nanq(w) in order to distinguish IEEE bitvectors w represent-
ing numbers, infinity, plus infinity, . . ., respectively.

5Actually, emin and emax are explicitly defined only for single and double precision in the standard.
For other floating point formats, the standard leaves the choice of emin and emax (within some bounds)
to the implementor. We uniformly choose emin = −2N−1 + 2 and emax = 2N−1

− 1 as defined in
section 3.1.

30 Theory of IEEE Rounding

3.7 Floating Point Operations

In this section, we define the result of the supported floating point operations. The
operations are addition, subtraction, multiplication, division, comparison, and con-
versions. We assume (N,P) to be either (8, 24) for single or (11, 53) for double
precision, respectively.

3.7.1 Basic Operations

We start by defining the result of an operation a ◦ b where ◦ ∈ {+,−,×,÷}. We
first assume a and b to be IEEE numbers, i.e., no special operands, and b 6= 0
in case of divisions. Let M, OVFen, UNFen be the current rounding mode and
exception masks for overflow and underflow, respectively.

Let x := a ◦ b be the exact result of the operation, and w be the output of
the floating point unit. Let ovf, unf, inx be the exception signals computed by the
FPU. We define the predicate FPU-result-correct stating the correctness of the FPU
result:

FPU-result-correct(x,M, OVFen, UNFen)(w, ovf, unf, inx) :=

1. If no untrapped overflow occurs, then the bitvector w represents a number,
and the value of w is the (possibly wrapped) rounded result as defined in
section 3.3 (pg. 20).

¬(OVF(x,M) ∧ OVFen) =⇒

number(w) ∧ [[w]] = result(x,M, OVFen, UNFen).

Note that this definition does not define the sign bit if the rounded result is
0. The sign of 0 is handled as special case in the sections on the hardware.
Furthermore, note that the definition implicitly requires that the (wrapped)
rounded result lies in the range of representable numbers. That this is true
for the basic operations will be proved in later sections.

2. If an untrapped overflow occurs, the FPU shall return either ±∞ or ±Xmax,
depending on the rounding mode and the sign of the exact result. The IEEE
standard defines this explicitly:

The result, when no trap occurs, shall be determined by the round-
ing mode and the sign of the intermediate [exact] result as fol-
lows:
(1) Round to nearest carries all overflows to ∞ with the sign of
the intermediate result.
(2) Round toward 0 carries all overflows to the format’s largest
finite number with the sign of the intermediate result.
(3) Round toward −∞ carries positive overflows to the format’s
largest finite number, and carries negative overflows to −∞.

3.7 Floating Point Operations 31

(4) Round toward +∞ carries negative overflows to the format’s
most negative finite number, and carries positive overflows to
+∞.

The formalization is as follows:

(OVF(x,M) ∧ OVFen) =⇒

IF M = near ∨ (M = up ∧ x ≥ 0) ∨ (M = down ∧ x ≤ 0) THEN
IF x ≥ 0 THEN inf+(w) ELSE inf−(w) ENDIF

ELSE
number(w)∧
[[bv2fact(w)]] = IF x ≥ 0 THEN Xmax ELSE − Xmax ENDIF

ENDIF,

3. The overflow, underflow, and inexact exceptions are computed according to
their specification in section 3.3:

ovf = OVF(x,M),

unf = UNF(x,M, UNFen),

inx = INX(x,M, OVFen, UNFen).

The correctness of the division by zero- and invalid-exceptions are handled
separately below.

The following theorem combines theorems 3.33–3.35:

Theorem 3.38 Let x, x′ ∈ R , ê = η̂e(x), and x ≡ê−P x′. It holds

FPU-result-correct(x,M, OVFen, UNFen)(w, ovf, unf, inx) ⇐⇒

FPU-result-correct(x′,M, OVFen, UNFen)(w, ovf, unf, inx)

This theorem will be used to combine the computation units (e.g., adder) with
the rounder in the next chapter. The computation unit provides a result x′ which is
α-equivalent to the exact result x, but has a shorter bitvector-representation. The
rounder then computes the result w and the exception bits from the intermediate x ′

result.

The above definition of FPU-result-correct covers all possible inputs to the
FPU except for

• the result of floating point operations on special operands (±∞,NaNs),

• comparison and conversion results,

• and the DIVZ and INV exceptions.

32 Theory of IEEE Rounding

The result of operations on special operands is explicitly defined in the stan-
dard. We give examples on the transliterations of these definitions to PVS theorems
in the chapter on the verification of the actual hardware, but do not give the full de-
tails in this thesis, since the details are long and tedious.

The division-by-zero exception is signaled on divisions a/0 where a 6= 0. That
the hardware implementation fulfills this requirement is proved in the verification
of the actual hardware.

The invalid exception is signaled on any operation involving signaling NaNs as
operands, on additions (and subtractions) on infinities with opposing (same) sign,
on 0×±∞, on 0/0 and ±∞/±∞, and on some comparisons and conversions as
specified below.

3.7.2 Comparison

The IEEE standard defines four relations for the comparison of floating point num-
bers: less than, equal, greater than, and unordered. Two floating point numbers
are unordered, if at least one of them is a NaN. The three other relations have their
obvious meaning for non-special values. For special values, it holds −∞ < ∞,
−∞ ≮ −∞, −∞ = −∞, and so on. Let w1, w2 be IEEE bitvectors. The four
relations are formalized as follows:

unordered(w1, w2) := nan(w1) ∨ nan(w2),

less(w1, w2) := ¬unordered(w1, w2) ∧(
(¬inf+(w1) ∧ inf+(w2)) ∨

(inf−(w1) ∧ ¬inf−(w2)) ∨

(number(w1) ∧ number(w2) ∧ [[w1]] < [[w2]])
)
,

greater(w1, w2) := ¬unordered(w1, w2) ∧(
(inf+(w1) ∧ ¬inf+(w2)) ∨

(¬inf−(w1) ∧ inf−(w2)) ∨

(number(w1) ∧ number(w2) ∧ [[w1]] > [[w2]])
)
,

equal(w1, w2) := ¬unordered(w1, w2) ∧(
(inf−(w1) ∧ inf−(w2)) ∨

(inf+(w1) ∧ inf+(w2)) ∨

(number(w1) ∧ number(w2) ∧ [[w1]] = [[w2]])
)
.

The above definitions ignore the sign of zeros, as it is explicitly demanded for
comparisons in the standard.

The actual comparison operation is controlled by four bits FCONun, FCONlt,
FCONgt, and FCONeq. Each bit names the relation which shall be tested on the

3.7 Floating Point Operations 33

operands. Thus, the result fcc of the comparison is defined as

fcc :=(unordered(w1, w2) ∧ FCONun) ∨ (less(w1, w2) ∧ FCONlt)∨

(greater(w1, w2) ∧ FCONgt) ∨ (equal(w1, w2) ∧ FCONeq).

Additionally to the comparison result, the FPU shall signal an invalid operation if

unordered operands are compared using one of the predicates involv-
ing “<” or “>” but not unordered. [IEEE]

This condition is made formal in the predicate FCON-sig-unordered:

FCON-sig-unordered(w1, w2) := (FCONgt ∨ FCONlt) ∧ ¬FCONun

∧ unordered(w1, w2).

The following lemmas show how to implement the comparison operation in
hardware.

Lemma 3.39 For all IEEE bitvectors w1 and w2, exactly one of the predicates
unordered(w1, w2), less(w1, w2), greater(w1, w2) and equal(w1, w2) holds.

Proof: This lemma is proved automatically using (grind). ut

Lemma 3.40 Let w,w′ be non-special IEEE bitvectors, and let (s, e, f), (s′, e′, f ′)
be the corresponding factorings. It holds

less(w1, w2) ⇐⇒ ¬([[s, e, f]] = 0 ∧ [[s′, e′, f ′]] = 0) ∧(
(s = 1 ∧ s′ = 0) ∨

(s = 0 ∧ s′ = 0 ∧ (e < e′ ∨ (e = e′ ∧ f < f ′))) ∨

(s = 1 ∧ s′ = 1 ∧ (e > e′ ∨ (e = e′ ∧ f > f ′)))
)

equal(w1, w2) ⇐⇒ ([[s, e, f]] = 0 ∧ [[s′, e′, f ′]] = 0) ∨ (s, e, f) = (s′, e′, f ′)

Proof: The lemma is proved by case-splitting on the sign-bits, and applying lemma
3.3. ut

3.7.3 Conversion

The IEEE standard demands that instructions for the conversions between all sup-
ported floating point formats, and between all supported floating point formats and
integer formats are available. Conversions are subject to rounding as specified in
section 3.2. All four rounding modes must be supported.

In case of conversion from single precision floating point numbers or integers
to double precision, rounding does not affect the value, i.e., it is always exact;
however, the rounding algorithm normalizes the number and thus yields an IEEE

34 Theory of IEEE Rounding

factoring. This is necessary, since denormal single precision numbers have a nor-
mal double precision representation due to the larger exponent range in double
precision. In conversion to a floating point format, the conversion unit signals ex-
ceptions as specified in section 3.3. We therefore may use the FPU-result-correct–
predicate as defined in section 3.7.1 in order to define correct conversion from any
format to floating point formats. Conversions of infinity or NaN between floating
point formats shall preserve infinity or NaN, respectively. Note that the conversion
of a NaN cannot return the same NaN since the widths of the IEEE bitvectors do
not match.

Conversion to Integers. The rounding function and algorithm described in sec-
tion 3.2 was designed to return IEEE factorings where the significand has P − 1
fractional digits. For the conversion to integer format, we therefore need to ad-
just the rounding algorithm to return integers. We start by defining the result of
rounding reals x to integers:

rd2int(x,M) := η(rint(x,M)),

where rint was defined in section 3.2.1. Note that the function rd2int returns a
factoring instead of an integer. This has the advantage of being compatible with
the rest of the theory, and later allows the use of the standard rounding unit for the
rounding to integers.

The correctness of the rd2int function is proved similarly to the correctness of
the overall rounding function in section 3.2.3. For the to-nearest rounding mode,
e.g., the correctness statement is:

Theorem 3.41 Let x ∈ R , i be an arbitrary integer, and r := [[rd2int(x, near)]]
be the rounding result. It holds:

(i) r is an integer: r ∈ Z ,

(ii) r is a nearest integer: |x − i| ≥ |x − r|,

(iii) In case of a tie, r is even: |x − r| = 1
2 =⇒ even(r).

We now partition the range of semi-representable factorings into large ones
(with exponent e ≥ P − 1), small ones (e < 0), and the rest. The following two
lemmas show that rounding to integer is easy if the operand is either large or small.

Lemma 3.42 Let (s, e, f) be a semi-representable IEEE factoring with e ≥ P −1,
and let x = [[s, e, f]] be its value. It holds:

rd2int(x,M) = (s, e, f).

Proof: By definition of semi-representability, we know that f · 2P−1 is an integer.
Since e ≥ P − 1, it follows that x = [[s, e, f]] is an integer. Hence, rint(x) = x by
definition, which proves the lemma. ut

3.7 Floating Point Operations 35

Lemma 3.43 Let (s, e, f) be an IEEE factoring with e < 0, and x = [[s, e, f]]. If
f = 0, then rd2int(x,M) = η(0) = (0, emin, 0). If f 6= 0, then

rd2int(x,M) =

(0, emin, 0) if M = zero,

(0, emin, 0) if M = pos ∧ s = 1,

(0, 0, 1) if M = pos ∧ s = 0,

(1, 0, 1) if M = neg ∧ s = 1,

(0, emin, 0) if M = neg ∧ s = 0,

(0, emin, 0) if M = near ∧ e < −1,

(0, emin, 0) if M = near ∧ e = −1 ∧ f = 1,

(s, 0, 1) if M = near ∧ e = −1 ∧ f 6= 1.

Proof: It holds (0, emin, 0) = η(0), (0, 0, 1) = η(1), (1, 0, 1) = η(−1). The claim
follows by case-splitting, expanding definitions, and applying properties of floor-
and ceiling-functions. ut

Using lemmas 3.42 and 3.43, it is easy to implement the conversion to integer
for large and small floating-point numbers.

The next theorem allows the conversion for the mid-range numbers using the
standard rounding function rd. One first scales x by multiplication with 2emin+1−P .
Intuitively, this scaling denormalizes x and thereby moves the binary digit of weight
1 into the least significand representable position. This denormalized x is then
rounded using the standard rounding function rd. The significant resulting from
the rounding hence carries the rd2int(x) result in its least significand digits.

Theorem 3.44 Let (s, e, f) be an IEEE factoring with 0 ≤ e < P − 1, let x =
[[s, e, f]], and (sr, er, fr) = η(rd(x · 2emin+1−P ,M)) be the result of first scaling x
and then rounding. It holds:

[[rd2int(x,M)]] = (−1)sr · fr · 2
P−1. (3.10)

Note that the exponent er is not part of the right-hand side of the equation. That
means that the rounded integer value of x is obtained by interpreting the rounded
significand fr as a natural number, and taking the negative of this number if sr = 1.

In order to prove theorem 3.44, we first prove the following two lemmas:

Lemma 3.45 Let (s, e, f) be an IEEE factoring with 0 ≤ e < P − 1 and x =
[[s, e, f]]. The factoring η(x · 2emin+1−P) is denormal.

Proof: First notice that (s, e, f) is normal since emin < 0 ≤ e; hence 1 ≤ f < 2
holds. From lemma 3.9(ii) it suffices to prove |x · 2emin+1−P | < 2emin . It holds⌊
log2 |x · 2emin+1−P |

⌋
=

⌊
log2(2

e · f · 2emin+1−P)
⌋

= e+emin+1−P+blog2 fc =
e − (P − 1) + emin < emin, since 1 ≤ f < 2 and e < P − 1. ut

36 Theory of IEEE Rounding

Lemma 3.46 Let (s, e, f) be an IEEE factoring with 0 ≤ e < P − 1 and x =
[[s, e, f]]. It holds:

[[rd2int(x,M)]] = 2P−1−emin · rd(x · 2emin−P−1,M).

Proof: Expanding the definitions of rd2int, rd, and rrat and applying lemma 3.45
yields the claim. ut

Proof of Theorem 3.44: We have to prove (3.10). By lemma 3.46 this is equivalent
to

2P−1−emin · rd(x · 2emin−P−1,M) = (−1)sr · fr · 2
P−1. (3.11)

From lemmas 3.45 and 3.17 we know er = emin. Rewriting (3.11) with lemma
3.7(iv) yields

2P−1−emin · rd(x · 2emin−P−1,M) =

(−1)sr · |rd(x · 2emin−P−1,M)|/2emin · 2P−1,

which follows by case-splitting on the sign sr. ut

3.8 Related Work

As mentioned before, the central concepts in this chapter are taken from [EP97,
MP00]. The paper-and-pencil proofs in [EP97, MP00] served as guidelines in our
formal verification.

Barrett [Bar89] has formalized parts of the IEEE standard in the specification
language Z. However, his work does not include any verified theorems, but only
the translation of the standard to Z.

Miner [Min95] has formalized the IEEE standard 854 in PVS. The IEEE stan-
dard 854 is an extension of the standard 754 with which we deal in this thesis. The
main extension is that 754 only covers binary representations, whereas 854 covers
arbitrary bases. Miner has proved some simple lemmas in his work. Our defini-
tion of the rounding function and the proof of its correctness is based on Miner’s
work. Miner’s formalization does not comprise theorems related to α-equivalence
and round decomposition.

Another formalization of the IEEE standard was given by Harrison [Har97,
Har99] in the theorem prover HOL Light. Harrison does not discuss exponent
wrapping, which introduces some ambiguities in the definition of the inexact ex-
ception (cf. section 3.3). Harrison’s formalization has no counterpart to round
decomposition. He has theorems related to the computation of exceptions of α-
equivalent numbers [Har99, Sect. 5.3], but does not relate them to sticky-bit com-
putations. However, this relation is essential to subdivide the FPU into computa-
tional units and a rounder unit in our verification project.

3.8 Related Work 37

In [MLK98], Moore et al. verify the AMD K5 floating point division algo-
rithm. They have a definition of sticky bit computations that is similar to our α-
equivalence. They do not cover exceptions and round decomposition.

In [Rus98, Rus99, Rus00], Russinoff proves the correctness of some compo-
nents of AMD floating point units against a formal specification. His formalization
of the rounding function and sticky bit computations is similar to [MLK98]. Russi-
noff does not cover denormals, exceptions, and round decomposition; however, he
states that he handles denormals in unpublished work (private communication).

38 Theory of IEEE Rounding

Chapter 4

Verification of the Floating Point
Hardware

In this chapter, we describe the design and verification of the floating point hard-
ware with respect to the specification given in the previous chapter. We build three
separate floating point units: the additive unit for addition/subtraction, the multi-
plicative unit for multiplication/division, and the miscellaneous unit that supports
conversions, comparisons, and some trivial operations like negation and absolute
value computation.

Basically, each unit is build as depicted in figure 4.1: the operands are passed to
the unpackers, where they are converted to some more convenient internal format.
The computation unit then performs the actual computation. Instead of computing
the exact result, it computes an α-equivalent approximation. This approximation is
then fed to the rounding unit which rounds and outputs the result as an IEEE bitvec-
tor. Special cases such as operations on special operands (∞, NaN), or divisions

UNPACK

FPOp �

UNPACK

FPOp �

ROUND

COMPUTATION UNIT

FPOut
�

S
P

E
C

IA
L

C
A

S
E

S

Figure 4.1: Top-level view of the floating point units.

40 Verification of the Floating Point Hardware

by zero bypass the computation and rounding unit.
Most of the designs are taken virtually unchanged from [MP00]. We therefore

mostly omit the construction of the circuits, and describe only their interface and
precise correctness statement. We describe the detailed design only where our
design differs significantly from [MP00], or where the exact design is needed to
follow the correctness arguments. We give detailed proofs of the statements only
if they are wrong or incomplete in [MP00].

The design and formal verification of the circuits in this chapter makes heavy
use of our library of verified general-purpose circuits such as adders, shifters, de-
coders, etc. [BJK01a].

We have reported on the formal verification of the VAMP floating point hard-
ware previously in [BJ01].

This chapter is structured as follows: we describe the different hardware com-
ponents in sections 4.1–4.5. Section 4.6 discusses some minor discrepancies of our
FPUs to the IEEE standard. Section 4.7 discusses related work.

4.1 Unpacker

In this section, we describe the unpacker circuits. There are two kinds of unpackers:

• The floating point unpacker takes as input a floating point number in IEEE
format and some control variables, and returns the floating point number
in a more convenient format: the exponent format is changed from biased
integer to two’s complement format, and the hidden significant bit is re-
vealed. For multiplication and division, the unpacker normalize denormal
operands. Furthermore, the unpacker outputs some auxiliary information
about the operand, e.g., whether the operand is zero, ∞ or NaN.

• The fixed-point unpacker takes as argument a 32-bit two’s complement in-
teger, and returns the bitvector representation of a factoring with the same
value as the integer.

The output format of the unpackers is the same for single and double precision,
since both precisions are processed (nearly) the same in the computation units.

4.1.1 Floating Point Unpacker

Circuit 4.1 (FP-UNPACK) The floating point unpacker is a circuit with inputs

• F ∈ B 64: the floating point operand in IEEE format.

• dbl ∈ B : if set, F represents a double precision number, otherwise a single
precision number.

• normal ∈ B : if set, the unpacker normalizes denormal inputs. This is
needed for multiplications and divisions.

4.1 Unpacker 41

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
��

�������������������
�������������������
�����������������
�����������������
����������������� 53

536 ����

	

LZERO(53)

LOGIC-LEFT

SHIFT(53)

Figure 4.2: Normalization shift in the unpacker

The outputs of the unpacker are

• s ∈ B , e ∈ B 11, f ∈ B 1+52: the unpacked sign, exponent, and significand.
The exponent is in two’s complement format, the significand represents a
fraction with 52 bits behind the point.

• lz ∈ B 6: the number of leading zeros of the significand before normaliza-
tion. This is unspecified if normal = 0.

• einf ∈ B : active if the exponent equals 1
N , i.e., if F is a special value.

• ZERO, INF, pINF, nINF, QNAN, SNAN ∈ B : active if F is zero, ±∞, +∞,
−∞, a quiet or signaling NaN, respectively.

The construction of the floating point unpacker closely follows [MP00, pg. 354ff].
We therefore omit the details of the construction. 3

The following three lemmas are the correctness statements of the floating point
unpacker:

Lemma 4.1 The output bits ZERO,INF,pINF, . . . are set iff the input F represents
zero, infinity, plus infinity, . . ., respectively.

Lemma 4.2 Let normal = 0. If einf = 0, then F represents a number, and the
corresponding factoring is represented by the output components s, e, f :

bv2fact(F) = (s, [e], 〈f〉 · 2−52)

Lemma 4.3 Let normal = 1. If einf = 0 and ZERO = 0, then F represents a
nonzero number, and it holds

n̂orm(bv2fact(F)) = (s, [e] − 〈lz〉, 〈f〉 · 2−52).

42 Verification of the Floating Point Hardware

Proof: All three lemmas follow easily from the construction of the unpacker. There
is only one non-trivial part in the proof missing in [MP00]: with normal = 1, the
output of the unpacker is in fact the normalized operand. Let h ∈ B 1+52 be the
bitvector representation of the un-normalized significand, i.e.,

〈h〉 · 2−52 = bv2factf (F). (4.1)

Figure 4.2 shows the part of the unpacker which performs the normalization. The
leading-zero counter counts the number of leading zeros of h, and a logical-left
shifter shifts the leading zeros out. It may seem obvious that this yields the nor-
malized factoring, but it is not trivial to prove in PVS.

From the correctness of the leading-zero counter [BJK01a] we know that

〈lz〉 = lzero(h), (4.2)

where lzero is the function counting leading zeros. The following equations (4.3)
and (4.4) are lemmas on the lzero function from the library [BJK01a]:

∀n ∈ N , b ∈ B n : lzero(b) = n − 1 − blog2 〈b〉c . (4.3)

∀n ∈ N , b ∈ B n : 〈b〉 = 〈b[n − 1 − lzero(b) : 0]〉. (4.4)

The following equation is a lemma on the logical-left-shift function lls from the
library:

∀n ∈ N , b ∈ B n, sa ∈ B dlog2 ne : 〈lls(b, sa)〉 = 〈b[n − 1 − 〈sa〉 : 0]〉 · 2〈sa〉,
(4.5)

The correctness of the unpacker now follows from the above four lemmas:

〈f〉
(4.5)
= 〈h[52 − 〈lz〉 : 0]〉 · 2〈lz〉

(4.2)
= 〈h[52 − lzero(h) : 0]〉 · 2lzero(h)

(4.4)
= 〈h〉 · 2lzero(h)

(4.3)
= 〈h〉 · 252−blog2 〈h〉c (4.6)

Let f := bv2factf (F). Replacing (4.1) in (4.6), multiplying with 2−52, and apply-
ing arithmetic yields

〈f〉 · 2−52 = f · 2−blog2 fc and

〈lz〉 = −blog2 fc .

Hence, the significand 〈f〉 · 2−52 and the exponent [e]− 〈lz〉 of the right-hand side
factoring in lemma 4.3 is computed as in the definition of n̂orm in section 3.1.2
(pg. 11). ut

4.2 Rounder 43

��� �����

�	

���

�

������������� ��� �
ABS(32)

�

� !

� !

The circuit ABS computes the binary representation of the absolute value of
its input F [BJK01a]. twoc13(30) is the 13-bit two’s complement bitvector
with value 30.

Figure 4.3: Design of the fixed point unpacker

4.1.2 Fixed Point Unpacker

The design of the fixed-point unpacker is slightly different from [MP00], since the
conversion unit using this unpacker is different from [MP00] (cf. section 4.5).

Circuit 4.2 (FXUNPACK) The fixed point unpacker is a circuit with a 32-bit two’s
complement operand F ∈ B 32 as input. The outputs of the unpacker are s ∈
B , e ∈ B 13, f ∈ B 2+55 representing a factoring with the value [F] of the operand.
The construction of the fixed point unpacker is shown in figure 4.3. 3

Note that the exponent and significand output of the fixed point unpacker have
a different length than the corresponding outputs of the floating point unpacker.
This is because the floating point unpacker is connected to the computation units.
In contrast, the fixed point unpacker is directly connected to the rounder in the
conversion unit. The outputs of the fixed point unpacker therefore equal the inputs
of the rounding unit.

The following lemma states the correctness of the fixed point unpacker. The
proof is straightforward.

Lemma 4.4 For all inputs F ∈ B 32 holds [F] = [[s, [e], 〈f〉 · 2−55]].

How both the floating point and the fixed point unpackers are connected with
the rest of the FPU will be described in later sections.

4.2 Rounder

In this section, we describe the design and the verification of the floating point
rounder.

Circuit 4.3 (FP-ROUNDER) The floating point rounder has the following inputs:

44 Verification of the Floating Point Hardware

• sr ∈ B , er ∈ B 13, fr ∈ B 2+55: the bitvector representation of the input
factoring; er is the two’s complement exponent, fr is the significand with 55
bits behind the binary point.

• RM ∈ B 2: encodes the rounding mode. The encoding is defined as

M =

zero if RM = 00,

near if RM = 01,

up if RM = 10,

down if RM = 11.

(4.7)

• dbl ∈ B : specifies whether the rounder shall round to single (dbl = 0) or
double precision.

• OVFen, UNFen ∈ B : the enable bits for the OVF and UNF exceptions,
respectively.

The rounder outputs are

• R ∈ B 64: the IEEE bitvector of the result.

• ovf, unf, inx ∈ B : the exception signals. 3

Let (s, e0, f0) := (s, [er], 〈fr〉 ·2
−55) be the factoring represented by the input,

and let x := [[s, e0, f0]] be its value. We require the rounder output to satisfy the
correctness statement as specified in section 3.7.1:

FPU-result-correct(x,M, OVFen, UNFen)(R, ovf, unf, inx).

From theorem 3.38 it immediately follows that the input to the rounder does not
need to be the exact result of the floating point operation, i.e., x has to be an α-
equivalent approximation of the exact result.

In order to prove the correctness of the rounder outputs, we assume three prop-
erties of the inputs. The computational units which compute the rounder inputs
will guarantee these properties:

1. The value to round is not zero, i.e., x 6= 0. This implies f0 > 0.

2. For denormal input significands, the exponent does not exceed emax:

f0 < 1 =⇒ e0 ≤ emax (4.8)

This requirement is different from [MP00]. There it is required that f0 <
1 =⇒ ¬OVF(x,M). This requirement is not strong enough for the cor-
rectness of the given rounder construction, as will be shown in the proof of
theorem 4.6.

4.2 Rounder 45

� -COMPUTATION

PACK

ADJUSTEXP

POSTNORM

SIGRD

REP

EXPRD

FP-ROUNDER

Figure 4.4: Top-level view of the rounder.

3. The result x lies in a range such that in case of trapped underflows or trapped
overflows before rounding the wrapped result lies strictly between 2emin and
2emax . Formally, define wrappedbef as

wrappedbef(x, OVFen, UNFen) :=

x · 2−A if OVFbef(x) and OVFen,

x · 2A if TINY(x) and UNFen,

x otherwise,

where A = 3 · 2N−2 as defined in section 3.3. Note that the function
wrappedbef performs exponent wrapping the same as the function wrapped,
except for the case that OVFaft(x) occurs. In the following, let

y := wrappedbef(x, OVFen, UNFen).

With these definitions, the third input requirement for the rounder formally
reads

(TINY(x)∧UNFen)∨(OVFbef(x)∧OVFen) =⇒ 2emin < |y| < 2emax . (4.9)

Figure 4.4 shows the top-level design of the rounder. The upper four stages
of the design arise from the decomposition theorem. The η-COMPUTATION stage

46 Verification of the Floating Point Hardware

computes the IEEE factoring of y. The REP stage computes the (−P)-representa-
tive of the resulting significant. This representative is then rounded in the SIGRD

stage. The result of significant rounding is then post-normalized in POSTNORM.
The ADJUSTEXP stage adjusts the result in case of trapped overflows after

rounding, i.e., performs exponent wrapping not already performed in wrappedbef.
The PACK stage converts the intermediate result to the IEEE format. In case of
untrapped overflows, the EXPRD-stage ties the result to either infinity or Xmax. In
the following, we will describe some parts of the rounder in detail. The other parts
are very similar to [MP00], and we will describe them only briefly.

4.2.1 η-Computation Stage

The η-COMPUTATION circuit1 is the most complex circuit in the rounder. Its task is
to compute an approximation of the IEEE factoring η(y) under the above rounder
input constraints and the further condition that no untrapped overflow before round-
ing occurs. Furthermore, the η-COMPUTATION circuit computes TINY(x) and
OVFbef(x) flags. The basic algorithm for the η-computation is as follows:

1. Compute the logarithm of f0 using a leading-zero counter on fr; therefrom
decide whether 2e0 · f0 < 2emin , i.e., whether TINY(x) holds. Furthermore
compute OVFbef(x). We will describe the computation of OVFbef(x) in de-
tail below.

2. Compute the exponent e1 = ηe(y) from blog2 f0c, TINY(x) and OVFbef(x).
Furthermore compute e+

1 := e1 + 1. Both e1 and e+
1 are returned in biased

integer format.

