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Abstract 

Abduction is a form of non-monotonic reasoning that has gained increasing in­
terest in the last few years. The key idea behind it can be represented by the 
following inference rule 

cp -+ W, W 

cp 

i.e., from an occurrence of wand the rule "cp implies w", infer an occurrence of 
cp as a plausible hypothesis or explanation for w. Thus, in contrast to deduction, 
abduction is as well as induction a form of "defeasible" inference, i.e., the formulae 
sanctioned are plausible and submitted to verification. 

In this paper, a formal descript ion of current approaches is given. The under­
lying reasoning process is treated independently and divided into two parts. This 
includes a description of methods for hypotheses generation and methods for finding 
the best explanations among a set of possible ones. Furthermore, the complexity of 
the abductive task is surveyed in connection with its relationship to default reason­
ing. We conclude with the presentation of applications of the discussed approaches 
focusing on plan recognition and plan generation. 
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1 Introduction 

Abductive reasoning has gained increasing interest in many fields of AI research. Its utility 
was first observed for diagnostic tasks (d. [Pop73]), but as many researchers have shown 
it is not limited to this use. Currently under investigation or suggested are such different 
applications as plan recognition (e.g., [HK90]), text understanding and generation (e.g., 
[Sti90]), program debugging (d. [CM85]), planning (e.g., [Esh88]), user modelling (d. 
[Po088]) or vision (d. [CM85]). 

The aim of this paper is to summarize the underlying formal models of abduction 
and investigate different methods for arriving at abductive hypotheses. Only in the last 
section will we regard possible applications, restricted to the field of plan recognition and 
plan generation. 

Abduction is used to generate explanations, i.e., abducible sentences, whereas deduc­
tion is normally used for testing derivability. In a deduction step, each consequence is 
obtained by applying a logically correct inference rule, so the deduced formulae are logical 
consequences of the theory under consideration. Reasoning by abduction can be roughly 
described by the following inference rule: 

c.p --t W, W 

This rule corresponds to some kind of inversion of Modus Ponens. Nevertheless, con­
cerning the implication there is an important difference . Modus Ponens requires material 

implication as it is used in classical logic, but abduction allows one to characterize the 
relationship between c.p and w with a much wider degree of freedom. Usually, it is thought 
of as some kind of causal relationship, as e.g., c.p is the reason for w being t'rue, but as 
Levesque (d. [Lev89]) shows, not all abduction has to be concerned with cause and effect 
in the strict sense. He suggests the extension of the notion of explanation in order to grasp 
the case that c.p is sufficient, not only necessary, to sanction the belief in w, i.e., there does 
not have to be a direct causal relationship between both formulae but, in connection with 
what is known, c.p is enough for w to be true. 

Most of the current approaches do not consider these representa,tion problems. Nor­
mally, the rules used for abduction are written down using material implication that is 
implicitly, i.e., by its use, interpreted as some kind of causal relationship. 

In this paper, we will first examine the origin of the notion of abduction in philosoph­
ical logic, where it is considered in the context of the two other important inference rules, 
namely deduction and induction. To give a more extensive description of abducti ve reason­
ing we will divide the reasoning process into three. parts that are examined independently. 
First, we will give a formal description of the abductive task that determines the under­
lying model. We discuss the set-cover-based approach, the logic-based approach and the 
knowledge-level approach. Methods for hypothesis generation are presented in section 3. 
In particular, we treat generation by resolution and generation by an Assumption-based 
Truth Maintenance System. As these methods produce sets of feasible hypotheses, it is 
convenient to further restrict these sets by applying heuristics. Approaches to finding 

the {(best" hypotheses are investigated in section 4. In section 5, we will briefly look at 

the relationship between defaul t reasoning and abduction. By determining a common 
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subtask some remarks on the complexity of both abductive and default reasoning can be 
made. We conclude by presenting in section 6 some applications of abductive reasoning 
in the field of planning and plan recognition, respectively: the approaches of Eshghi (see 
[Esh88J), and Helft and Konolige (see [HK90]) . 

1.1 Philosophical Background 

The notion of abduction was first introduced by the philosopher Peirce (see [Pei58]) . In 
the field of AI it was taken up in 1973 by Pople (cf. [Pop73]) and the research in this 
area was revived by Charniak and McDermott . In [CM85] they stress the importance of 
abduction as a third form of inference besides induction and deduction. 

In philosophical logic, abduction has always been seen in close connection with induc­
tion. In his earlier papers (see [Pei58]), Peirce sees abduction as a reasoning process from 
effect to cause, thus yielding explanations. In contrast to this, induction conjectures gen­
eral laws from particulars, i.e., instead of synthesizing explanations, induction classifies 
and thus does not add new knowledge to the theory. Later, Peirce emphasizes the con­
nection between both inference methods in the following way: "Induction is an argument 
which sets out from a hypothesis, resulting from previous Abduction ... " (see p. 198 in 
[Gou50]). This means that abduction should be used to synthesize an explanation, the 
induction axiom, that thereafter is verified by induction. Only the use of both processes 
together yields an acceptable explanation. 

An important feature of abduction arid as well of induction is their reducibility to 
a valid deduction, if the abductive process is sound. If cp explains w abductively in 
connection with theory T, then w must be derivable from cp U T. This connection gave 
rise to one method of constructing abductive hypotheses, namely by resolving the negated 
observation w with theory T. The dead-ends reached are candidate hypotheses (see 
section 3). Finding an explanation in such a way by deductive means thus ensures the 
soundness of the process. 

In general, there are several possible abductive hypotheses and the problem arises of 
how to choose among them. Peirce gives several criteria that a good explanation should 
fulfill (see [Gou50]). First and foremost, a hypothesis should account for the facts. But it 
should also follow Occam's Razor, i.e., it should be the "simplest" hypothesis available. 
In general, "simplicity" is interpreted as logical simplicity, which means that those hy­
potheses are preferred that contain fewer different predicates. These are the hypotheses 
that require the fewest additional assumptions to what has been observed. Peirce stresses 
the importance of logical simplicity, but what he estimates higher is "psychological sim­
plicity" in the sense that an adequate hypothesis should be the most natural, i.e., one 
that would be intuitively preferred . 

Current research favours logical simplicity as selection criterion and one reason for this 
is certainly the fact that psychological simplicity is hard to define. However, Mooney and 
Ng (cf. [NM90]) recently have suggested a new measure for the quality of explanations 
which they call explanatory coheTence (see also section 4.2). This metric controls the choice 
of hypotheses so that those are selected that best "tie together" the various observations 
that are to be explained, i.e ., that yield the most coherent explanation. As the authors 
claim, these are usually also the intuitively preferred ones. Especially in the field of text 
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understanding and plan recognition or planning, where reasoning processes of human 
agents have to be simulated, such a measure that prefers the most natural hypothesis 
seems inevitable. 

2 Formal Models 

It is possible to determine different models that are used to specify the abductive process: 

• set-cover-based approaches (e.g., [ATBJ87]), 

• logic-based approaches (e.g., [EK88b]), and 

• the know ledge-level approach (d. [Lev89]). 

In the following, we will describe each of them. 

2.1 A Set-coyer-based Approach 

In set-cover-based approaches a set of explanations is found by selecting a suitable subset 
from a given set of hypotheses. This subset should best account for the observations and 
is determined by coverings, parsimony, plausibility or another suitable select ion criterion . 
Since hypotheses are constructed using a set of previously known candidates, this approach 
is also called hypothesis assembly. 

To be able to treat this fo rm of abductive reasoning more formally, we will first intro­
duce the terminology used in [ATBJ87]. 

Definition 1: [ATBJ87] (hypothesis assembly) 
A domain Jor hypothesis assembly is defined by the triple (<I>, n, e) , where <I> is a fini te set 
of hypotheses, n is a set of observations and e is a mapping from subsets of <I> to subsets 
of n. e( <I» is called the explanatory power of the set of hypotheses <I> and determines 
the set of observations <I> accounts for. An assembly problem is given by a set n' ~ n of 
observations that have to be explained. 

Example: To illustrate the ideas presented in this and the following sections, we will 
always use slight variations of the scenario outlined below. 

Let T be a theory consisting of the following propositions: 

'ix (bird(x) A -,ab(x) ~ flies(x)) (1) 

'ix (ufo(x) ~ flies(x)) (2) 

'ix (penguin(x) V ostrich(x) ~ ab(x)) (3) 

'ix (songbird(x) ~ bird(x)) (4) 

'ix (songbird(x) ~ eatsjnsects(x)) (5) 

'ix (frog(x) ~ eats_insects(x)) (6) 

'ix (frog(x) ~ green(x) A croaks(x)) (7) 

'ix (frog(x) ~ ab(x)) (8) 
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In addition, we assume axioms stating the disjointness of the extensions of predicates 
denoting different animal types, i.e., frogs are not birds, etc. 

Taking this example scenario, but with explicit knowledge about things that do not 
fly, a domain for hypothesis assembly can be defined as follows: 

11> 

n 
e( {frog(x)} 

e( {songbird(x)} 

e( {ufo(x), bird(x)} 

e( {penguin(x)} 

e( {ostrich(x)} 

{frog(x), songbird(x), bird(x), ufo( x), no_bird(x)} 

{flies(x), green(x), croaks(x), -,flies(x), eatsjnsects(x)}, 

{eats_insects(x), -,flies(x), green(x), croaks(x)}, 

{eatsjnsects( x), flies( x)}, 

{flies(x)}, 

{-,flies(x)}, 

{ -,flies(x)}. 

However, in order to ensure the practical use of this formal model some additional assump­
tions must be made which a feasible domain should fulfil. The computability assumption 
is essential for all set-cover-based models . 

Computability Assumption 

For any subset <1>' of 11>} e( <1>') can be computed. 

This means that it is always exactly known which observations are explained by which set 
of hypotheses. Thus, following our example, e.g., e( {bird(x)} must also be computable. 
How this can be done is determined by the independence assumption. 

This states that the union of two hypotheses sets 11>1 and 11>2 accounts for the obser­
vations explained by 11>1 as well as for those explained by <1>2' Thus, it is suffient to give 
for each single hypothesis the observations accounted for. 

Independence Assumption 

Let 11>1 , <1>2 ~ 11>. Then e( <1>l U 11>2) = e(<1>d U e( 11)2)' 

The independence assumption is necessary for the stepwise computation of the mapping 
e. If e( 11>1) is known, then e( 11>2) = e( 11>1 U {'P}) can easily be generated by conjoining 
e( {'P }) to the already known set e( 11>t) . Thus, 

e( {bird(x), songbird(x)}) = {flies(x), eatsjnsects(x)}. 

Allemang et al. point out that this assumption is satisfied by most diagnostic domains 
that allow decomposition in independent parts. The independence assumption is also used 
in the set-covering model defined by Reggia (d. [Reg88]) . The algorithm of Allemang et 
al. allows one to weaken it by the following two assumptions: 

Monotonicity Assumption 

Let 11>1, 11>2 ~ 11> and 11>1 ~ 11>2' Then e( I1>d ~ e( 11>2)' 

The observations accounted for by a subset of 11>2 are a subset of those accounted for by 11>2. 
This assumption is weaker than the previous one. We only have e( 11>1) ~ e( 11>1 U 11>2) and 
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e( <P2) ~ e( <PI U <P2)' i.e., the union of both hypotheses sets accounts for all data explai ned 
by <PI and <P 2, but possibly also for more. With the following assumption, those data can 
be determined for which a hypothesis is essential. 

