
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-91-09

RATMAN and its Relation to
Other Multi-Agent Testbeds

Hans-Jürgen Bürckert
Jürgen Müller

Achim Schupeta

March 1991

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49 631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11, FRG
Tel.: (+49 681) 302-5252
Fax: (+49 681) 302-5341

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Acronym

https://core.ac.uk/display/196650656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern und Saarbrücken is a non-profit organization which was
founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM, Insiders, Fraunhofer
Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Siemens-Nixdorf, Philips and Siemens.
Research projects conducted at the DFKI are funded by the German Ministry for Research and
Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces
Intelligent Communication Networks
Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Prof. Dr. Gerhard Barth
Director

RATMAN and its Relation to Other Multi-Agent Testbeds

Hans-Jürgen Bürckert, Jürgen Müller, Achim Schupeta

DFKI-RR-91-09

Parts of this work are/will be published under the following references:

Bürckert, H.-J., Müller, J.: RATMAN: Rational Agents Testbed for Multi Agent Networks, in
Demazeau,Y., Muller, J.-P.: Decentralized Artificial Intelligence, Proc. of the second workshop on
Modelling Autonomous Agents in a Multi-Agent World (MAAMAW'90), Elsevier Sc. Pub/North
Holland, 1991 (forthcoming)

Müller, J.: Defining Rational Agents by Using Hierarchical Structured Knowledge Bases, IEE
Computing and Control Division Colloquium on “Intelligent Agents”, Digest No. 1991/048, London,
Feb. 91

© Deutsches Forschungszentrum für Künstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum für Künstliche Intelligenz.

RATMAN AND ITS RELATION TO
OTHER MULTI-AGENT TESTBEDS

Hans-Jürgen BÜRCKERT, Jürgen MÜLLER, Achim SCHUPETA

DFKI (German Research Center on Artificial Intelligence)
Research group WINO
Postfach 2080
D-6750 KAISERSLAUTERN
GERMANY

RATMAN (Rational Agents Testbed for Multi Agent Networks) is a
workbench for the definition and testing of rational agents in multi-
agent environments. The special feature of RATMAN is the
specification of such agents with hierarchical knowledge bases
comprising all knowledge levels from sensoric knowledge to learning
capabilities. In all levels only knowledge representation languages have
to be used which are based on logic. On each knowledge level the
designer may choose the granularity of knowledge for the agent to be
designed and moreover he may decide whether the agent should have a
certain skill at all. Thus it will be possible to construct a society of very
heterogeneous agents from expert systems on one side of the spectrum
to simple reactive agents on the other side. Since the aim of such a
testbed is to get more insight in the behavior of intelligent agents’
cooperating actions, RATMAN is providing a set of statistical and
documentational features. In the second part other approaches to multi-
agents environments are presented. AF, MACE, AGORA and MAGES
are first characterized by their main features. Then their specialities are
discussed and finally the boarders with respect to RATMAN are
considered.

Contents

CONTENTS.. .. 2

1. INTRODUCTION 3

2. RATMAN: THE OVERALL STRUCTURE .. 5
2.1 The Agent Tool Box.. 6

2.1.1 The Knowledge Levels.. 6
2.1.2 Functional Aspects ... 10

2.2 The Current World Scenario.. 11
2.3 The Specification Kit.. 12
2.4 The Status Sequence and Statistics Box.. 13

3. RELATED WORK ... 15
3.1 Activation Framework.. 15
3.2 Mace.. 17
3.3 Agora 19
3.4 Mages.. 21
3.5 Other Systems.. 23

4. DISCUSSION 24

5. REFERENCES 26

1 . Introduction

The idea of modeling a world of autonomous cooperating agents grew rapidly in the last years
[BG88], [DM90], [Huh87], [Huh90], [DM91]. What do we mean, when we talk about autonomous
cooperating agents? The terminology in this area is not as clear as it should be. Speaking of an
autonomous agent some authors think of a kind of robot, such stressing on motion and action skills,
while others have in mind an expert system, which cooperates with other systems of different
expertise, such stressing on the reasoning skills. Bond and Gasser [BG88] speak of an agent as a
computational process with a single locus of control and/or “intention”, but concede that this could
not be treated as a definition. They also sketch the position of multi-agent (MA) systems within AI
as follows:

Distributed artificial intelligence (DAI) is the subfield of AI, that is concerned with concurrency
in AI at many levels. DAI branches into the area of distributed problem solving (DPS), which
considers how the work of solving a particular problem can be divided among a number of
cooperating and knowledge-sharing modules or nodes, on the one hand and into MA systems on
the other. In MA systems the coordination of intelligent behavior of a collection of autonomous
intelligent agents is the main concern. A third area - parallel artificial intelligence (PAI) - stresses
more on performance problems than on conceptual advances and is involved in the development of
parallel computer architecture, parallel languages and algorithms. But a sharp distinction between
these areas could not be drawn as there is no clear commonly accepted definition of “autonomous
cooperating agents”.

From another perspective, two other major streams, two paradigms of viewing multi-agent
systems can be identified in the literature, namely the behavior-based approach and the
knowledge-based approach. The central idea of the behavior-based approach is that the
agents react in response to environmental changes, where in the knowledge-based approach
they act as a consequence of their reasoning about their goals and intentions.

In the context of behavior-based systems Connah, Shiels, and Wavish [CSW88a] describe the
structure of artificial agents from a cognitive point of view. They develop an integrated
architecture, where abstract cognitive activities emerge from a concrete, situated activity. In a
continuation [CSW88b] the model of a testbed for cooperating agents is described in five big parts:
Nature of the world, representation of position, shape, time, and causality. Steels [Ste89b] tackles
the problem of cooperation between distributed agents. A behavior-based approach is used to
examplify self-organization for establishing emergent functionality. The interesting point of this
approach is that neither explicit, complex representation of the world nor explicit communication
between the agents is used. A very similar approach is also studied by Moyson and Manderick
[MM88] who describe the collective behavior of ants with the aim of simulating the emergence of
self-organization by an intrinsically parallel algorithm. Further they propose a mathematical model
of the behavior, which is used to compute the parameters in the simulation. Finally Maes [Mae89]
gives an interesting approach to model the activation/inhibition of agents in an emergent,
noncommunication agent environment. She represents the preconditions of activations as formulas.
An agent becomes active if the precondition of a goal is proved to be valid.

4

For the knowledge-based approach essential ideas may be found in [Coe88] where an
introduction to the interaction of multi-agent systems in terms of actual questions from the rational
agent point of view is given. The special focus of the discussion is communication between agents.
Tennenholtz and Moses [TM89] present a theoretical foundation for a multi-agent planning
environment. The set of goals of different agents defines the “cooperative goal of the system”. The
abstract “cooperative goal achievement decision problem” is then the question whether each of the
goals can be fulfilled by the agent society. Myerson [Mye88] discusses the communication activities
between agents with different goals from the game theoretic point of view. By combining the
“incentive constraints” of the partners an optimal plan between the different goals may be
computed. Really logic based is the development of Mazer [Maz88]. He studies commitment
problems in distributed environments. The approach is based on “knowledge logic”, a temporal
modal logic to describe the interaction of processes, which can execute events, via a communication
system. Communication abilities, negotiation and planning for multi-agent systems of this category
are reported in [KP89], [Wer88a], [Wer88b], [ZR89].

As this short and surely incomplete essay shows there is a great variety, a large spectrum of
approaches and special features to describe agents and their behavior in a multi-agent society. The
basic point, the salient research issue in multi-agent scenarios is to learn about the interaction of
heterogeneous agents. The question is, what will happen if we give a task to a set of different
agents in an multi-agent scenario. If the “social goal”, as Werner [Wer88b] said, is reached by the
agents, how did the agents succeed? If we change the skills of some agents, will it work again? Is
there a higher principle about the behavior, no matter whether the agents can communicate or not,
whether they are “intelligent” or not?

To study those questions we need tools to work with. Toolboxes, workbenches, testbeds,
experimental environments to define single agents, to collect them in a society, to build a world for
them and to give them a common goal to achieve. This is the main lack of the current research in
this area! Many research projects envision some concepts, that can stimulate the multi-agent
research, develop a scenario, which explains their ideas and shows the intended results and
implement it (if at all) with a program, that is perfectly tailored to this scenario. These kinds of
work usually lay the basis for further research, often leading to new and different points of view
(paradigm invention). A few research projects try to define an architecture or a kind of framework
for agents, that fall into a certain category or paradigm. They also present sample-scenarios, but
their work is capable of being relevant to a whole class of problems (paradigm extension). To
capture all the variety of approaches within one flexible universal testbed would lead to a
unification of different paradigms as well as to a support of the invention and extension of new
paradigms - at least as far as it reduces and accelerates their implementational work. MACE
[GBH86], Agora [BAFLB87], AF [Gre87] and MAGES [BFS90] are first approaches to such a
system and we will describe some aspects of them in comparison to our suggested system
RATMAN after the presentation of its structure.

