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Abstract 

One kind of temporal reasoning is temporal projection-the compu­
tation of the consequences for a set of events. This problem is related 
to a number of other temporal reasoning tasks such as story under­
standing, plan validation, and planning. We show that one particular 
simple case of temporal projection on partially ordered events turns 
out to be harder than previously conjectured. However, given the re­
strictions of this problem, planning and story understanding are easy. 
Additionally, we show that plan validation, one of the intended appli­
cations of temporal projection, is tractable for an even larger class of 
plans. The incomplete decision procedure for the temporal projection 
problem that has been proposed by other authors, however, fails to 
be complete in the case where we have shown plan validation to be 
tractable. 
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1 Introduction· 

The problem of temporal projection is to compute the consequences of a set 
of events. Dean and Boddy [1988J analyze this problem for sets of partially 
ordered events assuming a propositional STRIPs-like [Fikes and Nilsson, 1971J 
representation of events. They investigate the computational complexity of a 
number of restricted problems and conclude that even for severely restricted 
cases the problem is N P-hard, which motivate them to develop a tractable 
and sound but incomplete decision procedure for the temporal projection 
problem. 

Among the restricted problems they analyze, there is one they conjecture 
to be solvable in polynomial time. As it turns out, however, even in this case 
temporal projection is NP-hard, as is shown in Section 3. This result does not 
undermine the arguments of Dean and Boddy [1988J, but rather confirms that 
the problem of temporal projection as they d.efine it is very difficult-even 
in its simplest form. The result is somewhat surprising, however, because 
planning, plan validation, and story understanding seem to be easily solvable 
given the restriction of this temporal projection problem. 

The problem of planning is, given a current world state, a desired world 
state, and a set of possible actions that can be executed, find a sequence 

of actions that, if executed in the current world state, will bring about the 
desired world state. Planning is a very difficult problem [Chapman, 1987; 
Bylander, 1991; Chenoweth, 1991; Gupta and Nau, 1991J. However, if we 
apply the restrictions of the simple temporal projection problem to the for­
mulation of the planning problem, planning turns out to be trivial. Plans of 
minimal length are derivable in polynomial time. Further, this result can be 
strengthened to a less restricted problem-the SAS-PUS planning problem 
[Backstrom and Klein, 1991aJ. 

This observation casts some doubts on whether temporal projection is 
indeed the problem underlying planning, plan validation, and story under­
standing, as suggested by Dean and Boddy [1988J. It seems natural to assume 
that the validation of plans is not harder than planning. Thus, one would 
expect that plan validation is easy for SAS-PUS plans and perhaps for an 
even larger class of plans. Our N P-hardness result for the simple temporal 
projection problem seems to suggest the contrary, though. One of the most 
problematical points in the definition of the temporal projection problem by 
Dean and Boddy seems to be that event sequences are permitted to contain 
events that do not affect the world because their preconditions are not satis­
fied. If we define the plan validation problem in a way such that all possible 
event sequences have to contain only events that affect the world, plan vali­
dation is tractable for the class of plans containing only unconditional events, 
a point already suggested by Chapman [1987J. In fact, deciding a conjunc­
tion of temporal projection problems that is equivalent to the plan validation 
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problem appears to be easier than deciding each conjunct in isolation. 
These reflections lead to the question of whether the above mentioned 

incomplete decision procedure gives useful results. One would expect that the 
procedure is complete in important special cases that are tractable. However, 
the procedure sometimes fails on unconditional nonlinear plans, where plan 
validation is tractable. 

Finally, we will discuss the relationships between temporal projection 
and story understanding. If we add two reasonable assumptions, namely, 
that a story is coherent and non-repeating, then it is trivial to reconstruct 
the underlying course of events in polynomial time in the case where we 
have proven (contrary to previous conjecture) that temporal projection is 
N P-hard. This positive complexity result does not carryover to slight gener­
alizations, however. The modified temporal projection problem for coherent 
and non-repeating stories becomes NP-hard, if general unconditional events 
are permitted. However, it seems to be the case in story understanding that 
more constraints are exploited than can be captured by the original formal­
ization of temporal projection. 

The remainder of the paper is structured as follows. Section 2 contains 
the definition of the general temporal projection problem for partially or­
dered events. In Section 3, the computational complexity of a simple form of 
temporal projection that was conjectured to be tractable by Dean and Boddy 
[1988] is shown to be NP-hard. The corresponding planning problem permits 
a polynomial planning algorithm, however, as is shown in Section 4. This 
positive result is shown to hold for even less restricted planning problems in 
Section 5. In Section 6 we use this result to show that optimal planning for 
blocks world is tractable under certain restrictions. In Section 7, we show 
that plan validation is tractable if all events are unconditional. The degree of 
completeness of the incomplete decision procedure mentioned above is ana­
lyzed in Section 8. Finally, we sketch some ideas concerning the relationship 
between temporal projection and story understanding in Section 9. 

