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6600 Saarbriicken 11, Germany 8000 Miinchen 40, Germany
e-mail: baader@dfki.uni-sb.de e-mail: schulz@sunl.cis.uni-muenchen.de
Abstract

Previous work on combination techniques considered the question of how to
combine unification algorithms for disjoint equational theories Ey, ..., E,
in order to obtain a unification algorithm for the union F,U...U E, of the
theories. Here we want to show that variants of this method may be used
to decide solvability and ground solvability of disunification problems in
EyU...U E,. Our first result says that solvability of disunification prob-
lems in the free algebra of the combined theory Fq U...U E, is decidable
if solvability of disunification problems with linear constant restrictions in
the free algebras of the theories E; (1 = 1,...,n) is decidable. In order
to decide ground solvability (i.e., solvability in the initial algebra) of dis-
unification problems in Fy U ...U E, we have to consider a new kind of
subproblem for the particular theories E;, namely solvability (in the free
algebra) of disunification problems with linear constant restriction under
the additional constraint that values of variables are not E;-equivalent to
variables. The correspondence between ground solvability and this new
kind of solvability holds, (1) if one theory E; is the free theory with at
least one function symbol and one constant, or (2) if the initial algebras
of all theories F; are infinite. Our results can be used to show that the
existential fragment of the theory of the (ground) term algebra modulo
associativity of a finite number of function symbols is decidable; the same
result follows for function symbols which are associative and commutative,
or associative, commutative and idempotent.
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1 Introduction

In recent years the role Robinson unification—and later unification modulo equa-
tional theories—played in theorem proving, term rewriting, and logic program-
ming has more and more been taken on by constraint solving (see e.g., [Bir90,
KK89, JL87, Col90]). One advantage of constraint approaches is that it is no
longer necessary to compute (a complete set of) solutions; deciding satisfiability
of the constraints is usually sufficient. Thus one can, for example, work mod-
ulo non-finitary equational theories such as associativity. Another motivation for
preferring a constraint approach is that in this setting the expressive power of
a formalism can rather naturally be enhanced by considering more general con-
straints than the equality constraints of unification problems. One of the earliest
of these generalizations was Colmerauer’s use of equations and negated equations
in PROLOG 1I [Col84]. In the present paper we shall consider solvability of this
kind of equational problems (subsequently called disunification problems) modulo
equational theories.

As for unification, the terms in the disunification problems occurring in ap-
plications are usually not just built over the signature of the equational theory,
but they contain additional free function symbols. More generally, one often
wants to solve disunification problems containing function symbols whose prop-
erties are defined by different equational theories. For the case of unification, this
fact has triggered extensive research on the combination of unification procedures
for disjoint equational theories (see, e.g., the introduction of [BS91a] for a brief
overview), but until now these approaches have not been generalized to the dis-
unification case. One reason is that until recently the combination methods were
restricted to equational theories which are finitary unifying, i.e., they combined
algorithms computing finite complete sets of unifiers. In this setting, solvability
of disunification problems can be reduced to the unification and the word problem
for the equational theory. In fact, to decide solvability of a disunification prob-
lem, one simply computes a finite complete set of unifiers for the equations of the
problem, and then checks whether one of these unifiers is a solution of the whole
disunification problem. This means that for finitary theories it is sufficient to
have combination methods for unification. However, if one only has a procedure
that decides satisfiability of unification problems, such a reduction of disunifica-
tion to unification does not seem to be possible. In addition, even if a theory is
finitary, the computation of a complete set of unifiers can be of higher complexity
than deciding solvability (associativity and commutativity is an example for this
phenomenon).

In [BS91a] we have shown how to combine decision procedures for unification,
and in the present paper we shall investigate how this method can be generalized
to treat solvability of disunification problems. For unification, “solvability” means
having a solution in the free algebra (in countably many generators), or equiv-
alently, having a solution in the initial algebra. For disunification, solvability in
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the initial algebra (called ground solvability in the following) implies solvability in
the free algebra (simply called solvability below), but not vice versa. Both types
of solvability are considered in the literature (see [Com91, Biir88]), but ground
solvability seems to be more interesting for most applications.

For solvability, the adaptation of the combination method to disunification
problems is relatively straightforward. The main tool of the method is a decom-
position algorithm which transforms every disunification problem I' in the com-
bination of arbitrary disjoint equational theories F;, ..., F, into a finite number
of tuples (I'y,...,I's), where each I'; is an FEj;-disunification problem with linear
constant restriction.! As for unification, I' is solvable in the combined theory
iff for one of these tuples all its components are solvable in the single theories.
However, the proof of soundness of the method—which is almost trivial for the
case of unification problems—becomes a lot more involved.

For the ground case, it surprisingly turned out that ground solvability of I
in the combined theory i1s not reduced by our method to ground solvability of
the components of one of the tuples in the single theories. On the contrary,
one has to consider a slightly restricted form of solvability (in the free algebra in
countably many generators) for the F;-disunification problem with linear constant
restriction I';. It should also be noted that for ground solvability to be handled
by our method the equational theories have to satisfy an additional condition.
This condition holds, however, in various situations which are interesting for
applications (see Section 5).

The paper has the following structure. The next section starts with some
technical preliminaries. In Section 3 we introduce the decomposition algorithm,
show its correctness for the case of solvability, and state some consequences.
Section 4 is concerned with ground solvability, and in Section 5 the results are
applied to combine disunification algorithms for the free theory and the theories
A (associativity), AC (associativity and commutativity), and ACI (associativity,
commutativity, and idempotence).

2 Formal Preliminaries

For an equational theory FE, let sig(F) denote its signature, i.e., the function
symbols occurring in the identities of /. We assume that this signature is finite.
For disunification it is even more important than for unification to know the
signature over which the terms in the formulation of the problem and in the
solutions of the problem may be built. For this reason, we shall explicitly talk
about (£, ¥)-disunification problems, where ¥ is a finite superset of sig(E). Such

1This is the obvious adaptation of the notion “unification problem with linear constant
restriction,” as introduced in [BS91a]; see Section 2 for a definition.



a problem is a finite set of equations and disequations

= {31 = t],---,sn = tn} U {3n+l # tn+l7---75n+m # tn+m},

where sq,...,t,4m are X-terms. A solution of the (F,X)-disunification problem
' is a ¥-substitution o such that s;oc =g tio (1 = 1,...,n) and s,4;0 #g tay o
(j =1,...,m). A ground solution is a solution that maps all variables occurring
in ' to variable-free ¥-terms. I' is called (ground) solvable iff it has a (ground)
solution.

It should be noted that the notion of a disunification problem does not always
refer to the same kind of problem in the literature. Our definition coincides with
the one of Biirckert [Biir88], who considers existentially quantified equational
formulae, but other authors (e.g., Comon [Com91]) allow for arbitrary quantifi-
cation.

As in the case of unification, one has to distinguish several types of dis-
unification problems. The (FE,Y)-disunification problem is called elementary,
if ¥ = sig(FE); it is a disunification problem with constants, if ¥\ sig(F) is a finite
set of constants; and it is a general disunification problem, if no such restrictions

hold.

Solvability of an (F, ¥)-disunification problem obviously means that the equa-
tions and disequations can be solved in the E-free ¥-algebra T'(X,Y)/= over the
countable set of variables Y, whereas ground solvability means that they can be
solved in the initial algebra T'(X,0)/=5. If one has no disequations (i.e., one has
a unification problem), then both notions coincide, but this is not the case if dis-
equations are present. For example, let E be the empty theory, and assume that
¥ consists of the constant symbol a. The (E, X)-disunification problem {z # a}
is solvable, but not ground solvable.