The main characteristic of RATMAN will be that it is purely based on logic, that is, it is possible
within the logic paradigm to specify all individual features for simplest up to most complex agents,
that the user may be one agent in the society and that there are various facilities that support the
analysis of a session.

5

2 . RATMAN: The Overall Structure

In the following figure we show the overall structure of the Rational Agents Testbed for Multi
Agents Networks. RATMAN consists of four main modules: the agent tool kit, the
specification kit, the current world scenario and the status sequence/statistics box.

current world
 scenario

 status sequence/
 statistics box

agent tool box specification
 kit

The specification kit serves as the user interface to define the agents, their relations in the world,
and their status in the agent society. It will provide several choices for general strategies to be
performed and it can be used to specify what kind of status information and statistic data should be
monitored by the system.

The agent tool box provides a scheme for a hierarchically structured knowledge base together
with reasoning facilities to model all features of agents. Predefined knowledge may be used or be
partially skipped and new knowledge may be introduced by the user.

Each agent defined in the agent tool box will get a place in the current world scenario . Together
with objects of the worlds the agent society is monitored to the user. Further this module provides a
blackboard which serves as the communication platform for the agents and the user. Thus, if an
agent is defined to have communication facilities, then he has access to the blackboard or parts of
it. And the user itself may be seen as one of the agents.

The status sequence and statistics box has the task to show the sequence of the changing worlds,
the activity potential of the agents, the internal clock, analysis of synchronization processes etc.

We will now unfold the overall structure to discuss the components in more detail. First we will
describe what will be predefined in the agent tool box and then we will look at the features of the
current world scenario. In order to demonstrate that and how both the agents' knowledge and skills
and the world can be formulated in RATMAN with logics we provide a couple of examples in logic
based description languages. The realization of special agents and societies will thereafter be
discussed in the description of the specification kit. Finally some words have to be said concerning
the status sequence and statistics box.

6

2 .1 The Agent Tool Box

An agent is defined by his knowledge and his facilities, i.e. his knowledge base. Since both,
knowledge and skills, should be represented in the knowledge base, it is organized
hierarchically. And moreover, since different knowledge representation languages force a lot
of trouble in the connection of the levels, it is demanded that - at least - the representation can
be translated into a single paradigm, namely logic. The following picture shows the different
levels of the hierarchical knowledge base.

R
E
A
S
O
N
E
R Time Space CSK ExpK

Actions

Communication

Planner

Introspection & PartnerMod

Learner

SensoricK

We will first for each level give examples of the knowledge to be presented. Then we discuss the
functional aspects of the hierarchical structure.

2.1 .1 The Knowledge Levels

On the lowest level the sensoric knowledge , the information about the status of hands, feet,
eyes, etc. are represented. This knowledge is basically propositional in nature, like:

RIGHT_HAND (empty)

LEFT_HAND (objekt-A)

BODY_POSITION (standing)

WORLD_MONITOR (accessible)

CURRENT_STATE(waiting)

7

The second level is the one which represents the knowledge base in the usual sense. It is divided
into four parts: Knowledge about time, space, common sense and special expertise. The time slot
holds general information like the handling of time intervals as defined by Allen [All84],
definitions of day, week, minutes, hours etc., as well as special timing information which is valid in
the specific world to be modelled.

TIME_POINT (X~Y)

HOUR (X~Y,X)

MINUTES (X~Y,Y)

if TIME_POINT (X) and TIME_POINT (Y)

 and BEFORE(X,Y)

then INTERVAL(X<~>Y)

MEETS (X<~>Y,Y<~>Z)

STANDARDISE (‘morning’, 06~00<~>12~00)

In the space part there are general and specific spatial information of two kinds, namely space
knowledge of the world and spatial relevant information of the objects. The knowledge is given in
terms of coordinates as well as in standardized space prepositions.

all X all Y [OVER(X,Y) iff (ON(X,Y) or

 (exist Z (ON(Z,Y) and OVER(X,Z))))]

not [OVER (X,X)]

not [OVER (X,Y) iff OVER (Y,X)]

[OVER (X,Y) and OVER (Y,Z)] impl OVER (X,Z)

OVER_COORD (X,Y) iff y2 (X) ≤ y1 (Y) and

x1 (X) ≤ x2 (Y) and x2 (X) > x1 (Y) and

z1 (X) ≤ z2 (Y) and z2 (X) > z1 (Y)

POSITION (object-A, [1,2,3,4,5,6])

The common sense knowledge base holds general information about the world and special
knowledge about the facilities, for instance:

if BODY_POSITION(sitting) then CURRENT_STATE(waiting)

if ON(X, board) then

REACHABLE(X) iff BODY_POSITION(standing)

if CARRY(X, table) then NEED(X, help)

not CAN_MOVE(X : Block)

The expert knowledge might for example contain information about transport tasks, i.e.,
knowledge about several kinds of transport vehicles and transport connections of a forwarding
agency: Transport vehicles are vehicles that can transport some goods, ships are defined as

8

transport vehicles that can drive on the water, and of course all ships can carry all kinds of goods
from Hamburg to London.1

Transport_vehicle := Vehicle ® ∃ transport: Goods

Ship := Transport_vehicle ® drives: Water

all X:Ship all Y:Goods CAN_CARRY(X, Y, hamburg, london)

As in the former knowledge bases general and specific knowledge is provided to define the
agent, in the action knowledge base information about actions that are possible to perform are as
well given as actions which can really be done by the agent. E.g. a child knows that there is an
action DRIVING_A_CAR, which is only used for explaining the car driving action of an adult. On the
other hand the action DRIVING_A_BIKE can be realized by the kid. To define actions the definitions
of the lower knowledge base levels are used extensively.

STACK (X, Y, T) if (RIGHT_HAND (X) or LEFT_HAND (X)) at T-1

and REACHABLE(Y) at T-1

and (not (exist Z (ON (Z, X))) at T-1)

impl ON(X, Y) at T

MOVE (X, Y, T) if OWN_POSITION (X) at T-1

and not (exist Z (POSITION(Z, Y) at T-1)

impl OWN_POSITION (Y) at T

On the communication level various possibilities are provided. Simple communication will use
bit vectors. The meaning of the bits will be predefined (by the user) and actions will be performed
along the status of the bits.

CO_VEC(help_me, like_to_help, wait, first_me, give_me, stack)

if CO_VEC(0,0,0,0,0,0,1) then STACK(A, B, NOW)

On a higher level a dictionary of key words is stored and the agents communicate by sending
and receiving single words. The highest level is the generation and analysis of simple sentences in a
predefined subset of natural language. It is intended to use a kind of Montague grammar and
syntax [Tha89] which can be compiled into first order logics. Thus a sentence like

“STACK THE RED BLOCK ON THE TOWER”

will result in

STACK(object-1, [object-2,object-3], NOW)

after identifying red block with object-1 and the tower with the list [object-2, object-3].

From a more abstract view-point something like an “agent being within earshot of another
agent” could be modelled by write access for the second agent to the blackboard part
corresponding to the first one:

WITHIN_EARSHOT(X, Y) iff WRITE_ACCESS(Y, X)

1 We use a concept language of the KL-ONE family to express knowledge about concepts as ships or trucks, which

is known to be a subset of predicate logics (cf. [Neb90]) and can easily be combined with predicate logics via a

constrained based approach [Bür90].

9

The planner part of an agent contains a couple of plans that can be combined and executed in
order to solve any current tasks.

TRANSPORT(table) if exist X, Y exist T

MOVE(X, position(table)+1, T) and

MOVE(Y, position(table)-1, T)

if NEED(X, help) and exist Y WITHIN_EARSHOT(Y, X) then CALL(X, Y)

In the meta knowledge base used for introspection and partner modelling the agent’s knowledge
about his own knowledge and his partners’ knowledge is available. Both are not copies of the own
or the partners’ knowledge bases, but models of these knowledge bases.1 For instance, the agent
might know about the structure of his knowledge base as presented above, i.e., he knows that he
has knowledge about time and space, but perhaps does not know anything about the realization of
this knowledge. He might know that he has an understanding of the spatial relation OVER, but he
knows nothing about its realization via OVER_COORD.