2 Temporal Projection 

Given a description of the state of the world and a description of which events 
will occur, we are usually able to predict what the world will look like. This 
kind of reasoning is called temporal projection. It seems to be the easiest and 
most basic kind of temporal reasoning. Depending on the representation, 
however, there are subtle difficulties hidden in this reasoning task. 

The formalization of the temporal projection problem for partially or­
dered events given below closely follows the presentation by Dean and Boddy 
[1988, Sect. 2]. We start with the definition of what a causal structure is, 
which fixes our vocabulary to talk about states, event types, and laws of 
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change. We confine ourselves to a particular simple form of causal struc­
tures, where wofld states are represented by sets of propositional atoms and 
laws of change are described as propositional STRIPS-like operators. As a sec­
ond step, we introduce sets of partially ordered events over causal structures 
that denote all event sequences that satisfy the partial order over the event 
set. Finally, the notion of event systems will be introduced that consist of 
an initial state and a partially ordered event set. The problem of temporal 
projection is to decide whether a given propositional atom holds, possibly or 
necessarily, after a given event in an event system. 

Definition 1 A causal structure is given by a tuple <I> = (P, E, R), where 

• P = {PI, . .. ,Pn} is a set of propositional atoms, the conditions, 

• E = {El, ... ,Em } is a set of event types, 

• R = {rI, ... ,ra } is a set of causal rules of the form ri = (Ei' <Pi, ai, 8i), 
where 

Ej E E is the triggering event type, 

<Pi ~ P is a set of preconditions, 

aj ~ P is the add list, 

and OJ ~ P is the delete list. 

In order to give an example, assume a toy scenario with a hall, a room 
A, and another room B. Room A contains a public phone, and room B 
contains an electric outlet. The robot Robby can be in the hall (denoted by 
the atom h), in room A (a), or in room B (b). Robby can have a phone card 
(p) or coins (c). Additionally, when Robby uses the phone, he can inform 
his master on the phone that everything is in order (i). Robby can be fully 
charged (f), almost empty (e), or, in unlucky circumstances, his batteries 
can be damaged (d). Summarizing, the set of conditions for our tiny causal 
structure is the following: 

P = {a,b,h,p,c,i,d,e,f}. 

Robby can do the following. He can move from the hall to either room 
(Eh_a, Eh_b) and vice versa (Ea_h, Eb_h). Provided he is in room a and he has 
a phone card or coins, he can call his master (Eeal/). Additionally, if Robby 
is in room b, he can recharge himself (Eeharge). However, if Robby is already 
fully charged, this results in damaging his batteries. Summarizing, we have 
the following set of event types: 
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and the following set of causal rules: 

R = { (Eh--+a, {h}, {a}, {h} ), 
(Eh--+b, {h}, {b}, {h} ), 
(Ea--+h' {a}, {h}, {a}), 
(Eb-+h' {b}, {h}, {b} ), 

(Ecall' {a,p}, {i }, 0), 
(Ecal/, {a, e}, {i }, {e} ), 
(f.charge, {b, e}, {f}, {e}) , 

(Echarge, {b, f}, { d}, {f})}. 

In order to talk about sets of concrete events and temporal constraints 
over them, the notion of a partially ordered event set is introduced. 1 

Definition 2 Assuming a causal structure <I> = (P, £, R) I a partially or­
dered event set (POE) over <I> is a pair 64> = (A4>' -<) consisting of a set of 
actual events A4> = {el, ... , ep } such that type(ei) E £, and a strict partial 
orde-r -< over A4>. 

In the following, we will often drop the subscript <I> in 64> and A4> if it 
is clear from the context which causal structure we mean. Continuing our 
example, we assume a set of six actual events A = {A, B, C, 0, E, F} , such that 

type(A) Eh--+a 

type(B) Ecall 

type(C) Ea-+h 

type(O) Eh-+b 

type(E) Echarge 

type(F) Eb ..... h, 

and 
A -< B -< C 

0 -< E -< F. 

POEs denote sets of possible sequences of events satisfying the partial 
order. A partial event sequence of length m over such a POE (A, -<) is 
a sequence f = (h, .. ·, fm) such that (1) {fl, .. . , fm} ~ A, (2) fi =I fj if 
i =I j, and (3) for each pair fi' fj of events appearing in f, if fi -< fJ then 
i < j. For instance, (A, B, C) is a partial event sequence of length three over 
the POE given above, while (A, C, B) is not. If the event sequence is of length 
IAI, it is called a complete event sequence over the POE. The sequences 

1 This notion is similar to the notion of a nonlinear plan. 
2 A strict partial order is a transitive and irreflexive relation. 
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(A, B, C, D, E, F) and \A, D, B, E, C, F) are complete event sequences, for instance. 
The set of all complete event sequences over a POE .6. is denoted by CS(.6.). 