The combination problem for disunification can now formally be defined as
follows. Let E,, E; be two equational theories built over the disjoint signatures
¥, :=sig(E;) and ¥, := sig(E,),? and let E = EyUE; denote their union. We are
interested in solving elementary disunification problems for £, i.e., (E, X, U X;)-
disunification problems. The terms in such problems are built from variables and
symbols of ¥; UX,. The elements of ¥; will be called 1-symbols and the elements
of ¥ 2-symbols. A term t is called i-term iff it is of the form t = f(¢,,...,t,) for an
i-symbol f (2 = 1,2). A subterm s of a 1-term t is called alien subterm of t iff it is
a 2-term such that every proper superterm of s in ¢ is a I-term. Alien subterms of
2-terms are defined analogously. An i-term s is pure iff it contains only ¢-symbols
and variables. A (dis)equation s =t (s # t) is pure iff there exists an z,1 <17 < 2,
such that s and ¢ are pure i-terms or variables; this (dis)equation is then called
an i-(dis)equation. Please note that according to this definition equations of the
form = = y where z and y are variables are both 1- and 2-equations, and similarly

2We shall restrict the technical presentation to the combination of two theories. The com-
bination of more than two theories can be treated analogously.



for disequations. In the following, the symbols x,y, z, with or without indices,
will always stand for variables.

Solvability of elementary disunification problems in F will be reduced to solv-
ability of disunification problems with constants in the single theories F,, E;. But
as in the unification case, the solutions of these problems with constants have to
satisfy additional restrictions. These restrictions are formalized in the notion of a
disunification problem with linear constant restriction. For an equational theory
F with signature €2, such a problem consists of two parts:

1. An (F,Q2 U C)-disunification problem I', where C is a finite sct of constant,
symbols not occurring in €2, and

2. a linear ordering < on C U X, where X is a finite superset of the set of
variables occurring in I'.

For a given problem of this kind, the sets V. of wvariables which must not use ¢
are defined as V. := {z € X; x < ¢}, for every ¢ € C. A solution of the problem
is a substitution o which assigns terms xo built with variables, symbols from €2,
and constants in C' to the variables € X, solves all equations and disequations
of I' modulo F, and has the additional property that ¢ does not occur in xo for
all c € C and z € V.. A solution o is called restrictive if for all variables x € X
the value zo is not F-equivalent to a variable. Restrictive solutions will become
important if one is interested in ground solvability in the combined theory /7.

Disunification problems with linear constant restriction will be denoted in the
form (I', X, C, <), or just as I', if no misleading ambiguities are possible.

3 Solvability of Disunification Problems

Our first main result says that solvability of disunification problems in the combi-
nation of disjoint equational theories can be reduced to solvability of disunification
problems with linear constant restriction in the single theories.

Theorem 3.1 Let E,, ..., E, be equational theories over disjoint signatures such
that solvability of disunification problems with linear constant restriction is de-
cidable for Fy, ..., FE,. Then solvability of elementary disunification problems is
decidable for the combined theory E; U ... U F,,.

This result is analogous to the one for unification given in [BS9lal, and it
depends on a decomposition algorithm which is very similar to the algorithm
presented in that paper. However, the proof of soundness of the method is more
complex. As mentioned above, we shall restrict the presentation to the combina-
tion of two theories.



The Decomposition Algorithm

The input for this algorithm is an elementary E-disunification problem, i.e.; a
system

I-‘0 = {31 = t17 sy Sn = tn75n+1 7£ tn+la <y Sntm # t'n+'m}?

where the terms sy,...,t,4,» are built from variables and the function symbols
occurring in ¥; U ¥,, the signature of £ = F; U E;. The first two steps of the
algorithm are deterministic, i.e., they transform the given system into one new
system.

Step 1: variable abstraction.

Alien subterms are successively replaced by new variables until all terms occurring
in the system are pure. To be more precise, assume that s =t ort = s (s # 1
or t # s) is an equation (disequation) in the current system, and that s contains
the alien subterm s;. Let x be a variable not occurring in the current system,
and let s’ be the term obtained from s by replacing s; by . Then the original
equation (disequation) is replaced by the two equations s" = t and = = s; (by
the disequation s’ # t and the equation @ = s;). This process has to be iterated
until all terms occurring in the system are pure. O

Step 2: split non-variable disequations and non-pure equations.

Each disequation of the form s # ¢ (where s or t is not a variable) is replaced by
two equations x = s,y =t and a disequation z # y where the z,y are always new
variables. Each non-pure equation of the form s = 1 is replaced by two equations
x = s,z =t where the z are always new variables. O

It is quite obvious that these two steps do not change solvability of the system.
The result is a system which consists of pure equations and of disequations be-
tween variables. The third and the fourth step are nondeterministic, i.e., a given
system is transformed into finitely many new systems. Here the idea is that the
original system is solvable iff at least one of the new systems is solvable.

Step 3: variable identification.

Consider all partitions of the set of all variables occurring in the system such that
distinct variables z,y are in distinct classes of the partition if the system contains
the disequation = # y. Each of these partitions yields one of the new systems
as follows. The variables in each class of the partition are “identified” with each
other by choosing an element of the class as representative, and replacing in the
system all occurrences of variables of the class by this representative. In addition,
we add a disequation z # y for every pair z,y of distinct representatives to the
system if this disequation is not already present. O



Step 4: choose ordering and theory indices.
This step does not modify a given system, it just adds some information which
will be important in the next step. For a given system, consider all possible strict
linear orderings < on the variables of the system, and all mappings ind from the
set of variables into the set of theory indices {1,2}. Each pair (<, ind) yields one
of the new systems obtained from the given one. 5|

For a system obtained by Step 4, let X5 ; denote the set of variables of index
i (¢ = 1,2). The last step is again deterministic. It splits each of the systems
already obtained into a pair of pure systems.

Step 5: split systems.

A given system [ is split into two systems I' = I'y UT'; such that I'y contains only
1-(dis)equations and I'; only 2-(dis)equations. As an additional restriction, the
system I'; (2 = 1,2) must contain all disequations z # y where z or y has index
1. This means that disequations between variables of distinct indices are put
into both subsystems. The subsystems can now be considered as disunification
problems with linear constant restriction (I'y, X351, X52, <) and (T2, X5.2, X51, <)
which have to be solved modulo F; and F,, respectively. This means that in
the system I'; the variables with index ¢ are still treated as variables, but the
variables with alien index j # ¢ are treated as free constants. O

The output of the algorithm is thus a finite set of pairs (I';, ;) where the
first component I'y is an (E;, X; U X;53)-disunification problem with linear con-
stant restriction, and the second component I'; is an (F,, ¥, U X5 1)-disunification
problem with linear constant restriction.

There are three points where this decomposition algorithm is not a totally
straightforward adaptation of the one for unification problems. First, we split all
non-variable disequations and not only the non-pure ones. This greatly facilitates
the proof of correctness of the method, but is not mandatory. Second, we add
disequations between all variables which have not been identified with each other
in Step 3, and third, disequations involving variables of index ¢ are required to be
in I'; in Step 5. The latter two points are necessary for the following proposition

to hold.