I_KNOW(OVER(X, Y)) if I_KNOW(ON(X, Y))

I_KNOW(not ON(X, table) if I_KNOW(RIGHT_HAND(X))

The partner models might contain believes about facts that are known by all agents or by
specific agents, for instance, an agent beliefs, that others know, that he needs help when he is
calling them or that agents_1 is the expert for transportation by ships:

KNOWS(X, NEED(I, help)) if CALL(I, X)

all X:ShipTransport KNOWS(agent_1, X)

Finally there is the learner component – also a meta knowledge base – where all the agent’s
knowledge about his learning facilities is stored. Of course this heavily to relies on the introspection
component, since the agent needs to know whether he already knows the “new” knowledge pieces
or what he knows about these new things he is intended to learn.2 This could for instance be a
simple addition of new knowledge pieces after an inspection of the knowledge base. Which might
just be checking if the agent does not know about this knowledge and that it is consistent with the
existing knowledge.

ADD_TO_KB(X, ExpK) if INSPECT_POS (X, ExpK)

and EXPERT_KNOWLEDGE(X)

INSPECT_POS(X, Y:KnowledgeBase) if not I_KNOW(X)

and CONSISTENT(X ∪ Y)

1 A way to avoid logical omniscience [Hin75], [Had88] in modelling beliefs could be to allow only derivations of a

fixed depth or with certain resource restrictions. A good overview about logics of knowledge and beliefs can be found

in [McA88], see also [Per85], [Per88].

2 Logical approaches to machine learning are, for instance, reviewed in [Kod86], see also [Mor89].

10

2.1 .2 Functional Aspects

An Agent is in general determined by his knowledge, which also summarizes his skills and
abilities. For this reason it is convenient that an agent is defined by means of a knowledge base.
Since such a KB must be huge, it must be structured according to the various kinds of knowledge
embedded in it. We use a hierarchical structure, where simple, propositional knowledge is stored
on the lowest level and knowledge about knowledge, for instance used for introspection and
learning, will be found at the top levels. The general principle underlying the structure is that a
higher level uses concepts, which are defined in detail at a lower level. E.g. at the planning level a
predicate ASK_FOR_HELP may be used. This predicate invokes the generation of an information
block I and the activation of a predicate ASK&WAIT(I) on the (lower) communication level.
ASK&WAIT(I) is then given to the action level where it is decomposed into send and receive
actions, which need information about the communication status from the sensoric level as well as
knowledge about time for their schedule.

The other way around, the level i places the defined predicates at disposal to the level i+1 and it
delivers positive or negative answers to the asking higher level. In our example, if the
communication channels are open (the agent can speak and listen), the send/receive actions are
performed and the answers are given to the communication level, where they are analyzed. If there
is a positive answer from another agent this information is passed to the planner level, where the
ASK_FOR_HELP predicate becomes true and the respective arguments are instanciated by the
necessary information (e.g. who could help).

The levels themselves are structured as modules to realize different agents by choosing different
modules at the levels. If at the lowest level only propositions reflecting uni-directional
communication channels are chosen instead of bi-directional ones, then the corresponding agent
can only “speak” or “listen”, but not both.

PLANNER

COMMUNICATION

ACTIONS

SELF_CONTAINED PLANS
HELPING PLANS
INCORPORATE_HELP PLANS
INCLUDING_ORDERS PLANS

GENERATE_SENTENCES
ANALYSE_SENTENCES

COMMUNICATION_ACTIONS
MOTIONS
CHANGE_WORLD_ACTIONS

use deliver, place at disposal

use deliver, place at disposal

11

For another example look at the planner level: If only the module SELF_CONTAINED PLANS
is chosen, then no cooperation will take place, because the agent tries to fulfill his tasks without the
incorporation of other agent in his plans. As a consequence, if a module is skipped on a lower
level, modules on a higher level may be skipped automatically if they use predicates from the
skipped one. Further it is possible to define a general setting, e.g. that each agent is able to
communicate with all others. Then for example the COMMUNICATION_ACTIONS are part of
each agents’ action level and cannot be removed by the designer.

2 .2 The Current World Scenario

The current world scenario window fulfills several different tasks: first of all it monitors the
status of the actual world. On a blackboard information (location, current properties,
relationships, etc.) about objects in the world are given. Also the locations and relations of the
agents are represented on the world window of the blackboard. The second part of the
blackboard is organized for the communication of the agents. Each agent will have a special
slot to write at and will have reading access to some of the other slots according to his
specified communication skills (see specification kit).

The current world window also shows some of the important activities of the agents in the agents
status module. It is shown whether the agent is currently active or not, the actions to be performed
next, the communication acts, what plans are focused etc. For example an agents’ status might be:

agent-i:
status: waiting
action: if ON_THE_FLOOR(object-1) and AGREEMENT(agent-1)

then PICK_UP(object-1)
communicate: READ(blackboard(com (agent-1))
current_plan: 1. LISTEN_TO(agent-1)

2. if REALIZABLE(action) then PERFORM(action)
else LISTEN_TO(agent-1)

In the knowledge base for the general description of the worlds objects (which is not completely
visible to the user of course) the objects of the world are represented. Here again concept
languages of the KL-ONE family [BS85], [Neb90] or a FRAME-based languages can be used
[Hay79], [Min75]. These languages can be interpreted as sublanguages of first order predicate
calculus and thus fit best in our basic paradigm to use logic within the whole system.

BLACKBOARD

World Object
Descr ipt ion

Agents status

a g e n t - 1 a g e n t - 2 a g e n t - 3

User

12

The user has access to the whole scenario. Thus the user may just have the role of an observer
but he has also the possibility to act like a “god” who directly manipulates the world. Or, and this is
the most interesting case, he may act as an agent in the world. E.g. he has his own communication
slot on the blackboard and an agent slot in the agent status module.

The current world scenario serves not only to give information of the actual status to the user,
but it may be seen also as “the eyes and ears” of the agents. The agents may have access to at least
parts of the scenario. So they “see” where objects and other agents are in the world via the
blackboard. They may “hear” what is said by the other agents if they have access to the others
communication slots. And even more they may get some knowledge (intuition) about the “mental
stage” of the others by accessing the information of the agents status module.

Now, since the basic features of the agents and the world they live in are described, we will
come to the specification kit, which is used to modify the predefined agents and world model.

2 .3 The Specification Kit

The high level interface of the system is given through the specification kit. It is used to define
general features of the system and the agent society and it serves to generate the different single
agents. Further it has the task to check the consistency of the definitions. Thus, the specification kit
is divided into three parts: The agent design facilities, the general paradigm module, and the
consistency checker.

First of all the general paradigm module holds general information about the agent-society, like
the number of agents in the system, whether their organization is anarchic or hierarchic
[WHBSS81], whether there are agents with special responsibilities and more general if the society
is homogeneous, clustered or inhomogeneous. A benevolence assumption [GGR86], [RG85] can be
defined, e.g. whether the society tries to achieve a common social goal [Wer88a] or whether the
agents are egoistic or just cooperative by self-interest.

 Agent

Tool

Box

Agent

Design

Facilities,

Special

Realization

General

Paradigm,

World,

Statistics

Consistency

Checker

13

Concerning the tasks given to the society it is to be defined whether it is one task which is to be
solved by the agents without any help [SD83] or whether the designer himself will divide it into
subtasks or even more whether the global task is not given to the agents, but each agent is given a
specific task which then leads to a synergy effect [BG88], [Len75]. The question then is how will
the agents tackle the tasks: by negotiation through communication, in performing a one-way
cooperation or a mutual cooperation, in working in a master-slave relationship or in no predefined
style [Wer88a]. For the interaction part the communication will play an important role in the all
over design. It has to be specified whether there should be communication at all and if the agents
can communicate, then, whether the communication will be primitive (setting and resetting bits in a
specified vector) or high level linguistic [Wer88a]. Should it be plan and information passing in the
internal language (parts of the knowledge base) or short sentences in a subclass of natural
language? What should the effect of the communication and other information acquisition
processes be? Just the addition of new knowledge into the knowledge base, increment or decrement
of the activation level [Mae89], pragmatic effects on the internal state of the agent, dying out of
inconsistent solutions by exchange of partial results or plans [LC81] or what so ever.

Finally the statistics box of RATMAN is initialized through the general paradigm module (see
below).

