
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Research
Report

RR-92-41

A Multi-Agent Approach towards
Group Scheduling

Andreas Lux

August 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

A Multi-Agent Approach towards Group Scheduling

Andreas Lux

DFKI-RR-92-41

Parts of this report have also appeared in :

A. Lux , F. Bomarius, D. Steiner: A Model for Supporting Human Computer
Cooperation . in : Proceedings of the AAAI 92 Workshop on Cooperation among
Heterogeneous Intelligent Systems, San Jose, CA. July 1992.

This work has been partially supported by the European Community as part of
ESPRIT II project 5362 IMAGINE.

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that
all such whole or partial copies include the following : a notice that such copying is by permission of Deutsches
Forschungszentrum fUr Kunstl iche Inteli ige nz, Kaiserslautern, Federal Republic of Germany ; an
acknowledgement of the authors and individual contributors to the work; ali applicable portions of this copyright
notice. Copying, reproducing, or republ ishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

A Multi-Agent Approach towards
Group Scheduling

Andreas Lux

German Research Center for Artificial Intclligcllce Inc.
Project KIK-Teamware

P.O. Box 2080, D-6750 Kaiserslautcrn, 'Vest Gennany

e-mail: lux@dfki.uni-kl.de

August 1992

Abstract

Thanks to rapid improvements in compu ter and communication t echn ology the network oj
national and international business relationships is becoming more and more dense. Int el­
lig ent cooperation mechanisms are a necessary prerequisite Jo r efficient cooperation. This
report examines an everyday cooperative scenario, scheduling and management oj appoint­
ments, from the point of intelligent computer support. The examp le is chosen to clarify our
approach towards a formal model to describe coopera tive processes. It shows the suitability of
the approach to quickly design and implement typical cooperative scenarios. Especially, the
integration of different existing calendar tools within the general cooperation model provides
a clear advantage over existing approaches.

Contents

1 Motivation

2 Existing Studie s and Systems

3 Appointment Manage m e n t as a Typical Cooperative Scenar io
3. 1 Requirements for Intelligent Ap poin t ment Scheduling.
3.2 Involved Agents
3.3 Cooperat ion Model
3.4 Basic Coopera tion St rategies

4 Graphical Inte rfa ce

5 Imple m entational I ssues

6 C o nclusio n and Outlook

A Se lect e d Source Code

1

2

3

::;

5
G
7
7

12

14

1G

17

Chapter 1

Motivation

Many studies [BR84, KDK85, Eh87a, Eh87b] have been performed how office workers keep or should
keep their personal calendars. Although there are many individual differences, the following two common
characteristics are evident:

• Most often, a calendar is assigned to one person; it is small and portable and thus eas ily accessible,
even en route.

• For reasons of extra space, some people use a desk calendar as well - despite the maintenance
problems involved with the use of two calendars.

Both types of paper calendars are used for a variety of purposes, namely as

• a schedule, i.e a reminder of future events

• a diary for past activities

• a notebook for addresses, phone numbers, birthdays or other repeated events and other important
dates

In the last decade, electronic calendars with features such as reminder faciliti es or automatic alarms
have been developed . However, as research in this fi eld has shown [KDK85], these calendars do not offer
the power and flexibility of traditional pocket and desk calendars.
The design and implementation of a useful calendar and appointment system, therefore, represents an
exciting challenge. Especially the additional capability of automatically scheduling appointments is a
clear advantage of electronic calendars over paper calendars. Scheduling group meetings with several
participants is a complex and difficult task which requires intelligent cooperation support to become
easier and more flexible. Ideally, an intelligent appointment system should behave as a secretary who
fixes dates and arranges meetings independently from the superior as far as possible.
Automatic on-line scheduling systems are desirable, because making appointments without computer
support requires much cooperation effort between the participants and is often inefficient . . At the
moment, several rounds of phone calls, letters or electronic messages are necessary to arrange a meeting
between a number of people with busy schedules . So, organisational advantages arise if the amount
of cooperation is minimized. With the rapid progress of today 's information processing technology, it
should be possible to support users in calendar and appointment management .
Additional functionalities can also be easily provided using such technology, e .g. automatic rescheduling
of meetings , reservation of meeting rooms or the availability of eq uipment like overhead projectors.
Such functionalities are useful for the acceptance of the system and support Ehrlich's argumentation
[Eh87b], that more individuals will maintain their calendars on-line if the perceived collective benefit
is higher. Naturally, the appointment system can only be successful to the ex tent that users maintain
their schedules on-line and up-to-date.
In the rest of this report, we concentrate on the aspects of scheduling appointments and maintaining
schedules, although the use of electronic calendars as a diary or a notebook is equally important .

2

Chapter 2

Existing Studies and Systems

Calendar management and appointment schedu ling as research topi cs have been examined from differ­
ent perspectives in the last decade; efforts range from studies about the necessa ry prerequisit.es and
usefuln ess of such tools up to implementations of prototype systems.
A study by Kincaid et al. [KDK85] has been performed to dete rmine t he demands fo r cooperation
support through automatic appointment systems . They interviewed a group of offi ce workers who
had access to electronic calendars as integral part of their working environment . They observed that
electronic calendars do not yet offer the power and fl exibility of traditional paper calendars. Furthermore,
they do not contain a facility for automatically schedu ling appointments involving multiple participants,
although this would be a clear advantage over traditional paper calendars. As a result, they found out
that such a component is jugded highly desirable, and they identified fun ctional req uirements for it.
A detailed study of the working situation of managers has been done by Beckurts and Reichwald [DR84].
The a rea of management has a high degree of commun icative activities, often having to do with fixed
da tes and appointment scheduling. Managers agree to an automatic appointment system if they can
handle it fl exibly with respect to their individua l needs; they, however , defend their personal free times .
Studies of Ehrlich [Eh87a, Eh87b] show that electronic calendars primarily fulfi ll com muni cative fun c­
tions for managers or their secretaries. Automatic appointment systems yield organ isat ional advantages,
because they minimize negoti a tion effort and offer add itional functionality like reservat ion of rooms.
Prototypical implementation of appointment systems has been done for different object ives. The spec­
trum comprises systems where coordina tion of appointments is an extension of managing dates to
systems which concentrate on the communicat ion and cooperat ion structu res of decentrali zed units.
A typical example of persona l related calendar management is t he system Alis [Ap86]. There is on ly
very limi ted support for the coordin at. ion of appointments . Only one date can be negot. iated at a t.ime.
The initiator has to inform himself about the state of the negotiat ion. He has to evalu ate t he rece ived
answers on his own and has to undertake the appropriate steps; the syst.em's support fun ctionality
is restricted to gather and to distribute informat ion and to rep resent info rm at ion in the context of
appointment scheduling.
The Eden Shared Calendar System [HA85] is implemented on top of the d ist ributed operating system
EDEN. The scheduling algorithm is based on the comparison of distributed man aged calenda rs, which
are freely accessible. Main emph asis is put on a global cons istent user view. Therefore, a gro up calendar
as a special object is in troduced to handle the parti cipants' answers and to manage cen trally the actual
state of the negotiation process .
Other distributed systems which a re based on t he comparison of calendars a re MPCAL and RTCAL
[Ci83, SG85, GS87]. They a re extensions of the personal calendar system PCAL [G r84] and were
developed at MIT from 1982 th rough 1985. They provide controlled sharing and delegation of authorit.y
for calendar management on the bas is of roles. So , different calendar types and different access rights
to calendars exist. MPCAL is restr icted because it does not undertake coordination activities. It on ly
updates the participants ' calendars with respect to their given answers to a meet ing proposal. In RTCAL ,
users share information from t heir personal calendars in order to schedu le a meet ing . Participants can
speak to each other over a telephone connection and use the computer display as a shared blackboard .
Both systems mainly concentrated on data sharing and da ta consistency aspects in group systems.

3

In the appointment scheduling domain , the no ti o n o f agents was fir:;t illl.rod ll c('d hy [I\ IS88 , I\IS89].
The main purpose o f the developed prototype was to examine various II (('1.1 lOt/'; fo r distrihllted pro hlem
solving, to experiment with diffe rent. app li cation independent distribllll'd co lltro l a lgo rit.hm s and to
answer questions related to d ecent.rali zat io n o f data . A cal end a r age nt rl'p rl's(' nt s a II s(' r , managcs L1lf'
user 's elect roni c calendar and takes part in t.h e scheduling process. Dat.es (11' (' fixl'd hy t.h e agents wit.ho ut
consultation wit.h their users; the genera l agreem ent. o f a ll users t.o a ll pro posl'd dat('s is ass llmed. The
scheduling process is support.ed by use r profil es a nd dat.e profil es. T h(' daily USC I' profil e s t.all'S t.IH'

