
Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Document
D-93-09

TDl Extralight User's Guide

Hans-Ulrich Krieger, Ulrich Schafer

June 1993

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-67608 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-66123 Saarbriicken, FRG
Tel.: (+49681) 302-5252
Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur Kunstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens­
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document AnalysiS and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world . The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J . Wendl
Director

TDL ExtraLight User's Guide

Hans-Ulrich Krieger, Ulrich Schafer

DFK.J -0-93-09

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-9002 0).

© Deutsches Forschungszentrum fUr Kunstliche Inteliigenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that ali such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Inteliigenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; ali applicable
portions of this copyright notice . Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Inteliigenz.

TDLExtraLight User's Guide*

Hans-Ulrich Krieger, Ulrich Schafer
{krieger , schaefer}@dfki.uni-sb.de

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3

D-6600 Saarbriicken 11, Germany

Abstract

This paper serves as a user's guide to the first version of the type description language roc
used for the specification of linguistic knowledge in the DISCO project of the DFKI.

• We would like to thank John Nerbonne and Klaus Netter for their helpful comments on an earlier version of this
documentation. This work was supported by a research grant (ITW 9002 0) from the German Bundesministerium
fur Forschung und Technologie to the DFKI DISCO project .

2

Contents

1 Introduction

2 About TDCExtraLight

3 Starting TDCExtraLight

4 Syntax and semantics of TDCExtraLight
4.1 Type definitions

4.1.1 Conjunctive type definitions without inheritance
4.1.2 Atoms
4.1.3 Type specification and inheritance
4.1.4 Multiple inheritance
4.1.5 Coreferences
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10

Negated coreferences
Simple Disjunctions
Distributed disjunctions
Negation
Lists

4.1.11 Functional constraints
4.1.12 Template calls
4.1.13 Type defini tion options

4.2 Template definitions
4.3 Instance definitions.
4.4 Comments

5 Useful functions, switches and variables
5.1 Creating and changing domains
5.2 The reader
5.3 Global switches and variables
5.4 Hiding attributes at definition time.
5.5 Collecting parsed identifiers
5.6 Getting information about defined types
5.7 Getting information about defined templates
5.8 Getting information about defined instances
5.9 Deleting instances
5.10 Printing type prototypes and instances .

5.10.1 Printing to the interactive screen
5.10.2 Printing to FEGRAMED

5.10.3 Printing pretty with TDC2Iff.TEX
5.10.4 Hiding the type field while printing .

6 Editing and Loading TDC files

7 Displaying the TDC type hierarchy

8 Top level abbreviations

9 Sample session

10 TDCExtraLight syntax
10.l Type definitions
10.2 Instance definitions.
10.3 Template definitions

CONTENTS

3

4

6

6
6
7
7
7
8
8
9
9

10
11
11
11
12
12
13
14
14

14
14
15
15
16
17
17
18
18
19
19
19
20
22

.. 25

26

26

26

27

30
30
31
31

3

1 Introduction

Over the last few years, unification-based grammar formalisms have become the predominant
paradigm in natural language processing and computational linguistics.! The main idea of rep­
resenting as much linguistic knowledge as possible via a unique data type called feature struc­
tures allows the integration of different description levels, starting with phonology and ending in
pragmatics. 2 In this case integration means

1. to represent, process and interpret all linguistic knowledge in one formalism, and

2. to have access to the different description levels and to be able to construct these descriptions
in parallel (as syntax and semantics is constructed simultaneously in Montague's framework;
cf. [Montague 74])

Here , a feature structure directly serves as an interface between the different description stages,
which can be accessed by a parser or a generator at the same time. In this context, unification is
concerned with two different tasks: (i) to combine information (unification is a structure-building
operation), and (ii) to reject inconsistent knowledge (unification determines the satisfiability of a
given structure).

While the first approaches rely on annotated phrase structure rules (for instance GPSG and PATR­
II, as well as their successors CLE and ELU [Russell et al. 92]), modern formalisms try to specify
grammatical knowledge as well as lexicon entries merely through feature structures. In order to
achieve this goal, one must enrich the expressive power of the first unification-based formalisms
with dIsjunctive descriptions . In general, we can distinguish between disjunctions over atoms and
disjunctions over complex feature structures. Atomic disjunctions are available in nearly every
system. However, they are too weak to represent linguistic ambiguities adequately, motivating
the introduction of those ambiguities at higher processing levels. The feature constraint solver
UDiNe [Backofen & Weyers 93] of TVc'ExtraLight allows the use of complex disjunctions and
moreover, gives a grammarian the opportunity to formulate distributive disjunctions which are an
efficient way to synchronize covarying elements in different attributes through the use of unique
disjunction names[Dorre & Eisele 89; Backofen et al. 90] . In addition, this technique obviates
the need for expanding to disjunctive normal form, but adds no expressive power to a feature
formalism, assuming that it allows for disjunctions .
Later, other operations came into play, viz ., (classical) negation or implication. Full negation
however can be seen as an input macro facility because it can be expressed through the use of
disjunctions, negated coreferences, and negated atoms with the help of existential quantification
as shown in [Smolka 88] . UDiNe is current.ly the only implemented system allowing for general
negation. Note that an implication can be easy expressed using negation (although this might not
be an efficient way to implement it) : ¢ -+ 1/) == ..,¢ V t/;.
Other proposals consider the integration of functional and relational dependencies into the for­
malism which makes them Thring-complete in general. 3 However the most important extension to
formalisms consists of the incorporation of types, for instance in modern systems like TFS [Zajac
92], CUF [Dom & Eisele 91], or TVC, [Krieger & Schafer 93]. Types are ordered hierarchically (via

I [Shieber 86] and [Uszkoreit 88] give an excellent introduction to the field of unification-based grammar theories.
[Pereira 8i] makes the connection explicit bet.ween unification-based grammar formalisms and logic programming.
[Knight 89] presents an overview to the different fields in computer science which make use of the notion of
unification .

2 Almost every theory /formalism use a different notion when refering to feature structures: f- ~tructure~ in LFG
[Bresnan 82], feature bundle~ or feature matrice~ in GPSG [Ga7.dar et al. 85], categorie~ in GPSG, CUG [Us7.koreit
86; Kart.tunen 86], and CLE [Alshawi 92], funct io nal ~tructure~ in FUG [Kay 85], term~ in DCG [Pereira & Warren
80], attribute-IJalue matrice~ in HPSG [Pollard & Sag 87] or dag~ in PATR-II [Shieber et al. 83].

3For instance, Carpenter's ALE system [Carpenter 92] gives a user the opportunity to define definite relations
(see [Hohfeld & Smolka 88]), but the underlying constraint system of ALE is even more restricted than the attribute­
value logic employed in TDCE:ttraLight. Definite clauses of ALE can be composed using disjunction, negation, and
Prolog cut. However , allowing the user to write Prolog-style relations, e.g., Ai't-Kaci's LOGIN [A'it-Kaci & Nasr
86a], gives ALE a flavor more like a general logic programming language than a restricted grammar formalism.

4 2 ABOUT TDC EX TRA LlGHT

subsumption) as it is known from object-oriented programming languages. This leads to multiple
inheritance in the description of linguistic entities (see [Daelemans et al. 92) for a comprehensive
introduction). Finally, recursive types are necessary to describe recursion over phrase structure
which is inherent in all grammar formalisms relying on a context-free backbone .4 Other proposals
consider the integration of additional data types, for instance sets (cf. [Rounds 88] or [Pollard &
Moshier 90)) .
Pollard and Sag's Head-Driven Phrase Structure Grammar is currently the most promising gram­
matical theory which includes all the extensions given above (see [Sag & Pollard 87; Pollard &
Sag 87; Pollard 89; Pollard & Sag 93]). HPSG has been developed further since its first for­
mulation [Pollard & Sag 87], has been applied successfully to the description of tough linguistic
phenomena, is interesting from a mathematical viewpoint and is axiomatized to a great extent.
HPSG integrates insights from different theories like LFG, GPSG, and GB, but also employs
theoretical aspects emerging from situation semantics and DRT. In addition, HPSG covers many
ideas from other relating disciplines, like computer science, computational logic and artificial in­
telligence, especially knowledge representation. HPSG is the ideal representative of the family of
unification-based grammar theories which can be characterized roughly by the keywords mono­
tonicity, decLarativeness and reversibility .
Martin Kay was the first person who laid out a generalized linguistic framework, called unification­
based grammars, by introducinl1: the notions of extension, unification, and generalization into
computational linguistics .5 Ka)'1; Functional Grammar [Kay 79] represents the first formalism
in the unification paradigm and is the predecessor of strictly lexicalized approaches like FUG ,
HPSG or UCG [Moens et al. 89). Pereira and Shieber were the first to give a mathematical
reconstruction of PATR-II, in terms of a denotational semantics [Pereira & Shieber 84] . The work
of Karttunen led to major extensions of PATR-Il, concerning disjunction, atomic negation, and the
use of cyclic structures [Karttunen 84] . Kasper and Rounds' seminal work [Kasper & Rounds 86;
Rounds & Kasper 86) is important in many respects: they clarified the connection between feature
structures and finite automata, gave a logical characterization of the notion of disjunction, and
presented for the first time complexity results ([Kasper & Rounds 90] is a good summary of
their work) . Mark Johnson enriched the descriptive apparatus with classical negation and showed
that the feature calculus is a decidable subset of first-order predicate logic [Johnson 88). Finally,
Gert Smolka's work gave a fresh impetus to the whole field : his approach is distinguished from
others in that he presents a sorted set-theoretical semantics for feature structures [Smolka 88]. In
addition , Smolka gave solutions to problems concerning the complexity and decidability of feature
structure descriptions. Further results can be found in [Smolka 89). Paul King's work aims
to reconstruct a special grammar theory, viz. HPSG, in mathematical terms [King 89], whereas
Backofen and Smolka's treatment is the most general and complete one, bridging the gap between
logic programming and unification-based grammar formalisms [Backofen & Smolka 92) . There
exist only a few other proposals to feature structures nowadays which do not use standard first
order logic directly, for instance Reape's approach, using a polymodallogic [Reape 91] .

2 About TDCExtraLight

TDCExtraLight is a unification-based grammar development environment to support HPSG-like
grammars with multiple inheritance. TDC is an acronym for Type Description Language, whereas
the suffix ExtraLight should indicate that it is a roughly implemented system with only a few
sophisticated features . Work on TDCExtraLight has started at the end of 1988 and is embedded
in the DISCO project of the DFKI. The main motivation behind TDCExtraLight was to make a
reliable and robust syst.em fast available to the people in the DISCO project : a type system simply

4 Moving from context-free phrase structure rules to ID rule schemata is motivated by the following two facts :
(i) there was/is a strong tendency in linguistics to incorporate all kinds of knowledge into feature structures, and
(ii) ID schemata are descriptively more adequate than traditional CF rules through the use of underspecification.

50n closer inspection, Kay 's proposal was not the first one working with complex features . There have been
other approaches in related fields ; for instance in linguistics (e .g., [Harman 63]) or compiler construction (e .g.,
[Knuth 68]), although they made no use of the notion of unification.