Proposition 3.2 The input system 'y is solvable if and only if there exists a
pair (I'1,T'2) in the output set such that 'y and 'y are solvable.

The proposition shows that the decomposition algorithm can be used to re-
duce solvability of elementary disunification problems for F; U F; to solvability
of disunification problems with linear constant restriction for E;, F3. Thus The-
orem 3.1 is an immediate consequence of Proposition 3.2. Before we give a proof
of the proposition, let us mention some additional consequences.



Corollary 3.3 (1) Let E be an equational theory such that solvability of disuni-
fication problems with linear constant restriction is decidable. Then solvability of
general E-disunification problems is decidable.

(2) The result of Theorem 3.1 can be lifted to general disunification problems,
i.e., the assumptions of Theorem 3.1 are sufficient to get decidability of general
disunification problems in the combined theory.

(3) If, for Ey and E,, solvability of disunification problems with linear constant
restriction can be decided by an NP-algorithm, then solvability of disunification
problems in the combined theory is also NP-decidable.

Proof. The proof is very similar to the one given in [BS91a, BS91b] for the
analogous results for unification problems.

(1) Let T be a general (£, ¥)-disunification problem, and let Q := ¥ \ sig(F).
The system I" may be considered as a disunification problem in the union of the
theory E with the free theory

Fa = L@ wtn)i= izt 520 )] £ €8,

Obviously, the relation =, is just the syntactic equality of terms.

By Theorem 3.1 it remains to be shown that solvability of Fg-disunification
problems with linear constant restriction is decidable. But this is very easy.
For an Fg-disunification problem with linear constant restriction, I'y, one first
computes a most general unifier o of the equations in I';. The whole system I',
has a solution iff o solves I'y, i.e., if o respects the linear constant restriction, and
does not identify the two sides of a disequation of I';.

In fact, any solution of I'; is a solution of the equations in I';, and thus an
instance of o. If o does not satisfy the constant restriction (i.e., ¢ occurs in zo
for £ < ¢) then no instance of o will satisfy the constant restriction (for any
substitution A we have that ¢ occurs in zoX). The same is true if o does not solve
a disequation s # t of I'; (since so = to implies soX = ta)).

(2) Let E=E,U---UE,, and ¥ = sig(F,)U---Usig(E,) UQ. In order to
get decidability of (£, ¥)-disunification problems one just applies Theorem 3.1 to
the combination of Fy,..., F,, and Fq.

(3) It is easy to see that the decomposition algorithm is an NP-algorithm
(see [BS91b] for a detailed analysis for the case of unification problems). The
resulting systems I's;,['s, are of a size that is polynomial in the size of the
original system. If deciding whether these systems are solvable can also be done
by an NP-algorithm, then the overall decision method is an NP-algorithm. O

In order to prove Proposition 3.2, some technical background is needed. With-
out loss of generality, we make the general assumption that all equational theories
which are considered are consistent. Now let E;, F; be equational theories over



disjoint signatures £, ¥,. Let 7'(X; U X;,Y") be the set of all terms built over the
signatures ¥, 3, with variables in Y. Applying unfailing completion (see e.g.,
[DJ89]) to the combined theory E = E; U E,, but always treating the elements
y € Y as constants, we obtain a possibly infinite ordered-rewriting system R
which is confluent and terminating on 7'(X, U ¥,,Y). Thus we eventually obtain,
applying R, a unique irreducible normal form ¢ for every term t € T'(X,U%,,Y).
We denote the set of R-irreducible elements of 7'(X, U ¥,,Y") by T'g.

We want to establish a relationship between impure terms and corresponding
pure terms where alien subterms have been replaced by new variables. For this
purpose, we consider a bijection 7 : T\p — Z where Z is a set of variables of
appropriate cardinality. This bijection induces mappings 7; of terms in 7T(¥; U
¥2,Y) to terms in T'(X;, Z) as follows. For variables y € Y, y™ := 7(y) (note
that variables are always R-irreducible.) If t = f(ty,...,1,) for an -symbol [,
then t™ := f(¢7',...,t™). Finally, if ¢ is a j-term, j # ¢, then (™ := 7({;z). The
mapping 7; may be regarded as a projection which maps a possibly mixed term
to a pure i-term or a variable.

. A substitution o is called R-normalized on a finite set of variables X iff xo €
T\g for all variables 2 € X. The next lemma was proved—under almost the
same assumptions—in [BS91a]: there we additionally assumed that Y and Z are
disjoint; but the proof of the lemma does not depend on this property.

Lemma 3.4 Let s,t be pure i-terms or variables, and let o be a substitution
which is R-normalized on the variables occurring in s, t. Then

so=p to | 4. (se)" =g ()"

Proof of Proposition 3.2

Here and in the remainder of this paper, I'y always denotes an input system of
the combination algorithm, I'; denotes (one of) the system(s) obtained from I’y
after Step j of the algorithim (7 = 1,2,3,4). The two subsystems obtained after
Step 5 are denoted by I's; (¢ = 1,2). X; denotes the set of variables occurring in
[ (j =0,...,4) and X;5,; denotes the variables x € Xy with index 2 (z = 1,2).
Thus X4 = X5, U X5, and this is a disjoint union.

The proof of completeness (i.e., of the “only if” part of the proposition) is very
similar to the one for the unification case (see [BS91a], proof of Proposition 3.2).
Let o be a solution of I'y. Without loss of generality we may assume that o also
solves the system I'; obtained after Step 2 of the decomposition algorithm, and
that o is R-normalized on X,.

The solution o can be used to define the correct alternatives in the nondeter-
ministic steps of the algorithm:

e The partition of X3 in the third step is defined as follows. Two variables
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x and y are in the same class iff zo = yo. (Obviously, this means that o
is also a solution of the system I's obtained after the variable identification
step corresponding to this partition.)

e In the fourth step, the variable z gets index 7 if zo is an i-term. If zo is
itself a variable, z gets index 1. (This is arbitrary, we could have taken
index 2 as well.)

e To get an appropriate linear ordering in the fourth step, we consider the
strict partial ordering defined by « < y iff zo is a strict subterm of yo. Now
we take an arbitrary extension of this partial ordering to a linear ordering

on X3 = X;,.

These choices determine systems I's, I'y and a pair (I's 1, I's 2) in the output set
of the combination algorithm. It remains to be shown that I's 1, I's 5 are solvable.
In order to define solutions o; of these systems, we consider a bijection 7 from
T\r onto a set of variables Z containing X4 such that n(zo) = x for all z € X}.
The substitution o, is defined on the variables » € X4 by

z2a; 1= (o)™,

where 7; is the i-projection induced by 7. In [BS91a] (proof of Proposition 3.2)
it is shown that, for « = 1,2, the substitution o; treats variables € X5, (j # 1)
as constants, respects the linear constant restriction, and solves all equations of
['s ;. What remains to be shown here is that the disequations in I's; are satisfied
as well. But these are just disequations between distinct variables in the system,
i.e., of the form x # y for distinct variables z,y-€ X4. By the choice made in the
variable identification step we know that o #p yo. But then

oy = (ae)™ #g (o)™ = goy,

by Lemma 3.4. This shows that o; solves the disequations of I's; as well.

To show soundness (i.e., the “if” part of the proposition) we have to demon-
strate that I'g is solvable if there exists a pair (I's 1,15 2) in the output set such
that I's ; and I'5 5 are solvable. In the unification case, this part was almost trivial,
but it is a lot more complex here.

