
Reasoning about Temporal Relations:A Maximal Tractable Subclassof Allen's Interval Algebra�Bernhard Nebel and Hans-J�urgen B�urckertGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D-6600 Saarbr�ucken 11, Germanyfnebeljhjbg@dfki.uni-sb.deAbstractWe introduce a new subclass of Allen's interval algebra we call \ORD-Horn subclass," which is a strict superset of the \pointisable subclass."We prove that reasoning in the ORD-Horn subclass is a polynomial-time problem and show that the path-consistency method is su�-cient for deciding satis�ability. Further, using an extensive machine-generated case analysis, we show that the ORD-Horn subclass is amaximal tractable subclass of the full algebra (assuming P6=NP). Infact, it is the unique greatest tractable subclass amongst the subclassesthat contain all basic relations.
�This work has been supported by the German Ministry for Research and Technology(BMFT) under grant ITW 8901 8 as part of the WIP project and under grant ITW 9201as part of the TACOS project.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196650462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents1 Introduction 12 Reasoning about Interval Relations using Allen's IntervalAlgebra 23 The ORD-Horn Subclass 64 The Applicability of Path-Consistency 105 Subalgebras and Their Computational Properties 166 The Borderline between Tractable and NP-completeSubclasses 187 Conclusion 24References 25



1 IntroductionTemporal information is often conveyed qualitatively by specifying the rela-tive positions of time intervals such as \. . . point to the �gure while explainingthe performance of the system . . . " Further, for natural language understand-ing [3; 27], general planning [4; 6], presentation planning in a multi-mediacontext [7; 9], diagnosis of technical systems [26], and knowledge represen-tation [18; 34], the representation of qualitative temporal relations and rea-soning about them is essential. Allen [2] introduces an algebra of binaryrelations on intervals (hereafter referred to as Allen's interval algebra) forrepresenting qualitative temporal information and addresses the problem ofreasoning about such information. In particular, he gives an algorithm forcomputing an approximation to the strongest implied relation for each pairof intervals, which is a simpli�ed version of the path-consistency algorithm[22].As already noted by Allen [2], the path-consistency method is in generalnot su�cient for computing the strongest implied relation for each pair ofintervals. Since this problem is NP-hard in the full algebra [32], it is veryunlikely that other polynomial-time algorithms will be found that solve thisproblem in general. Subsequent research has concentrated on designing moree�cient reasoning algorithms, on identifying tractable special cases, and onisolating sources of computational complexity [10; 13; 14; 15; 20; 25; 26; 28;29; 30; 31; 32; 33]. However, it is by no means clear whether the tractablecases that have been identi�ed are maximal and whether the sources of com-putational complexity found are the only ones.We extend these previous results in three ways. Firstly, we presenta new tractable subclass of Allen's interval algebra, which we call ORD-Horn subclass for reasons that will become obvious below. This subclassis considerably larger than all other known tractable subclasses (it contains10% of the full algebra) and strictly contains the pointisable subclass [20;29]. Secondly, we show that path consistency is su�cient for deciding satis-�ability in this subclass. Thirdly, using an extensive machine-generated caseanalysis, we show that this subclass is a maximal subclass such that satis�a-bility is tractable (under the assumption that P6=NP). We �nally strengthenthis result by showing that the ORD-Horn subclass is in fact the uniquegreatest tractable subclass that contains all the basic relations.From a practical point of view, these results imply that the path-con-sistency method has a much larger range of applicability than previouslybelieved, provided we are mainly interested in satis�ability. Further, ourresults can be used to design backtracking algorithms for the full algebrathat are more e�cient than those based on other tractable subclasses.Some words on methodology may be in order at this point. While provingtractability and the applicability of the path-consistency method is a (more or1



less) straightforward task, showing maximality of a subclass w.r.t. the statedproperties requires an extensive case analysis involving a couple of thousandcases, which can only be done by a computer. This case analysis leads to twointeresting cases, for which NP-completeness proofs are provided. However,the case analysis itself cannot be reproduced in a research paper or veri�edmanually, either. In order to allow for the veri�cation of our results, wetherefore include the abstract form of the programs we used to perform themachine-assisted case analysis.The paper is structured as follows. Section 2 contains terminology andde�nitions used in the remainder of the paper. Section 3 introduces theORD-Horn subclass, which is shown to be tractable. Based on this result, weshow in Section 4 that the path-consistency method is su�cient for decidingsatis�ability in this subclass. In Section 5, we derive some results on thecomputational properties of subalgebras. Using these results and an extensivemachine-generated case analysis, we show in Section 6 that the ORD-Hornsubclass is a maximal tractable subclass of the full algebra and the uniquegreatest tractable subclass that contains all basic relations.2 Reasoning about Interval Relations usingAllen's Interval AlgebraAllen's [2] approach to reasoning about time is based on the notion of timeintervals and binary relations on them. A time interval X is an orderedpair (X�;X+) such that X� < X+, where X� and X+ are interpreted aspoints on the real line.1 So, if we talk about interval interpretations orI-interpretations in the following, we mean mappings of time intervals topairs of distinct real numbers such that the beginning of an interval is strictlybefore the ending of the interval.Given two interpreted time intervals, their relative positions can be de-scribed by exactly one of the elements of the set B of thirteen basic intervalrelations (denoted by B in the following), where each basic relation can bede�ned in terms of its endpoint relations (see Table 1). An atomic formulaof the form XBY , where X and Y are intervals and B 2 B, is said to besatis�ed by an interpretation i� the interpretation of the intervals satis�esthe endpoint relations speci�ed in Table 1.In order to express inde�nite information, unions of the basic intervalrelations are used, which are written as sets of basic relations leading to 213binary interval relations (denoted byR;S; T )|including the null relation; (also denoted by ?) and the universal relation B (also denoted by >).1Other underlying models of the time line are also possible, e.g., the rationals [5;19]. For our purposes these distinctions are not signi�cant, however.2



Basic Interval Sym- Pictorial EndpointRelation bol Example RelationsX before Y � xxx X� < Y �, X� < Y +,Y after X � yyy X+ < Y �, X+ < Y +X meets Y m xxxx X� < Y �, X� < Y +,Y met-by X m^ yyyy X+ = Y �, X+ < Y +X overlaps Y o xxxx X� < Y �, X� < Y +,Y overlapped-by X o^ yyyy X+ > Y �, X+ < Y +X during Y d xxx X� > Y �, X� < Y +,Y includes X d^ yyyyyyy X+ > Y �, X+ < Y +X starts Y s xxx X� = Y �, X� < Y +,Y started-by X s^ yyyyyyy X+ > Y �, X+ < Y +X �nishes Y f xxx X� > Y �, X� < Y +,Y �nished-by X f^ yyyyyyy X+ > Y �, X+ = Y +X equals Y � xxxx X� = Y �, X� < Y +,yyyy X+ > Y �, X+ = Y +Table 1: The set B of the thirteen basic relations. The endpoint relationsX� < X+ and Y � < Y + that are valid for all relations have been omitted.The set of all binary interval relations 2B is denoted by A.An atomic formula of the form X fB1; . . . ; BngY (denoted by �) is calledinterval formula. Such a formula is satis�ed by an I-interpretation = i�XBiY is satis�ed by = for some i, 1 � i � n. Finite sets of interval formulasare denoted by �. Such a set � is called I-satis�able i� there exists an I-interpretation = that satis�es every formula of �. Further, such a satisfyingI-interpretation = is called I-model of �. If an interval formula � is satis�edby every I-model of a set of interval formulas �, we say that � is logicallyimplied by �, written � j=I �.Fundamental reasoning problems in this framework include [14; 15; 20;30; 32]: Given a set of interval formulas �,1. decide whether there exists an I-model of � (ISAT),2. determine for each pair of intervals X;Y the strongest implied relationbetween them (ISI), i.e., the smallest set R such that � j=I XRY .2In the following, we often consider restricted reasoning problemswhere the relations used in interval formulas in � are only from a subclass S2This problems has also been called deductive closure problem by Vilain and Kautz [32]and minimal labeling problem (MLP) by van Beek [29] since it corresponds to �nding theminimal network in a general constraint satisfaction problem.3