5

belongs to the main ingredients of a modern NLP core machinery. Moreover, a type system can lay
the foundations for a grammar development environment because types serve as abbreviations for
lexicon entries, categories and principles as is familiar from HPSG (cf. chapter 8 in [Pollard & Sag
87]) and this is exactly the main business TDCExtraLight is currently concerned with. The DISCO
grammar consists of 650 type specifications written in TDC and is the largest HPSG grammar for
German [Netter 93] . Input given to TDC is parsed by a Zebu-generated parser [Laubsch 93] to
allow for a more intuitive input syntax and to abstract from uninteresting details imposed by the
unifier and the underlying Lisp system.
The core machinery of DISCO consists of TDCExtraLight and the feature constraint solver UDiNe
[Backofen & Weyers 93] . UDiNe is a powerful untyped unification machinery which allows the use
of distributed disjunctions, general negation, and functional dependencies. The modules commu­
nicate through an interface, and this communication mirrors exactly the wayan abstract typed
unification algorithm works: two typed feature structures can only be unified if the according
types are definitely compatible. This is accomplished by the unifier in that UDiNe handles over
two type expressions to TDC which gives back a simplified conjunction of the types.
TDCExtraLight permits type definitions with multiple inheritance and the inheritance of functional
dependencies. In addition, TDC allows a grammarian to define and use parameterized templates
(macros). Moreover, there exists a special instance definition facility to ease the writing of lexicon
entries which differ from normal types in that they are not entered into the type hierarchy.6
However, there are small drawbacks when working with TDCExtraLight.
First of all, every type will be fully expanded at definition time in order to determine the consistency
of a feature structure description. Later on, a user is enforced to work with this feature structure,
but cannot stick to the old, smaller one. In addition, when using a (complex) type symbol as a part
in a description , we have to make sure that this type is already defined, i.e., we are not allowed
to refer to an unknown type . As a consequence of this mechanism, roc rejects recursive type
definitions, or to be more precisely, testing the satisfiability of a recursive type leads to an infinite
expansion (recursion can only be expressed in the context-free backbone; see below). Second,
TDCExtraLight does not support disjunctive or even negated type specifications, although they
can be written on the feature constraint level. 7

TDCExtraLight comes along with a number of useful tools:

• a type grapher to visualize the underlying type hierarchy (the grapher and also an inspector
is supported by the Lisp system)

• a sophisticated interactive feature editor, allowing a user to depict and to edit typed feature
structure [Kiefer & Fettig 93)

• a TDC2Iff.TEX package, transforming typed feature structures into Iff.TEX code

• a number of software switches, which influence the behaviour of the whole system

Grammars and lexicons written in roc can be tested by using the chart parser of the DISCO
system. The parser is a bidirectional bottom-up chart parser, providing a user with parametrized
parsing strategies as well as giving him control over the processing of individual rules (cf. [Kiefer
93) for a general description of the parser module and [Netter 93] for other levels of processing in
the DISCO system) .

6Strictly speaking, lexicon entries can be seen as the leaves in the type hierarchy which do not admit further
subtypes (see also [Pollard &. Sag 87], p. 198) . Note that this dichotomy is the analogue to the distinction between
cla •• e. and in.tance. in object-oriented programming languages .

7The disadvantages of roc ExtraLight mentioned above are no longer present in its successor roc which will be
available in spring '93 . The new system is completely redesigned and reimplemented, includes advanced features , is
fully incremental and has better performance, although its expressive power increases massively. Moreover, the new
roc makes a parametrized expansion mechanism available to the user (this is needed by a parser or a generator
to work efficiently) and support a special form of non-monotonic inheritance (see [Krieger & Schafer 93J for a full
system overview).

6 4 SYNTAX AND SEMANTICS OF TDCEXTRALIGHT

3 Starting rv.cExtraLight

1. Start COMMON LISP .

2. (load-system "tdl-el") loads the necessary parts of TDCExtraLight such as the unifier
(UDINE), type definition reader, feature editor (FEGRAMED)' type hierarchy management
and the TDC2UTEX interface. The portable system definition facility DEFSYSTEM is de­
scribed in [Kantrowitz 91].

3. After loading the LISP code, the following prompt appears on the screen:

Welcome to DISCO's Type Definition Language TDL-el.

USER(1): _

4. To start the TDCExtroLight reader and create a domain for grammar types and symbols,
the user should type
(DEFINE-DOMAIN :DISCO) (or abbreviated :det :disco)
Any other keyword symbol or string may be chosen instead of DISCO except TDL and the
usual COMMON LISP package names like COMMON-LISP or USER. The name TDL is preserved
for internal functions and variables. It is possible to define several domains and to change
between them by using function IN-DOMAIN (see Section 5.1).

5. Now it is possible to define types or templates interactively or to load grammar file(s) by
simply using the LISP primitive LOAD. Examples:
DISCO(2): ? my_first_type := [case nom, num 1].
DISCO(3): (LOAD "grammar") (or abbreviated: ld "grammar")

6. DISCO(4): (EXIT) (or abbreviated :ex)
exits LISP and TDCExtraLight .
The EMACS command C-x C-c kills the LISP and EMACS process.

4 Syntax and semantics of ro.cExtraLight

TDCExtraLight can be given a set-theoretical semantics along the lines of [Smolka 88; Smolka
89]. It is easy to translate TDCExtraLight statements into denotation-preserving expressions of
Smolka's feature logic, thus viewing TDCExtroLight only as syntactic sugar for a restricted subset
of PL1.
The BNF (Backus-Naur Form) of the TDCExtroLight syntax is given in section 10. The syntax is
case insensitive. Newline characters, spaces or comments (section 4.4) can be inserted anywhere
between the syntax tokens (symbols, braces, parentheses etc .).
All TDCExtroLight definitions must start with a question mark (?) or exclamation mark (!) and
end with a period (.) . It is important not to forget these delimiters since otherwise the LISP reader
will try to evaluate an expression as LISP code. It is possible to mix LISP code and TDC definitions
in a file. Some examples are shown in section 9.

4.1 Type definitions

The general syntax of a TDCExtroLight type definition is

? (type-name) := (type-def) [(options)].

(type-name) is a symbol , the name of the type to be defined . (type-def) is described in the next
sections . It is either a conjunctive feature description (sections 4.1.1 and 4.1.3) or a template call
(section 4.1.12). (options) will be described in section 4.1.13.

4.1 Type definitions 7

4.1.1 Conjunctive type definitions without inheritance

All type definitions in TD£ Ext raL igh t are conjunctive on the top level, i.e., a conjunction of
attribute-value pairs. Type definitions using inheritance are described in sections 4.1.3 and 4.1.4.
In order to define a feature structure type person-number-type with attributes PERSON and NUMBER,
the TD£ExtraLight syntax is

? person-number-type := [PERSON, NUMBER].

The definition results in the structure

[

person- number-type]
PERSON [J
NUMBER [J

If no value is specified for an attribute, the empty feature structure with the top type of the
type hierarchy will be assumed. Attribute values can be atoms, conjunctive feature structures,
disjunctions, distributed disjunctions, coreferences, lists , functional constraints, template calls, or
negated values. The syntax is described in the next sections (BNF on page 30).

4.1.2 Atoms

In TD£ExtraLight , an atom can be either a number , a string or a symbol. Atoms can be used as
values of attributes or as disjunction elements.
Example : The TD£ExtraLight type definition

? pl-3-phon := [NUMBER plural,
PHON "-en",
PERSON 3].

results in the structure

[

PI-3-Phon 1
NUMBER plural
PHON "-en"
PERSON 3

An example for atoms as disjunctive elements is shown in section 4.1.7 .

4.1.3 Type specification and inheritance

All conjunctive feature structures can be given a t.ype specification. Type specification at the
top level of a type definition defines inheritance from a supertype . The feature definition of the
specified type will be unified with the feature term to which it is attached.
Th e inheritance relation represents the definitional dependencies of types . Together with multiple
in heritance (descri bed in the next section), the inheritance relation can be seen as a directed
acyclic graph (DAG) .
An example for type specification inside a feature structure definition:

? agr-plural-type : = [AGR person-number-type : [NUMBER plural]].

This definition results in the structure

[

OgroPluralotype 1
[

perSOn-number-typej
AGR PERSON [l

NUMBER plural

Now an example for t.ype inheritance at the top level :

8 4 SYNTAX AND SEMANTICS OF roCEXTRALIGHT

? pI-type := person-number-type:[NUMBER plural].

This definition results in the structure

[

pI -type 1
PERSON []
NUMBER plural

This feature structure is called the GLOBAL PROTOTYPE of pi-type: a fully expanded feature
structure of a defined type which has inherited all information from its supertype(s) is called a
GLOBAL PROTOTYPE. A feature structure consisting only of the local information given by the
type definition is called a LOCAL PROTOTYPE. SO the LOCAL PROTOTYPE of pi-type is

[
pI-type]
NUMBER plural

Section 5.10 explains how the different prototypes of a defined type can be displayed.
As mentioned above, type specification is optional. If no type is specified, the top type .var. of
the type hierarchy will be assumed.

4.1.4 Multiple inheritance

On the top level of a feature type definition, multiple inheritance is possible, while inside feature
structures only a single type is allowed which might inherit in its definition from multiple types .
As an example for multiple inheritance, suppose number-type, person-type and gender-type are
defined as follows:

? number-type
? person-type :=
? gender-type :=

[NUMBER].
[PERSON] .
[GENDER] .

Then the roCExtraLight type definitior

? mas-2-type := (number-type,
person-type,
gender-type): [GENDER mas,

PERSON 2] .

would result in the following structure:

4.1.5 Coreferences

[

mas-2-type 1
GENDER mas
PERSON 2
NUMBER []

Coreferences indicate information sharing between feature structures. In roc ExtraLight , coref­
erence symbols are written before the value of an attribute or instead of an attribute value. A
coreference symbol consists of the hash sign (#), followed by either a number (positive int.eger) or
a symbol. However, in the internal representation and in the printed output of feature structure ,
the coreference symbols will be normalized to an integer number. Example:

? share-pn := [SYN #pn person-number-type : [],
SEM #pn] .

4.1 Type definitions

results in the following structure:

4.1.6 Negated coreferences

share-pn

[

person-number-typej
SYN rn PERSON []

NUMBER []
SEM III

9

Negated coreferences specify that two attributes must not share the same value, i.e. they may
have the same value, but these values must not be linked to each other by coreferences.
The Syntax of negated coreferences is

-#(al, a2, ·· · an) ,

where al , a2 , " . a n are coreference symbols, i.e., numbers or symbols, without the hash sign .
Negated coreferences are not allowed at the top level of a type definition .
Example: The TDCExtraLight definition

? give := [RELN give. GIVER -#(1,2). GIVEN #1. GIVEE #2].

would result in the followinl!: structure :

4.1.7 Simple Disjunctions

gIVe

RELN give
GIVER -'(ill , [1J)[]
GIVEN rn
GIVEE ~

Disjunctive alternatives are enclosed in braces ({ . .. }) and separated by commata. Disjunction
elements can be atoms, conjunctive feature descriptions, simple disjunctions, distributed disjunc­
tions , lists, template calls or negated values . In simple disjunctions , the alternatives must not
contain coreferences to values outside the alternative itself (see [Backofen & Weyers 93] for the
reasons) .
Distributed disjunctions allow for a restricted way to use coreferences to outside disjunction alter­
natives (section 4.1.8) . Another restriction in TDCExtraLight is that disjunctions are not allowed
at the top level of a type definition .
Example for disjunctions in a type definition :

? person-l-or-2 : = [SYN { person-number-type: [PERSON 1].
person-number-type: [PERSON 2] } J .

The resulting feature structure is

person-l-or- 2

SYN
[

person-number-typej
PERSON 1
NUMBER []

[

person-number-typej
PERSON 2
NUMBER [J

Another more local specification of the same disjunction would be

10 4 SYNTAX AND SEMANTICS OF TDC,EXTRALIGHT

? person-l-or-2 := [SYN person-number-type: [PERSON { 1 , 2 }]].