general willingness o f a user to participate in a m ee t.ing fo r that day; t.he d a te profil e is comput.(' d hy
excl usio n of a lready fix ed dates and addit.io na l t.ime att. ributes like ea rli e. I./ Iat.esl. I.inl!' po inl., dqw ndpn cy
from another date, d egree of movabilit.y.
In the system TVS [W09 l], appointment scheduling is modell ed as a coordinated nptwo rk of a ut.o nOIllOIlS
agents. Coordination is done by a special type o f agent, the m ediator agent. Appointme nt. sc\H'd lilin g
is introduced as a typical scenario to validat.e a proposed coordin at. io n m o del has('d 0 11 :;t rllcl.llr l'c1
conversation [WF86].
vs [BPH+90] is a prototype o f a prio rit.y-based , g rap hi ca l syst.em. It. was test.('d in a. fi e ld :;t lld y wh(,I'('
it showed genera lly useful ; in particular , users fo und prio rity-based t.inl c s lo t.s a nd accc:;:; t.o :;c hcc/lllin g
decision reasoning advantageous .
Another prot.ot.ype based o n t.h e pa rad igm o f Illul t.i -agent. systems is 1\'1 ADM A N [I': I ·~ !)L]. I':ac ll " "(,(, OWII :;
a personal diary agent whi ch she or he ca n access via a g rap hi ca l di s pl ay. III o rdl'l' 1.0 sc ll ('dlll(' g ro llp
m eetings , the co rresponding diary agen l.:; cooperat.e in fixin g a d a l.c (.h<lI. hl'" t. fil" I h('ir o WII(' r,, ' II('('(/:;.
MADMAN uses co ncepts proposed ill [1\\589], esp('cia lly t.inw profih fo r days alld a d .ivit.i('s.
Sen a nd Durfee [SD!J2a, SD92b] argu e t.hat. l11<'e ting scheduling is a n inl«'('(' II(.ly di s t.rihut('d proc('ss
because of the natura l distribution o f calendar data . l3 y vi ewing ncgot.iati o n ovc r IIl cctillgS as a dis­
tributed search process they propose a fo rm a l m o del to d ete rmine pe rfOI'lIl (1I1 C(' a nd (' tri c i(' ncy o f di fr(' f'(' nt
scheduling strategies . Their wo rk is direc t.ed t.oward develop ing int.e llige nt. agc nt.:; I hat. call Il<'got. iat.(' o ve' r
scheduling options on behalf o f their assoc iat.ed hum a ns.
Although o ur d eveloped prototype was inspired by ideas com ing from a ll app li ca t.i o n ind (' IH' nd (, lIt ap­
proach to modelling hum a n comput.e r coo perat.ive syst.em s [SMIHlO], (.ht' rc arc s inlil a rit.ies (.0 idpas and
concepts of some o f the above m ent.ioned systems.
Like VS , we st ress a use r fri endly int.e rface to set u p a m eeting a nd t.o wa tch th c o ngo in g coo lw r,d.io ll
processes. Lookin g at [MS88]. t he concept of th e ca le nd a r agent a nd 0 111' age nt lIl o del see lliS cO l1lparah l1'
at a first glance. However , Mattern et a l. concentrated o n concepts o f di s t.riblll .('d prog),(II11lllin g a lld
used the app li cat ion domain as a m eans to show t.he bene fits o f their lI e wly deve loped, eVl' nt.-o ri (, II(N I
concurrent language CSSA. \Ve, in contrast, g ive emph as is to modellin g t he coo peril.t io n procf'SS ill a
multi-agent scena ri o; we rely o n the ' low-l evel' concepts like paralle l progral1lmillg as a lready g ive ll a nd
concentrate o n the ' hi gher ' level o f coopera ti o n. With respect to th e po int o f cooperat io n , o ur wo rk is
mostly related to tha.t o f Wo itass. However , it is m o re genera l , beca use we do no t. use a m edi a.to r ag('nt
to direct cooperation.
Beside the main point o f modelling cooperat io n , we a lso work o ut a nove l featllre, namely tir e int.eg rat. io ll
o f different , already existing calendar tools like EMACS Calend a r a nd Sun 's Crl klltoo l in t h(' ove rall
appointment system .

4

Chapter 3

Appointment Management as a
Typical Cooperative Scenario

As already pointed out in the first chapter, electroni c appointment scheduling ca n be seen as a cooper­
ative problem between humans and com puters as intelligent assistants. It 's a rea l di st. ribut.ed prob lem ,
because it is practica lly impossible to centra lize the calendars beyond a certain size of a group and
across organisational units . Furthermore, the pr ivacy of the users ' persona l data and the na turalness of
the problem are reasons against. a centralized vers ion and promote a distribut.ed approach.
Whereas latest progress in communications and network technology provides the physical basis to de­
velop a real distributed appointment scheduling system, recent research in computer sc ience has come
up with models supporting both form al and inform a l cooperat ion between geographi ca lly dist.ribut.ed
entities; different approaches have been taken.
Research in Computer Supported Cooperat ive Work (CSCW) has led to sys tems where peop le ca n
cooperate with each other vi a computers even when separated by great dist.ances. However, (,he compu ter
plays only a supporting ro le in such systems, cf. [GMN+Ol]; it does not. participate act. ively in t.he
problem solving process.
Distributed Artificial Intelligence (DAI, cf. [BG 88]) has enab led computers to cooperate wit,h each other .
Drawing on the domain of real- life human cooperation, methods have been developed and formalized
which support cooperation am ong com pu ters; typi cal examples of such methods a re negotiation , contract
net and master-slave. DAI uses the term agent to denote any parti cipa nt, human o r machine, in a
cooperative process .
But there is still a need for a link between these two research directions to support cooperat ion bet.ween
humans and machines. The development of systems supporting the cooperat ion processes between
humans and actively participating intelligent computers is the purpose of Hum all Comput er Coo perat ive
Work (HCCW, cf. [SMH90]).
Appointment scheduling can be seen as a suitable scenario within the HCCW fr a mework . Before we look
at the scenario in more detail , we will fi rst elaborate some requirements for a n intelligent appo in t ment
scheduling system.

3.1 Requirements for Int e llige nt Appointme nt Scheduling

To be well designed a nd widely usable, a n appointment system has to fulfill t he following req uirements:

• The system shou ld be read il y access ible from within the offi ce worker 's desktop environment. It
should be equipped with features providing suffi cient mot ivation fo r a use r to ma inta in a n up-to­
date on-line calend ar .

• The user interface should be s imple and preferably graphical, s imi lar to a classica l paper calend a r .

• The process of fixing an appointment should not be too st rict but should offer a certain degree of
fr eedom to the participa nt.

5

• The system shou ld try to minimize the negotiation effort by taking into account several a lternatives
and selecting the most appropriate one depending on a given situat.ion.

• The system should provide assist.ing functionality, i. e.act ive ly take part. in t.h e schedu ling process;
informing participants about rescheduling of an appointment or tr iggering a nl'W a ppo int.lll (' nt
process are examples.

• A comprehensive set of functional capabilities should be provided, for inst.an ce t.h e int.eg rat.ion of
appointment schedu ling with the reservation of a m ee ting room is des ira hiP .

3.2 Involved Agents

As in DAI , we use the general notion of agent to denote any type of participant, in a Ill ('('(,ing. Pur­
thermore, we have adapted the multi-agent fram ework provided from OAT and deve lo ped a generaiil:('d
agent mode l for designing and implementing II CCW scenarios like appoint.ment. scheduling.
Our agent model distinguishes between the part. of a n agent which is res po nsihle fo r tll(, l' x('('ut.iv(' t.asks
(the body of the agent.) and the part which is responsible for communicat.ion and coo rdinat.i o n (Lh(' hr(ui
of the agent).
The body consists of all ski ll s and fun ct ionalities an agent is able to perfo rm 0 11 it.s O WII, i. e. \\'it.hollt.
any cooperative embedding.
The head is the ' intelligent' part of an agent whi ch can manage the participatiou of t.ll<' agl'lIt, wit.hiu t.he
cooperation process. With the he lp of this knowledge the agent. can decide whet.ll('r it. ca ll cont.rihut.e
to the solution of the overall probl em , which cooperation method is t.h e mos t. appropriat.l' fo r a. g ivC' 1I
problem to solve, e tc. The goal is t.o be able to add a head to any ex isting soft.ware t.o creall' a. coo lw rat.iv C'
agent.!
Within the scenario of automat.ic appo int.ment schedu ling d iffere nt groups o f part.iripant.s ('(\.11 Iw dist.ill­
guished:

• the persons who initiate a meeting o r ought to attend a meet. ing

• resources like m eeting rooms , pieces of eq uipment etc .

Humans are more sophisticated than machin e agents a nd t.h ere for e haY\' a IlI'Olilill l' lIt. pos it.i o ll . 1'11<'
human participants are linked to each ot.he r and to resource agent.s via a special t.ype of age nt. , th(~ user
ag ent. It is designed according to t.h e basi c agent model; however , it prov ides ext.ra powerful facilit.i('s :

• knowledge about the human (preferences, ski lls, abilities),

• the ability to represent the human when she or he is not present,

• a graphical user interface presenting cooperation processes to the user and functi o naliti es so that
the human does not necessarily have to handle cooperation in terms o f messages, a nd

• sophisticated fun ctionaliti es, from advising the human in select ion of cooperation met hods to
relieving the human from having to deal exp li cit ly with management of coope ration.

The concept of an agent alone is not enough to model a human-machine cooperation as it. is necessary
for intelligent appointment management. What is missing is a cooperation model by whi ch humans
(through their use r agents) and machine agents can in teract in an effect ive manner. Su ch a kind of
model is further elaborated in the next section.

lOur agent model is d escribed in m ore d e tail in [SMH90j.

6

3.3 Cooperation Model

In the following, a conceptual mo del for support. ing integrated hum a n-compu ter cooperati on is short.ly
described. The model is based on cooperat ion object.s, cooperat io n primit.ives a nJ cooperat io n m et hods.
A cooperation object is a uni t of work, something a n agent or a group of agent.s has to Jo. It subsumes
concepts like goal, plan, sched ule, t.ask assignment, etc. A cooJlemlioll]l7' illlitive is a basic unit of
communicat ion among agents. Cooperation primitives a re messages types drawn from speech-act t.lwory.
They convey cooperation objects, thus providing the operationa l basis for interact. ion bet.ween agents
(see (Figure 3.1).

PROPOSE

ACCEPT

REFINE

REJECT

MODIFY

TELL

REQUEST

ORDER

m essage
types

goal
goal_decomposition

plan
schedule

task_assignment
resource_allocation
untyped_information

cooperat ion
objects

{

expected...replies }
6J deadline

'/"C]J1!J

("()1Is/nl.ill/s

Figure 3.1: Cooperat.ion Prinlil.iv('s

A cooperation m ethod provides a common fram ework for the participation o f age'nt.s wit.hill a coope' ra­
tion and can be seen as a procedure prescribin g how the agent.s can e rri ci('ntiy cOlldu cl. a eoo f)(' rat.ion.
Cooperat ion methods are composed of cooperation primitives a nd fun ct ions fo r decis io n ma.king . \VI'
have already shown somew here else [LDS92] how well- known cooperat ion 1I 1f'1.hoJs like' Contract Ne'I.,
Negotiation or Master-Slave can be composed by using cooperat io n pl"lmll.lve's Now, t.he same will
be done for scheduling meet ings involving human interaction and automat ic assisl.ancc' hy int.e lli ge nt.
calendar management.
Tables 3.1,3.2 and 3.3 sketch t he fl ow of cont ro l a nd the temporal o rder ing of inl.('l"a.et ions ill fixing an
appointment in different ways respectively. Whereas Table 3 .1 represents a very opt illlist ic st.rategy, t.h e
other two high-level protocols cor respond to more realist ic proced ures. The proecd ur('s a re' descrilwd
in more detail in the next sect ion. The diffe rent high-level protocols can be rega rJcd as new fixe'd
cooperat ion m ethods named APPOINTMENT1, APPOINTMENT2 o r APPOINTMENT3 .