3. For the computation of the significand ηf (y), two cases have to be distin-
guished:

(a) If no untrapped underflow occurs, then input constraint (4.9) asserts
that |y| ≥ 2emin , hence η(y) is normal. If the input significand f0 is de-
normal, it has to be normalized by means of left-shifting it analogously
to the normalization in the unpacker (cf. section 4.1).

(b) If an untrapped underflow occurs, it holds by definition |x| < 2emin and
x = y, and hence η(y) is denormal, and therefore e1 = emin. The
significand ηf (y) is then computed as f0 · 2

e0−emin . If emin < e0, then
f0 is already “more denormal” than the required result, and therefore
f0 has to be shifted left. This may, e.g., occur due to cancellation
during addition of two small numbers with exponents slightly greater
than emin.

If e0 < emin, f0 needs to be de-normalized, i.e., right-shifted. If e0 �
emin, the exact computation of f0·2

e0−emin would require a very far right

1In [MP00], η-computation is called normalization shift. We find this term confusing, since η-
computation does not always normalize but may de-normalize the inputs in some cases.

4.2 Rounder 47

shift by ≈ emin − e0. For example, the multiplication 2emin · 2emin yields
e0 = 2 · emin � emin. In double precision, e.g., this would require
an ≈ 1024-bit shifter. Since this very far right shift would require a
huge shifter, the η-computation computes only an (−P)-equivalent of
the exact significant.

Summarizing, a left-shift is required in case (a) and sometimes in case (b), or
a right shift is required in case (b) combined with a sticky-bit computation for
the (−P)-equivalence. All these situations can be handled by a single cyclic
shifter together with a rather complex mask- and control-logic enclosing the
shifter [MP00, Sect. 8.4.2].

Circuit 4.4 (η-COMPUTATION) The η-computation circuit has the same inputs as
the circuit FP-ROUNDER. The outputs of the η-computation are

• sn ∈ B , en ∈ B 11, fn ∈ B 1+127: represents (an approximation of) the IEEE
factoring η(y).

• e+
n ∈ B 11: represents the incremented exponent.

• TINY, OVFbef ∈ B : active if TINY(x) or OVFbef(x) occur, respectively.

• RM ∈ B 2, dbl, OVFen, UNFen ∈ B : forwarded from the inputs. 3

The construction of the normalization shifter and its correctness is described
in [MP00, pg. 394–404]. We omit the details here. We only give the detailed cor-
rectness proof for the computation of OVFbef below, since this is wrong in [MP00].
Besides we only give the correctness statement of the η-computation for single
precision:

Theorem 4.5 For all inputs to the η-computation satisfying the rounder input con-
ditions, it holds:

(i) TINY = TINY(x),

(ii) OVFbef = OVFbef(x)

The following statements also require that no untrapped overflow before rounding
occurs:

(iii) (sn, [en[7 : 0]]bias, 〈fn〉 · 2
−127) is an IEEE factoring.

(iv) [[sn, [en[7 : 0]]bias, 〈fn〉·2
−127]] ≡α wrappedbef(x, OVFen, UNFen) with α =

[en[7 : 0]]bias − 24.

(v) [e+
n [7 : 0]]bias = [en[7 : 0]]bias + 1

The statement for double precision is analogous.

The proof of correctness of the above theorem is one of the most complex
proofs in [MP00]. Consequently, the proof was very hard to verify in PVS. The
correctness of the η-computation for single and double precision takes 34 lemmas
requiring 1480 manual prover commands; in [MP00], the proof is 10 pages long.

48 Verification of the Floating Point Hardware

���������	��
��������

EQUAL(13)

����� �	������������������
�
�����

����������� � �� �!�

OVFbef

EQUAL is an equality-tester from the library [BJK01a]. emax is – depending
on the precision – the two’s complement representation 0

3dbl317 of emax.

Figure 4.5: Computation of OVFbef

Verification of OVFbef. We exemplarily describe the construction and verifica-
tion of the OVFbef circuit in detail. The correctness proof in [MP00] is wrong, as
will become apparent below. Figure 4.5 shows the circuit computing the OVFbef

signal.

Theorem 4.6 Let fr ∈ B 57, er ∈ B 13, dbl ∈ B be as in the definition of the inputs
of FP-ROUNDER, and let x be the value of the rounder input. The OVFbef output
of the circuit in figure 4.5 is active, iff OVFbef(x) holds.

Proof: It holds

OVFbef(x)
def.
⇐⇒ ηe(x) > emax

Lemma 3.7(iii)
⇐⇒ blog2 |x|c > emax

⇐⇒ e0 + blog2 f0c > emax (4.10)
(∗)
⇐⇒ e0 > emax ∨ (e0 = emax ∧ f0 ≥ 2). (4.11)

The last transformation (∗) holds because of the input conditions 0 < f0 < 4 and
f0 < 1 =⇒ e0 ≤ emax. To prove (∗) we distinguish three cases:

1. 0 < f0 < 1: we have blog2 f0c < 0 and e0 ≤ emax. Hence, both (4.10) and
(4.11) evaluate to false.

2. 1 ≤ f0 < 2: we have blog2 f0c = 0. Hence both (4.10) and (4.11) are true,
iff e0 > emax holds.

3. 2 ≤ f0 < 4: we have blog2 f0c = 1. Hence (4.10) holds iff e0 > emax − 1,
i.e., iff e0 = emax ∨ e0 > emax, which is equivalent to (4.11).

4.2 Rounder 49

��� ����� �����

	
 ��

� ��� �������

���
weight:

�����

Figure 4.6: Decomposition of the significand into fhi, least-, round-, and sticky-bit.

It is easy to verify that the left side of figure 4.5 computes e0 > emax, and that
the right side computes e0 = emax ∧ f0 ≥ 2. ut

In [MP00], the rounder input condition (4.8) is different from ours. There it is
required that f0 < 1 ⇒ ¬OVF(x,M). However, the transformation (∗) becomes
wrong with this requirement. Assume, for example, f0 = 0.5 and e0 = emax + 1.
Then |x| = 2emax is representable and does not overflow on rounding, although
equation (4.11) evaluates to true in this situation.

4.2.2 Rep, SigRd and Postnorm Stages

The result of the η-computation is passed into the REP stage, where the (−P)-
representative of fn is computed. This is done using an OR-tree as suggested by
theorem 3.27. We omit the details, since they are fairly simple.

The SIGRD stage rounds the significand as computed by the REP stage. By
corollary 3.32 this yields the same result as rounding fn as returned by the η-
computation. For significand rounding, the significand is split according to figure
4.6. The last three bits are called least-, round-, and sticky-bit. Significand round-
ing is performed by chopping the round- and sticky-bits off the significand, and
incrementing the chopped significand in some cases depending on l, r and st, the
sign s and the rounding mode M. Whether the significand has to be incremented
is determined by

sigrd-incr =

0 if M = zero,

¬s ∧ (r ∨ st) if M = up,

s ∧ (r ∨ st) if M = down,

r ∧ (st ∨ l) if M = near.

Example: In mode M = up the significant is never incremented if the number
is negative (s = 1), since this would decrease the number. If s = 0, the
significand is incremented if the number was not already representable, i.e.,
if there are bits behind the least representable bit. That is checked by r ∨ st.

The correctness of the significand round algorithm is asserted by the following
lemmas. The arguments in these lemmas are missing in [MP00]. The first lemma
shows how to compute floor and ceiling of the decomposed significand:

50 Verification of the Floating Point Hardware

Lemma 4.7 Let f ∈ R be decomposed into a sign s and fhi ∈ N , l, r, st ∈ {0, 1}
such that f = (−1)s ·

(
2fhi + l + 1

2r + 1
4st

)
. Note that this is the numerical

counterpart to the bitvector decomposition in figure 4.6. The floor and ceiling of f
can be computed by

bfc =

2fhi + l if s = 0,

−(2fhi + l) if s = 1 ∧ r = 0 ∧ st = 0,

−(2fhi + l + 1) otherwise.

dfe =

−2(fhi + l) if s = 1,

2fhi + l if s = 0 ∧ r = 0 ∧ st = 0,

2fhi + l + 1 otherwise.

Proof: The claim follows by case-splitting on s, r, l, st and applying properties of
the floor- and ceiling-functions. In PVS, this is done automatically by the strategy
(grind). ut

This lemma can now be used to prove that the significand rounding algorithm
(chopping & incrementing) is correct:

Lemma 4.8 Let (s, e, f) be an IEEE factoring, and let fhi ∈ N , l, r, st ∈ {0, 1}
be such that

f · 2P−1 = 2fhi + l + 1
2r + 1

4st.

Then it holds

sigrd((s, e, f),M) = 2−(P−1) ·

{
2fhi + l + 1 if sigrd-incr,

2fhi + l otherwise.

Proof: By definition of sigrd and rrat we have

sigrd((s, e, f),M) = 2−(P−1) ·
∣∣rint

(
(−1)s · f · 2P−1,M

) ∣∣.

The claim now follows by expanding the definition of rint and application of lemma
4.7 to replace the floor- and ceiling-applications in rint. ut

The construction of the SIGRD circuit in PVS closely follows [MP00, pp.
406f]. The correctness of the circuit immediately follows from the above lemma.
However, in [MP00] there are two bugs in the SIGRD circuit:

1. The circuit for the increment-decision is wrong. The XOR gate has to be
replaced by an XNOR gate.

2. In case of chopping in single precision, the circuit forwards the bits r and st
unchanged to the output, although these bits should be tied to 0. This makes
the arguments on pg. 408 in [MP00] wrong.

4.2 Rounder 51

Both bugs have been fixed easily.

Besides significand rounding, the circuit SIGRD also computes the signal inx
as

inx ⇐⇒ (f 6= sigrd((s, e, f),M)),

i.e., inx is active if significand rounding effectively changes the significand. This
is correct by lemma 3.22.

The next stage in the rounding process is post-normalization. This is performed
in a straightforward way in stage POSTNORM. We omit the details. However, there
is one subtle difference between our post-normalization and the one in [MP00]: our
definition of post-normalization ties the sign to 0 in the case that significand round-
ing yields 0 (cf. section 3.2.2). This is necessary to comply with the definition of
η(0). Tying the sign to 0 in this case is also implemented in the post-normalization
circuit POSTNORM. This allows concise statements such as theorem 4.9(iii). How-
ever, the IEEE standard explicitly defines the sign bit for the final result of oper-
ations in case that rounding yields 0. In order to comply with the specification
from the IEEE standard, our rounder implementation saves the input sign bit sr

and replaces the newly computed sign with this original sign in the last rounder
stage (see below). The detour of computing a new sign-bit has the only purpose of
having concise correctness statements. This is one of the few circuits which have
been altered solely to ease verification.

In contrast, in [MP00] the sign is not defined for η(0). The arguments on the
sign bit of η(0) in various places of [MP00] are therefore either fuzzy, missing, or
simply wrong. For example, the statement of the decomposition theorem [MP00,
Thm. 7.4, pg. 331] is void if the rounded result is 0, since η(0) is not well-defined.

Circuit 4.5 (REP, SIGRD, POSTNORM) The combination of the stages REP, SIG-
RD, and POSTNORM takes as inputs the outputs of the η-COMPUTATION circuits.
The outputs are:

• sp ∈ B , ep ∈ B 11, fp ∈ B 1+52: the post-normalized factoring.

• sr, TINY, OVFbef, dbl, OVFen, UNFen ∈ B , RM ∈ B 2: forwarded from the
η-COMPUTATION outputs.

• INX ∈ B : equals INX(x,M, OVFen, UNFen).

• SIGovf ∈ B : active if the significand round yielded 2. 3

The correctness statement of the rounder stages so far for single precision is:

Theorem 4.9 For all inputs to the rounder satisfying the rounder input conditions,
it holds:

(i) TINY = TINY(x),

52 Verification of the Floating Point Hardware

(ii) OVFbef = OVFbef(x),

The following statements also require that no untrapped overflow before rounding
occurs:

(iii) [[sp, [ep[7 : 0]]bias, 〈f [52 : 29]〉 · 2−23]] =
η(rd(wrappedbef(x, OVFen, UNFen),M)),

(iv) f [28 : 0] = 0
29,

(v) SIGovf is active, iff sigrd((s0, e0, f0),M) = 2.

The correctness statement for double precision is analogous.

4.2.3 AdjustExp, Pack and ExpRd Stages

After the post-normalization, the most complex parts of the rounding process are
done. It follows the ADJUSTEXP stage, which ties the exponent to emax +1−A in
the case that an overflow after rounding with enabled trap occurs. Such overflows
are easily detected by testing if both the exponent ep represents emax + 1 and the
significand round yielded 2, i.e., if SIGovf is active.

The next stage is the PACK stage, which transforms the intermediate result to
IEEE format by tying the exponent of denormal numbers to 0

N , and hiding the
most-significant significand bit.

Finally, the EXPRD stage computes the result for untrapped overflows. This is
a straightforward implementation by some multiplexers of the second part of the
definition of FPU-result-correct (section 3.7.1, pg. 30). Furthermore, EXPRD ties
the sign of the output to the input sign sr.

Circuit 4.6 (ADJUSTEXP, PACK, EXPRD) The combination of circuits ADJUST-
EXP, PACK, and EXPRD takes as inputs the outputs of the POSTNORM circuit.
Its outputs are the outputs of the complete rounder as specified in circuit FP-
ROUNDER.

Putting it all together, we have the correctness statement of the complete float-
ing point rounder:

Theorem 4.10 For all inputs to the circuit FP-ROUNDER satisfying the rounder
input conditions, it holds

FPU-result-correct(x,M, OVFen, UNFen)(R, ovf, unf, inx),

where R, ovf, unf, inx are the outputs of FP-ROUNDER.

In order to pipeline the floating point units, the rounder circuit FP-ROUNDER

is decomposed into two stages RD-STG1 and RD-STG2. The stage RD-STG1
comprises the η-computation and the representative computation, and the stage
RD-STG2 comprises all other parts of the rounder. However, the actual intersec-
tion point is not important for the verification, but only for balancing the depth of
the pipeline stages for the later implementation.

4.3 Multiplicative Floating Point Unit 53

4.3 Multiplicative Floating Point Unit

In this section, we describe the multiplicative floating point unit. We first explain
the multiplication and division algorithm, before we proceed to present the hard-
ware implementing these algorithms. As in the previous sections, we will not
describe the hardware in detail, since the hardware closely follows [MP00]. We
conclude the section by combining the unpacker, the multiplicative computation
unit, and the rounder to the complete multiplicative FPU.

4.3.1 Multiplication/Division Algorithm

Basic Algorithm

The multiplicative computation unit gets as input the two operands a and b from
two separate floating point unpackers. For now, we assume that the operands are
non-special, nonzero floating point numbers. The other cases are handled as special
cases in section 4.3.4. The unpackers normalize denormal operands.

We denote the normalized factorings of a and b by (sa, ea, fa) and (sb, eb, fb),
respectively. For the description of the algorithm, it is convenient to see these as
numbers and ignore that in hardware these numbers are represented by bitvectors.
We return to bitvectors in the description of the actual hardware.

The basic algorithm for multiplication is to add up the exponents and multiply
the significands. This yields a result significand in the interval [1, 4), and hence the
rounder input condition (4.8) on page 44 is trivially fulfilled.

For divisions, one subtracts the exponents and divides the significands. This
yields a quotient significand in the interval (1/2, 2). In order to yield a significand
in [1, 4), the significand is multiplied by 2, and to compensate for this the exponent
is decremented by one.

A major bug of [MP00] is that the multiplication with 2 is missing. If this mul-
tiplication is omitted, a significand in the interval (1/2, 2) is passed to the rounder.
Since the difference of the operand exponents may be less than emin, the rounder
input condition (4.8) may not be satisfied. This leads to unspecified results of the
rounding unit. In order to implement the multiplication with 2, some circuits and
theorems described in this section had to be adjusted.

The above algorithms for multiplication and division may lead to significands
with long or even infinite binary representations. We therefore compute α-equiv-
alent approximations of the result significands.

For both operations, the result’s sign is the XOR of the operands’ signs.
The correctness of the algorithms is asserted by the following theorem:

Theorem 4.11 Let (sa, ea, fa) and (sb, eb, fb) be normal factorings with nonzero
values a = [[sa, ea, fa]] and b = [[sb, eb, fb]]. Let ê = η̂e(a · b) for multiplications,

54 Verification of the Floating Point Hardware

and ê = η̂e(a/b) for divisions. The algorithm described above is correct:

a · b =ê−P [[sa ⊕ sb, ea + eb, [fa · fb]−P]],

a/b =ê−P [[sa ⊕ sb, ea − eb − 1, 2 · [fa/fb]−(P+1)]],

The representative of the quotient significand has to have one more bit of precision
compared to multiplication, since it is multiplied with 2. The resulting significand
lies in the interval [1, 4):

1 ≤ [fa · fb]−P < 4

1 ≤ 2 · [fa/fb]−(P+1) < 4.

If the operands are representable numbers, the value of the result lies in a range
such that exponent wrapping scales the result into the representable range (cf.
rounder input condition (4.9) on page 45):

2emin−A < |[[sa ⊕ sb, ea + eb, [fa · fb]−P]]| < 2emax+A,

2emin−A < |[[sa ⊕ sb, ea − eb − 1, 2 · [fa/fb]−(P+1)]]| < 2emax+A.

Proof: We prove the theorem for division; the proof for multiplication is analogous.
It holds

a/b = ((−1)sa · 2ea · fa) / ((−1)sb · 2eb · fb)
= (−1)sa⊕sb · 2ea−eb · (fa/fb)
≡ea−eb−(P+1) [(−1)sa⊕sb · 2ea−eb · (fa/fb)]ea−eb−(P+1)

(by lemma 3.23(ii))
= (−1)sa⊕sb · 2ea−eb−1 · 2 · [fa/fb]−(P+1)

(by lemma 3.23(iv,v)).

It holds ê = blog2 |a/b|c = ea−eb+blog2 fa/fbc ≥ ea−eb−1 since fa/fb ≥ 1/2.
We therefore may coarsen the relation by applying lemma 3.23(vii), yielding

a/b ≡ê−P (−1)sa⊕sb · 2ea−eb−1 · 2 · [fa/fb]−(P+1).

This proves the first claim. The second claim follows easily from lemma 3.24.
For the third claim, observe that since the input factorings are normalized and
representable, it holds ea, eb ∈ {emin −P, . . . , emax} and hence emin −P − emax ≤
ea − eb ≤ emax − emin + P . Evaluation of emin, emax and A proves the claim. ut

It is easy to implement multiplication with the described algorithm. For the
implementation of the division, the problem of computing [fa/fb]−(P+1) remains.
This is done using Newton-Raphson iteration: starting from an initial approxima-
tion of 1/fb, one iteratively computes a better approximation r ≈ 1/fb. From this
approximation r one computes the representative [fa/fb]−(P+1). The remainder
of this subsection will describe this algorithm. We start by explaining the lookup
table from which the initial approximation is obtained. We then briefly describ-
ing the Newton-Raphson iteration. Finally, we describe how the representative
[fa/fb]−(P+1) is computed from the approximation r.

4.3 Multiplicative Floating Point Unit 55

Initial Approximation.

The initial approximation x0 is loaded from a lookup table, which is implemented
as a ROM in hardware. The lookup table has 256 entries, each 8 bits in width. Let
fb ∈ B 1+52 denote the bitvector representation of fb, i.e.,

〈fb〉 · 2
−52 = fb.

Since fb is normal, the most significand bit fb[52] satisfies fb[52] = 1 for all
operands. fb[52] is therefore not suited as “information carrier” for the lookup
table. Therefore the next 8 bits fb[51 : 44] are used to address the lookup table.
Let i := 〈fb[51 : 44]〉 denote the value of these address bits.

In [MP00], the content of the lookup table is given implicitly, i.e., an algo-
rithm is defined describing the content of every ROM cell. In PVS, we have de-
fined the lookup table explicitly as a large case-statement mapping addresses from
{0, . . . , 255} to bitvectors from B 8. Let lookup(i) denote the PVS function com-
prising this case-statement. The lookup table delivers an bitvector of length 8,
which is extended to the actual initial approximation. The binary representation of
the initial approximation is defined as

x0 := 0.1 ◦ lookup(i) ◦ 0
48 ∈ B 1+57, (4.12)

hence the value of the initial approximation is

x0 = 〈x0〉 · 2
−57

= 1
2 + 〈lookup(i)〉 · 2−9. (4.13)

Before we give the correctness statement of the complete initial approximation,
we state a lemma on the content of the actual lookup table:

Lemma 4.12 Let i ∈ {0, . . . , 255}, and let f := 1 + i · 2−8 + 2−9. It holds
∣∣(1

2 + 〈lookup(i)〉 · 2−9
)
− 1/f

∣∣ < 2−9,

that is, the content of the lookup table approximates the reciprocal of f .

Proof: The claim is proved in PVS by separately analyzing the content of each
lookup table entry. Each case is proved by applying basic arithmetic. ut

The above lemma characterizes the approximation error for significands which
are of the special form 1+i ·2−8+2−9. Every representable significand fb ∈ [1, 2)
is approximated by such a number, since with i = 〈fb[51 : 44]〉 it holds

∣∣fb − (1 + i · 2−8 + 2−9)
∣∣ ≤ 2−9,

and some basic arithmetic yields
∣∣1/fb − 1/(1 + i · 2−8 + 2−9)

∣∣ ≤ 2−9.

Together with lemma 4.12 this proves the following theorem on the error of the
complete initial approximation:

56 Verification of the Floating Point Hardware

Theorem 4.13 The initial approximation x0 as defined in (4.12) and (4.13) satis-
fies

0 < |1/fb − x0| < 2−8.

Newton-Raphson Iteration.

Starting from the initial approximation x0 one defines the sequence xi by

xi+1 := xi · (2 − fb · xi).

It is easy to show that the sequence xi converges quadratically to 1/fb if the initial
approximation is precise enough (see [MP00, pg. 374f], e.g.). The problem with
this algorithm is that the intermediate results have ever larger binary representa-
tions. In order to implement the algorithm in hardware, one chops all bits after the
57th bit behind the binary point of every intermediate result. This is mathematically
represented by the function b·cσ which chops all digits after the σ th digit behind
the binary point:

bzcσ := 2−σ · bz · 2σc .

In hardware, the computation of 2 − bfb · xic57 would require an incrementer to
compute the two’s complement. Therefore, one deliberately introduces one further
approximation error and computes

Ai := 2 − bfb · xic57 − 2−57 (4.14)

instead of 2−bfb · xic57. In hardware, this can be implemented by simply inverting
the bitvector representation of bfb · xic57, which saves the delay of the incrementer.
The approximated sequence xi is hence defined as

xi+1 :=
⌊
xi · (2 − bfb · xic57 − 2−57)

⌋
57

. (4.15)

The approximation error is defined as

δi := 1/fb − xi. (4.16)

In particular, δ0 denotes the error of the initial approximation. The following the-
orem summarizes the error analysis of the Newton-Raphson algorithm with finite-
precision intermediate results. The arguments closely follow [MP00], we therefore
omit the proof:

Theorem 4.14 Let 1 ≤ fb < 2, and x0 be the initial approximation such that
0 < |δ0| < 2−8. It holds

0 <δ2 < 1.1 · 2−29,

0 <δ3 < 2−55.

4.3 Multiplicative Floating Point Unit 57

()�

� �������	�
����� ��������

The bars are the integral multiples of 2−(P+1). The crosses indicate the three
possible (−(P + 1))–representatives of q.

Figure 4.7: Computation of [q]−(P+1)

Computation of the Representative.

By theorems 4.14 and 4.13, x2 and x3 are approximations of the reciprocal 1/fb.
Let r = x2 in single and r = x3 in double precision, respectively. Note that r by
definition has a binary representation with 57 bits behind the binary point, since
it is the result of a b·c57–application. In order to compute [fa/fb]−(P+1) from the
approximation r we define

E := bfa · rcP+1 ,

Eb := E · fb.

The following lemma states the important property of E:

Lemma 4.15 It holds E < fa/fb < E + 2−P .

Proof: The claim follows from theorem 4.14 and properties of b·cσ . The proof is
as in [MP00, pg. 380]. ut

By lemma 4.15, E is an approximation of the quotient fa/fb. The remaining
problem is to compute a (−(P + 1))-representative of the quotient. Figure 4.7
illustrates this problem. The exact quotient q lies between E and E + 2−P . There
are three possible positions for the (−(P + 1))–representatives of q. The task is to
decide which of the three positions is the representative of q, i.e., in which part of
the interval (E,E + 2−P) the exact quotient q lies.

Why this problem is non-trivial if the approximation is computed by Newton-
Raphson iteration, and why it is not sufficient to simply obtain some more precision
by an additional iteration step is, e.g., described in [OF97]. We omit this discus-
sion.

Lemma 4.16 Let fa, fb, E ∈ R , q = fa/fb, Eb = E · fb. Assume E < q <
E + 2−P and E · 2P+1 ∈ Z . It holds

[q]−(P+1) =

E + 2−(P+2) if q < E + 2−(P+1),

E + 2−(P+1) if q = E + 2−(P+1),

E + 3 · 2−(P+2) if q > E + 2−(P+1).

58 Verification of the Floating Point Hardware

���
���
���
���
���

���
���
���
���
���

�������������������������
�������������������������
�������������������������
�������������������������

���������������������������
���������������������������
�������������������������
�������������������������

���������������������������
���������������������������
�������������������������
�������������������������

from unpackers

DIV-LOOKUP

EXPMD

	�
�	�

SELECTFD

���

�
��
���
���	�
��
�

�
��
��

MD-CORE

to rounder

Figure 4.8: Top-level schematics of the multiplicative funtional unit

By multiplying the comparisons on the right side with fb, and replacing the defini-
tion of Eb, it holds

[q]−(P+1) =

E + 2−(P+2) if fa < Eb + fb · 2
−(P+1),

E + 2−(P+1) if fa = Eb + fb · 2
−(P+1),

E + 3 · 2−(P+2) if fa > Eb + fb · 2
−(P+1).

(4.17)

Proof: The claim follows easily from the definition of [·]−(P+1) and properties of
b·c and d·e. ut

Equation 4.17 allows the computation of [q]−(P+1) without using the exact
quotient fa/fb.

4.3.2 Hardware Implementation

We briefly describe the hardware which implements the above algorithms. From
here on let fb, E etc. denote bitvector representations of the numbers used in the
previous sections. Figure 4.8 shows the top-level schematics of the multiplicative
unit. The input operands a and b are received from two floating point unpackers as
four-tuples (sa, ea, lza, fa) and (sb, eb, lzb, fb) (see section 4.1).

The circuit DIV-LOOKUP contains the ROM for the lookup table and generates
the initial approximation from fb.

The circuit MD-CORE performs one multiplication, which either accounts for
one of the multiplications in the Newton-Raphson iteration step (4.15), the compu-
tation of E or Eb, or for the multiplication of the significands in case the operation

4.3 Multiplicative Floating Point Unit 59

is a multiplication. In case of divisions, the results are fed back to loop several
times through the MD-CORE circuit. During iteration, the most interesting out-
puts of circuit MD-CORE are x and AE: x is the binary representation of the
current approximation, i.e., x represents xi. The intermediate result Ai of the inner
multiplication (4.14) is represented by AE. When the iteration is finished and E
and Eb are to be computed, AE is used to represent E.

The circuit EXPMD computes the result exponent. EXPMD is a sub-circuit of
MD-CORE.

The output of the circuit MD-CORE is fed to the rounder in the case that the
operation is a multiplication. In case of division, the result is fed to the circuit
SELECTFD, which computes the representative [fa/fb]−(P+1) from E and Eb.

The number of iterations for divisions depends on the precision: two New-
ton/Raphson iterations for single and three for double precision operations are
needed. Each Newton/Raphson iteration step takes two multiplications (cf. equa-
tion (4.15)). The computation of E and Eb takes two further multiplications. Al-
together, this yields 6/8 multiplications for single/double precision divisions, re-
spectively. Each of the multiplications corresponds to one iteration through the
MD-CORE circuit.

In order to distinguish between multiplications and divisions, and to count the
number of remaining iterations, each operation traversing through MD-CORE is
assigned a state variable S holding information on the progress of the operation.
The state type MD-State is defined as MD-State = {MUL, DIV21, DIV20, DIV11,
DIV10, DIV01, DIV00, DIVE, DIVEB}. The state MUL indicates that the oper-
ation is a multiplication. The remaining states are used for divisions to count the
number of iterations. The states DIVij indicate that i further iteration steps are
needed, including the current step. If j = 1 (j = 0), the current iteration step
performs the inner (outer) multiplication of the iteration step. The states DIVE and
DIVEB indicate that E and Eb are currently being computed, respectively.

Single precision divisions proceed through the states DIV11 to DIVEB in the
above order, while double precision divisions proceed through DIV21 to DIVEB.
The next-state function md-nxtstate(S) is defined as

md-nxtstate(S) =

MUL if S =MUL

DIV20 if S =DIV21

DIV11 if S =DIV20

DIV10 if S =DIV11

DIV01 if S =DIV10

DIV00 if S =DIV01

DIVE if S =DIV00

DIVEB if S =DIVE

DIVEB if S =DIVEB.

60 Verification of the Floating Point Hardware

The computation of the next state md-nxtstate(S) of the operation is integrated into
the circuit MD-CORE.