Accountability Assumption 

The function a : <P ---t 0* with 

a(cp) = {w E 013<PI ~ <P with cp E <PI such that w E e(<PI) and w rt. e(<PI\{cp}) } 

is computable. 

By a(cp) we get the observations that cannot be explained without cpo If the monotonicity 
assumption holds, we have a( cp) ~ e( cp). Our example domain yields a( cp) = e( cp), as it 
obeys the stronger independence assumption that states that each hypothesis cp accounts 
precisely for e( cp). 

Set-cover-based approaches rely heavily on the previously known mapping e that al­
ready determines a superset of the explanations searched for. As a consequence, there 
exists no actual hypothesis generation mechanism, but rather a collection procedure that 
selects the relevant hypotheses out of this superset. Therefore, we will now describe the 
complete abductive algori thm. 

Let (<1>,0, e) be an assembly domain and 0' ~ 0 an assembly problem. The abductive 
algorithm of Allemang et al. consists of four parts: 

• Screening phase, 

• Collection phase, 

• Parsimony phase, and 

• Critique phase. 

Screening phase: 
In the first phase, the plausibility of the hypotheses in <P is determined,e.g., by some 
kind of heuristics or by predefined probability values that can be evaluated with 
a hierarchical classification system. In the following phases, only those hypotheses 
with a sufficiently high plausibility are taken into account. Considering ollr example 
we can, e.g., classify owls as birds and assign a higher priority to the more general 
explanation "bird". 

Collection phase: 
In the collection phase, the hypotheses accounting for each w E 0' are collected 
iteratively. Note that <P is now the result of the screening phase. In detail, we have: 

Hyp f- 0 

until 0' = 0 

do let w be the "most salient" element of 0'; 

find the most plausible hypothesis cp E <P with wE a(cp); 
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od 

Hyp +- Hyp U {<p}; 

0' +- 0' \ e(Hyp); 

Remarks: 

• The meaning of "salient" still has to be interpreted for a given application 
domain. 

• A hypothesis can account for several observations. All of these are then taken 
out of the set 0' of observations that still have to be explained. 

• A conflict arises if incompatible hypotheses are collected in H yp. In an actual 
implementation of Allemang et al. this is resolved by mainta.ining only the last 
hypothesis found. As a consequence, the data accounted for by the rejected 
hypothesis must be explained again and strong heuristics may have to be used 
in order to avoid infinite loops. 

Example: Assume the previously defined example domain of hypothesis assembly 
IS gIven. 

Let 0' = {-.flies(F), cToax(F)}. First , consider the observation -.fli es (F) . We 
have to find the most plausible <P E {penguin(F), f7'Og(F), ost7·ich(F)}. Assume 
that <p = penguin(F) is chosen, i.e., Hypl = {penguin(F)}. Thus, 

0' = 0' \ e( {penguin(F)} = {croaks(F)} 

In the second loop iteration we find <p = frog(F) with croaks(F) E a(J7·og(F)). 
Hence, 

Hyp2 = {penguin(F), frog(F)}. 

Those hypotheses are incompatible (as we assumed disjointness of incompatible 
predicates denoting animals), so penguin(F) is rejected and -.fli es (F) has to be 
explained again. If no_biTd(F) is taken as hypothesis, we get 

Hyp = {no_bird(F), frog(F)} 

as a solution. 

Parsimony phase: 
The parsimony phase guarantees that there is no proper subset of Hyp that also 
explains 0'. This case can occur because the elements of 0' are considered succes­
sively. A hypothesis <PI, added to Hyp as an explanation of the observation WI, can 
later become superfluous, because hypothesis <P2 explains W2 and WI as well. We get 
the following procedure: 
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for each c.p E H yp 

do if 0' ~ e(Hyp\ {c.p}) 

od 

then Hyp t- Hyp \ {c.p}; 

fi 

Example (continuation): We had the solution Hyp = {no_bird(F),J1·og(F)}. 
As 

{-.Jlies(F),croaks(F)} C e({Jrog(F)}) 

{eatsjnsects(F), croaks(F), -.Jli es(F)} 

we can find a subset of Hyp that also accounts for the observations, i.e., 

Hyp t- {Jrog(F)}. 

Remark: This procedure does not ensure that the smallest solution with respect 
to set cardinality is found. An algorithm solving this problem in the context of a 
set-cover-based model was design ed by Reggia (d. [Reg88]). 

Critique phase: 
Essential hypotheses , i.e., hypotheses without which no explanation can be found 
at all, are marked as such. This supplies the user with additional information about 
important parts of every possible explanation. The collection phase is repeated 
IHypl times with each hypothesis in Hyp marked as unuseable in turn. 

for each c.p E H yp 

do G t- Hyp\ {c.p}; 

od 

repeat collection phase with Hyp t- G 

and H t- H \ {c.p} 

if no explanation can be found 

then mark c.p as essential 

Remarks: 

• The collection phase is executed starting with the solution set diminished by 
exactly one hypothesis c.p in each loop iteration. This hypothesis is marked as 
unuseable . If no explanation can be found, then c.p is essential. 

• Obviously, Jrog(F) is essential in our example. 
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This set-cover-based algorithm has been implemented in the system RED (d. [ATBJ87]) 
for a blood bank antibody analysis. It yields one possible plausible explanation that is 
subset-minimal. 

Nevertheless, there are some drawbacks that cannot be disregarded. First and fore­
most, the computability of the mapping e is crucial for the choice of possible explanations. 
All causal relationships that might be relevant must be encoded in form of relations before 
starting the abductive procedure. This seems practicable only in restricted areas, e.g., 
repair problems. Apart from that, the domain must satisfy further assumptions. The 
independence assumption is quite strong and even if it is relaxed by the monotonicity 
and accountability assumptions the application seems to be restricted to domains that 
are easy to manage, i.e ., no domains where databases of commonsense knowledge are 
involved. As a last point, one should mention that, as Levesque notes (see [Lev89]), small 
changes in the underlying theory most probably lead to difficulties, as the corresponding 
changes in the explanations are hard to express, i.e., the addition of new facts can enforce 
a quite extensive respecification of the funtion e. 

So finally we could state that the set-cover-based model appears to be adequate only 
for diagnostic tasks or repair problems where all causal relationships are well known and 
can easily be represented by a function. In addition, the underlying theory should not 
ulldergo any changes. 

2.2 Logic-based Approaches . 

The majority of research in abduction that is also the most widely accepted is based on 
a logical model. It allows that knowledge represented in some logical language for the 
purpose of deductive inferences can also be used for abduction. 

Before going into the detail of several logic-based approaches, we will introduce the 
general idea. An abductive system consists of 

• a logical theory T defined over the language [" and 

• a set of sentences A of [, that are called abducible. 

If a sentence c.p is found as the result of an abductive process in searching for an explanation 
of w, it must satisfy the following conditions: 

• T U c.p f- w, 

• T U c.p is consistent, 

• c.p is abducible, i.e ., c.p E A. 

Remark: Sometimes predicates instead of sentences are declared as abducible. Then, 
sentences c.p are called abducible if they contain only abducible predicates. 

Thus, the observation w must be derivable from the logical theory T augmented with 
the explanation c.p under the additional condition that c.p is consistent with T. This ensures 
what Peirce called soundness of the abductive procedure. Furthermore, the explanation 
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must be an element of the set of abducible predicates or sentences. This last condition is 
no restriction, as A can be chosen to cover all predicate symbols of 'c. 

Thus, abduction is defined over global logical properties such as consistency and deriv­
ability and, as Levesque points out in [Lev89]' this seems to be a drawback of this ap­
proach. In addition, the knowledge about causal relationships that is used for finding 
abductive explanations is represented implicitly in theory T. The implication in T has to 
be interpreted in two different ways corresponding to actual use, i.e., in sentences contain­
ing abducible predicates implication is seen as a kind·of cause-effect relationship, whereas 
otherwise the material implication is meant. Abduction and deduction within the same 
logical theory require different notions of implication (d. [Lev89]). 

In the following we will sketch two different abductive frameworks based on the logical 
model. 

2.2.1 Simple Causal Theories 

Konolige analyses in [Kon90] the relationship between abduction and Reiter's consistency­
based approach to explanation (d. [Rei87]). The formal model for abduction that he 
defines corresponds in general to the standard model already outlined. 

Definition 2: [Kon90] (explanation) 
Let (C, E, T) be a simple causal theory defined over the first-order language ,c, i.e., C is 
a set of causes, E a set of effects and T is a logical theory defined over L. An explanation 
of a set of observations .0 S; E is a finite set of sentences <I> such that 

• <I> is consistent with T, 

• T u <I> f- n, where .0 denotes the conjunction of all wEn, 

• <I> is subset-minimal. 

example: Let (C, E, T) be defined as follows: Let T be given by our example specification 
in section 2. 

C = {frog(x),songbird(x),bird(x),ostrich(x)} 

E = {flies(x),green(x),croaks(x),eatsjnsects(x)} 

If we have the set of observations n = {-,flies(F), croaks(F)} then cI> = {f7'Og(F)} is an 
explanation, because 

• frog(F) is consistent with T, 

• T U frog(F) f- -,flies(F) A croaks(F), and 

• frog(F) is subset-minimal. 

The last point of the definition for explanation embodies a selection criterion for 
"good" explanations that Allemang called parsimony (see section 2.1). It prevents the 
choice of a set of sentences as explanations that contains a proper subset which itself 
constitutes a valid explanation. 
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Another similarity to the set-cover-based approach can also be noted: the abductive 
process relates a set of observations that have to be elements in a predefined set E to a 
set of causes restricted by the set C . However, there is not an equivalent to the mapping e 
which determines for every feasible hypothesis the data it accounts for. The corresponding 
relationships are expressed in the logical theory by material implication going from cause 
to effects. 

The results of Konolige show that this form of abductive reasoning can also be carried 
out with the consistency-based method of Reiter. In fact, a transformation is described 
by which abductive explanations can be generated or deduced respectively. For details 
see [Kon90]. 

2.2 .2 Abduction instead of Negation as Failure 

Eshgi and Kowalski (d. [EK88bJ) consider abduction in the context of logic programming 
with integrity constraints. They show that "negation by failure can be simulated by mak­
ing negative conditions abducible and by imposing appropriate denials and disjunctions 
as integrity constraints." With this means they get a semantics for negation as failure 
that generalizes the stable model semantics. An application of this method in the field of 
planning is discussed in section 6.!. 

In this approach, logic programs working with negation as failure (N AF) are trans­
formed into an abductive framework, where more general integrity constraints than denials 
can be defined. For this purpose, abduction is introduced as follows: 

Definition 3: [EK88b] (abd uctive framework) 
(T, I, A) is an abductive framework iff 

• T is a Horn clause theory without denials, 

• I is a set of integrity constraints, and 

• A is a set of predicate symbols defined as abducible. 

Definition 4: [EK88b] (abductive solution) 
Let (T, I, A) be an abductive framework. A hypotheses set <I> is an abductive sohdion for 
the query q iff 

• <I> consists of a set of variable free abducible atoms, 

• T U <I> f- q, 

• T u <I> u I is satisfiable. 

Remarks: 

• Integrity constraints are used as selection criterion for explanations. Hypotheses 
not satisfying them are ruled out by the last condition. 