The resulting feature structure is

person-l-or-2

SYN [:;::~nEryp<l
NUMBER []

4.1.8 Distributed disjunctions

A very useful feature of TDc'ExtraLight defined in the underlying unification system UDINE are
distributed disjunctions. Distributed disjunctions are a special kind of disjunctions which allow
to restrict the specification of disjunctions affecting more than one attribute to a local domain ,
thus avoiding the necessity of constructing a disjunctive normal form in many cases. Consider the
following example:

season-trigger

{

"spring" }
"summer"

SEASON $1 "fall"

"winter"

mmB~ Slg}
This structure has been generated by the following TDc'ExtraLight expression:

? season-trigger := [SEASON %l{"spring", "summer", "fall", "winter"},
NUMBER %1{ 1 2 3 4 }].

When a structure of type season-trigger will be unified with the structure [SEASON {"summer"
"fall"}] , then the value of attribute NUMBER will become {2, 3}, i.e., the value of attribute SEASON
triggers the value of attribute NUMBER, and vice versa.
The syntax of an alternative list in distributed disjunctions is

%i{ai" ... , ai n },

where i is an integer number, the disjunction index for each group of distributed disjunctions (%1
in the example). More than two alternative lists per index are allowed. All distributed disjunctions
with the same index must have the same number (n) of alternatives. The disjunction index is local
in every type definition and is normalized to a unique index when unification of feature structures
takes place .
In general, if alternative ail (1 :S j :S n) does not. fail, it selects the corresponding alternative bi),

Ci), ... in all other distributed disjunctions with the same disjunction index i .
As in the case of simple disjunctions, disjunction alternatives must not contain coreferences to
values outside the alternative itself. But for distributed disjunctions, there is an exception to
this restriction: disjunction alternatives may contain coreferences to values in another distributed
disjunction if both disjunctions have the same disjunction index and the alternative containing
the coreference has the same position in the disjunction alternative list .
An example for such a distributed disjunctions with coreferences is:

? dis2 :=[a %1{ [J #1 #2 },

b %l{ [c +J, x: [d #1 g: [m -]], x: [d #2 g: [m +]]}].

4.1 Type definitions

dis2

A $1

B $1

4.1.9 Negation

The - sign indicates negation. Example:

? not-mas-type := [GENDER -mas].

The resulting feature structure is

[1
~ [: -]
OJ [: +]
[C +]
[~ ~]
[~ ED]

[
not-mas-type]
GENDER -,mas

4.1.10 Lists

11

In TVCExtraLight, lists are represented as first-rest structures with distinguished attributes *FIRST
and *REST, where the atomic value *end indicates the empty list. The input of lists can be
abbreviated by using the < . . . > syntax:

? list-it := [LIST < first-element, second, #last >,
LAST #last,
AN-EMPTY-LIST <>].

The resulting feature structure is

list-it
list
*FIRST first-element

list
LIST *FIRST second

LAST III
AN-EMPTY-LIST *end

4.1.11 Functional constraints

Functional constraints define the value of an attribute on the basis of a function which has to be
defined and computed outside the TVC system.
The syntax of functional constraints is

12 4 SYNTAX AND SEMANTICS OF TVCEXTRALlGHT

%(function name) «function parameters})

String concatenation is a nice example for the use of functional constraints:

? add-prefix := [WORD 'word,
PREFIX 'prefix,
WHOLE %CONCATENATE (STRING, 'prefix, #word)].

where CONCATENATE is the generic LISP function for concatenation of seQuences. The usual repre­
sentation for functional constraints is:

[

add-prefix 1
WORD [l)
PREFIX ~
WHOLE ml

Functional Constraints:

@] = concatenate(string, 11Ui])

The evaluation of functional constraints will be residuated until all parameters are instanti­
ated [Ait-Kaci & Nasr 86b; Smolka 91]. Evaluation can be enforced by using the function
EVAL-CONSTRAINTS of the UNIFY package. Further details are described in [Backofen & Weyers
93].

4.1.12 Template calls

Templates are pure textual macros which allow to specify (parts of) type or instance definitions by
means of some shorthand . The definition of templates will be explained in section 4.2. Template
call simply means syntactic replacement of a template name by its definition and possibly given
parameters .
The syntax of template call is

CD(template name) «template parameter pairs»)

where a (template parameter pair) is a pair consisting of a parameter name (starting with the $
character) and a value. All occurrences of the parameter name will be replaced by the value given
in the template call or by the default value given in the template definition. See section 4.2 for
further details and examples.

4.1.13 Type definition options

For external use, TVC allows a number of optional specifications which give information which is
basically irrelevant for the grammar . If the optional keywords are not specified, default values will
be assumed by the TVC control system. (options) for type definitions are the optional keywords
: author , :doc, :date and :status. When specified, a value must follow the corresponding
keyword .
The values of : author, : doc and : date must be strings . The default. value of : author is defined
in the global variable -AUTHOR-. The default value of :doc is defined in the global variable
-DEFAULT-DOCUMENTATION- (see section 5). The default value of :date is a string containing the
current time and date .
The: status information is necessary if the grammar should be processed by the DISCO parser.
It distinguishes between different categories of types and type instances , e.g., lexical entries, rules
or root. nodes. If the: status keyword is given (valid values: see rule statuskey in the BNF syntax

4.2 Template definitions 13

on page 30) , the status value of the type will become the specified one. If no status option is
given, the status will be inherited from the supertype (or be : unknown, if the supertype is the top
type of the type hierarchy) .
In order to access the : author, :doc, :data and :statull values of type, functions with the
corresponding names (status etc.) can be used. See section 5.6 for details and examples.

4.2 Template definitions

Templates in rvCExtraLight are what parametrized macros are in programming languages: syn­
tactic replacement of a template name by its definition and (possibly) replacement of given pa­
rameters in the definition . In addition, the specification of default values for template parameters
is possible in the template definition . Templates are very useful for writing grammars that are
modular; they can also keep definitions independent (as far as possible) from specific grammar
theories.
The general syntax of a rvCExtraLight template definition is

? (template-name) ([(template parameter pairs)]) := (template-body) [(options)].

where a (template parameter pair) is a pair consisting of a. parameter name (starting with the $
character) and a default value. All occurrences of the parameter name will be replaced by the value
given in the template call or by the default value given in the template definition. (template-body)
can be a complex description as in type definitions .
Example : The template definition

? a-template ($inherit -var-, $attrib PHON, $value) :=
$inherit:[$attrib #1 $value,

COpy #l.J .

makes it possible to generate the following types using template calls:

? top-Iavel-call := ~a-tamplate.

is a top-level template call which will result in the feature structure:

while

[

top-level- Call]
PHON OJ
COpy rn

? inside-call := [top-attrib ~a-template ($value "hello",
$attrib MY-PHON)].

is a template call inside a feature type definition which will result in the feature structure:

[

inside-call]

[
MY-PHON "hellO"]

TOP-ATTRIB
COpy "hello"

(options) in template definitions are the optional keywords :author, :date and :doc . When
specified, a keyword must be followed by a string. The default value for the : author string is
defined in the global variable -AUTHOR •. The default value for the :doc string is defined in the
global variable .DEFAULT-DOCUMENTATION. (see section 5). The default value for :date is a string
containing the current time and date.
Section 5.7 describes the functions DESCRIBE-TEMPLATE and RETURN-ALL-TEMPLATE-NAMES which
print information about template definitions .

14 5 USEFUL FUNCTIONS, SWITCHES AND VARIABLES

4.3 Instance definitions

An instance of a roc type is a copy of the GLOBAL PROTOTYPE of the specified type plus (possi­
bly) additional instance-specific information. For instance, each lexical entry will typically be an
instance of a more general type, e.g., intransitive-verb-type with additional specific graphemic and
semantic information. In addition, an instance can also be defined by a template call.
Instances will not be inserted into the roc type hierarchy. In general, instances are objects which
will be used by the parser . It is possible to create several instances of the same type with different
or the same instance-specific information.
The general syntax of a roCExtraLight instance definition is

! (type-name) [(instance-body)] [(options)].
or
! (template-call) [(options)].

[(instance-body)] can be a complex description as in type definitions. (options) in instance defi­
nitions are the optional keywords : author, :doc, :date, :name and :atatus. When specified, a
value must follow the corresponding keyword .
If : name is specified, its value must be a symbol which will become the name of the defined
instance. If :name is not specified, the instance name will be 'computed' from the symbol (type­
name) and a number which always guarantees to create a fresh and unique instance name and
allows to distinguish between different instances of the same type. If the same name is given more
than once for an instance of the same type, the old entries will not be destroyed and the parser
is responsible for the access to all instances. Functions PTI, FTI and LTI always take the last
instance defined with the specified name.
If the . : status keyword is given (valid values: see rule statuskey in the BNF syntax on page 30),
the status value of the instance will become the specified one . If no status option is given, the
status will be inherited from (type-name).
The values of :author, :doc and :date must be strings. The default value of : author is defined
in the global variable .AUTHOR. . The default value of : doc is defined in the global variable
.OEFAULT-OOCUMENTATION. (see section 5) . The default of :date is the current time and date.

4.4 Comments

; after an arbitrary token or at the beginning of a line inserts a comment which will be ignored
by the TVC reader until end of line . It is also possible to use the COMMON LISP block comment
delimiters # I I and II # . A comment associated with a specific type, template or instance definition
should be given in the :doc string at the end of the definition .

5 Useful functions, switches and variables

The following functions and global variables are defined in the package TDL and are made public
to all user-defined domains (implemented by COMMON LISP packages) via use-package . This is
done automatically in the function DEFINE-DOMAIN.

5.1 Creating and changing domains

Domains are sets of type , instance and template definitions. It is possible to define several domains
and to have definitions with the same names in different domains. Domains roughly correspond
to packages in COMMON LISP (in fact, they are implement.ed using the package system) .

• function (DEFINE-DOMAIN domain-name [: hide-attributes attribute-list]
[: export-symbols symbol-list]
[:errorp {TINIL}])

5.2 The reader 15

defines a new domain domain-name (a symbol or a string) and turns the roc reader on .
The global variable *DOMAIN* is set to domain-name. Options: attribute-list is the list of
attributes to be hidden (see section 5.4), symbol-list is a list of symbols to be exported from
the domain package. If errorp is T, a redefinition of a domain will cause an error, otherwise
(NIL) a redefinition of a domain will give a warning; default is NIL. Example:
DISCO(6): (DEFINE-DOMAIN :DISCO :hide-attribute8 '(SEM»
.<DOMAIN :DISCO>
:DISCO

• function (IN-DOMAIN domain-name [: errorp {TINIL}])
changes the current domain to domain-name (a symbol or Ii string) and turns on the roc
reader. The global variable *DOMAIN* is set to domain-name. If errorp (optional) is T, using
an undefined domain name will cause an error . If errorp is NIL (default), a warning will be
given and the current domain will not be changed . Example:
DISC02(6): (IN-DOMAIN :DISCO)
#<DOMAIN :DISCO>
:DISCO

• global variable *DOMAIN*
DOMAIN contains the name of the current domain (a string). The value of *DOMAIN* should
only be changed by DEFINE-DOMAIN or IN-DOMAIN, but not directly by the user. Example :
DISCO(7): *DOMAIN*
"DISCO"

5.2 The reader

The reader of roCExtraLight uses the two macro characters? and ! in order to detect the
beginning of a type, template or instance definition . Before loading complex LIsP code, the reader
should be switched off temporarily. This can be done by using function ROFF . Example :
DISCO(S): (ROFF) (or alternatively :roff)
Some errors cause the reader to be switched off automatically. After this or after loading a LISP

file, the reader can be switched on by function RON . Example:
DISCO(9): (RON) (or alternatively :ron)
The functions DEFINE-DOMAIN and IN-DOMAIN include an implicit (RON).

5.3 Global switches and variables

The following global LIsP variables can be set by the user. Switches are set to T for ON or NIL
for OFF .