While in the general paradigm module general decisions are specified, the agent design facility
box is used to enable and disable parts of the agents knowledge base to simulate the design
decisions made in general and to realize special agents in adding specific knowledge (e.g. filling the
expert KB) or in specifying the communication channels. To each level of the agents knowledge
base a level in the agent design facility box is associated to manipulate the knowledge base.

If we like to simulate a homogeneous society of dumb individuals in the sense of Maes [Mae89]
and Steels [Ste89a] only the sensoric and the action parts of the knowledge base are to be enabled.
Moreover high level actions (e.g., those which assume information through communication) will be
enabled within the action level.

Suppose we like to combine simple expert systems, then the sensoric part is completely disabled
(they usually have no representation of themselves), the expert knowledge base contains most of
the information together with the action part and (since they are simple XPS) the learner,
introspector and planner levels are completely skipped.

The task of the consistency checker is to report conflicts between the definitions of the general
paradigm module and the specification of single agents in the agent design facility. For example, if
it is defined that all the agents can communicate with each other on one hand and in the
specification of an agent the whole communication level is disabled then there is an obvious
inconsistency which has to be erased.

2 .4 The Status Sequence and Statistics Box

The goal we have in using a testbed like RATMAN is to learn about the behavior of different
forms of agents in different society structures and different worlds. In reaching this goal it is
necessary to analyze not only a snapshot of the world at a certain point (like in the current
world scenario), but to look at sequences of such snapshots. The status sequence and statics
box has the task to show the user the sequence of the changing worlds. That is, essential

14

information from the current world scenario, like locations of the world objects and the
agents, is extracted and monitored sequentially to the user. With each world state the whole
current world scenario is stored in the background to be reactivated by the user. So there is a
possibility for the user to trace the sequence back, to restore the current world scenario at a
given point and to enforce the generation of new worlds by changing some of the definitions
for the society or the agents (e.g., adding or removing knowledge, communication channels
etc.). Thus it is possible to generate a graph of possible worlds and to study the associated
accessibility functions, like it is done in the possible world semantics of Modal Logics.

Associated with the status sequence the activity potential of the agents, the internal clock and a
monitor for the synchronization processes is installed.

Summing up this paragraph, the main characteristic of RATMAN will be that

- it is purely based on logic, that is, it is possible within the logic paradigm to
specify all individual features for simplest up to
most complex agents

- the user may be one agent in the society

- there are various facilities that support the analysis of a session.

Especially the first point is not too restrictive as – in contrast to Steels argumentation [Ste89a]
– there are a couple of logic based description languages most of which can be translated into
derivates of first order logics [Ohl89] providing efficient operationalization by calculi based
on Robinson's Resolution Principle [Rob65] enhanced with special unification or constrained
solving algorithms. For this reason we think that it is now the time to put these logic based
approaches together and to find out how far the logic paradigm will reach.

15

3 . RELATED WORK

In the previous section we presented a coarse sketch of RATMAN’s structure, that leaves
open many implementational details. This is due to the fact that our work is still in a
specificational state of progress. The study of the few other approaches to agent testbeds will
give us hints how to cope with some problems. On the other hand, from a very global point of
view, we wish to separate our work from depending too much on the object-oriented
programming approach. In an object oriented environment everything is an object. Objects
communicate via messages. Objects built up a hierarchy, usually using some mechanism of
inheritance. Replacing the terminus object by agent leads straightforward to a kind of multi-
agent system.

In contrast to this we hope to show, that it is possible to build a frame for multi-agent systems
that is totally based on logic and is flexible enough to fit for several different paradigms, those
based on knowledge and reasoning, but also those based on reactivity and emergent functionality.

3 .1 Activation Framework

The Activation Framework (AF) [Gre87] provides a support tool for the implementation of real-
time AI programs on multiple interconnected computers. To give a short sketch of AF:

- AF was developed out of the HEARSAY II system.

- AF-Objects (AFOs) communicate by messages.

- They are monitored by frameworks, that perform scheduling and maintain the
connection to other frameworks.

- An activation level is attached to AFOs and their hypotheses.

- Uncertainty is handled by the activation level.

- Scheduling decisions also use the activation level.

AF grounds on the community of experts paradigm (cf. also [Len75] and [Min86]). Several
expert objects, called AFOs communicate by sending messages. Each AFO integrates hypotheses
and procedural code for a local knowledge domain, and can be thought of as being similar to a
miniature HEARSAY II system with its local blackboard and a set of knowledge source
procedures. Indeed [Gre87] traces the evolution of AF evolving from a distributed HEARSAY II
approach used for the Distributed Sensor Network (DSN) project [Gre82] back to the HEARSAY
II speech understanding system [EHLR80]. That is: From a pure blackboard structure to a
distributed blackboard structure using messages to AFOs, which also communicate via messages
and encapsulate hypotheses and knowledge procedures.

Each AFO has an input queue and an output queue to receive and send messages respectively.
Generally an AFO will take one input message, process it and possibly place a message in its output
queue and return control to the AFO scheduler. AFOs usually do not wait for events like e.g.
answers to their messages. Each hypothesis has an activation level between -1 and 1 which specifies
the belief in its truth. This is a key feature of AF. As observations are made, the activation levels of

16

the hypotheses for particular end results are adjusted to reflect the weight of the evidence (akin to
certainty measures in MYCIN). At any time a choice can be made and the differences between
activation levels give a measure of uncertainty for that choice.

An activation level is also attached to each AFO as a whole and to each message. The sending
AFO attaches an activation level to a message according to the level of importance. The activation
of an AFO is the sum of all the message activations in its input queue and is used for scheduling
purposes. If the activation exceeds some threshold, the AFO is scheduled and the AFO with the
highest activation level runs first. The input queue is ordered according to time and activation level
order, such that high level and older messages run first.

Messages also contain the names of the sending and the receiving AFO, a message type number
and an ASCII-string data body. This leaves a high flexibility to the contents of a messages, the only
constraint is that both the sender and the receiver have a common idea about the representation of
a particular string.

AFOs are clustered by a framework, which is something, that is responsible for scheduling its
AFOs and the message transport between them. It also builds up the connection to other
frameworks' AFOs, using the mechanisms of message passing of the underlying operating system.
Frameworks may support different languages, such that an arithmetic expert AFO can be written in
FORTRAN 77 while an inference expert AFO can be written in Lisp. Frameworks also provide the
basis for true concurrency, because different frameworks can run in parallel on different processors
if the operating system supports an appropriate message passing mechanism.

To conclude and compare with RATMAN we would like to point out:

AF is based on an object oriented approach and restricted to the “community of
experts paradigm”. Though at the current state of the art this is the most
promising and fruitful research direction in the multi-agent environments, we
would like to integrate more flexibility in our testbed.

AF supports modularity on the basis of self contained agents and the message
communication provides a clear and simple interface. In RATMAN we try to
provide a modularity, that reaches beyond the level of agents. Each agent should
be constructed modular. We try to realize this especially with the layered
hierarchical knowledge base.

Messages in AF are ASCII-strings. This decision puts no constraints to the contents
of messages, because each type of messages (e.g. numbers, hypotheses,
procedures...) can be encoded as ASCII-string. In contrast RATMAN will provide
features from speech act theories and natural language processing.

The use of an activation level for scheduling of AFOs and for decision making within
the AFOs is central for AF. In real time AI-applications it is often necessary to
make timely decisions with incomplete data. RATMAN is flexible enough to
simulate such an activation level concept if needed.

AF is claimed to be a support tool for the implementation of real time AI-programs for
distributed cooperative problem solving, while RATMAN should be a support tool and
experimental testbed for research with different multi-agent scenarios. It is clear, that a comparison
according to the scale of distributed problem solving would prefer AF, while using a scale of
experimental testbed (e.g. flexibility) would prefer RATMAN.

17

3 .2 Mace

MACE [GBH86] stands for Multi-Agent Computing Environment and is an instrumented
testbed for building experimental DAI systems. The computing units in MACE, the agents,
built an organization of problem solvers. Agents run in parallel, communicate via messages
and have facilities for knowledge representation. MACE is implemented in Common LISP
and also depends on the object oriented programming approach. Central components of
MACE are

- an agent description language (ADL),
- tracing and debugging facilities,
- a description database,
- the MACE kernel (responsible for message routing, I/O, mapping agents on

processors...),
- a collection of system agents with various tasks like command interpretation, agent

building, monitoring agents...
- a collection of facilities, that can be used by all agents like standard messages,

standard errors, a pattern matcher, standard engines...

MACE agents contain their knowledge in form of attribute values, they sense their environment
by messages or via events and can take actions of three different types:

- Change the internal state (i.e. manipulating their attribute values);
- Send messages;
- Call for some monitoring request.