• <I> is restricted to being variable free in order to avoid Skolemization. This limitation 
is not necessary and if more general formulae are to be allowed, the authors refer to 
the combination of Skolemization and reverse Skolemization as outlined in [CP86]. 

12 



Programs working with negation as failure are now converted into ones using abduction 
by the following algorithm: 

Conversion from NAF-formulation into an abductive framework 

(1) Negative conditions 9 are replaced by a new symbol g*. 

(2) Add the integrity constraint "~g*(x) 1\ g(x)". 

(3) Declare g* abducible . 

Remarks: 

• By (1) all negative conditions are eliminated by introducing an unambiguous new 
symbol for them. 

• (2) and (3) ensure that if 9 is not valid then g*, the new symbol introduced for -'9, 
is abducible. 

• The search space of the conversion is almost equal to the original one, but instead of 
testing the provability of negated conditions by negation as failure, the consistency 
of abducible predicates is checked. 

Example: Let the Horn clause theory T be given by 

T = {flies(x) ~ bird(x) 1\ -,ab(x), 

bird( x) ~ songbird( x), 

eatsjnsects(x) ~ songbird( x), 

frog(x) f-- green(x) 1\ croaks(x), 

ab(x) f-- frog(x)} 

A conversion yields the framework (T', 1, A) with 

T' = {flies(x) ~ bird(x) 1\ ab(xt, 

bird( x) f-- songbird( x), 

eats_insects( x) f-- songbird( x), 

frog(x) ~ green(x) 1\ croaks(x), 

ab(x) f-- frog(x)} 

I { f-- ab*(x) 1\ ab(x)} 

A {ab*} 

Now, consider the query: flies(Sam)l\eatsjnsects(Sam). T with NAF yields the answer 
true as -,ab(Sam) can be proved by NAF. 
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The proof in the abductive framework is essentially equivalent till we reach the clause 
(- ab*(Sam). ab*(Sam) is abducible, if 

T U {ab*(Sam)} f- flies(Sam) 1\ eatsjnsects(Sam) and, 

T U {ab*(Sam)} U {(- ab*(Sam) 1\ ab(Sam)} is satisfiable. 

By showing the consistency of ab*(Sam) this is proven. 

Note: With the aid of this transformation, it is possible to also introduce metalogical 
statements as integrity constraints. For example, in [EK88b] the formula Demo(T, Q) is 
introduced that holds iff T I- Q. The value is determined by refl ection as described in 
[Wey80]. 

The authors have shown that abduction can be seen as an extension of logic pro­
gramming by transforming programs working with negation as failure into an abductive 
framework that is at least as powerful as the original formulation. In order to drive the 
generation of abductive explanations <P deduction is used, which ens ures the soundness 
of the process, i.e., T U <I> I- n, where n describes the facts to be exp lained. 

2.3 The Knowledge-level Approach 

The knowledge-level approach was proposed by Levesque (d. [Lev89]) and is based on a 
model of belief. Considering implicit belief, this approach coincides with the general ideas 
underlying the logical models as presented in the preceding section . But furthermore, it 
allows the exchange of the model of belief, thus yielding a very general definition of 
a.bduction that does not depend on the respective knowledge representation. 

We suppose that a propositional language £ is given. Beli efs are formulated in the 
language £*, whose atomic sentences are of the form BO' with a E £ . A subscript is used 
to distinguish different types of belief. 

Definition 5: [Lev89] (epistemic state) 
An epistemic state e determines which sentences of £ are believed, i.e., e F B>..O' for beliefs 
of type A. 

Explanation is defined as follows: 

Definition 6: [Lev89] (explanation) 
t.p expl>.. w with respect to e iff e F (B>..(t.p :J w) 1\ -.B>..-.t.p). 

Note: This means that t.p is an explanation for w if it is believed that t.p implies w, 

regarding material implication, and if the negation of t.p is not believed. The last conj und 
incorporates some kind of consistency check w.r.t. the belief set under consideration. 

However, this definition allows multiple explanations. Therefore, a syntactic selection 
criterion is defined that will restrict the feasible explanations, thereby influencing the 
knowledge operator EX P LA! N that is defined below. Following Occam's Razor, expla­
nations with fewer propositional letters are preferred, where p and -'p are considered as 
different. More formally we have: 
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Definition 7: [Lev89] (literals of a formula) 
The set of literals LIT S( a) of a formula a is defined by 
LITS(Jalse) = 0; 
LIT S(p) = {p} for an atom p; 
LITS(--,a) = { m 1m E LITS(a) }; 
LITS(a 1\ 13) = LITS(a V 13) = LITS(a) U LITS(f3). 

Definition 8: ([Lev89]) (simplicity) 
A formula a is simpler than a formula 13 (written a --< 13) iff LITS(a) c LITS(f3). :::S is 
defined straightforwardly. 

With this in mind we are able to clarify what the statement "'P explains w minimally" 
means. 

Definition 9: [Lev89] (minimal explanation) 
'P minimally explains w with respect to an epistemic state e and a belief type ,x, I.e. , 
'P min_expl>. w with respect to e iff 

{ 
'P expZ>. w with respect to e and 
there is no 'P. --< 'P with 'P*expl>. w with respect to e. 

An abductive process should re t urn the disjunction of all minimal explanations, i.e, as a 
semantic characterization we get 

Definition 10: [Lev89] ( explanation operator) 

EXPLAIN>.[e,w] = II{ 'P I 'P min_expl>. w with respect to e }II, 

where II'PII is the set of all models in which 'P is true. 

An algorithm is called correct if it returns exactly all minimal explanations with respect to 
an epistemic state. Assume that the results of the abductive procedure are described by 
the function explain(T,w), i.e. , explain(T,w) yields the explanations of w with respect 
to the theory T. Then, correctness can be characterized by the equation: 

EX P LAl N>.[R>.(T), w] = lIexplain(T, w) II, 

where the function R>. maps sets of sentences into epistemic states with respect to the 
belief type ,x. 

The model described gives rise to different abductive procedures corresponding to the 
underlying notion of belief. In section 3.2, we will discuss explicit and implicit belief and 
the resulting connection between abduction and an Assumption-based Truth Maintenance 
System. 

3 Hypotheses Gen eration 

The most important part of an abductive procedure is the formation of a new theory that 
explains the observed data. In section 2.1 one such method was descri bed in connection 
with the set-cover-based model. This, however, was not hypotheses generation but hy­
potheses assembly. Out of a set of predefined hypotheses, the feasible ones are selected 
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with the aid of a computable, predefined mapping e. The mapping e goes from hypotheses 
to data sets and determines accountability. 

In this section we will investigate algorithms that do not rely on such a mapping, 
i.e., all relevant information is encoded in the underlying theory. We distinguish between 
the following methods for hypotheses generation that strongly depend on the respective 
formal model: 

• generation by a form of linear resolution and 

• generation with an Assumption-based Truth Maintenance System. 

3.1 Generation by Resolution 

Many authors have shown that forms of linear resolution can be used for the generation of 
hypotheses in logic-based models, e.g. [Pop73], [EK88a], [CP86]. In this context, we will 
outline the basic algorithm of Pop Ie (d. [Pop73]), the algorithm of Cox and Pietrzykowski 
(d. [CP86]) and the abductive reasoning method of Shanahan (d. [Sha89]) that incorpo­
rates a generalization of SLD-resolution. 

3.1.1 Linear Resolution and Skolemization 

The procedure of Cox and Pietrzykowski is based on linear resolution and reverse skolem­
ization. This allows the explanation of facts that are described by arbitrary formulae, not 
just variable-free clauses (d. [Esh88]). 

Let T be a logical theory and let w be a formula (the fact to be explained). T also 
denotes the conjunction of all formulae in T. Furthermore, we assume T Ii w, as otherwise 
w is already explained by T. A cause r.p of win T is a formula determined by the following 
two conditions 

• T A r.p f- wand 

• r.p is consistent with T. 

To compute the cause r.p, do the following: 

(1) Convert T in clausal form. 

(2) Negate wand perform linear resolution with input clauses from T and some element 
of -'W as top clause. 

(3) We have assumed T Ii w. Thus, we distinguish two cases: 

(4) the deduction does not terminate, 

(5) the deduction terminates with some dead-end, the clause d. 

(6) Let D be the set of all dead-ends. Do the following steps for each dead-end d in D. 

Negate d, thus obtaining a conjunction PI A ... A Pn of literals. 
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Apply the reverse skolemization algorithm, i.e., replace all skolem terms in Pi by 
universally quantified variables. This yields the formula 

where the Qi stand for the universal quantifiers. Then, cp is a cause for w in T. 

Remar ks: 

• The algorithm incorporates a selection criterion. All computed causes cp are basic, 
which means that every cause cpt of cp itself is trivial, i.e., cpt implies cp directly. In 
most cases a minimality criterion is also satisfied. If cp is a computed cause then 
there is also no more specific cause x in the sense x => cp. This is a consequence of 
the resolution algorithm that works until no further resolution step can be made. 
An exception occurs only if a dead-end is subsumed by another. 

• The algorithm is not complete, i.e., there exist cases where not all basic and minimal 
causes are found. For an example confer [CP86] . 

The criteria introduced for good explanations, in particular basicness and minimality will 
be presented in more detail in section 4. 

Example: 

(1) Take as given the example theory of section 2. Transforming the theory in clausal 
form yields: 

{ --,bird( x), abe x), f lies( x)} 

{--'ufo(x), flies(x)} 

{--'penguin(x), ab(x)} {--,ostrich(x), ab(x)} 

{--,songbird(x), bird(x)} 

{ --,songbi rd( x), eats_insects( x) } 

{--,frog(x), eats_insects(x)} 

{ --,frog( x), greene x)}{ --,frog( x), croaks( x)} 

{--,frog(x), ab(x)} 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

In addition, we assume as in section 2 that the different animal types are disjoint 
corresponding to our intuition, e.g., {--,frog(x), --,ostrich(x)}. 

(2) Let the observation w be gi ven by 

w == 3x(flies(x) 1\ eats_insects(x)) 

We start resolution with some element of 

{--,flies(F), --,eatsinsects(F)} 

as top clause. 
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(3)-(5) Resolution with top clause -,flies(F) yields 

(6) 

{-,ufo(F), -,eats_insects(F)} (*) 

{-,bird(F), ab(F), -,eatsinsects(F)} (**) 

Further resolving (*) does not lead to a dead-end, as the resolvents become in­
consistent. A dead-end is reached only if (**) is resolved with (12) and (13). We 
get 

{-,songbird(F), ab(F)} 

D = {{ -,songbird(F), ab(F)}} 

Negating the elements of D and applying reverse skolemization gives the solution 

Vx(songbird(x) 1\ -,ab(x)). 

3.1.2 Problem Reduction by Linear Resolution 

Instead of adding the negation of the observed data w to the logical theory, PopJe (d. 
[Pop73]) tries to directly show T ::) w . The observation is converted into disjunctive 
form. By regarding each disjunct separately the problem of proving w is split into an 
equivalent set of subproblems. A clause in the logical theory is interpreted as a kind of 
rewrite rule and by backward chaining one arrives at nodes that will not create successor 
nodes, i.e., that cannot be proved from the axiom set. These are candidates for an 
explanatory hypothesis. If all different subproblems are considered, a set of possibly 
competing hypotheses is generated. 