Circuit 4.7 (DIV-LOOKUP) The initial approximation lookup table takes as argu-
ment the normalized significand fb ∈ B 1+52 and returns x0 ∈ B 1+57 as defined in
(4.12). 3

Circuit 4.8 (MD-CORE) The circuit MD-CORE has the following inputs:

• sa, sb ∈ B , ea, eb ∈ B 11, lza, lzb ∈ B 6, fa, fb ∈ B 1+52: the unpacked,
normalized input operands. Note that the unpackers deliver the exponents
as a combination of ea and lza, i.e., the normalized exponent is [ea] − 〈lza〉
(analogous for b).

• S ∈ MD-State: the state of the operation. The states are represented by
distinct 4-bit bitvectors. Initially, the state S is computed from the op-code
of the operation (cf. Appendix A), during the iterations the next state is taken
from the feedback loop.

• x ∈ B 1+57: the representation of the current approximation xi. Initially, x
comes from DIV-LOOKUP, during the iterations x comes from the feedback
loop.

• AE ∈ B 1+57: During the Newton/Raphson iteration (S /∈ {MUL,DIVEB}),
AE represents Ai, i.e., the intermediate result of the inner product of the
current Newton/Raphson iteration step. If the current state is DIVEB, AE
represents E.

• RM, dbl, OVFen, UNFen: the usual flags.

The circuit has three sets of outputs: the first set is fed back to the input and
is used for the iteration, the second set is fed directly to the rounder and is used
for multiplications, and the third set is fed to the representative computation in the
circuit SELECTFD, which is described below.

1. The outputs which are fed back have the same format as the inputs of circuit
MD-CORE. All inputs except x,AE and S are fed back unchanged. If the
state S is of the form DIVi1, then x remains unchanged, and AE becomes
Ai, i.e, the inner multiplication of the iteration step is performed. If the
state S is of the form DIVi0, then AE remains unchanged, and x becomes
bx · AEc57, i.e., the outer multiplication of the iteration step is performed.
If S = DIVE, x remains unchanged and AE becomes E, i.e., bfa · xcP+1.
The new state S is computed as md-nxtstate(S).

2. In case of multiplications, the outputs to the rounder are

• sr ∈ B : the result sign, computed as sa ⊕ sb.

4.3 Multiplicative Floating Point Unit 61

• er ∈ B 13: the result exponent, computed by the circuit EXPMD de-
scribed below.

• fr ∈ B 2+55: the result significand, computed as fa · fb followed by a
sticky-bit computation.

• RM, dbl, OVFen, UNFen: passed unchanged from the inputs.

3. The outputs to the representative computation in SELECTFD are

• sr ∈ B : the result sign, computed as sa ⊕ sb.

• er ∈ B 13: the exponent, computed by the circuit EXPMD.

• fa, fb ∈ B 1+52: passed unchanged from the inputs.

• AE ∈ B 1+57: the representation of E is passed unchanged from the
input.

• Eb ∈ B 1+114: the representation of Eb = E · fb.

• RM, dbl, OVFen, UNFen: passed unchanged from the inputs.

The heart of the MD-CORE circuit is a (58 × 58)-bit multiplier. This multiplier is
built from two (29×29)-bit and one (30×30)-bit multipliers and four adders using
the scheme of Karatsuba/Ofman [KO63]. In [MP00], the multiplier is implemented
as a Wallace tree [Wal64]. However, our multiplier implementation is better suited
for the implementation of the FPU on an FPGA (cf. section 6.5). The change of the
multiplier implementation has virtually no impact on the correctness proof. 3

Circuit 4.9 (EXPMD) The circuit EXPMD has the following inputs:

• ea, eb ∈ B 11, lza, lzb ∈ B 6: the exponent and leading-zero outputs of the
unpackers.

• fdiv: indicates whether a multiplication or division is being computed.

The output of the circuit is er ∈ B 13. The computation of er is performed as sug-
gested by theorem 4.11. In particular, the circuit EXPMD adds the additonal −1
in case of divisions (cf. theorem 4.11). In order to implement this, the implemen-
tation from [MP00] had to be extended by an additonal 3/2-adder stage. 3

The correctness statement of the exponent computation is:

Lemma 4.17 It holds:

fdiv = 0 =⇒ [er] = ([ea] − 〈lza〉) + ([eb] − 〈lzb〉)

fdiv = 1 =⇒ [er] = ([ea] − 〈lza〉) − ([eb] − 〈lzb〉) − 1

Circuit 4.10 (SELECTFD) The circuit SELECTFD takes as inputs the respective
outputs of circuit MD-CORE. The outputs of the circuit are

62 Verification of the Floating Point Hardware

• sr ∈ B , er ∈ B 13: passed unchanged

• fr ∈ B 2+55: the representation of 2 · [fa/fb]−(P+1) computed as described
in lemma 4.16. Note that the multiplication by 2 is done here.

• RM, dbl, OVFen, UNFen: passed unchanged from the inputs.

The construction of the circuit is as in [MP00, pg. 386], except that fr is shifted
one to the left in order to implement the multiplication by 2. 3

Altogether, the circuits satisfy the following correctness statements. The theo-
rems follow from the construction of the hardware in conjunction with the lemmas
and theorems above.

Theorem 4.18 Let (sa, ea, lza, fa) and (sb, eb, lzb, fb) be nonzero, non-special,
unpacked operands with values a and b which are fed into the circuit MD-CORE.
Let the state input S of MD-CORE be MUL. Consider the multiplication outputs
sr, er, fr of MD-CORE. Let ê = η̂e(a · b). It holds

a · b ≡ê−P [[sr, [er], 〈fr〉 · 2
−55]],

that is, the circuit MD-CORE computes an appropriate approximation of the exact
product of a and b.

Theorem 4.19 Let (sa, ea, lza, fa) and (sb, eb, lzb, fb) be nonzero, non-special,
unpacked operands with values a and b which are fed into the circuit MD-CORE.
Let dbl = 1, i.e., the operation be a double precision operation. Let the state in-
put S be DIV21, and the x input be the initial approximation obtained from the
DIV-LOOKUP circuit. Iterate the circuit MD-CORE 8 times and feed the outputs
to the circuit SELECTFD. Let sr, er, fr be the outputs of SELECTFD obtained in
this way. Let ê = η̂e(a/b). It holds

a/b ≡ê−53 [[sr, [er], 〈fr〉 · 2
−55]],

that is, the outputs are an appropriate approximation of the exact quotient of a and
b. The correctness statement for single precision is analogous. Single precision
divisions started with S = DIV11 take 6 iterations of the circuit MD-CORE.

4.3.3 Special Cases

The circuits described in the previous sections can only handle nonzero, non-
special operands. In the case that one of the operands is zero or a special value
(∞, NaN), the corresponding floating point unpacker signals that by activating the
appropriate output signal as described in section 4.1.1. The circuit MD-SPECIAL

therefrom computes the result of the operation according to table 4.1. The circuit
MD-SPECIAL is implemented by a multiplexer-tree. The construction is trivial
though error-prone; here formal verification helps avoiding errors even in the de-
sign phase.

4.3 Multiplicative Floating Point Unit 63

a · b b
a y 0 ∞ qNaN sNaN

x 0 ∞
0 0 0 qNaN
∞ ∞ qNaN ∞

qNaN qNaN∗

sNaN qNaN

a/b b
a y 0 ∞ qNaN sNaN

x ∞ 0
0 0 qNaN 0
∞ ∞ ∞ qNaN

qNaN qNaN∗

sNaN qNaN

qNaN (sNaN) denots quite (signalling) NaNs; qNaN∗ denotes one of the
input NaNs. In any case, the output sign is the XOR of the input signs.

Table 4.1: Result of special cases during multiplication/division

4.3.4 Putting It All Together

We now are ready to combine all the circuits described so far in this chapter to the
complete, yet combinatorial, multiplicative floating point unit. In chapter 5, we
will descibe how this floating point unit is pipelined.

Let MD-UNP denote the combination of one unpacker FP-UNPACK for each of
the two operands a and b, the circuit MD-SPECIAL for handling special operands,
and the circuit DIV-LOOKUP performing initial approximation lookup for divi-
sions. The circuits are connected in the obious way. The output of circuit MD-UNP

is either the result of the special operation, or the input for the next stage.
Let MD-STG1 and MD-STG2 be two circuits obtained by dividing MD-CORE

into two stages. In our implementation, MD-STG1 consists of two multipliers and
two adders from the Karatsuba/Ofman scheme, MD-STG2 consists of one multi-
plier and two adders for Karatsuba/Ofman, and the rest of the logic in the circuit
MD-CORE. However, the exact subdivision is not important in the following, its
only purpose is to balance the delay of the parts for later pipelining.

The remaining stages of the multiplicative FPU are the circuit SELECTFD and
the rounder stages RD-STG1 and RD-STG2 (cf. section 4.2).

Circuit 4.11 (MD-COMB) The combinatorial multiplicative FPU MD-COMB has
the following inputs:

• a, b ∈ B 64: the operands are IEEE bitvectors,

64 Verification of the Floating Point Hardware

• OVFen, UNFen ∈ B , RM ∈ B 2: the exception masks and rounding mode,
respectively.

• opcode ∈ B 9: the operation code. The encoding is listed in appendix A.

The outputs are

• r ∈ B 64: the result is an IEEE bitvector,

• ovf, unf, inx, inv, divz ∈ B : the five exception signals.

The functionality is defined as

MD-COMB :=

MD-UNP if special operands
RD-STG2 ◦ RD-STG1 ◦ MD-STG2 ◦ MD-STG1 ◦ MD-UNP

if operation is multiplication
RD-STG2 ◦ RD-STG1 ◦ SELECTFD◦

(MD-STG2 ◦ MD-STG1)6 ◦ MD-UNP

if operation is single precision division
RD-STG2 ◦ RD-STG1 ◦ SELECTFD◦

(MD-STG2 ◦ MD-STG1)8 ◦ MD-UNP

if operation is double precision division

Here, ◦ means composition of the circuits; the inputs/outputs of the circuits are
connected in the obvious way. The construct (. . .)i stands for i-fold composition.

3

We now prove the overall correctness of the FPU.

Theorem 4.20 Let a and b be nonzero, non-special IEEE bitvectors, let a round-
ing mode RM and flags OVFen and UNFen be given. Let the operation to be per-
formed be a multiplication (respectively a division). Let p := [[a]] · [[b]] be the exact
result (respectively p := [[a]]/[[b]]). Let w be the result of the operation as computed
by circuit MD-COMB, and let ovf, unf, and inx be the computed exception flags. It
holds:

FPU-result-correct(p,RM, OVFen, UNFen)(w, ovf, unf, inx),

with FPU-result-correct as defined in section 3.7.1.

Proof: We only prove the case of multiplications; divisions are completly analo-
gous. By definition of circuit MD-COMB, the result is computed by RD-STG2 ◦
RD-STG1 ◦ MD-STG2 ◦ MD-STG1 ◦ MD-UNP. By lemma 4.3, the unpacker
passes the normalized operands a and b to stages MD-STG1 and MD-STG2. By
theorems 4.11 and 4.18, theses stages compute a representative of the exact product
which satisfies the rounder input conditions. Hence, by theorem 4.10, the rounder
computes the correct result and exception flags. ut

4.4 Additive Floating Point Unit 65

Note that in order to satisfy the rounder input condition (4.8) on page 44 in case
of divisions, the result significand has to be multiplied by 2 to yield a significand ≥
1 (cf. Theorem 4.11). As mentioned before, this is missing in [MP00]. There, the
formal “putting it all together” is not performed. We believe that this is the reason
why this bug has been overlooked. This further shows that the verification of (even
large) sub-parts of a system does not give ultimate confidence in the correctness of
the system; the system has to be verified as a whole.

The correctness of operations on special operands is covered by a series of
theorems, one for each entry in table 4.1. We exemplarily state one of the theorems:

Theorem 4.21 Let a and b be IEEE bitvectors such that inf(a) and textzero(b)
hold. Let the operation be a multiplication. Then the result of circuit MD-COMB

is a quiet NaN, and the INV signal is raised.

Proof: The correctness follows from lemma 4.1 which ensures that the special
operands are correctly recognized, and from the construction of circuit MD-SPE-
CIAL which delivers the result. ut

4.4 Additive Floating Point Unit

In this section, we describe the floating point unit for addition and subtraction. The
core of this FPU has been verified by Christoph Berg in his master thesis [Ber01].
The design and the verification of the core is described in detail in [Ber01], we
therefore restate only the interface and the correctness statement. We then proceed
as in the section on the multiplicative unit by describing the special cases, and by
combining the parts to form the complete additive unit.

4.4.1 Additive FPU Core

The additive FPU core is implemented by the circuit FP-ADDER from [Ber01]:

Circuit 4.12 (FP-ADDER) The circuit FP-ADDER has the following inputs:

• sa, sb ∈ B , ea, eb ∈ B 11, fa, fb ∈ B 1+52: the unpacked operands. The
operands do not get normalized by the unpackers.

• sub ∈ B : If sub = 0 an addition is performed, otherwise a subtraction.

The outputs of the circuit are ss ∈ B , es ∈ B 11, fs ∈ B 2+55 representing the
result factoring. 3

Theorem 4.22 Let a, b be non-special, possibly zero, operands, let S := [[a]] + [[b]]
if sub = 0, otherwise S := [[a]] − [[b]], assume S 6= 0, and let ê = η̂e(S). The

66 Verification of the Floating Point Hardware

a + b b
a y +∞ −∞ qNaN sNaN

x +∞ −∞
+∞ +∞ +∞ qNaN
−∞ −∞ qNaN −∞

qNaN qNaN∗

sNaN qNaN

a − b b
a y +∞ −∞ qNaN sNaN

x −∞ +∞
+∞ +∞ qNaN +∞
−∞ −∞ −∞ qNaN

qNaN qNaN∗

sNaN qNaN

qNaN (sNaN) denotes quite (signaling) NaNs; qNaN∗ denotes one of the
input NaNs. The sign of operations with result 0 will be defined in section
4.4.3

Table 4.2: Result of special cases during addition/subtraction

outputs of circuit FP-ADDER satisfy

[[ss, es, fs]] ≡ê−P S,

2emin−A ≤ [[ss, es, fs]] ≤ 2emax+A,

[es] ≤ emax,

that is, the rounder input requirements (section 4.2) are fulfilled.

Proof: The proof is given in [Ber01, Chap. 5] ut

4.4.2 Special Cases

A special case for the additive FPU occurs if one of the operands is a special
operand (∞, NaN), or if the exact result of the operation is zero. Table 4.2 shows
the result of operations in the former case. The case of exact results zero has to be
handled as a special case because of the sign of zero results. This will be described
in more detail in the next section.

As in the multiplicative FPU, the special operand cases are handled by a circuit
ADD-SPECIAL which is implemented by a multiplexer-tree to implement the table
4.2. The circuit ADD-SPECIAL also detects whether the operation yields zero as
exact result, and outputs a correctly signed zero in this case. The correct sign is

4.4 Additive Floating Point Unit 67

defined in the next section. Whether two operands a, b yield zero as exact result is
determined according to

[[a]] + [[b]] = 0 ⇐⇒ [[a]] = −[[b]]

⇐⇒ (sa = ¬sb) ∧ (ea = eb) ∧ (fa = fb)

according to lemma 3.4 (analogously for subtraction [[a]] − [[b]]).

4.4.3 The Sign of Addition/Subtraction

The definition of the sign of the result of additions and subtractions is one of the
most confusing parts of the IEEE standard [IEEE]:

(. . .) the sign of a sum, or a difference x−y regarded as sum x+(−y),
differs from at most one of the addends signs (. . .) When the sum of two
operands with opposite signs (or the difference of two operands with
like signs) is exactly zero, the sign of that sum (or difference) shall be
+ in all rounding modes except round toward −∞, in which mode that
sign shall be −. However, x + x = x− (−x) retains the same sign as
x even when x is zero.

This is (hopefully) captured in the following formalization. Let S = a ± b be the
exact result of the operation, and let sa be the sign of the first operand. The sign
bit of the result is defined as

sign :=

0 if S > 0,

1 if S < 0,

sa if S = 0, a = 0,

0 if S = 0, a 6= 0,M 6= down,

1 if S = 0, a 6= 0,M = down.

(4.18)

As mentioned above, operations with exact result zero are handled as special
cases. As the following theorem asserts, these are exactly the cases where the
rounded result equals zero:

Theorem 4.23 Let (sa, ea, fa) and (sb, eb, fb) be representable IEEE factorings
with values a and b. Let M be a rounding mode. It holds

a + b = 0 ⇐⇒ rd(a + b,M) = 0.

Proof: The proof was developed by Berg, but is not part of his master thesis
[Ber01]. We therefore sketch the proof: the ⇒ direction follows directly from
the definition of the rounding function. For the other direction assume a + b 6= 0.
Now note that every representable number is an integral multiple of Xmin, where
Xmin is the smallest representable number. Hence a = q1 · Xmin, b = q2 · Xmin for

68 Verification of the Floating Point Hardware

some q1, q2 ∈ Z , and thus a + b = (q1 + q2) · Xmin 6= 0. Hence |a + b| ≥ Xmin.
Such numbers cannot be rounded to 0. ut

The theorem asserts that the only non-trivial decision on the sign of addi-
tion/subtraction results are those where the exact result is zero. Otherwise, the
rounded result is not zero, and hence the sign has to be the algebraic sign of the
exact result. In the case that the exact result is zero, the sign is computed by circuit
ADD-SPECIAL as defined in (4.18).

In [MP00], the above theorem is missing, and hence the argument why the sign
is correct is not complete. In fact, the computation of the sign of nonzero results
in [MP00, pg. 369] is even wrong, as it is explained in [Ber01, pg. 66]. Another
bug in [MP00] is that exactly zero results are not treated as special case, but that
a value of zero is fed to the rounder in such cases, although the rounder is not
specified for zero inputs, cf. section 4.2.

4.4.4 Putting It All Together

We now combine the unpacker, adder circuits, and the rounder to the complete
additive floating point unit.

Let ADD-UNP denote the combination of an unpacker for each of the two
operands, and the circuit ADD-SPECIAL. The output of this circuit is either the re-
sult of special operations as computed by ADD-SPECIAL, or the unpacked operands
as computed by the unpackers.

The core FP-ADDER of the FPU is divided into two stages called ADD-STG1
and ADD-STG2. The remaining stages of the additive FPU are the two rounder
stages RD-STG1 and RD-STG2. As with the multiplicative FPU, we now define
the combinatorial additive FPU as the circuit ADD-COMB:

Circuit 4.13 (ADD-COMB) The combinatorial additive FPU MD-COMB has the
following inputs:

• a, b ∈ B 64: the operands are IEEE bitvectors,

• OVFen, UNFen ∈ B , RM ∈ B 2: the exception masks and rounding mode,
respectively.

• opcode ∈ B 9: the operation code. The encoding is listed in appendix A.

The outputs are

• r ∈ B 64: the result is an IEEE bitvector,

• ovf, unf, inx, inv, divz ∈ B : the five exception signals.

The functionality is defined as

ADD-COMB :=

ADD-UNP if special operation
RD-STG2 ◦ RD-STG1 ◦ ADD-STG2◦

ADD-STG1 ◦ ADD-UNP otherwise

4.4 Additive Floating Point Unit 69

3

The following theorem gives the correctness statement for the additive FPU
with non-special operands, but potentially exact result zero:

Theorem 4.24 Let a and b be non-special (potentially zero) operands, let a round-
ing mode RM and flags OVFen and UNFen be given. Let the operation to be per-
formed be an addition (respectively subtraction). Let S := [[a]] + [[b]] be the exact
result (respectively S := [[a]] − [[b]]). Let w be the result of the operation as com-
puted by circuit ADD-COMB, and let ovf, unf, and inx be the computed exception
flags. It holds:

FPU-result-correct(S,RM, OVFen, UNFen)(w, ovf, unf, inx),

with FPU-result-correct as defined in section 3.7.1.

Proof: Assume first that the operation yields an exact result S = 0. Then the circuit
ADD-COMB outputs the result as computed by circuit ADD-SPECIAL, which is 0 in
this case with all exception signals disabled. By definition of FPU-result-correct,
the claim of the theorem holds.

Now assume that the operation yields an exact result S 6= 0. Then the out-
put of circuit ADD-COMB is computed as RD-STG2 ◦ RD-STG1 ◦ ADD-STG2 ◦
ADD-STG1◦ADD-UNP. By lemma 4.2 the unpacker passes the unpacked operands
a and b to stages ADD-STG1 and ADD-STG2. By theorem 4.22, these stages com-
pute a representative of the exact result which satisfies the rounder input conditions.
By theorem 4.10, the rounder computes the correctly rounded result and the correct
exception flags. ut

The FPU-result-correct–predicate does not cover the sign of the result w if this
result is zero (cf. section 3.7.1). Since the correctness of the sign of the result is a
non-trivial statement for addition/subtraction, we have proved a seperate theorem
on the sign bit:

Theorem 4.25 Let a and b be non-special (potentially zero) operands, and let S be
the exact result of the addition (or subtraction) of a and b. The sign bit computed
by the circuit ADD-COMB matches the definition of the correct sign in equation
(4.18).

Proof: If S = 0, then this is recognized by the circuit ADD-SPECIAL and the
correctly signed result is generated.

Now assume that S 6= 0. By theorem 4.23, it holds rd(S,M) 6= 0. This
propagates to the potentially wrapped and then rounded result, hence it holds
result(x,M, OVFen, UNFen) 6= 0. By theorem 4.24, and by the definition of
FPU-result-correct, circuit ADD-COMB computes result(x,M, OVFen, UNFen) if
no untrapped overflow occurs. Consequently, circuit ADD-COMB computes the
correct sign, since the sign is unique for nonzero results. If an untrapped overflow

70 Verification of the Floating Point Hardware

occurs, MD-COMB outputs either ±∞ or ±Xmax with the correct sign by defini-
tion of FPU-result-correct. ut

The correctness of the special operand cases is asserted by a theorem for each
of the entries in table 4.2. We exemplarily state one of the theorems:

Theorem 4.26 Let a and b be IEEE bitvectors such that inf+(a) and inf+(b) hold.
Let the operation be an addition. Then the result w of circuit ADD-COMB is +∞,
i.e., it holds inf+(w), and no exception signals are raised.

Proof: The correctness follows from lemma 4.1 which ensures that the special
operands are correctly recognized, and from the construction of circuit ADD-SPE-
CIAL which delivers the result according to table 4.2. ut

4.5 Comparison, Conversion and Miscellaneous Opera-
tions

In this section we describe the third floating point unit, which we refer to as “Misc-
FPU”. The Misc-FPU is capable of the following operations:

• comparisons between two floating point numbers of the same format,

• conversion between the two floating point formats,

• conversion of the two floating point formats from/to integer format,

• negation and computation of absolute value,

• and moves between floating point registers, and between floating point and
integer registers.

The design of this FPU significantly differs from the design in [MP00], in par-
ticular for the conversions with integer destiniation format. We therefore describe
the Misc-FPU in more detail than the multiplicative and additive FPUs in the pre-
vious sections.

Circuit 4.14 (FP-MISC) The Misc-FPU has the following inputs:

• a, b ∈ B 64: the operands. a is either an IEEE bitvector, or the upper half
a[63 : 32] represents a two’s complement integer, depending on the oper-
ation. b is always an IEEE bitvector. The b operand is needed only for
comparisons.

• OVFen, UNFen ∈ B , RM ∈ B 2: the exception masks and rounding mode,
respectively.

• opcode ∈ B 9: the operation code. The encoding is listed in appendix A.

4.5 Comparison, Conversion and Miscellaneous Operations 71

FX-UNPACK

CVTSPECIAL FLOAT2INT FP-COMPARENEG/ABS

RD2INT

FP-UNPACK

��� ovf, unf, inx, divz, inv

FPMISC-RDSTG1

FPMISC-RDSTG2

F
P

M
IS

C
-S

T
G

1

��

FP-UNPACK

FP-ROUNDER

Figure 4.9: Top-level schematics of the Misc-FPU.

The outputs are

• r ∈ B 64: the result; r is, depending in the operation, an IEEE bitvector, or
r[63 : 32] encodes an integer, or r[32] is the comparison result. The embed-
ding of integers and comparison result in the 64-bit bitvector r is arranged
to fit with the VAMP processor.

• ovf, unf, inx, inv, divz ∈ B : the five exception signals. In the Misc-FPU, divz
is never active.

Figure 4.9 shows the top-level schematics of the Misc-FPU. 3

We now describe informally how the different operations are processed in the
Misc-FPU, before we describe the design and verification of some of the operations
in more detail.

• Compares: for comparisons between two floating point numbers of same
format, the two operands are unpacked in the two FP-UNPACK circuits. The
numbers are then compared in the circuit FP-COMPARE according to the
specification in section 3.7.2.

72 Verification of the Floating Point Hardware

• Conversion between floating point formats: to convert a non-special, nonzero
operand a from one floating point format to the other, the operand is un-
packed and then fed to the rounder FP-ROUNDER in order to round and
IEEE-normalize the result. Furthermore, the rounder computes the flags
ovf, unf and inx. Note that for conversions from single to double precision,
rounding does not change the value of the operand, but it may be neces-
sary to normalize a single precision de-normal number during conversion in
order to yield a double precision IEEE factoring. Vice-versa, for the conver-
sion from double to single precision, the operand is rounded and potentially
denormalized in order to fit the smaller exponent range of single precision.

If the a operand is a special or zero value, the conversion is performed in the
circuit CVTSPECIAL.

• Conversion from integer to floating point format: the integer operand a is
unpacked using the circuit FX-UNPACK (see section 4.1.2). If the integer has
zero value, the conversion is performed in circuit CVTSPECIAL. Otherwise,
the unpacked integer is fed to the rounder in order to yield the correctly
rounded and normalized floating point number. The exception signals are
generated as usual.

• Conversion from floating point to integer format: if the floating point operand
a has a large exponent e ≥ P−1, or a small exponent e < 0, then rounding to
integer is easy according to lemmas 3.42 and 3.43. Detection and handling
of these cases is performed in circuit FLOAT2INT. In all other cases, the
circuit FLOAT2INT computes an input to the rounder. The rounding result is
then post-processed in circuit RD2INT in order to yield the correctly rounded
integer according to theorem 3.44. This is described in more detail below.

• Negation and absolute value: for negation and absolute value computation,
the sign bit of the operand a is flipped or tied to 0, respectively. This is per-
formed in circuit NEG/ABS. Negation and absolute value are not considered
to be arithmetic operations, and hence do not signal any exceptions. If ap-
plied to special values, the sign is changed as if applied to numbers. This
conforms with the standard [IEEE, Appendix].

• Moves: In order to allow fast copying of floating point values between differ-
ent floating point registers, and between floating point and integer registers,
the instruction set comprises move instructions. We include these instruc-
tions in the Misc-FPU. The operands are simply passed unchanged from the
input to the output of the Misc-FPU.

4.5.1 Comparisons

Circuit 4.15 (FP-COMPARE) The circuit FP-COMPARE has the following inputs:

• sa, sb ∈ B , ea, eb ∈ B 11, fa, fb ∈ B 1+52: the unpacked operands,

4.5 Comparison, Conversion and Miscellaneous Operations 73

• ZEROa, pINFa, nINFa, QNANa, SNANa, ZEROb, pINFb, nINFb, QNANb,
SNANb ∈ B : the special-operand flags,

• FCONun, FCONlt, FCONgt, FCONeq ∈ B : the compare-operation con-
trol bits as defined in section 3.7.2.

The circuit outputs

• fcc ∈ B : the comparison result,

• inv ∈ B : the invalid signal as specified in section 3.7.2.

The construction of circuit FP-COMPARE is straightforward according to lemmas
3.39 and 3.40. We omit the details. 3

Theorem 4.27 Given two IEEE bitvectors a and b as inputs, the output of the
Misc-FPU performing a comparison satisfies the comparison specification from
section 3.7.2, i.e.,

r[63 : 32] = 0
31fcc,

ovf, unf, inx, divz = 0,

inv = FCON-sig-unordered(a, b).

Note the embedding convention that the signal fcc is returned as r[32]. This is
arranged to fit with the VAMP CPU.

Proof: The claim follows from the correctness of the unpackers (lemmas 4.1 and
4.2), and the construction of circuit FP-COMPARE together with lemmas 3.39 and
3.40. ut

4.5.2 Conversion to Floating-Point Formats

In order to perform a conversion with a floating point destination format, the
operand is unpacked and then fed to the rounder. Unpacking is either performed
in the floating or fixed point unpacker, depending to the source format. Special
operands are handled in the circuit CVTSPECIAL. The correctness follows from
the correctness of the unpackers and the correctness of the rounder for non-special
operands, and the correctness of CVTSPECIAL for special operands. The details
are tedious and therefore omitted.

There is one non-trivial part in the conversion from double to single precision
floating point numbers: the double precision number x to be converted may be so
tiny or so large that it does not fit into single precision even after exponent wrap-
ping. Hence, the rounder input condition (4.9) on page 45 might not be satisfied.
This does only apply if the corresponding trap is enabled, since otherwise x is
rounded to zero or infinity in such cases. The standard requests:

74 Verification of the Floating Point Hardware

Trapped overflow on conversion from a binary floating-point format
shall deliver to the trap handler a result in that . . . format, possibly
with the exponent bias adjusted, but rounded to the destination’s pre-
cision.