To carry out these actions the agents have locally defined functions, that implement their
procedural knowledge - their skills. Skills cannot be referenced from outside, however they can be
sent in messages to other agents. Skills are called by an agent's engine, which is the only active part
of an agent. The engine defines the agents activities, interprets messages and manipulates the
attributes. An engine is invoked by the kernel when a message for that agent arrives and
deactivates itself when the agent has completed its current activity. MACE provides several simple
engines. Each engine is wrapped into an engine shell, which is a part of the MACE kernel, that
provides standard error handling, protects the engine from errors, message queueing and various
debugging and tracing facilities. It also implements a state diagram using the agents attribute status,
which can take one of the values “new”, “inactive”, “active”, “waiting” and “stopped”. Except the
initialization procedure an agent usually cycles from “inactive” to “active” when it receives a
message and from “active” to “inactive” by deactivating itself. The status “waiting” means waiting
for an event after a request to the engine shell to monitor some event. The status “stopped” is used
for debugging and tracing.

Sensing is implemented as receiving messages (passive) or being notified of events, that are
requested for (active). Messages are queued in arrival order and contain the sender address. There
are no restrictions to the message contents. An agent's address consists of the agent's name, its
class, the node and the machine. Messages can be addressed to individuals, to groups of agents or
to classes. Events, that are effects of some agent's visible actions (e.g. status change, agent creation
or destruction...) are monitored by demons. They map event descriptions to messages and send
them to those agents, that have requested these events. Events, that are the result of kernel actions
(alarms, pattern-trigger ...) are monitored by imps, which are predicates on internal attributes.
Imps can invoke arbitrary Lisp functions within the agent.

18

Agents contain knowledge as values of their attributes . A special attribute “acquaintances”
contains organizational and interactional knowledge. Other types of knowledge are user defined.
Acquaintances are the agent's model of the world, i.e. of other agents. Every other agent an agent
knows is represented with qualifiers like: name, address, class, roles, skills, goals, plans. After the
instanciation an agent only has a model of himself, of its creator and possibly of those agents, that
it knows by specific ADL statements. Dynamic alteration of the world model is possible. A special
system agent directory provides information about all agents of the system. Knowledge retrieval is
done by selectors.

An organization is viewed as a structure of expectations and commitments about behavior. It
exists only indirectly through the behavior of its members. Nevertheless MACE organizations are
represented by a (virtual) communication agent, called the organization manager. It knows about
the organization members. Messages sent to the organization arrive at the manager and are
forwarded by it to the appropriate organization members. This means that the managers basic work
is task allocation.

The agent description language (ADL) is a procedural language for describing database
operations necessary to construct new agent descriptions. Descriptions of agents are stored in a
database and are used to generate executable forms of agents. There is no direct support of
hierarchical classifications and of attribute inheritance like in most other object oriented languages,
but one can selectively import attributes, functions and engines from other agent-descriptions. One
can copy a description of a related agent and modify it by appropriate deletions, imports or new
declared attributes for example. Another facility of ADL is the possibility to define specific
initialization procedures to be executed at instanciation time.

Because the execution of a MACE agent community involves random execution and message
delays, there is also a MACE simulator implemented with a totally deterministic behavior. The
simulator gives additional measurements of control for debugging and assures repeatable
experiments.

MACE was used to implement Smith's contract net ([Smi81] and [DS83]), to build different
forms of distributed production systems based on the rule-agent concept [GT86] and to build a
simple distributed blackboard system [GBH87]. In comparison to RATMAN we summarize:

MACE realizes true parallelism . For the development of DAI systems the MACE
simulator provides tracing and debugging facilities. RATMAN will not realize
true parallelism, so that RATMAN is closer to the MACE simulator than to the
MACE system itself. Nevertheless the blackboard architecture of RATMAN
leaves open the possibility of true parallel executing agents in a later version.

Communication in MACE is via message sending. Agents sense their environment
via messages and via events. In RATMAN every communication between agents
and their environment (sensing) is done via the blackboard.

MACE provides a description language ADL, that puts some constraints to the
formal architecture of the agents, but their skills could be defined as arbitrary
LISP functions. RATMAN agents are specified by their hierarchical knowledge
base.

Knowledge representation in MACE is done with the agents attributes especially the
world model is represented by their acquaintances. In RATMAN each KR-
formalism, that can be translated into an appropriate First Order Logic is usable.

19

3 .3 Agora

Agora [BAFLB87] is an environment that supports the construction of large evolutionary
programs that might be distributed over several parallel executing processors. In this sense it
is just like AF more a construction tool, than a testbed. Its design was driven by the
requirements of a distributed speech recognition system of the Carnegie Mellon University
[BA86]. Agora provides:

- Support of different languages.

- Multiprocessing within heterogeneous systems.

- Handling of communication and control.

- Different computational models.

- A layered structure.

- An abstraction for computational components: Knowledge Sources.

- An abstraction of data components: Cliques.

- Knowledge representation with semantic nets.

Furthermore the structures can be modified during a run, such allowing evolutionary
development of systems. Because the parallel virtual machine layer of Agora provides totally
abstract components, different computational models can be realized by Agora's frameworks. For
example communication can be done by using a data-flow paradigm, a remote procedure call
paradigm or a blackboard paradigm, all depending on the specific definitions of Agora
frameworks. The layered structure of Agora can be summarized as follows:

The bottom layer consists of a network of heterogeneous processors, that run the
Mach operating system which is a Unix compatible OS for multiprocessors.

The Mach layer provides those abstractions, that Agora uses to distribute its
computations among the machines. These abstractions are: message passing
(obligatory for Agora), shared memory (optionally to improve the performance)
and threads (optionally for fast creation of new computations).

The parallel virtual machine layer expresses computations machine independent in C
or Common Lisp using Agora's primitives. These primitives provide virtual main
memory in form of sets of homogeneous data elements, that are stored in
structures called cliques, and provides special computational components called
Knowledge Sources (KS). KS are activated by certain patterns of elements and
exchange data via shared cliques. This layer is a kind of assembly language level
of Agora.

The framework layer builds the interface to an application. A framework is like a
special environment to interact with the user in terms of description, translation,
debugging, editing, monitoring.... The framework translates the user-supplied
code into the proper parallel virtual machine abstractions.

Above this stands the layer of the application as for example the structure of the
CMU speech recognition system ANGEL.

20

The computational entities of Agora are the Knowledge Sources (KS). A KS contains one or
more completely independent functions that manipulate the data of the cliques. Cliques can be
shared among several KS. KS functions are activated by patterns expressed in terms of arrival
events. E.g. one can specify an activation every time a new element enters a clique or only if this
new element has a specific value in one field. One arrival event can be specified to trigger several
function executions in different KS or only one execution.

A special element clique is used to implement a simple knowledge base in form of a semantic
net . The frames of this network contain slots representing attributes or relations to other frames. A
simple but effective set of primitives realizes a simple frame language CFrame, which allows the KS
to manipulate the network thus sharing knowledge with other KS, which is a crucial possibility for
building up frameworks. Typical Agora language primitives are procedures to instanciate KS, to
get an access capability to elements, to add new elements to a clique, to terminate a KS, to set an
activation pattern for a function and so on.

The power of Agora lies in the parallel virtual machine layer . It was designed to achieve two
goals: To efficiently execute different programming models and to avoid the restriction to a specific
computer architecture. A virtual main memory is provided through the global data structure of
element cliques and the computational units have the form of KS.

The framework level above this layer encourages the distinction between an application
engineer and a researcher. The structure of an application is implemented by a set of frameworks,
which is the task of an application engineer. This set provides the tool for the researcher to design
and test an actual system. The layered structure of Agora thus allows a very great flexibility, but
the design of a new framework structure could be a time expensive task.

Concluding remarks:

Agora supports different languages and provides a great flexibility in terms of the
programming model. The parallel virtual machine layer abstracts from the
underlying computer architectures. Knowledge representation is based on a
semantic net and the frame language CFrames.

While the parallel virtual machine layer represents a kind of assembly language for
Agora, the framework level gives an application specific tailored user interface.
The framework design will be speeded up by similarities with existing frameworks:
Not every detail must be assembled from the bottom.

Two main characteristics of Agora are the support of highly parallel computations and
the pattern directed activation mechanism. In RATMAN parallelism will only be
simulated as stated earlier. Activation of agents will usually be by changes of the
environment but other mechanisms are possible.