In detail Pop Ie proceeds as follows: 

(1) Convert the theory T to quantifier-free conjunctive normal form. 

(2) Use skolemization of universally quantified variables to convert the observation w in 
disjunctive normal form: 

• Eliminate implication. 

• Reduce the scope of negation. 

• Replace each universally quantified variable by a skolem function that has 
as arguments the variables of any existential quantifiers ocuring before the 
universal quantifier. 

• Drop existential quantifiers. 

• Transform the resulting expression into disjunctive normal form. 

(3) By considering all possible combinations for satisfying the disjunction w, the problem 
can be split into n different but equivalent formulations, where n is the number of 
disjuncts. To see this, assume that 

W d1 V ... V dn - 1 V dn 

(-,d1 1\ ... 1\ -,dn - d ::) dn 
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If the conjunction -,d1 /\ ... /\ -,dn - 1 is added to T the problem is reduced to showing 
dn . This process can be repeated with each di in turn as the right-hand side of the 
implication so that n different problem formulations are generated. 

(4) Clauses in T are interpreted as productions with a single literal on the left-hand side. 
Every clause with I disjuncts allows the formation of I different rules in which each 
disjunct constitutes the left-hand side in turn. 

(5) Try to show each subproblem by backward chaining. This can yield up to n different 
sets of dead-ends. 

(6) Note that for each subproblem the conjecture d; consists of a possibly unary conjunc­
tion. Now, those dead-ends are preferred that give the most coherent explanation of 
the observations, i.e., that account for the most .conjuncts of those to be explained. 
This heuristics is incorporated in the reasoning mechanism by a selection process 
called synthesis or factoring across partial trees. It states that, whenever possible, 
literals occuring in the different proof trees built for each conjunct of the observation 
should be unified. The resulting unifier accounts for both top Ii terals of the corre­
sponding proof trees, i.e., both observations are explained. Among several feasible 
hypotheses those are always preferred that account for the most observations. 

Example: 

(1) Let T be given by 

{-,bird(x), ab(x), flies(x)} 

{ -,airplane( x), ab( x), f lies( x)} 

{-,ufo(x), flies(x)} 

{-,penguin(x), ab(x)}{ -,ostrich(x), ab(x)} 

{-,songbird(x), bird(x)} 

{ -,songbird( x), eats_insects( x)} 

{-,frog(x), eats_insects(x)} 

{ -,frog( x), green( x)}{ -,frog( x), croaks( x)} 

{-,frog(x), ab(x)} 

(2) Let the observation w be described by 

3x((Jlies(x) /\ eatsjnsects(x)) V (eatsjnsects(x) /\ croaks(x))) 

By skolemization we get 

(Jlies(F) /\ eatsjnsects(F)) V (eats_insects(F) /\ c1'oaks(F)) 

(3) The reformulation yields two subproblems, namely 

(a) Add -,flies(F) V -,eats_insects(F) to the theory and show 

eatsjnsects(F) /\ green(F) /\ croaks(F). 

19 

(17) 

(18) 

( 19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 



(b) Add -,eats_insects(F) V -,green(F) V -,croaks(F) to the theory and show 

flies(F) /\ eats_insects(F). 

( 4) Assume T is reformulated as demanded, e.g., the first clause 

{-,bird(x), ab(x), flies(x)} 

allows for three "production rules": 

bird(x) J ab(x) V flies(x) 
-,ab(x) :J -,bird(x) V flies(x) 

-,flies(x) J -,bird(x) Vab(x) 

(5) Thus, the dead-ends for (a) are {frog(F)} and for (b) {songbird(F) /\ -'ab(F)} 

Remarks: 

• With the synthesis process, Pople implements a selection procedure that obeys Oc­
cam's Razor in the sense that only those hypotheses are regarded that are strongly 
confirmed by several observable data. 

• For diagnostic tasks, Pople suggests the choice of one abducible predicate, e.g. , 
"presence(X, Y)," that explains the observed malfunction. In this case, synthesis 
is only regarded with respect to the occurrence of this predicate. 

• Other heuristics for the controlled search for abductive explanations are estimated 
as useful, but are not yet implemented in the medical diagnosis system described 
by Pople. 

3.1.3 Abduction and Default Persistence 

The approach of Shanahan (d. [Sha89]) will be briefly reviewed, as it incorporates a 
resolution-based abductive mechanism in a temporal reasoning system, in which predic­
tion and explanation are realized by deduction respectively abduction within the same 
logical theory T. This shows possible applications of abductive algorithms working with 
resolution. 

The approach is based on Kowalski's and Sergot's Event Calculus (see [KS86]). The 
prediction problem consists of the search for a set of causal consequences w of a set of 
events'P such that T U 'P F w. If in turn w describes the observed events, then abduction 
is used to find a feasible set 'P of explanations satisfying T U 'P F w. 

As usual, the abductive algorithm requires that all causal relationships are expressed 
by formulae of the form "effect if cause." Furthermore, it is assumed that all properties 
known to be true have an explanation in terms of events. This embodies a kind of default 
persistence. To see this, assume that in order to explain proPl at time tl an event el 

is introduced that must occur before t l , i.e., at a time t < t l . Properties can only be 
changed by another event, so prOPl holds also at time t2 > t l , if no such event has been 
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observed. As Shanahan points out, this combination of abduction and persistence allows 
for the correct handling of some hard problems not solvable with other approaches to 
default persistence. 

The abductive algorithm works with a kind of linear resolution. If Wo are the facts to 
be explained, then the problem can be formulated as follows: Find a set of unit clauses CPn, 
called the residue, such that T U cpn F= Wo and cpn contains only abducible predicates. As 
usual, the set of abducible predicate symbols is predefined. As the procedure corresponds 
in general to the algorithm of Cox and Pietrzykowski described in section 3.1.1, it will 
not be outlined further. 

In order to handle default persistence correctly, the mechanism must be extended. 
All negated assumptions derived by Negation as Failure must be recorded and checked 
in every later proof step, as abduction allows the addition of facts to the theory that 
may invalidate them. Shanahan also describes a method to cope with nested negation as 
failure. Essentially, it consists of a combination of normal SLD-Resolution that does not 
allow addition to the theory, and abduction. 

3.2 An Assumption-based Truth Maintenance System as Ab­
ductive Procedure 

In section 2.3 the basic ideas of the knowledge-level account for abduction were described. 
We have 

EX P LA! N,\[e, w] = II { cP I cP min_expl,\ w with respect to e }II. 

EX P LA! N gives a semantic characterization of explanation. So in order to develop an 
abductive algorithm, we need a syntactic counterpart that allows the actual computation 
of the simplest explanations. 

In the following, we will give such a syntactic definition of explanation, and show 
how an abductive procedure can be developed, depending on a belief type A. It will 
turn out that in the case of implicit belief, abductive reasoning can be modelled with an 
Assumption-based Truth Maintenance System (ATMS). 

Levesque (d. [Lev89]) defines the function \l for two sets of clauses E and f. If f is 
the set of clauses to be explained and E contains the believed clauses with respect to a 
belief of type A, then \l(E, r) determines the corresponding minimal explanations. 

Definition 11: ([Lev89]) 
\l(E, r) = J.l(<I», where <I> is a set defined by 

<I> = {-,z I Vy E E, y Cf:. z } 
V x E f , :3y E E, x n y -# 0 and (y - x) ~ z 

The function J.l determines the smallest set with respect to subsets. 

The function \l can be interpreted as follows: First, the clauses z searched for are 
not allowed to be expansions of some y E E, the set of believed clauses. This is required 
in order to avoid inconsistencies, if -,z is later added to the belief set as an explanation. 
Additionally, z must satisfy another condition. If it is actually possible to explain all 
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observations in r, then there must exist for every observation x Era belief y E ~ 
that, at least partially, accounts for it, i.e., x and y have common literals, x n y =I 0. 
The clauses z are chosen in such a way that they contain every literal of such a y that 
is not a part of the corresponding observation x. If, in the following, z is negated and 
added to the belief set ~, this has the consequence that the observations of r are forced 
to be true. The formula -,z denies exactly those disjuncts of the clauses y that do not 
account for the observations. Thus, the remaining disjuncts of each y that are part of 
the observations have to be true. If different clauses z can be found, they constitute 
alternative explanations. Finally, the function I-" that is applied to the set of clauses -,z 
determines the minimal set with respect to set inclusion. This obeys the principle that 
an explanation should not contain more literals than necessary. 

Example: Let ~ be given by 

{-,bi1'd(x) V ab(x) V flies(x)} 

{ -,songbird( x) V bird( x)} 

{-,songbird(x) V eats_insects(x)} 

{-,frog(x) Veatsjnsects(x)} 

{-,frog(x) V green(x)} 

{-,frog(x) Vab(x)} 

As usual, we assume that corresponding to our intuition the extension of predicates that 
model animals are disjoint, i.e., we also have axioms of the form {-,frog(x), -,songbird(x)}. 

The proposition w to be explained is given by 

w == {eatsjnsects(F), flies(F) V green(F)} 

The set y - x of definition 11 is determined by 

y - x = { {-,songbird(F) V -,bird(F) V ab(F)}, 

{-,frog(F) V -,bird(F ) Vab(F)}, 

{-,frog(F)} , 

{-,songbird(F) V -,frog(F) } 

The second and fourth clause are already elements of ~, but this contradicts Vy E ~,y C£. z 
as (y - x) ~ z. Thus, <I> is given by 

<I> = { {songbird(F) A bird(F) A -,ab(F)} , 

{frog(F) } 

This can be simplified to 

<I> = { {songbird(F) A -,ab(F)} , 

{frog(F) } 

As <I> is already minimal with respect to subsets, we get \7(~, r) = <I>. 
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\7 is only defined for clauses, so it can not be used in developing a general abductive 
procedure. But Levesque has shown that for a certain class of beliefs the simplest expla­
nations are in fact the result of an application of \7. We will first characterize the beliefs 
that can be handled. 

Definition 12: ([Lev89]) (regular beliefs) 
A type of belief A is regular, iff for every epistemic state the following sentences of £* are 
true: 

• B)." 0, where 0 denotes the empty clause; 

• (B)"a V B)"(3) => B).,(a V (3); 

• (B>.a 1\ B)"(3) => B>.( a 1\ (3); 

• B).,( a 1\ (3) => (B).,a 1\ B>.(3); 

• B>.a == B>.a*, if a* is a in conjunctive or disjunctive normal form, or if a is the 
result of replacing any subformula (3 in a by (3*, where (recursively) B>.(3 == B>.(3* is 
always true. 

For regular beliefs, the simplest explanations can be computed by app lying \7 to the belief 
set and the transformation of the observations in conjunctive normal form (CNF). 

Theorem 1 ([Lev89]) For regular beli ef 

EXPLAIN>.[e,w] = 11\7({y I e F= B>.y},CNF(w))II· 

We will now separately consider implicit and explicit belief and the resulting connection 
between the operation \7 for the respective belief type and an Assumption-based Truth 
Maintenance System (ATMS). 