We say that a partial event sequence f can be extended to an event 
sequence g if If I < Igl and for all fi, Ii with i < j there exists gk = fi and 
gl = Ii such that k < I. If f = (fl, ... , fk, ... , fm) is an event sequence, 
then (fl, ... ,fk) is the initial sequence of f up to fk' written f / fk. Similarly, 
f\fk denotes the initial sequence (iI, ... , fk-l) consisting of all events before 
fk. Further, we write g; f to denote the sequence (g, iI, ... , fm) and f; 9 to 
denote (fl, ... ,fm' g). 

Each event maps states (subsets of P) to states. Let S ~ P denote a state 
and let e be an event. Then we say that the causal rule r is applicable in 
state S iffr = (type(e ), cp, a, 8) and cp ~ S. Given e and S, app(S,e) denotes 
the set of all applicable rules for e in state S. An event e is said to affect 
the world in a state S iff app(S, e) =I=- 0. In order to simplify notation, we 
write cp(r), a(r), 8(r) to denote the sets c.p, a, and b, respectively, appearing 
in the rule r = (I':, cp, a, 8). If there is' only one causal rule associated with 
the event type type( e), we will also use the notation cp( e), a( e), and 8( e). 
Based on this notation, we define what we mean by the result of a sequence 
of events relative to a state S. 

Definition 3 The function "Result" from states and event sequences to 
states is defined recursively by: 

Result (S, 0) 
Result(S, (f;g)) 

S 

Result(S, f) - {b(r)1 r E app(Result(S,f),g)} U 

{a(r)1 r E app(Result(S,f),g)}. 

It is easy to verify that the following equation holds for our example 
scenarIo: 

Result ( {h, e, c}, (A, B, C, D, E, F)) = {h, f, i}. 

The definition of the function Result permits sequences of events where events 
occur that do not affect the world. For instance, it is possible to ask what 
the result of (A, D, B, E, C, F) in state {h, e, c} will be: 

Result({h,e,c }, (A,D,B,E,C,F)) = {h,e,i}. 

Although perfectly well-defined, this result seems to be strange because the 
events D, E, and F occurred without having any effect on the state of the 
world. Given a state S, we will often restrict our attention to event sequences 
such that all events affect the world. These sequences are called admissible 
event sequences relative to the state S. The set of all complete event 
sequences over .6. that are admissible relative to S are denoted by ACS(.6., S). 
If CS(.6.) = ACS(.6., S), we will say that .6. is coherent relative to S. 
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In the following, we will often'talk about which consequences a POE will 
have on some initial state. For this purpose, the notion of an event system 
is introduced. 

Definition 4 An event system 8 is a pair (6..tp, I) I where 6..tp is a POE 
over the causal structure <I> = (P,£, R) , and I ~ P is the initial state. 

In order to simplify notation, the functions CS and ACS are extended 
to event systems with the obvious meaning, i.e., C8( (6..,8)) = C8(6.) and 
ACS((6..,S)) = ACS(6..,S). Further, if CS(8) = ACS(8), 8 is called co­
herent. 

The problem of temporal projection as formulated by Dean and Boddy 
[1988] is to determine whether some condition holds, possibly or necessarily, 
after a particular event of an event system. 

Definition 5 Given an event system 8 , an event e E A, and a condition 
pEP: 

P E Poss(e, 8) iff :3f E CS(8): p E Result (I, fie) 

p E Nec(e, 8) iff \If E CS(8): p E Result (I, fi e). 

Continuing our example, let us assume the initial state I = {h, e, c}. 
Then the following can be easily verified: 

i E Poss(B, 8) 
d rf. Poss(E, 8) 

i rf. Nec(B, 8) 
d rf. Nec(E, 8). 

In plain words, Robby is only possibly but not necessarily successful in calling 
his master. On the positive side, however, we know that Robby's batteries 
will not be damaged, regardless of in which order the events happen. 

Given a set of conditions S and a sequence f, Result(S, f) can easily be 
computed in polynomial time. Since the set CS(8) may contain exponen­
tially many sequences, however, it is not obvious whether p E Poss( e, 8) and 
p E Nec(e, 8) can be decided in polynomial time. 

3 A "Simple" Temporal Projection Problem 

In the general case, temporal projection is quite difficult. Dean and Boddy 
[1988] show that the decision problems p E Poss(e,8) and p E Nec(e, 8) 
are NP-complete and co- N P-complete respectively even under some severe 
restrictions, such as restricting a or 8 to be empty for all rules, or requiring 
that there is only one causal rule associated with each event type. 
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Definition 6 An event system is called unconditional iff for each t E £, 
there exists only one causal rule with the triggering event type t. An event 

system is called almost simple iff it is unconditional and for each causal 
rule r = (t, cp, 0, 0), the sets ° and 0 are singletons and 0 ~ cp. An event 
system is called simple iff it is unconditional, I is a singleton, and for each 

causal rule r = (t,cp,o,o), the sets cp, 0, and 0 are singletons and cp = o. 