The case of trapped underflows on conversion is defined analogously in the stan-
dard. However, our rounder is not capable of doing so because it cannot round to
24 significant bits within a double precision format. Therefore, on trapped under-
flow/overflow on conversion, the Misc-FPU delivers to the trap-handler the original
operand; the trap-handler can compute the rounded significand in software in these
cases.

This is implemented as follows: on conversion from double to single preci-
sion, the OVFen and UNFen inputs to the rounder are tied to 0 in order to disable
exponent wrapping. If the rounder signals OVF or UNF, and originally the corre-
sponding trap was enabled, the original operand is returned instead of the rounded
result, and the trap-handler is activated by the CPU.

To the best of our knowledge, this is the only discrepancy of our FPUs to the
IEEE standard. Adopting the rounder so that it can handle the described case is
probably not too hard.

4.5.3 Conversion to Integer Format

The conversion from floating point to integer format is slightly more complex. For
conversion to integer, a correctly rounded integer has to be computed from the
floating point operand. The invalid exception is signaled if this is not possible due
to overflow or special operands. This is specified in the standard as follows:

The invalid operations are . . . conversion of a binary floating-point
number to an integer or decimal format when overflow, infinity, or
NaN precludes a faithful representation in that format . . .

Hence, the circuit FLOAT2INT signals invalid on infinity and NaN operands,
and outputs an unspecified integer in these cases. Assume otherwise that the float-
ing point operand a is non-special. In the following, we treat unpacked single pre-
cision operands as if they had double precision. This will not affect the correctness
of the conversion from single precision to integer numbers.

We first have to distinguish whether the exponent e is large (≥ P − 1 = 52)
or small (< 0). This is performed in circuit F2I-DECIDE from figure 4.10. The
correctness of this circuit is asserted in the following lemma:

Lemma 4.28 Let e ∈ B 11 be the exponent in two’s complement as delivered by
the unpacker. Let small and large be the outputs of circuit F2I-DECIDE. It holds:

small = 1 ⇐⇒ [e] < 0,

large = 1 ⇐⇒ [e] ≥ 52.

4.5 Comparison, Conversion and Miscellaneous Operations 75

����������
	�������

������� ���� �����

��� � � �
ADD! � �

twoc(−52) denotes the 11-bit two’s complement representation of −52.

Figure 4.10: Circuit F2I-DECIDE

" # $�%�&
'()+*-,/.1032 4�5768.9032 :;5<6=,/>�?
@*A.9032 4�5<6B.1032 :;5<6C> ?D@*A.9032 4�5<6=,E.9032 :;5<6CF $�%HGJI 6=, # $�%;I ?

2 KL:NM�4�5
ZEROEQUAL

F

2 K�OP5

Q IDI

F $R%;GJI

>PS I QT SDU

2 K�OP5

$�%;I # $�%
&

Figure 4.11: Circuit F2I-SMALL

Proof: A two’s complement number is negative iff its sign bit is 1. Hence, small is
correct. The neg output of the adder is active iff the sum of [e] and −52 is negative,
i.e., iff [e] < 52. Hence, large = 1 iff [e] ≥ 52. ut

If the exponent e is small, the result can be computed according to lemma 3.43.
This is performed in circuit F2I-SMALL in figure 4.11.

Lemma 4.29 Let a be a non-special operand with sign s and exponent e. Let
[e] < 0, let x := [[a]] be the value of a, and let M be a rounding mode with bit-
encoding RM ∈ B 2 (cf. page 44). Let i be the output of circuit F2I-SMALL

applied to the unpacked operand a. It holds

[i] = [[rd2int(x,M)]].

76 Verification of the Floating Point Hardware

�

NEG

��� �����
	��

� � �����������

��� �����������

� � ������	��

�
ovfint

OR

�

Figure 4.12: Circuit RD2INT

Proof: It holds

eeq−1 = 1 ⇐⇒ [e] = −1,

feq1 = 1 ⇐⇒ 〈f〉 · 2−52 = 1,

feq0 = 1 ⇐⇒ 〈f〉 · 2−52 = 0.

The correctness now follows directly from lemma 3.43 and the bit-encoding of
rounding modes (see (4.7) on page 44). ut

If the exponent e is large, i.e., [e] ≥ 52, it holds [[a]] ≥ 252, which is outside
the range of 32-bit integers. In this case, a non-specified integer is returned, and
the inv signal is activated according to the IEEE standard.

If the exponent e is mid-range, i.e., 0 < [e] < 52, the conversion is performed
according to theorem 3.44: the operand is multiplied with 2emin+1−P , then rounded,
and finally the integer is extracted from the rounding result.

Multiplication of the operand with 2emin+1−P is performed by adding emin +
1 − P = −1074 to e before feeding the operand to the rounder. The needed adder
is incorporarted into circuit FLOAT2INT.

The rounding is performed in the standard rounder FP-ROUNDER with dis-
abled exception masks OVFen and UNFen. The final integer result is extracted
in circuit RD2INT. In order to allow the easy extraction of the integer result, the
circuit RD2INT gets as input not the packed rounding result, but the intermediate
rounded result as computed by the ADJUSTEXP stage right before packing in the
rounder (see section 4.2). The construction of circuit RD2INT is shown in figure
4.12.

Lemma 4.30 Let f ∈ B 53, s ∈ B be inputs to the circuit RD2INT, and ovfint ∈

4.5 Comparison, Conversion and Miscellaneous Operations 77

B , i ∈ B 32 be its outputs. Let x := (−1)s · 〈f〉. It holds:

x ∈ T32 =⇒ [i] = x,

ovfint ⇐⇒ x /∈ T32,

where Tn = {−2n−1, . . . , 2n−1 − 1} is defined in section 2.1 as the range of n-bit
two’s complement numbers.

Proof: If one of the bits f [52 : 32] is 1, x is not in the range T32 and hence ovfint is
asserted. Otherwise, x = (−1)s · 〈f [31 : 0]〉. The bits f [31 : 0] are extended by a 0

in order to yield a two’s complement representation. This is fed to a negater NEG

which computes −〈f [31 : 0]〉. The result is multiplexed with the non-negated f
yielding m ∈ B 33 with [m] = x. This 33-bit two’s complement bitvector is in 32-
bit range iff m[32] = m[31]; in this case, it holds [i] = [m[31 : 0]] = x. Otherwise,
x is not in the correct range, and hence ovfint is asserted. ut

If the RD2INT circuit asserts the ovfint signal, then x lies outside the two’s comple-
ment-representable range an hence the inv exception is signaled as mandated by
the standard.

The following theorem asserts the overall correctness of the convert to integer
circuits:

Theorem 4.31 Let a be an IEEE bitvector and M be a rounding mode with en-
coding RM , let the circuit FP-MISC perform a conversion from floating point to
integer format. Let r be the output of this operation, and ovf, unf, inx, inv, divz
be the computed exception signals. In the case that a is non-special, let I :=
[[rd2int([[a]],M)]] be the correctly rounded integer. It holds

[r[63 : 32]] = I if a is non-special and I ∈ T32,

ovf, unf, inx, divz = 0,

inv = 1 ⇐⇒ a is infinity or NaN, or I /∈ T32

Note the embedding convention that the 32-bit integer result is encoded in the bits
r[63 : 32]. This is arranged to fit with the VAMP CPU.

Proof: If a is special, then inv is signaled by construction of circuit FLOAT2INT.
Otherwise, if a has a small or a large exponent, this is correctly detected according
to lemma 4.28. Lemma 4.29 asserts that the case of small exponents is correctly
processed. In the case of a large exponent, FLOAT2INT correctly signals inv by
construction.

It remains the case of operands with exponent between 0 and P − 1. These
operands are multiplied by 2emin+1−P , i.e., their exponent is decreased by 1074.
The operand is then fed to the rounder. By theorem 4.9, the output (sr, er, fr) of
the ADJUSTEXP stage satisfies2

[[sr, [er]bias, 〈fr〉 · 2
−52]] = η(rd(wrappedbef([[a]], OVFen, UNFen),M)),

78 Verification of the Floating Point Hardware

and since both OVF and UNF exceptions are disabled, it holds

[[sr, [er]bias, 〈fr〉 · 2
−52]] = η(rd([[a]],M)).

By theorem 3.44, this implies

I = (−1)sr · 〈fr〉.

By lemma 4.30, the circuit RD2INT correctly computes I from sr and fr if I is
in-range, and signals ovfint otherwise. In this case FP-MISC signals inv. ut

4.6 Discrepancies to the IEEE Standard

As described in section 4.5.2, the Misc-FPU handles trapped overflows and under-
flows on conversion from double to single precision different than mandated by the
standard. In such cases, our FPU delivers the original operand to the trap handler
which then can perform the correct operation in software. In the IEEE standard, it is
explicitly allowed to implement some of the functionality in software [IEEE, Sect.
1.1], so this discrepancy is not even a real discrepancy. However, we have not
formally verified the software of the trap handler for these cases.

There are some floating point operations defined in the standard which we have
not implemented, namely square root, rounding of floating point numbers to an
integral-valued floating point number, and conversion between floating point and
decimal formats. We believe that the former two operations could be designed
and verified with small effort given the experience and techniques presented in this
chapter. Conversion between floating point and decimal formats might be slightly
more complex [Coo80,Cli90]. All three operations raise an unimplemented-trap in
the VAMP CPU and may be implemented in a trap handler.

4.7 Related Work

Aagaard and Seger combine BDD based methods and theorem proving techniques
to verify a floating point multiplier [AS95]. Chen and Bryant [CB98] use word-
level model checking to verify a floating point adder. Exceptions and denormals
are not handled in both verification projects.

Verkest et al. verify a non-restoring integer division algorithm [VCDM94].
Clarke et al. [CGZ96] and Ruess et al. [RSS96] verify SRT division algorithms.
Miner and Leathrum [ML96] verify a general class of subtractive division algo-
rithms with respect to the IEEE formalization of Miner [Min95]. Mechanized
proofs of SRT integer division are reported in [Bry96, KS97].

In [Har97], Harrison proves the correctness of an algorithm for the exponen-
tial function against his IEEE formalization. He assumes that IEEE correct addi-

2Theorem 4.9 asserts the correctness of the outputs of the POSTNORM stage. In the PVS proof,
there is a similar theorem for the ADJUSTEXP stage.

4.7 Related Work 79

tion, multiplication, and rounding to integer are provided. In [AHTH01, AH01a],
Abdel-Hamid et al. verify an implementation of this algorithm against a formal
specification. However, there is a large gap between their specification and the
IEEE standard.

O’Leary et al. [OZGS99] report on the verification of the gate level design of
Intel’s FPU using a combination of model checking and theorem proving. Their
definition of rounding does not reflect the IEEE standard in an obvious way. De-
normals and exceptions are not covered in the paper. In fact, in our tests of our FPU
against the Intel FPU we have encountered differences in the rounding of denormal
numbers which are due to discrepancies of Intel’s rounding to the IEEE standard.
This will be described in more detail in section 6.5.2.

In [AJK00], Aagaard et al. report on the verification of gate-level implemen-
tations of iterative algorithms. Among other circuits, they verify floating point
square root, division, and remainder operations. They do not give details on the
specification against which the circuits are verified.

In [KK01], Kaivola and Kohatsu report on the verification of Intel’s Pentium
4 floating point divider. The main focus of their paper is not the actual divider
verification, but the challenges formal verification has to overcome in an industrial
setting.

Cornea-Hasegan [CH98, CH99] describes algorithms for the computation of
division and square root by Newton-Raphson iteration in the Intel FPUs. The veri-
fication is done using paper-and-pencil proofs supported by Mathematica, an com-
puter algebra system. Computer algebra systems are usually not considered to be
formal verification tools [ADG+01].

Moore et al. have verified the AMD K5 division algorithm [MLK98] with the
theorem prover ACL2. Russinoff has verified the K5 square root algorithm as
well as the AMD Athlon multiplication, division, square root, and addition algo-
rithms [Rus98, Rus99, Rus00]. In all his verification projects, Russinoff proves the
correctness of a register transfer level implementation against his formalization of
the IEEE standard using ACL2. Russinoff does not handle exceptions and denor-
mals in his publications; he states that he handles denormals in unpublished work
(private communication). However, the above mentioned discrepancy of Intel’s
FPU to the IEEE standard in some cases where denormal numbers are involved
also applies to AMD’s FPU, cf. section 6.5.2.

In [CCH+96], Chen et al. verify the correctness of sub-circuits of Intel’s Pen-
tium Pro floating point unit. They leave out the composition of these sub-circuits,
and the formal reasoning why this composition is correct. In fact, the “verified”
Pentium Pro had a bug in conversion from floating point to integer format, the
so-called FIST bug3.

The bug has escaped the verification in [CCH+96] because Chen et al. did not
formally compose all parts of the system [OZGS99]. It is therefore comparable to

3see http://support.intel.com/support/processors/flag/tech.htm

80 Verification of the Floating Point Hardware

the Müller/Paul division bug described in section 4.3.1, which is also due to not
“putting it all together” in a formal way.

Summarizing, our work is the first formal verification of a complete floating
point unit with the supported operations on the gate-level against a direct formal-
ization of the IEEE standard. In particular, our work includes denormal operands
and results, and the correct computation of the exception signals as an integral part
of the floating point unit.

Chapter 5

Pipelining the FPUs

In this chapter we describe how the floating point units presented in the previous
chapter are pipelined in order to work as execution units in the VAMP processor. In
order to exploit the benefits of the out-of-order Tomasulo scheduler [Tom67] used
in the VAMP processor, the FPU execution units may process multiple instruc-
tions simultaneously, may have branches and cycles in the pipeline structure (e.g.,
for special cases and the division algorithm), may have variable latency, and may
reorder instructions internally, i.e., instructions do not need to leave the pipeline in
the order they entered it.

We describe a general methodology for the verification of pipelined execution
units with these features. As an example we describe the verification of our multi-
plicative FPU. Its pipeline can process up to six instructions simultaneously. The
difficulty in the verification of such complex pipelines arises from the fact that
pipelines consist of a control-dominated part which schedules the processing of
the instructions in the pipeline, while simultaneously the effect of the datapaths on
the data of each instruction has to be considered in order to guarantee functional
correct behavior of the execution unit.

The sole use of theorem proving for the verification of complex pipelines
would involve the construction of an inductive invariant to cope with the control-
dominated part. The construction usually has to be performed manually, which is
considered the hard part of the verification of out-of-order systems [HGS00,SH98,
Kro01]. On the other hand, model checking is suitable for the automatic verifica-
tion of control-dominated systems, but becomes infeasible for the verification of
complete pipelines due to the data part. Even if one uses abstract datapaths, e.g.,
uninterpreted functions [BD94], the state space grows huge due to the large num-
ber of (nested) function applications (e.g., due to possible cycles in the pipeline
structure).

Our methodology combines the best of both worlds: we use the PVS built-in
model-checker [RSS95] to verify the control part of the pipelines, and then use
theorem proving to conclude overall correctness, including data correctness.

In order to use model-checked properties for the further verification by theorem

82 Pipelining the FPUs

proving, the model-checked properties have to be translated into a form which is
easy to use for theorem proving. In PVS, the FairCTL operators are defined as fix-
points in µ-calculus, which in turn are defined in terms of higher-order logic. These
definitions are hard to use in theorem proving. It is more suitable for theorem prov-
ing to define computation traces explicitly, and to express temporal properties using
standard mathematical quantifiers, e.g., ∀t : p(t) to express a property p to hold for
all times t along a computation trace. In order to translate model-checked prop-
erties safely from FairCTL to ∀t form, we have proved theorems which relate the
FairCTL operators defined in µ-calculus with their intended semantics expressed
in ∀t form. These relations are well known [CGP99], but have not been verified
using formal methods before.

This chapter is structured as follows. In section 5.1 we formally define the
correctness criterion which our execution units shall obey. In section 5.2 we ex-
emplarily sketch the pipeline design of our multiplicative FPU, which is our most
complex execution unit.

In section 5.3 we describe a failed approach to the verification of complex
pipelines based on using solely theorem proving. Contrary, we describe the verifi-
cation of the pipelining using solely model checking in section 5.4. This approach
failed as well.

In section 5.5 we prove theorems which allow the safe translation of model-
checked properties to ∀t form. This is used in section 5.6 to combine model check-
ing and theorem proving for the verification of the pipelines. In section 5.7, the
new methodology is applied to the pipelines of our FPUs. We discuss related work
in section 5.8.

In [MP00], the FPU is integrated into an in-order variant of the DLX-processor.
In our work, the FPUs are integrated into the out-of-order VAMP processor. It was
therefore necessary to design a new control automaton for the FPU in order to
exploit the benefits of the out-of-order scheduler. Hence, the work presented in
this chapter does not base on [MP00].

This chapter is an extended version of [Jac02].

5.1 Pipeline Correctness Criterion

In this section we describe the correctness criterions which our execution units
(EU, also called simply pipelines in this thesis) shall obey. An execution unit can
be seen as a black box with inputs and outputs interconnecting the EU with the
Tomasulo scheduled VAMP processor core. The core dispatches instructions by
passing the instruction data (operands, op-code, etc.) to the EU along with a tag
used to identify the instruction. The EU executes the instruction and returns the
result with the corresponding tag to the core. The EU may process several in-
structions simultaneously, instructions may have variable latency, and the EU may
reorder instructions internally, i.e., instructions do not need to leave the pipeline

5.1 Pipeline Correctness Criterion 83

���������	��
����������
���������������
������������ �

��������� � ����!� �"�����#����� �$�%�������&����

' ��()��* EXECUTION UNIT

Figure 5.1: Execution unit interface

in the order they have entered it. The VAMP processor core can cope with these
possibilities.

The Tomasulo scheduler only dispatches instructions whose operands are avail-
able. Therefore, the pipelines do not have to cope with data hazards. The only
hazards occurring in the pipelines are structural hazards, i.e., multiple instructions
requiring the same resources in the pipeline. All others hazards are dealt with in
the processor core.

Figure 5.1 shows a black-box view of an execution unit. The clear input is
activated at power-up and during interrupts in order to clear the pipeline. Instruc-
tions are dispatched into the EU by activating the validin signal along with the
instruction’s datain

1and tagin. The EU then computes the result and returns it by
activating validout along with the proper dataout and tagout. The stallout signal is
activated if the EU cannot take further instructions; in this case, the scheduler must
not dispatch instructions. Analogously, if the core activates the stallin signal, the
EU must not return any instructions.

In the following, we ignore the clear signal since the implementation and ver-
ification of clear is simple.

5.1.1 Formalization of the EU Interface

Let S denote the state set of the EU (usually the set of possible contents of the
registers within the EU). Let Di, Do, and T denote the set of the input data, output
data, and tags, respectively. The valid and stall signals are booleans. The EU is
specified by the following five functions:

1. ns(Scur, datain, tagin, validin, stallin) → S: the next-state function; it
computes the next state given the current state Scur and the current inputs.

2. dataout(Scur, datain, validin, stallin) → Do: computes the data output of
the EU given current state and inputs.

3. tagout(Scur, tagin, validin, stallin) → T : computes the output-tag.

1In this chapter, data is always meant to be the inputs of the combinatorial circuit needed to
execute the instruction. In our case of FPUs, this includes op-codes, rounding-mode, flags, and
operands, i.e., the inputs of the combinatorial FPUs from chapter 4.

84 Pipelining the FPUs

4. validout(Scur, validin, stallin) → B : computes the valid output.

5. stallout(Scur, stallin) → B : computes the stall output.

The functions dataout, tagout, validout, and stallout model the combinatorial
circuits which compute the corresponding outputs from the (registered) state and
the current inputs. Note that not all outputs may depend on all inputs. This is nec-
essary to model absence of combinatorial dependencies between some inputs and
outputs. For example, stallout only depends on the state and the current stallin,
i.e., whether the EU accepts a further instruction may not depend on the instruction
data or tag.

Let I := Di × T × B × B denote the combination of the inputs of the EU.
We recursively define the behavior of a pipeline under an infinite input sequence
I := (i0, i1, . . .) ∈ I∞. We assume the pipeline to be in some initial state init ∈ S
at time t = 0. The state st(I) at time t is recursively defined as

s0(I) := init,

st+1(I) := ns(st(I), it).

We define datat
out(I), tagt

out(I), validt
out(I), and stalltout(I) to be the outputs

of the pipeline during cycle t, e.g.,

stalltout(I) := stallout(s
t(I), it.stallin).

For the sake of convenience, we omit the parameter I if it is clear from the context.
We say a tag tg ∈ T is dispatched at time t (denoted by disp(tg, t)), if validt

in

and tagt
in = tg hold. The tag is returned at time t (denoted by ret(tg, t)), if

validt
out and tagt

out = tg hold. The tag is in use at time t (denoted by inuse(tg, t)),
if the tag was dispatched and not yet returned, i.e.,

inuse(tg, t) := ∃t′ < t : disp(tg, t′) and ∀t′′ ∈ {t′, . . . , t − 1} : ¬ret(tg, t′′).

5.1.2 Correctness Criterion

We can now define the correctness criterions for execution units. First, if stallin is
active, validout may not be signaled:

∀t : stalltin =⇒ ¬validt
out. (P1)

The stallout signal is live, i.e., at each point in time t, it will eventually become
inactive (at time t′):

∀t : ∃t′ ≥ t : ¬stallt
′

out. (P2)

Instructions dispatched into the EU at time t will eventually be returned (at time
t′). We call this property liveness of the EU:

∀t : disp(tg, t) =⇒ ∃t′ ≥ t : ret(tg, t′). (P3)

5.1 Pipeline Correctness Criterion 85

The last property, called tag-consistency, requires that instructions returned at time
t by the EU have been dispatched before (at time t′), and have not already been
returned in between (at time t′′):

∀t : ret(tg, t) =⇒ ∃t′ ≤ t : disp(tg, t′) and

∀t′′ ∈ {t′, . . . , t − 1} : ¬ret(tg, t′′). (P4)

Note that the right side of the above definition does nearly but not exactly match
inuse(tg, t), since here t′ = t is allowed in contrast to the inuse definition. How-
ever, it is sufficient to prove ∀t : ret(tg, t) =⇒ inuse(tg, t) in order to assert
tag-consistency. Note further that liveness and consistency together yield a one-to-
one mapping between dispatched and returned instructions.

Of course the execution unit cannot satisfy these properties if the inputs do not
satisfy some properties themself. The first required input property is that no in-
struction is dispatched if the stallout is active, analogously to (P1):

∀t : stalltout =⇒ ¬validt
in. (I1)

The analogue to (P2) is that the stallin signal is live:

∀t : ∃t′ ≥ t : ¬stallt
′

in. (I2)

The third input property is called tag-uniqueness and requires that no tag tg is
dispatched into the EU if it is already in use:

∀t : disp(tg, t) =⇒ ¬inuse(tg, t). (I3)

We call an execution unit correct iff for all input sequences I and tags tg the prop-
erties (P1) to (P4) hold under the assumptions (I1) to (I3), where not all properties
need all assumptions:

EUcorrect := (I1) =⇒ (P1) and

(I1) ∧ (I2) =⇒ (P2) ∧ (P3) and

(I1) ∧ (I2) ∧ (I3) =⇒ (P4). (C)

This definition of correctness only covers the correct termination of instruc-
tions. In order to cover the input/output data relation, we introduce the notion of
functional correct execution units. An EU is called functional correct with respect
to a function dp : Di → Do, iff dp(datain) = dataout holds for corresponding
inputs and outputs. The function dp is the function computed by the combinato-
rial datapaths. The pipelined hardware shall compute this function. In order to

86 Pipelining the FPUs

model functional correctness, we strengthen the liveness property (P3) to cover the
relation between data input and output of an instruction:

∀t : disp(tg, t) =⇒
(
∃t′ ≥ t : ret(tg, t′) and dp(datat

in) = datat′

out

)
. (P3′)

Formally, we call an execution unit functional correct with respect to dp iff (C)
holds where (P3) is replaced by (P3′).

Note that the definition of (functional) correctness allows multiple instructions
(with distinct tags) in the EU simultaneously, and that no restriction on the order
in which instructions leave the EU is imposed. Note further that not all EUs have a
functional description; a memory unit, e.g., cannot be described by a function dp,
since functions are by definition memory-less.

The correctness criterions of the EUs have been arranged with Kröning in order
to allow the integration of our EUs into Kröning’s Tomasulo core [Kro01].

5.2 Example Pipeline

In section 4.3 we have verified the combinatorial correctness of the multiplicative
FPU with respect to the IEEE standard. Here we describe the pipelining of this
FPU as an example. Figure 5.2 shows the structure of the pipeline. The pipeline
stages correspond to the sub-circuits of circuit MD-COMB as defined in section
4.3.

We briefly recap the multiplicative FPU from the perspective of the pipeline:
the first pipeline stage performs unpacking of floating point operands, handles spe-
cial cases, and performs initial approximation lookup in case of divisions. The
next two stages comprise a pipelined multiplier. For divisions, the instructions
have to iterate through these stages six or eight times, depending on the precision
of the floating point operation. The SELECTFD stage computes the representative
of the quotient, multiplications skip this stage. Finally, the results are rounded
by the two-stage rounder. Special cases do not flow through the pipeline, but are
bypassed from the unpacker to the output.

Out-of-order completion in this pipeline can occur in various ways: for exam-
ple, an operation involving special cases is bypassed to the output while other oper-
ations are still in the pipeline. Other examples are a multiplication which overtakes
a division that iterates through the multiplier stages, or a single precision division
which overtakes a double precision division.

The functional behavior of the FPU pipeline is prescribed by the combinatorial
circuit MD-COMB. In section 4.3, MD-COMB is composed from sub-circuits cor-
responding to the datapaths of the individual pipeline stages. For the verification
of the pipeline, the actual implementation of these datapaths is not important, i.e.,
can be left uninterpreted (in the sense of uninterpreted functions [BD94]). We only
have to prove that instructions take the correct path through the pipeline. Then, by
definition of MD-COMB, the data output of the pipeline equals the data output of

5.2 Example Pipeline 87

out

prio

prio

prio

specialoperands

m
ultiplications

N
ew

ton/R
aphson

iteration

input

MD-STG2

MD-STG1

MD-UNP

RD-STG1

RD-STG2

SELECTFD

Figure 5.2: FPU pipeline

the MD-COMB circuit, as it is required for functional correctness of the execution
unit.

Design of the Pipeline Control.

In the following, we briefly describe the idea behind the construction of the pipeline
control. Instructions flow through the pipeline along with their associated control
information. The control information consists of a valid bit, the instruction tag,
and some auxiliary control data. The auxiliary data is used, e.g., to distinguish
multiplications and divisions, and to count the number of remaining iterations for
divisions.

Each register stage in the pipeline can hold one instruction along with its con-
trol information. If the valid bit of a register stage is inactive, the stage is empty,
i.e., the instruction in this stage is void. Assume that register stage R contains a
valid instruction I . There may be several possible stages to which instruction I
has to be fed in the next step. For example, the next stage of a valid instruction in

88 Pipelining the FPUs

stage MD-STG2 of the multiplicative FPU pipeline may be either MD-STG1, SE-
LECTFD, or RD-STG1. The correct next stage can be decided from the auxiliary
control data.

Each register stage R is assigned a clock-enable signal ceR which controls the
clocking of the stage. The stage is clocked whenever possible without loosing an
instruction. More precisely, R is clocked whenever R is empty, or R is full and the
valid instruction I currently in R can be fed to its next stage R ′. The instruction I
can be fed to R′, if R′ is clocked itself, and no other instruction with higher priority
simultaneously aims for R′.

For example, if the MD-STG2 stage contains a multiplication, and the SE-
LECTFD stage contains a division, both instructions aim for the RD-STG1 stage.
The division is statically prioritized in our example (see below). Assume that the
RD-STG1 is being clocked in the next cycle. Then the SELECTFD stage may be
clocked, too, since its instruction is fed to the RD-STG1. The MD-STG2 stage,
however, may not be clocked, since the multiplication would otherwise be over-
written from MD-STG1, and hence the multiplication would be lost. Precisely, the
clock-enable for stage MD-STG2 is defined as

ceMD-STG2 := ¬validMD-STG2

the MD-STG2 stage is empty, hence no instruction is lost if
MD-STG2 is clocked;

∨ (MD2-Nxt = SELECTFD ∧ ceSELECTFD)
the instruction currently in MD-STG2 has SELECTFD as
next stage, and SELECTFD will be clocked, i.e., SELECTFD
will accept the instruction;

∨ (MD2-Nxt = RD-STG1∧ceRD-STG1∧¬validSELECTFD)
the instruction in MD-STG2 has RD-STG1 as next stage,
and RD-STG1 will be clocked. Additionally, the SELECTFD
stage may not contain a valid instruction, since otherwise this
instruction would have priority for the RD-STG1 stage;

∨ (MD2-Nxt = MD-STG1)
the instruction in MD-STG2 has MD-STG1 as destination,
i.e., has to be fed back. In our multiplicative pipeline, it is al-
ways ensured that MD-STG1 can accept the instruction from
MD-STG2. This is because a valid instruction in MD-STG1
can always proceed to MD-STG2 if MD-STG2 is being fed
back.

Note that the register stage is clocked even if no instructions pass through the stage,
since the stage is always empty is this case.