As with AF a direct comparison between Agora and RATMAN is not efficient, because Agora is
a support environment for the construction of large distributed (not necessarily) AI- programs,
while RATMAN is more a tool for learning more about the fundamental principles that apply to
multi-agent systems.

21

3 .4 Mages

MAGES [BFS90] is a testbed for Multi AGEnt Systems. It is useful for experimenting with
different types of interactions between agents using heterogeneous architectures and
behavior. A catchword characterization of MAGES is:

- testbed for research and education, provides flexibility to various aspects of multi-
agent societies.

- based on the object oriented approach, implemented in the actor language
ACTALK.

- agenttypes are organized in an inheritance tree.
- environments are active objects.
- communication is based on asynchronous message passing, environments

additionally can use events and actions for communication.
- a translation procedure enables communication between agents of different lingual

level.

MAGES is claimed to provide a maximum of flexibility , e.g. in terms of coordination and
interaction protocols, agent granularity, knowledge representation, behavior and internal
control. Furthermore it is told to be simple, user friendly and easy to debug. MAGES is
implemented in SMALLTALK as an implementation of the actor language ACTALK[Bri89].
ACTALK is a modular language in which objects are already active and autonomous.
Parallelism is managed and ACTALK provides an asynchronous communication mechanism
as well as useful graphical tools.

ACTALK agents consist of a behavior object, which holds the agent's fields and methods and is
a usual SMALLTALK process. It is encapsulated in an actor object , which manages the agent's
mailbox. Messages have the usual SMALLTALK syntax and activate the corresponding method of
the behavior object. For simple reactive agents this method will just perform some appropriate
actions. Complex agents will use simple messages as frame based objects which have to be inserted
into their knowledge base. They will send messages of self defined arbitrary complex message
classes. A special message translation procedure can convert messages of complex classes to simple
ones, such that complex agents need not care to what type of agent they send their complex
messages.

The communication model is based on a high-level language, which includes acts of
communication and protocols, but also can be used for simple communication models. With the
help of the translation procedure heterogeneous agent societies, where communication takes place
between simple and complex agents, can be designed. Protocols are used to open and end a
communication and to manage the proceeding of a complex dialog. The possibility of dynamic
destruction of agents leads to the blackhole structure: Destroyed agents are replaced by a blackhole
that replies every message with a “no more receive” message. A three stage protocol, that uses
special intention objects, guarantees mutual exclusion for shared resources.

MAGES agents architectures build the structure of an inheritance tree. Simple agents have only
a very simple reasoning process and follow the stimulus-response model. Coarse grained agents
have an explicit representation of their cognitive process, can reason about their skills and their
domain and can work as individual blackboards. The basic behavior is inherited from the root class
of agents, specialized agents override some methods with more sophisticated ones. The most basic

22

KernelAgent class defines its information only in terms of acquaintances and environment. The
internal control follows a basic behave cycle, that realizes a simple reactive behavior to external
input. In the ExpertAgent class this basic behavior is augmented with an inference engine to give
the agent some reasoning capabilities. MessageAgents as a further step can integrate messages as
part of their knowledge base. BlackboardAgents and HybridAgents provide most sophisticated
facilities for reasoning and knowledge representation.

In MAGES also the environment consists of one or more agents. This way a centralized
environment with a global view (e.g. environment means playing field) can be modeled as well as a
distributed one with only a local view of the neighborhood (e.g. each field of the playing ground is
represented by an environment agent). The connection between environment and agents is
implemented by asynchronous messages , by events and by actions (that are special objects, whose
changing is recognized by the agents). Another point of flexibility lies in the choice between a
passive mode, where agents are informed of changes by the environment and an active mode,
where agents actively scan their environment for changes. Thus MAGES as a generic platform
provides various structures as environment and the user may choose one, that fits best to his
application.

The user interface of MAGES is based on the Model-View-Controller of SMALLTALK.
Specific browsers are used to display various information about agents, messages, KS and
Blackboards. A menu driven inspection and manipulation of agents is provided and different views
can be selected. The AcquaintanceNetworkView shows the channels of communication within a
group of agents. The CommunicationView shows the message sending and the agent's mailboxes.
The BoardView shows a grid with icons for the agents as a graphical representation of the
environment. All the graphical features of the user interface are based on the graphical tools, that
ACTALK already provides.

To built up organizations in a multi-agent society, two approaches have been suggested:
Organizations exist implicit by the organized behavior of its members. Organizations are explicitly
represented by certain structures. Both approaches can be modeled with MAGES: The first one by
simply installing the desired behavior in the agents. The second approach uses groups, special
agents, that are defined by its group members, a message interpreter and a behavior. Groups are
dynamic in the sense that they can change their behavior on different types of agreement (e.g.
election, consensus, leader domination...). The message interpreter accepts messages sent to the
group and takes the appropriate actions like for instance distribute the message to specific group
members or perform a kind of task allocation. The membership to groups can be gained via a
biding protocol.

MAGES is centered around the object oriented actor language ACTALK. Several
features of ACTALK fit perfectly into the multi-agent paradigm. RATMANs
approach is centered around the hierarchical knowledge bases, thus any symbolic
knowledge representation language can be used.

MAGES provides various parameters of flexibility , which is crucial for a testbed to
be useful for research. We hope to be able to realize at least the same flexibility.

The environment in MAGES is realized as one or more active objects. This bears the
possibility of modelling heterogeneous and even recursive environments. The
interaction between agents and environments can be realized by messages, events
and actions.

23

The user interface of MAGES also depends heavily on the features provided by
ACTALK. For RATMAN we plan to use some XWindow based user interface.

3 .5 Other Systems

We tried to sketch some of the systems closely related to the intentions of RATMAN.
However there are some other systems, that we only want to mention by name here, because
a broader elaboration would not lead to aspects previously unexpressed .

MICE [DM89] is a testbed for intelligent coordination experiments and provides a 2D grid
environment model. CoCo [Ish89] deals with concurrent and cooperative operator tasks. The
PANDORA II [MIT89] system provides help for modelling autonomous agents and groups of
them. Playground [FB89] is another object oriented simulation system.

Not explicitly a testbed, but as we think a very useful and constructive architectural design is
presented in [HNS89]. Hultman, Nyberg and Svenson took a temporal logic as the basis of
their system.

24

4 . Discussion

We described the testbed RATMAN for experimentation in multi-agent scenarios which is
again summarized in the figure below.

R

E

A

S

O

N

E

R
Time Space CSK ExpK

Actions

Communication

Planner

Introspection PartnerMod

Learner

SensoricK

General

Paradigm,

World,

Statistics

Agent

Design

Facilities,

Special

Realization
Consistency
checker

In constructing RATMAN we are motivated by the study of the behavior of agents in a society
and the emergent functionality of the agent society per se. We are leaded by the necessity of
combining most different models of agents from dump reactive ones to highly knowledge-based,
intelligent forms, in a variety of social structures. Finally we are inspired by the idea of combining
different classes of knowledge based on logic to work in a well understood and understandable
paradigm. (However we know about the problems with respect to “meta knowledge” [Doy88],
[Mae86] and meaning or semantics [Lak87].)

The advantage of RATMAN is its modularity. The knowledge base can be stepwise refined
along the hierarchy and new paradigms can easily be added to the system. Even with an “O-
version” interesting results might be achieved. In using the blackboard architecture in the current
world scenario eyes and ears and other sensoric features of mobile agents can be simulated and
moreover this features can be easily replaced in a scenario where really distributed, multi processor
systems are connected to RATMAN (even replacement by connectionistic networks are possible
[Dye89], [Sha89], [FSG89]). But the main point is that the principal decision to use logic as a basis
results in a homogeneous approach which overcomes major difficulties of combining and
translating different modelling paradigms.

The main problems lay on the more theoretical side. Though we like to use only knowledge
representation languages that correspond to logic, each level of our knowledge base coincides with
a whole field of research in AI and thus it could not be possible to build in all specific results of

25

these fields. But nevertheless there must be a first approach to combine at least the basic results into
one homogeneous system, even in standardizing apart some of the features and even if the
standardization only partly fits with reality. The second point is that currently there is no tool to
support the analysis of the behavior of multi-agent societies. That is, only the pure facts will be
reported by the status sequence and statics box and it would be nice to have a kind of meta-system
that supports the user in analyzing the results delivered by RATMAN.

ACKNOWLEDGEMENTS:
The multi-agent project is sponsored by the German Ministry for Research and Technology
under grant ITW 8903 0.