Dean and Boddy [1988, Theorem 2.4] prove that temporal projection for 
almost simple event systems is NP-hard and conjecture that it is a polyno­
mial-time problem for simple event systems [Dean and Boddy, 1988, p. 379]. 
As it turns out, however, also this problem is computationally difficult. 

Theorem 1 Deciding p E Poss(e, 8) for simple event systems 8 is NP­
complete . 

Proof. Membership in N P is obvious. Guess an event sequence f and verify 
in polynomial time that f E CS(8) and p E Result (I, fie). 

In order to prove NP-hardness, we give a polynomial transformation from 
path with forbidden pairs to the temporal projection problem. The for­
mer problem is defined as follows: 

Given a directed graph G = (V, A), two vertices s, t E V, and a 
collection C = { {aI, bd, ... , {an, bn}} of pairs of arcs from A, is 
there a directed path from s to t in G that contains at most one 
arc from each pair in C? 

This problem is NP-complete, even if the graph is acyclic and all pairs are 
disjoint [Garey and Johnson, 1979, p. 203]. 

First of all, we specify a transformation from directed acyclic graphs 

(DAG) to simple event systems. Let G = (V, A) be a DAG, where 
V = {VI,"" vd. Then define 

P 

£ 

R 

A 
type( ei,j) 

iype(e.) 

e -< e. 

{ VI, ... , V k} U { * } 
{ti,jl (Vi,Vj) E A} U {t.} 

{(ti ,j, {vil, {Vj}, {vi})1 (Vi,Vj) E A} U 

{ ( t., { * }, { * }, { * } ) } 
{ei,jl ti,j E £} U {e.} 

ti,j for all ei,j E A - {e.} 

for all e E A - {e.}. 

Note that such event systems, which we will call DAG event systems, are 
simple, provided III = 1. 
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Let G = (V, A) be a DAG, let C = {{a1, bd, ... , {an, bn}} be a collection 
of "forbidden pairs" of arcs from A such that each pair consists of different 
arcs and the pairs are pairwise disjoint. Further, let sand t be two vertices 
from V and assume without loss of generality that there is no arc (t, Vi) E A. 

Let e be the corresponding DAG event system with I = {s}. For each 

pair of arcs {(Vi, Vj), (Vk, VI)} E c, 
1. if there is a (possibly empty) path from Vj to Vk in G add ek,l -< ei,j as 

a temporal constraint to e, 

2. if there is a (possibly empty) path from VI to Vi in G, add ei,j -< ek,l as 
a temporal constraint to e. 

Note that this addition of temporal constraints can be done in polynomial 
time. Further note that it is impossible that (1) and (2) applies simultane­
ously to a pair of arcs. Finally note that since the forbidden pairs are pairwise 
disjoint, there is no set of events {jb 12, h} ~ A such that it -< 12 -< h· 

For the resulting event system, we claim that there is a path from s to t 
in G that contains at most one arc from each pair in C iff t E Poss(e., e). 

":=;.": Let V1, ... , Vm , 1 ::; m ::; lVI, be a path in G, where V1 = s 

and Vm = t, without forbidden pairs from C. Then by construction 
of e, there exists a sequence of events g = (gl, ... ,gm-1) such that 
(type (gd, { vd, { Vi+ d, { vd) E R. Note that this sequence is indeed a partial 
event sequence over e because the path does not contain forbidden pairs, 
and, hence there are no temporal constraints for the events appearing in g. 
Furthermore, we have for a(gm-d = {t} . By the construction of e, it holds 
that 

Result(I, (g; e.)/e.) = {t}. 

The sequence g; e. can be extended to a complete event sequence hover e 
in the following way: 

1. add all events j that are not temporally constrained and do not appear 
in g immediately before e" 

2. add all pairs of events j, l' such that j -< l' and that do not appear in 
g immediately before e. respecting -<, 

3. add all events j that do not appear III g and j -< 9i for some 9i 

appearing in g immediately before gi, 

4. add all events j that do not appear III g and gi -< j for some gi 
appearing in g immediately after 9i. 

Note that for extensions of the forms (1) and (2) it holds trivially that 

Result(I,h/e.) = {t} iff Result(I,(g;e.)/e.) = {t} 
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since no precondition .of any rule contains t by assumption. For extensions 
of the form (3) it holds that ei,j -< ek,l only if there is path from VI to Vi in G. 
Hence, if ei ,j is placed immediately before ek,l, the precondition of the causal 
rule associated with ei,j cannot be satisfied. Thus, the above equivalence also 
holds for case (3). Since (4) is the converse case, the equivalence also holds. 