As mentioned above, our concrete pipeline statically prioritizes the longer path,
i.e., divisions in the stage SELECTFD have priority over multiplications in the MD-
STG2. That the static prioritization is fair involves the following tricky argument:
a multiplication in the MD-STG2 can only be postponed by a division in the SE-
LECTFD stage. This division will eventually proceed to the RD-STG1. From
then on the SELECTFD stage is empty, and no new division can reach SELECTFD

5.3 Pipeline Verification by Theorem Proving 89

until the multiplication in MD-STG2 proceeds to RD-STG2, since the new divi-
sion would have to pass the occupied MD-STG2. Hence, the multiplication is not
stalled infinitely.

This argument would be hard to verify by theorem proving. In our combined
approach of model-checking and theorem-proving, the fairness problem is auto-
matically resolved by model-checking (cf. equations (5.1) and (5.2)).

One could also use other prioritization schemes, as long as fairness is guaran-
teed. For example, we have also designed a pipeline where fair arbiters are used
to schedule such conflicts. For the FPU pipelines, however, static prioritization of
the longer pipeline paths is preferable, since thereby the older instructions receive
higher priority.

We omit the details of the complete construction of the pipeline control be-
cause they are too lengthy. We lack a formalism which allows the concise and
mathematically rigorous presentation of such a pipeline control. Such a formalism
is presented in [MP00, JK00, Kro01] for in-order pipelines without branches and
cycles in the pipeline structure. We believe that one could extend this formalism
to cope with complex out-of-order pipelines. However, this is considered future
work, and is beyond the scope of this thesis.

It is worth mentioning that we have designed the pipeline control in the model-
checker SMV [McM93]. The design of the pipeline control took about one week
which also included verification and debugging using SMV. We believe that si-
multaneously designing and verifying the control significantly helped in designing
such a complex pipeline with relatively small effort.We have used SMV instead
of the PVS built-in model-checker, since SMV—in contrast to PVS—is capable
of constructing counter-examples if it encounters a bug. This is of immeasurable
value for the debugging of the pipelines. The SMV description of the multiplicative
pipeline control is listed in Appendix D.

5.3 Pipeline Verification by Theorem Proving

Our initial approach to the verification of complex pipelines as the one described
in the previous section was to decompose the pipeline into smaller segments, prove
each segment to be functional correct, and then to re-compose and conclude func-
tional correctness of the complete pipeline. For this, we have verified a library of
functional correct basic segments, and of theorems allowing the composition of
such segments.

As primitives, we have verified that combinatorial circuits and single registers
(without assigned datapaths) are functional correct segments. We then proved a
composition theorem stating that two arbitrary functional correct segments (with
respect to functions dp1 and dp2) may be concatenated yielding a larger functional
correct segment (with respect to function dp2 ◦ dp1).

From these primitives and the concatenation theorem, it is possible to build
simple sequential pipelines of arbitrary depth. The verification of combinatorial

90 Pipelining the FPUs

circuits and single registers was relatively simple. However, the verification of the
concatenation theorem was considerably complex and took about 2 weeks.

In order to build a pipeline as complex as described in the previous section we
need further primitives: we have verified a splitter which splits the pipeline into
two paths, e.g., for bypassing special results. The verification of this splitter took
another 2 weeks. The last primitive we need is an iterator for the cycle in the
pipeline. Obviously, this is the most complex primitive. For example, in order to
prove liveness of the stallout signal of the iterator, one would have to prove that
the pipeline inside the iterator would drain empty eventually if no new instructions
enter the pipeline. We have thought about how the proof had to be structured for
the verification in PVS, but have not tried to prove it in PVS due to the complexity.
Instead, we have developed our approach to the verification of pipelines described
in the following sections.

Together, the primitives we have verified needed more than 1000 proof com-
mands and took more than a month of proof development. The difficulty in the
verification arose from the irregularity of the arguments, and from the need to
manually construct inductive invariants. These invariants have to be much stronger
than the actually needed invariants, and therefore are hard to find. Finding induc-
tive invariants is considered to be the hard part of the verification of out-of-order
systems [HGS00, SH98, Kro01].

5.4 Pipeline Verification by Model Checking

We have modeled the pipeline of the FPU in the model-checker SMV. The datap-
aths have been abstracted using uninterpreted functions [BD94]. Given an uninter-
preted function f : D → C modeling a pipeline stage, SMV verifies the specified
properties of the pipeline for all functions f ′ : D → C with the domain and co-
domain of f . Datatype and symmetry reduction [ID96, McM00] are used in order
to reduce the state space and the number of functions f ′ which have to be verified
separately. However, in the case of our FPU, the symmetry is small due to the num-
ber of function applications, in particular because of nested function applications
for the cycle in the pipeline. This results in a very large number of different cases,
and each case has a large state-space.

We have tried to verify the pipeline including abstracted datapaths. We gave
up when a run-time of 4 days and a memory usage of more than 1GB was reached.
The SMV code is available at our web-page.

5.5 Translating FairCTL to ∀t form

Since the verification of the functional correctness of the pipelines failed using
solely theorem proving or model checking, we tried to combine both techniques.

Our goal is to use the PVS built-in model-checker for the verification of tempo-
ral properties of the pipeline control, and then to use the theorem prover to conclude

5.5 Translating FairCTL to ∀t form 91

overall correctness of the pipeline, including the datapaths. In PVS, the FairCTL
operators are defined as fixpoint in µ-calculus [RSS95], whereas we have used
temporal properties in ∀t form in section 5.1 to define pipeline correctness. We be-
lieve that temporal properties expressed in ∀t form are more suitable for theorem
proving.

In order to transform model-checked statements from FairCTL to ∀t form, we
formally verify that the FairCTL operators defined as fixpoints in µ-calculus match
their intended semantics expressed in ∀t form. These theorems have first been
proved in [EC80] and are well known. However, they have not been verified using
formal methods, which is necessary to transform between µ-calculus and ∀t form
in a formally safe way. For the formal verification in PVS, the “paper & pencil”
proofs from [CGP99] served as guidelines. The formal verification depends on the
definition of fixpoints and FairCTL operators in PVS [RSS95].

In this section, systems are described by a state set S and a total next-state
relation N ⊆ S × S which models a non-deterministic choice of the next state.
In contrast, in section 5.1 systems were modeled by a next state function which
deterministically computes the next state from the current state and inputs. It is
easy to transform between deterministic systems with inputs, and non-deterministic
systems without inputs by “simulating” inputs by non-deterministic choice and
vice versa. We come back to this difference in section 5.5.4.

5.5.1 Fixpoints

Let 2S denote the set of monadic predicates. Let pp : 2S → 2S be a so-called
predicate transformer. The predicate transformer pp is called monotone, if

∀Q,Q′ ∈ 2S : Q ⊆ Q′ =⇒ pp(Q) ⊆ pp(Q′).

A predicate Q ∈ 2S is called a fixpoint of pp iff Q = pp(Q). A predicate Q is
called the least fixpoint of pp iff for all fixpoints Q′ holds: Q ⊆ Q′. A predicate Q
is called the greatest fixpoint of pp iff for all fixpoints Q′ holds: Q ⊇ Q′.

In PVS, operators µ(pp) and ν(pp) are defined to compute the least and greatest
fixpoints of pp, respectively. Both operators are defined in terms of higher-order
logic:

µ(pp) := {s ∈ S | ∀Q ∈ 2S : pp(Q) ⊆ Q =⇒ Q(s)},

ν(pp) := {s ∈ S | ∃Q ∈ 2S : Q ⊆ pp(Q) ∧ Q(s)}.

Intuitively, an element s ∈ S is in the least fixpoint µ(pp), if s is in all predicates
Q which are “lessened” by the predicate transformer pp. The greatest fixpoint
operator has an analogous intuition. The correctness of these definitions is asserted
in the following theorem:

Theorem 5.1 Let pp : 2S → 2S be a monotonic predicate transformer. Then
µ(pp) is the least fixpoint, and ν(pp) is the greatest fixpoint of pp.

The theorem has been verified in PVS in [RSS95], we therefore omit the proof.

92 Pipelining the FPUs

5.5.2 The FairCTL Operators

Let N ⊆ S × S be a total next-state relation. An N -path is an infinite sequence
(p0, p1 . . .) ∈ S∞ where successive states respect the next-state relation, i.e.,
∀t : N(pt, pt+1) holds.

Let f, g, fair ∈ 2S be predicates. The basic FairCTL operators are defined in
terms of fixpoints [EC80]:

EX(N, f) := {s ∈ S | ∃s′ ∈ S : f(s′) ∧ N(s, s′)},

EG(N, f) := ν(λQ ∈ 2S : f ∧EX(N,Q)),

EU(N, f, g) := µ(λQ ∈ 2S : g ∨ (f ∧EX(N,Q))),

fairEG(N, f)(fair) := ν(λQ ∈ 2S : EU(N, f, f ∧ fair ∧EX(N,Q))).

There are several other FairCTL operators inferred from these basic operators. In
later sections, we will need the following:

AG(N, f) := ¬EU(N, TRUE,¬f),

fairAF(N, f)(fair) := ¬fairEG(N,¬f)(fair).

Each of the operators yields a predicate on S . Their intention is

• EX(N, f)(s) iff state s has a successor s′ such that f(s) holds.

• EG(N, f)(s) iff there exists an N -path starting from s such that f holds
globally along the path.

• EU(N, f, g)(s) iff there exists an N -path starting from s such that f holds
along the path until g holds, and g holds eventually.

• fairEG(N, f)(fair)(s) iff there exists an N -path starting from s such that f
holds globally along the path, and the fairness predicate fair holds infinitely
often along the path.

• AG(N, f)(s) iff on all N -paths starting in s, f holds globally.

• fairAF(N, f)(fair)(s) iff on all N -paths, on which fair holds infinitely of-
ten, f holds eventually.

For the definition and intention of additional FairCTL operators, we refer the reader
to [CGP99].

5.5.3 Proof of µ-Calculus ≡ ∀t-Form

In the following, we prove that the FairCTL operators defined in µ-calculus match
their intended semantics as described informally above. This is trivial for the EX

operator and hence omitted.

5.5 Translating FairCTL to ∀t form 93

Theorem 5.2 It holds EG(N, f)(s) iff there exists an N -path p0, p1, . . . starting
in s, i.e. p0 = s, where all states satisfy f , i.e., ∀t : f(pt).

The prove of theorem 5.2 follows [CGP99]. We prove the theorem using the fol-
lowing lemmas. For the rest of this section let

τ := λQ ∈ 2S : f ∧EX(N,Q).

Lemma 5.3 τ is a monotonic predicate transformer.

Proof: Trivial by definition of EX. In PVS, the claim is proved automatically by
the strategy (grind). ut

Lemma 5.4 It holds EG(N, f)(s) iff f(s) ∧EX(N,EG(N, f))(s) holds.

Proof: Expanding the definition of EG and substituting the predicate transformer
τ , we have to prove (ν(τ))(s) = (f(s) ∧ EX(N, ν(τ))(s)). From the monotony
of τ and theorem 5.1 we know that ν(τ) = τ(ν(τ)). By the definition of τ we have
ν(τ)(s) = (f(s) ∧EX(N, ν(τ))(s)), which proves the claim. ut

The following lemma corresponds to the ⇒ direction of theorem 5.2, but com-
prises a stronger invariant.

Lemma 5.5 Let EG(N, f)(s) hold. There exists an N -path p0, p1, . . . starting in
s, and ∀t : f(pt) ∧EX(N,EG(N, f))(pt).

Proof: The N -path is constructed inductively. We set p0 := s. From lemma
5.4 we know that the induction base f(p0) ∧ EX(N,EG(N, f))(p0) holds. As-
sume we have already defined p0, . . . , pk. From the induction hypotheses we
know EX(N,EG(N, f))(pk); expanding the definition of the EX operator yields
∃s′ : EG(N, f)(s′) ∧ N(pk, s

′). We set pk+1 := s′. Lemma 5.4 yields the induc-
tion step f(pk+1) ∧EX(N,EG(N, f))(pk+1). ut

Lemma 5.6 Define the predicate ÊG := {s ∈ S
∣∣ ∃p0, p1, . . . : p0 = s ∧

∀t : f(pt)}. The predicate ÊG is a fixpoint of τ , i.e., ÊG = τ(ÊG).

Proof: We first show ÊG ⊇ τ(ÊG). Let s ∈ τ(ÊG); by definition of τ we
have f(s) ∧ EX(N, ÊG)(s), hence by definition of EX we have ∃s′ : N(s, s′) ∧

ÊG(s′), hence ∃p0, p1, . . . : p0 = s′ ∧ ∀t : f(pt) by definition of ÊG. We define
the path p′0 := s, p′i := pi−1; this path proves ÊG(s).

Now we prove ÊG ⊆ τ(ÊG). Let s ∈ ÊG; we then have a path p0, p1, . . .

with p0 = s and ∀t : f(pt). We have to show f(s) ∧ EX(N, ÊG)(s). f(s) holds
obviously, and the path p1, p2, . . . proves EX(N, ÊG)(s). ut

Proof of Theorem 5.2. The ⇒ direction follows directly from lemma 5.5. For the
other direction, assume there exists a path p0, p1, . . . with s = p0 and ∀t : f(pt),

94 Pipelining the FPUs

i.e., ÊG(s) holds. We have to prove EG(N, f)(s). By definition, this is equivalent
to ν(τ)(s). By lemma 5.6, ÊG is a fixpoint of τ . Since τ is monotonic, we know
that ν(τ) is the greatest fixpoint (theorem 5.1), hence ÊG ⊆ ν(τ). Since ÊG(s)
holds, we conclude EG(N, f)(s). ut

We omit the correctness proofs for the other FairCTL operators. The proofs fol-
low the same idea as for the EG operator. The proof for fairEG is slightly more
complex due to the nested fixpoint operators. The proofs for AG and fairAF are
simple using the correctness of EU and fairEG. We refer the reader to [CGP99]
for details. We give only the precise correctness statements in the following theo-
rems:

Theorem 5.7 Let f, g ∈ 2S be predicates. It holds EU(N, f, g)(s) iff there exists
an N -path p0, p1, . . . starting in s, where g holds eventually, and f holds until
then:

p0 = s ∧ ∃t : g(pt) ∧ ∀t′ ∈ {0, . . . t − 1} : f(pt′).

Theorem 5.8 Let f, fair ∈ 2S be predicates. It holds fairEG(N, f)(fair)(s) iff
there exists an N -path p0, p1, . . . starting in s, where f holds globally, and the
fairness predicate fair holds infinitely often:

p0 = s ∧ ∀t : f(pt) ∧ ∀t : ∃t′ ≥ t : fair(pt′).

Theorem 5.9 It holds AG(N, f)(s) iff for all N -paths p0, p1, . . . starting in s the
predicate f holds globally:

p0 = s =⇒ ∀t : f(pt).

Theorem 5.10 It holds fairAF(N, f)(fair)(s) iff for all N -paths p0, p1, . . . start-
ing in s, along which fair holds infinitely often, the predicate f holds eventually:

(
p0 = s ∧ ∀t : ∃t′ ≥ t : fair(pt′)

)
=⇒ ∃t : f(pt).

5.5.4 Non-Determinism versus Input Sequences

As mentioned above, we have used non-deterministic systems without inputs in the
context of FairCTL, whereas deterministic systems with inputs have been used in
section 5.1 to define the correctness of execution units. The use of deterministic
next state functions is better suited for the definition of execution units since it is
closer to the actual implementation; furthermore, we believe it is simpler to handle
in theorem proving. However, the definition of FairCTL in PVS imposes the use
of non-deterministic systems for model checking. It is easy to bridge this gap:

Let S be the state type, I be the input type, and ns : S × I → S be the
deterministic next-state function of a system as in section 5.1. Further, let Ip ⊆
S ×I be an input predicate (e.g., Ip ≡ stallout ⇒ ¬validin to model the pipeline

5.6 Pipeline Verification using Model Checking and Theorem Proving 95

input property (I1)). Let init ∈ S be the initial state. We define a new state type
S ′ := S × I and a non-deterministic next-state relation N ⊆ S ′ × S ′ by

N ((s1, i1), (s2, i2)) := (s2 = ns(s1, i1) ∧ Ip(s2, i2)) .

Regard the new state type as current state and input. Then there is a transition
from (s1, i1) to (s2, i2), iff the next-state function ns takes the transition s1 →
s2 under input i1. Furthermore, the next-state relation N non-deterministically
chooses the next input i2, which has to satisfy the input-predicate Ip. We define
init′ := {(s, i) | s = init ∧ Ip(s, i)} as the initial state set of the new system.

It is easy to see that computations in both systems are equivalent. We can
restate the above theorems with respect to the input sequence semantics. For the
sake of brevity, we only restate theorems 5.9 and 5.10:

Corollary 5.11 It holds (∀s′ ∈ init′ : AG(N, f)(s′)) iff for all input sequences
I := (i0, i1, . . .) ∈ I∞ satisfying the input predicate, the predicate f holds glob-
ally: (

∀t : Ip(st(I), it)
)

=⇒
(
∀t : f(st(I))

)
,

where st is defined as in section 5.1.

Corollary 5.12 It holds (∀s′ ∈ init′ : fairAF(N, f)(fair)(s′)) iff for all input
sequences I := (i0, i1, . . .) ∈ I∞ satisfying the input predicate and yielding a
path on which fair holds infinitly often, the predicate f holds eventually. Formally:
for all input sequences I holds:

((
∀t : Ip(st(I), it)

)
∧

(
∀t : ∃t′ ≥ t : fair(st(I))

))
=⇒

(
∃t : f(st(I))

)
.

The proofs of corollaries 5.11 and 5.12 from theorems 5.9 and 5.8 are straight-
forward. In PVS, they are proved using the (grind) command.

In the following, we do not explicitly distinguish between systems stated as
next-state function or relation. Of course, one has to deal with the differences in
PVS, but this is easy and hence omitted in the rest of this chapter.

5.6 Pipeline Verification using Model Checking and
Theorem Proving

5.6.1 Separating Pipeline Control and Datapaths

In order to use model checking on the pipeline control we have to separate the
control and datapath circuits in the pipeline. Figure 5.3 shows a simple pipeline
example. The control registers consist of valid bits indicating that a stage contains
a valid instruction, the tags, and some auxiliary control data, e.g., a counter to keep
track of the number of iterations to go through during divisions. The control circuit
maintains the control registers, and computes the control outputs validout, tagout,

96 Pipelining the FPUs

�����

CONTROL

DATA

DATA

DATAPATHS

TAG, VALID, CNT

TAG, VALID, CNT

�����

Figure 5.3: Separating Control and Datapaths

and stallout. The control interacts with the datapaths by computing the clock-
enables ce for each stage and the multiplexer control signals where multiple inputs
lead to the same pipeline stage (e.g, to the MD-STG1 stage in Fig. 5.2). According
to the separation of control and data in the pipeline, we split the next-state function
ns of the pipeline into a next-state function nsctrl of the control part, and a next-
state function nsdata of the data part.

5.6.2 Verification of the Pipeline

In the following, we describe how we verify the liveness (P3) and tag-consistency
(P4) properties of pipelines. We will not discuss the (P1) and (P2) properties, since
these are fairly simple in comparison. Furthermore, we will only give the idea
of the actual verification, since the mathematical details are tedious and straight-
forward.

Liveness

We start with the verification of liveness. In order to prove functional correctness
of the pipelines, we prove the strengthened liveness property (P3′) covering the
functionality of the pipeline. We first use model checking to verify the liveness
of each clock-enable signal. The liveness of stallin is presumed. No other input-
predicate is used, i.e., Ip := TRUE. We model-check the following property for
each stage i and arbitrary, not necessarily reachable or initial control state s:

fairAF(nsctrl, cei)(¬stallin)(s). (5.1)

Using corollary 5.12 we conclude that the clock-enable cei is live in all computa-
tions starting from an arbitrary state s under all input sequences where stallin is
live, i.e., for all I := (i0, i1, . . .) holds

(
∀t : ∃t′ ≥ t : ¬stallt

′

in

)
=⇒

(
∃t : cet

i

)
. (5.2)

Note that the left-hand side of the equation matches the pipeline input property
(I2). Note further that (5.3) asserts only one activation of cei in the path starting
from s. The following corollary extends this statement to an infinite number of cei

activations.

5.6 Pipeline Verification using Model Checking and Theorem Proving 97

Corollary 5.13 Let s0 be an initial state, and let I = (i0, i1, . . .) be an input
sequence. It holds

(
∀t : ∃t′ ≥ t : ¬stallt

′

in

)
=⇒

(
∀t : ∃t′ ≥ t : cet

i

)
. (5.3)

Proof: The corollary is proved from (5.3) using theorem proving. Let a time t
be given. We have to show ∃t′ ≥ t : cet′

i . The system is in some state st(I)
at time t. Equation (5.2) holds for arbitrary input sequences and arbitrary initial
states. Hence, we may apply (5.2) with initial state st(I) and with input sequence
I≥t := (it, it+1, . . .), i.e., the part of the input sequence I laying in the future.
Equation (5.2) yields a time t̂ where cet̂

i holds with respect to input sequence I≥t

and initial state st(I). Hence, with t′ := t + t̂ holds cet′

i with respect to input
sequence I and initial state s0. This proves the claim. ut

Having proved the liveness of the clock-enables, it is relatively easy to verify
liveness of the complete pipeline including the datapaths by pushing instructions
through the pipeline stage by stage. This is done using theorem proving. We
exemplarily prove the liveness property (P3′) of the multiplicative FPU for multi-
plication instructions:

Theorem 5.14 Assume that the input properties (I1) and (I2) hold. Assume further
that a multiplication with tag tg is dispatched at time t, i.e., disp(tg, t) holds. Then
there exists t′ ≥ t such that ret(tg, t′) and datat′

out = MD-COMB(datat
in) hold,

i.e., the multiplication eventually terminates with the correct data.

Proof: We only sketch the proof, because its details are long and tedious. By
input property (I1) we know that stalltout is inactive, since otherwise the instruction
cannot be dispatched. Since the definition of stallout directly depends on ceMD-UNP

(cf. Appendix D), one trivially concludes that the instruction is clocked into the
register stage MD-UNP at time t. The data in this register are the outputs of the
combinatorial MD-UNP circuit.

From corollary 5.13 we know that there exists a (minimal) time t1 > t such
that cet1

MD-UNP is active, i.e., the MD-UNP stage is clocked at time t1, and is not
clocked in between. Hence, the data at time t1 − 1 in the register stage MD-UNP

is the same as at time t.
The MD-UNP stage can only be clocked if its valid instruction proceeds to

the next stage (this is concluded trivially from the definition of cet
MD-UNP). Hence,

we can conclude that the instruction with tag tg is clocked from the MD-UNP

stage into stage MD-STG1 at time t1. The data at this time is computed from
MD-STG1 ◦ MD-UNP, i.e., the composition of the first two combinatorial stages.

Analogously, we derive times t2 > t1, t3 > t2, and t4 > t3 where the instruc-
tion proceeds to MD-STG2, RD-STG1, and RD-STG2, respectively. When the
instruction is in stage RD-STG2, it is returned to the CPU immediately when the
stallin signal becomes inactive. Hence, there exists t′ > t where the instruction

98 Pipelining the FPUs

is returned with datat′

out computed from datat
in by the combinatorial circuits be-

tween the register stages, i.e., RD-STG2 ◦ RD-STG1 ◦ MD-STG2 ◦ MD-STG1 ◦
MD-UNP = MD-COMB by definition of MD-COMB. ut

Tag-Consistency

The verification of tag-consistency is slightly more complicated. We want to ex-
press tag-consistency (P4) in FairCTL in order to allow model checking. Therefore
we need a FairCTL formalization of “tag has been dispatched previously”, and a
formalization of tag-uniqueness. It would be useful to have temporal operators
reaching in the past; however, FairCTL does not provide such operators.

In order to circumvent this problem, we introduce an auxiliary variable inusetg

for each tag tg ∈ T representing that an instruction with tag tg is currently in the
pipeline. The meaning of this variable is exactly the same as the predicate inuse
from section 5.1. The variable inusetg is set whenever an instruction with tag tg
enters the pipeline, and it is cleared whenever the tag tg leaves the pipeline. Tag-
uniqueness can hence be modeled as input predicate Ip asserting that the tag tg is
not dispatched when the variable inusetg is already set. Vice versa, tag-consistency
can be modeled as an invariant stating that a tag tg can only leave the pipeline if
inusetg is set.

Let ñsctrl denote the next-state function of the modified model including the
inuse variables, and let Ip denote the input predicate modeling tag-uniqueness
(I3), i.e., Ip := ∀tg : validin ∧ tagin = tg ⇒ ¬inusetg. Using model checking,
we verify the property

∀tg : AG
(
ñsctrl, (validout ∧ tagout = tg) =⇒ inusetg

)
(init),

where init is an initial state in which all pipeline stages are empty (i.e., validi =
0), and all inusetg variables are cleared. From this we conclude using corollary
5.11: for all input sequences I = (i0, i1, . . .) ∈ I∞ and for all tags tg, it holds

(
∀t :

(
validt

in ∧ tagt
in = tg

)
=⇒ ¬inuset

tg

)
=⇒

(
∀t :

(
validt

out ∧ tagt
out = tg

)
=⇒ inuset

tg

)
.

Rewriting this with the definitions of disp(t, tg) and ret(t, tg) (cf. section 5.1.1)
yields

(
∀t : disp(t, tg) =⇒ ¬inuset

tg

)
=⇒

(
∀t : ret(t, tg) =⇒ inuset

tg

)
.

As one can see (and easily verify in PVS), the left-hand side of the implication
matches tag-uniqueness, and that the right-hand side implies tag-consistency.

5.6 Pipeline Verification using Model Checking and Theorem Proving 99

5.6.3 Some Practical Considerations

In order to verify tag-consistency, we have changed the model and added the auxil-
iary variables inusetg . It is easy to prove that these auxiliary variables do not affect
the outputs of the actual pipeline implementation and hence can be omitted in the
implementation. They are solely used to prove the correctness of the pipeline.

The state-space for model checking becomes very large due to the tags and the
inusetg variables. Of course, one can abstract the tags by means of scalar-sets
[ID96] in the sense of data-type reduction as in SMV [McM00]. Model-checkers
such as SMV support this as a built-in feature. However, in PVS the abstraction
has to be done manually. We have abstracted the inusetg variables to only one
variable, but we have not abstracted the width of the tags themselves. To abstract
the tags would not be overly hard, but is not necessary for our purpose.

A major disadvantage of the PVS model-checker is that it is not capable of pro-
viding counter-examples when the verification of a FairCTL formula fails. Since
the design of complex pipelines is very error-prone and debugging is hard, such
counter-examples are very useful. We therefore developed and debugged the pipe-
lines (without datapaths) in SMV, and then manually translated the pipeline control
to PVS. We then used the PVS model-checker to re-check the properties.

We have manually performed the “pushing through the pipeline” stage by stage
during liveness verification. The proofs for each stage are very similar. We there-
fore believe that it is possible to create a proof strategy which performs the “push-
ing through the pipeline” automatically. This would result in a mostly automatic
method for the verification of complex pipelines.

The presented methodology does not cope with pipelines where the liveness
of the clock-enables or the tag-consistency depends on signals computed by the
datapaths which are fed into the pipeline control. In our FPUs, the datapaths only
compute whether the operations are special cases, and if they are double or single
precision operations. Liveness and tag-consistency do not depend on these signals.
Hence, these signals can be left un-specified during model checking.

It is imaginable that one could build pipelines where the liveness or tag-consis-
tency depends on complex computations within the datapaths, e.g., for self-timed
division algorithms (see, e.g., [CL93]). This could signifcantly complicate the
model checking step of our method. It would be interesting future work to extend
our methodology to such pipelines.

A principle idea to cope with such pipelines would be to “guess” the values
passed from the datapaths to the control in an “oracle” outside the actual pipeline.
This could eliminate the need to incorporate the datapaths into the model-checked
model. Another idea is to prove upper bounds on the number of iterations of a
self-timed circuit using theorem proving, and to incorporate an additional counter
into the control which counts up to this maximum number of iterations. However,
we have not considered such self-timed pipelines in detail.

100 Pipelining the FPUs

5.7 Putting It All Together

In this section, we present the formal correctness statement of the pipelined multi-
plicative FPU. The correctness statement for the other FPUs is completely analo-
gous. We remind the reader that clocked circuits are described in PVS by a next-
state/output circuit (cf. section 2.3).

Circuit 5.1 (MD-PIPE) The next-state/output circuit of the pipelined multiplica-
tive FPU has the following inputs:

• STATE: the current state of the execution unit, i.e., the content of the registers
within the pipeline,

• clear, validin, stallin ∈ B , tagin ∈ B 3: the execution unit control inputs,

• datain: the inputs of the datapaths. These are the same inputs as those of the
circuit MD-COMB on page 63.

The next-state/output circuit computes

• nSTATE: the next state of the execution unit, i.e., the new content of the
registers,

• validout, stallout ∈ B , tagout ∈ B 3: the execution unit control outputs,

• dataout: the outputs of the datapaths; the same as the outputs of MD-COMB.

Note that we have fixed the tags to be three bits wide. This is arranged to fit with
the VAMP processor, and can be adjusted easily. 3

The following theorem asserts the correctness of the multiplicative FPU exe-
cution unit:

Theorem 5.15 The circuit MD-PIPE is a functional correct execution unit (cf. sec-
tion 5.1.2) with respect to the function computed by the combinatorial multiplica-
tive FPU MD-COMB.