26

5 . References

[All84] Allen, J.F.:Towards a General Theory of Action and Time, AI 23 (1984), pp.
123-154

[BA86] Bisiani, R., Adams, D.A.: The CMU Distributed Speech Recognition System,
11th. DARPA Strategic Systems Symposium, Naval Postgraduate School,
Monterey, CA, Oct. 86

[BAFLB87] Bisiani, R. et al.: The Architecture of the Agora Environment, in [Huh87], pp.
99-117

[BFS90] Bouron, T., Ferber, J.,Samuel, F.: MAGES: A Multiagent Testbed for
Heterogeneous Agents, Proc. of the 2nd European Workshop MAAMAW'90,
cf. [DM91]

[BG88] Bond, A., Gasser, L.: Readings in Distributed AI, Morgan Kaufmann, Los
Angeles, 1988

[BM90] Bürckert, H.-J., Müller, J.: RATMAN: Rational Agents Testbed for Multi
Agent Networks, Proc. of the 2nd European Workshop MAAMAW'90, cf.
[DM91]

[Bri89] Briot, J-P.: Actalk: a Testbed for Classifying and Designing Actor Languages
in the Smalltalk-80 Environment, LITP University Paris VI, ECOOP'89

[BS85] Brachman, R.J., Schmolze, J.G.: An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science 9(2), 171-216, 1985

[Bür90] Bürckert, H.-J.: A Resolution Principle for Clauses with Constraints. Proc. of
10th Intern. Conf. on Automated Deduction, Springer LNAI 449, 1990

[Coe88] Coelho, H.: Interaction Among Intelligent Agents, ECAI88, 717-718, 1988

[CSW88a] Connah, D., Shiels, M., Wavish, P.: Towards Artificial Agents that can
Cooperate, Technical Note 2643, Philips Research Labs, England, 1988

[CSW88b] Connah, D., Shiels, M., Wavish, P.: A Testbed for Research on Cooperating
Agents, Technical Note 2644, Philips Research Labs, England, 1988, also
short version in ECAI88

[DM89] Durfee, E.H., Montgomery, T.A.: MICE: A Flexible Testbed for Intelligent
Coordination Experiments, Proc. of the 9th Workshop on DAI, Seattle 1989

[DM90] Demazeau,Y., Muller, J.-P.: Decentralized Artificial Intelligence, Proc of the
first workshop on Modelling Autonomous Agents in a Multi-Agent World,
Elsevier Sc. Pub/North Holland, 1990

[DM91] Demazeau,Y., Muller, J.-P.: Decentralized Artificial Intelligence, Proc of the
second workshop on Modelling Autonomous Agents in a Multi-Agent World,
Elsevier Sc. Pub/North Holland, 1991 (forthcoming)

[Doy88] Doyle, J.: Knowledge, Representation and Rational Self-Governement, Proc.
of the Reasoning about Knowledge (RAK 88) Conference, 345 - 353, 1988

27

[DS83] Davis, R., Smith, R.G.: Negotiation as a Metaphor for Distributed Problem
Solving, Artificial Intelligence vol. 20, pp. 63-109, 1983

[Dye89] Dyer, M. G.: Symbolic Processing Techniques in Connectionist Networks and
Their Application to High-level Cognitive Tasks, Int. GI-Congress on
Wissensbasierte Systeme 89, Munich, Springer IFB227, Berlin, 173 - 185,
1989

[EHLR80] Erman L. et al.: The HEARSAY-II Speech Understanding System: Integrating
Knowledge to Resolve Uncertainty, ACM Computing Surveys, Vol. 12, pp.
213-253, 1980

[FB89] Fenton, J., Beck, K.: Playground: An Object Oriented Simulation System with
Agent Rules for Children of All Ages, OOPSLA 89 pp. 123-137.

[FSG89] Frixione, M., Spinelli, G., Gaglio, S.: Symbols and subsymbols for
representing knowledge: a cataloque raisonné, ECAI89, 3 - 7, 1989

[GBH86] Gasser, L., Braganza, C., Herman, N.: MACE: A flexible Testbed for
Distributed AI Research, in [Huh87], pp. 119-152

[GBH87] Gasser, L., Braganza, C., Herman, N.: Implementing Distributed AI Systems
Using MACE, Proc. IEEE Third Conference on AI Applications, Feb. 1987,
also in [BG88] pp. 445-450

[GGR86] Genesereth, M.R., Ginsberg, M.L., Rosenschein, J.S.: Cooperation without
Communication, Proc. AAAI-86, 1986

[Gre82] Green, P.E.: Distributed Acoustic Surveillance and Tracking, Proc. Distr.
Sensor Networks Workshop, pp. 117-141, M.I.T. Lincoln Laboratory,
Lexington, MA, Jan. 6, 1982

[Gre87] Green, P.E.: AF: A Framework for Real-Time Distributed Cooperative
Problem Solving, in [Huh87], pp. 153-175

[GT86] Gasser, L., Tenorio, M.F.: Rule-Agents: A Distributed, Object-Oriented
Approach to Production Systems Using MACE, DAI Group Research Note 4,
DAI Group, Dept. of Computer Science, USC, 1986.

[Had88] Hadley, R.F.: Logical Omniscience, Semantics, and Models of Belief.
Computational Intelligence 4, 17-30, 1988

[Hay79] Hayes, P.J.: The Logic of Frames. In: Frame conceptions and text
understanding, (D. Metzing, ed.), deGruyter, 1979

[Hin75] Hintikka, J.: Impossible Possible Worlds Vindicated. J. Philosophical Logic 4,
475-484, 1975

[HNS89] Hultman, J., Nyberg, A., Svensson, M.: A Software Architecture for
Autonomous Systems, Research Report LiTH-IDA-R-89-40, Univ. Linköping

[Huh87] Huhns, M.N.: Distributed Artificial Intelligence, Vol.I, Pitman/ Morgan
Kaufmann Publ., San Mateo,CA, 1987

[Huh90] Huhns, M.N.: Distributed Artificial Intelligence, Vol.II, Pitman/ Morgan
Kaufmann Publ., San Mateo,CA, 1990

28

[Ish89] Ishida, T.: CoCo: a Multiagent System for Concurrent and Cooperative
Operator Tasks, Proc. of the 9th Workshop on DAI, Seattle 1989

[Kod86] Kodratoff, Y.: Learning Expert Knowledge and Theorem Proving. Springer
Informatik Fachberichte 124, 164-180, 1986

[KP89] Konolige, K., Pollack, M. E.: Ascribing Plans to Agents, IJCAI89, 924-930,
1989

[Lak87] Lakoff, S.: Women, Fire and Dangerous Things, Chicago University Prss,
1987

[LC81] Lesser, V.R., Corkill, D.D.: Functionally Accurate, Cooperative Distributed
Systems, IEEE Trans. on SMC, 11 (1): 81-96, Jan. 81, also in [BG88]

[Len75] Lenat, D.B.: BEINGs: Knowledge as Interacting Experts, IJCAI’75, pp. 126-
133, also in [BG88]

[Mae86] Maes, P.: Introspection in Knowledge Representation, AI Memo 86-3, Vrije
Universiteit Brussel, 1986

[Mae89] Maes, P.: The Dynamics of Action Selection, IJCAI89, 991-997, 1989

[Maz88] Mazer, M.S., A Knowledge Theoretic Account of Recovery in Distributed
Systems: The Case of Negotiated Commitment, RAK88, 309-323, 1988

[McA88] McArthur, G.L.: Reasoning about knowledge and belief: a survey.
Computational Intelligence 4, 223-243, 1988

[Min75] Minsky, M: A framework for representing knowledge. In: The psychology of
computer vision (P.H. Winston, ed.), McGraw-Hill, pp. 211-277, 1975

[Min86] Minsky, M.L.: The society of mind, New York, Simon and Schuster 1986

[MIT89] Maruichi, T., Ichikawa, M., Tokoro, M.: Modeling Autonomous Agents and
Their Groups, Keio University, in [DM90].