Summarizing, we have for the complete event sequence h 

Result(I,h/e*) = {t}. 

Thus, t E Poss( e* , 8). 
"~": Assume t E Poss(e*, 8). Then there exists a complete event se­

quence g such that 
Result (I, g/ e.) = {t}. 

Consider the subsequence h containing only events that affect the world: 

By the construction of the causal rules in 8 and the structure of the initial 
set it is evident that each event in the subsequence h has an add list that is 
identical to the preconditions of the immediately following event. Since the 
ini tial conditions are I = {s} and Result (I, h) = {t} , there must be a path 
s = VI, V2, ... ,Vm = t in G. 

Finally, this path cannot contain any forbidden pair. Assume the 
contrary, i.e., the path is of the form S, .. . , Vi, Vj, . .. ,Vk, VI, ... ,t and 
{(Vi,Vj),(Vk,VI)} E C. Thus, there is a path from Vj to Vk. In this case, 
however, we have ek,1 -< ei,j by the construction of -< in 8. This means, 
however, that h cannot be a possible event sequence over 8. Hence, there 
cannot be any event sequences leading to t that contain forbidden pairs. -

It is easy to show that p E Nec( e, 8) is computationally equivalent to 
p ¢ Poss(e, 8), i.e., co-NP-complete. 

Corollary 2 Deciding p E Nec(e, 8) for simple event systems 8 is co-NP­
complete. 

Proof. We show that p ¢ Nec(e, 8) is NP-complete. Membership in NP is 
obvious. For the N P-hardness part, we start with the same transformation 
as in the proof of Theorem 1. We add to 8 a new condition p and a number 
of events f with associated causal rules of the form: 

(type (I), { V }, {p}, { V } ), 

for all V E V - {t}. These events are constrained to happen before e. and 
after all other events constructed in the above reduction. 
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Now, it follows by the same arguments as in the proof of Theorem 1 that 
p tf. Nec(e., 8) iff there is a path from s to t without forbidden pairs. -

These results are somewhat surprising because one might suspect that 
planning and story understanding are easy under the restrictions imposed on 
the structure of event systems. We will analyze this point more thoroughly 
in the following sections. 

4 A Simple Planning Problem 

One reason for analyzing the temporal projection problem is that it seems to 
constitute the heart of plan validation [Dean and Boddy, 1988, p. 378]. If we 
now consider the restrictions placed on the simple problem, it turns out that 
planning itself-a problem one would expect to be harder than validation-is 
quite easy. 

In the context of planning, events as introduced above are usually called 
actions and POEs are called nonlinear plans, or simply plans. In the 
following, we use these terms interchangeably. 

Definition 7 A planning task II is given by (<I> , I , 9), where <I> = (P, £, R) 
is a causal structure as defined above, and I ~ P and 9 ~ P are the 
initial state and goal state respectively. A plan ~<l> solves II iff (1) 
9 ~ Result(I, f) for all f E CS(~<l», and (2) ACS(~<l>,I) = CS(~<l». A so­

lution ~ = (A, -<) for II is minimal iff for all other solutions ~' = (A', -<'), 
it holds that IAI ~ IA'I. 

The computational complexity of planning has been investigated only re­
cently. Bylander [1991] analyzed the general problem of deciding the ex­
istence of a solution for a planning task in the context of propositional 
STRIPS-like representations and showed that the general problem is PSPACE­
complete. 3 A number of restricted problems turn out to be tractable, how­
ever. For instance, planning with unconditional causal structures and causal 
rules restricted by I(a(r) U 8(r))1 = 1 is tractable [Bylander, 1991, Theo­
rem 7]. Similarly, planning with causal rules such that the preconditions are 
always empty [Bylander, 1991, Theorem 9] and planning with unconditional 
causal structures such that the goal state is restricted in size and all rules 
contain only one precondition [Bylander, 1991, Theorem 8] are tractable. It 
should be noted, however, that Bylander considers only the existence prob­
lem and not the associated optimization problem of finding minimal plans, 

3The representation of causal rules in [Bylander, 1991] is a little more powerful. Pre­
conditions can also be negative, i.e., refer to the absence of atoms. However, the hardness 
result applies to our case as well [Bylander, 1991, Corollary 2]. Moreover, all results about 
positive preconditions can be easily adapted to our formalism. 
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which is often harder. For example, his Theorem 9 does not apply to the 
corresponding optimization problem. 

Proposition 3 Deriving minimal plans for planning tasks such that the pre­
conditions of all rules are empty is N P -equivalent. 