• global variable *WARN-IF-TYPE-DOES-NOT-EXIST* default value: T
This variable controls whether a warning will be given if a type definition contains the name
of an undefined type in its body. Example:
DISCO(10): (SETQ *WARN-IF-TYPE-DOES-NOT-EXIST* NIL)
NIL

• global variable *WARN-IF-REDEFINE-TYPE* default value: T
This variable controls whether a warning will be signaled if a type already exists and is about
to be redefined . Example :
DISCO(ll): (SETQ *WARN-IF-REDEFINE-TYPE* NIL)
NIL

• global variable *AUTHOR* default value: ""
This variable should cont.ain the name of the grammar author or lexicon writer . It. will
be used as default value for the optional keyword : author in type , template and instance
definitions. Example :

16 5 USEFUL FUNCTIONS, SWITCHES AND VARIABLES

DISCO(12): (SETQ -AUTHOR- "Donald Duck")

"Donald Duck"

• global variable _DEFAULT-DOCUMENTATION- default value: .. "
This parameter specifies the default documentation string for type, template and instance
definitions. Example:
DISC0(13): (SETQ _DEFAULT-DOCUMENTATION- "Version 2.7")

"Version 2.7"

• global variable -VERBOSE-TYPE-DEFINITION-P- default value: NIL
This parameter specifies the verbosity behavior during processing type definitions. If the
value is NIL, only the name of the (successfully) defined type will be printed in brackets,
e.g., .type [VERB-TYPE] . If an error occurs, the output behavior will be independent of the
value of -VERBOSE-TYPE-DEFINITION-P-. Example:
DISCO(14): (SETQ -VERBOSE-TYPE-DEFINITION-P- T)

T

• global variable -VERBOSE-TDL2UNIFY-P- default value: NIL
This parameter increases verbosity in type definitions, especially for debugging purposes. If
set to T, the interface function between type system and unifier, TDL2UNIFY, will print the
structures which are passed to the unifier. Example:
DISCO(lS): (SETQ -VERBOSE-TDL2UNIFY-P- T)

T

• global variable -LAST-TYPE.
This variable contains the name of the last type defined. It is used by the printing functions
PGP, PLP, LGP, LLP, FGP, FLP, SUPERTYPES and RETURN-ALL- INSTANCE-NAMES if no parameter
is specified. The value of this variable can be changed by the user. Example :
DISCO(16): -LAST-TYPE.
AGR-EN-TYPE

DISCO(17): (SETQ .LAST-TYPE* 'MYTYPE)

MYTYPE

• global variable -UNIFY-TYPES. default value:T
If set to T (which is the default), the type field of a feature structure will be reduced to the
most specific type(s) using the type hierarchy at definition time or when unification takes
place. Otherwise (if -UNIFY-TYPES* is set to NIL), the type field of the resulting feature
structure will not be reduced using the type hierarchy. In this case, the type entries become
longer and less readable. Function SUPERTYPES returns a list of all supertypes of a type, see
section 5.6.
Important note: changes to *UNIFY-TYPES. will not have an effect on previously defined
types or instances.

5.4 Hiding attributes at definition time

It is possible to hide values of attributes at type definition time, so that values will never be used
and coreferences out of such structures will never be regarded.

• function (SET-HIDE-ATTRIBUTES attribute-list [domain-name])
This function sets the list of the attributes to be hidden in the following type definitions.
There is one such list for each domain . If no domain is specified, the current domain is taken
as the default. The option : hide-attributes in function DEFINE-DOMAIN has the same
effect as SET-HIDE-ATTRIBUTES.

Important note : SET-HIDE-ATTRIBUTES will not have an effect on previously defined types.
Example:
DISCO(18): (SET-HIDE-ATTRIBUTES '(NUM GENDER) :DISCO)
(NUM GENDER)

5.5 Collecting parsed identifiers 17

• function (GET-HIDE-ATTRIBUTES [domain-name))
This function yields the list of the attributes to be hidden (see SET-HIDE-ATTRIBUTES). If
no domain is specified, the current domain is taken by default . Example:
DISCO(19): (GET-HIDE-ATTRIBUTES :DISCO)
(NIDI GENDER)

• global variable .HIDE-COMPLETELY. default value: NIL
This variable controls whether attributes and values will be hidden (= T) or only the at­
tribute's value (= NIL).
Important note: changes to .HIDE-COMPLETELY. will not have an effect on previously defined
types . Example:
DISCO(20): (SETQ .HIDE-COMPLETELY. T)
T

5.5 Collecting parsed identifiers

• function (GET-IDENTIFIERS [domain-name))
yields a list of all identifiers (i.e., type names, attribute names and atomic value names)
passed through the TV! reader so far . There is a unique list for each domain. Collecting
all identifiers of a domain is useful when working in several domains (i.e., COMMON LISP

packages) at the same time. Example:
DISCO(21): (GET-IDENTIFIERS :DISCO)
(HUM GEN AGR-TYPE ...)

• function (RESET-IDENTIFIERS [identifier-list) [domain-name)
resets the list of all identifiers (i.e., type names, attribute names and atomic value names)
passed through the TV! reader so far. There is a unique list for each domain. The default
value of identifier-list is the empty list. Example:
DISCO(22): (RESET-IDENTIFIERS)
NIL

5.6 Getting information about defined types

All functions described in this section (except the last one) take an argument type which must not
be quoted.

• function (AUTHOR type)

returns the author's name (a string) given in the definition of type or in global variable
.AUTHOR •. Example:
DISCO(23): (author agr-en-type)
"Klaus Netter"

• function (DOC type)
returns the documentation string given in the definition of type type or in the global variable
.DEFAULT-DOCUMENTATION •. Example:
DISCO(24): (doc agr-en-type)
"Agreement for -en."

• function (DATE type)

returns time and date of definition of type. Example :
DISCO(25): (date agr-en-type)
"The feature type AGR-EN-TYPE was defined on 04/16/1993 at 18:09:40"

• function (STATUS type)

returns the status symbol given in the definition of type or inherited by its supertype (de­
fault). Further details are described in section 4.1.13. Example:

18 5 USEFUL FUNCTIONS, SWITCHES AND VARIABLES

DISCO(26): (status agr-en-type)
: UNKNOWN

• function (SURFACE type)
returns the definition string of type. Example:
DISCO(27): (surface person-number-type)
"1 person-number-type := [PERSON, NUMBER]."

• function (SUPERTYPES [type])
This function returns a (possibly empty) list of all types type inherits from, i.e., the super­
types of type. The default for type is the name of the last type defined, i.e., the value of the
global variable .UST-TYPE •. Example:
DISCO(28): (supertypes agr-en-type)
(AGR-GRADE-TYPE AGR-TYPE GRADE-TYPE AGR-FEAT)

• function (RETURN-ALL-TYPE-NAMES)
RETURN-ALL-TYPE-NAMES prints and returns the names of all types defined before. Example:
DISCO(29): (return-all-type-names)

The following types are defined:

PERSON-NUMBER-TYPE
PL-3-PHON
AGR-PLURAL-TYPE

Functions for printing prototypes are described in section 5.10.

5.7 Getting information about defined templates

• function (DESCRIBE-TEMPLATE template-name)
DESCRIBE-TEMPLATE prints a short information text about a template definition. Example:

DISCO(30): (describe-template 'a-template)

The template A-TEMPLATE was defined on 04/15/1993 at 17:12:23.
The author is: tdl-info.
The following definition is associated with A-TEMPLATE:
1 a-template ($inherit .var., $attrib PHON, $value) :=

$inherit: [$attrib #1 $value,
COPY #lJ .

• function (RETURN-ALL-TEMPLATE-NAMES)
RETURN-ALL-TEMPLATE-NAMES prints and returns the names of all templates defined before.
Example :

DISCO(31): (return-all-template-names)

The following templates are defined:

A-TEMPLATE

5.8 Getting information about defined instances

• function (RETURN-ALL-INSTANCE-NAMES [type-name])
RETURN-ALL-INSTANCE-NAMES prints and returns the names of all instances of type type­
name. If no type name is specified, RETURN-ALL-INSTANCE-NAMES prints and returns all

5.9 Deleting instances 19

inst.ances of the last t.ype defined . If type-name is : all , the function will print and return
all instance names of all types defined before. Example:

DISCO(32): (return-all-instance-names 'trans-verb-lex)

The following instances of type TRANS-VERB-LEX are defined:

TRANS-VERB-LEX24068
TRANS-VERB-LEX24118
TRANS-VERB-LEX24098

Functions for printing instances are described in section 5.10.

5.9 Deleting instances

• function (CLEAR-INSTANCES [instance-name])
removes instance instance-name or all instances from the hashtable *FEATURE-TYPES*. If
no instance-name is specified, then the default value : all will be taken . In this case, all
instances will be removed. Example :
DISCO(33): (CLEAR-INSTANCES)
NIL

5.10 Printing type prototypes and instances

For debugging and documentation purposes, it is possible to print the prototype and instances of
a defined feature type. This can be done by using the following functions.

5.10.1 Printing to the interactive screen

• function (PLP [type-name [p-options]])
PLP prints the LOCAL PROTOTYPE of the feature structure with name type-name. If no type
name is specified, PLP prints the prototype of the last type defined before evaluating PLP.
The LOCAL PROTOTYPE contains only the local information given in the definition of type
type-name. Example:
DISCO(34): (PLP 'MAS-SG-AGR :hide-types T :init-pos 12)

[GENDER [FEM
MAS : +]

NUM SG]

• function (PGP [type-name [p-options]])
PGP prints the GLOBAL PROTOTYPE of the feature structure with name type-name. If no type
name is specified , PGP prints the prototype of the last type defined before evaluating PGP.
The G LO BA L PROTOTYPE contains all information that can be inferred for type type-name
and its supertypes. Example:
DISCO(35) : (PGP 'MAS-SG-AGR :hide-types nil)
MAS-SG-AGR [GENDER GENDER-VAL [FEM

MAS : +]
CASE []
NUM SG]

• function (PTI instance-name lp-options])
PTI 'prints the feature structure of instance instan ce-name. Example:
DISCO(36): (PTI 'agr-en-type4335)

p-options are the following opt.ional keywords:

20 5 USEFUL FUNCTIONS, SWITCHES AND VARIABLES

• : hide-types flag default value: the value of global variable .HIDE-TYPES. = NIL
possible values: {TINIL}
If flag is NIL, types will be printed before feature structures (the top type wi\1 not be printed).
If flag is T, types will not be printed. See section 5.10.4.

• : remove-tops flag default value: NIL
possible values: {TINIL}
If flag is T, attributes with empty values (i.e., values that unify with any value) wi\1 not be
printed. If flag is NIL, all attributes (except those in label-hide-list) will be printed.

• : label-hide-list list
possible values: a list of symbols (attribute names)
Attributes in list and their values wi\1 not be printed .

default value: ()

• : label-sort-list list default value: the value of .UBEL-SORT-LIST.
possible values: a list of symbols (attribute names)
list defines an order for attributes to be printed. Attributes of the feature structure will be
printed first-to-last according to their left-to-right position in list. All remaining attributes
which are not member of list will be printed at the end.

• : stream stream default value: T
possible values: {T I NIL I a LIsp stream variable}
If stream is T, the feature structure will be printed to standard output or to the interactive
screen . If stream is NIL, the feature structure will be printed to a string. In all other cases
the feature structure will be printed to the LISP stream stream.

• : ini t-pos number default value: 0
possible values: a positive integer number
number defines the left margin offset (in space character units) for the feature structure to
be printed .

5.10.2 Printing to FEGRAMED

FEGRAMED is DISCO's feature structure editor. Further details are described in [Kiefer & Fettig
93].