Let oy be a solution of I's; and o, a solution of I's . We may assume that
o X5 = T(X, U X5;,Y0) (4,7 € {1,2},7 # j), where Y},Y; are two disjoint,
infinite sets of variables such that X, and their union Y := Y} U Y; are disjoint.
Let R be a possibly infinite ordered-rewriting system R which is confluent and
terminating on 7'(¥; U ¥3,Y) (obtained by unfailing completion, as described
above).

Using R and the o; we shall now define a substitution ¢ on X, which solves
I'y. It is then trivial to extend o to a solution of I'y. In order to define o we

11



proceed along the linear order < which was chosen in Step 4 of the algorithm.
Assume that zo € T|r has been defined for all z < z. Without loss of generality
we assume that z has index 1. Since o; satisfies the linear constant restriction
associated with <, we know that all z € X, occurring in zo, are smaller than
with respect to <. For this reason, zo := (z0,0) g is well-defined.

In the corresponding definition for the unification case, the term zoy0 was not
R-reduced. This means that the substitution we defined there is not identical to

the one defined here, but obviously the two substitution are E-equivalent. For
this reason the proof given in [BS91a] to show that o solves the original unification
problem can be taken without change to show that o solves the equations in I'y.

The following two claims, which will be proved by induction on the linear
order <, establish that o solves the disequations as well.

(C1) for all z;,z, € X4 with z; # z, we have 2,0 #g 2,0,
(C2) for each z; € Xy: if ind(z,) = 7, then 2,0 € T|g is an i-term or an element

of Y;.

Without loss of generality, let us consider an element z of index 1. The
induction hypothesis that we may use is that Conditions (C1) and (C2) are valid
for all z,,z, < . We shall now show that the same is true for all zy,z, < z. Let
X35 = {x1 € X52;21 < x}. We consider a bijection

WI:TIR—>YUX5<VQZUZ,

where Z is a set of new variables. This bijection has to satisfy the following
conditions:

1. m.(t) € Y2U X5 U Z for every 2-term t € Tg,
2. m.(y) € Y2U X3 U Z for every y € Y3,

3. mz(y) = y for every y € Y1,

4. my(z90) = x4 for every z, € X55.

It is easy to see that the induction hypothesis guarantees the existence of such a
bijection, provided that Z is chosen of appropriate cardinality.

First, let us show that zo is a 1-term in 7| g or an element of Y}, thus verifying
Condition (C2). Obviously zo € T|g. Let o, denote the restriction of ¢ to the
variables z < z of X4. By induction hypothesis, o, is R-normalized and we have

010, = z010 =g (2010)|gr = TO = T0,.



By Lemma 3.4 we get
(voyoz)™ =g, (zo)™,

where 7, is the 1-projection determined by 7. Now let us show that (zoy0,)™ =

zoy. If zoy € Y], this equality obviously holds since o, and 7; do not move these
variables, by Condition 3 on 7,. If 2oy is a I-term, then the “constants” z, € X5,
occurring in this term are in X3, Now o, substitutes for these constants R-
irreducible 2-terms or elements of Y3, by induction hypothesis (C2). In both
cases, m; will reintroduce the old constants again, by Condition 4 on 7. The
variables y € Y] occurring in xo; are not touched, neither by o, nor by =;.
Therefore the equality holds again. By our assumption on oy it remains the case
where 2oy = 2, € X;5,. But this case cannot occur since oy solves the disequation
xr # 9 € I's 1, and since z,07 = x5. Combining what we have found so far we get

20y S5 N0

Now suppose that zo, i1s a 2-term or an element of Y;. Then (20,)™ = y would be
an element of YU XS5 U Z, by Conditions 1 and 2 on 7, and we have zoy =5, v.
But zo; contains only variables from Y; U XS5, Since £ is consistent, y cannot
be an element of Z U Y. For y € X5§ we get woy =g, y = yoy. But this is again
impossible since o, solves the system I's 1, which contains the disequation x # y.

By excluding all other cases we have shown that ro = x0, is a 1-term or a
variable in Y;. Thus (C2) is verified.

Now let us consider Condition (Cl). Let z < x and assume that zo =g
xo. Since both terms are R-irreducible we have even zo = zo. The induction
hypothesis and Condition (C2) for = show that z cannot have index 2 since Y]
and Y; are disjoint. Thus x and z both have index 1, and we get

2010 =g 20 = 10 = Z010.

By definition of 7, we have (zo10)™ = zoy and (z0,0)™ = z0y, as we have seen
earlier for z. With Lemma 3.4 we obtain zoy, =g, zo,, which is a contradiction
since z # z € I's;. This concludes the proof of the two claims.

Since all disequations in I'y are disequations between variables, (C1) implies
that o solves these disequations. O

4 Ground Solvability

The preceding section shows that, analogously to the unification case, solvability
of disunification problems in the combined theory can be reduced by decomposi-
tion to solvability of disunification problems with linear constant restriction in the
single theories. An obvious conjecture could be that the same holds for ground
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solvability, i.e., that ground solvability of a disunification problem I'y may be de-
cided by decomposing I'y into a finite set of pairs (I's 1, 's 2) of E;-disunification
problems with linear constant restriction as described above, and then asking for
ground solvability of the subproblems. However, this method is only sound, but
not complete.

Proposition 4.1 Let 'y be an input problem of the decomposition algorithm.
Suppose that there exists an output pair (I's1,1's2) such that each I's; (1 = 1,2)

has a ground solution. Then I'y has a ground solution.

Proof. Assume that the substitution o is constructed from ground solutions
of I's; and I's; as described in the proof of the “if” part of Proposition 3.2.
Let = be a variable of index 1. (Variables of index 2 are treated analogously.)
Assume that for all z; < x we already know that z,0 is a ground term, i.e.,
an element of T'(X; U ¥,,0). Since o, is a ground solution, we also know that
zoy € T(X,UX5,,0), and the elements of X5, occurring in this term are smaller
than z. Obviously, this implies that zoy0 € T'(2; U X5, 0).

Since R is only an ordered rewriting system, this does not necessarily imply
that zo = (z0y0)|g is a ground term as well. Rewriting steps with respect to R
may introduce variables from Y. For this reason we assume that the simplification
ordering < used during unfailing completion satisfies the property that at least
one ground term is smaller than all variables in Y.

First, we show that this property can easily be satisfied. Let z (of index
¢) be the least variable in X4 with respect to the ordering < that induces the
linear constant restriction. Since o; is a ground solution, zo; is an element of
T(X; U X5;,0) (2 # 7), and because z is the least variable we even have zo; €
T'(%2;,0). This shows that ¥; contains a constant symbol ¢o. Obviously, there
exist simplification orderings where ¢ is smaller than all elements of Y.

If the simplification ordering < satisfies this property, then any term ¢ €
T(X;UX,,0) has a normal form that is also in 7'(¥; U ¥4, 0). This can be shown
by induction on <. If ¢ is R-irreducible then ¢ is its own normal form. Otherwise,
there exists a term f; such that ¢ —g ¢;. Assume that ¢; is not ground. We
consider the term ¢} obtained from #; by replacing all variables by ¢y. Since ¢ is
smaller than all these variables, we know that ¢ > t; > ¢}, and thus ¢t —p ] is an
admissible derivation. This shows that we can without loss of generality assume
that ¢, is ground. But then we know by induction that its normal form ;g is
ground. Since R is confluent, ¢ is also the normal form of ¢. O

Conversely, I'y may be ground solvable, even if the decomposition algorithm
does not yield a pair of systems which are ground solvable.