[MM88] Moyson, F., Manderick, B.: The Collective Behavior of Ants: An Example of
Self-Organization in Massive Parallelism, AI Memo 88-7, Vrije Universiteit
Brussel, 1988

[Mor89] Morik, K. (ed.): Knowledge Representation and Organization in Machine
Learning. Springer LNAI 347, 1989

[Mül91] Müller, J.: Defining Rational Agents by Using Hierarchical Structured
Knowledge Bases, IEE Computing and Control Division Colloquium on
“Intelligent Agents”, Digest No. 1991/048, London, Feb. 91

[Mye88] Myerson, R.B., Incentive Constraints and Optimal Communication Systems,
Proc. of the Reasoning about Knowledge (RAK 88) Conference, 179-193,
1988

[Neb90] Nebel, B., Reasoning and Revision in Hybrid Representation Systems,
Springer LNAI 422, Berlin 1990

[Ohl89] Ohlbach, H.J.: Context Logic – An Introduction, 13th German Workshop on
AI, Springer IFB216, Berlin, 1989

[Per85] Perlis, D.: Languages with Self-reference I: Foundations. Artificial Intelligence
25, 301-322, 1985

29

[Per88] Perlis, D.: Languages with Self-reference II: Knowledge, Belief, and Modality.
Artificial Intelligence 34, 179-212, 1988

[RG85] Rosenschein, J.S., Genesereth, M.R.: Deals Among Rational Agents,
IJCAI’85, pp. 91-99

[Rob65] Robinson, J.A.: A Machine Oriented Logic Based on the Resolution Principle,
J.ACM 12(1), 1965

[SD83] Smith, R. & Davis, R.: Framework for Cooperation in Distributed Problem
Solving. IEEE Transactions on Systems, Man, and Cybernetics SMC-11 (3),
pp. 161-169, (1983), also in [BG88]

[Sha89] Shastri, L.: Connectionism, Knowledge Representation and Effective
Reasoning, Int. GI-Congress on Wissensbasierte Systeme 89, Munich, Springer
IFB227, Berlin, 186 - 195, 1989

[Smi81] Smith R.G.: A Framework for Distributed Problem Solving, UMI Research
Press, Ann Arbor, Michigan, 1981

[Ste89a] Steels, L.: Cooperation between Distributed Agents through Self-Organization,
AI Memo 89-9, Vrije Universiteit Brussel, 1989

[Ste89b] Steels, L.: Issues and Open Problems in Subsymbolic Representation, AI
Memo 89-13, Vrije Universiteit Brussel, 1989

[Tha89] Thayse, A.: From Modal Logic to Deductive Databases, Wiley, Chichester,
1989

[TM89] Tennenholtz, M., Moses, Y.: On Cooperation in a Multi-Entity Model, IJCAI
89, 918-923, 1989

[Wer88a] Werner, E.: Toward a Theory of Communication and Cooperation for Multi-
agent Planning, RAK88, 129-143, 1988

[Wer88b] Werner, E.: Social Intentions, ECAI88, 719-723, 1988

[WHBSS81] Wesson et al: Network Structures for Distributed Situation Assessment, IEEE
Trans on SMC 11 (1), pp. 5-23, Jan 81, also in [BG88]

[ZR89] Zlotkin, G., Rosenschein, J.S.: Negotiation and Task Sharing Among
Autonomous Agents in Cooperative Domains, IJCAI89, 912-917

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

DFKI
-Bibliothek-
PF 2080
67608 Kaiserslautern
FRG

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen Publikationen
können von der oben angegebenen Adresse oder per
anonymem ftp von ftp.dfki.uni-kl.de (131.246.241.100)
unter pub/Publications bezogen werden.
Die Berichte werden, wenn nicht anders gekenn-zeichnet,
kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of all
published papers so far are obtainable from the above
address or per anonymous ftp from ftp.dfki.uni-kl.de
(131.246.241.100) under pub/Publications.
The reports are distributed free of charge except if
otherwise indicated.

DFKI Research Reports

RR-92-46
Elisabeth André, Wolfgang Finkler, Winfried Graf,
Thomas Rist, Anne Schauder, Wolfgang Wahlster:
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel, Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck, Ralf Legleitner, Ansgar
Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busemann:
Generierung natürlicher Sprache
61 Seiten

RR-92-51
Hans-Jürgen Bürckert, Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-52
Mathias Bauer, Susanne Biundo, Dietmar Dengler,
Jana Koehler, Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems
14 pages

RR-92-53
Werner Stephan, Susanne Biundo:
A New Logical Framework for Deductive Planning
15 pages

RR-92-54
Harold Boley: A Direkt Semantic Characterization
of RELFUN
30 pages

RR-92-55
John Nerbonne, Joachim Laubsch, Abdel Kader
Diagne, Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-56
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-58
Franz Baader, Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-59
Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults, Preorder Semantics and
Circumscription
19 pages

RR-93-02
Wolfgang Wahlster, Elisabeth André, Wolfgang
Finkler, Hans-Jürgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader, Berhard Hollunder, Bernhard
Nebel, Hans-Jürgen Profitlich, Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR-93-04
Christoph Klauck, Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-05
Franz Baader, Klaus Schulz: Combination Tech-
niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jürgen Bürckert, Bernhard Hollunder, Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-Jürgen Bürckert, Bernhard Hollunder, Armin
Laux: Concept Logics with Function Symbols
36 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut
Hinkelmann, Manfred Meyer: COLAB: A Hybrid
Knowledge Representation and Compilation
Laboratory
64 pages

RR-93-09
Philipp Hanschke, Jörg Würtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit, Francesco M. Donini, Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren, Andreas Podelski,Ralf Treinen:
Equational and Membership Constraints for
Infinite Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof Klöckner,
Volker Schölles, Markus A. Thies, Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz, Jörg Würtz: Object-
Oriented Concurrent Constraint Programming in
Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the
Propositional m-Calculus
32 pages

RR-93-20
Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, Jörg Müller:
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, Ottmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting —
Message Classification in Printed Business Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI Approach to
Modeling the Transportation Domain
93 pages

RR-93-26
Jörg P. Müller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne,
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi-Agent
Worlds viaTerminological Logics
35 pages

RR-93-33
Bernhard Nebel, Jana Koehler:
Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, François Bry, Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KI-
Programmierung — Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, Werner Nutt, Andrea Schaerf:
Queries, Rules and Definitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LAYLAB: A Constraint-Based
Layout Manager for Multimedia Presentations
9 pages

RR-93-42
Hubert Comon, Ralf Treinen:
The First-Order Theory of Lexicographic Path
Orderings is Undecidable
9 pages

RR-93-45
Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

DFKI Technical Memos

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung eines
Compi le rs zur Trans format ion von
Werkstückrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jörg
Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kühn, Andreas Birk: Reconstructive
Integrated Explanation of Lathe Production Plans
20 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

TM-93-03
Harold Boley, Ulrich Buhrmann, Christof Kremer:
Konzeption einer deklarativen Wissensbasis über
recyclingrelevante Materialien
11 pages

DFKI Documents

D-92-21
Anne Schauder: Incremental Syntactic Generation
of Natural Language with Tree Adjoining
Grammars
57 pages

D-92-22
Werner Stein: Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

D-92-23
Michael Herfert: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jürgen Müller, Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations- und
Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm, Knut Hinkelmann, Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB
40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein Modell
zur Repräsentation von Nachrichtentypen
56 Seiten

D-93-01
Philipp Hanschke, Thom Frühwirth:
Terminological Reasoning with Constraint
Handling Rules
12 pages

D-93-02
Gabriele Schmidt, Frank Peters,
Gernod Laufkötter: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann, Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer Jahresbericht
1992
194 Seiten

D-93-05
Elisabeth André, Winfried Graf, Jochen Heinsohn,
Bernhard Nebel, Hans-Jürgen Profitlich, Thomas
Rist, Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages

D-93-06
Jürgen Müller (Hrsg.):
Beiträge zum Gründungsworkshop der Fachgruppe
Verteilte Künstliche Intelligenz Saarbrücken 29.-
30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-07
Klaus-Peter Gores, Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur
partiellen Textanalyse
53 Seiten

D-93-08
Thomas Kieninger, Rainer Hoch: Ein Generator
mit Anfragesystem für strukturierte Wörterbücher
zur Unterstützung von Texterkennung und
Textanalyse
125 Seiten

D-93-09
Hans-Ulrich Krieger, Ulrich Schäfer:
TDL ExtraLight User's Guide
35 pages

D-93-10
Elizabeth Hinkelman, Markus Vonerden,Christoph
Jung: Natural Language Software Registry
(Second Edition)
174 pages

D-93-11
Knut Hinkelmann, Armin Laux (Eds.):
DFKI Workshop on Knowledge Representation
Techniques — Proceedings
88 pages

D-93-12
Harold Boley, Klaus Elsbernd, Michael Herfert,
Michael Sintek, Werner Stein:
RELFUN Guide: Programming with Relations and
Functions Made Easy
86 pages

D-93-14
Manfred Meyer (Ed.): Constraint Processing –
Proceedings of the International Workshop at
CSAM'93, July 20-21, 1993
264 pages
Note: This document is available only for a nominal
charge of 25 DM (or 15 US-$).