of all interval relations. In this case we say that � is a set of formulas overS, and we use a parameter in the problem description to denote the subclassconsidered, e.g., ISAT(S). As is well-known, ISAT and ISI are equivalentwith respect to polynomial Turing-reductions [32] and the same holds forother reasoning tasks of interest [14; 15]. Further, the equivalence also ex-tends to the restricted problems ISAT(S) and ISI(S) provided S contains allbasic relations.Proposition 1 ISAT(S) and ISI(S) are equivalent under polynomialTuring-reductions, provided S contains all basic relations.Proof. A solution to ISI(S) clearly gives an answer to the ISAT(S) decisionproblem. For the converse direction, one can use an oracle for ISAT(S) tocheck for each pair of intervals X;Y whether �[ (X fBigY ) is satis�able foreachBi 2 B. The set of basic relations for which the test succeeds constitutesthe strongest implied relation betweenX and Y . Hence, ISI(S) can be solvedusing a number of calls to the ISAT(S) oracle that is polynomial in j�j.The most prominent method to solve these problems (approximately forall interval relations or exactly for subclasses) is constraint propagation [2; 20;26; 29; 31; 32] using a slightly simpli�ed form of the path-consistency algo-rithm [22; 24]. In the following, we briey characterize this method withoutgoing into details, though. In order to do so, we �rst have to introduceAllen's interval algebra.Allen's interval algebra [2] consists of the set A = 2B of all binaryinterval relations and the operations unary converse (denoted by �^), bi-nary intersection (denoted by \), and binary composition (denoted by�), which are de�ned as follows:38X;Y : XR^Y $ Y RX8X;Y : X (R \ S) Y $ XRY ^XSY8X;Y : X (R � S) Y $ 9Z: (XRZ ^ ZSY ):It follows that the converse of R = fB1; . . . ; Bng can be expressed by theset of basic relations R^ = fB1^; . . . ; Bn^g. Further, the intersection oftwo relations (R \ S) can be expressed as the set-theoretic intersection ofthe sets of basic relations that are used to describe the interval relations, i.e.,(R\S) = fB 2 B j B 2 R;B 2 Sg. The composition of two relations cannotbe speci�ed straightforwardly, however. Using the de�nition of composition,it can be derived thatR � S = [fB �B 0jB 2 R;B 0 2 Sg;3Note that we obtain a relation algebra if we add complement and union as operations[20]. For our purposes, this is irrelevant, however.4



i.e., composition is the union of the component-wise composition of basicrelations. The results of composing basic relations must in turn be derivedfrom the de�nition of the basic relations in terms of their endpoint relations.4Using Allen's interval algebra, we specify an abstract form of the constraintpropagation algorithm that has been proposed for reasoning in this frame-work.Assume an operator � that maps �nite sets of interval formulas to �nitesets of interval formulas in the following way:�(�) = � [fX>Y j X;Y appear in �g [fXRY j (Y R^ X) 2 �g [fX (R \ S) Y j (XRY ); (XSY ) 2 �g [fX (R � S) Y j (XRZ); (ZSY ) 2 �g:Since there are only �nitely many di�erent interval formulas for a �nite set ofintervals and � is monotone, it follows that for each � there exists a naturalnumber n such that �n(�) = �n+1(�). �n(�) is called the closure of �,written �.Considering the formulas of the form (X RiY ) 2 � for given X;Y , it isevident that the Ri's are closed under intersection, and hence there exists(XSY ) 2 � such that S is the strongest relation amongst the Ri's, i.e.,S � Ri, for every i. The subset of a closure � containing for each pair ofintervals only the strongest relations is called the reduced closure of � andis denoted by b�.As can be easily shown, every reduced closure of a set � is path con-sistent [22] (or 3-consistent [11]), which means that for every three intervalsX;Y;Z and for every interpretation = that satis�es (XRY ) 2 b�, there existsan interpretation =0 that agrees with = on X and Y and in addition satis-�es (XSZ); (ZS 0Y ) 2 b�. In other words, for a given triangle of intervals,regardless of how we chose an interpretation for two intervals that satis�esthe relation between them, it is still possible to chose an interpretation forthe third interval such that the remaining relations are also satis�ed.Under the assumption that (XRY ) 2 � implies (Y R^ X) 2 �, it is alsoeasy to show that path consistency of � implies that � = b�. For this reason,we will use the term path-consistent set as a synonym for a set that is thereduced closure of itself.The reduced closure is a path-consistent set that is logically equivalentto the original one, i.e., � j=I b� and b� j=I �. Computing b� is polynomialin the size of �. More precisely, let us assume that � is a set of intervalformulas over n distinct intervals such that j�j � 13 � n � (n � 1). Thisassumption is quite reasonable since supposing that for a given pair X;Y4Allen [2] gives a composition table for the basic relations.5



there are c > 13 di�erent formulasXRiY leads to the conclusion that at leastc�13 of these are redundant, which can be determined in linear time. For thisreason, we assume here and in the following that j�j 2 O(n2), and we specifythe asymptotic runtime behavior of an algorithm in the number of distinctintervals n. Under these assumptions, an algorithm can be speci�ed thatcomputes the reduced closure of a set of interval formulas in O(n3) time [23;24].It should be noted that the path-consistency method provides only anapproximation to ISI. This means that the relations in a path-consistent setcontain the strongest implied relations, but the converse does not hold ingeneral. Similarly for ISAT, the presence of an assertion X?Y in a path-consistent set implies that the set is not satis�able, but the converse doesnot hold in general. An example of a path-consistent set of interval formulasthat is unsatis�able but does not contain X?Y is given by Allen [2].3 The ORD-Horn SubclassPrevious results on the tractability of ISAT(S) (and hence ISI(S)) for somesubclass S � A made use of the expressibility of interval formulas over S ascertain logical formulas involving endpoint relations.As usual, by a clause we mean a disjunction of literals, where a literal inturn is an atomic formula or a negated atomic formula. As atomic formulaswe allow a � b and a = b, where a and b denote endpoints of intervals. Thenegation of a = b is written as a 6= b and the negation of a � b as a 6� b.Finite sets of such clauses will be denoted by 
.Similarly to the notions of I-interpretation, I-model, and I-satis�ability,we de�ne an R-interpretation to be an interpretation that interprets allendpoints in a set of clauses 
 as real numbers, an R-model of 
 to bean R-interpretation that satis�es 
, and R-satis�ability of 
 to be thesatis�ability of 
 over R-interpretations. If the clause C is logically impliedby 
 interpreted over R-interpretations, we write 
 j=R C.The clause form of an interval formula � is the set of clauses over end-point relations that is equivalent to �, i.e., every I-model of � can be trans-formed into a R-model of the clause form and vice versa using the obvioustransformation. Clearly, it is possible to translate any interval formula intoits equivalent clause form.In the following, we consider a slightly restricted form of clauses, whichwe call ORD clauses. These clauses do not contain negations of atoms ofthe form a � b, i.e., they only contain literals of the form:a = b; a � b; a 6= b:The ORD-clause form of an interval formula �, written �(�), is the clause6