The theorem is proved using the techniques presented in the previous sections.

5.8 Related Work

There are a couple of papers which report on the verification of out-of-order proces-
sors, e.g., by Hosabettu et al. [HGS00], by Sawada and Hunt [SH98], by McMil-
lan [McM00], and by Berezin et al. [BBCZ98]. None of the cited papers mentions
execution units which have a cycle in the pipeline structure or may reorder instruc-
tions internally. Kröning is the first who reports on the verification of a Tomasulo
scheduler capable of handling such complex pipelines [Kro01], although the design

5.8 Related Work 101

and the verification of the actual pipelines is not part of Kröning’s work. In this
chapter we have presented a general methodology to verify complex pipelines, and
have presented the pipeline of the multiplicative floating point unit as an example.

Aagaard and Leeser [AL94] propose a methodology for the verification of com-
plex pipelines: they decompose pipelines into smaller segments, and then further
decompose the correctness proof of individual segments into smaller proof goals.
However, their work describes only how one could employ a theorem prover for
the verification of pipelines, but they do not actually use formal methods (in the
sense of a computer tool). We have described a similar approach to the verification
of our pipelines using solely theorem proving in section 5.3, but failed because
very complex inductive invariants had to be constructed manually.

Another approach to the verification of pipelines is the use of a logic with
uninterpreted functions [BD94] that are used to model the datapath functionality.
The use of uninterpreted functions is comparable to the separation of the EU into
pipeline control and datapaths, since the actual datapath implementation has no
impact on the pipeline verification (cf. section 5.6). Bryant et al. [BGV01] de-
scribe how a logic with equality and uninterpreted functions can be reduced to
propositional logic. In [VB00], Velev and Bryant describe how this reduction can
be used to verify in-order microprocessors with variable-latency EUs. However,
they do not verify the actual EU, but use an abstract execution unit model in order
to verify the processor core. The EUs modeled by the abstraction process only
one instruction at a time, and hence do not reorder instructions internally. Velev
and Bryant only verify in-order processors; the verification of out-of-order designs
would probably require the manual construction of a complex inductive invariant,
and hence automation would be lost. In our approach, this is not the case due to
the use of model checking.

Another approach is the use of uninterpreted functions within a model-checker
such as SMV. Data-type reduction and case-splitting is used to reduce the state
space [McM00]. This is used in [McM00] to verify a Tomasulo scheduler, where
the functionality of the EUs is defined by uninterpreted functions. However, the
state space and the number of cases to be checked grows rapidly in the number of
function applications, which is large in our example due to the cycle in the pipeline
structure, cf. section 5.4.

In [BBCZ98], Berezin et al. prove the correctness of a simple Tomasulo pro-
cessor by combining model checking with uninterpreted functions and theorem
proving. They use SMV to verify an invariant of an abstraction of the processor,
and then use PVS to conclude overall correctness of the concrete machine. Their
translation from SMV to PVS is not formally safe in the sense that they introduce
a new, manually written axiom in PVS which hopefully reflects exactly the model-
checked property. In contrast, we use the PVS built-in model-checker, and then
use the theorems from section 5.5 to safely translate the model-checked properties
to a form suitable for theorem proving.

102 Pipelining the FPUs

In [HIK98], Ho et al. use the abstraction of the datapaths of pipelines to token
nets for the automatic verification of pipeline control properties. Their approach is
not applicable to pipelines with cycles in the pipeline structure, and is not suitable
to verify functional correctness of the pipelines.

In [AJK00], Aagaard et al. verify iterative circuits using Intel’s Forte system.
They use symbolic simulation and model checking for the verification of bit-level
invariants of iterative floating point circuits, and then use theorem proving to con-
clude “numerical” correctness of the floating point results. Though Intel’s circuits
are most probably much more complex than ours in terms of gate count, the verified
pipelines are simple in the sense that they seem to support only one instruction at a
time and hence do not reorder instructions. Details are not described in [AJK00].
Moreover, the work from [AJK00] is not reproducible in a scientific sense since
Intel’s Forte system is not publicly available.

Schneider and Hoffmann [SH99] report on the definition of the temporal logic
LTL in the theorem prover HOL [GM93], and on the automatic translation of LTL
to ω-automata within HOL. The ω-automata are used as input for a model-checker.
Their definition of LTL is close to our ∀t form. Hence, their work could be used to
verify pipelines in HOL in a similar way as described here.

Chapter 6

The VAMP Project

The work presented in the previous chapters is part of the VAMP project at Saar-
land University. The goal of the VAMP project is the formal verification of a
complete microprocessor called VAMP (for Verified Architecture Microproces-
sor). The VAMP is a variant of the ubiquitous DLX processor [HP96]. The VAMP
features a 5-stage pipeline, out-of-order execution by means of a Tomasulo sched-
uler [Tom67], precise interrupts, delayed branch, a memory unit with caches, and
the IEEE compliant floating point units presented in the previous chapters. Our
group is planning to enhance the memory unit with virtual memory management.

The VAMP processor is designed and verified completely in PVS. We have
developed a tool called pvs2hdl which automatically translates the PVS hardware
designs to the hardware description language Verilog [Ver96, Cil99]. Using this
tool, the VAMP processor is implemented on a Xilinx Virtex-E FPGA [Xil02].

We have ported the GNU C-compiler gcc and the C library glibc for the VAMP
processor. The ports are based on the gcc and glibc ports for the Hennessy-
Patterson DLX [O’K97]. We have developed an interface which allows to run
programs on the VAMP implementation on the Xilinx FPGA.

People. Several persons participate in the VAMP project (alphabetically):

• Christoph Berg: verification of the floating point adder core,

• Sven Beyer: verification of the memory unit, and development of the pvs2hdl
tool,

• Christian Jacobi: verification of the FPUs, and implementation of the hard-
ware on the FPGA,

• Daniel Kröning: verification of the processor core and integer ALU,

• Dirk Leinenbach: development of the pvs2hdl tool, and implementation of
the hardware on the FPGA,

• Carsten Meyer: development of the software environment for the VAMP,

104 The VAMP Project

• Wolfgang J. Paul: supervisor.

The VAMP project resulted in several scientific publications [BBJ+02,Bey02,
BJ01,BJK01a,BJKL02,Jac01,Jac02,JK00,KMP99,Kro01,KP01,MPK00], partly
still in the publication process. Several doctoral and diploma theses are in progress
at the time of this writing (April 2002).

In the following sections, we will give a more detailed overview of the VAMP
project. Section 6.1 is taken from [BJK01b, Sect. 2]. Sections 6.4–6.5 are based
on [BJKL02].

6.1 The VAMP Processor Core

The VAMP processor is an out-of-order variant of the DLX processor [HP96].
Out-of-order execution allows for high performance even in case of long latency
instructions such as floating point or memory instructions. One of the most popular
out-of-order execution algorithm is the Tomasulo scheduling algorithm [Tom67].
It is one of the most competitive scheduling algorithms and provides CPI rates
down to 1.1 on a single-instruction issue machine [MLD+99]. The algorithm is
widely used, e.g., in the IBM PowerPC [Mot97] and Intel’s Pentium-Pro [CS95].
The original Tomasulo scheduler uses out-of-order termination and therefore does
not support precise interrupts. The VAMP supports precise interrupts by means
of a reorder buffer [SP88]. The reorder buffer sorts the instructions in program
order before termination. Figure 6.1 depicts the basic structure of the VAMP mi-
croprocessor. Stage IF does the instruction fetch; we implement one branch delay
slot using the Delayed PC technique [MPK00]. The delayed branch semantics
is, for example, used in the MIPS instruction set architecture (ISA) [KH92]. The
hardware for the instruction fetch is taken from the in-order machine described
in [MP00, JK00].

In the next stage, the instruction is decoded. This includes fetching the operands
if available. The instruction and the operands are then passed to a reservation sta-
tion (RS). This is called issue. The reservation stations act as queue for the in-
structions and are located between the decode/issue stage and the execution units
(EUs).

As soon as all operands are available, the instruction is passed from the reser-
vation station to the EU in the execute stages (dispatch). The VAMP features
five EUs: the ALU handles integer instructions such as add. The second EU is
the interface to the data memory. The remaining EUs are the FPUs presented in
the previous chapters. As described in chapter 5, the EUs may process multiple
instructions simultaneously, and may return instructions out-of-order. Currently,
only the FPUs use these possibilities. However, one could extend the VAMP with
pipelined integer ALUs (e.g., including an integer divider), or with non-blocking
caches, see e.g. [Pre02].

After the EU has finished the execution, the result of the instruction is passed
to the producer registers. In case the producer holds an instruction, it requests the

6.2 The Memory Unit 105

GPR FPR SPR

ID

EX

IF

C

WB

ALU MEM FPU1 FPU2 FPU3

IM

Reservation Stations
PC environment

Producers

CDB

ROB

�����������

�
	��

Figure 6.1: Overview of the VAMP microprocessor

common data bus (CDB). As soon as the request is acknowledged, the result is
put on this bus (completion). In contrast to commercial designs such as the IBM’s
PowerPC, we support only one CDB. The bus is used for two purposes: 1) The
instruction is passed to the reservation stations that wait for the result because of a
data dependency, and 2) the result is passed to the reorder buffer.

The reorder buffer re-sorts the instructions back to program order. The benefit
of this is that we can write the results into the register file in program order (in-order
termination). This allows precise interruptions of the instruction stream.

Status. The processor core is work by Daniel Kröning [Kro01]. The verification
of the Tomasulo algorithm and of the ALU is complete. The gate-level imple-
mentation of the processor core is complete, the verification of the gate-level is
expected to be complete in May 2002.

6.2 The Memory Unit

The memory unit connects the main memory to the VAMP processor. The unit
supports split instruction and data caches, backed up by the shared main memory.

106 The VAMP Project

Data-consistency between instruction- and data-cache is guaranteed by snooping.
The split instruction and data caches allow simultaneous memory-accesses for in-
struction fetch and load/store instructions. Our group is planning to enhance the
memory unit with a second-level cache, virtual memory, and address translation.

The cache designs are parameterized, i.e., the size and associativity of the
caches can easily be changed by adopting parameters. The caches support both
write-back and write-through mode. The main memory to which the caches con-
nect is assumed to work with the bus protocol from [MP00, Sect. 6]. However, this
could be easily adopted to any other synchronous protocol.

In the actual VAMP implementation, the first-level instruction cache is a 2-way
set-associative 8 KB read-only cache. The data cache is a 4-way set-associative
16 KB read-write cache with write-back policy. The least-recently-used (LRU)
policy is implemented as replacement strategy.

Status. The verification of the memory unit is performed by Sven Beyer. The
verification is nearly finished (expected May 2002). The implementation and ver-
ification of virtual memory and address translation is planned, but not yet started.
We also plan to enhance the VAMP to properly work with self-modifying code.
The VAMP shall detect whether an instruction in the pipeline has been overwritten
by a preceeding data memory access, and shall signal an interrupt in this case.

6.3 Verification Effort

Table 6.1 lists the effort needed for the verification of the different parts of the
VAMP FPU. As one sees, there is a large gap between the PVS proofs and those
from [MP00] in the number of lemmas and theorems. This is due to two reasons:
first, many seemingly trivial things are not proved in [MP00]. This, in particular,
includes the width of busses, adders, etc. The lack of verification of these “trivial”
things was source of several bugs in [MP00]. Second, a lot of the mathematics
in [MP00] is scattered over the continuous text. For example, the η-computation
circuit within the rounder is described and verified over 12 pages in [MP00] (the
proof is incorrect, cf. section 4.2.1), but has only 3 explicit lemmas. A large part
of our work was to divide the mathematics in the text from [MP00] into lemmas.
The η-computation, for example, has 34 lemmas in PVS.

However, it should be noted that the explanations and proofs in [MP00] origi-
nally were not intended to serve as guidelines for formal verification, but for human
readability, in particular for students in computer architecture. It is remarkable that

1Joint work with Christoph Berg and Sven Beyer.
2Verified by Christoph Berg.
3Joint work with Christoph Berg.
4The proofs are all very similar. The large number of 2541 proof commands is due to a lot of

“copy & paste”.

6.3 Verification Effort 107

PVS MP00
Lemmas Steps Lemmas Pages Steps/Page

Basic Circuits1 107 4032 4 23 175
Theory of Rounding 266 4808 9 33 146
Unpacker 13 361 0 5 72
Add/Sub2 180 3928 1 14 280
Mul/Div 106 2817 5 18 157
Rounder 98 4008 5 22 182
Compare/Convert 33 1616 1 20 81
Misc. Lemmas3 123 895
CTL ≡ ∀t 30 930
Pipelining of the FPUs4 90 2541∑

1046 25936 25 135 192

The table compares the verification effort in PVS measured as the number
of lemmas and the number of interactive proof commands with the number
of lemmas and pages in [MP00]. All in all, the PVS specifications of the
FPU take 374 KB of source, and the proof scripts take 1.1 MB (excluding
whitespace).

Table 6.1: Verification effort for the FPUs,

VAMP part Lemmas Steps

Processor Core & ALU 521 14367
Caches 625 23359
FPU 1046 25936

Table 6.2: Overall effort of the different VAMP parts (FPU&Caches not yet com-
plete).

the FPU from [MP00] has so few bugs considering that the hardware has not been
implemented and tested, but “only” proved by hand.

The total verification effort for the different parts of the VAMP processor is
listed in table 6.2. The complexity of the proofs in the individual parts of the VAMP
have different sources. The main challenge for the verification of the Tomasulo
scheduler and the caches is finding an inductive invariant for the data consistency.
The vast effort in the verification of the theory of IEEE rounding is due to PVS’s
limited arithmetic capabilities. This problem might be solved by new arithmetic
strategies [DV02]; however, these were not available when we did the verification.
The most time-consuming part in the verification of the FPU datapaths was the ver-
ification on the level of single bits. The verification of the lowest-level modules was
often very tedious. Contrary, the composition of parts was mostly straightforward
given the decomposition facilities provided by the theory of rounding.

108 The VAMP Project

6.4 Translating PVS to Verilog

We have developed a tool named pvs2hdl which allows the automatic translation
of PVS hardware designs to the hardware description language Verilog [Cil99].
As described in section 2, the functional language within PVS is used to model
combinatorial hardware designs in PVS. Clocked circuits are modeled by input,
output and register types and a next-state/output function. The next-state function
computes from the current input and state the next state and the outputs of the
circuit.

The translation of combinatorial hardware from PVS to Verilog works as fol-
lows: for each PVS function, a Verilog module is generated. If the PVS func-
tion has integer parameters to represent parameterized circuits (e.g, the carry-chain
adder from section 2.2), a Verilog module for each different occurring parameteri-
zation is generated. If the PVS function is recursive, the recursion is unrolled. This
is necessary since Verilog does not support recursion.

The translation of the bitvector operators and, or, not, xor, if, cond, and bitvec-
tor concatenation and extraction is straightforward, since these constructs have
their literal counterparts in Verilog. Verilog does not support records, thus records
are flattened into bitvectors during the translation.

PVS function calls are translated to module instantiations in Verilog. While
there may be multiple instantiations of the same module—resulting in multiple
occurrences of the module in the actual hardware—, the module itself is translated
to Verilog only once.

In order to translate clocked circuits to Verilog, the name of the next-state/out-
put function (say ns) and of the state type (say State) are passed to pvs2hdl. The
tool first translates the function ns to a combinatorial Verilog module ns as de-
scribed above. The tool then creates a Verilog module ns clk with a clock input
and a local register variable R of type State (in case State is a record type, there
may be multiple registers due to flattening). The clocked module ns clk has
a single sub-module ns. The inputs and outputs of ns clk are connected to the
corresponding inputs of ns, and the register R is connected to the state input/output
of the ns module.

The pvs2hdl tool does currently not support the automatic generation of RAM
and ROM. However, RAM and ROM are needed within the VAMP, e.g., for the
register files or the division lookup table. The RAM and ROM modules in Verilog
are manually incorporated into the automatically generated VAMP Verilog sources.
The content of the ROM is extracted from the PVS sources using a simple script.

6.5 Experimental Results

In this section we present experimental results. We have translated various com-
binatorial and clocked circuits from PVS to Verilog, and implemented them for
usage on a Xilinx Virtex-E FPGA [Xil02]. We compare the cost and delay of the

6.5 Experimental Results 109

��
��

��

���

���

		
		
		
		
	

���

���

��
��
��
��
��
�

��

��

��
��
��

��
��
��

������������������������������

������������������������������

���������������������
���������������������

������
������

��
��

������������������������������

������������������������������

������
������
���

��
��
�

��������������������

��������������������

������
������
������
������
������
������

 � �
 � �
 � �
 � �
 � �
 � �

!!
!!
!!
!!
!!

""
""
""
""
""

#�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�#

$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$

%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%

&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&&�&�&�&

'�''�'
'�''�'
'�''�'
'�''�'
'�''�'
'�'

((
((
((
((
((
(
)�))�)
)�))�)

**
**

+�+�+�++�+�+�++�+�+�++�+�+�+

,�,�,�,,�,�,�,,�,�,�,,�,�,�,

-�--�-
-�--�-
-�--�-
-�--�-
-�--�-
-�-

..
..
..
..
..
.
/�//�/
/�//�/

00
00

11
11
11
11
11

22
22
22
22
22

3�3�3�33�3�3�33�3�3�33�3�3�33�3�3�33�3�3�33�3�3�33�3�3�33�3�3�3

4�4�4�44�4�4�44�4�4�44�4�4�44�4�4�44�4�4�44�4�4�44�4�4�44�4�4�4

5�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�5

6�6�66�6�66�6�66�6�66�6�66�6�66�6�66�6�66�6�66�6�66�6�66�6�66�6�66�6�66�6�6

7�77�7
7�77�7
7�77�7

88
88
88

9�9�9�99�9�9�99�9�9�99�9�9�99�9�9�99�9�9�9

:�:�:�::�:�:�::�:�:�::�:�:�::�:�:�::�:�:�:

;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;

<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<
=�=�=�==�=�=�==�=�=�==�=�=�=

>�>�>�>>�>�>�>>�>�>�>>�>�>�>
190

180

40

30

20

10

delay [ns]

64−bit adder 6 to 64 − decoder 64 to 6 − encoder 64−bit leading
zero counter

32−bit multiplier
???
???
???
???

@@@
@@@
@@@
@@@

A�A�A�AA�A�A�A
B�B�B�BB�B�B�B

C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�C

DD
DD
DD
DD
DD
D

EE
EE
EE
E

FF
FF
FF
F

G�GG�G
G�GG�G
G�G

H�HH�H
H�HH�H
H�H

II
II
II

JJ
JJ
JJ

KK
KK
K

LL
LL
L

M�MM�M
M�MM�M
M�MM�M

NN
NN
NN

OO
OO
OO
OO
OO
O

PP
PP
PP
PP
PP
P

QQ
QQ
Q

RR
RR
R

S�SS�S
S�SS�S
S�SS�S

TT
TT
TT

U�U�U�UU�U�U�UV�V�V�VV�V�V�VW�W�W�WW�W�W�W
X�X�X�XX�X�X�X

Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�YY�Y
Y�Y

ZZ
ZZ
ZZ
ZZ
ZZ
Z

area [slices]

1000

750

500

80

60

40

20

generated from PVS
standard Verilog implementation

Xilinx CoreGen

[�[�[�[[�[�[�[[�[�[�[[�[�[�[[�[�[�[[�[�[�[

\�\�\�\\�\�\�\\�\�\�\\�\�\�\\�\�\�\\�\�\�\

]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]

^�^�^�^^�^�^�^^�^�^�^^�^�^�^^�^�^�^^�^�^�^^�^�^�^^�^�^�^^�^�^�^^�^�^�^^�^�^�^

��_�__�_�_�__�_�_�__�_�_�__�_�_�_

`�`�`�``�`�`�``�`�`�``�`�`�``�`�`�`

a�a�a�aa�a�a�aa�a�a�aa�a�a�aa�a�a�a

b�b�bb�b�bb�b�bb�b�bb�b�b

c�c�c�cc�c�c�cc�c�c�cc�c�c�cc�c�c�cc�c�c�c

d�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�d
ee
ee
ee
ee
ee
ee
ee
e

ff
ff
ff
ff
ff
ff
ff
f

g�g�gg�g�gg�g�gg�g�gg�g�g

h�h�hh�h�hh�h�hh�h�hh�h�h

i�i�ii�i�ii�i�ii�i�i

j�j�jj�j�jj�j�jj�j�j

k�k�kk�k�kk�k�kk�k�kk�k�kk�k�k

l�l�ll�l�ll�l�ll�l�ll�l�ll�l�l

m�m�mm�m�mm�m�mm�m�mm�m�mm�m�mm�m�mm�m�mm�m�mm�m�mm�m�m

n�n�nn�n�nn�n�nn�n�nn�n�nn�n�nn�n�nn�n�nn�n�nn�n�nn�n�n

o�o�o�oo�o�o�oo�o�o�oo�o�o�oo�o�o�oo�o�o�oo�o�o�oo�o�o�oo�o�o�oo�o�o�oo�o�o�o

p�p�pp�p�pp�p�pp�p�pp�p�pp�p�pp�p�pp�p�pp�p�pp�p�pp�p�p

q�q�q�qq�q�q�qq�q�q�qq�q�q�qq�q�q�q

r�r�rr�r�rr�r�rr�r�rr�r�r
s�ss�s
s�ss�s
s�ss�s

t�tt�t
t�tt�t
t�tt�t

u�uu�u
u�uu�u
u�uu�u

vv
vv
vv

w�w�ww�w�ww�w�ww�w�ww�w�ww�w�ww�w�ww�w�ww�w�ww�w�ww�w�w

x�x�xx�x�xx�x�xx�x�xx�x�xx�x�xx�x�xx�x�xx�x�xx�x�xx�x�x

y�yy�y
y�yy�y
y�yy�y
y�yy�y
y�yy�y
y�y

zz
zz
zz
zz
zz
z{�{�{{�{�{

|�|�||�|�|

}�}�}}�}�}}�}�}}�}�}}�}�}}�}�}}�}�}

~�~�~~�~�~~�~�~~�~�~~�~�~~�~�~~�~�~

�������
�

��
��
��
��

��
��
��
��

Figure 6.2: Comparison of the cost of translated designs and optimized macros

generated circuits to implementations in Verilog using native Xilinx macros. The
cost and delay of the circuits are determined using the Xilinx Foundation software.
The unit of cost is a Virtex-E slice, which reflects FPGA area. The unit of delay is
a nano-second (ns).

6.5.1 Implementation of General-Purpose Circuits

Adder. We have translated a 64-bit carry-chain adder as defined in section 2.2.
The implementation results in a cost of 106 slices and a delay of 79 ns, while the
use of a standard Xilinx adder macro results in a cost of 33 slices and a delay
of 23.4 ns. The large gap is due to special hardware resources called fast carry
logic used by the optimized adder macro. Since the pvs2hdl translator does not
trigger the usage of these architecture-dependent resources, our implementation
performs very poorly. This phenomenon shows up only for adders, incrementers,
and multipliers.

Decoder. We have implemented a recursive decoder in PVS. The implementation
of the 6-to-64–bit decoder has a cost of 36 slices and a delay of 18.2 ns. Using a
standard Verilog implementation as in [Cil99, pg. 328] yields 40 slices and 19.5 ns.
A decoder generated by the Xilinx CoreGen software yields 64 slices and 16.3 ns.
So our implementation is the cheapest, and is nearly as fast as the Xilinx CoreGen
variant, although this has nearly twice the cost.

Others. Figure 6.2 shows comparisons of various circuits implemented in PVS
with implementations in Verilog or with special Xilinx macros. Except for adders
and multipliers, the translated PVS circuits can compete with the other implemen-
tations. The PVS implementations even outperform the usual implementations in
some cases.

110 The VAMP Project

Since the VAMP processor comprises large adders and multipliers (e.g., in
the multiplicative FPU), we have added support for predefined Verilog modules
to the pvs2hdl tool. This allows the replacement of basic modules (e.g, adders
and multipliers) by cheaper and faster Xilinx macros. Of course, the correctness
of the complete processor then depends on the correctness of the Xilinx macros.
However, the VAMP processor would not fit onto the Xilinx FPGA if we would
not use the special macros. If we would implement the VAMP processor in a full-
custom process, we could use our verified components.

In the following sections, experimental results are always generated by replac-
ing all adders and multipliers in the designs by Xilinx macros. All circuits were
implemeted without floorplanning, although this could have a significant impact on
size and delay. However, our main objective is on correct rather than fast or small
hardware. We therefore have not considered floorplanning so far.

6.5.2 Implementation of the Floating Point Units

We have translated our three FPUs to Verilog, and have implemented them on a
Xilinx FPGA. In this section, we consider the pipelined multiplicative FPU as an
example. The largest components of the FPU are a 58-bit multiplier, each one
64-bit shifter and 64-bit leading zero counter for each of the two unpackers, a
further 64-bit shifter and a 58-bit half-decoder for the η-COMPUTATION within
the rounder, and various adders and incrementers. As described in section 4.3,
the 58-bit multiplier is built from two 29-bit and one 30-bit multiplier using the
Karatsuba-Ofman scheme [KO63]. This is beneficial, since the Xilinx multiplier
macros support only multipliers up to 32 bits. The multipliers and all adders and
incrementers in the FPU are replaced by Xilinx macros.

Cost and Delay. The translation of the multiplicative floating point unit from
PVS to Verilog yields a design requiring 4243 slices. This accounts for ∼ 25%
of the complete Virtex-E 2000 area. The registers within the FPU have 1637 bits.
The Xilinx software reports a gate-count of 88.000. The gate-model from [MP00]
estimated a gate-count of 87.000, hence is pretty close to the actual FPGA size.
The maximum clock frequency is 16.8 MHz.

The critical path is on the significand path in the first rounder stage RD-STG1.
It involves a leading-zero counter on the input significand, a 13-bit adder, and a
53-bit cyclic shifter in the circuit η-COMPUTATION, and a 103-bit or-tree for the
sticky-bit computation in the circuit REP. Nearly 80% of the delay of 59.4 ns are
due to routing, only 20% are due to logic delay.

The additive FPU occupies 1545 slices and runs at 17 MHz. The Misc-FPU
occupies 1211 slices and runs at 16 MHz.

Testing the FPU. We have run several 100.000 random test-vectors on the FPGA
implementation of the FPU. After having debugged the pvs2hdl tool with the gen-

6.5 Experimental Results 111

eral purpose circuits described above, the FPU worked on the first try. We have
compared the results of the test-vectors with the Intel FPU inside the Pentium II
processor. We found two sources of discrepancies between our and Intel’s FPU.
First, some operations involving NaNs are handled differently. However, the IEEE
standard [IEEE] is under-specifying in these cases, so both our and Intel’s FPU
conform to the standard.

The second source of discrepancies revealed a non-conformance of Intel’s FPU
to the IEEE standard. Internally, the Intel FPU always operates with the extended
precision exponent width of 15 bit. The error occurs if a double precision operation
yields an exponent which is less than the double-precision 11-bit emin, but greater
than the 15-bit emin. In correct IEEE rounding, the significant of this result has to
be denormalized with respect to the 11-bit emin before rounding. In our rounding
unit this is accomplished by circuit η-COMPUTATION (section 4.2). On Intel’s
FPU, however, the result is first rounded to the target 53-bit significant precision,
but with the internal 15-bit exponent. In a second step, this intermediate result is
denormalized. The denormalization shifts out some of the significand bits, and the
denormalized significand is then rounded again. It is well known that this twofold
rounding is not IEEE compliant [Lee89].

For example, assume that the normalized significand f is of the form f =
. . . 001� 01, where the ’y’ sign denotes the least representable bit, i.e., the signifi-
cand bit with weight 2−52. Let the corresponding denormalized significand f ′ be
f ′ = . . . 00� 101, i.e., f ′ is obtained by denormalizing f by one bit. In round to
nearest mode, f ′ is rounded up to f ′

rd = . . . 01� . In contrast, the normalized f
is first rounded down to frd1 = . . . 001� 0. This intermediate result is then denor-
malized to . . . 00� 10. This results in a tie for rounding to nearest, and hence is
rounded to the nearest representable number with least-significand bit zero, which
is . . . 00� 00. This differs from the correct f ′

rd in the least significant representable
bit.

The described problem is known to Intel, as a talk by Roger Golliver (Intel)
shows [Gol98]. In the next generation of Intel’s FPU, the internal exponent width
will be adjustable in software (personal communication with John Harrison, Intel).
It should be noted that we have also tried these operations on AMD processors,
which yielded the same result as Intel’s FPU.

6.5.3 Implementation of the Complete VAMP Processor

We have implemented the complete VAMP processor on the FPGA, including
caches and FPUs. Beside the verified VAMP circuits, some auxiliary circuits are
needed to run the VAMP processor on the FPGA. Figure 6.3 gives an overview of
the complete VAMP implementation. The FPGA resides on a PCI board within a
host PC. The FPGA is connected to four SDRAM chips, and to a bridge to the PCI
bus. This bridge is used for communication with the host PC. On the FPGA is the
actual VAMP processor, the interface to the bridge, and a memory controller.