• function (FLP [type-name (J-options]])
FLP starts FEGRAMED with the LOCAL PROTOTYPE of the feature structure with name type­
name. If no type name is specified, FLP takes the prototype of the last type defined before
evaluating FLP. The LOCAL PROTOTYPE contains only the local information given in the
definition of type type-name. Example:
DISCO(37): (FLP 'MYTYPE)

• function (FGP [type-name (J-options)p
FGP starts FEGRAMED with the GLOBAL PROTOTYPE of the feature structure with name
type-name. If no type name is specified, FGP takes the prototype of the last type defined
before evaluating FGP. The GLOBAL PROTOTYPE contains all information that can be inferred
for t.ype type-name and it.s supertypes. Example:
DISCO(38): (FGP 'MAS-SG-AGR :wait T :hide-types T)

• function (FTI instance-name (J-options p
FTI starts FEGRAMED with the feature structure of instance instance-name . Example:
DISCO(39): (FTI 'agr-en-type4335)

j-op/ions are the following optional keywords:

5,10 Printing type prototypes and instances

fT'''@} /home/dlsco-sol/TDUagr-en-type-gpJed

Structures Edit Find Options

AGR-EN-TVPE

AGR.! '1
~ GEN-MN-SG-AGR

CASE: [[NOM-GEN-VAl]]
GEN-DAT-VAl

GOI/: -
OBL: +

GENDER: [GENDER-VAL]
FEM: -
MAS: [T]

-

~NUM: SG .:.
DA T-Pl-AGR

CASE: [[ACC-DA T-VAlJ]
GEN-DAT-VAl

GO\l: +

OBL: +

~-

GENDER: [T]
L-NUM: PL
~

Dti-Sti-ACiR

CASE: [GEN-DAT-VAl]
GO\l: [T]
OBL: +

GENDER: [T]

[

L..~':~~]
CASE: [T]
GENDER: [T]
NUM: PL

ACC-MAS-Sti-ACiR

- -

-

-

CASE: [[ACC-DAT-VAL J]
NOM-ACC-VAL

GO\l: +

OBL: -

GENDER: [GENDER-VAL]
FEM: -
MAS: +

GRADE :L..{N'lf'}G

L... [T]

-

-

Figure 1: A feature struct.ure type in FEGRAMED

21

• : hide-types flag default value: the value of global variable *HIDE-TYPES* = NIL
possible values: {TINIL}

If flag is NIL, types will be printed at the top of feature structures. If flag is T, types will

22 5 USEFUL FUNCTIONS, SWITCHES AND VARIABLES

not be printed . See section 5 .10.4.

• : filename filename default value: "type-name-gp.fed", "type-name-lp.fed" or
possible values: a string or a LIsP path name "instance-name. fed II
Unless filename is specified, a filename will be 'computed' from the type name. The file will
be created by the rv.c-FEGRAMED interface in order to communicate the feature structure
information.

• : vai t flag default value: HIL
possible values: {TINIL}
If flag is T, FEGRAMED will wait until the user chooses the return options. If flag is HIL,
FEGRAMED will not wait.

An example screen dump of a feature structure in FEGRAMED is shown in Figure 1.

5.10.3 Printing pretty with rv.c2~TEX

rv.c2Jb.TEX is a tool which generates Jb.TEX compatible high-quality output of rv.c feature struc­
ture types.

• function (LLP [type-name [I-options]])
LLP starts rv.c2Ib-TEX with the LOCAL PROTOTYPE of the feature structure with name type­
name. If no type name is specified, LLP takes the prototype of the last type defined before
evaluating LLP. The LOCAL PROTOTYPE contains only the local information given in the
definition of type type-name. Example:
DISCO(40): (LLP 'agr-en-type :fontsize "small"

:doc-options "a4wide,palatino")

• function (LGP [type-name [I-options]])
LGP starts rv.c2Ib-TEX with the GLOBAL PROTOTYPE of the feature structure with name
type-name. If no type name is specified, LGP takes the prototype of the last type defined
before evaluating LGP. The GLOBAL PROTOTYPE contains all information that can be inferred
for type type-name and its supertypes. Example :
DISCO(41): (LGP 'agr-en-type :mathmode "equation"

:doc-options "leqno")

• function (LTI instance-name [I-options])
LTl starts rv.c2~TEX with the feature structure of instance instance-name. Example:
DISCO(42): (LTl 'agr-en-type4335)

An example of a complex feature structure generated by rv.c2Ib-TEX is shown in Figure 2.
I-options are the following optional keywords:

• : filename filename default value: "type-name-gp", "type-name-lp" or
possible values: string "instance-name"
Unless filename is specified, a filename will be 'computed' from the type name. The filename
will be used to generate the Ib-TEX output file.

• : tilepath pathname default value: value of variable .FILEPATH.
possible values: a string or a COMMON LISP path name
pathname sets t.he directory in which the Ib-TEX output file will be created and the shell
command command will be executed. The value of .FILEPATH. defaults to the tmp directory
in the user 's home directory .

• : hide-types flag default value: value of variable .HIDE-TYPES. = NIL
possible values : {TINIL}
If flag is NIL, t.ypes will be printed at. the t.op of feature structures (the top type will not be
printed) . If flag is T, types will not be printed. See section 5.10 .4.

5.10 Printing type prototypes and instances

agr-en-type

AGR $1

gen-mn-sg-agr

[

gen-dat- val A nom-gen-vall
CASE OBL +

GOV -

[

gender-vall
GENDER FEM-

MAS l]
NUM ag
dat-pl-agr
NUM pl

GENDER []

[

gen-dat- vaIAacc-dat-vall
CASE OBL +

GOV +

dg-sg-agr
NUM ag

GENDER []

[

gen-dat-valj
CASE OBL +

GOV []

[~::;~l 1
GENDER []

acc-mas-sg-agr
NUH sg

GENDER [::~d~-vall
FEM -

[

nom-acc- valA acc-dat-vall
CASE OBL-

GOV +

GRADE $] {::}

[]

Figure 2: A complex feature structure generated by TDC2lb.TEX

23

• : remove-tops flag default value: value of .REMOVE-TOPS. = NIL
possible values: {TINIL}
If flag is T, attributes with empty values (i .e., values that unify with any value) will not be
printed. If flag is NIL, all attributes (except those in LABEL-HIDE-LIST) will be printed.

• : label-hide-list list default value: value of .LABEL-HIDE-LIST. = ()
possible values: a list of symbols (at.tribute names)
Attributes in list will not be printed .

24 5 USEFUL FUNCTIONS, SWITCHES AND VARIABLES

• : label-sort-list list default value: value of variable *UBEL-SORT-LIST* = ()
possible values: a list of symbols (attribute names)
list defines an order for attributes to be printed. Attributes of the feature structure will be
printed first-t~last according to their left-to-right position in list. All rema.ining attributes
which are not member of list will be printed at the end.

• : .hell-eolllllland command default value: value of *SHELL-COMMAND* = "td12latex"
possible values: {NIL I string}
If command it NIL, only the ~TEX file will be created and TDC2~TEX will return. If
command is a string, TDC2UTEX will start a shell process and execute command with
parameter filename. An example for command is the following shell script with name td12ps
which starts UTEX with the output file of TDC2UTEX and writes PostScript™ code to the
file filename. ps:
#!/bin/sh
latex $1
dvips $1 -0 $l.ps

• : wai t flag default value: value of variable *WUT* = NIL
possible values: {TINIL}
If flag is NIL and the shell command command is not NIL, command will be started as a
background process. Otherwise, ;VC2U-TEX will wait for command to be terminated .

• : latex-header-p flag default value: value of *LATEX-HEADER-P* = T
possible values: {TINIL}
If flag is T, a complete U-TEX file with \doeumentstyle etc. will be generated . If flag is
NIL, only the U.TEX code of the feature structure enclosed in \begin{teatur8struct} and
\end{teaturestruct} will be written to the output file. This is useful for inserting U-TEX
feature structures into U.TEX documents for papers, books etc.

• : align-attributes-p flag default value: value of *ALIGN-ATTRIBUTES-P* = NIL
possible values: {TINIL}
If flag is T, attribute names and values will be aligned . If flag is NIL, no alignment will take
place .

• :fontsize size default value: value of *FONTSIZE* = "normalsize"
possible values: a string
This parameter sets the size of the U.TEX feature structures . It must be a string consisting
of a valid U.TEX font size name , e.g ., "tiny", "seriptsize", "footnotesize", "small" ,
"normalsize", "large", "Large" , "LARGE", "huge" or "Huge" .

• : eorefsize size default value: value of *COREFSIZE* = NIL
possible values: { string I NIL}
This parameter sets the font size for coreference symbols . If size is NIL, the size for the
coreference symbol font will be computed from the value of the: fontsize keyword. A font
one magnification step smaller than given in : fontsize will be taken. If size is a string, it
must. contain a valid Jb.TEX font size as in :fontsize.

• : eoreffont string default value: value of variable *COREFFONT* = "rm"
This parameter sets the Jb.TEX font style for printing coreference symbols . string must
contain a valid U.TEX font style, e.g., tt, bt, it etc.

• : eoreftable a-list default value: value of variable *COREFTABLE. = ()
This paramet.er defines a translation table for coreferences and corresponding full names
(strings or numbers) , e.g., «1. "subeat") (2 . "phon") (3. 1) (4 2» . All
coreference numbers at the left side of each element in a-list will be replaced by the right
side. All other coreferences will be left unchanged.

5.10 Printing type prototypes and instances 25

• : arraystretch number default value: value of .ARRAYSTRETCH. = 1.1
This parameter sets the vertical distance between attribute names or disjunction alternatives.
number is a factor which will be multiplied with the standard character height.

• : arraycolBep string default value: value of .ARRAYCOLSEP. = "0. Sex"
This parameter sets the left and right space between braces or brackets and attribute names
or values. string must contain a ~TEX length expression.

• :doc-options string default value: value of .DOC-OPTIONS. = "a4wide"
This parameter sets the ~TEX \documentatyle options if : latex-header-p is T. string
must be a string consisting of the names of zero, one or more valid ~TEX document styles
(separated by commata). Possible document styles are "a4", "a4wide", "Upt", "12pt",
"leqno", "!leqn", "two.ide", "twocolumn", "titlepage" etc. and PostScript™ font
styles "avantgarde", "bookman", "chancery", "ncs", "palatino" and "times".

• :mathmode string default value: value of .MATHMODE. = "diaplaymath"
This parameter sets the UTEX display mode for feature structures. It must be a string
consisting of the name of a UTE» or user defined math mode environment name, e.g.,
"math", "displaymath" or "equation".

• : typestyle style default value: value of .TYPESTYLE. = : in! ix
possible values : { : infix I : prefix}
If style has value: infix, complex type entries will be printed in infix notation (e.g., al\bl\c).
If style has value :prefix, complex type entries will be printed in prefix (LISP like) notation
(e.g., (AND a be)).

• : print-t i tle-p flag default value: value of variable .PRINT-TITLE-P. = T
possible values: {TINIL}
If flag is T, a title with type-name will be printed at the bottom of the feature structure. If
flag is NIL, no title will be printed.