form of � containing only ORD clauses. This restriction does not a�ect theexistence of the clause form because any clause of the form (a 6� b) _ C canbe equivalently expressed by the two clauses a 6= b _ C and b � a _ C.The function �(�) is extended to �nite sets of interval formulas in theobvious way, i.e., for identical intervals in �, identical endpoints are usedin �(�). This implies that any I-model of � can be transformed into anR-model of �(�) and vice versa.Proposition 2 � is I-satis�able i� �(�) is R-satis�able.While it is obvious that all interval formulas can be translated into itsequivalent ORD-clause form, it is not clear that such a translation is worth-while. However, interestingly, some relations have a very concise ORD-clauseform. Consider, for instance, �(X fd; o; sg Y ):n(X� � X+); (X� 6= X+);(Y � � Y +); (Y � 6= Y +);(X� � Y +); (X� 6= Y +);(Y � � X+); (X+ 6= Y �);(X+ � Y +); (X+ 6= Y +)o:Not all relations permit a translation that leads to a clause form that is asdense as the the one shown above, which contains only unit clauses, i.e.,clauses consisting of only one literal. However, in particular those relationsthat allow for such a clause form have interesting computational properties.For instance, the continuous endpoint subclass (which is denoted by C)can be de�ned as the subclass of interval relations that1. permit a clause form that contains only unit clauses, and2. for each unit clause a 6= b, the clause form contains also a unit clauseof the form a � b or b � a.As demonstrated above, the relation fd; o; sg is a member of the contin-uous endpoint subclass. This subclass has the favorable property that thepath-consistency method solves ISI(C) [29; 31; 33].A slight generalization of the continuous endpoint subclass is the poin-tisable subclass (denoted by P) that is de�ned in the same way as C, butwithout condition (2). The relation fd; og is, for instance, an element of P�Cbecause the clause form of (Xfd; ogY ) contains (X� 6= Y �) in addition tothe clauses of �(Xfd; o; sgY ).It was claimed that the path-consistency method is also complete forISI(P) [32]. However, van Beek [29] gives a counter-example showing thatthis claim is wrong. Nevertheless, the path-consistency method is still suf-�cient for deciding satis�ability [20; 32]. Using the fact that the path-consistency method needs O(n3) time and employing the reduction used in7



the proof of Proposition 1, it follows that ISI(P) can be solved in O(n5) time,where n is the number of distinct intervals. It is possible to do better thanthat, however. Van Beek [29; 30; 31] gives algorithms for solving ISI(P) inO(n4) time and speci�es an algorithm for deciding ISAT(P) in O(n2) time[30].We generalize this approach by being more liberal concerning the clauseform. We consider the subclass of Allen's interval algebra such that therelations permit an ORD-clause form containing only clauses with at mostone positive literal, i.e., a literal of the form a = b or a � b, and an arbitrarynumber of negative literals, i.e., literals of the form a 6= b. We call suchclauses ORD-Horn clauses since clauses containing at most one positiveliteral are called Horn clauses. The subclass de�ned in this way is calledORD-Horn subclass, and we use the symbol H to refer to it. The relationfo; s; f^g is, for instance, an element of H, because �(X fo; s; f^g Y ) can beexpressed as follows:n(X� � X+); (X� 6= X+);(Y � � Y +); (Y � 6= Y +);(X� � Y �);(X� � Y +); (X� 6= Y +);(Y � � X+); (X+ 6= Y �);(X+ � Y +); (X� 6= Y � _X+ 6= Y +)o:By de�nition, the ORD-Horn subclass contains the pointisable subclass. Fur-ther, by the above example, this inclusion is strict.Consider now the theory ORD that axiomatizes \=" as an equivalencerelation and \�" as a partial ordering over the equivalence classes:8x; y: x � y ^ y � z ! x � z (Transitivity)8x: x � x (Reexivity)8x; y: x � y ^ y � x ! x = y (Antisymmetry)8x; y: x = y ! x � y8x; y: x = y ! y � x:Although this theory is much weaker, and hence allows for more models thanthe intended models of sets of ORD clauses, R-satis�ability of a �nite set 
of ORD clauses is nevertheless equivalent to the satis�ability of 
 [ ORDover arbitrary interpretations.Proposition 3 A �nite set of ORD clauses 
 is R-satis�able i� 
 [ ORDis satis�able.Proof. If 
 has an R-model, then clearly the axioms of ORD are alsosatis�ed by this model. Conversely, let = be an arbitrary model of ORD [
.8



Since transitivity, reexivity, symmetry, and substitutivity of = follow fromthe axioms, = is a congruence relation and === (i.e., the quotient of =modulo =) is also a model of 
. Further, since === satis�es ORD, it is a setpartially ordered by �. Finally, every partially ordered set can be extendedto a linearly ordered set, which in turn can be embedded in the reals. Sincein every such linear extension of a partial ordering all formulas of the form(a = b); (a 6= b); and (a � b) from 
 are still satis�ed, = can be transformedinto an R-model of 
.It should be noted that the proposition only holds if all clauses in 
 areORD clauses. Consider, for instance, 
 = f(a 6� b); (b 6� a)g. This clauseset is R-unsatis�able, but there exists a model of ORD [ 
 with a and binterpreted as incomparable elements.Note that ORD is a Horn theory, i.e., a theory containing only Hornclauses. Since the ORD-clause form of interval formulas over H is also Horn,tractability of ISAT(H) would follow, provided we could replace ORD by apropositional Horn theory. In order to decide satis�ability of a set of ORDclauses 
 in ORD, however, we can restrict ourselves to Herbrand inter-pretations, i.e, interpretations that have only the endpoints of all intervalsmentioned in 
 as objects. In the following, ORD
 shall denote the axiomsof ORD instantiated to all endpoints mentioned in 
. As a specialization ofthe Herbrand theorem, we obtain the next proposition.Proposition 4 
 [ ORD is satis�able i� 
 [ ORD
 is satis�able.From that, polynomiality of ISAT(H) is immediate.Theorem 5 ISAT(H) is polynomial.Proof. For any set � over H, a set of propositional Horn clauses �(�)can be generated in time linear in �. Further, ORD�(�), which is a setof propositional Horn clauses, can be computed in time polynomial in �.Since satis�ability of a set of propositional Horn clauses can be decided inpolynomial time, and since by Propositions 2, 3, and 4 it su�ces to decidethe satis�ability of �(�) [ ORD�(�) in order to decide I-satis�ability of �,the claim follows.Based on this result and the fact that the best known satis�ability algo-rithm for propositional Horn theories is linear [8], it is possible to give anupper bound for deciding ISAT(H). Given a set of interval formula � withn distinct intervals, we assume as usual that j�j 2 O(n2).Theorem 6 ISAT(H) can be decided in O(n3) time.9