3.2.1 Implicit Belief 

Impli cit belief will be denoted by the belief operator BI . A corresponding epistemic state 
e is determined by a set of assignments r. Implicitly believed formulae are characterized 
by 

e F= BIa iff for every assignment r E e, r F= a, 

i.e., if a is believed in an epistemic state e, then it must be true in all assignments l' 

that charaterize e. This implies that exactly those" formulae are believed that are logical 
consequences of the underlying theory: 

e F= BIa iff T F= a, 

where e = RI(T) (see section 2.3). In section 2.3 we defined explanation with respect to 
an arbitrary belief type as follows: 

<p explains win e iff e F= B).,(<p => w) 1\ ,B>.,<p. 
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If we apply this to the above defined implicit belief, we get 

<p explr w with respect to e iff T F (<p ::) w) and T ~ --<p. 

This is equivalent to the definition of abduction in logic-based approaches: 

T U {<p} F wand T U {<p} is consistent. 

With the function \7 we already indicated a computational procedure for the generation 
of abductive explanations. Thus, the above shows that the further development that is 
based on the function \7 will also be applicable to logic-based approaches. 

The result of \7 is reminiscient of the support sets used in an ATMS, and Levesque 
shows that in fact "an ATMS can be understood as computing all simplest explanations 
with respect to implicit belief" (d. [Lev89]). To see this, we first show that an ATMS 
procedure with respect to a set of clauses ~ and a symbol p can be defined in terms of \7. 
Theorem 2 ([Lev89]) 

atms[~, p] = \7(Th(~), { {p}}). 

Th(~) is the deductive closure of theory ~. 

This result can be generalized in order to treat clauses as second argument. 

Definition 13: ([Lev89]) (generalized ATMS) 
A generalized ATMS procedure for a set of clauses ~ and a clause f3 is defined by 

gatms[~, f3] = \7(Th(~), CN F(f3)). 

Implicit belief is regular. Thus, if ~ is taken as the set of beliefs in an epistemic state e, 
theorem 1 yields the following for a correct abductive procedure: 

Lemma 1 ([Lev89]) 

IIEXPLAINr[R-r(~),w] = Ilgatms(~,w)ll. 

Proof: For a correct abductive procedure we have 

IIEXPLAINr[RA~),w] = IIEXPLAIN1[e,w]. 

According to theorem 1, this is equivalent to 

II \7 ( {y I e F B IY }, C N F ( w ) ) II· 
Implicit belief is defined in such a way that e F Bra iff ~ F a, when RI(~) 
determines the epistemic state e. So, the above is equivalent to 

11\7 ( {T h (~) } , C N F ( w ) ) II. 
The definition of a generalized ATMS completes the proof. 

The lemma proves that an ATMS can be used to generate explanations in a model for 
implicit belief and, as the equivalence was shown, an ATMS can also be used in logic-based 
models. But in section 5.1 the exponential time of the ATMS procedure will be discussed. 
This suggests the consideration of another kind of belief that might be computationally 
more tractable. 
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3.2.2 Explicit Belief 

If 0' is implicitly believed, then all logical consequences of 0' are believed as well. In 
contrast, explicit belief in 0' only sanctions the belief in all tautological consequences in 
the sense of relevance logic, which allows contradictory information in the knowledge base. 

An epistemic state for explicit belief is defined with the aid of situations. Situations 
are total functions that assign a truth value to literals p, where at least p or -'p is assigned 
the value 1, but possibly both. Thus, a situation is in general not a valid assignment. 
A literal follows from a situation s, iff it is assigned the value 1: s F p iff s(p) = 1 and 
s F -'p iff s(-,p) = 1. Connectors and negation are defined as follows: 

s F (0' A (3) iff s F 0' and s F (3; 
s F -,(0' A (3) iff s F -'0' or s F -,(3; 

s F -'-'0' iff s F 0'. 

All epistemic state is determined by a set of situations. This yie lds tll e following charac­
terization for explicit belief: 

e F BEO' iff for every sEe, s F 0'. 

The function RE is defined similar to R[ (see section 3.2.1). For a given knowledge base 
T, it determines the set of all situations that satisfy T , i.e., the corresponding epistemic 
state. For e = RE(T) we get 

e F BEO' iff T uS tautologically entails 0' in the sense of relevance logic, 

where S is the set of all clauses of the form {p, -,p}. This set is added to ensure that at 
least one of p or -'p is assigned the value 1. 

The abductive explanations for explicit belief can also be described with the function 
\7. But instead of using the logical closure of ~ as belief set, we now need the set 
EXPS(~) = {y I y is tautologous or :Jy. E E,y· ~ y}. 

Definition 14: ([Lev89]) (explanation with respect to explicit belief) 
Let E be a theory and (3 a clause. 

abd[E, (3] = \7(EX P S(E), eN F((3)). 

The next theorem states that abd in fact yields the simplest explanations with respect 
to explicit belief. 

Theorem 3 ([Lev89]) 

EXPLAINdRE (E), (3] = IIabd[E,(3]II· 

Levesque shows that generating the explanation of a single clause with respect to ex­
plicit belief is computationally easier than the corresponding ATMS procedure for implicit 
belief. A theorem that relates explicit to implicit beliefs allows the use of abd in those 
cases to compute the explanations for implicit beliefs by recursively computing explicit 
beliefs. 
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It has been shown that an ATMS is one possible tool to generate abductive explana­
tions. If we take the results of Selman and Levesque into account, presented in section 5.1, 
then. we will see that an ATMS is computationally also the best procedure that can be 
expected. This suggests lowering the demands in favour of higher efficiency, e.g., by find­
ing some explanation instead of all possible ones. The knowledge-level account suggests 
further ideas that point in this direction. Considering explicit belief, a computationally 
simpler procedure can be found that also allows one to recursively compute implicit belief. 
In addition, this is a very general approach that permits the investigation of further belief 
types. 

4 Selection of Hypotheses 

The result of an abductive procedure is a set of possible explanations. As this set can be 
quite extensive, it seems reasonable to discard the "less interesting" hypotheses in order 
to gain efficiency in the following computational process. Most abducti ve procedures 
described in the previous sections already incorporate such a selection criterion (e.g., 
[CP86], [ATBJ87]), to prevent, for instance, the generation of the observations themselves 
as trivial explanations. 

Selection principles are based on heuristics that try to determine good explanations. 
What seems promising depends partly on the application domain, e.g., fault diagnosis 
systems should yield the most specific explanation for a malfunction, whereas other tasks 
may require more abstract hypotheses. But syntactic criteria also exist that can be applied 
to both domains, e.g., in order to exclude trivial explanations. 

The philosopher Peirce (see [Gou50J) claims that those hypotheses should be selected 
that correspond to Occam's Razor in the sense that they are the psychologically simplest, 
i.e., the most intuitive explanations. This seems hard to realize, for which reason Occam's 
Razor is normally interpreted as meaning logical and syntactical simplicity. Hypotheses 
containing superfluous literals or hypotheses that are subsumed by others are unwanted. 
The negative results of Levesque (cf. [Lev89]) confirm that no more can be expected, 
because he shows that it is impossible to formulate a selection criterion on purely semantic 
grounds. 

In the following, we will investigate different approaches for finding the most promising 
explanations. The greatest part is formed by methods that realize in some way Occam's 
Razor. Only recently has an alternative been proposed that is based on a metric of 
coherence. This approach will also yield a method for determining an appropriate level 
of specificity of an explanation. 

4.1 Simplicity Criteria 

Independent of the respective criteria that determine a level of specificity, i.e., the level 
of abstraction of an explanation, in general, all accepted hypotheses have to satisfy some 
basic conditions that formalize syntactical simplicity. Representative are the ones that 
Cox (see also section 3.1) demands for the hypotheses generated by his algorithm. 

Let T be a first-order knowledge base and <I> a set of hypotheses for the observation w. If 
c.p E <I> is interesting, it should satisfy the following conditions: 
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Consistency: T A <p is satisfiable. This is required in all logic-based models. 

Non-Triviality: -'<p:::> w, i.e., the observation is not a direct consequence of the hy­
potheses. In particular, this excludes that w itself is synthesized as a feasi ble expla­
nation. 

Basicness: Every consistent explanation of <p itself is trivial. This favours the most 
specific explanation, in the sense that there is no non-trivial explanation for the 
explanation itself. 

Minimality: For all hypotheses <p' of w: <p :::> <p' implies <p' == <p, i.e., there exists no 
more general hypothesis for w than <p, in the sense that all superfluous literals or 
unnecessary universal quantifications are omitted from explanations. 

Given, for example, aoaks(x) :::> fTOg(X) as expla11ation, cToaks(x) A 97'een(x) :::> 

frog(x) is not minimal. 

Note: 

• If <p :::> 'ljJ is a part of the theory, then 'ljJ will not be among the geJlerated hypotheses. 
The reason for this li es in the resolution algorithm that chains backward as far 
as possible, thus reaching only <p as possible dead-end. This means that such a 
resolution-based method always guarantees basicness, and non-minimali ty can only 
occur in the cases mentioned. 

• Basicness already realizes a strategy for determining an appropriate level of speci­
fici ty of the explanation set that is called most-specific abduction (see also below). 

Explanations satisfying consistency, minimality and non-triviality realize Occam's Ra­
zor, if it is interpreted syntactically. But the set of interesting hypotheses selected this 
way can still be quite extensive and usually an additional selection is made to prefer 
hypotheses of a certain level of specificity. Appelt and Pollack consider in [AP90] two 
different sorts of criteria: 

• global criteria, and 

• local criteria. 

Global Criteria 
Selection methods based on global criteria consider the assumption set as a whole. We 
distinguish (d. [AP90]): 

• cardinality comparisons, 

• least presumptive or least specific abduction, 

• most specific abduction, and 

• minimal abnormality. 
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Cardinality comparisons: These are used only in diagnostic systems and ensure that 
those hypotheses are assumed that imply the failure of the smallest number of components. 
Thus, the application system has to be specified in terms of distinguishable components 
whose input and output behaviour is completely determined (see [AP90]). As Appelt and 
Pollack state, this is not the case for natural languange understanding or planning resp. 
plan recognition. 

Least and most presumptive explanations: Less presumptive or less specific is de­
fined as follows: Let hI and h2 be hypotheses and T a logical theory, then hI is less 
presumptive or less specific than h2 iff T u h2 F hI. Thus, the least presumptive or 
specific explanations are those that provide the most general explanation. An abductive 
process that realizes this form of selection was proposed by Stickel (d. [Sti90]). 

Alternatively, the most specific explanations can also be chosen, i.e., those that themselves 
have no more non-trivial explanations (see also the definition of basicness above). Above 
all , this strategy seems to be useful for fault diagnosis, where very detailed knowledge 
about the origin of the failure is required. 

Appelt suggests that for plan recognition and mental state ascription, a combination of 
most and least specific abduction seems adequate. Nevertheless, there is still the problem 
of deciding which strategy should be applied in which particular case. Furthermore, it 
remains possible that there exists no single least or most specific explanation which forces 
a further selection. 

Minimal abnormality: In [Poo89], Poole defines an abductive framework that relies 
on the specification of abnormality and normality assumptions. As Appelt claims, an 
inherent problem of this approach is the fact that minimally abnormal assumptions may 
be inconsistent with the "best" explanation. 

Local Criteria 
To avoid the shortcomings of those approaches local criteria have been introduced that 
allow one to single out one "best" hypothesis. We have 

• Bayesian statistical methods, 

• weighted abduction, and 

• cost-based abduction. 

Bayesian statistical methods: Standard probability theory can be used to single out 
the "most probable" hypothesis. However, the set of possible hypotheses must be deter­
mined in advance with each hypothesis having a probability assigned. In general, other 
approaches are preferred, since this method is computationally too expensive. 