Whereas, here, emphasis is given to cooperat ion primitives and methods and to show t.h eir app li cahi lit.y
to model a cooperat ive scenar io like appoint.ment scheduling , the next sect.ion is concerned wit.h t.1](',
basic procedure for making a n a p pointm ent.

3.4 Basic Cooperation Strategies

To sched ule and manage an appo in tment a wide variety of different conditions have to be cons idered.
The whole spectrum of making appointments has t.o bc supportcd, ranging fro m fully spec ifi ed proposals
up to very vague ones. For specifi cation , the following parameters are of spec ia l importan ce:

• participants: Two types of partici pants can be d ist ingu ished: m andatory ones and optional ones.
This principle distinction can be furth er genera lized and handl ed by partial order in g. Another
feature of participants is the differentiation between the status within an organisat ion and with
respect to a certai n mee ting ; it can also be important within the evaluation process . The spec­
ificat ion of a group identifi er instead of a ll names of these people as well as the different cases
whether the initiator wants to attend or not, are furth er interesting questions in that context .

7

111ltIator

APP_PREPARE_PROPOSAL

send_app_proposal

PartIcIpants

- PROPOSE (appointment, exacLtime, ...) ----+

receive~pp_proposal

APP_EVALUATE_PROPOSAL

send_app...reply
+-- ACCEPT -
+-- REJECT -
+-- MODIFY -

receive_app...reply
APP _EVALUATE_REPLIES I

- ORDER (appointment, ...) ~
goto(send~pp_proposal) I goto(send_app...reply)

Table 3.1: Optimist ic Appointment Management.

• time: This attribute is essential for the evaluation procedure. It. can be a t.ime point in whi ch case
the attribute duration, see below, ha'3 to be specified (e.g. tomorrow , 14:00), a continuous time
interval (e.g. Tuesday, next week, 14:00 - 16:00) or a set of disjunct t ime intervals (every day next
week in the morning) or even unspec ified (e.g . soon , as soon as possible) .

• duration: It can be a fixed value specifying the duration in hours or minutes (e .g. one hour) or
an interval identifying an approximate dura tion (e.g. between two or three hours, less than t.wo
hours) .

• topic: The topic is relevant for a participant 's personal assessment of the importan ce to attf'nd a
meeting or not.

• priority: This value indicates the initi ator's personal assessment of the meet ing 's importan ce. The
priority value is also a measure how easy it would be to reschedule the mee ting.

Optional parameters might be:

• type: Different kinds of gatherings a re im aginab le, e.g. meet ing , appointment, vis it , talk , confer­
ence, class. These different types can be associated with different default values of duration.

• place: Here, the initiator specifies where the meeting should take place.

• frequency: This attribute indicates whether the meeting should take place more than once and in
what rotation (e .g. daily, weekly , monthly, every first Monday o f a month , yearly).

• general information: The user can provide some free textual information about things concerning
the meeting.

The basic negotiation procedure is mainly based on the priority of a meeting and on the authority
relationships between the initiator and the participants of the meet.ing. The priority of a meet.ing
specifies the human's individual preference to attend the meeting. With reference to the aut.hority
relationships mainly two different levels can be distinguished:

• superior-subordinate , e.g. head of department and employees of the department

• peer-to-peer, e.g. colleagues of a research group

In order to make an appointment, different strategies can be used: Within the optimistic strategy t.he
initiator sends a request with a specific time schedule to a ll specified participants ' appointment managers

8

il1ltiator Participants

APP _PR EPARE_PROPOSAL

s end_app_proposal
- PROPOSE (appointmcnt, rouglLtime, ...) ~

receive_app_proposal
APP _EVA LF'REE_T IM E

s end_app_inf 0

+----- REFINE (free_time) -
receive_app_info

APP_EVAL_ INF'O

send_app_proposal
- PROPOSE (appointmcnt, cxacLtilllc, .. .) -

receive _app_proposal
A PI' _EVA LUATE_I'ROI'OSA L

send_apPJeply
ACCEPT -

~ fl,E.JECT
~ MODIFY -

APP _EVAL UATE_REPLIES I
- ORDER (appointmcnt, ...) ~

goto Csend_app_proposal) goto Csend_apPJeply)
gotoCapp_prepare _proposal) gotoCsend~pp_info)

Tab le 3.2: Realist ic Appointment Management , Cent.ra li zed l\lclhod

il1ltiator I ParticlpanLl ParticlpanLI Particl panL.l
APP_PREPARE_PRO POS AL I
u:nd-a.pp _pro p o u .l

- PROPOSE (a ppointment. rough _l ime •...) -_

I
re c eive_a.pp_pro p o sal

APP_EVA L_FREE_TIM E
send_App_tep l y

_ _________ RJo:J t: C T - --

A PP_EVA L_F'REE_ TI M E
so! nd-app_reply I

- REF IN E (apPoln t ln e lit. cO lIl!ltrllllned _ rough _ t iIt18 • •••)

I
re c e l ve-.app_tehnelllent

- REt' lN E (ar'poill tll '81It , CO ,.lItraIIlI.HJ _rn uKh _ tlIIl C, ...) - -

- ----- ------------------ IlEJE C T ---- I
p,, -: •. j V ~ _lI. P IJ_r<'! fi 11 "' 111 "11 ~

A PP_EVA L_F'HEG _TI ME
S"! lI d_4Pi-'_·"j.Jly _ ________________________________ . _______ A (:C I': J" I '

re c e iv e_pp_r ep l y
APP_EVALU ATE_REPLY I I I
---- ORDER CapPO in"i, e l" •.. .) - - ----, --- - ------- -- - , -

Table 3.3: Rea listi c Appointment Management. , C ircular

H. E.JE.C'!'

which are a part of the respective user agents. hoping that they will accepUf a ll appointment managers
accept within a given time constraint , their users are asked for confirmation of the meeting. 2 If a user
rej ects or if she is already occupied at the specified time, t he appointment man ager rejects the proposal
providing the reason for rej ect ing. With that know ledge in mind , the initiator will , t hen, try anot.her
schedule. As is often the case with even a small group of three or four persons , th ere may be no fr ee
time slot. The specific, very constrained mee ting proposal has to be relaxed; a more realistic strategy
has to be tried out. Within the realistic st rategy different procedures can be distinguished. They are
based on different authority levels of the attending persons and on priorities to a.ssess the importance
of a meet ing and perhaps to resched u Ie other ones.

2If humans are involved in a cooperation, (.he final d ec is ion should a lways remain wit.hin thei r responsibility.

9

In the following, two of these realistic strategies are considered in more detail. They differ mainly
in the point where the actual planning and schedu ling of appointments takes place. The one is a
more centralized app roach where the initi ator (respectively her user agent) of a meeting co llects all
information about the participants and then evaluates it, the other resembles a circu lar which is started
by the initi ator; here , fixing of an appointment is done locally by each part icipant by constraining the
possible time intervals.
Within the centralized approach, the initiator of the appointment specifies one or more rough time
slots (a set of perhaps disjunct time intervals) within which the appointment ought. to take place and
provides a subject for the appointment that enables the other participants to vali date the necessit.y of
their attendance to the meeting. Further const raints may be added which state the initiator 's personal
preferences concerning the appointment. These preferences can be relaxed during negot iation. The
initiator's appointment manager samples these data and starts a negotiation with the appointment
managers of all tentative attendees by proposing t he meeting specificat ion.
The addressed appointment managers reply to the proposal by communicat ing all t.heir free time slots
that match the proposed time slot to the initiator.
If some user answers are missing after a given time per iod (maybe because of a connect ion failure), t.he
initiator's appointment manager takes respective steps . It informs the user about the failure and awa its
user commands for further proceed ing. If the user wants the same action to be taken several tin1f's , t.he
user agent may even ' learn ' it.s user 's behaviour and invoke the command aut.omat.ically t.he next. t.ime
such a failure happens.
Upon receipt of the replies the appointment manager of the initiating agent superimposes all t.he time
slots to determine an appropr iate time. Two results can emerge from t he eva lu at.ion process: eit.h er a
list of time intervals where all participants have free t ime, i.e. where the meet.ing could t.ake place3 or
no time interval is found where the meeting cou ld take place.
If a possible solu tion is found immed iately the appointment is proposed for that. specific time. Aft.er
receipt of respective confirmat ion messages from the participants the meeting is set up by ordering t.he
participants to plan for the meeting at that time.
If a participant rejects she provides a reason for rej ect ion to the init.iator. Depending on her preferences,
her user agent automatically marks the time interval with that reason as occupied; ot.herwise, the t.ime
interval is treated as free in a next meet ing proposal.
If we differentiate between mandatory and optional participants of a meet ing, we need not to reschedu le
in case an optional participant resp. her/his user agent rej ected. The meet.ing can be scheduled wit.hout
her/him.
If a mandatory person rejects or in the case where no common ly free time int.erval is found by the
initiator's user agent reschedu ling of meet ings has to take place. A possible procedure might. look like
follows:
First, the initiator 's appointment manager calcu lates t he time slot which entails minimal con fli cts be­
tween mandatory participants; it then requests t he mandatory conflicting participant.s t.o eva luate t.heir
personal relative importance of the proposed meeting related to the meeting they have already scheduled
for this time slot. The confl icting participants inform the initiator 's appointment. manager about. t.lwir
assessment of the new meeting by sending one of t he two possibilities :

• higher: The new appointment. is more important than myoid one .

• less: It is less important than myoid one .