Proof. Based on the assumption that j�j 2 O(n2), �(�) is of size O(n2)and can be computed in time O(n2). Similarly,ORD�(�) is of size O(n3) andcan be generated in O(n3) time. Finally, since satis�ability of propositionalHorn theories can be decided in linear time, the claim follows.Using the reduction employed in the proof of Proposition 1, an upperbound for ISI(H) follows straightforwardly.Corollary 7 ISI(H) can be solved in O(n5) time.4 The Applicability of Path-ConsistencyEnumerating the ORD-Horn subclass reveals that there are 868 relations (in-cluding the null relation ?) in Allen's interval algebra that can be expressedusing ORD-Horn clauses. As a side remark, it is interesting to note that theclause form of the interval formulas over H is less arbitrary than one mightexpect. Non-unit clauses are only binary and they only contain literals ofthe form (X� op1 Y �) and (X+ op2 Y +), where opi 2 f�;=; 6=g.Since the full algebra contains 213 = 8192 relations, H covers more than10% of the full algebra. Comparing this with the continuous endpoint sub-class C, which contains 83 relations, and the pointisable subclass P, whichcontains 188 relations,5 having shown tractability for H is a clear improve-ment over previous results. However, there remains the question of whetherthe \traditional" method of reasoning in Allen's interval algebra, i.e., con-straint propagation, gives reasonable results.As we show below, this is indeed the case. ISAT(H) is decided by thepath-consistency method. Intuitively, the path-consistency method performspositive unit resolution, i.e., unit resolution involving only positive unitclauses, a resolution strategy that is refutation complete for Horn theories[16]. If a clause C is derivable by positive unit resolution from 
, we write
 `U+ C.In the following, we assume that the clauses C 2 �(�) are minimal, i.e.,there exists no clause C 0 with fewer literals than C (w.r.t. set-inclusion) suchthat �(�) j=R C 0. Clearly, if there exists some clause form, there exists alsoa minimal clause form. Additionally, we assume that(a � b); (b � a) 2 �(�) i� (a = b) 2 �(�)(a = b) 2 �(�) i� (b = a) 2 �(�)(a = a) 2 �(�);where a and b denote endpoints of the two intervals appearing in �. Inother words, we assume that symmetry and reexivity of positive unit clauses5An enumeration of C and P is given by van Beek and Cohen [31].10



involving =, as well as antisymmetry for positive unit clauses involving �(and the \weaking" of =) is explicitly represented in the clause form. We callthis the explicitness assumption. Note that this assumption is compatiblewith the assumption that all clauses in �(�) are minimal.Lemma 8 Let b� be a path-consistent set over H. Then �( b�) [ ORD�(b�)does not allow the derivation of new unit clauses by positive unit resolution.Proof. A new unit clause U can only be derived if there exists a non-unitclause C 2 �( b�) [ ORD�(b�) and a set of positive unit clauses D � �( b�) [ORD�(b�) such that for all literals in C except U there is a complementarypositive unit clause in D. We proceed by case analysis:1. Suppose C is an instance of the transitivity axiom.(a) Positive units resulting from the reexivity axiom cannot lead tonew units if resolved with the transitivity axiom.(b) Assume D � �(f�ig), for some interval formulas �i 2 b� overthe intervals X;Y . Since b� is path consistent, for any given pairX;Y there exist only two interval formulas of the form XRY andY R^X 2 b�. Since �(XRY ) is logical equivalent to �(Y R^X),we can assume that D � �(XRY ), for some pair of intervals X,Y . By minimality and explicitness of the clause form, it followsthat U 2 �(XRY ).(c) Consider two di�erent interval formulas, say XRY; Y SZ 2 b�.By the above arguments, there do not exist other interval for-mulas over the same intervals that are not logically equivalent.Assume that each of the ORD-clause forms of these interval for-mulas contains one positive unit Uxy 2 �(XRY ); Uyz 2 �(Y SZ)and D = fUxy; Uyzg. Consider now (XTZ) 2 b�. Since b� is apath-consistent set, it holds that T � (R � S). Further, because�(fXRY; Y SZg) j=R U , and because U mentions only endpointsof X and Z, it follows that �(fX (R � S) Zg) j=R U , and, sinceT � (R � S), �(XTZ) j=R U . Since by assumption b� is overH, it must be the case that T 2 H. Finally, since all ORD clauseforms are minimal and explicit, it follows that U 2 �(XTZ).2. C cannot be an instance of the reexivity axiom because we assumedthat C is a non-unit clause.3. Suppose C is an instance of the antisymmetry axiom.(a) Assume D = f(a � a); (a � a)g � �( b�). However, by the explic-itness assumption (a = a) 2 �( b�).11



(b) So assume, D = f(a � b); (b � a)g � �( b�). However, again bythe explicitness and minimality assumptions, (a = b) 2 �( b�).64. Suppose that C is an instance of one of the two axioms8x; y: x = y ! x � y8x; y: x = y ! y � x:Again, by the explicitness assumption, no new unit can be derived.5. Finally, suppose that C 2 �( b�). Since the only units in ORD�(b�) area � a and no clause in �( b�) contains a literal of the form (a 6� a), wemust have D � �( b�). Assume that C 2 �(XRY ). Since D containsunit clauses over the same endpoints, and since path-consistency of b�implies that there is no other non-equivalent formula over the sameintervals, it must be the case that D � �(XRY ). Now, by minimalityand explicitness, it follows that U 2 �(XRY ). Hence, also in this case,no new unit clause is derivable.Hence, it is impossible to derive a new unit clause from any clause C 2�( b�) [ ORD�(b�) by positive unit resolution.Since the only interval formulas having the empty clause as their ORD-clause form are those involving ?, it follows by refutation completeness ofpositive unit resolution that any path-consistent set over H without anyformula involving ? is satis�able.Theorem 9 Let b� be a path-consistent set of interval formulas over H.Then b� is I-satis�able i� (X?Y ) 62 b�.Proof. \):" Obvious.\(:" Assume that (X?Y ) 62 b�. Since the only interval formulas thathave the empty clause in the clause form are formulas of the form (X?Y ),it follows that �( b�) does not contain the empty clause. By Lemma 8 andrefutation completeness of positive unit resolution, it follows that �( b�) [ORD�(b�) is satis�able. By Propositions 2, 3, and 4, it follows that b� has aninterval model.The only remaining part we have to show is that transforming � overH into its equivalent path-consistent form b� does not result in a set thatcontains relations not in H. In order to show this we prove that H is closedunder converse, intersection, and composition, i.e., H (together with theseoperations) de�nes a subalgebra of Allen's interval algebra.6Note that it might be possible to derive the new unit clause (b 6� a) if D = f(a �b); (a 6= b)g. However, this would not be a positive unit resolution step.12