Weighted abduction: Appelt and Pollack (d. [AP90]) overcome this difficulty by adapt­
ing a method developed by Hobbs, Stickel et al. (see [HSME89]). To guide the application 
of rules, they assign weighting factors to all literals in the premise. Thus, rules have the 
form 

cpiJ 
/\ ••• /\ cp~n J 'ljJ. 

The weights Pi are used to compute the assumption cost of literals. This is done by mul­
tiplying the assumption cost of the consequent by the weighting factor of the considered 
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literal in the premise, e.g., if 'lj; has cost c then c.pt can be assumed at cost c * J..ll. In the 
abductive procedure the assumption set with the lowest cost is preferred. 

Appelt snd Pollack also give a model-theoretic semantics of their approach based on 
model preference. By weighted abduction the models of a theory T are restricted in 
such a way that those models are filtered out that are inferior according to the model 
preference constraints. Thereby, an underlying partial preference order on the models 
of T is assumed. The weights in the rules are interpreted as additional constraints on 
this order. If the rule c.pC/. => 'lj; is given with weight a < 1, this means that every model 
satisfying c.p 1\ 'lj; is preferred to some model satisfying -'c.p 1\ 'lj;. 

Charniak and Shimony (d. [CS90J) note that there is no semantics given for the case 
a > 1, so only a kind of most-specific abduction can be modelled. Furthermore, the rule 
weightings must result in a consistent ordering without cycles, which makes it even more 
difficult to determine the weights of newly added rules. 

C ost-based a bduction : Charniak and Shimony (d. [CS90]) present an alternative ap­
proach based on a probabilistic semantics for cost-based abduction. They try to find the 
best explanation of an observation by finding a minimal cost proof of it. This method 
corresponds in general to the one presented by Hobbs et al. (d. [HSME89J) with the 
advantage that a suitable semantics is given in terms of a Boolean belief Iletwork. 

The above described ideas show that if broader applications are intended, the as­
signment of cost or weighting factors seems a promising strategy. But, as also becomes 
obvious, the respective application domain must be formalized very carefully in order to 
avoid unintuit ive results as a consequence of badly chosen weighting factors or cost. 

In the following, we will investigate another approach that judges the quality of ex­
planations with a coherence metric. This method also yields an alternative to determine 
an appropriate level of specificity. 

4. 2 Explanatory Coherence as Selection Criterion 

Instead of implementing Occam's Razor as syntactical simplicity, Ng and Mooney (see 
[NM90J) have determined a metric of coherence that helps to find the most intuitive 
explanations. The search for explanations is guided by heuristics (beam search), in order 
to increase efficiency. The metric also determines the level of specificity. 

As the authors claim, Occam's Razor is insufficient for text understanding and plan 
recogni tion. They suggest selecting those explanations that best "tie together" all ob­
servations. This means that they prefer "those with more connections between any pair 
of observations," where connections are interpreted as directed paths in the proof graph. 
More precisely, the metric is defined as follows: 

Definition 15: ([NM90]) (coher ence metric) 
The coherence metric C is defined by 

C= 
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where I is the number of observations, N the number of nodes in the proof graph, and 
Nij the number of distinct nodes in the proof graph such that there exists a sequence of 
directed edges from nk to ni and from ni to nj, where ni and nj are observations. The 
sequences may be empty. 

Remarks: 

• N ( ~ ) is a scaling factor ensuring that the final value lies between 0 and l. 

• The numerator is the sum of the number of nodes in a graph that simultaneously 
support the interpretation represented by this graph. To determine a "good" ex­
planation all possible connections of nodes, i.e., several different proof graphs, are 
regarded. The interpretation represented by the graph with the highest coherence 
is chosen. 

• The metric can be computed in time O(lN + e) by using depth-first search. 

As the authors point out, this approach has several advantages. On the one hand, coherent 
explanations are usually also syntactically simpler explanations. This is the case because 
unification is favoured by preferring tight connections. Furthermore, this method does not 
allow "too many degrees of freedom," as is the case, e.g., with weighted abduction where 
the rule weights can be chosen arbitrarily. In addition, the metric helps to determine a 
level of specificity, since only the proof of a subgoal is attempted by backward chaining if 
this will increase the overall coherence. 

An algorithm using this metric is implemented in the system ACCEL (Abductive 
Calculation of Causal Explanations for Language). To gain efficiency, the authors envisage 
the use of an ATMS. 

Explanatory Coherence appears to be very promising for systems that incorporate in 
some way human reasoning capabilities, i.e., systems whose behaviour cannot be deter­
mined for all cases in advance. The authors show that it can be applied successfully in the 
field of natural language understanding. But, as they also suggest, the most promising 
approach is one that uses both coherence and likelihood information in order to be able 
to cope with incomplete or vague information. 

5 The Relationship between Abduction and Default 
Reasoning 

Abduction is the process of finding plausible explanations for some observed events. If 
the reasoner becomes more experienced, i.e., more facts become known, it is possible that 
previously assumed explanations have to be rejected. Thus, a. non-monotonic mecha.nism 
is needed to keep track of the "plausible" hypotheses. 

Default logic seems to be a non-monotonic formalism that can be quite easily adapted 
to the problem of explanation finding. It is possible to interpret defaults as predefined 
hypotheses and reasoning with them as a simple kind of theory formation. This view of 
default logic corresponds to the abductive approach of Poole (see [Poo88]) that is further 
investigated in the following. We have 
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Definition 16: [Poo88] (scenario) 
Let T be a set of closed first-order formulae and ~ an arbitrary set of first-order formulae. 
A scenario of T and ~ is a set D U T where D is a set of ground instances of elements of 
6 such that D U T is consistent. 

Definition 17: [Poo88] (explanation) 
A closed formula w is explainable from a scenario of T and 6 if there is a set of ground 
instances D of elements from ~ such that 

• T U D F w, and 

• T U D is consistent. 

The set T U D is called an explanation of w. 

The correspondence to the logic based model for abductive reasoning is obvious at first 
sight. A set of hypotheses out of ~ is accepted as an explanation if it can be consistently 
added to the theory T and the observation can then be proved. The sentences in Tare 
used as a kind of constraint for the hypotheses in 6. They determine which elements of 
6 are feasible hypotheses. 

Definition 18: [Po o88] (extension) 
An extension of T and 6 is the set of logical consequences of a maximal scenario of T 
and 6 with respect to set inclusion. 

This definition can be related to the notion of extension in default logic. Poole shows 

that if for the default 

the formula 'P ~ 'lj; is added to the set ~, his notion of extension corresponds to the one 
defined by Reiter (cf. [Rei80]). For general defaults there is no exact translation, but Poole 
argues that in those cases where the approaches give different results, Reiter's method 
yields nonintuitive conclusions. This pathological case occurs if the underlying theory 
contains only disjunctive information about the prerequisites of defaults. Consider, e.g., 
the theory {p( a) V q( a)} and the defaults 

p(x):r(x) 
r(x) 

q(x) : r(x) 
r(x) 

Then, no default is applicable as no single disjunct can be proved. However, Poole claims 
that the knowledge that the disjunction of the prerequisites is true is enough to sanction 
the belief that the common conclusion r( a) of the defaults is also true. Thus, in his system 
the corresponding inference is allowed. 

But, if abductive approaches are compared with default reasoning systems in more 
detail some differences are striking. In general, defaults yield several extensions and in 
order to be able to use them for further derivations, an attempt is made to rule some of 
them out by assigning priorities. Abductive systems use heuristics to constrain the set of 
feasible hypotheses but nevertheless multiple hypotheses are not always undesirable. The 
origin of this discrepancy lies in the different tasks of the two approaches. Hypotheses 
generated by abduction are used for explanation whereas defaults are used in connection 
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with incompletely specified knowledge bases , in order to allow at least non-monotoni c 
conclusions. Thus, each alternative extension of a default theory determines a maximal 
extension of the knowledge base. In contrast, abductive hypotheses are in general not 
mutually exclusive and only partially determine the underlying theory (d. [Esh88]). The 
fact that the approaches of Poole and Reiter coincide for normal defaults has its origin in 
Poole's special definition of an extension. An extension is a maximally consistent scenario 
and hence different sets of hypotheses are in fact orthogonal, i.e., inconsistent. 

As a conclusion, one could point out that default reasoning can be classified within 
the framework of theory formation if defaults are viewed as hypotheses. But abduction 
constitutes the more general approach in the sense that it allows more flexibility by 
admitting partial extensions. 

5.1 The Complexity of the Abductive Task 

Some results concerning the complexity of abduction can be received by filtering Ollt a 
common sub task of abductive procedures and methods for computing default extensions. 

In section 3.2 an Assumption Based Truth Maintenance System (ATMS) was showl! 
to constitute one possibility for generating abductive hypotheses in a logi c based model. 
Selman and Levesque prove in [SL89] that the exponential time needed by the ATMS 
procedure is not a consequence of a possibly exponential number of hypotheses . Even 
when the explanations are restricted to those of a predefined set A of abduci ble sentences, 
the task is NP-hard. The crucial point is the so-called support selection task, where 
support of the observations has to be found. This task is shown to also be a subtask of 
every algorithm determining default extensions that contain a given set of propositions 
A, i.e. , for so-called goal-directed reasoning. 

Assume that a Horn clause theory T, a set of abducible predicate symbols II, and a 
symbol ware given. An ATMS computes all explanations c.p for w with respect to the 
theory T in such a way that the symbols of a are in A and c.p is a minimal set of literals 
satisfying 

T U c.p F wand T U c.p is consistent. 

It is shown (d. [SL89]) that finding such an assumption-based explanation, as well as 
generating explanations at all, is NP-hard. This means that even for Horn-clause theories 
there is probably no improvement in efficiency. The responsible subproblem can be singled 
out: 

Support Selection Task: 

Let T be a set of Horn clauses, A a predefined set of predicates and w a predicate symbol. 
Find a set of literals c.p, the so-called support set such that 

• T U c.p F w; 

• T u c.p is consistent; 

• c.p contains only symbols from A. 
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An assumption based explanation for an observation q is a minimal support set of 
w. But the support selection task can also be used to describe default extensions. Let a 
default theory .6 be defined by (T, D), where all defaults in D have the form 

:p 

p 

with pEA. Then Th(T U ~), the deductive closure of T augmented with ~, IS an 
extension of .6 if and only if ~ is a maximal support set of w (see [SL89]). 

Both minimality and maximality do not add to the computational difficulty. In both 
cases the support selection task is responsible for the intractibility. Concerning abductive 
explanations, an improved algorithm can be found if not all explanations are computed, 
but only one. For instance, for Horn theories some non-trivial explanation can be found 
in polynomial time. 

Thus, to retain efficiency credulous reasoning, i.e., generating one extension and one 
set of compatible hypotheses instead of all possible ones, should be favoured over goal­
directed reasoning. This result applies both to abduction and default reasoning, since 
they have the support selection task in common. 

6 Applications to Planning and Plan Recognition 

Planning or plan recognition is one possible application of abductive reasoning that re­
quires a quite general and sophisticated abductive method because of the wide range 
of possible application domains. In this section, we will investigate two logic-based ap­
proaches to planning and plan recognition that use abduction as problem solving strategy. 
The model presented by Esghi (d. [Esh88]) uses abduction with metalevel integrity con­
straints instead of negation as failure (see also section 2.2.2). The second approach to be 
described presents a theory for plan recognition as abduction and relevance (d. [I~IK90]). 