Proof. The corresponding decision problem of deciding the existence of so­
lutions of a given length is obviously in N P. A straightforward reduction from 
minimum cover [Garey and Johnson, 1979, p. 222] shows NP-completeness 
of the decision problem. From that the proposition follows immediately. -

Returning to the problem we analyzed in the previous section, similarly 
to simple event systems we define simple planning tasks to be planning 
tasks that meet the following restrictions: (1) there is only one causal rule 
associated with each event type, (2) for all causal rules Icpl = lad = 181 = 1 and 
cp = 8, and (3) III = 1. Using Bylander's [1991] Theorem 8, the tractability 
of the solution existence problem follows immediately. In this case, also plan 
derivation is tractable, however. 

Proposition 4 For simple planning tasks, it can be decided in polynomial 
time whether there exists a solution. Further, a minimal valid plan can be 
derived in polynomial time. 

Proof. Given a simple planning task II = \(P,£, R),{s},{t}), construct a 
directed graph G = (V, A) as follows. Let 

V P, 

A {(v,w)I(E,{v},{w},{v}) E R}. 

Then the derivation of a minimal solution for II reduces to finding a shortest 
path from s to t in G, which can be done in polynomial time. -

This result leads to the question why temporal projection, which is sup­
posed to be the underlying problem in plan validation, is more difficult than 
planning itself in some cases. One explanation could be that a planner could 
create the complicated structure we used in the proof of Theorem 1, but 
it never would do so. Hence, the theoretical complexity never shows up in 
reality. This explanation is unsatisfying, however. If this would be really the 
case, we should be able to characterize the structure of the nonlinear plans 
planning systems create and validate. As is shown in Section 7, the problem 
is more subtle. Before we investigate the plan validation problem, however, 
we will analyze a different planning problem that turns out to be tractable, 
as well. 
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5 Polynomial-Time Planning in Two D iffer­
ent Formalisms 

As we have seen, the simple planning problem defined in Section 4 is not 
the only planning problem known to be tractable. The results on tractable 
planning by Bylander [1991] have already been revised in the previous section. 
Backstrom and Klein [1991a; 1991 b) have also presented results on tractable 
planning, which will be analyzed in this section. Furthermore, there are 
also results on average case tractability of planning using macro-operators 
or action hierarchies under certain assumptions [Korf, 1987], but it is out of 
the scope of this paper to discuss such approaches. 

Backstrom and Klein presents two tractable planning problems: The SAS­
PUBS problem [Backstrom and Klein, 1991b] and the SAS-PUS problem 
[Backstrom and Klein, 1991a]. Both problems properly subsume the simple 
planning problem defined in Section 4. In the following, we will only consider 
the SAS-PUS problem since it properly includes the SAS-PUBS problem. A 
direct comparison with the simple problem or Bylander's results is, however, 
not possible, since the SAS-PUS problem is defined in another formalism 
called simplified actions structures (SAS). Although the restrictions defining 
the SAS-PUS problem are possible to express in the formalism used in the 
rest of this paper, they are hardly obvious to come up with from the viewpoint 
of that formalism. On the other hand, they appear quite natural in the SAS 
formalism. This indicates that the choice of modelling formalism can strongly 
influence how one defines problems. The rest of this section is devoted to 
redefining the restrictions of the SAS-PUS problem in the formalism used in 
the rest of this paper, yielding the SAS-PUS equivalent problem, and prove 
that this new problem is tractable. Since the proof of tractability is based on 
transformation to the SAS-PUS problem, it is unavoidable to first present the 
SAS formalism. This presentation, however, will, be very brief and conform 
as closely as possi ble to the other formalism. The main differences are that 
the planning world is modelled in a somewhat more structured way than just 
a set of propositions, and that actions are modelled somewhat differently. 

In analogy with the concepts causal structure and planning task, the 
corresponding concepts causal SAS-structure and SAS planning task are in­
troduced. 

Definition 8 A causal SAS-structure <I> 

given by: 

• a set of state variable indices, M = {I, ... ,m}; 

• for each i E M, a d omain Si of mutually exclusive values for the ith 
state variable, implicitly defining 
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- for each i E 'M, an extended domain Si+ = Si U {u} where u 
denotes the undefined value, 

a set of total stat es S = Sl X ... X Sm, and 

- a set of partial states S+ = st x ... x S;;;j 

• a set of action types E = {tl,' .. ,tn }; 

• a set of causal SAS-rules C = {Cl,"" Cn} of the form Ci 

(ti, b( ti), e( ti), f( ti)) where 

- ti E E is the triggering event type, 

- b( td E S+ is the precondition, 

- e( ti) E S+ is the postcondition, and 

- f( ti) E S+ is the prevailconditionj 

C must also satisfy the restrictions: . 

51. for all tEE and for all i E M, either b(t)[i] = e(t)[i] = u or 
u i- b(t)[i] i- e(t)[iJ i- Uj 

52. for all tEE and for all i E M, either b(t)[i] = U or f(t)[i] = u; 
and 

53. for all t, t' E E, if b( t) = b( t'), e( t) = e( t'), and f( t) = f( t') then 
t = t'. 

where sri] denotes the value of the ith state variable in s. 