If all conflicting participants have assessed the priority of the new meet ing high er then their old one,
the initiator's appointment manager orders a ll agents to reschedule.
If some conflicti ng participants have assessed the actual meeting priority less than their old one, the
authority relationships are considered4 :

If the highest authority is with the initiator , its appoin tment manager can forcibly order all part icipants
to attend the meeting after hav ing examined the conflicting reasons. The initiator , however , also may

3If no other meeting has been scheduled for t.hat time in the meantime.

4Since we want to design a 'democrat. ic' appointment system, authority levels are o nly employed if there is no ot.her
a lternat ive to come to an agreement.

10

decide to give up the current. proposa l in case t.he pa rt.i cipants' rej ec t. in g reasons are t.oo s t.rong (e .g. o n
holidays at that time, visit o f t.h e firm 's p resident , etc .). To reason a bo llt. s ti ch casps, knowledge a nd
rules about other persons a nd event.s must. be modell ed and t.rea t.ed in t.lw hunl a ns ' II se r age nt.s. The
initiator has to start a new proposal with relaxed a nd /o r new time constraint.s .
If the initiator and o ne or m ore confli cti ng age nt.s a re in a peer-to-peer re la t.i o n t.he process o f o rci(' ring
to reschedule can no t. take place. The init.i ator is info rm ed by its appoint.ment. Ill a lla ge r t.ha t. II(' has t.o
specify new time slots or rela.x t.he const.raints, e.g. the attendance of ce rta in part.i cipants.
We are aware of the fact that resched ulin g of a ppo int.lllent.s is Illll ch 1Il0 re cOlllpkx thall desc ribed
here. However , as a lready stat.ed, the po int. of work fo r now was no t. t.o nlodel a. cO lllprehcns iw and
fully working a.p pointment system but t.o s how the fl exibility a nd genera lity o f t.h e age nt. ll10del and
cooperation model for inherent.ly dist ribut.ed real world a pplicat ions.

11

Chapter 4

Graphical Interface

In general, the user interface is the specialised hardware and software used for interact ion between the
user and the system . In our multi-agent view, it is a portion of the body of a user agent and is mainly
responsible for

1. presenting the ongoing cooperation processes to the user ,

2. providing a means to define new cooperation methods and

3. conducting an application-specific cooperation by requesting input and presenting output dat.a .

In the following, we shortly describe how a user-friendly interface for schedu ling appointments shou ld
look like.
To keep electronic appointment management as natural as possible , the user interface should present. a
graphical presentation of the person 's calendar to set up meetings.
User input should be mouse-driven. By starting an appointment process an appoin tment window pops
up to the initiator (see Figure 4.1).
At the moment, the window provides entry fi elds for entering/d isplaying the above mentioned meeting­
related attributes 'participants' (mu lt iple selection menu), 'duration' (integer value in minutes) and
'meeting subject'.
For now, time intervals to set up a meeting can be chosen within a week. The procedllre is as follows:
the user leafs through the calendar months by the 'Next '- resp. 'Prev'-Buttons; she then selects a day
whose week in turn will be displayed in the week frame. Within the week fram e t.h e user can specify
non-continuous time intervals as proposal for possible meeting time; e.g., in Figure 4.1 t.h e meet. ing
should either take place somewhere on Wednesday, the 19th , in the afternoon or on Thursday morning
next day.
The 'Start Monitor '-Button can be pressed to initialize a monitoring process of the ongoing cooperation
(see below).
Finally, with the 'Make Appointment '-Button in the upper left corner, a cooperation method can be
selected and started.
At given times during the scheduling process, user input is requested, e.g. whet her the user accept.s a
meeting proposal, whether he is willing to reschedule an appointment etc.; respective pop-up windows
are created.
Whereas the appointment window is necessary for starting an appointment process, a monitor window is
necessary to display the ongoing cooperation process to the user. This is necessary because the process
of automatic appointment schedul ing is thereby made transparent to the user. A user-readable trace of
certain messages exchanged within the cooperat ion process shou ld be presented. For example, a user
may want to trace all messages

• sent to one or more participants or resource agents,

• received by one or more participants or resource agents,

• exchanged as part of the specific appointment schedu ling cooperation process, 01'

12

• exchanged whenever a condit ion is satisfied (e .g. whenever reschedu ling t akes pl ace) .

The monitoring process is handled by one or more so-called monitor agents. They are a special type of
agent controll ing parts of the coopera t ion with in the app licat ion.
Technical and implementa tional as pects of the schedu ling process and the user in terface a re presented
in the next chapter .

(Make Appointment .)

(sta1. Mlnitor)

August 1992

(Next) (Prev) 8.00

s u Mo Tu We Th Fr Sa 9.00

2 3 4 5 6 7

9 10 11 12 13 14

16 17 18 6]] 20 21

23 24 25 26 27 28
30 3 1

Patticipants

1

8

15

22

29

10.00

11 . 00

12. 00

13 . 00

14.00

15. 00

16. 00

17. 00

18.00

19. 00

20. 00

AppOintment ManacJer

Duration 'LI'_20_---11 ~bjectl proje ct meeting

Week statting Aug ust, 17th

Mond a y,17th Tuesday, 18th wednesday, 19th Thursday, 20th Fri day, 21 st

........... . ..

..........

...............

............ . ..

Fi gure 4 . 1: Appo int.ment. Mana.ge r - Use r Int.e rface

1:3

Chapter 5

Irnplernentational Issues

A first version of the appointment scheduling system has been implemented on MECCA 1 , running on a
local area network of Sun Sparc workstations.
MECCA is based on a logical programming system combining PARLOG and Prolog[CG87, Da90), and
on NeWS, the Network extensible Window System (NeWS) from SUN.
The PARLOG language provides a natural and effi cient embedding of pa rallelism into logic program­
ming, whereas Prolog backtracking and meta-level programming faciliti es are used to implement soph is­
ticated reasoning.
The application independent modules, i. e. a primary simple version of a general agent model, the
cooperation primitives and the cooperat ion methods, are implemented in PARLOG. Communication,
i.e. message passing between agents, takes place on top of the TCP lIP protocol with PARLOG/Prolog
built-in TCP lIP primitives.
According to our agent model an agent is divided into three modules . The agent communi cator mainly
maps the high-level communication facilities down to TCP lIP primitives. Th e programmer need no
longer worry about getting the network adresses of other agents and establishing connections. The
communicator gets its information about other agents from an agent directory service (A DS). The ADS
stores the name, type and network adress of each agent registered at the parti cular ADS and a lso the
services an agent offers to the system. There may be several ADS 's running in a scenario each managing
a group of agents. Current ly the ADS 's do not communicate to each other, but in future versions of
MECCA they will be implement.ed as agents.
Incoming messages that trigger new cooperations are passed to the agent's head , where they are handled
by a new process which becomes dedicated to that cooperat ion until the cooperation is finish ed. The
head of the agent handles cooperations with other agents. If the agent is involved in more than one
cooperation at a time, these a re managed by several parallel Parlog processes. The cooperation methods
are described in MECCA's "Parlog Meta Code" , which is comp iled down into Parlog. This code is sti ll
under development and will ease the way the programmer has to specify cooperation methods .
The agent's body may consist of Parlog , PROLOG , C or NeWS code. Body fun ctions are usually ca lled
from within a cooperation method.
Humans participate in th e appointment scenario by means of their user agents. Among other things the
user agent provides a graphical user interface to set up a meeting and to show the flow of cooperat.ion
during appointment schedu ling. The user interface is mainly implemented on the NeWS server side, and
a control process on the Parlog side.~ It a llows the user to specify new tasks to the system in a graphical
sty le . The user agent transforms the input from the user interface to a call of a spec ific cooperat.ion
method.
Main advantages of NeWS a re:

• handling of most of the user interact ions within the NeWS server by downloa ding code into the
server , thus keeping the commun ica tion between server and client. low

I Multi-Agent Environment for the Constr ll c ti o ll of Coop erative Applicatio ns

2The implementat.ion of the NeWS lIse r inte rface was done by F. Bomarius and M. Ko lb.

14

• poss ibility to des ign and test the user interface independent.l y fro m t.h e a ppli ca t.i o ll

• simple client-se rver commu ni cat.i on a llowing easy access fr om t.h e P 1\ RLO(; / Pro log sys t.em

• easy di stri but ion across m achines

One solution of providing a g rap hi cal use r int.erface mi ght. have been 1.0 ext.elld a ll ex is t.ing calenda r t.ool
with respective hooks for making a ppoint.ment.s. This, however, requires ti lt-' source rode of the too l.
It a lso forces users of o ur sys t.em t.o use one pa rti cular tool, whi ch mig ht. no t be des ira ble, especia lly if
they a re used to using a different calend a r tool.
This leads to a centra l point of our current implem ent. a tion of a n intelligent. a ppo int.mellt. systenl : t.he
integra tion of exi s ting calenda r tools. T his fact is import a nt because of two reaso ll s:

1. A m ixture of different too ls emph as izes t.h e feas ibility of our a pproac h 1.0 model a gelH'ra l fr a nH' wo rk
to const ru ct multi- agent a ppli cat.i ons in hum a n computer scena rios .

2. The user does no t have to worry a bout ye t an ot her new calend a r tool he is 1I 0t. we ll a.cqu a int.ed
wi t h . He can s t.ay in hi s acc ustomed enviro nm ent ; he onl y has to learn how 1.0 m a ke, I'< 'scll<'du le
o r delete appointmen ts.

However , t a king t hi s line, we had to s pec ify co rrespo nding int.erfaces fo r eac h o f tir e calend a r t.oo ls .
Norm a lly, each pa rti cipa nt 's d a t. a a re s to red in a specifi c calend a r fil e loca t.cd ill hi s hOI11 e direc t.o ry.
The interfaces have to read a nd wri te t hese fil es on t he one ha nd ; on th e o t.h e r ha ncl , t.h ey hav(' 1.0 u s(~

a common representa tion of a ppoin t ment data wh ich is unders t. a nd a bl e by t.h e <l ppo illt.II)(' llI. scl]('dil lilig
algorithm a nd every calend a r t.oo l. T he fo llowing ma in tas ks o f a n in te rfac(' call 1)(' id (, lIt.ifi ('d :

1. read/ wri te from /to the perso na l calendar fil e

2. cause t he calend ar too l t.o pe rfo rlll act ions like upd a t.ing, re rea dill g o r d(' ld ili g d a t. a.