At �rst sight, this looks like a straightforward consequence of the fact thatminimal clauses implied by a Horn theory are Horn clauses. Unfortunately,this fact cannot be exploited in our case. As long as we interpret �(�)over the reals, this fact is not applicable and Proposition 3 only guaranteesthe equivalence of satis�ability of ORD-Horn clauses, not the equivalence oflogical implication. As a matter of fact, in our case, the mentioned fact doesnot hold, as the following example demonstrates:f(a � b)g j=R (a � c _ c � b):In order to show that H is nevertheless a subalgebra, we �rst need twotechnical lemmas.Lemma 10 Let 
 be a set of ORD-Horn clauses such that 
 [ f(c 6= d)gis R-satis�able and 
 [ f(c 6= d); (a � b); (a 6= b)g is R-unsatis�able. Then
 [ f(a � b); (a 6= b)g is already R-unsatis�able.Proof. By Propositions 3 and 4, ORD
[
[f(c 6= d); (a � b); (a 6= b)gmustbe unsatis�able. Since a set of Horn clauses is unsatis�able i� it containsan unsatis�able subset with exactly one negative clause [12], it follows thatORD
 [
[f(a � b)g, ORD
 [
[f(a � b); (a 6= b)g, or ORD
[
[f(c 6=d); (a � b)g is already unsatis�able. If one of the former two cases holds,then the claim follows by Propositions 3 and 4. Hence, let us assume thatthe latter case holds.By refutation completeness of positive unit resolution ORD
 [
[f(a �b)g `U+ (c = d). By that it follows that ORD
 [ 
 [ f(a � b)g `U+(c � d); (d � c). Further, at most one of these atoms can be derived fromORD
 [
 since otherwise the empty clause could be derived from ORD
 [
 [ f(c 6= d)g. Hence, (a � b) must be involved in deriving c � d or d � c.Without loss of generality, we assume the �rst of these alternatives. If thetransitivity axiom is used in deriving c � d there must be a sequence of unitclauses derivable from ORD
[
[f(a � b)g by positive unit resolution suchthat c � . . . � d. If c � d is derived from c = d or from a clause in 
, thenthis chain is simply c � d.Suppose that a � b is one of the unit clauses in the above chain, i.e.,c � . . . � a � b � . . . � d. Since ORD
 [ 
 [ f(a � b)g `U+ (c = d),it follows that ORD
 [ 
 [ f(a � b)g `U+ (a = b). This means that theempty clause is derivable from ORD
 [ 
 [ f(a � b); (a 6= b)g. ApplyingPropositions 3 and 4, the claim follows in this case.Suppose that (a � b) does not appear as a unit participating in a chain asspeci�ed above. Since (a � b) is nevertheless necessary for deriving (c � d),some positive unit resolution steps involving clauses from 
 are necessary.Consider the �rst such step where (a � b) is involved as an ancestor. Since13



all negative literals have the form e 6= f , a sequence of units as follows mustbe derivable from ORD
 [ 
 [ f(a � b)g:e � . . . � a � b � . . . � f:Since e = f is also derivable by positive unit resolution, by the same argu-ments as above, it follows that 
[f(a � b); (a 6= b)gmust be R-unsatis�able.Lemma 11 Let 
 be a set of ORD-Horn clauses such that 
 [ f(a1 �b1); (a1 6= b1); (a2 � b2); (a2 6= b2)g is R-unsatis�able, but 
[f(ai � bi); (ai 6=bi)g, for i = 1; 2, is R-satis�able. Then 
 j=R (b1 � a2); (b2 � a1).Proof. Let 
0 be the subset of 
 that contains all clauses of 
 except thenegative ones. By Lemma 10, it follows that 
0 [ f(a1 � b1); (a2 � b2); (a2 6=b2)g is already R-unsatis�able. Using the same arguments as in the proof ofLemma 10, it follows that ORD
 [
0 [ f(a1 � b1)g `U+ (b2 � a2). Further,ORD
 [ 
0 6`U+ (b2 � a2) since otherwise 
 [ f(a2 � b2); (a2 6= b2)g wouldbe already R-unsatis�able. Hence, (a1 � b1) is used in the positive unitderivation of (b2 � a2). As in the proof of Lemma 10, there are two cases.1. There exists a sequence of unit clauses derivable fromORD
[
0[fa1 �b1g such that b2 � . . . � a1 � b1 � . . . � a2:Hence, b2 � a1 and b1 � a2 are derivable by unit resolution. Bysoundness of positive unit resolution, the claim follows in this case.2. There is no unit (a1 � b1) in the sequence of unit clauses above. Since(a1 � b1) is involved in the derivation of (b2 � a2), a positive unitresolution step involving an ancestor of (a1 � b1) with a clause from 
0must be involved. Since the only negative literals in such clauses havethe form c 6= d, a1 = b1 must be derivable from ORD
[
0[f(a1 � b1)gby positive unit resolution. However, this contradicts our assumptionthat 
 [ f(a1 � b1); (a1 6= b1)g is R-satis�able.Hence, the �rst case must apply, and the claim holds.Theorem 12 H is closed under converse, intersection, and composition.Proof. Suppose R 2 H, i.e., �(XRY ) is a set of ORD-Horn clauses. Clearly,�(Y RX) is a set of ORD-Horn clauses, hence �(X R^ Y ) is as well, hence,R^ 2 H.Suppose R;S 2 H, hence, �(fXRY;XSY g) is a set of ORD-Horn clauses.Since �(fXRY;XSY g) is logically equivalent to �(X (R \ S) Y ), the lattercan be expressed as a set of ORD-Horn clauses, so (R \ S) 2 H.14



Suppose R;S 2 H. Given XRZ; ZSY , R � S is the strongest impliedrelation between X and Y , i.e., fXRZ; ZSY g j=I X (R � S) Y , for anyX;Y;Z, such that (R � S) is the strongest relation satisfying this relation.Assume that it is impossible to �nd a clause form for �(X (R �S) Y ) that isORD-Horn. This means that �(X (R�S)Y ) must contain at least one clauseC with more than one positive literal. Let C = C�_C=_C 6=, where C�, C=,and C 6= are clauses containing only literals over �, =, and 6=, respectively.Without loss of generality, we assume that C is minimal. Since C followslogically from �(fXRZ; ZSY g), the negation of C together with this clauseform is R-unsatis�able. Let us consider the set of unit ORD-clauses D thatis logically equivalent to the negation of C under interpreting the enpointsas reals, where D = D� [ D= [ D6= such that the respective clause setscorrespond to the clause parts in C.As the �rst step, we show that C= must be empty. Assume that D= =f(a1 6= b1); . . . ; (ak 6= bk)g, where k � 2. By Propositions 3 and 4 it followsthat ORD
[�(fXRZ; ZSY g)[D is unsatis�able. Since a set of Horn clausesis unsatis�able i� it contains an unsatis�able subset with exactly one negativeclause [12], it follows that ORD
[�(fXRZ; ZSY g)[D�[D 6=[f(ai 6= bi)g,for some i, 1 � i � k, must be already unsatis�able, hence, by Propositions 3and 4, �(fXRZ; ZSY g) [D� [D 6= [ f(ai 6= bi)g is already R-unsatis�able,hence, the clause C is not minimal, contradicting the assumption.Assume that C= = (c = d), i.e., D= = f(c 6= d)g. In this case, C� cannotbe empty since otherwise C would be an ORD-Horn clause, contradictingour assumption. Thus, D� contains the two unit clauses (a � b); (a 6= b)resulting from the literal (b � a) in C�. Applying Lemma 10 leads to theconsequence that 
 [D� [D6= is already R-unsatis�able, contradicting theassumption that C is minimal. Hence, it must be the case that C= is theempty clause.As the second step, we show that for any clause C containing more thanone literal in C�, we can construct two clauses C1 and C2 with fewer positiveliterals than C such that �(fXRZ; ZSY g) j=R C1; C2 and fC1; C2g j=R C.Let (b1 � a1); (b2 � a2) be two literals from C�, let C 0� be C� withoutthose two literals, and let C 0 = C 0� _ C= _ C 6=. Similarly, let D0� be D�without the units (a1 � b1), (a1 6= b1), (a2 � b2), (a2 6= b2), and let D0 =D0� [D= [D 6=.By the assumption that C is a minimal clause logically implied by�(fXRZ; ZSY g), it follows that �(fXRZ; ZSY g) [D0 [ f(a1 � b1); (a1 6=b1); (a2 � b2); (a2 6= b2)g is R-unsatis�able, but if f(ai � bi); (ai 6= bi)g, forsome i 2 f1; 2g, is omitted from the set of clauses, it becomes R-satis�able.Applying Lemma 11 yields �(fXRZ; ZSY g) [D0 j=R (b1 � a2); (b2 � a1).Set C1 = C 0 _ (b1 � a2) and C2 = C 0 _ (b2 � a1). First, the clausesC1 and C2 have fewer positive literals than C. Second, we obviously have15