5.10.4 Hiding the type field while printing

• global variable .HIDE-TYPES. default value: NIL
If .HIDE-TYPES. is set to NIL, functions FLP , FGP, FTI, PLP, PGP, PTl, LLP, LGP and LTl print
the type names of all feature types. This causes a wider output. If .HIDE-TYPES. is set to
T, the type names of the feature types are left out. This causes a smaller output . Example :

DISCD(43): (SETQ *HIDE-TYPES. T)
T
DISCD(44): (PGP 'NOM-SG-AGR)
[CASE [GOV

OBL : -]

GENDER [)

NUM SG]

DISCD(45) : (SETQ *HIDE-TYPES* NIL)
NIL
DISCD(46) : (PGP 'NDM-SG-AGR)
NDM-SG-AGR [CASE CASE-VAL [GOV

OBL -]
GENDER []
NUM SG]

26 8 TOP LEVEL ABBREVIA TIONS

6 Editing and Loading TDC files

ro!ExtraLight supports loading type definitions from files . ro! files can be written using an
ordinary text editor. When EMACS is used, we recommend running it in fundamental mode
(which can be switched on with the EMACS command M-x fundamental-mode).
A ro! file may contain type definitions, template definitions, instance definitions or LISP code
(e.g., LISP function definitions) in arbitrary order.
Before loading a ro! file, the ro! reader must be switched on using (RON). This may also be
done within the ro! file .
COMMON LISP function (LOAD file-name (:verbose {TINIL}] [:print {TINIL}]}
loads either LIsP files or ro! files or mixed files .

7 Displaying the TDC type hierarchy

It is possible to display the ro! type hierarchy using the ALLEGRO COMPOSER™. If ALLEGRO
COMPOSER ™ isn't active by default, it is necessary to load it explicitly by
DISCO(47): (COKPOSER:START-COKPOSER) (or alternatively :com)
The ro! type hierarchy is represented via the COMMON LISP OBJECT SYSTEM (CLOS) [Keene
89; Steele 90).
Select menu 'CLOS' and then submenu 'Show Class Subclasses' or 'Show Class Superclasses' and
choose DISCO: : *var* or any other ro! type in a domain, e.g . DISCO. The Composer will show
all subclasses (or superclasses) of the specified ro! type.
DISCO: : *var* is the top type of domain DISCO. It is important not to forget the domain name
which is internally the COMMON LISP package name of the domain package.
An example screen dump of a ro! type hierarchy in CLOS is shown in Figure 3.

8 Top level abbreviations

In the FRANZ ALLEGRO COMMON LISP version of ro!ExtraLight, some often used commands are
also available as top level abbreviations . The top level command :alias prints a list of available
abbreviations:

Alias

: composer
: define-domain
:fegramed
:fgp
:flp
:fti
:lgp
:llp
:lti
:pgp
:plp
:pti
:roff
:ron

Description

start Allegro Composer
define a TDL domain
initialize Fegramed
Fegramed global prototype
Fegramed local prototype
Fegramed type instance
LaTeX global prototype
LaTeX local prototype
LaTeX type instance
print global prototype
print local prototype
print type instance
switch TDL reader OFF
switch TDL reader ON

: composer, : def ine-domain and : fegramed may also be abbreviated by : com, : def and : feg.
All top level commands take the same parameters as the corresponding ro!-LlsP functions de­
scribed in the sections before. Top level commands can only be used in the int.eractive mode of
LISP , but. not in ro! or LISP source files.

27

------ -- . - . . ----_ .. _. - . -. .. - . -- -' . -- -- _.- . - .. -!J~

WIndow tIIa,CKY

t- I1IOO:GMII-YM

f-- lIIQO:ftIDON-If'"

f- 1Il00'_-.''
f-- "OO:IIBM«-V

H IIIOO<:AR -....

_ ,_
I-- .ao·GN '-yAl

.oQ::AC(oM'''''Al ~ IIICiO:NT-VA&.

- .oo::MON4JI-YM. ~ MICO::CI8f-VAL

r===-==::-::::::-tI~ 1DOO:-"CX-1f'AI

--1 - ,-""""-.... .11 '\ - - ..colMOM-VAI.

~ 1IIOO,"'''''·TWf

1IIOC);:ac..-IW-"'"

---i .-co:<aMf .. '...-..t

--1111CO' - TVP<

L-;-=IOIOO=-,,:= ~.,:-1 ~ IlII00 '' -.'''

B

- _.-11-"""
- 1OICO'_ .. "'-TWf

- MCO~~-'YI'I

- -=O:,,-TVft

- 1OICO,,1O(1I-n·tYOI

- 1IICO".COHIIl-"'"

'-===-::;-:="'ll- 1IICO,_ ... 1·"'"
-i'.""'''''''''''''''' _ 1IICO,_-1-41- ',,"

- IIICO' ___ -......

- 1OICO,...,..fOI-tVO'/

r- IIICO' ·"""
r- IIICO,_"_",",
r- -=0,_-1"',,,,",

....... ..:o:~"""-TVfIf

Figure 3: A TVC type hierarchy in CLOS

Important Note: Parameters of top level commands should not be quoted. Example :
DISCD(48): (PGP 'agr-en-type :label-hide-list '(GDV OBL»
but
DISCO(49): :PGP agr-en-type : label-hide-list (GDV DBL)
: ron , :roff, : composer and :fegramed don 't take any parameter .
In addition to these TVC specific commands , the user may define its own abbreviations . Details
are described in the FRANZ ALLEGRO COMMON LISP manual.

9 Sample session

USER(1): (load-system "tdl-el")

Fast loading . ..

Welcome to DISCO's Type Definition Language TDL-el.

USER(2): :def :disco
DISCO-TDL-Reader is on .
• <DOMAIN DISCO>

I

28

DISCO(3): (SETQ .VERBOSE-TYPE-DEFINITION-P. NIL)
NIL

DISCO(4): ; 1. a ai.ple type definition:
? case-val :- [OBL, GOV] :doc "a very si.ple type"

:author "trick".
Itype[CASE-VAL]

DISCO(5): (PGP)
CASE-VAL [GOV []

OBL : []]

9 SAMPLE SESSION

DISCO(6): ; 2. type definition using single inheritance and coreferences:
? noa-dat-type :- [CASE case-val: [GOV II,

Itype[NOM-DAT-TYPE]

DISCO(7): (PGP 'noa-dat-type)
NOM-DAT-TYPE [CASE : CASE-VAL [GOV

OBL

OBL II]].

%1 -[]
%1]]

DISCO(8): ; 3. build an instance of type nom-date-type
! nom-dat-type:[CASE case-val: [GOV +]].
#instance[NOH-DAT-TYPE6780]
'<TDL::FEATURE-STRUCTURE-INFON 0 'xd70706>

DISCO(9): ; 4. type definition using .ultiple inheritance (which is only possible
on toplevel) and disjunction (which is NOT allowed on toplevel):

? num-sing-type :- [HUM sg].
Itype[NUM-SING-TYPE]

DISC0(10): ? pers-type :- [PERS {l,2,3}] :doc "contains a disjunction".
#type[PERS-TYPE]

DISCO (11): ? aul t i - inh:· (num-sing-type ,pers-type) : [pers 2] : doc ".ult iple inheritance".
Itype[MULTI-INH]

DISCO(12): (PLP)
MULTI-INH [PERS : 2]

DISC0(13): (PGP)
MULTI-INH [HUH SG

PERS : 2]

DISCO(14): ; 5. lists:
? I-type :- [LIST-SLOT <.VAR.: [A #c "hi"], <>, #c>].
'type [L-TYPE]

DISCO(15): (PGP)
L-TYPE [LIST-SLOT LIST [.REST LIST [.REST LIST [.REST .END

.FIRST .F.Nnl
.FIRST [A "hi"]]]

DISCO(16): ; 6. distributed disjunction:
7 dd-type :z [a %1{1.2,3},

b%I{"one", "two", "three"}].

.FIRST "hi ,,]

ttype [DO-TYPE]

DISCO (17) : (PGP)
DO-TYPE [8 {$l "one" "tvo" "three" }

A : {$l 1 2 3 }]

DISCO(l8): ? dd-type2:-dd-type:[a 2]
:doc "2 at attribute a triggers value 'tvo' at attribute b.".

'type[DD-TYPE2]

DISCO(19): (PGP)
DD-TYPE2 [B "tvo"

A : 2]

DISCO(20): ; 7. functional constraints:
? f-type :- [x 'x, y 'y, result %+('x,'Y)]·
.type [F-TYPE]

DISCO(21): (PGP)
F-TYPE [RESULT

Y
X

%1 -[)
%2 -[]
%3 -[]]

FUNCTIONAL-CONSTRAINTS :
%1 - (+ %3 %2)

DISCO(22): ! f-type:[x 1, y 5] .
• instance[F-TYPEB61]
'<TDL: :FEATURE-STRUCTURE-INFON G 'xc86aBe>

DISCO(23): ; 8. template definitions:
? a-b-template($attrib, $value):-*VAR*:[$attrib $value, FLAG +].
'template[A-B-TEMPLATE]

OISCO(24): ; 9. template expansion:
? a-b-in-type:=[x h-b-template($attrib PHON, $value "hi")].
'type[A-B-IN-TYPE]

OISCO(25): (PGP)
A-B-IN-TYPE [X : [FLAG : +

PHON "hi"]]

OISCO(26): ; 10 . negated coreferences:
? neg-coref-type :-[a '1, b '2, c -'(1,2)].
'type[NEG-COREF-TYPE]

DISCO(27) : (PLP)
NEG-COREF-TYPE [C

B

A

(-%2 -%1) E[J
%2 -[]
%1 ~[]]

OISCO(28): ; 11. define a LISP function and use it in a FS :
(DEFUN strcat (trest args)

(APPLY "CONCATENATE 'STRING args»
STRCAT
DISCO(29): ? app:=[a .2 "horn", b #1 "Ein", c %strcat ('1,'2, "haus")]
'type[APP]

29

3D

DISCO(30): (PLP)
APP [C "EinhornhaU8"

B "Ein"
A "horn"]

10 TDCEXTRALIGHT SYNTAX

DISCO(31): (PPRIXT (Get-Identifiers» PPRIXT prints -all- identifiers

(APP C XEG-COREF-TYPE PHOI A-B-IX-TYPE FLAG A-B-TEKPLlTE RESULT Y 1
F-TYPE DD-TYPE2 B DO-TYPE A LIST-SLOT L-TYPE MULTI-liB PERS PERS-TYPE SG IUM
IUM-SIIG-TYPE + CASE 10M-OAT-TYPE GOY OBL CASE-VAL SATTRIB $VALUE)

DISCO (32): _

10 TDlExtraLight syntax

The next pages contain the TDCExtraLight syntax in extended BNF (Backus-Naur Form). Ter­
minal characters are printed in bold st.yle. Nonterminal symbols are printed in italic style. There
are three grammars, one for type definitions, one for instance definitions and one for template
definitions. Each grammar starts with the start production. The metasymbols [,], {, }, L • and
+ in extended BNF have the following meaning:

metasymbols meaning
[(expression)] one optional expression
[(expression) I (expression) I ...] one or none of the expressions
{ (expression) I (expression) I···} exactly one of the expressions
{ (expression) }. n successive expressions, where n E {D, I, ... }
{ (expression) }+ n successive expressions, where n E {I, 2, . .. }

10.1 Type definitions

start ::= ? type-name := type-deJ {type-opt}·.

type-deJ ::= { complex-deJ I template-call }

complex-deJ ::= [#variable] [{ type-name I ({type-name.}+ type-name) } :]
[[{jeature-descr .}. Jeature-descr]]

Jeature-descr ::= attribute-name [value]

value ::= [#variable] [-#(t.ariable {. variable}·)] val

val ::= n { atom I
conjunction-val I
[%disj-index] { {value .}" value} I
< [{value .}" value] > I
%Junction-name ([{value.}" value]) I
template- call }

conjunction-val ::= [type-name:) [[{jeature-descr .}" Jeature-descr]]

template-call ::= rDtemplate-name [([{porum-spec .}" parum-spec])]

parum-spec ::= Ssymbol [Iloitle]

atom ::= { string I symbol I [-]integer }

10.2 Instance definitions

variable::= { symbol 1 integer}

attribute-name ::= symbol

type-name ::= symbol

function-name ::= symbol

template-name ::= symbol

disj-index ::= integer

type-opt ::= { :author string 1
:date string 1
:doc string 1

:status statuskey }

statuskey ::= { :Iex-entry 1 :Iex-rule 1 :rule 1 :epsilon 1 :root 1 :unknown 1
:multi-word-Iexeme 1 :sar-rule 1 :Iex-triggered-rule 1
:morph-templatel:sar-rule-2nd }

integer ::= {OI1121314151617181910}+

symbol ::= symbol-begin-char{ symbol-continue-char}·

symbol-begin-char :: = {a-zIA-ZI_I+I-I·}

symbol-continue-char :: = {a-zIA-ZIO-9 I~+ 1-I·15}

string: := .. {any character except"}·"

10.2 Instance definitions

start :: = { ! type-name {instance-opt}·.
! conjunction-val {instance-opt}·. 1

template-call {instance-opt}· . }

instance-opt ::= { :author string 1
:date string 1
:doc string \
:status statuskey 1
:name symbol }

10.3 Template definitions

31

start :: = ? template-name ([{param-spec ,}" param-spec]) := conjunction-val {template-opt}".

template-opt :: = { :author string 1
:date string 1

:doc string}

32 REFERENCES

References

[Ai't-Kaci & Nasr 86a] Hassan Ai"t-Kaci and Roger Nasr. LOGIN: A Logic Programming Language
with Built-In Inheritance. Journal of Logic Programming, 3:185-215, 1986.