A SAS planning task II = (<I>,sI,S9) is given by: 

• A causal SAS -structure <I> , 

• an initial state SI E S, and 

• a goal state S9 E S. 

For any action, the conditions of the causal SAS-rule triggered by the 
corresponding action type are interpreted as follows: The pre- and post­
conditions express which state variables are changed by the action, and what 
values these state variables must have at the beginning of the action and will 
have at the end of the action respectively. The prevailcondition expresses 
which state variables must have a certain value during the whole execution 
of the action but which are not changed by the action. The restrictions 
express that an act ion can only change a state variable from a defined value 
to another defined value (Sl), a state variable cannot both be changed and 
required to have a constant value (S2), and two distinct action types must 
differ in at least one of their conditions (S3). The interested reader is referred 
to the original papers [Backstrom and Klein, 1991a; Backstrom and Klein, 
1991 bJ for further details and intuition regarding the SAS formalism. 
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If sri] = u for some state s E S+, then the value of the ith state variable 
in s is treated as irrelevant or unknown. For s, s' E S+, s ~ s' denotes 
that for all i EM, either s [i] = u or s [i] = s' [i]. As a convention, we also 
write b(e), e(e), and f(e) meaning b(f), e(f), and f(f) respectively, where 
f = type ( e ). Gi ven an action e and a state s E S+, apPSAS ( s, e) denotes the 
set of applicable causal SAS-rules for e in s, that is, all rules (f, b( f), e( f), f( f)) 
s.t. type(e) = f, b(f) ~ s, and f(f) ~ s. Note that by the definition of causal 
SAS-structures, apPSAS(S, e) is either empty or a singleton. An action e is 
said to SAS-affect the world in a state s iff apPSAS( s, e) =f. 0. A state s is 
updated by another state s', written s EB s' and defined as follows: 4 

( ')[.] {S'[i] if s'[i] =f. u ~ 11 · M s EB s z = [ .] th . lor a z E . s z 0 erWlse 

Event sequences are defined as previously, and the function ResultsAs is de­
fined recursively as: 

Result sAs (s, 0) = s 

Result sAs (s , (f; g)) = 

{ 
ResultsAs(S, f) EB e(g) 
ResultsAs(s, f) 

if apPSAS (ResultsAs (s, f), g) =I 0 
otherwise. 

An event sequence f is SAS-admissible relative to a state s if all actions in 
f SAS-affect the world when f is applied in s. Analogously to the definition 
of ACS, given a state s E S+, ACSsAs((A,-<),s) denotes the set of all 
f E CS(( A , -<)) s.t. f is SAS-admissible relative to s. 

Nonlinear SAS plans are defined analogously with nonlinear plans, and 
the SAS-PUS planning problem is defined as a more restricted version of the 
SAS planning problem. 

Definition 9 A tuple 6. = (A, -<) is a nonlinear SAS-plan for a SAS 
planning task IT = ((M,SI, ... ,S,MJ,E,C),SI,sq) iff type(e) E E for all 
e E A) -< is a strict partial order on A) AC5sAs(6., SI) = C5(6.)) and 
ResultsAs(SI, f) = Sq for all f E CS(6.). 

Definition 10 A SAS planning task IT = (,Nt,S!, ... ,S,M"E,C,sI,sq) is a 
SAS-PUS planning task iff it satisfies the restrictions: 

Su. for all fEE) there is exactly one i E M s.t. b(f)[i] =I u; 

SP. for all f, f' E E) if there is some i E M s.t. e( f)[i] = e( f')[i] =f. u then 
f = f'; and 

4Note that in SAS worlds the notions of update and revision as defined by Katsuno and 
Mendelzon [1991] coincide. 
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SS. for all E, EI E £ and for all i E M, if f( E)[iJ =J u and f( E/)[iJ =J u then 
f(E)[iJ = f( E/)[iJ 

The restrictions SU, SP, and SS express that the set of action types must 
be unary, post-unique, and single-valued respectively.s Unariness means that 
each action changes exactly one state variable, i.e., an action cannot have 
multiple effects. Post-uniqueness means that there must not be two distinct 
action types changing the same state variable to the same value, i.e., no 
two distinct action types have the same effect. Single-valuedness means that 
if two di stinct action types require the same state variable to have some 
constant , defined value during their executions, then they must require the 
same constant value for this variable. For example, if one action type requires 
the light to be on in a room during its execution, no other action type may 
require the light to be off during its execution. 

We will now re-express the restrictions for the SAS-PUS planning problem 
in the formalism used in the rest of this paper. The resulting problem is called 
the SAS-PUS equivalent problem. We finally prove that minimal plans for 
the SAS-PUS equivalent problem can be derived in polynomial time. 