�(fXRZ; ZSY g) j=R C1; C2. Third, we also have fC1; C2g j=R C, becausef(C 0 _ (b1 � a2)); (C 0 _ (b2 � a1))g [f(a1 � b1); (a1 6= b1); (a2 � b2); (a2 6= b2)g [D0is R-unsatis�able.By induction over the number of positive literals in C, it follows that ifthere exists a clause C such that �(fXRZ; ZSY g) j=R C, then there exists aset of ORD-Horn clauses fCig that is logically implied by �(fXRZ; ZSY g)and impliesC. Hence, �(X (R�S)Y ) can be expressed as a set of ORD-Hornclauses, hence (R � S) 2 H.From that it follows immediately that ISAT(H) is decided by the path-consistency method.Theorem 13 If � is a set over H, then � is satis�able i� (X?Y ) 62 b� forall intervals X;Y .Proof. Since b� is logically equivalent to �, satis�ability of � implies(X?Y ) 62 b�, for all X;Y .Conversely, for any set � over H, b� is a set over H by Theorem 12.Since the absence of ? from b� over H implies its satis�ability by Theorem 9,and since � is logically equivalent to b�, the absence of ? from b� impliessatis�ability of �.5 Subalgebras and Their ComputationalPropertiesWhile the introduction of the algebraic structure on the set of expressibleinterval relations may have seem to be only motivated by the particularapproximation algorithm employed, this structure is also useful when we ex-plore the computational properties of restricted problems. As it turns out,it is not necessary to explore the entire space of subclasses of the intervalalgebra (consisting of 2213 or approximately 102400 subsets), but we can re-strict ourselves to subalgebras of Allen's interval algebra. For any arbitrarysubset S � A, S shall denote the closure of S under converse, intersection,and composition. In other words, S is the carrier of the least subalgebragenerated by S.Theorem 14 ISAT(S) can be polynomially transformed to ISAT(S).Proof. Let T = S � S. Every element of R 2 T is equivalent to someexpression �R over S involving converse, intersection, and composition. Letm be the maximum number of operators appearing in these expressions.16



We will show by induction that for any set of intervals � over S, we canconstruct a set �0 over S such that j�0j � (2m � j�j) and � is I-satis�ablei� �0 is. Since m is �xed for given S, this is a polynomial transformation.Base step: m = 1. For any interval formula (XRY ) 2 � such that R 2 Tone of the following cases applies:1. R = S^ and S 2 S. In this case, the interval formula (XRY ) in � isreplaced by (Y SX).2. R = S \ T and S; T 2 S. In this case, the interval formula (XRY ) in� is replaced by the two formulas (XSY ); (XTY ).3. R = S � T and S; T 2 S. In this case, the interval formula (XRY ) in� is replaced by (XSZ); (ZTY ), where Z is a fresh interval.Clearly, if � is I-satis�able then �0 is and vice versa. Further j�0j � 21�j�j.Inductive step: We assume that the hypothesis holds for m = k andassume that the maximum number of operators appearing in expressions �Rfor R 2 T is k + 1. Let T 0 � T be the relations R such that the expressions�R involve k +1 operators. For all these relations we can �nd expressions �0Rover S � T 0 that contain only one operator.Applying now the above transformation for all R 2 T 0 using �0R yields aset �00 over S � T 0 of size 2 � j�j that is equivalent to � with respect toI-satis�ability. Applying the induction hypothesis yields that it is possibleto construct a set �0 of size 2k+1 � j�j that is equivalent to � with respectto I-satis�ability, which proves the induction claim.In other words, once we have proven that satis�ability is polynomial forsome set S � A, this result extends to the least subalgebra generated by S.Corollary 15 ISAT(S) is polynomial i� ISAT(S) is polynomial.Conversely, NP-hardness for a subalgebra is \inherited" by all subsetsthat generate this subalgebra. Since ISAT(A) 2 NP, NP-completeness fol-lows.Corollary 16 ISAT(S) is NP-complete i� ISAT(S) is NP-complete.It should be noted that these results do not hold in its full generalityif the interval satis�ability problem is de�ned somewhat di�erently. Often,this problem is de�ned over \binary constraint networks" [14; 15; 25; 31;33]. Such networks correspond to what we will call normalized sets ofinterval formulas, where for each pair of intervals X;Y we have exactly oneinterval formula. The corresponding decision problem for the satis�abilityof normalized sets of interval formulas is denoted by ISATN(S). Provided17



the subclass S of Allen's interval algebra contains > and f�g, which isusually true, then a slight modi�cation of the reduction used in the proofof Theorem 14 leads to identical results.Theorem 17 ISATN(S) can be polynomially transformed to ISATN(S), pro-vided f>; f�gg � S.Proof. The reduction for converses and composition can be done as in theproof of Theorem 14. Interval formulas XRY that involve a relation R thatcan only be expressed as an intersection (S \ T ) are transformed into setsof formulas of the following form f(XSY ); (Xf�gZ); (ZTY )g, where Z is afresh interval, which leads to a set of interval formulas that is equivalent tothe original set with respect to I-satis�ability.However, if > 62 S or f�g 62 S, the reduction does not apply any longer.In such a case, polynomiality of a set does not automatically extend to theleast subalgebra generated by this set. In fact, Golumbic and Shamir [14; 15]show that for S0 = nf�g; f�g; f�;�g;B�f�;�go the problem ISATN(S0)is polynomial, while ISATN(S0 [ f>g) is NP-complete, despite the fact thatS0 [ f>g � S0.We believe that for the applications mentioned in the Introduction thede�nition of the interval satis�ability problem over arbitrary sets of inter-val formulas is more appropriate than over normalized sets because it allowsto leave some relations between intervals unspeci�ed and permits incremen-tal re�nements of constraints between intervals (by adding interval formu-las to an already existing set). However, the problem de�nition of ISATNis certainly worthwhile in cases where the problem solving process is non-incremental and constraints between all intervals are known.6 The Borderline between Tractable andNP-complete SubclassesHaving identi�ed the tractable fragmentH that contains the previously iden-ti�ed tractable fragmentP and that is considerably larger than P is satisfyingin itself. However, such a result also raises the questions of whether theremay exist other tractable fragments that contain H or whether there areother incomparable tractable fragments. In other words, we want to knowthe boundary between polynomiality and NP-completeness in Allen's intervalalgebra.Although we have narrowed down the space of possible candidates in theprevious section from arbitrary subsets ofA to subalgebras, it still takes somee�ort to prove that a given fragment S is a maximal tractable subclass of18