[A'it-Kaci & Nasr 86b] Hassan Ai"t-Kaci and Roger Nasr. Residuation: A Paradigm for Integrating
Logic and Functional Programming. Technical Report AI-359-86, MCC, Austin, TX, 1986 .

[Alshawi 92] Hiyan Alshawi (ed .). The Core Language Engine. ACL-MIT Press Series in Natural
Language Processing. MIT Press, 1992.

[Backofen & Smolka 92] Rolf Backofen and Gert Smolka. A Complete and Recursive Feature The­
ory. Technical Report RR-92-30, Deutsches Forschungszentrum fur Kunstliche Intelligenz,
Saarbriicken, Germany, 1992.

[Backofen & Weyers 93] Rolf Backofen and Christoph Weyers . UDiNe-A Feature Constraint
Solver with Distributed Disjunction and Classical Negation. Technical report, Deutsches
Forschungszentrum fur Kiinstliche Intelligenz, Saarbriicken, Germany, 1993 . Forthcoming.

[Backofen et a1. 90] Rolf Backofen, Lutz Euler, and Giinter Gorz . Towards the Integration of
Functions , Relations and Types in an AI Programming Language. In : Proceedings of
GWAI-90, Berlin , 1990. Springer.

[Bresnan 82) Joan Bresnan (ed .). The Mental Representation of Grammatical Relations. Cam­
bridge, Mass.: MIT Press , 1982.

[Carpenter 92) Bob Carpenter. ALE-The Attribute Logic Engine User's Guide . Version {3. Tech­
nical report, Laboratory for Computational Linguistics. Philosophy Department, Carnegie
Mellon University, Pittsburgh, PA, December 1992.

[Daelemans et a1. 92] Walter Daelemans , Koenraad De Smedt, and Gerald Gazdar. Inheritance
in Natural Language Processing. Computational Linguistics, 18(2):205-218,1992.

[Done & Eisele 89] Jochen Dorre and Andreas Eisele. Determining Consistency of Feature Terms
with Distributed Disjunctions. In: Dieter Metzing (ed.), Proceedings of GWAJ-89 (15th
German Workshop on AI), pp. 270-279, Berlin, 1989 . Springer-Verlag.

[Done & Eisele 91) Jochen Dorre and Andreas Eisele. A Comprehensive Unification-Based Gram­
mar Formalism. Technical Report Deliverable R3 .l.B, DYANA , Centre for Cognitive Sci­
ence, University of Edinburgh , January 1991.

[Gazdar et al. 85) Gerald Gazdar , Ewan Klein, Geoffrey Pullum, and Ivan Sag. Generalized Phrase
Structure Grammar. Harvard University Press, 1985.

[Harman 63) Gilbert Harman . Generative Grammars Without Transformation Rules: A Defence
of Phrase Structure. Language , 39:597-616 , 1963.

[Hohfeld & Smolka 88) Markus Hohfeld and Gert Smolka. Definite Relations over Constraint
Languages. LILOG Report. 53, WT LILOG-IBM Germany, Stuttgart, October 1988.

[Johnson 88) Mark Johnson. Attribute Value Logic and the Theory of Grammar. CSLI Lecture
Notes, Number 16 . Stanford: Center for the Study of Language and Information , 1988.

[Kantrowitz 91] Mark Kantrowitz. Portable Utilities for Common Lisp. Technical Report CMU­
CS-91-143, School of Computer Science, Carnegie Mellon University, Pittsburgh , PA, 1991.

[Karttunen 84) Lauri Karttunen . Features and Values . In: Proceedings of the 10th International
Conference on Computational Linguistics , COLING-84 , pp. 28-33, 1984 .

REFERENCES 33

[Karttunen 86] Lauri Karttunen. Radical Lexicalism. Technical Report CSLI-86-68, Center for
the Study of Language and Information, Stanford University, 1986.

[Kasper & Rounds 86] Robert T. Kasper and William C. Rounds . A Logical Semantics for Feature
Structures. In: Proceedings of the 24th Annual Meeting of the Association for Computa­
tional Linguistics, {>{>. 257-266, 1986.

[Kasper & Rounds 90] Robert T. Kasper and William C . Rounds. The Logic of Unification in
Grammar. Linguistics and Philosophy, 13:35-58, 1990.

[Kay 79] Martin Kay . Functional Grammar. In: C. Chiarello et a1. (ed.), Proceedings of the 5th
Annual Meeting of the Berkeley Linguistics Society, pp. 142-158, Berkeley, Cal, 1979.

[Kay 85] Martin Kay. Parsing in Functional Unification Grammar. In: David R. Dowty, Lauri
Karttunen, and Arnold M. Zwicky (eds.), Natural Language Parsing. Psychological, Com­
putational, and Theoretical Perspectives, chapter 7, pp. 251-278. Cambridge: Cambridge
University Press, 1985.

[Keene 89] Sonya E. Keene. Object-Oriented Programming in Common Lisp: A Programmer's
Guide to CLOS. Reading, Massachusetts: Addison-Wesley, 1989 .

[Kiefer & Fettig 93] Bernd Kiefer and Thomas Fettig. FEGRAMED-An Interactive Graph­
ics Editor for Feature Structures. Technical report, Deutsches Forschungszentrum fiir
Kiinstliche Intelligenz, Saarbriicken, Germany, 1993 .

[Kiefer 93] Bernd Kiefer. Gimmie more HQ Parsers. Technical report, Deutsches Forschungszen­
trum fiir Kiinstliche Intelligenz, Saarbriicken, Germany, 1993. Forthcoming.

[King 89] Paul J. King. A LogIcal Formalism for Head-Driven Phrase Structure Grammar. PhD
thesis, University of Manchester, Department of Mathematics, 1989.

[Knight 89] Kevin Knight. Unification: A Multidisciplinary Survey. ACM Computing Surveys,
21(1):93-124, March 1989.

[Knuth 68] Donald E. Knuth. Semantics of Context-Free Languages. Mathematical Systems The­
ory, 2(2):127-145, 1968.

[Krieger & Schafer 93] Hans-Ulrich Krieger and Ulrich Schafer . rv'c-A Type Description Lan­
guage for HPSG. Part 1: Overview. Technical report, Deutsches Forschungszentrum fiir
Kiinstliche Intelligenz, Saarbriicken, Germany, 1993. Forthcoming.

[Laubsch 93] Joachim Laubsch. Zebu: A Tool for Specifying Reversible LALR(1) Parsers. Tech­
nical report, Hewlett-Packard, 1993.

[Moens et a1. 89] Marc Moens, Jo Calder, Ewan Klein, Mike Reape, and Henk Zeevat. Expressing
generalizations in unification-based grammar formalisms . In: Proceedings of the 4th EACL,
pp. 174-181 , 1989.

[Montague 74] Richard Montague. Formal Philosophy. Selected Papers of Richard Montague . New
Haven: Yale University Press, 1974. Edited by Richmond H. Thomason .

[Netter 93] Klaus Netter. Architecture and Coverage of the DISCO Grammar. In: S. Busemann
and Karin Harbusch (eds.), Proceedings of the DFKI Workshop on Natural Language
Systems: Modularit.y and Re-Usability, 1993.

[Pereira & Shieber 84] Fernando C.N. Pereira and Stuart M. Shieber. The Semantics of Gram­
mar Formalisms Seen as Computer Languages. In: Proceedings of the 10th International
Conference on Computational Linguistics, pp. 123-129,1984.

34 REFERENCES

[Pereira & Warren 80] Fernando C.N . Pereira and David H.D . Warren. Definite Clause Grammars
for Language Analysis-A Survey of the Formalism and a Comparison with Augmented
Transition Networks. Artificial Intelligence, 13:231-278, 1980 .

[Pereira 87] Fernando C.N . Pereira. Grammars and Logics of Partial Information. In: J .-L. Lassez
(ed.), Proceedings of the 4th International Conference on Logic Programming, Vol. 2, pp.
989-1013,1987.

[Pollard & Moshier 90] Carl J. Pollard and M. Drew Moshier. Unifying Partial Descriptions of
Sets. In: P. Hanson (ed.), Information, Language, and Cognition. Vol. 1 of Vancouver
Studies in Cognitive Science, pp. xxx-yyy. University of British Columbia Press, 1990.

[Pollard & Sag 87] Carl Pollard and Ivan Sag. Information-Ba3ed Syntax and Semantics. Vol. I:
Fundamentals. CSLI Lecture Notes, Number 13. Stanford: Center for the Study of Lan­
guage and Information, 1987.

[Pollard & Sag 93] Carl Pollard and Ivan Sag. Head-Driven Phrase Structure Grammar. CSLI
Lecture Notes. Stanford : Center for the Study of Language and Information, 1993.

[Pollard 89] Carl Pollard . The Syntax-Semantics Interface in a Unification-Based Phrase Struc­
ture Grammar. In: Stephan Busemann, Christa Hauenschild, and Carla Umbach (eds.),
Views of the Syntax-Semantics Interface: Proceedings of the Workshop on "GPSG and
Semantics", Technische Universitat Berlin, 22-24.Feb 1989, pp. 167-184. Technische Uni­
versitat Berlin : KIT FAST, 1989.

[Reape 91) Mike Reape. An Introduction to the Semantics of Unification-Based Grammar For­
malisms. Technical Report Deliverable R3.2.A, DYANA, Centre for Cognitive Science,
University of Edinburgh, January 1991.

[Rounds & Kasper 86] William C. Rounds and Robert T. Kasper . A Complete Logical Calculus
for Record Structures Representing Linguistic Information . In: Proceedings of the 15th
Annual Symposium of the IEEE on Logic in Computer Science, 1986.

[Rounds 88] William C. Rounds. Set Values for Unification-Based Grammar Formalisms and
Logic Programming. Technical Report CSLI-88-129, Center for the Study of Language and
Information, 1988.

[Russell et al. 92] Graham Russell, Afzal Ballim, John Carroll , and Susan Warwick-Armstrong. A
Practical Approach to Multiple Default Inheritance for Unification-Based Lexicons. Com­
putational Linguistics, 18(3) :311-337,1992 .

[Sag & Pollard 87] Ivan A. Sag and Carl Pollard. Head-Driven Phrase Structure Grammar: An
Informal Synopsis. Technical Report CSLI-87-89, Center for the Study of Language and
Information, Stanford University, 1987 .