112 The VAMP Project

PCI−Bus����

SDRAM SDRAM SDRAM SDRAMPCI-Board

Ctrl.Connect
Host-

to the
Bridge

PCI Bus

Memory VAMP

FPGA

Figure 6.3: Overview of the VAMP processor implementation

The memory controller connects to four 16 MB SDRAM chips. On the FPGA
side, the memory controller has two interfaces which work with the bus protocol
from [MP00, Sect. 5]. Hence, the memory controller acts as a protocol bridge
between the [MP00] bus protocol and the SDRAM protocol. One of the interfaces
is used for connecting the cache of the VAMP processor to the main memory. The
other interface is used to access the VAMP main memory from the host PC. This
is used to transfer programs and data between the host PC to the VAMP mem-
ory. Simultaneous memory accesses of the VAMP processor and the host PC are
arbitrated by the memory controller.

The host connection and the memory controller are designed and tested by
Dirk Leinenbach. The memory controller is based on an SDRAM controller from
Isytec GmbH, Germany, which also sells the PCI board. The host connection and
the memory controller are not formally verified. The formal verification of the
VAMP processor reaches only to the memory-boundary. One could also verify the
auxiliary circuits; however, this is currently not intended for the VAMP project.

Cost and Delay. The complete VAMP processor occupies 18053 slices, which
accounts for 94% of the FPGA area. The maximum clock frequency is ∼ 10MHz.
The VAMP processor has 9109 bits of registers, not counting the register file and
caches.

Testing the Implementation. In order to test the VAMP implementation, we
have ported the GNU C compiler gcc and the C library glibc for the VAMP pro-
cessor. We are currently testing the VAMP processor. The processor is already
capable of running simple test programs. We are currently running more complex
tests on the VAMP processor. Since the processor is not yet fully verified, we are
simultaneously debugging the VAMP using conventional debugging methods and
using PVS.

The software tests of the VAMP processor are performed by Carsten Meyer.

6.6 Related Work 113

6.6 Related Work

There are several other microprocessor verification projects in the formal methods
community. Hunt and Brock have verified the FM9001 microprocessor [HB92].
The verification is performed on the net-list level. The FM9001 was the first for-
mally verified processor which has been implemented based on the formal specifi-
cation. Brock and Hunt claim that they have never encountered a situation where
the processor implementation deviates from its specification.

Other verified processors include Windley’s AVM-1 processor [Win95], and
the AAMP5 processor by Miller and Srivas [MS95]. More recent projects, e.g,
by Hunt and Sawada [HS99, Saw99], and Hosabettu et al. [Hos99, HGS00], verify
processors on higher levels of abstraction, and hence do not yield actual implemen-
tations.

We are not aware of any formally verified processor of the complexity of the
VAMP processor, in particular with caches and floating point units which are com-
mon in today’s microprocessors. So, our group is the first which has verified and
implemented such a complex microprocessor.

114 The VAMP Project

Chapter 7

Summary, Discussion and Future
Work

In this chapter we give a short summary of the thesis, discuss our approach to the
formal verification and implementation of complex hardware systems, and provide
an outlook to possible future research.

Section 7.2 is based on [BJKL02, Sect. 6].

7.1 Summary

This thesis covers the formal verification of a fully IEEE compliant floating point
unit in the theorem proving system PVS. The FPU supports addition, subtrac-
tion, multiplication, division, comparsion, conversion and various other operations.
Both single and double precision numbers are supported. Denormal numbers are
completely handled in hardware. The exception signals are computed as required
by the IEEE standard.

In chapter 3 we presented a formalization of the IEEE standard in PVS. We
have verified concepts and theorems which ease the verification of the actual hard-
ware. Most notably, the decomposition theorem of rounding allows for the de-
composition of the rounding hardware into smaller parts, and the concept of α-
equivalence makes the decomposition of the FPU into computational and rounding
unit possible.

In chapter 4 we have verified the actual floating point hardware with respect
to the specification from chapter 3. We have separately verified unpacker, rounder,
and computational units, and then combined these units to the complete FPUs. De-
composition of the system into smaller parts based on the theorems from chapter 3
considerably simplified the verification, since the parts could be verified separately
with respect to local specifications. The parts were then re-composed, and the local
specifications were proved to yield the desired overall specification.

In chapter 5 we have pipelined the combinatorial FPUs from chapter 4. The

116 Summary, Discussion and Future Work

FPUs have been prepared to work in the out-of-order VAMP processor. To ex-
ploit the out-of-order scheduler, the pipelines may process multiple instructions
simulatiously, have variable latency, and may reorder instructions internally. The
pipelines have branches and cycles in the pipeline structure, e.g., for the iterative
division algorithm. We have presented a new methodology based on the combina-
tion of model checking and theorem proving for the verification of such complex
pipelines.

The verification of the FPUs is part of the VAMP project at Saarland Univer-
sity. Chapter 6 provided a detailed project description and status of the VAMP
project.

7.2 Discussion

Advantages. We have presented the design and verification of complex hard-
ware in PVS. Using our tool pvs2hdl we have translated the hardware to Verilog
and implemented it on a Xilinx FPGA. There are several benefits to this approach
compared to the traditional way of hardware design and verification using Verilog
and testing:

1. The use of high-level constructs such as recursion and λ-expressions allows
for the concise description of structured hardware.

2. The description of hardware in PVS enables the formal verification of the
hardware descriptions against a formal specification.

3. The PVS system offers support for both theorem proving as well as model
checking. Thus, we can exploit both techniques in our proofs without a te-
dious and error-prone translation between two different verification systems.

4. The verification can exploit the structured and modular description of the
hardware; one can verify general purpose circuits for arbitrary bit widths,
and use the correctness results in the verification of larger and larger circuits.
In this way, it is possible to design, verify and implement hardware of almost
arbitrary complexity.

The latter points are particularly important, as the design of complex hardware
systems is very error prone, and verification is therefore an increasingly important
part of the development cycle. The feasibility of our approach is proved by the
verification presented in this thesis.

The verification heavily exploits the structure of the hardware. We have verified
a library of parameterized general purpose circuits [BJK01a], upon which hierar-
chically more and more complex circuits are built and verified. The verification of
each circuit uses the correctness statements of its sub-circuits, so that the hierarchy
is maintained during verification. This considerably eases the verification task.

7.2 Discussion 117

The hardware is specified and verified in PVS on the gate level. In order to
obtain real hardware, we have developed the pvs2hdl tool to automatically trans-
late the PVS hardware descriptions to Verilog. Several other tools (synthesizer,
place & route tools, etc.) then transform Verilog to real hardware. Each of the
steps involved is not formally verified and could introduce new errors into the de-
sign. In fact, even the PVS proof checker could have bugs which hide errors in the
“verified” hardware.

However, there is a great benefit in having verified the PVS gate-level descrip-
tion of the hardware: the design is free of logical errors (if we have not been
trapped by bugs in PVS). Nowhere an and-gate is used where an or-gate would
have been correct, no adder is too small in size, no entry in lookup tables is missed,
etc. Although each of the tools mentioned above could introduce new errors, the
confidence in the logical correctness of the gate-level greatly improves the confi-
dence in the correctness of the ultimate hardware. The famous Pentium bug, for
example, was a logical bug where an entry in a lookup table was omitted [Pra95],
which would have been discovered in our verification. There are approaches to
verified synthesis tools [AL95, ML01]. However, the formal verification of real-
size synthesis tools is far beyond the capabilities of current software verification
techniques.

The FPU verified in this thesis has been implemented on a Xilinx FPGA. The
FPU worked on the first try. No debugging of the FPU circuits was necessary
after having verified the gate-level in PVS. We have run hundred-thousands of test-
vectors without discovering a bug in the VAMP FPU.

Drawbacks. There are drawbacks in the use of PVS as hardware development &
verification system which we do not want to be left unmentioned:

1. Designing combinatorial circuits in a functional programming language and
our notion of clocked circuits is not common practice for hardware designers.

2. The support for fast simulation and visualization is common in modern de-
velopment systems, but not available in PVS. In the design phase, many
obvious errors can be found by simulation. The harder errors could then be
found during formal verification. The theorem prover ACL2 [KM96], for ex-
ample, offers efficient LISP-based support for simulation. However, ACL2
cannot handle higher-order logic in contrast to PVS. The use of higher-order
logic sometimes streamlines theories and hence simplifies the verification.
This particularly applies to the definition of CTL and the verification of
pipelines in chapter 5.

3. We support only a single clock domain. For example, we cannot directly
model an SDRAM interface of a CPU where the SDRAM is clocked inde-
pendently of the CPU. An extension of our PVS hardware model to cover
multiple clock domains in the style of [AH01b] is possible, but we have not
yet investigated this possibility.

118 Summary, Discussion and Future Work

4. Our PVS hardware model maps to a small subset of the Verilog hardware de-
scription language which is sufficient to design any combinatorial circuit or
clocked circuit with one single clock domain. However, by designing hard-
ware in PVS, we disallow any “dirty” design tricks employed in common
HDLs in order to optimize the design. Therefore, it may not be possible to
design hardware as thoroughly optimized for speed as contemporary com-
mercial processors.

However, it is not our project goal to compete with modern microproces-
sors in performance, but to offer formally verified correctness guarantees for
microprocessors in safety-critical devices. Many of these safety-critical de-
vices do not need a clock frequency of more than 100 MHz, which could be
achieved by our approach in a full-custom process. We see a considerable
market for formally verified microprocessor of comparably modest perfor-
mance, e.g., in medical devices, nuclear reactors, and military applications.

5. A considerable part of the verification effort is needed for very low-level
circuits for which appropriate automatic methods are available (see, e.g.,
[BC95, CB96]. One could save a great deal of time by automatically ver-
ifying small sub-circuits, and restrict interactive proof development to the
composition of such sub-circuits to larger circuits which are too large for
automatic verification. However, these automatic methods are not available
in PVS.

There are publicly available tools supporting some of these features, but none
integrates all features needed for an integrated development & verification system.
There are such tools in industry, e.g. Intel’s Forte system [OZGS99], but these tools
are not publicly available, they are not even sold. In order to develop and formally
verify large hardware systems against a high-level specification, we believe our
approach is currently the only feasible that deploys only publically available tools.

7.3 Future Work

We see several directions in which the work presented in this thesis could be ex-
tended. First, modern floating point units in commercial processors support a vari-
ety of operations not considered in this thesis, e.g., transcendential functions. One
could incorporate such operations into the VAMP FPUs.

As described above, the verification of the hardware implementation using the-
orem proving is very time-consuming and partly tedious. One could incorporate
more automatic verification methods into the verification environment in order to
ease future verification projects. Furthermore, one could extend the verification
environment with debugging facilities such as simulation and visualization.

In order to further improve confidence in the correctness of the design, one
could verify the PVS hardware specification against the netlist generated by the

7.3 Future Work 119

Verilog synthesizer. This would close the verification gap involving our pvs2hdl
tool and Verilog tools. The verification of the netlist could be performed using
equivalence-checkers; however, these tools probably do not scale to the required
circuit size. We have not investigated the verification of netlists yet.

As mentioned in section 5.2, we lack a general formalism for the design and
presentation of complex out-of-order pipelines. One could try to enhance the for-
malism for in-order pipelines from [MP00, JK00,Kro01] to out-of-order pipelines.
We have just started investigating the modeling of pipelines as (potentially cyclic)
graphs, for which a pipeline control and its formal correctness proof should be
automatically generated.

One could further enhance our verification methodology for out-of-order pipe-
lines to cope with complex control/data dependencies, e.g., for self-timed divi-
sion algorithms (cf. section 5.6.3). Furthermore, one could automate the “pushing
through the pipeline” for liveness-verification.

Last, but by no means least, one could move the ladder one step up and verify
system software running on the verified VAMP processor. Our group at Saarland
University is currently setting up a project aiming for the formal verifcation of the
L4 operation system micro-kernel [Lie95].

120 Summary, Discussion and Future Work

Appendix A

Floating Point Instruction Set

Table A.1 lists the op-codes of the floating point instructions supported by our
FPUs. The mov.s and mov.d instructions move single respectively double preci-
sion floating point numbers from one register to another. The mf2i and mi2f in-
structions move 32 bit of a floating point register to an integer register or vice-versa,
respectively. The cmp.s and cmp.d instructions perform comparisons between
floating point numbers according to table A.2.

Table A.1: Op-codes of the supported floating point instructions.

Mnemonic 9-bit op-code FPU

add.s 0x000 additive
add.d 0x040 additive
sub.s 0x001 additive
sub.d 0x041 additive

mul.s 0x002 multiplicative
mul.d 0x042 multiplicative
div.s 0x003 multiplicative
div.d 0x043 multiplicative

neg.s 0x004 misc
neg.d 0x044 misc
abs.s 0x005 misc
abs.d 0x045 misc
cmp*.s 0x03* misc
cmp*.d 0x07* misc
mov.s 0x008 misc
mov.d 0x048 misc
mf2i 0x009 misc
mi2f 0x00A misc

continued on next page

122 Floating Point Instruction Set

continued from previous page
Mnemonic 9-bit op-code FPU

cvt.s2d 0x060 misc
cvt.s2i 0x120 misc
cvt.d2s 0x021 misc
cvt.d2i 0x121 misc
cvt.i2s 0x024 misc
cvt.i2d 0x026 misc

Table A.2: Encoding of the different comparisons.

Op-code bit Comparison predicate

opcode[0] FCONun
opcode[1] FCONeq
opcode[2] FCONlt
opcode[3] FCONgt

Appendix B

Proof of Carry-Chain adder

This chapter presents a transcript of the PVS proof of theorem cc adder correct

from chapter 2. The proof is virtually literally the same as the original PVS proof,
we have only changed some minor points to increase readability. When starting
the proof, PVS confronts us with the proof goal:

|-------
[1] FORALL (n: posnat, a, b: bvec[n], cin: bit):

bv2nat(carry_chain_impl(n, a, b, cin)) =
bv2nat(a) + bv2nat(b) + bv2nat(cin)

All formulas above the line (here empty) are called antecedents and may be seen
as known facts, and the formulas below the line (here [1]) are called consequents.
The disjunction of the consequents has to be proved from the conjunction of the an-
tecedents. We start the proof by telling PVS to induct on the length n. We therefore
issuing the command (INDUCT "n":NAME "upfrom induction[1]"). The
induction scheme to use is upform induction, which tells PVS to start a natural
number induction starting from 1.

Rule? (INDUCT "n" :NAME "upfrom_induction[1]")
Inducting on n on formula 1 using induction scheme
upfrom_induction[1],
this yields 2 subgoals:
cc_adder_correct.1 :

|-------
[1] FORALL (a, b: bvec[1], cin: bit):

bv2nat(carry_chain(1, a, b, cin)) =
bv2nat(a) + bv2nat(b) + bv2nat(cin)

Now PVS confronts us with 2 cases, the first of which is the induction base shown
above. The induction base is proved by skolemizing the quantified a, b, and cin,
expanding definitions, and case analysis. This is all done automatically by the PVS
command (grind):

Rule? (GRIND)
/= rewrites (a(0) /= b(0))

124 Proof of Carry-Chain adder

to NOT (a(0) = b(0))
XOR rewrites a(0) XOR b(0)
....
Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of cc_adder_correct.1.

cc_adder_correct.2 :

|-------
[1] FORALL (n: upfrom(1)):

(FORALL (a, b: bvec[n], cin: bit):
bv2nat(carry_chain(n, a, b, cin)) =
bv2nat(a) + bv2nat(b) + bv2nat(cin))

IMPLIES
(FORALL (a, b: bvec[1 + n], cin: bit):

bv2nat(carry_chain(n + 1, a, b, cin)) =
bv2nat(a) + bv2nat(b) + bv2nat(cin))

PVS now presents the second sub-goal of the induction, namely the induction step.
We start by skolemizing and flattening in order to yield a more readable goal. The
skolemized variables are indicated by an appended ’!1’.

Rule? (SKOSIMP*)
Repeatedly Skolemizing and flattening,
this simplifies to:
cc_adder_correct.2 :

[-1] FORALL (a, b: bvec[n!1], cin: bit):
bv2nat(carry_chain(n!1, a, b, cin)) =
bv2nat(a) + bv2nat(b) + bv2nat(cin)

|-------
[1] bv2nat(carry_chain(n!1 + 1, a!1, b!1, cin!1)) =

bv2nat(a!1) + bv2nat(b!1) + bv2nat(cin!1)

We have to prove formula [1], the induction claim, from formula [−1], the induction
hypthesis. We first expand the definition of carry chain in formula [1]:

Rule? (EXPAND "carry_chain" 1)
Expanding the definition of carry_chain,
this simplifies to:
cc_adder_correct.2 :

[-1] FORALL (a, b: bvec[n!1], cin: bit):
bv2nat(carry_chain(n!1, a, b, cin)) =
bv2nat(a) + bv2nat(b) + bv2nat(cin)

|-------
[1] bv2nat(fulladder(a!1(n!1), b!1(n!1),

carry_chain(n!1, a!1ˆ(n!1 - 1, 0),
b!1ˆ(n!1 - 1, 0), cin!1)(n!1))

o carry_chain(n!1, a!1ˆ(n!1 - 1, 0),
b!1ˆ(n!1 - 1, 0), cin!1)ˆ(n!1 - 1, 0))

= bv2nat(cin!1) + bv2nat(a!1) + bv2nat(b!1)

125

Next we rewrite formula [1] with lemma bv2nat concat (equation (2.4)). The
SUBST parameter tells PVS to use n!1 for m when instantiating the lemma. The
other all-quantified variables of the lemma are instantiated automatically by PVS.

Rule? (REWRITE "bv2nat_concat" :SUBST ("m" "n!1"))
Rewriting using bv2nat_concat, matching in * where

m gets n!1,
this simplifies to:
cc_adder_correct.2 :

[-1] FORALL (a, b: bvec[n!1], cin: bit):
bv2nat(carry_chain(n!1, a, b, cin)) =
bv2nat(a) + bv2nat(b) + bv2nat(cin)

|-------
[1] bv2nat[n!1](carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)ˆ(n!1 - 1,0))
+ bv2nat[2](fulladder(a!1(n!1), b!1(n!1),

carry_chain(n!1, a!1ˆ(n!1 - 1, 0),
b!1ˆ(n!1 - 1, 0), cin!1)(n!1)))

* exp2(n!1)
= bv2nat(cin!1) + bv2nat(a!1) + bv2nat(b!1)

We now rewrite formula [1] with the correctness lemma for the full adder:

Rule? (REWRITE "fa_correct")
Rewriting using fa_correct, matching in *,
this simplifies to:

cc_adder_correct.2 :

[-1] FORALL (a, b: bvec[n!1], cin: bit):
bv2nat(carry_chain(n!1, a, b, cin)) =
bv2nat(cin) + bv2nat(a) + bv2nat(b)

|-------
[1] bv2nat[n!1](carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)ˆ(n!1 - 1, 0))
+ bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)(n!1)) * exp2(n!1)
+ bv2nat(a!1(n!1)) * exp2(n!1)
+ bv2nat(b!1(n!1)) * exp2(n!1)
= bv2nat(cin!1) + bv2nat(a!1) + bv2nat(b!1)

We now want to re-combine the most-signiciant bit with the less signifcant bits of
the carry chain output. We therefore use lemma bv2nat split top, which is
a specialication of lemma bv2nat concat. However, this time PVS does not find
the correct instantiation itself, and hence we have to employ the lemma first using
the LEMMA command, and then instantiate it manually using the INST command:

Rule? (LEMMA "bv2nat_split_top")
Applying bv2nat_split_top
this simplifies to:
cc_adder_correct.2 :

126 Proof of Carry-Chain adder

[-1] FORALL (n: above(1), b: bvec[n]):
bv2nat(b) =
bv2nat(bˆ(n - 2, 0)) + bv2nat(b(n - 1)) * exp2(n - 1)

[-2] FORALL (a, b: bvec[n!1], cin: bit):
bv2nat(carry_chain(n!1, a, b, cin)) =
bv2nat(cin) + bv2nat(a) + bv2nat(b)

|-------
[1] bv2nat[n!1](carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)ˆ(n!1 - 1, 0))
+ bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)(n!1)) * exp2(n!1)
+ bv2nat(a!1(n!1)) * exp2(n!1)
+ bv2nat(b!1(n!1)) * exp2(n!1)
= bv2nat(cin!1) + bv2nat(a!1) + bv2nat(b!1)

Rule? (INST -1 "n!1+1" "carry_chain(n!1, a!1ˆ(n!1 - 1, 0),
b!1ˆ(n!1 - 1, 0), cin!1)")

Instantiating the top quantifier in -1.
this simplifies to:
cc_adder_correct.2 :

[-1] bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),
b!1ˆ(n!1 - 1, 0), cin!1))

=
bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)
ˆ(n!1 + 1 - 2, 0))

+
bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)
(n!1 + 1 - 1))

* exp2(n!1 + 1 - 1)
[-2] FORALL (a, b: bvec[n!1], cin: bit):

bv2nat(carry_chain(n!1, a, b, cin)) =
bv2nat(cin) + bv2nat(a) + bv2nat(b)

|-------
[1] bv2nat[n!1](carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)ˆ(n!1 - 1, 0))
+ bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1)(n!1)) * exp2(n!1)
+ bv2nat(a!1(n!1)) * exp2(n!1)
+ bv2nat(b!1(n!1)) * exp2(n!1)
= bv2nat(cin!1) + bv2nat(a!1) + bv2nat(b!1)

Replacing formula [−1] in [1] from right to left and hiding [−1] results in:

[-1] FORALL (a, b: bvec[n!1], cin: bit):
bv2nat(carry_chain(n!1, a, b, cin)) =
bv2nat(cin) + bv2nat(a) + bv2nat(b)

|-------
[1] bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1))
+ bv2nat(a!1(n!1)) * exp2(n!1)
+ bv2nat(b!1(n!1)) * exp2(n!1)
= bv2nat(cin!1) + bv2nat(a!1) + bv2nat(b!1)

127

We now apply the induction hypthesis from [−1]. PVS finds the correct instantia-
tion automatically by the command (INST?).

Rule? (inst?)
Found substitution:
cin: bit gets cin!1,
b: bvec[n!1] gets b!1ˆ(n!1 - 1, 0),
a gets a!1ˆ(n!1 - 1, 0),
Using template: bv2nat(carry_chain(n!1, a, b, cin))
Instantiating quantified variables,
this simplifies to:
cc_adder_correct.2 :

[-1] bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),
b!1ˆ(n!1 - 1, 0), cin!1))

=
bv2nat(cin!1) + bv2nat(a!1ˆ(n!1 - 1, 0)) +
bv2nat(b!1ˆ(n!1 - 1, 0))

|-------
[1] bv2nat(carry_chain(n!1, a!1ˆ(n!1 - 1, 0),

b!1ˆ(n!1 - 1, 0), cin!1))
+ bv2nat(a!1(n!1)) * exp2(n!1)
+ bv2nat(b!1(n!1)) * exp2(n!1)
= bv2nat(cin!1) + bv2nat(a!1) + bv2nat(b!1)

In the next step, we replace the induction hypthesis in the induction claim.

Rule? (REPLACE -1 :HIDE? T)
Replacing using formula -1,
this simplifies to:
cc_adder_correct.2 :

|-------
[1] bv2nat(a!1ˆ(n!1 - 1, 0)) + bv2nat(b!1ˆ(n!1 - 1, 0)) +

bv2nat(a!1(n!1)) * exp2(n!1) + bv2nat(b!1(n!1)) * exp2(n!1)
= bv2nat(a!1) + bv2nat(b!1)

The last steps are to decompose a!1 and b!1 by lemma bv2nat split top.

Rule? (REWRITE "bv2nat_split_top" :SUBST ("n" "n!1+1"))
Found matching substitution:
b: bvec[n] gets a!1,
n: above(1) gets n!1 + 1,
Rewriting using bv2nat_split_top, matching in * where

n gets n!1+1,
this simplifies to:
cc_adder_correct.2 :

|-------
[1] bv2nat(a!1ˆ(n!1 - 1, 0)) + bv2nat(b!1ˆ(n!1 - 1, 0)) +

bv2nat(a!1(n!1)) * exp2(n!1) + bv2nat(b!1(n!1)) * exp2(n!1)
=
bv2nat(a!1ˆ(n!1 - 1, 0)) + bv2nat(a!1(n!1)) * exp2(n!1) +
bv2nat(b!1)

128 Proof of Carry-Chain adder

Rule? (REWRITE "bv2nat_split_top" :SUBST ("n" "n!1+1"))
Found matching substitution:
b: bvec[n] gets b!1,
n: above(1) gets n!1 + 1,
Rewriting using bv2nat_split_top, matching in * where
n gets n!1+1,

this simplifies to:
cc_adder_correct.2 :

|-------
[1] bv2nat(a!1ˆ(n!1 - 1, 0)) + bv2nat(b!1ˆ(n!1 - 1, 0)) +

bv2nat(a!1(n!1)) * exp2(n!1) + bv2nat(b!1(n!1)) * exp2(n!1)
=
bv2nat(a!1ˆ(n!1 - 1, 0)) + bv2nat(a!1(n!1)) * exp2(n!1) +
bv2nat(b!1ˆ(n!1 - 1, 0)) + bv2nat(b!1(n!1)) * exp2(n!1)

This completes the proof of cc_adder_correct.2.

PVS features strategies such as automatic induction with simplification and
rewriting which sometimes help shortening proofs like the presented above. How-
ever, most of the proofs of the hardware in this thesis are as detailed (and hence
tedious) as the one presented.

Appendix C

Circuits, Theorems and Lemmas
in PVS

The following tables list the filenames, PVS theory names, and the PVS names of
the circuits, theorems and lemmas in this thesis. The PVS source files as at the time
of handing in this thesis are available at http://www-wjp.cs.uni-sb.de/
∼cj/PhD/. The newest sources can be found at the VAMP homepage:
http://www-wjp.cs.uni-sb.de/projects/verification/.

Table C.1: Theorems and Lemmas

Number
in this
thesis

Filename PVS Theory PVS Name

3.1 ieee/factoring.pvs factoring val zero
3.2 ieee/factoring.pvs fact props
3.3 ieee/factoring.pvs compare lem
3.4 ieee/factoring.pvs fact props i3e factoring unique
3.5 ieee/factorings.pvs fact norm
3.6 ieee/factorings.pvs eta
3.7 ieee/factorings.pvs eta props
3.8 ieee/factorings.pvs eta props
3.9 ieee/factorings.pvs eta props eta nor, eta denor
3.10 ieee/factorings.pvs fin precision,

fin exponent
3.11 ieee/factorings.pvs fin precision if gaps3
3.12 ieee/factorings.pvs fact mul2 if fact mul2
3.13 ieee/round.pvs round decomposition
3.14 ieee/round.pvs round decomposition ii postnorm typ
3.15 ieee/round.pvs round decomposition ii postnorm val
3.16 ieee/round.pvs round decomposition ii round decomposition
3.17 ieee/round props.pvs round props round denormal
3.18 ieee/round.pvs round correct

continued on next page

130 Circuits, Theorems and Lemmas in PVS

continued from previous page
Number
in this
thesis

Filename PVS Theory PVS Name

3.19 ieee/round.pvs round correct round fix
3.20 ieee/except.pvs unf ovf ovf emax
3.21 ieee/except.pvs ovf unf OVF decomp
3.22 ieee/except.pvs ovf unf LOSS sigrd
3.23 ieee/alpha equiv.pvs alpha lemmas
3.24 ieee/alpha equiv.pvs alpha lemmas alpha rep large
3.25 ieee/alpha equiv.pvs alpha rd lem
3.26 ieee/alpha equiv.pvs alpha rd lem alpha rep eta
3.27 ieee/alpha sticky.pvs alpha sticky sticky comp2
3.28 ieee/round fact.pvs round fact2 rnd repr
3.29 ieee/round fact.pvs round fact2 rnd repr l1, rnd repr l2
3.30 ieee/round fact.pvs round fact2 rnd repr l3a,

rnd repr l3b
3.31 ieee/round fact.pvs round fact2 rnd repr hat
3.32 ieee/sigrd.pvs sigrd props sigrd repr
3.33 ieee/except.pvs ovf unf
3.34 ieee/wrapped exp.pvs wrapped exp rd result eq
3.35 ieee/inx.pvs inx INX eq
3.36 ieee/nu format.pvs ieee bv ieeebvfact is representable3
3.37 ieee/nu format.pvs ieee bv fact2ieeebv
3.38 ieee/fpop result.pvs fpop result result correct equiv
3.39 ieee/compare.pvs fp compare relation cover,

relation exclusive
3.40 ieee/compare.pvs compare comp less compute
3.41 ieee/rd2int.pvs rd2int
3.42 ieee/rd2int.pvs rd2int rd2int large
3.43 ieee/rd2int.pvs rd2int rd2int small
3.44 ieee/rd2int.pvs rd2int rd2int format
3.45 ieee/rd2int.pvs rd2int rd2int lem2
3.46 ieee/rd2int.pvs rd2int rd2int rewr
4.1 unpack/unpack.pvs unpack spec unpack impl sgl
4.2 unpack/unpack.pvs unpack unpack TCC1,

unpack impl sgl add
4.3 unpack/unpack.pvs unpack unpack TCC1,

unpack impl sgl mul
4.4 unpack/unpack.pvs fx unpack fx unpack correct
4.5 rounder/ns.pvs ns impl ns correct tiny ovf sgl,

ns correct sgl
4.6 rounder/ns flags.pvs flags impl flags ovf1 sgl
4.7 ieee/sigrd.pvs sigrd props ceil lem, floor lem
4.8 ieee/sigrd.pvs sigrd props sigrd impl lem
4.9 rounder/postnorm.pvs postnorm stage
4.10 rounder/exprd.pvs exprd exprd correct sgl
4.11 muldiv/ieee md.pvs ieee md
4.12 mul div/lookup.pvs lookup lookup div correct

continued on next page

131

continued from previous page
Number
in this
thesis

Filename PVS Theory PVS Name

4.13 mul div/div initial.pvs div initial initial ok
4.14 mul div/div initial.pvs div initial delta bound 57
4.15 mul div/mul div comb.pvs mul div comb div comb E,

div comb quot sgl
4.16 mul div/div rep.pvs div rep div rep comp
4.17 mul div/exp md.pvs exp md exp md mul, exp md div
4.18 mul div/md stg2.pvs md stg2 md stg smul, md stg dmul
4.19 mul div/md stg2.pvs md stg2 md stg sdiv, md stg ddiv
4.20 mul div/md comb.pvs md comb smul rdinp, sdiv rdinp
4.21 mul div/md comb.pvs md comb md inf times zero s
4.22 adder/fpadd.pvs fpadd fpadd correct
4.23 ieee/add zero.pvs add zero
4.24 add/add comb.pvs add comb s add result, s sub result
4.25 add/add comb.pvs add comb add sign s
4.26 add/add comb.pvs add comb add pinf s
4.27 fp misc/fp misc comb.pvs cmp sgl correct
4.28 fp misc/fp rd2int.pvs fp rd2int rd2int range small,

rd2int range large
4.29 fp misc/fp rd2int.pvs fp rd2int rd2int small int dbl
4.30 fp misc/fp rd2int.pvs fp rd2int rd2int extract correct
4.31 fp misc/fp misc comb.pvs fp misc comb cmp sgl correct
5.1 pvshdl/mutheorems.pvs mutheorems gfp is gfp, lfp is lfp
5.2 pvsctl/ctlpath.pvs ctlpath EG thm1
5.3 pvsctl/ctlpath.pvs ctlpath EG monoton
5.4 pvsctl/ctlpath.pvs ctlpath EG lem1
5.5 pvsctl/ctlpath.pvs ctlpath EG lem2
5.6 pvsctl/ctlpath.pvs ctlpath EG lem3
5.7 pvsctl/ctlpath.pvs ctlpath EU thm1
5.8 pvsctl/ctlpath.pvs ctlpath fEG thm1
5.9 pvsctl/ctlpath.pvs ctlpath AG thm
5.10 pvsctl/ctlpath.pvs ctlpath fairAF thm
5.11 pvsctl/statetrans.pvs statetrans AG path
5.12 pvsctl/statetrans.pvs statetrans fairAF path
5.13 fpu/md correct.pvs md correct e.g.