Allen's interval algebra. Firstly, using Corollary 15, one has to show that S =S. For the ORD-Horn subclass, this has been done in Theorem 12. Secondly,employing Corollary 16, it su�ces to prove that ISAT(T ) is NP-complete forallminimal subalgebras T that strictly contain S. This, however, means thatthe minimal subalgebras containing S have to be identi�ed. The only wayto solve this problem seems to be to enumerate all subalgebras generatedby S [ fRg, for R 2 A � S, and to �lter out the minimal ones|a processthat involves a case analysis with a couple of thousand cases. Certainly, sucha case analysis cannot be done manually. In fact, we used a program toidentify the minimal subalgebras strictly containing H. An analysis of theclause form of the relations appearing in these subalgebras leads us to theformulation of the following machine-veri�able lemma.Lemma 18 Let S � A be any set of interval relations that strictly containsH. Then fd; d^; o^; s^; fg or fd^; o; o^; s^; f^g is an element of S.Proof. In order to verify the claim a machine-assisted case analysis of thefollowing form is necessary:1. Generate all subalgebras TR = H[ fRg, for all R 2 A�H.2. Test: fd; d^; o^; s^; fg 2 TR or fd^; o; o^; s^; f^g 2 TR.The test succeeds for all R 2 A�H. Since for any set S that strictly containsH, S contains TR for some R 2 A�H, the claim must be true.For reasons of simplicity, we will not use the ORD clause form in thefollowing, but a clause form that also contains literals over the relations�; <;>. Then the clause form for the relations mentioned in the lemma canbe given as follows:�(X fd; d^; o^; s^; fg Y ) = n(X� < X+); (Y � < Y +);(X� < Y +); (X+ > Y �);(X� > Y � _X+ > Y +)o;�(X fd^; o; o^; s^; f^g Y ) = n(X� < X+); (Y � < Y +);(X� < Y +); (X+ > Y �);(X� < Y � _X+ > Y +)o:We will show that each of these relations together with the two relationsf�; d^; o;m; f^g and f�; d; o;m; sg, which are elements of C, are enough formaking the interval satis�ability problem NP-complete. The clause form ofthese relations looks as follows:�(X f�; d^; o;m; f^g Y ) = n(X� < X+); (Y � < Y +);(X� < Y �); (X� < Y +)o�(X f�; d; o;m; sgY ) = n(X� < X+); (Y � < Y +);(X+ < Y +); (X� < Y +)o19



Lemma 19 ISAT(S) is NP-complete if1. N1 = nf�; d^; o;m; f^g; f�; d; o;m; sg; fd; d^; o^; s^; fgo � S, or2. N2 = nf�; d^; o;m; f^g; f�; d; o;m; sg; fd^; o; o^; s^; f^go � S.Proof. Since ISAT(A) 2 NP, membership in NP follows.For the NP-hardness part we will show that 3SAT can be polynomiallytransformed to ISAT(Nk). This implies that any set containing Nk has thisproperty. We will �rst prove the claim for N1.Let D = fCig be a set of clauses, where Ci = li;1 _ li;2 _ li;3 and the li;j'sare literal occurrences. We will construct a set of interval formulas � overN1 such that � is I-satis�able i� D is satis�able.For each literal occurrence li;j a pair of intervalsXi;j and Yi;j is introduced,and the following �rst group of interval formulas is put into �:(Xi;j fd; d^; o^; s^; fg Yi;j):This implies that �(�) contains among other things the following clauses:(X�i;j > Y �i;j _X+i;j > Y +i;j):Additionally, we add a second group of formulas for each clause Ci:(Xi;2 f�; d^; o;m; f^g Yi;1);(Xi;3 f�; d^; o;m; f^g Yi;2);(Xi;1 f�; d^; o;m; f^g Yi;3);which leads to the inclusion of the following clauses in �(�):(Y �i;1 > X�i;2); (Y �i;2 > X�i;3); (Y �i;3 > X�i;1):This construction leads to the situation that there is no model of � thatsatis�es for given i all disjuncts of the form (X�i;j > Y �i;j) in the clause formof �(Xi;jfd; d^; o^; s^; fgYi;j), since otherwise a cycle X�i;1 > Y �i;1 > Xi;2 >. . . > Y �i;3 > X�i;1 would be satis�ed, which is impossible.If the jth disjunct (X�i;j > Y �i;j) is unsatis�ed in an I-model of �, we willinterpret this as the satisfaction of the literal occurrence li;j in Ci of D.In order to guarantee that if a literal occurrence li;j is interpreted assatis�ed, then all complementary literal occurrences in D are interpreted asunsatis�ed, the following third group of interval formulas is added. Assumethat li;j and lg;h are complementary literal occurrences, then the followinginterval formulas are added to �:(Xg;h f�; d; o;m; sgYi;j);(Xi;j f�; d; o;m; sgYg;h);20



which leads to the inclusion of the following clauses in �(�):(Y +i;j > X+g;h); (Y +g;h > X+i;j):Now there exists no model of � that makes the disjuncts (X�i;j > Y �i;j) and(X�g;h > Y �g;h) simultaneously false, which would correspond to the simulta-neous satisfaction of li;j and lg;h, since otherwise the disjuncts (X+i;j > Y +i;j)and (X+g;h > Y +g;h) would be satis�ed by this model, which implies that thechain X+i;j > Y +i;j > X+g;h > Y +g;h > X+i;j would be satis�ed by the model, whichis impossible.Now we will show that � is I-satis�able i� D is satis�able.If � has a model =, then by the above arguments it is possible to satisfyeach clause Ci by (at least) one literal occurrence li;j such that the corre-sponding disjunct (X�i;j > Y �i;j) is unsatis�ed in =. Further, if the literaloccurrence li;j is used for the satisfaction of clause Ci, all complementaryliteral occurrences in D cannot be satis�ed. This, however, means that it ispossible to construct a satisfying truth assignment for D.For the converse direction assume that there exists a satisfying truthassignment of D. Using this assignment, we will construct as set of clauses
 from �(�) by eliminating from each non-unit clause one disjunct. Theremaining set will then only contain unit clauses of the form (a < b), whichcan be easily shown to be satis�able.If the literal l is interpreted as true in D by the satisfying truth assign-ment, then we eliminate for all li;j = l the disjunct (X�i;j > Y �i;j) from theclause (X�i;j > Y �i;j _X+i;j > Y +i;j), and for all li;j that are complementary to leliminate (X+i;j > Y +i;j) from the clause (X�i;j > Y �i;j _X+i;j > Y +i;j). Since eitherl or its complementary form is true, this leads to a set 
 that contains onlyunit clauses.Further, since all clauses Ci 2 D are satis�ed, there cannot be a \>"-cycleover the X�; Y � endpoints. Since no complementary literals can have thesame truth value, there cannot be any \>"-cycle over the X+; Y + endpoints.It may be the case, however, that 
 contains a cycle using beginnings andendings of intervals, for instance: X�1 < Y +2 < . . . < X�1 . Note, however,that such a cycle must contain at least one unit of the form X+ < Y �. Sincenone of the relations we used in the proof has a clause form that containssuch a literal, such a cycle is not possible. Hence, 
 does not contain a cycleof the form a < . . . < a. This, however, means that 
 is satis�able by apartially ordered set, and by Proposition 3 
 is R-satis�able. Since any R-model of 
 is by construction an R-model of �(�), � must be I-satis�ableby Proposition 2.Hence D is satis�able i� � is, and since � is polynomial in D, 3SAT canbe polynomially transformed to ISAT(N1).The transformation for N2 is identical, except we use fd^; o; o^; s^; f^g21