6.1 Abduction and the Event Calculus 

Instead of following the usual approach and employing situation calculus and deduction, 
Eshghi (see [Esh88]) develops a planning algorithm with the event calculus and abduction. 
His approach solves the frame problem, allows the generation of non-linear plans, and is 
able to incorporate an ATMS and a least-commitment strategy for efficient search. 

The context of abduction is the same as described in section 2.2.2. An abductive 
framework (T, I, A) consists of a Horn clause theory T without denials, a set I of integrity 
constraints, and a set A of abducible predicate symbols. A set of sentences <P is an 
abductive solution for the framework (T, I, A) and the query w, iff 

• <I> consists of a set of variable free abducible atoms, 

• T u <I> f- w, 

• T u <I> U I is satisfiable. 
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Backward chaining with resolution is used for the generation of assumptions. A dead­
end R consisting exclusively of abducible predicates is called a residue. T U -.R entails 
the formula to be explained. 

In general, -.R is existentially quantified and thus needs skolemization. In order to be 
able to substitute for the skolem constants in the further reasoning process an equality 
theory is required. Eshghi argues that if all clauses in Tare homogenised (see below), 
then a restricted equality theory that contains only equality axioms and no schemata for 
inequality is sufficient. The schemata should be avoided, because they lead to an explosion 
of the search space and render the procedure inefficient. 

Definition 19: ([Esh88]) (homogeneous clauses) 
A clause is homogeneous iff 

• there are no constant symbols in its head atom, and 

• no variable symbols occur more than once in the head . 

For example, the homogenised form of the clause P(a) is Vx((x = a) ::::> P(x)). 

Remark: Eshghi gives an algorithm for how to transform arbitrary clauses into ho­
rnogenised form. 

The final algorithm for finding the set of explanations ~ for a goa.l G with integrity 
constraints I of the form T U ~ f- Rl(x) f- T U ~ f- R2(x) consists of five phases. We 
will first outline the complete procedure and in the following give some explanations and 
an example. 

(1) Abductive phase: 

GS t- {G}; ~ t- {}; 

repeat until ~' ~ {} 

find ~' such that T U ~ U ~' f- GS; 

By this algorithm a residue is found. 

(2) ~ t- ~ U ~' 

(3) Consistency checking phase: 
Test with an arbitrary checking algorithm whether T U ~ f- RI (x) f- R2(X) is 
consistent. If the answer is no, remove clauses from ~ until the clause is consistent. 

(4) Precondition determination phase: 
if no inconsistency was found in (3) 

then determine the instantiated preconditions (bindings Bl , B2 , ... ) for R2 (x) in 
T U ~/, i.e., find the bindings for x such that T U ~' f- R2 (x) 

else determine these bindings B l , B2 , • •. in~. (Note that clauses from ~ have been 
removed in order to guarantee consistency.) 
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(5) if no inconsistency was found in 3. 

then GS +- {R1(B1), R1(B2), ... } 

else GS +- {G,R1(B1), .. . } 

This algorithm follows from a theorem about the unsatisfiability of the integrity con­
straints: 

Theorem 4 ([Esh88]) An integrity constraintTu~ f- R1(x) +- TU~ f- R2(x) 2S 

unsatisfiable iff 

a) T U ~ U {Rl(X) +- R2(X)} is inconsistent, or 

b) for some (3: T U ~ f- R2({3) 1\ T U ~ If Rl({3). 

Remarks: 

• As a consequence, case a) is first tested in (3). If no inconsistency is found, the 
preconditions can be determined in T, plus the assumptions generated by ab­
duction. We proceed then to ensure case b) and try to find a hypothesis for 
Rl (Ed, Rl (E2 ), ••. in the next iteration. 

• If inconsistencies occur in step (3), then clauses have to be removed from 6. (4) is 
executed with respect to this new theory that guarantees consistency. In the next 
iteration besides R1(Bd, R1 (B2), ... the goal G still has to be explained. 

• As the author points out, an ATMS will be of great use for recording the relationship 
between assumptions and goals and for determining the assumptions to be rejected 
in step (3). 

For the purpose of planning, Eshghi combines this algorithm with a variant of Kowal­
ski's and Sergot's event calculus (d. [KS86]). Events are the basis of the ontology and 
represent points in time. Actions are associated with events with the predicate "action." 
The predicate "holds" is defined as usual, and "postcon" describes the postconditions 
of actions. The calculus will not be introduced in more detail; it is assumed that the 
meaning of the predicates is intuitively clear from their names. The relationship between 
facts in the domain are described with the predicates holds, = and =/. The theory has 
Horn clause format with denials . We have the following domain-independent axioms: 

+- action(com, t),postcon(com, effect) initiates( t, prop) 

holds(prop, c(t)) +- initiates( t, prop) 

c( t) 

t < tl 

(26) 

(27) 

(28) 

(29) 

where c(t) denotes the earliest time point after the execution of an action at which the 
postcondition is true. 

Preconditions are expressed as integrity constraints stressing the fact that they must 
be believed to be true by the planning agent. This is formalized by the axiom 

T U ~ f- holds(prop, t) +- T U ~ f- action(com, t) 1\ precon(com,prop) (30) 
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Furthermore, a partial order on events is defined where the initial state is characterized 
by a special time point IN IT I AL. The predicate persists(prop, tll t2) is introduced to 
formalize persistence. An axiom states that a proposition prop is true at time t2 if prop 
is initiated at time t} lying before t2 and if prop persists through time until time t3 lying 
after t2 or being equal to t2. 

holds(prop, t2) f- initiates(t},prop) 

t} < t2 

persists(prop, tl, t3 ) 

t2 ~ t3 (31) 

In this framework the abducible predicates are action, <, = and persists. A least 
commitment strategy requests that objects are not determined until necessary. To avoid 
unconstrained search through looping during the consistency checking phase, the predi­
cates = and < are treated specially (as in Constraint Logic Programming (d. [Esh88])). 

We will comment on the planning algorithm with a small example coming from the 
UNIX Mail System. A plan will be provided that one allows to read and then delete the 
mail from sender "kurt." As domain specific axioms we assume 

precond(delete(x), -,first(Jlag(x)) = 1) 
precond(read(x), -,first(Jlag(x)) = 1) 

(32) 

(33) 

Delete and read flag are represented as pair (x,y), where x denotes the delete flag and 
y the read-flag. (32) and (33) state that a message can only be read or deleted if the 
delete-flag is not set. 

postcon(read(x),second(Jlag(x) = 1)) 

postcon(delete(x), first(Jlag(x) = 1)) 

The initial state is described by 

initiates(t,member(mbox(x))) f- t = INITIAL,x = mail} 

initiates(t,member(mbox(x))) f- t = INITIAL, x = mail2 

initiates( t, member( mbox( x))) f- t = INITIAL,x = ma-il6 

initiates(t,sender(x) = "kurt") f- t = INITIAL, x = mail4 

initiates(t,sender(x) = "kurt") f- t = INITIAL, x = mails 

initiates(t,flag(x) = (0,0) f- t = INITIAL,x J mails 

initiates(t,flag(x) = (1,1) f- t = INITIAL,x = mail4 

The goal of the plan is specified by 

(34) 

(35) 

f- holds(Jlag(maiI4 ) = (l,l),FINAL),holds(Jlag(mails) = (1,1),FINAL)(36) 
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We will now briefly sketch how the algorithm works with this example. 

(1) In the abductive phase, a residue is searched for. (36) is resolved with (31). By 
the ordering of the events that states Vt (t < FINAL) we get 

+- initiates(t3, flag(maiI4) = (1,1)) 1\ persists(flag(maiI4) = (1,1), FIN AL) 1\ 

initiates(t3,flag(mails) = (1,1)) I\persists(flag(mails) = (1,1),FINAL) 

We apply our knowledge about t he actions read and delete 

+- action(read(maiI4),t3) I\persists(second(flag(maiI4) = 1),FINAL) 1\ 

action( delete( maiI4), t 4) 1\ persists(first(flag( mail4) = 1), FIN AL) 1\ t3 < t4 1\ 

action(read(mails), t3) 1\ persists(second(flag(mails) = 1), FINAL) 1\ 

action(delete(mails), t4) 1\ pe1'sists(fi1'st(flag(maiI4) = 1), FIN AL) 

We omit the residue where t3 > t4 as this will lead to inconsistencies. 

(2) This residue is added to the theory in homogenised form. 

(3) Our integrity constraints, i.e., the preconditions of our actions, were formulated in 
(30). We have to test whether 

T u 6 f- holds(prop, t) t- action( com, t) 1\ pTecon( com, prop) 

holds. This is inconsistent, and we have to reject some assumptions. We remove 

from 6. 

action(read(maiI4), t3) and 

action(delete(maiI4, t 4) 

(4) We have to find the bindings satisfying 

T u 6 f- action(com, t) 1\ precon(com,prop) 

We get the binding < read(mails)' t3, -,first(flag(mails) = 1) >. 
(5) The goal can then be reduced to 

+- precon(read(mails ), -,first(flag(mails) = 1)) 1\ 

precon(delete(mails), -,first(flag(mails) = 1)) 

This is already satisfied by T. Thus, the result 6f the algorithm is 

6 = action(read(mails),t3),persists(second(flag(mails) = 1),FINAL) 1\ 

action(delete(mails), t4),persists(first(flag(mails) = 1), FIN AL) 

The result 6 of the abductive algorithm can be quite intuitively interpreted as a plan: 
the predicate "action" specifies the actions to be executed and "persists" in connection 
with < the temporal ordering and persistence of the facts. The algorithm enforces an order 
only when necessary and as a consequence actions may also be carried out in parallel. 
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As the author claims, this is a great advantage over situation calculus. Nevertheless, one 
should not forget to take into account orderings that follow logically from given ones. 
One further advantage of the approach follows from the persistence assumption. This 
assumption makes it possible to handle certain kinds of unforeseen events, namely those 
that do not violate persistence. 

This method also allows the circumvention of the frame problem. Eshghi distinguishes 
two aspects: the epistemological frame problem that consists in writing down all frame 
axioms, and the computational frame problem that concerns the repeated application of the 
frame axioms. Since there are no frame axioms, the first problem is irrelevant. Persistence 
of propositions through time is modelled by the abducible predicate "persists." Thus, 
the computational frame problem only consists of checking the consistency of persistence 
assumptions. Eshghi points out that this can be reduced to checking the consistency of 
clauses of the form f-- holds(p'rop, i 2), tl < t 2, t2 :::; t3 with timepoints t l , t 2, t3. Then, 
consistency is determined by testing the satisfiability of the negative conj un ct ion and for 
this problem special purpose algorithms exist. 

The above shows that abduction through deduction is a very promising problem solv­
ing technique for logic-based planning. In particular, it provides an elegant and intuitive 
solution to the frame problem, in contrast to most deductive approaches. By handling 
persistence with the aid of an abducible predicate that is itself part of the plan, the 
approach can even cope with unforeseen events, as long as they do not violate those as­
sumptions. By the use of a variant of the event calculus in connection with abduction it 
furth ermore becomes possible to specify the ordering of actions only partially. 