3. tra nsform calendar tool s pec ifi c dat.a to a co rnill on appointment fo rmal a lld vic(' v<'rsa

At the m oment, EMACS Calend a r a nd Sun 's Calentool are integra ted int.o o llr a ppo intill ellt sys t.elil .
However , in fact every calend a r t.oo l whose calend a r fil e is accessib le a nd modifiable, cO llld be integ ra t.ed
in the aforement ioned way.
A las t rem a rk is dedi cated to t. he p roblem of time. l3y desc ribing the genera l a ppo int.ment meth ods ill
T ables 3.1 ,3.2,3 .3 we mentioned some fun ct ions as e.g. APP_EVALUATE_ FRELTJ IVm whi ch res ide in
each agent 's head . T he fun ctions heav il y rely on a representat ion of time uniform to a ll age nt.s hecall s('
time representa tion plays a centra l ro le in a ny a ppointment eva lu a tion a lgo rithm .
Hum ans' norm al idea of time in terms of years , months, weeks, days a nd ho urs is not well suited fo r
intern al computer usage fo r reasons of storage. Comparisons between different time va lues wo uld be
complicated . Because t ime can be seen as a one- d im ensiona l vector with a rbitra ry o ri gin , time can be
represented in a computer-m anageab le form as a n integer va lue of m inutes, e .g. intege r va lue " 1" can
be assigned to time poin t "01.01.1 992 O.OOhrs." ; then , t he eva lua tion between intege r va lues and time
points a nd vice versa is straight forward .
For further details on the implem enta tion , pa rts of the programming code a re li s t.ed ill Appendix 1\ fo r
those readers who a re acqua inted wi t h PARLOG and Prolog. 3

3M . Kolb contributed a part of thi s ch a pter.

15

Chapter 6

Conclusion and Outlook

In this report , we have shown that the multi-agent paradigm in comb in at. ion wit.h ollr proposed coop­
eration model is suitable for specifying inherently distributed cooperative scenarios like appointment
management. This allows the integration of machines into human working environments as intelligent
assistants. The integration is accomp lished by the concept of the user agent, whi ch can act on behalf of
its user. A rough sketch towards implementation of a prototype system has been presented. VVe believe
that the chosen approach is a promising one to build future sophisti cated appointment ma nagement. and
calendar systems.
Based upon our experi ences with developing this applicat ion and others [B092]' t.h e fut.ure global goal
of our research group is to fully specify and develop A·fAIL, a formal multi-agent. int.eraction language.

Acknow ledgement

I would like to gratefu lly acknowledge F . Bomarius, A. Burt , IVI. Kolb and D. St.einer o f t.he KIJ\:­
Teamware group for their fruitful discussions on this topic a nd their help on implementa t.i ona l work.
This work was partially supported by the European Community as part of ESPH.IT II Proj ect. 5362,
IMAGINE (Integrated Multi-Agent Interactive Environment).

16

Appendix A

Selected Source Code

Cooperation M e thods

%
% Opportunistic Appointment Schedul i ng implementation
%

% Authors: A. Lux, D. Steiner

% initiator's role
mode optimistic(Coopid? , Agentlist?,Timelnterval?,Timeout?).
optimistic(Coopid,Agents,meet(D,Timelnterval,S),Timeout) <-

% first propose from initiator to the user agents
propose(Coopid,Agents,optimistic(meet(D,Timelnterval,S)),_) &
% Answers from User Agents
recv(Coopid,Agents,Answerlist,Timeout) &
opti_continue(Coopid,Agents,Timelnterval,D,S,Answerlist).

mode opti_continue(?,?,TI?,D?,S?,Answerlist?).
% Acceptable to all user-agents
opti_continue(Coopid,Agents,Int,D,S,[(_, accept(Int))]) <-

%second propose from initiator, now to the users
propose(Coopid,Agents,meet(D,Int ,S),_) &
recv(Coopid,Agents,UserAnswers,30) &
opti_process_user_answers(Coopid,Agents,Int,D,S,UserAnswers)
true;

% Acceptable to the next user-agent in the list
opti_continue(Coopid,Agents,Int,D,S,[(_, accept(Int)) I Rest]) <­

opti_continue(Coopid,Agents,Int,D,S,Rest) : true;
% Some user-agent rejected, thus must reject all agents.
opti_continue(Coopid,Agents,Int,D,S,[(F, _) I _]) <­

write(F) &
write('s user agent rejected: Optimistic method failed.') &
nl &
reject(Coopid,Agents,Int,_).

mode opti_process_user_answers(?,?,?,?,?,UserAnswers?).
% Acceptable to all users
opti_process_user_answers(Coopid,Agents,Int,D,S, [(_, accept(Int))]) <-

order(Coopid,Agents,(Int,D,S),_) &
prolog(make_entry(Int,D,S)) : true;

17

% Acceptable to the next user in the list
opti_process_user_answers(Coopid,Agents,Int,D,S, [(_, accept(Int» I Rest]) <­

opti_process_user_answers(Coopid,Agents,Int,D,S,Rest) : true;
% Some user rejected, thus must reject all agents.
opti_process_user_answers(Coopid,Agents,Int,D,S,[(F, _) I _]) <-

write(F) &
write(' rejected: Optimistic method failed . ,) &
nl &
reject(Coopid,Agents,Int,_).

% participant's role

mode optimistic(Msg?).
optimistic(Msg) <-
% Participant's user agent receives meeting proposal from initiator

Msg = [Coopid,From,propose(meet(D,Timelnterval,S»] &
% user agent evaluates personal calendar

prolog(evaluate_time(Timelnterval,D,S,Answer» &
% user agent sends answer to initiator

formulate_answer(CQopid,From,Answer,Timelnterval) &
% User herself now receives meeting proposal from initiator

recv(Coopid,From,Msg1) &
% User accepts or rejects proposal

eval_reply(Coopid,From,Msg1) &
% User receives final message whether meeting takes place or not

recv(Coopid,From,Msg2) &
eval_reply(Coopid,From,Msg2) .

18

%
% Realistic Appointment Scheduling implementation
%

% Authors: A. Lux, D. Steiner

% initiator's role
mode realistic(Coopid?,Agentlist?,Ti melnterval?,TimeOut?).
realistic(Coopid,Agents ,meet(Duration,Timelnterval,Subject) ,Timeout)
<-

% Proposal is sent to user agents
propose(Coopid,Agents,realistic(meet(Duration,Timelnterval,Subject»,_) &
recv(Coopid,Agents,Msgs,Timeout) &
% user agents have refined possible time slots
extract_busy_slots(Msgs,BusySlotList) &
Duration = [Dh,DmJ &
Appt = appt(Dh, Dm , Subject) &
prolog(findall(PosTime,
schedule(Appt,Timelnterval,BusySlotList,PosTime),
PosTimes» &
% loop over the list of times potentially acceptable to all users
reali_try_times(Coopid,Agents,Duration,Subject,PosTimes).

mode reali_try_times(Coopid?,Agents ? ,D?,S?,PosTimes?) .
reali_try_times(Coopid,Agents,D,S , [PosTime I RestTimesJ) <­

% Proposed time (as a list) is sent to users themselves
propose(Coopid,Agents,meet (D, [PosTime] , S),_) &
% user answers are either accept or reject
recv(Coopid,Agents,UserAnswers , 30) &
reali_continue(Coop i d,Agents,D,S,[PosTime],UserAnswers,RestTimes).

% Scheduling algorithm found no po s sible time for the meeting
reali_try_times(Coopid,Agents,_ , _ , [J) <-

write('No available t ime in users calendars . ,) & nl &
reject(Coopid,Agents,[],_).

mode reali_continue(?,? , ?,?,?,?,?).
% all users accepted
reali_continue(Coopid,Agents,D,S,Timelnt, [(_, accept(Timelnt»J ,RestTimes) <­

order(Coopid,Agents , (Timelnt,D,S),_) &
prolog(make_entry(Ti melnt,D,S » : true;

% acceptable to the next user in the list
reali_continue(Coopid,Agents,D,S,Timelnt, [(_, accept(Timelnt»IRestJ,
RestTimes) <-

reali_continue(Coopid,Agents,D,S,Timelnt,Rest,RestTimes) : true;
% a user rejected a proposed meeting time
reali_continue(Coopid,Agents,D,S,PosTime, [(From,_) I _J ,RestTimes) <­

write(From) & write(' rejected ,) & write(PosTime) & nl &
reali_try_times(Coopid,Agents,D,S,RestTimes) .

% participant's role

mode realistic(Msg?) .
realistic(Msg) <-

19

% first propose from initiator
Msg = [Coopid,From,propose(meet(D,Timelnterval,S»] &
prolog(evaluate_entries(meet(D,Timelnterval,S) ,Entries ,Answer» &

% refinement of the given time slots
formulate_answer(Coopid,From,Answer,Entries) &

% evaluation of a possible meeting time
reali_eval_postimes(Coopid, From).

mode reali_eval_postimes(?,?).
% loop over a list of possible times for a meeting
reali_eval_postimes(C,F) <-

recv(C,F,Msg) &
reali_eval_postimes_sw(C,F,Msg).

mode reali_eval_postimes_sw(?,?,Msg?) .
% received message is a meeting proposal to the user
reali_eval_postimes_sw(C,F,propose(meet(D,PossibleTime,5») <-

eval_reply(C,F,propose(meet(D,PossibleTime,S») &
reali_eval_postimes(C,F) : true;

% stop, if user receives any other message (will be either reject or
% order for meeting)
reali_eval_postimes_sw(C,F,Msg) <-

eval_reply(C,F,Msg).

% used by both opti and reali
mode formulate_answer(?,?,?,?) .
% possible answers of the user or user agent
formulate_answer(Coopid,From,refine,Timelnterval) <-

refine(Coopid,From,Timelnterval, _) .
formulate_answer(Coopid,From,accept,Timelnterval) <­

accept(Coopid,From,Timelnterval,_).
formulate_answer(Coopid,From,reject,Timelnterval) <­

reject(Coopid,From,Timelnterval,_).