TOMmd unpce fintrue
5.14 fpu/md correct md correct e.g. TOMmd mul live
5.15 fpu/md correct.pvs md correct TOMmd correct

Table C.2: Circuits

Number
in this
thesis

Circuit Name Filename PVS Name

4.1 FP-UNPACK unpack/unpack.pvs unpack impl,
spec unpack impl

4.2 FXUNPACK unpack/fx unpack.pvs fx unpack
4.3 FP-ROUNDER rounder/rd stg.pvs

continued on next page

132 Circuits, Theorems and Lemmas in PVS

continued from previous page
Number
in this
thesis

Circuit Name Filename PVS Name

4.4 ETA-COMP rounder/ns.pvs ns impl
4.5 REP, SIGRD,

POSTNORM

rounder/repp.pvs,
rounder/sigrd.pvs,
rounder/postnorm.pvs

4.6 ADJUSTEXP, PACK,
EXPRD

rounder/adjustexp.pvs,
rounder/pack.pvs,
rounder/exprd.pvs

4.7 DIV-LOOKUP mul div/div initial.pvs initial impl
4.8 MD-CORE mul div/md stg1.pvs,

mul div/md stg2.pvs
md stg1, md stg2

4.9 EXPMD mul div/exp md.pvs exp md
4.10 SELECTFD mul div/select fd.pvs select fd
4.11 MD-COMB mul div/md comb.pvs md comb
4.12 FP-ADDER adder/fpadder.pvs fpadder
4.13 ADD-COMB add/add comb.pvs add comb
4.14 FP-MISC fp misc/fp misc comb.pvs fp misc comb
4.15 FP-COMPARE fp misc/fp compare.pvs fp compute fcc
5.1 MD-PIPE fpu/md synth.pvs md synth

Appendix D

Multiplicative Pipeline Control in
SMV

scalarset tagT undefined;

typedef md_stateT
mul, div2_1, div2_0, div1_1, div1_0, div0_1,

div0_0, div_E, div_Eb, sel_fd ;

module main(val_in, muldiv_in, double_in, special_in,
tag_in, stall_in, val_out, tag_out, stall_out)

input val_in,stall_in : boolean;
input muldiv_in: boolean; /* TRUE=div */
input double_in: boolean; /* TRUE=double */
input special_in: boolean; /* TRUE=special operands */
input tag_in: tagT;

output val_out, stall_out: boolean;
output tag_out: tagT;

/* defined below */
unp_ce: boolean;
md1_ce: boolean;
md2_ce: boolean;
selfd_ce: boolean;
rd1_ce: boolean;

/**/
/* UNPACKER/LOOKUP */
/**/

134 Multiplicative Pipeline Control in SMV

/* full bits indicate, that the stage contains a valid
instruction */

unp_full: boolean;
unp_tag: tagT;
unp_state: md_stateT;
unp_special: boolean;

init(unp_full):=FALSE;
next(unp_full):=unp_ce ? val_in : unp_full;
next(unp_tag) :=unp_ce ? tag_in : unp_tag;
next(unp_state):=unp_ce ?

(˜muldiv_in ? mul :
(double_in ? div2_1 : div1_1))

: unp_state;
next(unp_special):=unp_ce ? special_in : unp_special;

stall_out := ˜unp_ce;

/**/
/* Mul/Div1 */
/**/

md1_sel: boolean; /* COMB */

md1_full: boolean;
md1_tag: tagT;
md1_state: md_stateT;

md1_sel := md2_full & ˜(md2_state=mul | md2_state=sel_fd);
/* md1_sel <=> feedback */

init(md1_full):=FALSE;
next(md1_full):= md1_ce ?
(md1_sel | (unp_full & ˜unp_special)) : md1_full;

next(md1_tag) := md1_ce ?
(md1_sel ? md2_tag : unp_tag) : md1_tag;

next(md1_state):=md1_ce ?
(md1_sel ? md2_state : unp_state): md1_state;

/**/
/* Mul/Div2 */
/**/

nxtstate: md_stateT; /* COMB */

md2_full: boolean;
md2_tag: tagT;
md2_state: md_stateT;

135

nxtstate:=case /* this is decrement */
md1_state = mul : mul;
md1_state = div2_1: div2_0;
md1_state = div2_0: div1_1;
md1_state = div1_1: div1_0;
md1_state = div1_0: div0_1;
md1_state = div0_1: div0_0;
md1_state = div0_0: div_E;
md1_state = div_E: div_Eb;
md1_state = div_Eb : sel_fd;
md1_state = sel_fd : sel_fd; ;

init(md2_full):=FALSE;
next(md2_full):=md2_ce ? md1_full : md2_full;
next(md2_tag) :=md2_ce ? md1_tag : md2_tag;
next(md2_state):=md2_ce ? nxtstate : md2_state;

/**/
/* Select FD */
/**/

selfd_full: boolean;
selfd_tag: tagT;

init(selfd_full):=FALSE;
next(selfd_full):=selfd_ce ?

(md2_full & md2_state=sel_fd) : selfd_full;
next(selfd_tag):=selfd_ce ? md2_tag : selfd_tag;

/**/
/* Round 1 */
/**/

rd1_full: boolean;
rd1_tag: tagT;

init(rd1_full):=FALSE;
next(rd1_full):=rd1_ce ?

(selfd_full | md2_full & md2_state=mul) : rd1_full;
next(rd1_tag):=rd1_ce ?

(selfd_full ? selfd_tag : md2_tag) : rd1_tag;

/**/
/* Round 2/Output */
/**/

136 Multiplicative Pipeline Control in SMV

out_sel: boolean; /* COMB */

out_sel:= ˜rd1_full & unp_full & unp_special;

val_out := ˜stall_in & (out_sel | rd1_full);
tag_out := out_sel ? unp_tag : rd1_tag;

/**/
/* Clock Enables */
/**/

rd1_ce := val_out | ˜rd1_full;
selfd_ce := rd1_ce | ˜selfd_full;
md2_ce := (md2_state=mul & rd1_ce & ˜selfd_full) |

(md2_state=sel_fd & selfd_ce) |
˜(md2_state=mul | md2_state=sel_fd) | ˜md2_full;

md1_ce := md2_ce | ˜md1_full;
unp_ce := (md1_ce & ˜md1_sel & ˜unp_special) |

(val_out & out_sel) |
˜unp_full;

/**/
/**/
/************* Specifications/Lemmas **************/
/**/
/**/

/* LIVENESS */

stall_fair: assert G F ˜stall_in;
assume stall_fair;

forall(i in tagT)
live[i]: assert

G ((val_in & tag_in=i & ˜stall_out) ->
F (val_out & tag_out=i));

using stall_fair prove live[i];

/* TAG-CONSISTENCY */

tagtable: array tagT of boolean;

forall(i in tagT)

init(tagtable[i]):=FALSE;
next(tagtable[i]):=(val_in & tag_in=i) |

137

(tagtable[i] & ˜(val_out &tag_out=i));

tagunique[i]: assert
G ((val_in & tag_in=i) -> ˜tagtable[i]);

assume tagunique[i];

cons1[i]: assert G ((val_out & tag_out=i) -> tagtable[i]);
using tagunique[i] prove cons1[i];

/* MISC */
fu_valid_out_correct: assert G (val_out -> ˜stall_in);
fu_stall_outfintr: assert G F ˜stall_out;
using stall_fair prove fu_stall_outfintr;

138 Multiplicative Pipeline Control in SMV

Bibliography

[ADG+01] A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and
S. Owre. Computer Algebra meets Automated Theorem Proving:
Integrating Maple and PVS. In Theorem Proving in Higher Or-
der Logics: 14th International Conference, TPHOLs 2001, volume
2152 of LNCS, pages 27–42. Springer, 2001.

[AH01a] A. T. Abdel-Hamid. A hierarchical verification of the IEEE-754
table-driven floating-point exponential function using HOL. Mas-
ter’s thesis, Dpt. Electrical and Computer Engineering, Concordia
University, Montréal, Québec, Canada, 2001.

[AH01b] A. R. Albrecht and A. J. Hu. Register transformations with mul-
tiple clock domains. In Proc. 11th Advanced Research Working
Conference on Correct Hardware Design and Verification Methods
(CHARME), volume 2144 of LNCS, pages 126–139. Springer, 2001.

[AHTH01] A. T. Abdel-Hamid, S. Taher, and J. Harrison. Table-driven floating-
point exponential function using HOL. In R. J. Boulton and P. B.
Jackson, editors, TPHOLs 2001: Supplemental Proceedings, 2001.
Informatics Research Report EDI-INF-RR-0046, Univ. Edinburgh,
UK.

[AJK00] M. D. Aagaard, R. B. Jones, and R. Kaivola. Formal verification
of iterative algorithms in microprocessors. In Design Automation
Conference (DAC) 2000. ACM, 2000.

[AL94] M. D. Aagaard and M. Leeser. Reasoning about pipelines with struc-
tural hazards. In Theorem Provers in Circuit Design (TPCD’94),
volume 901 of LNCS. Springer, 1994.

[AL95] M. D. Aagaard and M. Leeser. Verifying a logic-synthesis algorithm
and implementation: A case study in software verification. IEEE
Trans. on Software Engineering, 21(10), Oct 1995.

[AS95] M. D. Aagaard and C.-J. H. Seger. The formal verification of a
pipelined double-precision IEEE floating-point multiplier. In IC-
CAD, pages 7–10. IEEE, November 1995.

140 BIBLIOGRAPHY

[Bar89] G. Barrett. Formal methods applied to a floating-point number sys-
tem. IEEE Transactions on Software Engineering, 15(5):611–621,
May 1989.

[Bar90] H. P. Barendregt. Functional programming and lambda calculus. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science:
Volume B: Formal Models and Semantics, pages 321–363. Elsevier,
Amsterdam, 1990.

[BBCZ98] S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic
model checking with uninterpreted functions for out-of-order pro-
cessor verification. In FMCAD ’98, LNCS 1522. Springer, 1998.

[BBJ+02] C. Berg, S. Beyer, C. Jacobi, D. Kröning, and D. Leinenbach. For-
mal verification of the VAMP microprocessor (project status). Tech-
nical report, Max-Planck-Institut für Informatik, April 2002.

[BC95] R. E. Bryant and Y.-A. Chen. Verification or Arithmetic Circuits
with Binary Moment Diagrams. In 32nd ACM/IEEE Design Au-
tomation Conference, June 1995.

[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined mi-
croprocessor control. In CAV’94, LNCS 818. Springer, 1994.

[Ber01] C. Berg. Formal verification of an IEEE floating point adder. Mas-
ter’s thesis, Saarland University, Computer Science Department,
May 2001.

[Bey02] S. Beyer. Formal verification of a cache memory interface. submit-
ted for publication, 2002.

[BGV01] R. E. Bryant, S. German, and M. N. Velev. Processor verification
using efficient reductions of the logic of uninterpreted functions to
propositional logic. ACM Trans. on Computational. Logic (TOCL),
2(1):1–41, Jan 2001.

[BJ01] C. Berg and C. Jacobi. Formal verification of the VAMP floating
point unit. In Proc. 11th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME),
volume 2144 of LNCS, pages 325–339. Springer, 2001.

[BJK01a] C. Berg, C. Jacobi, and D. Kröning. Formal verification of a basic
circuits library. In Proc. of the IASTED International Conference on
Applied Informatics, Innsbruck (AI 2001). ACTA Press, 2001.

[BJK01b] C. Berg, C. Jacobi, and D. Kröning. Formal verification of the
VAMP mircoprocessor (project status). Unpublished, available at
http://www-wjp.cs.uni-sb.de/∼cj/vamp-status.ps,
April 2001.

BIBLIOGRAPHY 141

[BJKL02] S. Beyer, C. Jacobi, D. Kroening, and D. Leinenbach. Correct hard-
ware by synthesis from PVS. submitted for publication, 2002.

[BMS+96] R. W. Butler, P. S. Miner, M. K. Srivas, D. A. Greve, and S. P. Miller.
A bitvectors library for PVS. Technical Report TM-110274, NASA
Langley Research Center, 1996.

[Bry96] R. E. Bryant. Bit-level analysis of an SRT divider circuit. In 33rd
Design Automation Conference (DAC’96), pages 661–665. ACM,
June 1996.

[CB96] Y.-A. Chen and R. E. Bryant. ACV: An arithmetic circuit verifier.
In Proc. of IEEE ICCD ’96, pages 361–365. IEEE, 1996.

[CB98] Y.-A. Chen and R. E. Bryant. Verification of floating point adders.
In CAV’98, volume 1427 of LNCS, 1998.

[CCH+96] Y.-A. Chen, E. M. Clarke, P.-H. Ho, Y. Hoskote, T. Kam, M. Khaira,
J. W. O’Leary, and X. Zhao. Verification of all circuits in a floating-
point unit using word-level model checking. In Formal Methods
in Computer-Aided Design, volume 1166 of LNCS, pages 19–33.
Springer, 1996.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, 1999.

[CGZ96] E. M. Clarke, S. M. German, and X. Zhao. Verifying the SRT divi-
sion algorithm using theorem proving techniques. In CAV’96, vol-
ume 1102 of LNCS, 1996.

[CH98] M. Cornea-Hasegan. Proving the IEEE correctness of iterative
floating-point square root, divide, and remainder algorithms. Intel
Technology Journal, Q2, 1998.

[CH99] M. Cornea-Hasegan. IA-64 floating point operations and the IEEE
standard for binary floating-point arithmetic. Intel Technology Jour-
nal, Q4, 1999.

[Cil99] M. D. Ciletti. Modeling, Synthesis, and Rapid Prototyping with the
VERILOG HDL. Prentice Hall, 1999.

[CL93] J. Cortadella and T. Lang. Division with speculation of quotient
digits. In Proceedings of the 11th IEEE Symposium on Computer
Arithmetic, pages 87–94. IEEE, June 1993.

[Cli90] W. D. Clinger. How to read floating-point numbers accurately. In
SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 92–101, 1990.

142 BIBLIOGRAPHY

[Coo80] J. T. Coonen. An implementation guide to a proposed standard for
floating point arithmetic. COMPUTER, 13(1):68–79, January 1980.

[COR+95] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tu-
torial introduction to PVS. Presented at WIFT ’95: Workshop
on Industrial-Strength Formal Specification Techniques, Boca Ra-
ton, Florida, April 1995. Available, with specification files, at
http://www.csl.sri.com/wift-tutorial.html.

[CS95] R. P. Colwell and R. L. Steck. A 0.6um bicmos processor employing
dynamic execution. International Solid State Circuits Conference
(ISSCC), 1995.

[DV02] B. L. Di Vito. Manip: A PVS Prover Strategy Pack-
age for Common Manipulations. NASA Langley Re-
search Center, Hampton, VA, 2002. availanle at
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-
library/pvslib.html.

[EC80] E. A. Emerson and E. M. Clarke. Characterizing correctness prop-
erties of parallel programs using fixpoints. In Automata, Languages
and Programming, LNCS 85. Springer, 1980.

[EP97] G. Even and W. Paul. On the design of IEEE compliant floating
point units. In Proceedings of the 13th Symposium on Computer
Arithmetic. IEEE Computer Society Press, 1997.

[Gen35] G. Gentzen. Untersuchungen über das logische Schließen. In Math-
ematische Zeitschrift, volume 1, pages 176–210, 1935.

[GM93] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University
Press, 1993.

[Gol96] D. Goldberg. Computer arithmetic. In [HP96], 1996.

[Gol98] R. Golliver. Efficiently producing default orthogonal IEEE
double results using extended IEEE hardware. Talk at
3rd Meeting of the Java Study Group, 1998. available as
http://std.dkuug.dk/JTC1/SC22/JSG/docs/m3/docs/
jsgn326.pdf.

[Har97] J. Harrison. Floating point verification in HOL light: The exponen-
tial function. In Algebraic Methodology and Software Technology,
pages 246–260, 1997.

[Har99] J. Harrison. A machine checked theory of floating point arithmetic.
In TPHOLs ’99, volume 1690 of LNCS. Springer, 1999.

BIBLIOGRAPHY 143

[HB92] W. A. Hunt and B. C. Brock. A formal HDL and its use in the
FM9001 verification. In Mechanized Reasoning and Hardware De-
sign, pages 35–47. Prentice Hall International, 1992.

[HD85] F. K. Hanna and N. Daeche. Specification and verification using
higher-order logic. In Koomen and Moto-oka, editors, Computer
Hardware Description Languages and their Applications, pages
418–433. North Holland, unknown 1985.

[HGS00] R. Hosabettu, G. Gopalakrishnan, and M. Srivas. Verifying microar-
chitectures that support speculation and exceptions. In CAV ’00,
volume 1855 of LNCS. Springer, 2000.

[HIK98] P.-H. Ho, A. J. Isles, and T. Kam. Formal verification of pipeline
control using controlled token nets and abstract interpretation. In
ICCAD-98. ACM, 1998.

[Hos99] R. Hosabettu. Systematic Verification of Pipelined Microprocessors.
PhD thesis, Department of Computer Science, University of Utah,
1999.

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, San Mateo, CA, sec-
ond edition, 1996.

[HS99] W. A. Hunt, Jr. and J. Sawada. The FM9801 microprocessor verifi-
cation. IEEE Micro, 19(3):47–55, May/June 1999.

[IBM00] IBM. z/Architecture Principles of Operation. Poughkeepsie, NY,
December 2000.

[ID96] C. N. Ip and D. L. Dill. Better verification through symmetry. For-
mal Methods in System Design, 9(1–2):41–75, 1996.

[IEEE] Institute of Electrical and Electronics Engineers. ANSI/IEEE stan-
dard 754–1985, IEEE Standard for Binary Floating-Point Arith-
metic, 1985.

[Jac01] C. Jacobi. Formal verification of a theory of IEEE rounding. In
R. J. Boulton and P. B. Jackson, editors, TPHOLs 2001: Supple-
mental Proceedings, 2001. Informatics Research Report EDI-INF-
RR-0046, Univ. Edinburgh, UK.

[Jac02] C. Jacobi. Formal verification of complex out-of-order pipelines
by combining model-checking and theorem-proving. accepted for
Computer Aided Verification (CAV), to appear, 2002.

[JK00] C. Jacobi and D. Kroening. Proving the correctness of a complete
microprocessor. In GI Jahrestagung 2000. Springer, 2000.

144 BIBLIOGRAPHY

[KH92] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice Hall,
1992.

[KK01] R. Kaivola and K. Kohatsu. Proof engineering in the large: Formal
verification of the Pentium 4 floating-point divider. In Proc. 11th
Advanced Research Working Conference on Correct Hardware De-
sign and Verification Methods (CHARME), volume 2144 of LNCS.
Springer, 2001.

[KM96] M. Kaufmann and J. S. Moore. ACL2: An industrial strength ver-
sion of Nqthm. In Compass’96: Eleventh Annual Conference on
Computer Assurance, page 23, Gaithersburg, Maryland, 1996. Na-
tional Institute of Standards and Technology.

[KMP99] D. Kröning, S. M. Müller, and W. Paul. A rigorous correctness
proof of the Tomasulo scheduling algorithm with precise interrupts.
In Proc. of the SCI’99/ISAS’99 International Conference, 1999.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers
on automata. Soviet Physics Doklady, 7, 1963.

[KP01] D. Kröning and W. Paul. Automated pipeline design. In Proc. of
38th Design Automation Conference (DAC), pages 810,815, 2001.

[Kro01] D. Kroening. Formal Verification of Pipelined Microprocessors.
PhD thesis, Saarland University, Computer Science Department,
2001.

[KS97] D. Kapur and M. Subramaniam. Mechanizing verification of arith-
metic circuits: SRT division. In FSTTCS, volume 1346 of LNCS,
pages 103–, 1997.

[KSK93] R. Kumar, K. Schneider, and T. Kropf. Structuring and automating
hardware proofs in a higher-order theorem-proving environment.
Formal Methods in System Design, 2(2):165–223, 1993.

[Lee89] C. Lee. Multistep gradual rounding. IEEE Transactions on Com-
puters, 38(4), 1989.

[Lie95] J. Liedtke. On micro-kernel construction. In Symposium on Oper-
ating Systems Principles, pages 237–250, 1995.

[McM93] K. L. McMillan. Symbolic model checking. Kluwer, 1993.

[McM00] K. L. McMillan. A methodology for hardware verification using
compositional model checking. Science of Computer Programming,
37(1-3):279–309, 2000.

BIBLIOGRAPHY 145

[Mel93] T. Melham. Higher Order Logic and Hardware Verification, vol-
ume 31 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1993.

[Min95] P. S. Miner. Defining the IEEE-854 floating-point standard in PVS.
Technical Report TM-110167, NASA Langley Research Center,
1995.

[ML96] P. S. Miner and J. F. Leathrum. Verification of IEEE compliant sub-
tractive division algorithms. In FMCAD-96, volume 1166 of LNCS,
pages 64–, 1996.

[ML01] S. McKeever and W. Luk. Towards provably-correct hardware
compilation tools based on pass separation techniques. In Correct
Hardware Design and Verification Methods CHARME 2001, vol-
ume 2144 of LNCS. Springer, 2001.

[MLD+99] S. M. Mueller, H. Leister, P. Dell, N. Gerteis, and D. Kroening. The
impact of hardware scheduling mechanisms on the performance and
cost of processor designs. In 15th GI/ITG Conference ’Architektur
von Rechensystemen’ ARCS’99, pages 65–73. VDE Verlag, 1999.

[MLK98] J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked
proof of the AMD5K86 floating point division program. IEEE
Transactions on Computers, 47(9):913–926, 1998.

[Mot97] PowerPC 750 RISC Microprocessor Technical Summary, Motorola
Inc., 1997.

[MP00] S. M. Mueller and W. J. Paul. Computer Architecture. Complexity
and Correctness. Springer, 2000.

[MPK00] S. M. Müller, W. Paul, and D. Kröning. Proving the correctness
of processors with delayed branch using delayed PC. In I. Althoe-
fer et al., editor, Proc. Symposium on Numbers, Information and
Complexity, Bielefeld, pages 579–588. Kluwer, 2000.

[MS95] S. P. Miller and M. Srivas. Formal verification of the AAMP5 mi-
croprocessor: A case study in the industrial use of formal methods.
In Proceedings of the Workshop on Industrial Strength Formal Spec-
ification Techniques (WIFT’95), Boca Raton, Florida, 1995.

[OF97] S. F. Oberman and M. J. Flynn. Division algorithms and implemen-
tations. IEEE Transactions on Computers, 46(8):833–854, 1997.

[O’K97] M. O’Keefe. A GCC machine description for DLX.
available at http://www-mount.ee.umn.edu/
∼okeefe/mcerg/gcc-dlx.html, 1997.

146 BIBLIOGRAPHY

[OSR92] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verifica-
tion system. In 11th International Conference on Automated Deduc-
tion (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752. Springer, 1992.

[OSRSC99a] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Language Reference. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, September 1999.

[OSRSC99b] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS System Guide. Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, September 1999.

[OZGS99] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verify-
ing IEEE compliance of floating-point hardware. Intel Technology
Journal, Q4, 1999.

[Pra95] V. R. Pratt. Anatomy of the pentium bug. In TAPSOFT’95, volume
915, pages 97–107. Springer-Verlag, 1995.

[Pre02] J. Preiß. Optimal Pipeline Depth of Out-of-order RISC processors.
PhD thesis, Saarland University, 2002. Draft.

[RSS95] S. Rajan, N. Shankar, and M. K. Srivas. An integration of model
checking with automated proof checking. In CAV’95, volume 939.
Springer, 1995.

[RSS96] H. Ruess, N. Shankar, and M. K. Srivas. Modular verification of
SRT division. In CAV’96, volume 1102 of LNCS, 1996.

[Rus98] D. M. Russinoff. A mechanically checked proof of IEEE compli-
ance of the floating point multiplication, division and square root
algorithms of the AMD-K7 processor. LMS Journal of Computa-
tion and Mathematics, 1:148–200, 1998.

[Rus99] D. M. Russinoff. A mechanically checked proof of correctness of
the AMD K5 floating point square root microcode. Formal Methods
in System Design, 14(1):75–125, January 1999.

[Rus00] D. M. Russinoff. A case study in formal verification of register-
transfer logic with ACL2: The floating point adder of the AMD
Athlon processor. In Proceeding of FMCAD-00, volume 1954 of
LNCS. Springer, 2000.

[Saw99] J. Sawada. Formal Verification of an Advanced Pipelined Machine.
PhD thesis, University of Texas at Austin, December 1999. Also
available from http://www.cs.utexas.edu/users/sawada/dissertation/-
diss.html.

BIBLIOGRAPHY 147

[SH98] J. Sawada and W. A. Hunt, Jr. Processor verification with precise
exceptions and speculative execution. In CAV ’98, volume 1427 of
LNCS. Springer, 1998.

[SH99] K. Schneider and D. W. Hoffmann. A HOL conversion for trans-
lating linear time temporal logic to ω-automata. In TPHOLs 99,
volume 1690 of LNCS. Springer, 1999.

[SORSC99] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Prover Guide. Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, September 1999.

[SP88] J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in
pipelined processors. IEEE Transactions on Computers, 37(5):562–
573, 1988.

[SRC97] M. Srivas, H. Rueß, and D. Cyrluk. Hardware verification using
PVS. In T. Kropf, editor, Formal Hardware Verification: Methods
and Systems in Comparison, volume 1287 of Lecture Notes in Com-
puter Science, pages 156–205. Springer-Verlag, 1997.

[Tom67] R. M. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal of Research and Development, 11
(1):25–33, 1967.

[VB00] M. N. Velev and R. E. Bryant. Formal verification of superscalar
microprocessors with multicycle functional units, exception, and
branch prediction. In DAC ’00. ACM/IEEE, 2000.

[VCDM94] D. Verkest, L. Claesen, and H. De Man. A proof on the nonrestor-
ing division algorithm and its implementation on an ALU. Formal
Methods in System Design, 4, 1994.

[Ver96] Institute of Electrical and Electronics Engineers. IEEE Standrard
1364-1995 Hardware Description Language Based on the Verilog
Hardware Description, 1996.

[Wal64] C. S. Wallace. A suggestion for a fast multiplier. IEEE Trans. on
Electronic Comp., EC-13(1):14–17, 1964.

[Win95] P. J. Windley. Formal modeling and verification of microprocessors.
IEEE Transactions on Computers, 44(1):54–72, 1995.

[Xil02] Xilinx, Inc. Virtex-E Data Sheet, 2002. available at
http://www.xilinx.com/partinfo/ds022.htm.