Before giving an example where this situation occurs, let us explain why
the proof of completeness given for the non-ground case cannot be adapted to
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the ground case. The reason is that a ground solution o of I'y may substitute a
variable of index ¢ by an i-term containing alien subterms. When o is transformed
by projection to solutions oy, 0, of an output pair (I's 1, 's 2) (see the proof of the
“only if” part of Proposition 3.2), these alien subterms are replaced by variables.
In general, for o; not all of these variables are elements of X5 ;, j # 1, i.e., not all
of them are considered as constants in I's ;. For this reason, o, is not necessarily
a ground solution of I's ;.

Example 4.2 Let ¥; consist of the ternary function symbols ¢, the unary func-
tion symbol f, and the constant symbol a. Let Fy = E; ;U I, U FEy3U Ey 4,
where

Evy = {g(z,2,y) = a,9(x,y,7) = a,g(x,y,y) = a,9(x,a,y) = a},
Eip = {g(z, f(x),y) =a J(" f(w),y) = a,9(x, fla),y) = a},
Eys = {J(',y(vhuz,u; z) = a},

Evge = {g(z, f(f(y)),2) = ("v.(/("'v./(.q(."/lv;’/2»:’/-’3))“:) = a}.

Let ¥, consist of the two unary function symbols h, k and the constant symbol
b. For this signature we consider the theory

Eq = {h(h(z)) = b, h(k(z)) = b, k(D) = b}.
The disunification problem that we consider in the combined theory [, U I 1s

{g(b,y, h(y)) # a}.

[t is easy to see that this problem has the ground solution {y — f(h(f(b)))}.

When we apply the decomposition algorithm we reach the system

Dy = {g(x,y,2) # a,x = b,z = h(y))

after the first two steps. If, in the variable identification step, any of the variables
x,y, z are identified, the 1-disequation g(z,y, z) # a will not be solvable (because
of the identities in £; ;). This means that it is enough to consider the partition
where z,y, z are in separate classes.

Now let us consider different ways of choosing indices for x,y,z. Obviously,
the 2-equations = = b and z = h(y) are only solvable if z and z get index 2

For vy, let us first consider the case where ind(y) = 2. The problem I's,
contains the equations = = b,z = h(y) and the disequation = # z. Since ¥y is now
treated as a variable in I's 5, a ground solution o3 has to replaced it by a ground
term yo, built from the symbols b, h, k. Obviously, this implies h(yo2) =g, b,
which shows that o, cannot solve I's 5.

Finally, let us consider the case where ind(y) = 1. A ground solution oy of
I‘5,1 = {g(:r:,y,Z) # a,x 7£ Y,z ‘_)é Z,Y # Z}
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can replace y by a term yoy that is built from the symbols z, z, a, f, g. Because
of the disequations between variables, yo; = x or yo; = z is not possible. Also,
yoy = a is not possible because of the last identity in F; ;. The identities in Fj
show that yop cannot be one of f(z), f(z), f(a). Because of the identity in F 3,
the term yo; cannot have top symbol g. The only remaining ground terms are of
the form f(f(t)) or f(g(t1,12,t3)), but these are prohibited by F; 4. m]

In the example we have seen that I'y has a ground solution, even though
the decomposition algorithm does not yield systems I's;,['s; that are ground
solvable. The next conjecture could thus be that the systems I's;, I's 2 have to
be tested for solvability rather than ground solvability. But a closer look at the
solutions oy, 0, one gets by projection from a ground solution o of I'y reveals that
these solutions satisfy an additional property: since o substitutes a variable x of
index ¢ by an z-term, zo; is not a variable. In fact, it can easily be shown that o;
is a restrictive solution of I's ; (see Section 2 for the definition).

Lemma 4.3 Let F, and E; be two equational theories with disjoint signatures
Yy and ¥,. Let Ty be a disunification problem in Ey U Ej, i.e., an input problem
for the decomposition algorithm. If T'y has a ground solution o, then there exists
an output pair (I's1,1s2) of the decomposition algorithm where each subsystem
I's; has a restrictive solution o;.

Proof. As above, let R be an ordered-rewriting system obtained by applying
unfailing completion to F; U E;. Without loss of generality we assume that
there is a ground term that is smaller with respect to the simplification than all
variables in Y. This makes sure that we can take an R-normalized ground solution
of I'o. As in the proof of the “only if” part of Proposition 3.2, o determines
the right choices in the nondeterministic decomposition steps. Then a bijection
7 : T\r — Z (satisfying 7(zo) = « for all z € X) is used to define solutions
01,0, of the obtained subsystems I's ;, ['s » by projection. It remains to be shown
that these solutions are restrictive.

Assume that for z € X;5; we have z0; =g, z for a variable z € Z. Since
E; is consistent this implies that z occurs in zo;. In addition, we know that
zo; = (zo)™, and that zo is an ¢-term that is R-irreducible and ground. For =
to occur in zo; there must be an alien subterm ¢ of zo such that =(¢) = z. Let 7
denote the substitution

{y — s | where y € Z occurs in xo; and 7(s) = y}.

Now zo = zo;7 =g, z7 = t, and thus o =g t. Since zo and its subterm ¢ are
R-irreducible, we get o = t. This is a contradiction since zo is an i-term and ¢
is a j-term (¢ # 7). O

To get the opposite direction of the lemma, we need an additional restriction
on the equational theories Fy, F;: the initial algebras have to be infinite.
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Lemma 4.4 Let Ey, I be equational theories over disjoint signatures ¥y and ¥,
such that T'(3;,0)/ = is infinite for v = 1,2. Let Ty be a disunification problem
in By U E,, and suppose that, via decomposition, an output pair (I'sy,I'sq) is
reached such that each system U's; has a restrictive solution. Then Iy has a
ground solution.

Proof. Let o; be a restrictive solution of I's; for + = 1,2. We may assume
that

o1: Xsi — T(E,UX;52,1)

09 . _\,5'2 T ’[‘(Sg LJ ,\,5'1, )2)

where the sets Y) and Y; are finite, disjoint and do not contain an element of
X4 = X51 U X5,. Since o, 1s restrictive we know that xo; #p y for all r € X;5,
and y € Y; (1 = 1,2). Let us now consider the following extensions of the systems

F5','Z

[s1 = TsaU{az#y; € X5, UYo,y € YUY, U Xso 00 # 3y},
F{,,z = F5'2 U {.’I' 74 Yy, X € .\’5.-)_ U )] Y € )-1 U )2 U ‘\l'ﬁ.l- £ # 'I/}.
The idea is to treat these systems as if they were a new output pair of the

decomposition algorithm. For this purpose we choose a linear ordering which
extends the linear ordering on X, from system I'y and makes all elements y €
Y1 U Y; smaller than the elements of X;. We shall treat the elements y € Y] as
variables with index j # «. With this indexing and linear order, (Te1, Fa) T80
fact an output pair of the algorithm, corresponding to an input system I'y which
is an appropriate extension of I'g by disequations.