% First propose of time intervals do NOT get passed through
% eval_reply .

mode eval_reply(Coopid?,From?,Msg?).

% At some point some user or user agent didn't accept, so the whole
% process is cancelled .
eval_reply(_,_,reject(Timelnterval» <-

write(Timelnterval) & write(rejected) & nl;

% All is clear - all user agents and users agree to the time, so they
% are ordered to keep it .
eval_reply(_,_,order((Timelnterval,D,S») <-

write('Update appointment file with ,) & write(Timelnterval) & nl &
write('Duration ,) & write(D) & write(' with subject ,)

& write(S) & nl &
prolog(make_entry(Timelnterval,D,S»;

% This is a final propose in the reali method, to be sent to the user.

20

% His/her reply determines the answer (reject or accept) to be returned.
eval_reply(Coopid,From,propose(meet(D,PosTime,Subject») <-

D = [Dh,Dm] &
Appt = appt(Dh,Dm,Subject) &
time_ok(PosTime,Appt , Answer) &
formulate_answer(Coopid,From,Answer,PosTime).

mode extract_busy_slots(Msgs?, B5-).
extract_busy_slots([], []);
extract_busy_slots([(_,refine([]» I RestMsgs], RestBS) <-

extract_busy_slots(RestMsgs, RestBS);
extract_busy_slots([(From,refine([entry(Tl-T2,E) I
RestEntriesJ» I RestMsgs] , [entry(Tl-T2,E) I RestBSJ) <­

extract_busy_slots([(From,refine(RestEntries» I RestMsgsJ, RestBS).

%% Some functions for checking with the user. Used by both opti and
%% reali.

mode time_ok(?,-).
time_ok(Time,Appt,Answer) <­

prolog(ok_with_diary(Time,Appt»
ok_with_user(Time,Appt,Answer);

time_ok(_,_,reject) <- %% ok_with_diary failed
write('Not ok with diary! ').

'l. Appointment is of form appt(Dh,Dm,Subj ect)

% Answer is either reject or accept.
mode ok_with_user(Time?,Appt?,Answer-).
ok_with_user(Time,Appt,Answer) <-
query_user(['Meeting at time' , Time, '?'J, UserAnswer) &
process_user_answer(UserAnswer,Time,Appt,Answer).

% User accepted
mode process_user_answer(UserAnswer?,Time?,Appt?,-).
process_user_answer(accept,Time,Appt,accept) <-

write('User accepted appointment ,) & write(Appt) &
write(' within time ,) & write(Time) & nl.

% User rejected with reason
process_user_answer(reject(Reason),Time,_,reject) <­

write(' User rejected because of ,) & write(Reason) & nl &
% Should insert this time in user's diary file .

prolog(ti_duration(Ti me,D» &
write('Entry for Reason ,) & write (Reason) &
write(' at time ,) & write (Time) &
write(' with duration ,) & write(D) & write(' is made. ,) & nl &
prolog(make_entry(Time,D,Reason».

21

User age nt functions

% Author: A. Lux

% The body of a user agent!

consult(user_db) ,consult(time) ,
load([calentool, scheduler, icp, emacs]) .

% e . g . user_db entries for specific users and their respectively used
Yo calendar tool

appt_sys([frank,emacs]) .
appt_sys([andi,calentool]).
appt_sys([al,emacs]) .
appt_sys([don,calentool]).
appt_sys([mike,calentool]) .

% The head of a user agent!

% Calendar tool specific values!
calfile(U,File_Ext,Fun_Ext,Cal_Dir,Entry_Fun,Make_Fun)
appt_sys([U, calentool]),
File_Ext = '.app' ,
Fun_Ext = 'calentool',
Cal_Dir = '/home/lux/ ademo/',
Entry_Fun = 'calentool_entries' ,
Make_Fun = 'ct_append_entry',
writeseqnl([U, 'has File_Ext', File_Ext, 'and Fun_Ext', Fun_Ext]), I

appt_sys([U, emacs]),
File_Ext = '.dy' ,
Fun_Ext = 'emacs',
Cal_Dir = '/home/lux/ademo/ ',
Entry_Fun = 'emacs_entries',
Make_Fun = 'em_append_entry ' ,
writeseqnl([U, 'has File_Ext', File_Ext, 'and Fun_Ext' ,Fun_Ext]),
appt_sys([U,_]),
File_Ext = '. x' ,
Fun_Ext = 'zzz',
writeseqnl([U, 'has File_Ext ' , File_Ext, 'and Fun_Ext' ,Fun_Ext]) .

% Time slot evaluation function

evaluate_time(Timelnterval,D,S,accept)
D = [Dh,Dm],
Appt = appt(Dh,Dm,S),
myself(Narne,_) ,
calfile(Narne,FiE,_,Dir,EntryF,_),
str_concat([Dir, Name, FiE], CTAppFile) ,
Cal11 = .. [EntryF, Name , CTAppFile, Tirnelnterval, Entries],
call(Ca1l1) ,
writeseqnl([Appt, Timelnterval, Entries]),

schedule (Appt,Timelnterval,Entries,_) .

22

evaluate_entries(meet(Duration,Timelnterval,Subject),Entries,refine)
Duration = [DH,DM] ,
Appt = appt(DH, DM, Subject) ,
write(Timelnterval) , nl ,myself(Narne,_),
calfile(Narne,FiE,_,Dir,EntryF,_),
str_concat([Dir, Narne, FiE], CTAppFile) ,
Cal11 =" [EntryF, Narne, CTAppFile, Timelnterval, Entries],
call(CaI11),
writeseqnl([Appt, Timelnterval, Entries]) ,

ok_with_diary(Timelnterval,Appt) : ­
myself(Narne,_),
calfile(Narne,FiE,_,Dir,EntryF,_),
str_concat([Dir, Narne, FiE], CTAppFile) ,
Cal11 =" [EntryF, Narne, CTAppFile, Timelnterval, Entries],
call(CaI11),

setof(Sol,schedule(Appt,Timelnterval,Entries,Sol) , S_List),

make_entry([T1 - _] ,D,S) :­
myself(Narne,_),
D = [Dh,Dm],
Appt = appt(Dh,Dm,S),
calfile(Narne,FiE,_,Dir,_ , MakeF),
str_concat([Dir, Narne, FiE], CTAppFile) ,
Cal11 =" [MakeF, CTAppFile, T1, Appt] ,
call(Cal11) ,

ti_duration([T1 - T2] ,[Hours , Mins])
gregorian_to_absolute(T1 , Abs1) ,
gregorian_to_absolute(T2 , Abs2),
Hours is (Abs2 - Abs1) II 60 ,
Mins is (Abs2 - Abs1) mod 60 ,

23

Simple Scheduling Algorithm

%% Author : A. Burt

%% Convert from an intelligible time representation to integers, schedule,
%% then convert the resulting time interval back from the integer
%% form; at the moment, no rescheduling is done

%% "target intervals" are those in which it is desirable to have an
%% appointment; "busy intervals/slots" are the inverse, we do not want the
Y.Y. new appointment to occur then.

schedule (appt (Hours , Mins, _), Targetlntervals, BusySlots, Time-Time1):­
maplist(gregorian_to_absolute, Targetlntervals, AbsTargetlntervals),
maplist(gregorian_to_absolute, BusySlots, AbsBusySlots),
Duration is «Hours * 60) + Mins),
sched(Duration, AbsTargetlntervals, AbsBusySlots, AbsTime-AbsTime1),
absolute_to_gregorian(AbsTime, Time),
absolute_to_gregorian(AbsTime1, Time1) .

%% sched(Duration?, List(TargetTimelnterval)?, List (BusySlots) ? ,
%% Resultlnterval-) .

sched(D, TI, BSs, RI) : -
duration(D, D1), % may want to backtrack
time_interval(TI, TA, TO), % ditto

%% pick a starting time: ST

TA = ST

%% May want to replace calls to member/2 with a predicate that
%% filters out certain busy intervals --- e . g . those with a low
%% priority .
member(BS, BSs),
end_point(BS, ST),
before(TA, ST) % We have already tried
% TA = ST

) ,
add_duration(D1, ST, ET),
before_eq(ET, TO),

%% check that no start point or end point of a busy slot occurs in the
%% time ST to (ST + Duration)

\+
member(BS1, BSs),
start_point(BS1, SP),
end_point (BS1 , EP),
(

before(SP, ET),
before_eq(ST, SP)

24

before(EP, ET),
before(ST, EP)

) ,

%% find the biggest free interval, i.e . the result interval, starting
%% from ST; the end point of this interval will be either the end of
%% one of the target intervals, i.e. time omega, or the beginning of a
%% busy slot .

ERI TO

member(BS2, BSs),
start_point(BS2, ERI),
before_eq(ET, ERI),
before(ERI, TO) % We have already tried
% ERI = TO

) ,

%% check that no busy slot starts during the result interval

\+
member(BS3, BSs),
start_point(BS3, SP1),
\+ (

(

SPl = ERI

before(SP1, ST)

before(ERI, SP1)
)

) ,
result_interval(ST, ERI, RI).

% For later changes in time repesentation / backtracking

duration(D, D).
time_interval(TIs, TA, TO):­

member(TA-TO, TIs) .
result_interval(ST, ET, ST-ET).

%% Handling Time

add_duration(X, Y, Z) : ­
Z is X + Y.

before(X, Y):-
X < Y.

before_eq(X, Y) : -
X =< Y.

%% Slots

25

start_point(entry(T-_,_), T).
end_point(entry(_-T, _), T).

end_point_before(X, Y):­
end_point(X, XEP),
end_point(Y, YEP),
before(XEP, YEP).

maplist <-, [J, [J).
maplist(F, [x-xlIList] , [Y-YlIListl]) : ­

Call = .. [F, X, YJ,
call (Call) ,
Calll = . . [F, Xl, Y1J,
call (Calli) ,
maplist(F, List, Listl) .

maplist(F, [entry(X-Xl, E) IListJ, [entry(Y- Yl, E) IListlJ) : ­
Call = . . [F, X, YJ,
call (Call) ,
Calll = . . [F, Xl, Y1J,
call (Calli) ,
maplist(F, List, Listl) .

