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Abstract

Various feature descriptions are being employed in logic program�

ming languages and constrained�based grammar formalisms� The com�

mon notational primitive of these descriptions are functional attributes

called features� The descriptions considered in this paper are the possi�

bly quanti�ed �rst�order formulae obtained from a signature of binary

and unary predicates called features and sorts� respectively� We estab�

lish a �rst�order theory FT by means of three axiom schemes� show its

completeness� and construct three elementarily equivalent models�

One of the models consists of so�called feature graphs� a data struc�

ture common in computational linguistics� The other two models con�

sist of so�called feature trees� a record�like data structure generalizing

the trees corresponding to �rst�order terms�

Our completeness proof exhibits a terminating simpli�cation sys�

tem deciding validity and satis�ability of possibly quanti�ed feature

descriptions�
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� Introduction

Feature descriptions provide for the typically partial description of abstract
objects by means of functional attributes called features� They originated
in the late seventies with so�called uni	cation grammars 
��� ���� a by now
popular family of declarative grammar formalisms for the description and
processing of natural language� More recently� the use of feature descrip�
tions in logic programming has been advocated and studied 
�� �� �� �� ����
Essentially� feature descriptions provide a logical version of records� a data
structure found in many programming languages�

Feature descriptions have been proposed in various forms with various for�
malizations 
�� �� ��� �� ��� ��� �� ���� We will follow the logical approach
pioneered by 
���� which accommodates feature descriptions as standard
	rst�order formulae interpreted in 	rst�order structures� In this approach� a
semantics for feature descriptions can be given by means of a feature theory
�i�e�� a set of closed feature descriptions having at least one model�� There
are two complementary ways of specifying a feature theory� either by ex�
plicitly constructing a standard model and taking all sentences valid in it� or
by stating axioms and proving their consistency� Both possibilities are ex�
empli	ed in 
���� the feature graph algebra F is given as a standard model�
and the class of feature algebras is obtained by means of an axiomatization�

Both approaches to 	xing a feature theory have their advantages� The con�
struction of a standard model provides for a clear intuition and yields a
complete feature theory �i�e�� if � is a closed feature description� then either
� or �� is valid�� The presentation of a recursively enumerable axiomati�
zation has the advantage that we inherit from predicate logic a sound and
complete deduction system for valid feature descriptions�

The ideal case then is to specify a feature theory by both a standard model
and a corresponding recursively enumerable axiomatization� The existence
of such a double characterization� however� is by no means obvious since it
implies that the feature theory is decidable� In fact� so far no decidable�
consistent and complete feature theory has been known�

In this paper we will establish a complete and decidable feature theory
FT by means of three axiom schemes� We will also construct three models
of FT� two consisting of so�called feature trees� and one consisting of so�called
feature graphs� Since FT is complete� all three models are elementarily
equivalent �i�e�� satisfy exactly the same 	rst�order formulae�� While the
feature graph model captures intuitions common in linguistically motivated
investigations� the feature tree model provides the connection to the tree
constraint systems 
�� ��� ��� ��� employed in logic programming�

Our proof of FT�s completeness will exhibit a simpli	cation algorithm that
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computes for every feature description an equivalent solved form from which
the solutions of the description can be read of easily� For a closed feature
description the solved form is either � �which means that the description is
valid� or � �which means that the description is invalid�� For a feature de�
scription with free variables the solved form is � if and only if the description
is unsatis	able�

��� Feature Descriptions

Feature descriptions are 	rst�order formulae built over an alphabet of bina�
ry predicate symbols� called features� and an alphabet of unary predicate
symbols� called sorts� There are no function symbols� In admissible inter�
pretations features must be functional relations� and distinct sorts must be
disjoint sets� This is stated by the 	rst and second axiom scheme of FT�

�Ax�� �x�y�z�f�x� y�� f�x� z�� y
�
� z� �for every feature f�

�Ax�� �x�A�x� �B�x�� �� �for every two distinct sorts A and B��

A typical feature description written in matrix notation is

x � �y

�
��������

woman

father �

�
engineer
age � y

�

husband �

�
painter
age � y

�

�
��������
�

It may be read as saying that x is a woman whose father is an engineer�
whose husband is a painter� and whose father and husband are both of the
same age� Written in plain 	rst�order syntax we obtain the less suggestive
formula

�y �F�H � woman�X� �

father�x�F�� engineer�F� � age�F� y� �

husband�x�H� � painter�H� � age�H � y� ��

The axiom schemes �Ax�� and �Ax�� still admit trivial models where all
features and sorts are empty� The third and 	nal axiom scheme of FT
states that certain �consistent� descriptions have solutions� Three Examples
of instances of FT�s third axiom scheme are

�x� y� z �f�x� y�� A�y�� g�x� z��B�z��

�u� z �x� y �f�x� y�� g�y� u�� h�y� z�� yf	�

�z �x� y �f�x� y�� g�y� x�� h�y� z�� yf	��

�



where yf	 abbreviates ��z�f�y� z��� Note that the third description

f�x� y�� g�y� x�� h�y� z�� fy	

is �cyclic� with respect to the variables x and y�

��� Feature Trees

A feature tree �examples are shown in Figure �� is a tree whose edges are
labeled with features� and whose nodes are labeled with sorts� As one would
expect� the labeling with features must be deterministic� that is� the direct
subtrees of a feature tree must be uniquely identi	ed by the features of the
edges leading to them� Feature trees can be seen as a mathematical model
of records in programming languages� Feature trees without subtrees model
atomic values �e�g�� numbers�� Feature trees may be 	nite or in	nite� where
in	nite feature trees provide for the convenient representation of cyclic data
structures� The last example in Figure � gives a 	nite graph representation
of an in	nite feature tree� which may arise as the representation of the
recursive type equation nat � � � s�nat��

A ground term� say f �g�a� b�� h�c��� can be seen as a feature tree whose
nodes are labeled with function symbols and whose arcs are labeled with
numbers�

b c

g

�
h

a

�

�

�

�
f

Thus the trees corresponding to 	rst�order terms are in fact feature trees
observing certain restrictions �e�g�� the features departing from a node must
be consecutive positive integers��

Feature descriptions are interpreted over feature trees as one would expect�


 Every sort symbol A is taken as a unary predicate� where a sort con�
straint A�x� holds if and only if the root of the tree x is labeled with A�


 Every feature symbol f is taken as a binary predicate� where a feature
constraint f�x� y� holds if and only if the tree x has the direct subtree
y at feature f �

�
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Figure �� Examples of Feature Trees�

The theory of the corresponding 	rst�order structure �i�e�� the set of all
closed formulae valid in this structure� is called FT� We will show that FT
is in fact exactly the theory speci	ed by the three axiom schemes outlined
above� provided the alphabets of sorts and features are both taken to be
in	nite� Hence FT is complete �since it is the theory of the feature tree
structure� and decidable �since it is complete and speci	ed by a recursive
set of axioms��

Another� elementarily equivalent� model of FT is the substructure of the
feature tree structure obtained by admitting only rational feature trees �i�e��
	nitely branching trees having only 	nitely many subtrees�� Yet another
model of FT can be obtained from so�called feature graphs� which are 	nite�
directed� possibly cyclic graphs labelled with sorts and features similar to
feature trees� In contrast to feature trees� nodes of feature graphs may or
may not be labelled with sorts� Feature graphs correspond to the so�called
feature structures commonly found in linguistically motivated investigations

��� ��

��� Organization of the Paper

Section � recalls the necessary notions and notations from Predicate Logic�
Section � de	nes the theory FT by means of three axiom schemes� Section �
establishes the overall structure of the completeness proof by means of a
lemma� Section � studies quanti	er�free conjunctive formulae� gives a solved
form� and introduces path constraints� Section � de	nes feature trees and
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graphs and establishes the respective models of FT� Section � studies the
properties of so�called prime formulae� which are the basic building stones
of the solved form for general feature constraints� Section  presents the
quanti	er elimination lemmas and completes the completeness proof�

� Preliminaries

Throughout this paper we assume a signature SOR � FEA consisting of an
in	nite set SOR of unary predicate symbols called sorts and an in	nite set
FEA of binary predicate symbols called features� For the completeness of
our axiomatization it is essential that there are both in	nitely many sorts
and in	nitely many features�� The letters A� B� C will always denote sorts�
and the letters f � g� h will always denote features�

A path is a word �i�e�� a 	nite� possibly empty sequence� over the set of all
features� The symbol � denotes the empty path� which satis	es �p � p � p�

for every path p� A path p is called a pre
x of a path q� if there exists a
path p� such that pp� � q�

We also assume an in	nite alphabet of variables and adopt the convention
that x� y� z always denote variables� and X � Y always denote 	nite� possibly
empty sets of variables� Under our signature SOR � FEA� every term is a
variable� and an atomic formula is either a feature constraint xfy �f�x� y�
in standard notation�� a sort constraint Ax �A�x� in standard notation��
an equation x

�
� y� � ��false��� or � ��true��� Compound formulae are

obtained as usual with the connectives �� �� �� � � and the quanti	ers
� and �� We use ��� 
���� to denote the existential 
universal� closure of a
formula �� Moreover� V��� is taken to denote the set of all variables that
occur free in a formula �� The letters � and � will always denote formulae�

We assume that the conjunction of formulae is an associative and commu�
tative operation that has � as neutral element� This means that we identify
������� with �������� and ��� with � �but not� for example� xfy�xfy
with xfy�� A conjunction of atomic formulae can thus be seen as the 	nite
multiset of these formulae� where conjunction is multiset union� and � �the
�empty conjunction�� is the empty multiset� We will write � � � �or � � ��
if � is an atomic formula� if there exists a formula �� such that � ��� � ��

Moreover� we identify �x�y� with �y�x�� If X � fx�� � � � � xng� we write
�X� for �x� � � ��xn�� If X � �� then �X� stands for ��

�The assumption that the alphabets of sorts and features are in�nite is used in Propo�

sition ��� and Lemma ����
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Structures and satisfaction of formulae are de	ned as usual� A valuation
into a structure A is a total function from the set of all variables into the
universe jAj of A� A valuation �� into A is called an x�update 
X�update�
of a valuation � into A if �� and � agree everywhere but possibly on x 
X ��
We use �A to denote the set of all valuations � such that A� � j� �� We
write � j� � ��� entails ��� if �A � �A for all structures A� and � j�j �
��� is equivalent to ��� if �A � �A for all structures A�

A theory is a set of closed formulae� A model of a theory is a structure
that satis	es every formulae of the theory� A formula � is a consequence
of a theory T �T j� �� if ��� is valid in every model of T � A formula �
entails a formula � in a theory T �� j�T �� if �A � �A for every model A
of T � Two formulae �� � are equivalent in a theory T �� j�jT �� if �A � �A

for every model A of T �

A theory T is complete if for every closed formula � either � or �� is a
consequence of T � A theory is decidable if the set of its consequences is
decidable� Since the consequences of a recursively enumerable theory are
recursively enumerable �completeness of 	rst�order deduction�� a complete
theory is decidable if and only if it is recursively enumerable�

Two 	rst�order structures A� B are elementarily equivalent if� for every
	rst�order formula �� � is valid in A if and only if � is valid in B� Note that
all models of a complete theory are elementarily equivalent�

� The Axioms

The 	rst axiom scheme says that features are functional�

�Ax�� �x�y�z�xfy � xfz � y
�
� z� �for every feature f��

The second scheme says that sorts are mutually disjoint�

�Ax�� �x�Ax �Bx� �� �for every two distinct sorts A and B��

The third and 	nal axiom scheme will say that certain �consistent feature
descriptions� are satis	able� For its formulation we need the important
notion of a solved clause�

An exclusion constraint is an additional atomic formula of the form xf	
��f unde	ned on x�� taken to be equivalent to ��y �xfy� �for some variable
y �� x��

A solved clause is a possibly empty conjunction � of atomic formulae of
the form xfy� Ax and xf	 such that the following conditions are satis	ed�
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gf

x h	

A v f	

f

Figure �� A graph representation of a solved clause�

�� no atomic formula occurs twice in �

�� if Ax � � and Bx � �� then A � B

�� if xfy � � and xfz � �� then y � z

�� if xfy � �� then xf	 �� ��

Figure � gives a graph representation of the solved clause

xfu � xgv � xh	 �

Cu � uhx � ugy � ufz �

Av � vgz � vhw � vf	 �

Bw � wf	 � wg	 �

A more readable textual representation of this solved clause is

x � 
f � u g� v h	�

u � 
C h� x g� y f � z�

v � 
A g� z h�w f	�

w � 
B f	 g	��

As in the example� a solved clause can always be seen as the graph whose
nodes are the variables appearing in the clause and whose arcs are given by
the feature constraints xfy� The constraints Ax� xf 	 appear as labels of
the node x� The graphical representation of solved clauses should be very
helpful in understanding the proofs to come�

A variable x is constrained in a solved clause � if � contains a constraint
of the form Ax� xfy or xf	� We use CV��� to denote the set of all variables
that are constrained in �� The variables in V��� � CV��� are called the

�



parameters of a solved clause �� In the graph representation of a solved
clause the parameters appear as leaves that are not not labeled with a sort
or a feature exclusion� The parameters of the solved clause in Figure � are
y and z�

We can now state the third axiom scheme� It says that the constrained
variables of a solved clause have solutions for all values of the parameters�

�Ax	� ���X� �for every solved clause � and X � CV�����

The theory FT is the set of all sentences that can be obtained as instances
of the axiom schemes �Ax��� �Ax�� and �Ax��� The theory FT� is the
set of all sentences that can be obtained as instances of the 	rst two axiom
schemes�

As the main result of this paper we will show that FT is a complete and
decidable theory�

By using an adaption of the proof of Theorem �� in 
��� one can show that
FT� is undecidable�

� Outline of the Completeness Proof

The completeness of FT will be shown by exhibiting a simpli	cation algo�
rithm for FT� The following lemma gives the overall structure of the algo�
rithm� which is the same as in Maher�s 
��� completeness proof for the theory
of constructor trees�

Lemma ��� Suppose there exists a set of so�called prime formulae such
that�

�� every sort constraint Ax� every feature constraint xfy� and every equa�
tion x

�
� y such that x �� y is a prime formula

�� � is a prime formula� and there is no other closed prime formula

�� for every two prime formulae 	 and 	� one can compute a formula 

that is either prime or � and satis	es

	 � 	� j�j
FT


 and V�
� � V�	 � 	��


� for every prime formula 	 and every variable x one can compute a
prime formula 	� such that

�x	 j�j
FT

	� and V�	�� � V��x	�

��



�� if 	� 	�� � � � � 	n are prime formulae� then

�x�	 �
n	
i��

�	i� j�jFT

n	
i��

�x�	 � �	i�

�� for every two prime formulae 	� 	� and every variable x one can com�
pute a Boolean combination 
 of prime formulae such that

�x�	 � �	�� j�j
FT


 and V�
� � V��x�	 � �	����

Then one can compute for every formula � a Boolean combination 
 of prime
formulae such that � j�j

FT

 and V�
� � V����

Proof� Suppose a set of prime formulae as required exists� Let � be a
formula� We show by induction on the structure of � how to compute a
Boolean combination 
 of prime formulae such that � j�j

FT

 and V�
� �

V����

If � is an atomic formula Ax� xfy or x
�
� y� then � is either a prime formula�

or � is a trivial equation x
�
� x� in which case it is equivalent to the prime

formula ��

If � is ��� � � �� or � � ��� then the claim follows immediately with the
induction hypothesis�

It remains to show the claim for � � �x�� By the induction hypothesis we
know that we can compute a Boolean combination 
 of prime formulae such
that 
 j�j

FT
� and V�
� � V���� Now 
 can be transformed to a disjunctive

normal form where prime formulae play the role of atomic formulae� that is�

 is equivalent to �� � � � �� �n� where every �clause� �i is a conjunction of
prime and negated prime formulae� Hence

�x� j�j �x��� � � � �� �n� j�j �x�� � � � �� �x�n�

where all three formulae have exactly the same free variables� It remains to
show that one can compute for every clause � a Boolean combination 
 of
prime formulae such that �x� j�j

FT

 and V�
� � V��x��� We distinguish

the following cases�
�i� � � 	 for some basic formula 	� Then the claim follows by assump�
tion ����
�ii� � � 	 �

Vn
i���	i� n � �� Then the claim follows with assumptions ���

and ����
�iii� � �

Vn
i���	i� n � �� Then � j�j

FT
� �

Vn
i�� �	i and the claim follows

with case �ii� since � is a prime formula by assumption ����
�iv� � � 	� � � � � � 	k � �	

�
� � � � � � 	�n� k � �� n � �� Then we know by

��



assumption ��� that either 	� � � � �� 	k j�jFT � or 	� � � � �� 	k j�jFT 	 for
some prime formula 	� In the former case we choose 
 � ��� and in the
latter case the claim follows with case �i� or �ii�� �

Note that� provided a set of prime formulae with the required properties
exists� the preceding lemma yields the completeness of FT since every closed
formula can be simpli	ed to � or �� �since � is the only closed prime
formula��

In the following we will establish a set of prime formula as required�

� Solved Formulae

In this section we introduce a solved form for conjunctions of atomic formu�
lae�

A basic formula is either � or a possibly empty conjunction of atomic
formulae of the form Ax� xfy� and x

�
� y� Note that � is a basic formula

since � is the empty conjunction�

Every basic formula � �� � has a unique decomposition � � �N � �G into a
possibly empty conjunction �N of equations �x

�
� y� and a possibly empty

conjunction �G of sort constraints �Ax� and feature constraints �xfy�� We
call �N the normalizer and and �G the graph of ��

We say that a basic formula � binds x to y if x
�
� y � � and x occurs

only once in �� Here it is important to note that we consider equations as
directed� that is� assume that x

�
� y is di�erent from y

�
� x if x �� y� We say

that � eliminates x if � binds x to some variable y�

A solved formula is a basic formula  �� � such that the following condi�
tions are satis	ed�

�� an equation x
�
� y appears in  if and only if  eliminates x

�� the graph of  is a solved clause�

Note that a solved clause not containing exclusion constraints is a solved
formula� and that a solved formula not containing equations is a solved
clause� The letter  will always denote a solved formula�

We will see that every basic formula is equivalent in FT� to either � or a
solved formula�

��



��
xfy � xfz � �

xfz � y
�
� z � �

��
Ax � Bx � �

�
A �� B

��
Ax � Ax � �

Ax � �

��
x
�
� y � �

x
�
� y � �
x� y�

x � V��� and x �� y

��
x
�
� x � �

�

Figure �� The basic simpli	cation rules�

Figure � shows the so�called basic simpli
cation rules� With �
x� y� we
denote the formula that is obtained from � by replacing every occurrence
of x with y� We say that a formula � simpli
es to a formula � by a
simpli	cation rule � if �

�
is an instance of �� We say that a basic formula �

simpli
es to a basic formula � if either � � � or � simpli	es to � in 	nitely
many steps each licensed by one of basic simpli	cation rules in Figure ��

Note that the basic simpli	cation rules ��� and ��� correspond to the 	rst
and second axiom scheme� respectively� Thus they are equivalence transfor�
mation with respect to FT�� The remaining three simpli	cation rules are
equivalence transformations in general�

Proposition ��� The basic simpli	cation rules are terminating and per�
form equivalence transformations with respect to FT�� Moreover� a basic
formula � �� � is solved if and only if no basic simpli	cation rule applies to
it�

Proof� To see that the basic simpli	cation rules are terminating� observe
that no rule adds a new variable and that every rule preserves eliminated
variables� Since rule ��� increases the number of eliminated variables� and
the remaining rules obviously terminate� the entire system must terminate�
The other claims are easy to verify� �

Proposition ��� Let � be a formula built from atomic formulae with con�
junction� Then one can compute a formula 
 that is either solved or � such

��



that � j�jFT�

 and V�
� � V����

Proof� Follows from the preceding proposition and the fact that the basic
simpli	cation rules do not introduce new variables� �

In the quanti	er elimination proofs to come it will be convenient to use so�
called path constraints� which provide a �exible syntax for atomic formulae
closed under conjunction and existential quanti	cation� We start by de	ning
the denotation of a path�

The interpretations fA� gA of two features f � g in a structure A are binary
relations on the universe jAj of A� hence their composition fA � gA is again
a binary relation on jAj satisfying

a�fA � gA�b �� �c � jAj� afAc � cfAb

for all a� b � jAj� Consequently we de	ne the denotation pA of a path
p � f� � � �fn in a structure A as the composition

�f� � � �fn�
A �� fA� � � � � � fAn �

where the empty path � is taken to denote the identity relation� If A is a
model of the theory FT�� then every paths denotes a unary partial function
on the universe of A� Given an element a � jAj� pA is thus either unde	ned
on a or leads from a to exactly one b � jAj�

Let p� q be paths� x� y be variables� andA be a sort� Then path constraints
are de	ned as follows�

A� � j� xpy ��� ��x� pA ��y�

A� � j� xp�yq ��� �a � jAj� ��x� pA a � ��y� qA a

A� � j� Axp ��� �a � jAj� ��x� pA a � a � AA�

Note that path constraints xpy generalize feature constraints xfy�

A proper path constraint is a path constraint of the form �Axp� or
�xp�yq��

Every path constraint can be expressed with the already existing formulae�
as can be seen from the following equivalences�

x�y j�j x
�
� y

xfpy j�j �z�xfz � zpy� �z �� x� y�

xp�yq j�j �z�xpz � yqz� �z �� x� y�

Axp j�j �y�xpy � Ay� �y �� x��

��



The closure 
� of a solved formula  is the closure of the atomic formulae
occurring in  with respect to the following deduction rules�

x�x

x
�
� y

x�y

xpy yfz

xpfz

xpz yqz

xp�yq

Ay xpy

Axp
�

Recall that we assume that equations x
�
� y are directed� that is� are ordered

pairs of variables� Hence� x�y � 
� and y�x �� 
� if x
�
� y � �

The closure of a solved clause 
 is de	ned analogously�

Proposition ��� Let  be a solved formula� Then�

�� if � � 
�� then  j� �

�� x�y � 
� i x � y or x
�
� y � 

�� xfy � 
� i xfy �  or �z� x
�
� z �  and zfy � 


� xpfy � 
� i �z� xpz � 
� and zfy � 

�� if p �� � and xpy� xpz � 
�� then y � z

�� it is decidable whether a path constraint is in 
��

Proof� For the 	rst claim one veri	es the soundness of the deduction rules
for path constraints� The veri	cation of the other claims is straightforward�
�

� Feature Trees and Feature Graphs

In this section we establish three models of FT consisting of either feature
trees or feature graphs� Since we will show that FT is a complete theory� all
three models are in fact elementarily equivalent�

A tree domain is a nonempty setD � FEA� of paths that is pre
x�closed�
that is� if pq � D� then p � D� Note that every tree domain contains the
empty path�

A feature tree is a partial function �� FEA� � SOR whose domain is a
tree domain� The paths in the domain of a feature tree represent the nodes
of the tree� the empty path represents its root� We use D� to denote the
domain of a feature tree �� A feature tree is called 
nite in
nite� if its
domain is 	nite 
in	nite�� The letters � and � will always denote feature
trees�

��



The subtree p� of a feature tree � at a path p � D� is the feature tree
de	ned by �in relational notation�

p� �� f�q� A� j �pq� A� � �g�

A feature tree � is called a subtree of a feature tree � if � is a subtree of �
at some path p � D� � and a direct subtree if p � f for some feature f �

A feature tree � is called rational if ��� � has only 	nitely many subtrees
and ��� � is 	nitely branching �i�e�� for every p � D�� the set fpf � D� j
f � FEAg is 	nite�� Note that for every rational feature tree � there exist
	nitely many features f�� � � � � fn such that D� � ff�� � � � � fng

��

The feature tree structure T is the SOR � FEA�structure de	ned as
follows�


 the universe of T is the set of all feature trees


 � � AT i� ���� � A �i�e�� ��s root is labeled with A�


 ��� �� � fT i� f � D� and � � f� �i�e�� � is the subtree of � at f��

The rational feature tree structureR is the substructure of T consisting
only of the rational feature trees�

Theorem 	�� The feature tree structures T and R are models of the theo�
ry FT�

Proof� We will 	rst show that T is a model of FT�

The 	rst and second axiom scheme are obviously satis	ed by T � To see
that T satis	es the third axiom scheme� let 
 be a solved clause� X be the
variables constrained in 
� and � be a valuation into T � It su�ces to show
that there exists an X�update �� of � such that T � �� j� 
�

Without loss of generality we can assume that 
 contains a sort constraint
Ax for every x � X � Now one can verify that