[Shieber et aJ. 83] Stuart Shieber, Hans Uszkoreit, Fernando Pereira, Jane Robinson, and Mabry
Tyson. The Formalism and Implementation of PATR-Il. In: BarbaraJ. Grosz and Mark E.
Stickel (eds.), Research on Interactive Acquisition and Use of Knowledge, pp . 39-79. Menlo
Park, Cal. : AI Center, SRI International, 1983 .

[Shieber 86] Stuart M. Shieber . An Introduction to Unification-Based Approaches to Grammar.
CSLI Lecture Notes, Number 4. Stanford: Center for the Study of Language and Informa­
tion , 1986.

[Smolka 88] Gert Smolka. A Feature Logic with Subsorts . LILOG Report 33, WT LILOG-IBM
Germany, Stuttgart, Mai 1988.

[Smolka 89] Gert Smolka. Feature Constraint Logic for Unification Grammars. IWBS Report 93,
IWBS-IBM Germany, Stuttgart, November 1989.

REFERENCES 35

[Smolka 91] Gert Smolka. Residuation and Guarded Rules for Constraint-Logic Programming.
Research Report RR-91-13, DFKI, Saarbriicken, 1991.

[Steele 90] Guy L. Steele. Common Lisp: The Language. Bedford, MA: Digital Press, 2nd edition,
1990.

[Uszkoreit 86] Hans Uszkoreit. Categorial Unification Grammars. In : Proceedings of the lIth
International Conference on Computational Linguistics, pp . 187-194, 1986.

[Uszkoreit 88] Hans Uszkoreit. Fram Feature Bundles to Abstract Data Types: New Directions in
the Representation and Processing of Linguistic Knowledge. In: A. Blaser (ed.), Natural
Language at the Computer-Contributions to Syntax and Semantics for Text Processing
and Man-Machine Translation, pp. 31-64. Berlin: Springer, 1988.

[Zajac 92] Remi Zajac. Inheritance and Constraint-Based Grammar Formalisms. Computational
Linguistics, 18(2) :159-182,1992.

, '~
. ' "
, '~

'" , "

Deutsches
Forschu ng szent rum
fOr KOnstilche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKl VerMfentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen kl>nnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden. wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-34
Philipp Hanschke: Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR-92-35
Manfred Meyer.
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader. Philipp Hanschke:
Extensions of Concept Languages for a Mechanical
Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in
Concept Languages
26 pages
RR-92-38
Philipp Hanschke. Manfred Meyer:
An Alternative to H-Subsumption Based on
Terminological Reasoning
9 pages

RR-92-40
Philipp Hanschke. KnUi Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
John Nerbonne :
A Feature-Based Syntax/Semantics Interface
19 pages

DFKI
-Bibliothek­
PF 2080
D-67608 Kaiserslautem
FRO

DFKI Publications

The following DFKl publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-92-43
Christoph Klauck. Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph Grammars
and its Application to Feature Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-45
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth Andre. Wolfgang Finkler. Win/ried Gra/.
Thomas Rist. Anne Schauder. Wolfgang Wahlster:
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel. Jana KoehJer:
Plan Modifications versus Plan Generation
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busemann:
Generierung natiirlicher Sprache
61 Seiten

RR·92·51
Hans-Jurgen Bilrckert. Werner NUll:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR·92·52
Mathias Bauer. Susanne Biundo. Dietmar Dengler.
Jana Koehler. Gabriele Paul: Pill - A Logic-Based
Tool for Intelligent Help Systems
14 pages

RR·92·53
Werner Stephan. Susanne Biundo:
A New Logical Framework for Deductive Planning
15 pages

RR-92·54
Harold Boley: A Direlct Semantic Characterization
ofRELFUN
30 pages

RR·92·55
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-56
Armin Law:: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR·92·58
Fran:z Baader. Bernhard HoI/under:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR·92·59
Karl SchlechJa and David Makinson: On Principles
and Problems of Defeasible Inheritance
13 pages

RR·92·60
Karl Schlechza: Defaults. Preorder Semantics and
Circumscription
19 pages

RR·93·02
Wolfgang Wah/ster. Elisabeth Andre. Wolfgang
Finkler. Hans-Jurgen Profillich. Thomas Rist:
Plan-based Imegration of Natural Language and
Graphics Generation
50 pages

RR·93·03
Franz Baader. Berhard Hal/under. Bernhard Nebel,
Hans-Jii.rgen Profitlich. Enrico Francom' :
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR·93·04
Christoph Klauck. Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93·05
Franz Baader, Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunification
29 pages

RR-93·06
Hans-Jii.rgen BiJrckert. Bernhard Hollunder. Armin
Law:: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-Jii.rgen BiJrckert. Bernhard Hollunder. Armin
Law:: Concept Logics with Function Symbols
36 pages

RR-93-08
Harold Boley. Philipp Hanschke. Knut Hinkelman,
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

RR-93·09
Philipp Hanschke. Jorg Wurtz:
Salisfiability of the Smallest Binary Program
8 Seilen

RR·93-10
Martin Buchheit. Francesco M, Donini. Andrea
Schaer[: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR·93·11
Bernhard Nebel, Hans-Juergen Buerckerl:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR·93·12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR·93·13
Franz Baader, Karl Sch/echJa:
A Semantics for Open Normal Defaults via a
Modified Preferemial Approach
25 pages

RR·93·14
Joachim Niehren, Andreas Podelski.RalfTreinen:
Equational and Membership Constraints for Infinite
Trees
33 pages

RR·93·15
Frank Berger. Thomas Fehrle. Kristof KI6ckner.
Volker SchOlies. Markus A. Thies. Wolfgang
Wahlster: PLUS· Plan·based User Support
Final Project Report
33 pages

RR·93·16
Gert Smolka. Martin Hem. Jorg Wurtz: Object·
Oriented Concurrent Constraint Programming in 02
17 pllges

RR·93·18
Klaus Schild: Terminological Cycles and the
Propositional }.i·Calcuius
32 pages

RR·93·20
Franz Booder. Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR·93·22
Manfred Meyer. Jorg MUlier:
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR·93·23
Andreas Dengel. Ollmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR·93·24
Rainer Hoch. Andreas Dengel:
Document Highlighting -
Message Classification in Printed Business Letters
17 pages

RR·93·26
Jorg P. Muller. Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

RR·93·27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR·93·28
Hans-Ulrich Krieger. John Nerbonne.
Hannes Pirker: FeauJre-Based A1lomorphy
8 pages

RR·93·33
Bernhard Nebel. Jana Koehler:
Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis
33 pages

RR·93·34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

DFKI Technical Memos

TM·91·13
Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially Evaluated
Meta lnteIpreter
16 pages

TM·91-14
Rainer Bleisinger. Rainer Hoch. Andreas Dengel:
ODA·based modeling for document analysis
14 pages

TM-91-15
Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM·92-01
Lijuan Zhang: Entwurf und Implementierung eines
Compilers zur Transformation von
Werk.stiickreprlisentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi·Agent Blocksworld
32 pages

TM·92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jargen MUller. Jorg Muller. Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM·92·05
Franz Schmalhofer. Christoph Globig. Jorg Thoben:
The refitting of plans by a human expert
10 pages

TM-92·06
0110 Kahn. Franz Schmalhofer: Hierarchical
skeletal plan refinement Task- and inference
slrUCtures
14 pages

TM-92·08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM·93-01
Ouo Kuhn. Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans
20 pages

TM·93-02
Pierre Sablayro/les. Achim Schupew:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

OFKI Oocuments

0·92·15
DFKI Wissenschaftlich-Technischer Jahresbericht
1991
130 Seilen

0-92-16
Judith Engelkamp (Hrsg.): Veneichnis von Soft­
warekomponenten fur natiirlichsprachliche Systeme
189 Seilen Enilpnr rUT nr DtritssonufcrW,v<:'l'rnrne

0-92·17
Elisabeth Andre. Robin Cohen. Winfried Graf.
Bob Kass. Cecile Paris. Wolfgang Wahlsler (Eds.):
UM92: Third International Workshop on User
Modeling, Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0-92·18
Klaus Becker: Verfahren der automatisienen
Diagnose technischer Systeme
109 Seilen

0.92.19 tlrich. Rainer ch: A: Auta:,
Stefan Dillrich. Rainer Hoch: Automatische,
Deskriptor-basiene Unterstiitzung der Dokument­
analyse zur Fokussierung und Klassifizierung von
Geschaftsbriefen
107 Seilen

0·92·21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

0·92·22
Werner Slein: Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

0·92·23
Michael Heifert: Parsen und Generieren der Prolog­
artigen Syntax von RELFUN
51 Seilen

0·92-24
Jiirgen MUlier. Donald Steiner (Hrsg .):
Kooperierende Agenten
78 Seilen

0·92·25
Martin Buchheit: Klassische Kommunikations- und
Koordinationsmodelle
31 Seilen

0·92·26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seilen

0·92·27
Marlin Harm. KnUl Hinkelmann. Thomas lAbisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB nUl anlt Hi1'lOwrmonas homch: h:
40 pages HiJeltypen D lell

0·92·28
Klaus-Peler Gores. Rainer Bleisinger: Ein Modell
zur Reprlisentation von Nachrichtentypen
56 Seiten

,oro, vores. I\lelek ... m
0.93.01 Hanschwm Frilh wlllwh: Temirmilllcal
Philipp Hanschke, Thom Fruhwirth: Tenninologica1
Reasoning with Constraint Handling Rules
12 pages

0·93·02
Gabriele Schmidt. Frank Pelers.
Gernod Laufkljtter: User Manual of COKAM+
23 pages

0·93·03
Stephan Busemann. Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

0·93·04
DFKI Wissenschaftlich-Technischer Jahresbericht
1992
194 Seilen

0·93·05
Elisabeth Andre. Winfried Graf, Jochen Heinsohn.
Bernhard Nebel. Hans-Jiirgen Profitlich. Thomas
Rist. Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages

0·93·06
Jurgen MUlier (Hrsg.):
Beitrllge zurn GJiindungsworlcshop der Fachgruppe
Veneilte Kunstliche Imelligenz Saarbrilcken 29.-
30. April 1993
235 Seilen
Note: This document is available only for a
nominal charge of 25 DM (or 15 USeS).

0·93·07
Klaus-Peter Gores. Rainer Bleisinger:
Ein erwartungsgesteuener Koordinator zur partiel\en
Textanalyse
53 Seilen

0·93·08
Thomas Kieninger. Rainer Hoch: Ein Generator mit
Anfragesystem fiir strukturiene Wotterbiicher zur
Untersliltzung von Texterkennung und Textanalyse
125 Seilen

0·93·09
Hans-Ulrich Krieger. Ulrich Schafer: Vln Sciifer:
TDL ExtraLight User's Guide s Gte
35 pages

	D-93-09-0001
	D-93-09-0002
	D-93-09-0003
	D-93-09-0004
	D-93-09-0005
	D-93-09-0006
	D-93-09-0007
	D-93-09-0008
	D-93-09-0009
	D-93-09-0010
	D-93-09-0011
	D-93-09-0012
	D-93-09-0013
	D-93-09-0014
	D-93-09-0015
	D-93-09-0016
	D-93-09-0017
	D-93-09-0018
	D-93-09-0019
	D-93-09-0020
	D-93-09-0021
	D-93-09-0022
	D-93-09-0023
	D-93-09-0024
	D-93-09-0025
	D-93-09-0026
	D-93-09-0027
	D-93-09-0028
	D-93-09-0029
	D-93-09-0030
	D-93-09-0031
	D-93-09-0032
	D-93-09-0033
	D-93-09-0034
	D-93-09-0035
	D-93-09-0036
	D-93-09-0037
	D-93-09-0038
	D-93-09-0039
	D-93-09-0040
	D-93-09-0041
	D-93-09-0042
	D-93-09-0043
	D-93-09-0044
	D-93-09-0045