26

Calelltool Inte rface F\mctions

% Authors: A. Burt, A. Lux

% Creating a Calentool file with all entries within the proposed time
% intervals

calentool_entries(UserName, ApptFile, TargetIntervals, Entries) : ­
extract_days (Target Intervals , [] , Days),
timestamp(Time),
str_concat(['/tmp/', UserName, Time, 'caldump'], FileName),
create_calentool_filel(FileName, ApptFile, Days),
read_file(FileName, Chars), I,

str_concat(['rm " FileName], Cmd) ,
unix_ cmd (Cmd) ,
phrase(ct_entries(Entries), Chars, []) .

create_calentool_filel(_, _, D).
create_calentool_filel(FileName, ApptFile, [date(Year, Month, Day) IDa ys]):­

Yearl is (Year mod 100),
str_concat(['calentool-E -d ',Day, 'I', Month, 'I', Yearl,

, -f " ApptFile, ' -pd » " FileName], Cmd) ,
unix_cmd(Cmd),
create_calentool_filelCFileName. ApptFile . Days).

% Parsing the file created above, extracting the entries for further
% treatment in the user agent head

ct_entriesCEntries) --)
ct_initial_blurb,
ct_entries_for_day(Entries, Entriesl), !,

(ct_notes -) 0 ; D),
ct_final_blurb,
ct_entries(Entriesl) .

ct_entries([]) --)
[J.

ct_entries_for_day(Entries, Entriesl) --)

C
ct_entry(Entry)

-)

{Entries = [EntryIEntries2]},
ct_entries_for_day(Entries2 , Entries1)

[], {Entries = Entriesl}
) .

ct_entry(entry(TimeInterval , String» --)
ct_time(TimeInterval) ,

27

ct_initial_blurb -->
[10J ,
ct_blurb1,
[10, 10J.

ct blurb1 -->
[CharJ,
{Char =\= 10,
ct_blurb1.

ct blurb1 -->
[J .

ct_final_blurb -->
[10J ,
ct_dashes,
[10J .

ct notes -->
[10J ,

I},

Notes
[10J,
ct_notes1.

ct_notes1 -->
not_ten, [10J,
ct_notes1 .

ct notes1 -->
[J .

not ten -->

[cL {C =\= 10},
not ten1. -

not ten1 -->
[CL {C =\= 10},
not ten1. -

not ten1 -->
[J.

ct dashes -->

I . ,

("_" -> ct_dashes; [J) .

ct_time(time(Year, Month, Day, H, M) - time(Year, Month, Day, H1, M1» -->
ct_dayname,

ct_date(Year, Month, Day),
" __ It

ct_dayname -->
"Mon",

ct_dayname -->
"Tue" .

ct_dayname -->
"Wed".

28

ct_daynarne -->
"Thu".

ct_daynarne -->
"Fri".

ct_daynarne -->
"Sat" .

ct_daynarne -->
"Sunil.

ct_date(Year, Month, Day) -->
ct_day (Day) ,
"/",
ct_month(Month),
"/",

ct_day(Day) -->
ct_integer(N),
ct_integer(N1), I,

{Day is (10 * N) + Nl} .
ct_day(Day) -->

ct_integer(Day).

ct_month(Month) -->
ct_integer(N),
ct_integerCN1) ,
{Month is (10 * N) + Nl} .

ct_year(Year) -->
ct_integerCN) ,
ct_integerCN1) ,
{Year is (10 * N) + Nl + 1900} .

ct_integer(N) -->
[c] ,

{C >= 0'0, C =< 0'9, N is C - 0'0 } .

ct_hours(time_of_day(H,M) - time_of_day(Hl, Ml») -->
ct_hour(H),
11.11

ct_integerCN2) ,
ct_integerCN3) ,
II to ",

ct_integerCN6) ,
ct_integer(N7),
{M is (N2 * 10) + N3, Ml is (N6 * 10) + N7}.

ct_hourCH) -->
ct_integerCI1) ,
ct_integerCI2), I

{H is (11 * 10) + 12} .

2V

ct_integer(H) .

ct_entry_string(X) -->
ct_entry_string1(Cs),
{icp_hack(X, Cs)} .

ct_entry_string1([CharICsJ) -->
[CharJ,
{Char =\= 10},
I . ,
ct_entry_string1(Cs).

ct_entry_string1([J) -->
[10J .

% Appending new entries to a Calentool File

ct_append_entry(File, time(Y, M, D, H, Mi), appt(Hl, Mil, Description»:­
YY is (Y mod 100),
ApproxDuration is «(Hl * 60) + Mil) II 30),

(0 is «(Hl * 60) + Mil) mod 30) -> Duration is ApproxDuration - 1 ;
Duration is ApproxDuration) ,

ct_add_leading_zero(YY, YO),
ct_add_leading_zero(M, MO),
ct_add_leading_zero(D, DO),
ct_add_leading_zero(H, HO),
ct_add_leading_zero(Mi, MiO),
ct_add_leading_zero(Duration, DurationO),
append_sequence(File, [YO, MO, DO, HO, MiO, DurationO, DescriptionJ).

30

Bibliography

[A p86]

[13092]

[BG88]

[BPII+90]

[BR84]

[C i83j

[CG87]

[Da90]

[Eh87a]

[Eh87b]

[EE92]

[G MN+ 91]

[Gr84]

[GS87]

[HA85]

Applix In c. Alis from Appli x. Use r 's G uide. 'Westboro MA . 1986.

F . l3omarius. Mul t i-Age nt. l\ lodel of a n Urban T ra ffi c Scenari o. DFI(I I{,('s('arch BqlO rt.
RR-92-xx . 1992. (to a rpear)

A.II . l3ond , L . Gasse r. Readings ill Dist.ributed Art.ifi cia lllll,(' lli g(, II (, ('. I\l o rgi\ 1l 1(,lIIflmlllll
Pu bli shers, San 1\1 a [.eo, CA. 1988.

D . Beard , M. Pa la nl appan, A. lIumm , D. l3 anks, A. Nair , Y.- I' . Sha ll . A Vis ll a l Caknd ar
For Scheduling G rollp Meet ings. in: Proceedi1lgs oj Ih e CO IIJel'c ll cC 0 11 (.',,>'(.' 111. Lo.~

A nge les. 1990.

K. II. l3eckurt.s, R. Reichwald . Coopera t.i on in t. he Ma llag(, llH'lll. ,\rl'a willi IIl[.q~ ral (' d

Offi ce Techni cs. CW Publi cat.i ons . MUlli ch. 1984. (ill Ge l'lll (l ll)

.J..J . C im ra l. Inl.cgra l.ill g coord in ation snpporl. in to rlul.o lll al,,,d illfo l'lil a l.i o ll Sy,.; I." III S. l\'I as­
te r 's Thes is. Dept. . of e lec tri c t; ll g illce rin g a nd CO lllpu t.e r Scil' lI cl'. I\ lass; I(' liw;(' l.l.s Illsl,il.I Il.('
o f Tec hllology. Ca rllhridgc. 198:3.

K. S. Clark , S. G regory. Pa rlog a lld Prolog Unit.ed . fJ 1'Oc('cdill gs oj Ih e .fIh /111 ('1'11111 10 1111/

Logic Progmrll1ll11lg CO IIJel·C 1I Ce. I\l elbourn e, Aust ra li a. 1\.l8 7.

A. Davison . lIernws: A combill a t.i on of Pa rlog a nJ P ro log. ESI'H.l'I' Proj l' kl. !i :W:1 II\L\ C­
INE. Techni ca l R(' port # 3. August 1990.

S. F. Ehrli ch. Soc ia l a nd Psychological Facto rs influencin g t he Des igll o f O ffi cI' (:011111111 -

ni cat ion Systems. in: Proccedi1l gs oj the C]fl+ CJ'87 011. 1I'll1llan Puc lm's 1II C01ll]lllli1l g
Sys tems. Toronto. April 1987 .

S. F . Ehrli ch. St rat.eg ies for Encourag in g Success ful Ad opt.io ll 0 f O ffi ('(' COlllllluni cal,ioll
Research. in: ACJIf Tnl1l saclions on Offi ce InJormation System s, Vo l. 5, NO·1,] I .. 'JJ, O-
357. Oct. 1987.

N. E isinge r, N. Elshi ewy. MADl\1A N - Multi -Agent Di a ry 1\1 a ll ag(' r. i1l : Proceedi1l1j8 oj
th e DA I Worksh 0]1 at European C0 1lJerence on A f. Au gust 199 :1 .

P. de G reef, D. Mal-ding, M. Neerin cx, S. Wyat t. An a lys is of llum an Co mputer Cooper­
at ive Work . ESPRIT Projekt 5362 IMA GINE . Techni cal Report # 4 . .July [99 1.

1. G reif. T he user inl,erface of a perso nal calendar prog ra ll1 . m : lJu1II.a1l. Pa clon lind
Int eractzve Com puter Syst ems. Ablex. No rwood, N.J . 1984.

I. G reif, S. Sarin . Data Sha rin g in G roup Work . in . roors 5(2), PI) 187-211 . April
1987.

C. Holman , G . Almes . T he Eden Sha red Calend a r System . Depa rt ment of Com pu te r
Science, University of Was hi ngton , Seattl e WA. 1985 .

31

[KDK85]

[LBS92]

[MS88]

[MS89]

[SD92a]

[SD92b]

[SG85]

[SMH90]

[WF86]

[W091]

C.M. Kincaid, P .B. Dupont, A.R. Kaye. Electronic Calendars in the Office : An Assess­
ment of Use r Needs and Current Technology. in: ACM Transactions on OjJi.ce Info rma­
tion Systems, Vol. 3, No.1 , Jan. 1985.

A. Lux , F. Bomarius, D . Steiner . A Model for Supporting TIum a n Computer Cooperat ion.
in: Pmceedings of the A A A I Workshop on Cooperation among II eterogeneo l/.s Int elligent
Systems. San Jos e, CA. July 1992.

F. Mattern , P. Sturm. Distri bu ted Programming Concepts. Experi ences made by De­
ve lopment of a Decentralized Appointment System. Techni ca l Report SFB124-30/88.
Department of Computer Science. Univers ity of Ka ise rsla ute rn . Ge rm a ny. 1988.