�x � X �

�p� A� � ���x� �� Axp � 

� �

�xp�y � 

� ��p��� A� � ��y�� p � p�p�� � y �� X

de	nes an X�update �� of � such that T � �� j� 
�

The same construction shows that R is a model of FT� �

��



A feature pregraph is a pair �x� � consisting of a variable x �called the
root� and a solved clause  not containing exclusion constraints such that�
for every variable y occurring in � there exists a path p satisfying xpy � 
��
If one deletes the exclusion constraints in Figure �� one obtains the graphical
representation of a feature pregraph whose root is x�

A feature pregraph �x� � is called a subpregraph of a feature pregraph
�y� 
� if  � 
 and x � y or x � V�
�� Note that a feature pregraph has only
	nitely many subpregraphs�

We say that two feature pregraphs are equivalent if they are equal
up to consistent variable renaming� For instance� �x� xfy � ygx� and
�u� ufx � xgu� are equivalent feature pregraphs�

A feature graph is an element of the quotient of the set of all feature
pregraphs with respect to equivalence as de	ned above� We use �x� � to
denote the feature graph obtained as the equivalence class of the feature
pregraph �x� ��

In contrast to feature trees� not every node of a feature graph must carry a
sort�

The feature graph structure G is the SOR � FEA�structure de	ned as
follows�


 the universe of G is the set of all feature graphs


 �x� � � AG i� Ax � 


 ��x� �� �� � fG i� there exists a maximal feature subpregraph �y� 
�
of �x� � such that xfy �  and � � �y� 
��

Theorem 	�� The feature graph structure G is a model of the theory FT�

Proof� The 	rst and second axiom scheme are obviously satis	ed by G� To
see that G satis	es the third axiom scheme� let 
 be a solved clause and �
a valuation into T � It su�ces to show that there exists an CV�
��update ��

of � such that G� �� j� 
�

First we choose for the parameters y � V�
��CV�
� variable disjoint feature
pregraphs �y� y� such that ��y� � �y� y�� Moreover� we can assume without
loss of generality that every pregraph �y� y� has with 
 exactly its root
variable y in common� Hence


� �� 
 �
	

y�V����CV���

y

��



is a solved clause� Now� for every constrained variable x � CV�
�� let �x be
the maximal solved clause such that �x � 
� and �x� �x� is a feature pregraph�
Then the CV�
��update �� of � such that ���x� � �x� �x� for every x � CV�
�
satis	es G� �� j� 
� �

Let F be the structure whose domain consists of all feature pregraphs and
that is otherwise de	ned analogous to G� Note that G is in fact the quotient
of F with respect to equivalence of feature pregraphs�

Proposition 	�� The feature pregraph structure F is a model of FT� but
not of FT�

Proof� It is easy to see that F satis	es the 	rst and second axiom scheme�
To see that F does not satisfy the third axiom scheme� consider the solved
clause


 � xfy � xgz

and a valuation � into F such that ��y� � �x�Ax�� ��z� � �x�Bx�� and
A �� B� Then there exists no x�update �� of � satisfying F � �� j� 
 since a
feature pregraph cannot contain both Ax and Bx� �

� Prime Formulae

We now de	ne a class of prime formulae having the properties required by
Lemma ���� The prime formulae will turn out to be solved forms for formulae
built from atomic formulae with conjunction and existential quanti	cation�

A prime formula is a formula �X such that

��  is a solved formula

�� X has no variable in common with the normalizer of 

�� every x � X can be reached from a free variable� that is� there exists
a path constraint ypx � 
� such that y �� X �

The letter 	 will always denote a prime formula�

Note that � is the only closed prime formula� and that �X is a prime
formula if �x�X is a prime formula� Moreover� every solved formula is a
prime formula� and every quanti	er�free prime formula is a solved formula�

�



The de	nition of prime formulae certainly ful	lls the requirements ��� and
��� of Lemma ���� The ful	llment of the requirements ��� and ��� will be
shown in this section� and the ful	llment of the requirements ��� and ���
will be shown in the next section�

Proposition ��� Let �X be a prime formula� A be a model of FT� and
A� � j� �X� Then there exists one and only one X�update �� of � such
that A� �� j� �

Proof� The existence of anX�update �� of � such that A� �� j�  is obvious�
The uniqueness of �� follows from the fact that features are functional� and
that� for every x � X � there exists a �global� variable x� �� X and a path p
such that A� �� j� x�px �since x�px � 
��� �

The next proposition establishes that prime formulae are closed under exis�
tential quanti	cation �property ��� of Lemma ����� Its proof makes for the
	rst time use of the third axiom scheme�

Proposition ��� For every prime formula 	 and every variable x one can
compute a prime formula 	� such that

�x	 j�j
FT

	� and V�	�� � V��x	��

Proof� Let 	 � �X be a prime formula and x be a variable� We con�
struct a prime formula 	� such that �x	 j�j

FT
	� and V�	�� � V��x	�� We

distinguish the following cases�

�
 x �� V�	�
 Then 	� �� 	 does the job�

�
  � �x
�
� y � ��
 Then 	� �� �X� does the job�

	
  � �y
�
� x � ��
 Then 	� �� �X��
x � y�� does the job since  j�j

x
�
� y � �
x� y��

�
 x �� X and x occurs in the graph but not in the normalizer of 
 Then
we obtain 	� by a �garbage collection� deleting all parts of �x	 that cannot
be reached from �global� variables� To do this we de	ne the following�

Y �� X � fxg �quanti	ed variables�

Y� �� fx � Y j �ypx � 
�� y �� Y g �reachable variables�

Y� �� Y � Y� �unreachable variables��

Furthermore� let

 � N � G

��



be the decomposition of  into normalizer and graph� and let

G � �G � ��G

be the decomposition of G obtained by putting into ��G all atomic formulae
that contain a variable in Y�� To stay with the garbage collection metaphor�
think of �G as the reachable and of ��G as the unreachable part of G �under
the quanti	cation �x�X��

Since Y � V�G� � V�N�� we have Y� � V��G�� V�
�
G� � Y� � �� and

Y� � V� ��G�� We will show that

	� �� �Y��N � �G�

does the job�

It is straightforward to verify that 	� is a prime formula� and that V�	�� �
V��x	��

Next we show �Y�
��
G j�j

FT
�� Since ��G is a solved clause and Y� contains

all variables that are constrained in ��G� we know by the third axiom scheme
that FT j� ���Y�

��
G�

Finally we show �x	 j�j
FT

	�� To see this� recall V�N� � Y � � and
V��G�� Y� � �� and consider�

�x	 � �x�X�N � G�

j�j �Y �N � G�

j�j N � �Y G

j�j N � �Y��Y��
�
G � ��G�

j�j N � �Y��
�
G � �Y�

��
G�

j�j
FT

N � �Y�
�
G

j�j �Y��N � �G� � 	��

�

Proposition ��� If 	 is a prime formula� then FT j� ��	�

Proof� Follows from the preceding proposition since � is the only closed
prime formula� �

The next proposition establishes that prime formulae are closed under con�
sistent conjunction �property ��� of Lemma �����

��



Proposition ��� For every two prime formulae 	 and 	� one can compute
a formula 
 that is either prime or � and satis	es

	 � 	� j�j
FT


 and V�
� � V�	 � 	���

Proof� Let 	 � �X and 	� � �X �� be prime formulae� Without loss of
generality we can assume that X and X � are disjoint� Hence

	 � 	� j�j �X�X �� � ���

Since � � is a basic formula� Proposition ��� tells us that we can compute
a formula � that is either solved or � and satis	es  � � j�j

FT
� and

V��� � V� � ��� If � � �� then 
 �� � does the job� Otherwise� � is
solved� Since

	 � 	� j�j
FT

�X�X ���

we know by Proposition ��� how to compute a prime formula 	�� such that
	�	� j�j

FT
	��� From the construction of 	�� one veri	es easily that V�	��� �

V�	 � 	��� �

Proposition ��� Let � be a formula that is built from atomic formulae with
conjunction and existential quanti	cation� Then one can compute a formula

 that is either prime or � such that � j�j

FT

 and V�
� � V����

Proof� Follows with Propositions ��� and ���� �

The closure of a prime formula �X is de	ned as follows�


�X� �� f� � 
� j V����X � � or � � x�x or � � x��x�g�

The proper closure of a prime formula 	 is de	ned as follows�


	�� �� f� � 
	� j � is a proper path constraintg�

Proposition ��	 If 	 is a prime formula and � � 
	�� then 	 j� � �and
hence �� j� �	��

Proof� Let 	 � �X be a prime formula� A� � j� 	� and � � 
	�� Then
there exists a X�update �� of � such that A� �� j� � Since 
	� � 
�� we
have � � 
� and thus A� �� j� �� If � has no variable in common with X �
then A� � j� �� Otherwise� � has the form �x�x� or �x� � x�� and hence
A� � j� � holds trivially� �

��



We now know that the closure 
	�� taken as an in	nite conjunction� is en�
tailed by 	� We are going to show that� conversely� 	 is entailed by certain
	nite subsets of its closure 
	��

An access function for a prime formula 	 � �X is a function that maps
every x � V���X to the rooted path x�� and every x � X to a rooted path
x�p such that x�px � 
� and x� �� X � Note that every prime formula has at
least one access function� and that the access function of a prime formula is
injective on V�� �follows from Proposition ��� �����

The projection of a prime formula 	 � �X with respect to an access
function � for 	 is the conjunction of the following proper path constraints�

fx��y� j x
�
� y � g �

fAx�p j Ax � � x�p � �xg �

fx�pf �y�q j xfy � � x�p � �x� y�q � �yg�

Obviously� one can compute for every prime formula an access function and
hence a projection� Furthermore� if � is a projection of a prime formula 	�
then � taken as a set is a 	nite subset of the closure 
	��

Proposition ��� Let � be a projection of a prime formula 	� Then � � 
	��

and � j�j
FT

	�

Proof� Let � be the projection of a prime formula 	 � �X with respect
to an access function ��

Since every path constraint � � � is in 
	� and thus satis	es 	 j� �� we have
	 j� ��

To show the other direction� suppose A� � j� �� where A is a model of
FT� Then A� �� j� x�px for every x � X with �x � x�p de	nes a unique X�
update �� of �� From the de	nition of a projection it is clear that A� �� j� �
Hence A� � j� 	� �

As a consequence of this proposition one can compute for every prime for�
mula an equivalent quanti	er�free conjunction of proper path constraints�

We close this section with a few propositions stating interesting properties
of closures of prime formulae� These propositions will not be used in the
proofs to come� The reader is nevertheless advised to study the proof of
Proposition ��� since it employs a construction that will be reused in a more
complicated form in the proof of Lemma ���

Proposition ��� If 	 is a prime formula� then 	 j�j
FT


	���

��



Proof� By Proposition ��� we have 	 j�FT 
	��� and by Proposition ��� we
have 
	�� j�FT 	 since 	 has a projection � � 
	��� �

Proposition ��� If 	 is a prime formula� and � is a proper path constraint�
then

� � 
	�� �� 	 j�FT ��

Proof� Let 	 � �X be a prime formula�  � N�G be the decomposition
of  into graph and normalizer� and � be a proper path constraint� Since
the direction ��� is stated by Proposition ���� it su�ces to show the other
direction�

Suppose � �� 
	�� We show that FT j� ���	 � ���� which yields 	 �j�FT �

since FT is consistent�

Without loss of generality we can assume that V��� and X are disjoint� Let
Y be the variables eliminated by � Since �	 � ��� j�j �	 � ��
x � y�� if
x

�
� y � N � we can assume without loss of generality that � contains no

variable in Y �

Since

���	 � ��� j�j �� �Y �N � �XG � ���

j�j ����Y N � �XG � ���

j�j ����XG � ���

j�j ���G � ����

it is su�cient to construct a solved clause 
 with G � 
 and 
 j�FT ��
�recall that FT j� ��
 by the third axiom scheme�� For the construction of

 we distinguish three cases�

�
 � � Axp� � � xp � yq or � � yq � xp� where xp � xp �� 
G�
 Then
there exists a pre	x p�f of p and a variable z such that xp�z � 
G� and
zfz� � G for no variable z�� Now adding zf	 yields a solved clause 
 such
that 
 j�FT ���

�
 � � Axp� xpz � 
G�
 If Bz � G� then A �� B �since � �� 
G�� and

 �� G does the job� Otherwise� we choose a sort B �� A and add Bz �recall
that we have assumed in	nitely many sorts��

	
 � � xp � yq� xpz � 
G� and yqz� � 
G�
 Since � �� 
	�� we know that
z �� z�� We choose a new feature f and a new variable u and add zf	 and
z�fu �recall that we have assumed in	nitely many features�� �

��



Proposition ���� Let 	� 	� be prime formulae� Then

	 j�FT 	� �� 
	�� � 
	����

Proof� ��� Let 	 j�FT 	� and � � 
	���� Then 	� j�FT � by Proposition ���
and hence 	 j�FT � by the assumption� Hence � � 
	�� by Proposition ����

��� Let 
	�� � 
	���� Then 
	�� j� 
	��� and hence 	 j�FT 	� by Proposi�
tion ��� �

Proposition ���� Let 	� 	� be prime formulae� and let �� be a projection
of 	�� Then 	 j�FT 	� �� 
	�� � ���

Proof� ��� Suppose 	 j�FT 	�� Then 
	�� � 
	��� by Proposition ���� and

	�� � �� by Proposition ����

��� Suppose 
	�� � ��� Then 
	�� j� �� and hence 	 j�FT 	� by Proposi�
tion �� and ���� �

Proposition ���� gives us a decision procedure for �	 j�FT 	�� since mem�
bership in 
	�� is decidable� �� is 	nite� and �� can be computed from 	��

	 Quanti
er Elimination

In this section we show that our prime formulae satisfy the requirements ���
and ��� of Lemma ��� and thus obtain the completeness of FT� We start
with the de	nition of the central notion of a joker�

A rooted path xp consists of a variable x and a path p� A rooted path xp
is called unfree in a prime formula 	 if

� pre	x p� of p � yq� x �� y and xp��yq � 
	��

A rooted path is called free in a prime formula 	 if it is not unfree in 	�

Proposition ��� Let 	 � �X be a prime formula� Then�

�� if xp is free in 	� then x does not occur in the normalizer of 

�� if x �� V�	�� then xp is free in 	 for every path p�

A proper path constraint � is called an x�joker for a prime formula 	 if
� �� 
	� and one of the following conditions is satis	ed�

��



�� � � Axp and xp is free in 	

�� � � xp�yq and xp is free in 	

�� � � yp�xq and xq is free in 	�

Proposition ��� It is decidable whether a rooted path is free in a prime
formula� and whether a path constraint is an x�joker for a prime formula�

Proof� Follows with Proposition ���� �

Lemma ��� Let 	 be a prime formula� x be a variable� � be a proper path
constraint that is not an x�joker for 	� A be a model of FT� A� � j� 	�
A� �� j� 	� and �� be an x�update of �� Then A� � j� � if and only if
A� �� j� ��

Proof� We distinguish the following cases�

�
 x �� V���
 Then the claim is trivial�

�
 � � 
	�
 Then 	 j�FT � and hence �� �� � �A�

	
 � � Axp and xp unfree in 	
 Then p � p�p�� and xp� � yq � 
	� for some
variable y �� x and some path q� Hence 	 j�FT �  Ayqp��� which yields
the claim�

�
 � � xp�yq� x �� y� xp unfree in 	
 Analogous to case ����


 � � xp�xq and both xp� xq unfree in 	
 Analogous to case ���� �

Lemma ��� Let 	 be a prime formula and ��� � � � � �n be x�jokers for 	�
Then

�x	 j�FT �x�	 �
n	
i��

��i��

Proof� Let 	 � �X be a prime formula� ��� � � � � �n �n � �� be x�jokers for
	� A be a model of FT� and � be a valuation into A such that A� � j� �x	�
We have to show that A� � j� �x�	 �

Vn
i�� ��i�� Without loss of generality

we assume that x �� X � and that no �i has a variable in common with X �
Let  � N �G be the decomposition of  into normalizer and graph� Since
there are x�jokers for 	� we know that x �� V�N��

��



The proof now comes in two parts� Part II gives the construction of a solved
clause 
 such that� if Y and Y� are de	ned as

Y �� fxg �X � �V�
�� V�G�� �quanti	ed variables�

Y� �� fy � Y j �y�py � 

� � y� � Y g �unreachable variables��

the following conditions are satis	ed�

�� G � 


�� additional variables in 
 are new variables� that is� �V�
�� V�G�� �
V�N� � � and �V�
�� V�G�� � V��i� � � for i � �� � � � � n

�� if �� is an Y �update of � such that A� �� j� 
� then A� �� j� ��i for
i � �� � � � � n

�� every atomic formula that occurs in 
 but not in G contains only
variables in Y��

In Part I of the proof we will show that from the existence of a solved
clause 
 as speci	ed above we can derive A� � j� �x�	 �

Vn
i�� ��i�� Part I

uses a garbage collection technique similar to the one used in the proof of
Proposition ���� The construction of 
 in Part II is a re	nement of the
construction in the proof of Proposition ���� We strongly recommend that
the reader 	rst gets a good intuitive understanding of the proofs of Propo�
sition ��� and ��� before studying the rest of this proof�

Part I
 Suppose 
� Y and Y� are given as speci	ed above� We de	ne Y�� 
�
and 
� such that


 Y � Y� � Y�


 
 � 
� � 
�


 V�
�� � Y� � �


 every atomic formula in 
� contains a variable in Y��

To stay with the garbage collection metaphor� think of Y� as the reachable
variables� of 
� as the unreachable part of 
� and 
� as the reachable part
of 
� By assumption ��� we know that 
� � G� By the third axiom
scheme we know that �Y�
� j�jFT �� since 
� is a solved clause and Y�
contains all variables that are constrained in 
��

Note that fxg� X and V�
�� V�G� are pairwise disjoint� Hence

�x	 j�FT N � �Y 


��



since

�x	 j�j �x�X�N � G� j�j N � �x�XG j�j N � �Y G

and

�Y G j� �Y 
� j�jFT �Y �
� � �Y�
�� j�jFT �Y �
� � 
�� j�jFT �Y 
�

Thus A� � j� N ��Y 
� Since V�N��Y � �� there exists an Y �update of
�� such that A� �� j� N�
� By assumption ��� we know that A� �� j� ��i
for i � �� � � � � n� and by assumption ��� we know that A� �� j� G� Thus
A� �� j� �Y ��

Vn
i�� ��i�� Since V�
��V�G� has no variable in common

with  �
Vn
i�� ��i and X has no variable in common with

Vn
i�� ��i� we

have A� �� j� �x�	 �
Vn
i�� ��i��

Part II
 We will now construct a solved form 
 as required� To do this we
will look at every x�joker �i and possibly add constraints to G such that
requirement ��� in particular is satis	ed� It su�ces to distinguish the
following cases �recall that x �� V�N���

�� �i � Axp� xpz � 
G�� If Bz � G� then A �� B �since �i �� 
G�� and
requirement ��� is met without adding anything� Otherwise� we choose
a new sort B and add Bz �recall that we have assumed in	nitely many
sorts��

�� �i � Axp� xp�xp �� 
G�� Then there exists a pre	x p�f of p and a
variable z such that xp�z � 
G� and zfz� �� G for every z�� Adding
zf	 will yield a solved form and satisfy the requirements �������� It
will also satisfy requirement ��� since xp is free in 	�

�� �i � xp�yq� xp free in 	� xp�xp �� 
G�� Analogous to case ����

�� �i � xp�yq� xp free in 	� xpz � 
G�� We once more distinguish three
cases�

��� x �� y� Let �� be a Y �update of � such that A� �� j� � Then qA is
de	ned on ���y� if and only if qA is de	ned on ��y�� If qA is unde�
	ned on ��y�� requirement ��� is satis	ed without adding anything�
Otherwise� let ��y�qAa� Then ���y�qAa� Now choose a new feature f
�recall that we have in	nitely many features�� If fA is de	ned on a�
we add zf	� otherwise we add zfz�� were z� is a new variable� Require�
ments ������� are obviously satis	ed� and requirement ��� is satis	ed
since xp is free in 	�

��� x � y and xq unfree in 	� Then we have q � q�q��� xq� �y�r � 
	� and
y� �� Y for some q�� q�� y� and r� Let �� be a Y �update of � such that
A� �� j� � Then qA � q�Aq��A is de	ned on ���x� if and only if rAq��A

is de	ned on ��y��� If rAq��A is unde	ned on ��y��� requirement ��� is
satis	ed without adding anything� Otherwise� let ��y��rAq��Aa� Then

��



���x�qAa� Now choose a new feature f � If fA is de	ned on a� add zf	�
otherwise� add zfz�� where z� is a new variable� Requirements �������
are obviously satis	ed� and requirement ��� is satis	ed since xp is free
in 	�

��� x � y and xq free in 	� If xq � xq �� 
G�� we proceed analogous to
case ���� Otherwise� let xqz� � 
G�� Since �i �� 
	�� we know that
z �� z�� We choose a new feature f and a new variable u and add zf	
and z�fu� This will certainly satisfy the requirements �������� It will
also satisfy requirement ��� since both xp and xq are free in 	�

�

Note that the proof uses the third axiom scheme� the existence of in	nitely
many features� and the existence of in	nitely many sorts�

Lemma ��� Let 	� 	� be prime formulae and � be a valuation into a model
A of FT such that

A� � j� �x�	 � 	�� and A� � j� �x�	 � �	���

Then every projection of 	� contains an x�joker for 	�

Proof� Without loss of generality we can assume that A� � j� 	 � 	��
Furthermore� there exists an x�update �� of � such that A� �� j� 	 � �	��
Let � be a projection of 	�� Since A� �� �j� 	�� we know by Proposition ���
that A� �� �j� �� Hence there exists a proper path constraint � � � such that
A� �� �j� �� Since A� � j� 	�� we know by Proposition ��� that A� � j� ��
Hence we know by Lemma �� that � must be an x�joker for 	� �

Lemma ��	 If 	� 	�� � � � � 	n are prime formulae� then

�x�	 �
n	
i��

�	i� j�j
FT

n	
i��

�x�	 � �	i��

Proof� Let 	� 	�� � � � � 	n be prime formulae� Then �x�	 �
Vn
i�� �	i� j�Vn

i�� �x�	 � �	i� is trivial� To see the other direction� suppose that A is
a model of FT and A� � j�

Vn
i�� �x�	 � �	i�� We have to exhibit some

x�update �� of � such that A� �� j� 	 and A� �� j� �	i for i � �� � � � � n�

Without loss of generality we can assume that A� �� j� �x�	 � 	i� for i �
�� � � � � m and A� �� j� ��x�	 � 	i� for i � m� �� � � � � n�

�



By Lemma �� there exists� for every i � �� � � � � m� an x�joker �i � 
	i� for
	� By Lemma �� we have

�x	 j� �x�	 �
m	
i��

��i��

Since �� j� �	i by Proposition ���� we have

�x	 j� �x�	 �
m	
i��

�	i��

Hence we know that there exists an x�update �� of � such that A� �� j� 	
and A� �� j� �	i for i � �� � � � � m� Since we know that A� � j� ��x�	 � 	i�
for i � m� �� � � � � n� we have A� �� j� �	i for i � m� �� � � � � n� �

Lemma ��� For every two prime formulae 	� 	� and every variable x one
can compute a Boolean combination 
 of prime formulae such that

�x�	 � �	�� j�j
FT


 and V�
� � V��x�	 � �	����

Proof� Let 	� 	� be prime formulae� � be a projection of 	�� x be a variable
and A be a model of FT� We distinguish two cases�

�
 � contains an x�joker � for 	
 Then we know that �x	 j� �x�	 � ���
by Lemma ��� Since 	� j�FT � j� �� we know that �� j� �	� and hence
�x	 j�FT �x�	 � �	��� Thus

�x�	 � �	�� j�j
FT

�x	�

Now the claim follows with Proposition ����

�
 � contains no x�joker � for 	
 Then we know by Lemma �� that there
exists no valuation � into A such that

A� � j� �x�	 � 	�� and A� � j� �x�	 � �	���

Hence
�x�	 � �	�� j�j

FT
�x	 � ��x�	 � 	���

Now the claim follows with Propositions ���� ��� and ���

The above shows the existence of 
� Moreover� 
 can be computed since
we can compute a projection � of 	�� and since we can decide whether �
contains an x�joker for 	 by Proposition �� �� is 	nite�� �

Theorem ��� For every formula � one can compute a Boolean combination

 of prime formulae such that � j�j

FT

 and V�
� � V�	��

��



Proof� Follows from Lemma ���� Propositions ��� and ���� and Lemmas ��
and ��� �

Corollary ��� FT is a complete and decidable theory�

Proof� The completeness of FT follows from the preceding theorem and
the fact that � is the only closed prime formula� The decidability follows
from the completeness and the fact that FT is given by a recursive set of
sentences� �
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