6.2 Abduction and Relevance 

Helft and Konolige present in [HK90] a theory for plan recognition that accounts for both 
acting and planning. Plan recognition is interpreted as "the recovery of the hidden parts 
of the plan/act process." 

This approach distinguishes between the world knowledge Ta of the agent and the the­
ory Tw that describes the consequences of actions. To achieve a goal, the agent constructs 
a plan using solely the knowledge in Ta. The plan P in its simplest form consists of a 
sequence of basic actions that may be observed as well as their effects. Observed events 
are denoted by D. For a goal g, this can be formally described by: 

(1) Ta u {P} f- 9 and 

(2) Tw U {Po} f- D with Po ~ P. 

The combined planning and plan recognition process gets as input the observations 
D and the theories Ta and Tw. It produces a plan P and a goal 9 such that (1) a.nd (2) 
are sa.tisfied. For finding P and g, as well as for explaining the observations, abduction is 
used. Relevance serves as a constraint mechanism in the sense that it is assumed that an 
agent only executes actions that help to achieve his goal. 

This model has several advantages over deductive approaches. The "dual nature of 
causali ty" is recognized: the agent's intentions cause the basic actions of plan P in the 
sense that he wants to achieve his goals with the plan. The basic actions in turn cause the 
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observations that can be made. Furthermore, the approach incorporates a "rich model 
of intention." It is possible to distinguish between intended consequences (goals) and 
side-effects by considering two processes, namely planning and acting. 

Helft and Konolige define a formal model that incorporates the ideas presented above. 

Definition 20: ([HK90]) (planning theory) 
A planning theory is a tuple (A, G, Ta, Tw ), where A is a set of basic actions, G is a set of 
predefined goals and Ta and Tw are first-order theories. 

Definition 21: ([HK90]) (plan recognition problem) 
A solution to the plan recognition problem is a tuple (Ao, P, g) such that 
(1) Ao is a minimal subset of A, consistent with Tw with 

(2) P is a subset of A consistent with Ta, Ao ~ P, 9 ~ G with 

(a) TU{P}I-g 

(b) T U {P ~ e} If g, \Ie E Ao 

Remarks: 

• (1) explains the observations with respect to Tw , the "physical" world description . 

• In (2) the intentions and beliefs of the agent are considered. With (a) a plan P 
containing the actions in Ao is found that achieves the goal g, if the agent's theory 
Ta is taken into account. (b) ensures that every action out of Ao is in fact relevant, 
i.e., essential for the plan in order to accomplish g. 

Definition 22: ([HK90]) (side-effects) 
Propositions that are entailed by Tw U P but not by Tw alone are called side-effects. 

The abductive algorithm that solves the plan recognition problem relies or: the function 
N E Hi defined by 

Definition 23: ([HK90]) (function NEW) 

NEW p (L" c.p) = (T h (L, U {c.p}) - T h ( L,)) n P, 

i.e., NEW specifies what a formula c.p adds to a theory L, with respect to a set P, where 
the intersection with P means that only formulae containing symbols of P should be 
regarded. 

The function is computed by a linear resolution algorithm. A solution (Ao, P,g) is found 
by several applications ofN EW: 

Suppose that the knowledge is in conjunctive normal form. 

(1) Compute L, .- N EWB(Tw , ...,n), where B contains the symbols denoting the basic 
actions. 
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N EWB computes the relevant consequent actions of Tw U {-,n}. Thus, for every 
a E E, -,a := a1 A ... A an is a candidate for Ao. To see this, consider the definition 
of NEW. We have 

(37) 

(38) 

By (38), -'a is consistent with Tw. With the aid of the deduction theorem, (37) can 
be transformed into 

Thus, -'(7 explains n in Tw. 

Tw f- -, n ::) (7 

Tw f- -, (7 ::) n 
Tw U {-,a} f- n 

(2) Compute r := N EWBuG(Tn, a1 A ... A an). G is the set of instantiated goals. The 
elements of r have the form (31 A ... A (3m => ,. 

Verify as follows that the (3i are possible elements of P\Ao and that, is a goal 
candidate: 
The conjunctions a1 A ... A an are elements of Ao, therefore we abbreviate an 
arbitrary conjunction by ao. The definition Of NEW yields 

Tn U {ao} f- (31 A ... /\ (3m => , 

If the agent considers ao as action, his theory tells him that ao together wi th the 
actions (31 /\ ... A (3m implies the goal,. So a plan P to achieve the goal, consists 
of the actions ao and (31 /\ ... /\ (3m: 

As ao is also considered as a part of the plan, the requirement Ao <;:: P is fulfilled. 

(3) Check if Tn /\ (31 /\ ... /\ (3m is consistent. If the answer is yes, a solution is found . 

(4) Compute the side-effects in G by N EWG(Tw, a1/\' .. an /\/31/\' .. /\(3m) for all elements 
a1 /\ ... /\ an /\ (31 /\ ... /\ (3m in P. 

This function call computes exactly the side-effects, as NEW determilles those 
elements of G for which holds 

Tw Up f- s but Tw If s, 

for an arbitrary element p of P. But this is exactly the definition of a side-effect. 

Thus, this framework can also account for observations that are merely side-effects 
of actions. This overcomes a drawback of many current approaches, that is, that they 
demand adjrect causal link between the actions and all observable effects. 
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This feature also comments on the different demands on diagnosis and plan recogni­
tion systems. In diagnosis, all observed symptoms are caused by faults that have to be 
determined. In plan recognition this need not be the case, as the occurring side-effects 
prove. An effect need not be caused by the agent's intention. 

The separation of the world knowledge and the agent's knowledge is the reason for 
a further nice property. Plans are constructed with respect to the knowledge Ta of the 
agent, thus it is also possible to determine plans that are correct with respect to the user 
knowledge but ill-formed with respect to the world knowledge. 

The two described approaches to abductive planning and plan recognition have shown 
how the previously presented general methods can be successfully adapted to special 
applications. Hard problems for deductive approaches, e.g., the frame problem, can be 
solved in an intuitive and elegant manner if abduction is augmented with additional 
principles, for instance with default persistence, that are especially suited for problems in 
which commonsense reasoning is used. 

7 Conclusion 

In the previous sections an overview of existing abductive reasoning methods has been 
given, focusing in the last part on applications in plan recognition and planning systems . 

Repair or diagnostic problems have shown to be one obvious possibility for applying 
abductive reasoning. They possess the great advantage that the underlying theory usua.lly 
has a very simple structure concerning causality. Cause and effect relationships can be 
represented in a straightforward way, as implications. Furthermore, the search space for 
hypotheses can often be limited or even completely determined. This is used by the 
set-cover based model descri bed in section 2.l. 

It was shown that such strong assumptions are not suited for more general tasks. 
The logic based model (see section 2.2) is the most widely spread approach as it allows 
more flexibility and thus seems to be adequate for a greater range of applications. But, 
if the generation and selection methods in sections 3 and 4 are regarded in more detail, 
it becomes obvious that those approaches as well implicitly rely on a special knowledge 
representation. Causal relationshi ps must be determinable, since they are responsible for 
choosing the right explanations. 

Levesque (d. section 2.3) goes one step further and defines a model for abduction in 
dependence of a belief type. He shows that his approach implies the logic based model 
for implicit belief. Hence, further generality has been gained. The explana,tioll operator 
is defined semantically and thus ensures the independence of the respective knowledge 
representation. 

Nevertheless, it remains necessary to represent causality on the computational level. 
So, in order to gain further insight into the foundations of abductive reasoning, the role 
of causality should be incorporated into the theoretical investigations. In addition, it 
seems profitable to uncover the relationship between abduction and induction, whose 
close connection has already been stressed by Peirce. 

In section 3, different methods for hypotheses generation were described, in particular 
resolution based algorithms and an ATMS procedure. 
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Model A hdllr.1.ion d""crihed or lI""d d""crihed or 1I.ed 
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proof I.r ..... indllr.t.ion, and d .. dllr.t.ion 

logi c-h,,,,,d I t.emporal TeaMning lin .. " r...olnl.ion explanation po.l.nlal.ing ha. .... d on ~:venl. Ca Jr.nln. 
[Sh,89] .y.l.em: ahdllr.t.ion and fewest. p.vp.nt,~ ( •. [KS86]) 

d .. fanit. p .. rRi.I ... nc .. 

I [Af>90] 
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>+>- pia"" and goal. + conl.rol low~t r.osi explan"t.ion model. only mo.l.-.p .. cific ahdnr.tion 
~ 
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I and corr ... ponding goal. and int .. nd .. d r.on""'1n .. nCffi 

I [I\M90] d .... p callRaI explaMt.ioM lin .. " r...olnl.ion r.oheTenr.e. h .. nri.l.if. ""arch (h .. am ""arch) 
for Mtnral langllag .. 1 ... xt 1.0 improv .. effici .. ncy 

know I .. d ~~- I find explanat.ion. flln ct.ion yi .. lding di.jllnr.t.ion .. xplanation. wit.h few",,1. I mo.t g .. n .. ral d .. fini1.ion 
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II Article Implementation II 
[ATBJ87] RED: antibody identification in the domain of 

red blood cell typing (see also [Smi85]) 
[Pop73] abductive procedure implemented in GOL 

(see also [Pop72]) 
[Sha89] prototype in PROLOG 
[AP90] preliminary implemetation using Prolog 

Technology Prover (PTTP) (see [Sti88]) 
[NM90] algorithm using metric in ACCEL (Abductive 

Calculation of Causal Explanations for Language) 
[Po088] THEORIST: framework for default reasoning 
[Esh88] planning system ABPLAN 

Table 2: Implemented approaches 

In the actual realizations of abductive procedures, one suffers from the problem that in 
most cases one abductive explanat ion has to be singled out. As a consequence, selection 
criteria have to be defined that allow one to find, in some sense, the "best" hypothesis. 
Apart from syntactic criteria and different strategies to determine an approp riate level of 
specificity, a method based on a coherence metric was d escribe d (see section 4). The metric 

was shown to be a first step in the direction proposed by Peirce, who demands the selection 
of the psychologically simplest explanation, not the logically simplest. Nevertheless, in 
most cases a combination of some of the described approaches seems to be adequate. A 
unifying theory is a further research topic. 

A comparison of default and abductive reasoning in section 5 has on the one hand 
clarified the close connection of both approaches by showing that defaults can be inter­
preted as a kind of predefined hypotheses. Furthermore, it became possible to derive some 
results concerning the complexity of abductive and default reasoning. Both approa.ches 
were shown to be NP-hard in the general case . 

The first steps for wider applications of abduction have already been made. If the 
field of planning is considered, it becomes obvious that the general models for abduction 
are not sufficient. They have to be augmented with features that allow the handling of 
intentions, persistence, time, etc. The applications presented in section 6 show how the 
formal models have to be changed for special applications. In particular, Eshghi has shown 
that in the context of logic programming, integrity constraints are a further method for 
detecting appropriate explanations. A survey of presented approaches is given in table 2 
(see page 42). Implementations are listed in table 2. 

Thus, the presented ideas are valuable as a first sketch of the possibilities of a.bductive 
reasoning. It should be profitable to investigate abduction in the more general framework 
of theory formation and to develop a model that is able to cover applications that involve 
commonsense reasoning and theory formation with commonsense. This requires, e.g., the 
treatment of time, causality, self-reflection. Furthermore, it seems promising to compare 
in more detail the connection between abduction, induction, and deduction. 
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