in the �rst group of interval formulas added to � and we exchange the orderof Xi;j's and Yi;j's in the second group.It should be noted that the above NP-completeness result does not referto the relation f�;�g, which has been used in all NP-completeness proofsso far [14; 15; 32; 33]. Vilain et al [33] have pointed out that this relationwas crucial for their NP-completeness result and mention this relation asan instance of a truly disjunctive relation. However, as we have seen above,even relations which do not require to have an interval before or after anotherinterval may still have enough \disjunctive" potential to allow for encoding\real" disjunctions. Based on this result, it follows straightforwardly that His indeed a maximal tractable subclass of A.Theorem 20 If S strictly contains H, then ISAT(S) is NP-complete.Proof. By Corollary 16, it su�ces to consider only subalgebras thatstrictly contain H. By Lemma 18, we know that each such subalgebra con-tains fd; d^; o^; s^; fg or fd^; o; o^; s^; f^g. Together with the fact thatf�; d^; o;m; f^g; f�; d; o;m; sg 2 C � H and Lemma 19, the claim follows.The next question is whether there are other maximal tractable subclassesthat are incomparable with H. One example of an incomparable tractablesubclass is U = ff�;�g;>g. Since f�;�g has no ORD-Horn clause form,this subclass is incomparable with H, and since all sets of interval formulasover U are trivially satis�able (by making all intervals disjoint), ISAT(U) canbe decided in constant time.The subclass U is, of course, not a very interesting fragment. Thus, wemay restate the above question as asking for other interesting incompara-ble tractable subclasses. While interestingness is a more or less subjectivecategory, it seems nevertheless possible to narrow down the space of pos-sible candidates. Provided we are interested in temporal reasoning in theframework as described by Allen [2], one necessary requirement is that allbasic relations are contained in the subclass. Otherwise, we will not be ableto specify complete information, i.e., the exact relationship between two in-tervals. It is possible to deviate from Allen's framework, for instance, byconsidering macro relations of Allen's relations, as done by Golumbic andShamir [14; 15]. However, in this case we base our representation on di�er-ent assumptions than those spelled out by Allen [2]. For this reason, we willonly look for other tractable subclasses in the space of subclasses that con-tain the thirteen basic relations. Since tractability (and NP-completeness)are properties of subalgebras, we can actually restrict ourselves to subclassesthat contain the least subalgebra generated by the basic relations:B = nfBg j B 2 Bo:22



Lemma 21 If S is a subclass that contains the thirteen basic relations, thenone of the following alternatives hold:1. S � H, or2. fd; d^; o^; s^; fg or fd^; o; o^; s^; f^g is an element of S.Proof. In order to verify the claim, a machine-assisted case analysis of thefollowing form is necessary:1. Generate all sets TR = B [ fRg, for all R 2 A�H.2. Test: fd; d^; o^; s^; fg 2 TR or fd^; o; o^; s^; f^g 2 TR.The test succeeds for all R 2 A�H.Now suppose that the claim does not hold, i.e., there exists a subclassS that contains all basic relations such that (1) S does not contain one ofthe two relations mentioned in the lemma and (2) S 6� H. Because of (1)and the machine-assisted case analysis, S cannot contain any element fromA�H, hence, because all basic relations are elements of H, we have S � H.This, however, implies S � H, contradicting (2). Thus, the claim must betrue.Using the fact that f�; d^; o;m; f^g; f�; d; o;m; sg 2 B and employingLemma 19 again, we obtain the quite satisfying result that H is in fact theunique greatest tractable subclass amongst the subclasses containing all basicrelations.Theorem 22 Let S be any subclass of A that contains all basic relations.Then either1. S � H and ISAT(S) is polynomial, or2. ISAT(S) is NP-complete.Proof. If S � H then ISAT(S) is polynomial by Theorem 5. So, supposeS 6� H. By Lemma 21 and the fact that S contains all basic relations,it follows that fd; d^; o^; s^; fg or fd^; o; o^; s^; f^g is an element of S.Since f�; d^; o;m; f^g; f�; d; o;m; sg 2 B, and since S contains the basicrelations, f�; d^; o;m; f^g; f�; d; o;m; sg 2 S. Using Lemma 19, it followsthat ISAT(S) is NP-complete. By Corollary 16, it follows that ISAT(S) isNP-complete, which completes the proof.In other words, H presents an optimal tradeo� between expressivenessand tractability [21] in the framework of reasoning about qualitative temporalrelations using Allen's interval algebra.23



7 ConclusionWe have identi�ed a new tractable subclass of Allen's interval algebra, whichwe call ORD-Horn subclass and which contains the previously identi�ed con-tinuous endpoint and pointisable subclasses. Enumerating the ORD-Hornsubclass reveals that this subclass contains 868 elements out of 8192 ele-ments in the full algebra, i.e., more than 10% of the full algebra. Comparingthis with the continuous endpoint subclass that covers approximately 1% andwith the pointisable subclass that covers 2%, our result is a clear improve-ment in quantitative terms.Furthermore, we showed that the \traditional" method of reasoning inAllen's interval algebra, namely, the path-consistency method, is su�cient fordeciding satis�ability in the ORD-Horn subclass. In other words, our resultsindicate that the path-consistency method has a much larger range of appli-cability for reasoning in Allen's interval algebra than previously believed|provided we are mainly interested in satis�ability.An interesting open question is whether the upper bound of O(n3) fordeciding satis�ability (see Theorem 6) and the upper bound of O(n5) forcomputing the strongest implied relations between all intervals (see Corol-lary 7) can be strengthened for the ORD-Horn subclass. We conjecture thatthis is not possible.Provided that a restriction to the subclass H is not possible in an applica-tion, our results may be employed in designing faster backtracking algorithmsfor the full algebra [28; 30]. Since our subclass contains signi�cantly morerelations than other tractable subclasses, the branching factor in a backtracksearch can be considerably decreased if the ORD-Horn subclass is used.Finally, we showed that it is impossible to improve on our results. Byenumerating the minimal subalgebras strictly containing the ORD-Horn sub-class we identi�ed two relations that allow us to prove that satis�ability inthese subalgebras is NP-complete. Interestingly, the NP-completeness proofsdo not make use of the relation f�;�g that has been used in all other NP-completeness proofs for reasoning in (subclasses of) Allen's interval algebraso far.Using this result, we proved that the ORD-Horn subclass is a maximaltractable subclass of Allen's interval algebra and even the unique greatesttractable subclass in the set of subclasses that contain all basic relations. Inother words, the ORD-Horn subclass presents an optimal tradeo� betweenexpressiveness and tractability.AcknowledgementsWe would like to thank Peter Ladkin, Henry Kautz, Ron Shamir,Bart Selman, and Marc Vilain for discussions concerning the topicsof this paper. In particular, Ron corrected an overly strong claim we24
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