F. Mattern , P. Sturm. An Au tomatic Distribu ted Cal nd a r and A ppo i ntmcnt System.
Technical Report SFn124-24/89. Department of Computer Science. Univers ity of Ka iser­
slautern. Germany. 1989.

S. Sen , E. Durfee. A Formal Analysis of Communi cat ion anu Co mmit.ment in Distributed
Meet ing Scheduling. in: Eleventh Int ernational WorkshoT) 071 DA 1. The [J01llestead. Glell
Arbor, M 1. Februa.ry 25-29, 1992.

S. Sen , E. Durfee . Aut.omated l\l eeting Scheduling among lfe t.el"Ogc neous Agent.s. i7l:
Proceedings of th e AAAI Workshop on Cooperatioll a.mollg IIele1"Ogell eous IlIt elligellt
Systems. San Jose, CA. July 1992.

S. Sarin,!. Greif. Computer-based real-t. ime conferences. i7l: IEEE Co mputer, Vo l. 18,
No.l0, 1985.

D. Steiner , D. Mahling , a nd II . Uauge neder. Hum an Computer Coope rat. ive Work. In
Pmc. of th e 10th Iut er1lati01lal Workshop on Distribut ed Artificial 11Itellige1/ce, l\'1CC
Techni cal Report. ACT-AT-355-90 , Austin/TX, 1990.

T. Winograd, F. Flores. Understand ing Compu te rs a nd Cognit.io n. A Np\\· Foundat.ion
for Des ign. Ablex. Norwood. 1986.

M. Woitass. Coordi nat. ion in Structured Co nversa tions. Ph D. t.hp,.,is. G l\l D [1('port.
No. 190. Oldenbo urg. Muni ch/V ienn a . 199 1. (in German)

32

Deutsches
Forschu ng szentrum
fOr KOnstliche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen k6nnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nich t anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-91-24
Jochen Heinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-25
Karin Harbusch. Wolfgang Finkler. Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer. S. Biundo. D . Dengler. M. Hecking .
J. Koehler. G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

RR-91-27
A. Bernardi. H. Boley. Ph. Hanschke.
K. Hinkelmann. Ch. Klauck. O. Kuhn.
R. Legleitner. M . Meyer. M. M. Richter.
F. Schmalhofer. G. Schmidt. W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen. Harald Trost. Hans Uszkoreit:
Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-30
Dan Flickinger. John Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-U. Krieger. J. Nerbonne :
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf Backofen. Lutz Euler. Gunther Gorz:
Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages

RR-91-33
Franz Baader. Klaus Schulz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel. Christer Backstrom:
On the Computational Complexity of Temporal
Projection and some related Problems
35 pages

RR-91-35
Winfried Graf. Wolfgang MaajJ: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-01
Werner Nutt: Unification in Monoidal Theories is
Solving Linear Equations over Semirings
57 pages

RR-92-02
Andreas Dengel. Rainer Bieisinger. Rainer Hoch.
Frank Hones. Frank Fein. Michael Malburg :
DODA: The Paper Interface to ODA
53 pages

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
John Nerbonne : Feature-Based Lexicons:
An Example and a Comparison to DATR
15 pages

RR-92-05
Ansgar Bernardi. Christoph Klauck.
Ralf Legleitner. Michael Schulte. Rainer Stark :
Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Topics of DAI: A Review
38 pages

RR-92-07
Michael Beetz:
Decision-theoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages
RR-92-09
Winfried Graf. Markus A. Thies :
Perspektiven zur Kombination von automatischem
Animationsdesign und planbasierter Hilfe
15 Seiten

RR-92-10
M. Bauer: An Interval-based Temporal Logic in a
Multivalued Setting
17 pages

RR-92-11
Susane Biundo. Dietmar Dengler. Jana Koehler:
Deductive Planning and Plan Reuse in a Command
Language Environment
13 pages

RR-92-13
Markus A. Thies. Frank Berger:
Planbasierte graphische Hilfe in objektorientierten
Benutzungsoberflachen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle. Markus A. Thies

2. Plan-Based Graphical Help in Object­
Oriented User Interfaces
Markus A. Thies. Frank Berger

22 pages

RR-92-15
Winfried Graf: Constraint-Based Graphical Layout
of Multimodal Presentations
23 pages

RR-92-16
Jochen Heinsohn. Daniel Kudenko. Berhard Nebel.
Hans-Jurgen Profitlich: An Empirical Analysis of
Terminological Representation Systems
38 pages

RR-92-17
Hassan Ail-Kaci. Andreas Podelski . Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19
Raif Legleitner. Ansgar Bernardi. Christoph Klauck
PIM: Planning In Manufacturing using Skeletal
Plans and Features
17 pages

RR-92-20
John Nerbonne: Representing Grammar, Meaning
and Knowledge
18 pages

RR-92-21
Jorg-Peter Mohren. Jargen Muller
Representing Spatial Relations (Part II) -
The Geometrical Approach
25 pages

RR-92-22
Jorg Wurtz : Unifying Cycles
24 pages

RR-92-23
Gert Smolka. RaifTreinen:
Records for Logic Programming
38 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR·92·25
Franz Schmalhofer, Ralf Bergmann, Otto Kuhn,
Gabriele Schmidt : Using integrated knowledge
acquisition to prepare sophisticated expert plans for
their re-use in novel situations
12 pages

RR·92·26
Franz Schmalhofer, Thomas Reinartz,
Bidjan Tschaitschian : Intelligent documentation as a
catalyst for developing cooperative knowledge-based
systems
16 pages

RR·92·27
Franz Schmalhofer , Jorg Thoben : The model-based
construction of a case-oriented expert system
18 pages

RR·92·29
Zhaohur Wu, Ansgar Bernardi, Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages

RR·92·33
Franz Baader: Unification Theory
22 pages

RR·92·34
Philipp Hanschke: Terminological Reason ing and
Partial Inductive Definitions
23 pages

RR·92·35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR·92·36
Franz Baader, Philipp Hanschke: Extensions of
Concept Languages for a Mechanical Engineering
Application
15 pages

RR·92·37
Philipp Hanschke:
Specifying Role Interaction in Concept Languages
26 pages

RR·92·38
Philipp Hanschke, Manfred Meyer: An Alternative
to H -Subsumption Based on Term inological
Reasoning
9 pages

RR·92·41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

DFKI Technical Memos

TM·91·11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM·91·12
Klaus Becker, Christoph Klauck, Johannes
Schwagereit : FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM·91·13
Knut /linkelmann :
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM·91·14
Rainer Bieisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM·91·15
Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to Knowledge
Representation
28 pages

TM·92·0 1
Lijuan Zhang :
Entwurf und Implementierung eines Compilers zur
Transformation von Werkstiickreprasentationen
34 Seiten

TM·92·02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM·92·03
Mona Singh
A Cognitiv Analysis of Event Structure
21 pages

TM·92·04
Jurgen Muller, Jorg Muller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM·92·05
Franz Schmalhofer, Christoph Globig, Jorg Thoben
The refilling of plans by a human expert
10 pages

TM·92·06
Otto Kuhn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

OFKI Oocuments

0·91·17
Andreas Becker:
Analyse der Planungsverfahren der KI im Hinblick
auf ihre Eignung fUr die Abeitsplanung
86 Seiten

0·91·18
Thomas Reinartz: Definition von Problemklassen
im Maschinenbau a1s eine Begriffsbildungsaufgabe
107 Seiten

D·91·19
Peter Wazinski: ObjektIokalisation in graphischen
Darstell ungen
110 Seiten

0·92·01
Stefan Bussmann: Simulation Environment for
Multi-Agent Worlds - Benutzeranleitung
50 Seiten

0·92·02
Wolfgang MaafJ: Constraint-basierte Plazierung in
multimodalen Dokumenten am Beispiel des Layout­
Managers in WIP
III Seiten

0·92·03
Wolfgan MaafJ. Thomas Schiffmann. Dudung
Soetopo . Winfried Graf' LA YLAB: Ein System zur
automatischen Plazierung .von Text-Bild­
Kombinationen in multimodalen Dokumenten
41 Seiten

0·92·04
Judith Klein. Ludwig Dickmann: DiTo-Datenbank -
Datendokumentation zu Verbrektion und
Koordination
55 Seiten

0·92·06
Hans Werner Hoper: Systematik zur Beschreibung
von Werkstiicken in der Terminologie der
Featuresprache
392 Seiten

0·92·07
Susanne Biundo. Franz Schmalhofer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

0·92·08
Jochen Heinsohn. Bernhard Hol/under (Eds.): DFKI
Workshop on Taxonomic Reasoning Proceedings
56 pages

0·92·09
Gernod P. Laufkotter: Implementierungsmoglich­
keiten der integrativen Wissensakquisitionsmethode
des ARC-TEC-Projektes
86 Seiten

0·92·10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser fUr attributierte Graph-Grammatiken
87 Seiten

0·92·11
Kerstin Becker: Moglichkeiten der Wissensmodel­
Iierung fUr technische Diagnose-Expertensysteme
92 Seiten

0·92·12
Otto Kuhn. Franz Schmalhofer. Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery (Integrierte
Wissensakquisition zur Fertigungsplanung fUr
Drehteile: eine Bildergalerie)
27 pages

0·92·13
Holger Peine: An Investigation of the Applicability
of Terminological Reasoning to Application­
Independent Software-Analysis
55 pages

0·92·15
DFKI WissenschaftIich-Technischer lahresbericht
1991
130 Seiten

0·92·16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft­
warekomponenten fUr natiirlichsprachliche Systeme
189 Seiten

0·92·17
Elisabeth Andre. Robin Cohen. Winfried Graf, Bob
Kass. Cecile Paris. Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling. Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0·92·18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

0·92·19
Stefan Dittrich. Rainer Hoch: Automatische.
Deskriptor-basierte Unterstiitzung der Dokument­
analyse zur Fokussierung und Klassifizierung von
Geschaftsbriefen
107 Seiten

0·92·21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

A Multi-Agent Approach towards Group Scheduling

Andreas Lux
RR-92-41

Research Report