In order to show that Iy (and thus I'y) has a ground solution it suffices to
prove (by Proposition 4.1) that each new subsystem s, has a ground solution
a;. Without loss of generality, we shall restrict our attention to f"s_l. Note that
the elements of ¥; are treated as constants in I's ;. Let Y3 be the set {ie ... B«
and let ty,...,t, € T'(X,0) be pure I-terms which are ground. and which are
not equivalent modulo £ to cach other and to any term roy for » € X5, Since
T'(X4,0)/=g, is infinite, we can be sure that such terms exist. We define

2Ty = Oy for ¥ € X5,

Wy = 1 for 4+ =1,:.. 5

[t is easy to see that a; is a ground solution of I's ;. In fact, since the elements
of ¥; are now treated as constants, it is a ground substitution, and it obviously
solves the equations and disequations of I'5;. Restrictiveness of o) guarantees
that o, solves the disequations @ # y for &+ € X5, and y € Yi; the choice of the ¢
1 | Y 3 ! 7
uarantees that o, solves the disequations @ # y for v € X5, UYs; and r # y € Y5,
g 1 | Y 1 2 Y 2
Finally, for z € X5, and y € Y3, we have @vay = & #g, yoy € T(X1,0) since E; is
consistent. O
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It should be noted that restrictiveness of the solutions of I's 1, I's 2 is necessary
for the lemma to hold. This can be demonstrated by giving an example of theories

E,, E; for which

e the initial algebras are infinite, and

o there exists a disunification problem I'y for £; U E; which is solvable, but
not ground solvable.

In fact, if I'y is solvable, Proposition 3.2 implies that the decomposition algorithm
vields a pair I's;,['s > that is solvable as well. Since I'y is not ground solvable
this shows that just assuming solvability of I's 1, I's 5 is not enough to get ground
solvability of I'g. Because of Lemma 4.4 this also means that one of the systems
I's1,1'52 has a solution but no restrictive solution.

Example 4.5 Let ¥; consist of the ternary function symbol ¢, the unary function
symbol f, and the constant symbol a. We consider the theory

Ey = {9(z, f(y), 2) = a,9(x,9(y1,y2,¥3), 2) = a,
9(z,a,z) = a,g9(z,y,z) = a}.

The signature ¥, consists of the two unary function symbols h,k and the
constant symbol b. As our second theory we take

E; = {h(h(z)) = b, h(k(z)) = b, h(b) = b}.

The initial algebra of F; is infinite since the infinitely many terms of the form
f(f(--- f(a)---)) are not equivalent modulo E;. For F;, we have infinitely many
non-equivalent terms of the form k(k(---k(b)---)).

Now consider the disunification problem I'g = {¢(b,z, h(z)) # a}. Obviously,
the identity substitution is a solution of I'y. Now assume that o is an arbitrary
solution of I'y. Because of the first three identities in £, we know that zo cannot
be a 1-term. On the other hand, zo cannot be a 2-term either. In fact, the
identities in Fy would imply that h(zo) =g b, and thus the fourth identity in
E, would imply that ¢(b,zo, h(z0)) =g a. Hence zo must be a variable, which
shows that ¢ cannot be a ground solution of T'y. O

Obviously, Lemma 4.3 and 4.4 can also be shown for the combination of more
than two theories. Thus we obtain the main theorem of this section.

Theorem 4.6 Let [;,1 = 1,...,n, be equational theories over disjoint signatures
¥i, and suppose that the initial algebras T(X;,0)/ =y are infinite. [If restrictive
solvability of E;-disunification problems with linear constant restriction s decid-
able fori = 1,...,n, then ground solvability of disunificalion problems is decidable

for EyU...UE,.
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If one of the theories, say F,, satisfies a stronger restriction, the condition
that the initial algebras are infinite can be dropped for the other theories.

Corollary 4.7 Let Ey,..., E, be equational theories over disjoint signatures ¥y,

cy Ln. Assume that T(X,,0)/=p is infinite, and that every solvable F,-dis-
unification problem with linear constant restriction has a ground solution. Then
ground solvability of disunification problems in Ey U ... U E, is decidable if re-
strictive solvability of E;-disunification problems with linear constant restriction
is decidable fori1=1,...,n.

This can be seen by an inspection of the proof of Lemma 4.4. Since we know
that a solvable system I's, has a ground solution, we do not need any alien i-
terms (¢ # n) to get rid of variables in solutions of I's ,,. For the other theories, the
assumption that T'(¥,,0)/=p is infinite provides for the required alien terms.

An important case to which this corollary applies is the combination with
a free theory. We call an equational theory F' the free theory with signature
Y iff sig(F) = ¥ and =p is just the syntactic equality of terms. Obviously,
considering elementary disunification in the combination of a theory £ with a
free theory corresponds to considering general disunification for F.

Corollary 4.8 Let £,,...,%, be disjoint signatures, Fy, ..., FE,_; be equational
theories over ¥y,..., 5,1, and let I, be the free theory with signature ¥,,. As-
sume that ¥, contains at least one function symbol of arity greater zero and one
constant. Then ground solvability of disunification problems in F,U... UL, is dec-
cidable if restrictive solvability of F;-disunification problems with linear constant
restriction is decidable forvo=1,...,n — 1.

Proof. Obviously, the condition that there is at least one constant and one
(non-constant) function symbol in ¥, implies that T'(¥,,0)/=5 = T(X,,0) is
infinite.

Now we show that an F,-disunification problem with linear constant restric-
tion, say (I', X,C, <), is solvable iff it is ground solvable. Obviously, ground
solvability implies solvability. Thus assume that o is a (not necessarily ground)
solution of (I'; X, C,<). Assume that y; is a variable occurring in zo for some
r € X. Let t € T(X,,0) be a term that is larger than all the terms 2'c for
' € X. We define o' := o o {y; +— t}. Obviously, ¢’ solves the equations in I'. It
satisfies the constant restriction since ¢ does not introduce elements of C'. Finally,
consider a disequation s; # s; of I'. We know that sy0 # sy0. Thus there exists
an occurrence where these two terms disagree. Let the terms at this occurrence
be ty,t,. If t; and ¢, are non-variable terms they have different top symbol. Hence
we will still get a disagreement after applying {y; + t}. The same is true if one
is a variable different from ;. Thus assume that t; = y,. If ; does not occur in
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ty then y1{y1 — t} =t # ty = to{y1 > t} (since t is larger than t, by choice of t).
Otherwise, y1{y1 +— t} =t is a strict subterm of t;{y; > t}. Thus we have seen
that sy0’ # s;0’. Using this method we can successively eliminate all variables
in the image of o.

To apply Corollary 4.7, it remains to be shown that restrictive solvability
of E,-disunification problems with linear constant restriction is decidable. We
have just seen that solvability is equivalent to ground solvability. Since ground
solutions are always restrictive it is thus enough to show that solvability of F,-
disunification problems I' with linear constant restriction is decidable. This has
already been shown in the proof of Corollary 3.3. O

5 Applications of the Method

The methods developed in the preceding two sections will now be applied to the
combination of A, AC, ACI, and free theories. An equational theory is called an
A-theory iff its signature consists of a binary function symbol h, and it contains
the single axiom h(h(z,y), z) = h(z, h(y, z)) (associativity). For AC-theories, one
has an additional axiom h(z,y) = h(y,x) (commutativity), and for ACI-theories
there is a third axiom h(z,z) = z (idempotence).

Theorem 5.1 Solvability of disunification problems is decidable for every theory
which is a disjoint combination of finitely many A-, AC-, and ACI-theories and
a free theory. To get decidability of ground solvability by our method we have to
assume that the free theory contains at least one constant symbol and one function
symbol of arity greater than 0.

Since existential equational formulae can be seen as disjunction of disunifica-
tion problems we have the following immediate consequence of the theorem.

Corollary 5.2 Let ¥ be a signature consisting of n > 1 binary function symbols
hi,...,h,, and at least one constant and one additional non-constant function
symbol. Let A,, AC,, and ACI, respectively stand for associativity, associativ-
ity and commutativity, and associativity, commutativity and idempotence of the
function symbols h;.

1. The existential theories of the free algebra T'(X, Y)/:A" and the initial algebra
T(%,0)/=,, are decidable.

2. The existential theories of the free algebra T(3,Y)/=,c (T(E,Y)/=pcp. )
and the initial algebra T(Z,@)/:Acn (T(E’m)/:ACIn) are NP-decidable.
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For AC, decidability has already been shown by Comon [Com88]. The result
for A seems to be new. There is no real hope to extend these decidability results
to equational formulae with more complex quantifier prefix. A recent result by
Treinen [Tr92] shows that already the ¥, fragment® of the theory of the ground
term algebra modulo A is undecidable. For AC, Treinen shows that the ;-
fragment is undecidable, both for the free algebra and the initial algebra.

To prove Theorem 5.1, it remains to be shown that solvability and restrictive
solvability of disunification problems with linear constant restriction are decidable
for A-theories, and NP-decidable for AC-; ACI- and free theories. Decidability
for free theories has already been shown in the proof of Corollary 4.8. Obviously,
this decision method is of polynomial time complexity. We shall consider A, AC
and ACI in the following.

Firstly, it turns out that restrictiveness of a solution is here not a real con-
straint. In fact, we shall show for these theories that a disunification problem
with linear constant restriction has a solution ifl it has a restrictive solution. In
particular, this means that solvability and ground solvability for the combined
theory are equivalent.

Proposition 5.3 Let E be an A-, AC-, or ACIl-theory. Then solvability and
restrictive solvability of E-disunification problems with linear constant restriction
are equivalent.

Proof. For the three types of theories it is easy to see that any term containing
a subterm of the form A(y1,y2) (for distinct variables vy, 1,) cannot be equivalent,
to a variable. Let (I') X, C, <) be an E-unification problem with linear constant
restriction, and let o be a solution of I'. Now assume that zo =g y for x € X
and a variable y, which means that o is not restrictive.

We take distinct variables 1, y, that do not occur in zo for any variable z in I,
and define ¢’ := oo {y — h(y1,y2)}. Obviously, ¢’ solves the equations in I'; and
it still satisfies the constant restriction. In addition, we have zo' =g h(yy,v2),
which shows that zo’ is no longer equivalent to a variable. It remains to be shown
that o' also solves the disequations of I'. Let s # ¢ be such a disequation. We
know that so #g to.

(1) First, we consider the case where E is an A-theory. Since we are working
modulo associativity, terms can be seen as words over the alphabet ¥ of constant
and variable symbols. We know that the two words so,to are different. First,
assume that one is a strict prefix of the other. Obviously, this means that the
same holds for the words associated with so’ and to’.* Otherwise (i.e., if none is

3consisting of the closed formulae with quantifier prefix of the form 3zVy

1Note that we do not have a unit element for &, which implies that any variable has to be
replaced by a nonempty word.
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a prefix of the other) there exist words u,v,w and distinct elements a, b of the
alphabet ¥ such that so = uav and to = ubw. The words so’ and to’ have the
same prefix u{y — y1y2}. The next symbols are either a and b (if none is equal
to y), or y; and one of a and b. Both cases yield that the two words so’ and to’
are different.

(2) Now consider the case where F is an AC-theory. We can associate with
each term r a mapping a, from the alphabet ¥ of variables and constants to the
nonnegative integers as follows:

a,(a) is the number of occurrences of a in r.

It is easy to see that we have ry =g r; iff a,, and «,, are the same function,
i.e., if for all @ € ¥ one has a,,(a) = a,,(a). Thus we know a,, # ai,. Evi-
dently, a,,(a) = ay,(a) for all variables or constants a & {y,y1,%2}. In addition,
a0 (yi) = 0, and a0 (yi) = as(y) (2 = 1,2). The same holds for ¢ in place of s.
Thus a,, # oy, implies oy, # g, This shows that s’ #g to'.

(3) The cases where E is an ACI-theory can be handled similarly. Instead of
the invariant «, we just take the mapping f3,, which is defined as follows:

Sl 1 if @ occurs in r,
"7 71 0 otherwise.
To sum up, we have seen that in each case o' also solves the disequations in
I'. By successively applying this method to all variables 2 € X for which zo is
equivalent to a variable, we can construct a restrictive solution of I'. )

Secondly, it can be shown that solvability of disunification problems with
linear constant restriction for A, AC and ACI can be reduced to ground solvability
over an appropriately enlarged signature.

Proposition 5.4 Let E be an A-, AC-, or ACI-theory. An E-disunification
problem with linear constant restriction (I'y X,C, <) containing m disequations
has a solution if and only if it has a ground solution in the initial algebra T({h}U
CUD,0)/=g, where D = {dy,...,dyn41} is a set of 2m + 1 constants that is
disjoint to C'.

Proof. In the previous proof we have used that terms ry,r; that are different
modulo F yield “disagreement symbols” that are responsible for this difference.

If £ is an A-theory, we get the disagreement symbols a,b if r; is the word
uav and r; is the word ubw (where a, b are distinct symbols from the alphabet of
variables and constants). The other case, where one word is a strict prefix of the
other, does not yield a disagreement symbol. But in this second case, the words
ri7 and ro7 will be different for arbitrary substitutions 7.
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If £ is an AC-theory (ACI-theory) we take as disagreement symbol the symbol
a for which a,,(a) # a,,(a) (3., (a) # B,,(a)).

Now let o be a solution of I', and let {y;,...,yx} be all variables that are
disagreement symbols of so,t0 for some disequation s # ¢ in I'. Since a disequa-
tion can yield at most two disagreement symbols, we have k < 2m. Let 7 be the
substitution

{yib—)diliZI,...,k} U
{y— dis1 |y & {y1,...,yx} occurs in zo for some z € X}.

Obviously, o o 7 is a ground solution of the equations in I', and it satisfies the
constant restriction (since occurrence of the elements in D is not constrained). It
solves the disequations since disagreement symbols are mapped to distinct new
constants. O

Thus, eventually one has to consider ground solvability of disunification prob-
lems with linear constant restriction for A, AC and ACIL This is done in the
following three subsections.

Before that, let us mention that the method of reducing solvability to ground
solvability described above does not work for arbitrary theories. In fact, in Propo-
sition 5.4 the number of disequations could be used to determine the number of
constants to be added. In the general case, we know that whenever a disuni-
fication problem is solvable it is ground solvable over a signature appropriately
enlarged by finitely many constant symbols. (Just treat the variables in a solu-
tion as constants.) But how many constants have to be added may also depend
on the structure of the equations and disequations, and not just on the number
of disequations.

An example of a theory where this is the case is the theory
Al = {k{k(z,y), 2) = h(z, bly, 2)), bi{z,z) = z}.

For n > 1, let X, denote a set consisting of n different variables. From the
results in [Fen71] one can easily deduce that for each n > 1 there exist terms

Snytn € T({h}, Xn42) such that
® 85 Fur iy, but
o s,0 =47 t,o for any substitution o that replaces the variables in s,,t, by
terms in T'({h}, X,).
This means that the AL-disunification problem I' = {s, # t,} is solvable (by the
identity substitution), but it is not ground solvable if one has at most n constants.

It is not clear how to determine the appropriate number of constants for an
arbitrary ALdisunification problem. For this reason, deciding solvability of Al-
disunification problems is still an open problem, even though ground solvability
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for a finite number of constants is trivially decidable (since finitely generated
Al-free algebras are finite).

5.1 Ground Solvability for A

For an A-theory F one can use a method described by Biichi and Senger [BiiS86]
to reduce ground solvability of E-disunification problems with linear constant
restriction to ground solvability of F-unification problems with linear constant
restriction. Solvability® of unification problems with linear constant restriction
for A-theories is treated in [BS91b].

For the reader’s convenience we shall briefly describe the argument in [BiS86].
As mentioned above, terms modulo an A-theory may be considered as words over
the alphabet of variables and constants. Assume that C' is the set of constants
available for building ground solutions. Biichi and Senger show that a disequa-
tion can be expressed by a positive hoolean combination of equations. i.c.. a
combination not involving negation.

To define this formula, we have to introduce two abbreviations. For two words
wy,wy the expression w; <1 w; stands for the equation wyr = w,, and w; < w,
stands for the disjunction of equations w; = w, V wyr = w,. Here x is meant to
be a variable different from the ones occurring in our disunification problem, and
we assume that different expressions of this form use different variables.

A disequation w; # w, is equivalent to the formula

wy 1w, Vwydw, V
\/ ((za Qwy) A (20D wy)) V
a#beC

\/ ((a D wy) A (bDwy)).

a#beC

Here z is also meant to be a new variable. Obviously, this formula just expresses
the fact that two words are different iff one is a strict prefix of the other, or there
are disagreement symbols «,b. Since we want to have a ground solution, these
disagreement symbols must come from the set ol available constant symbols.

Since we can bring any Boolean combination of equations into disjunctive
normal form, this shows that ground solvability of an E-disunification problem
with linear constant restriction can be reduced to testing solvability of a finite
number of K-unification problems with linecar constant restriction.

SRecall that, for unification, solvability and ground solvability are equivalent.



5.2 Ground Solvability for AC

For AC, ground solvability of a disunification problem with linear constant re-
striction can be reduced to an integer programming problem (of a size that is
polynomial in the size of the original problem). The integer programming prob-
lem can then be solved by one of the known NP-algorithms (see, e.g., [Sc86],
pp-239). Instead of giving a formal definition of this reduction for the general
case, we illustrate it by an example.

Let £ be an AC-theory for the binary function symbol h. We consider the
E-disunification problem

I'= {h(m’h(mvh(cvh(c’ C)))) = h(yah(y’h(yah(?f’b))))’
h(z,h(z, h(z,h(y,y)))) = h(z,c),
h(z, h(y, h(y, h(y,y)))) # h(z,h(z,h(c, h(y,z))))}

with the constant restriction induced by ¢ < # < b < y. Assume that we want to
decide ground solvability over the alphabet of constants {b,¢,d,e}.

For each of these constants, we introduce a system of linear equations. These
systems will correspond to the equations in I'. The variables occurring in the
linear equations stand for the number of occurrences of the respective constant
in the image of z and y, respectively, of possible solutions of I'. The coefficients
of these variables in the equations are the number of occurrences of z and y,
respectively, in I'. Thus we get the four systems

(o)) - (La)(3)+(s)
()G () - (o) (5)+(0)
(Ga)() = (aE)
(2)() = (o) (%)

In addition, since we do not have a unit element for A, the variables z,y have
to be substituted by nonempty terms. This is expressed by the inequalities

2y + Tt Taihite > 0 and w4 ye F Yot g > 0,
It should be obvious how to express the constant restriction with the help
of some additional equations: If a constant must not occur in the image of a

variable, the corresponding variable in the system of linear equations has to be
zero. In our example, we get the additional equation

.’EbIO
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because z < b means that b must not occur in the image of .

The disequation

h(z, h(y, h(y, h(y,y)))) # h(x, h(x, h(c, h(y, x))))

is translated into a disjunction of four negated equations

(o +4ys # 3xp + ) V (v + 4y # 3z + Yo + 1)V
(za + 4ya # 3xa + ya) V (z. + 4y # 3z. + ¥.).

A nondeterministic algorithm for ground solvability first chooses one of the
disjuncts for each disequation. After this nondeterministic step one has a system
of linear diophantine equations and inequations (a negated equation can be scen
as two inequations). As mentioned at the beginning of this subsection, solvability
of such a problem can be decided by an NP-algorithm.

5.3 Ground Solvability for ACI

Finally, for an ACI-theory I, ground solvability of an [Z-disunification problem
with linear constant restriction can be reduced to satisfiability of Boolean formu-
lae. This problem is again NP-decidable (sece, e.g., [CooT1]).

Let I' be an E-disunification problem with linear constant restriction, let X
be the variables occurring in I', and assume that we are looking for a ground
solution using only constants from the finite set C'. For each pair (¢,z) € C x X
we introduce a propositional variable p. ., with the intended reading “c occurs in
the image of z”.

For a term s € T'(X, C), let X, denote the set of variables occurring in s, and
Cy the set of constants occurring in s. With each equation s =1 € I' we associate
a Boolean formula ®(s, ) that is defined as

/\ \/ Pe,x A /\ \/ Pe,x A

c€C\Cr TEX ceC\C; T€X,
/\ \/ Pegz < \/ Pey | -
CGC\(CSUCt) 1‘61\’5 yex\’z

The first part of the formula says that each constant ¢ that occurs on the left
hand side of the equation, but not on the right hand side, must be introduced
by some variable of the right hand side. Accordingly, this has to be true for
constants occurring only on the right hand side. For constants occurring on both
sides we have no restriction. Finally, constants that do not occur on either side
of the equation can be introduced on the left hand side iff they are introduced on
the right hand side.
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With each disequation s # t we associate the formula —®(s,t). The fact that
any variable z € X must be replaced by a nonempty ground term is expressed

by the formula
AV pea-

zeX ceC

The treatment of constant restrictions is also very simple: for z < ¢ we just add
a formula —p, ;.

If we take the conjunction of all these formulae we get a Boolean formula of
a size that is polynomial in the size of our original problem I'. It is easy to see
that this formula is satisfiable iff I' has a ground solution.

6 Conclusion

Since constraint approaches to theorem proving, term rewriting, and logic pro-
gramming are gaining in importance, constraint solving has become a major
research issue in these areas. An important subproblem is the question of how
to combine different constraint solving techniques. The present paper can be

seen as a contribution to this field, where the constraints are existentially quan-
tified equational formulae that have to be solved in the initial or the free algebra
modulo an equational theory. We have seen that the methods developed for the
combination of unification algorithms can be applied for disunification as well.
For solvability of disunification problems, this was relatively straightforward, even
though the proofs became more involved. For ground solvability we surprisingly
have to consider a restricted type of solvability (instead of ground solvability) in
the single theories.

For the theories A, AC and ACI, solvability and restrictive solvability coincide,
which implies that solvability and ground solvability in their combination with a
non-trivial free theory are equivalent. However, we have given an example of a
theory where solvability does not imply restrictive solvability (see Example 4.5).
An interesting open problem is under what conditions solvability and restrictive
solvability coincide, and when solvability and ground solvability refer to the same
problem.
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