Definition 11 A planning task II = ((P, £, R) , I, 9) is SAS-PUS equiv­
alent iff it satisfi es the following restrictions: 

1. Th ere is exactly one causal rule for each event; 

2. P can be partitioned into m disjoint subsets PI"'" Pm S.t. IPil > 1 for 
1 ~ i ~ m and for all causal rules (E, c.p, a, 8) E R 

(a) 8 ~ c.p , 

(b) 181 = 1; 

(c) Ic.p n Pi l ~ 1 for all i, 

(d) Ian Pil = 18n Pil ~ 1 for all i, 

(e)an8=0,and 

(f) lIn Pi l = 19 n Pi l = 1 for all i. 

3. for all pairs of causal rules (E, c.p, a, 8), V, c.pl, ai, 8/) E R 

(a) ifc.p = c.pl, a = ai, and 8 = 81 then E = E'; 

(b) if E =J EI then a n a' = 0; and 

(c) for all i E M , if (c.p - 8) n Pi =J 0 and (c.pl - 81
) n Pi =J 0 then 

(<.p - 8) n Pi = (<.pI - 81) n Pi . 

5The acronym PUS is derived from the words post-unique, unary, and single-valued . 
The B in the acronym SAS-PUBS stands for binary, which means that all state variable 
domains must have exactly two defined values. 
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The restrictions 2b, 3b, and 3c correspond to unariness, post-uniqueness, 
and single-valuedness respectively. The requirement that IPi I > 1 is not really 
a restriction; Suppose Pi = {p}, then we can extend it to a set PI = {p, -,p} 
and extend the conditions in the causal rules s.t. whenever an event type 
adds p it also deletes -'p, and vice versa. 

Theorem 5 Minimal nonlinear plans for SAS-PUS equivalent planning 
tasks can be derived in polynomial time. 

Proof. Prove that any SAS-PUS equivalent planning task II 
((P, £, R),I, Q) can be transformed to an equivalent SAS-PUS planning task 
IT' = (( M , Sl , ... , SIM I, £, C), SI, S9) in polynomial time. The proof consists 
of three parts: first prove that there is a transformation from II into II' s.t. 
IT' is a SAS-PUS planning task, then prove that the solutions for II' are ex­
actly the solutions for II, and, finally, prove that transforming II into II' and 
solving II' can both be done in polynomial time. 

The transformation from II to II' is defined as follows: 

• M = {I, ... , m} where m is the number of partitions of P i 

• s = P. for 1 < i < m' t t __ , 

• the function 6 ~ : 2P ~ S+ is defined s.t. for i E M, 

e(S)[i] = {u, S n Pi = 0 
x, SnPi={x} 

and e-1 
: S+ ~ 2P , the inverse of e, is defined s. t. for all i 

• ICI = IRI and for each causal rule (t:, cp, a, 8) E R, the corresponding 
causal SAS-rule (t:, b( to), e( to), f( to)) E C is defined as: 

- b(t:)=~(8), 

e(t:) = e(a), and 

f(t:) = e(cp - 8); and 

• SI = e(I) and 89 = eW)· 

6In order to make the presentation of the SAS formalism as brief as possible, the 
inconsistent values have been left out. This does not have any implications for expressive­
ness, and since 2c, 2d, and 2f guarantees that S7, sc, and all action type conditions are 
consistent, there is no need to define ~ for the case where Is n Pd > 1. 
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Except for the restrictions Sl-S3, IT' is obviously a SAS planning task, so 
prove that Sl- S3, SU, SP, and SS are satisfied by IT' in order to prove that 
it is a SAS-PUS planning task. 

S1. For each E E £ and i E M, either a(E) n Pi = 0 or not. First suppose 
a( E) n Pi = 0, then 2d gives 8( E) n Pi = 0 so b( E)[i] = ~(8)[i] = u and 
e( E)[i] = ~(a)[i] = u. Instead, suppose a(E) n Pi -I 0, then 2e gives 
8( E) n Pi -I a( E) n Pi so b( E)[i] = ~(8)[i] -I ~(a)[i] = e( E)[i]. Since 
8(10) n Pi -10 only if a(E) n Pi -10, Sl follows trivially. 

S2. Suppose b(E)[i] = f(E)[i]-I u for some E E £ and i EM, then 8(E)nPi = 
(cp(E) - 8(10)) n Pi -10. This is impossible, so S2 is satisfied. 

S3 . Immediate from 3a. 

SU o For all E E £, 2b gives 18(E)1 = 1 so there is exactly one i s.t. 8(E)nPi-l 
0. Hence, there is exactly one i E M s.t. b(E)[i] = ((8(E))[i] -I u and, 
SU follows. 

SP. For arbitrary E, 10' E £, suppose there is some i s.t. e( E)[i] = e( E')[i] -I u. 
Then a( E) n Pi = a( E') n Pi -I 0 so SP follows from the contrapositive 
of 3b. 

SS. For arbitrary E, E' E £, suppose there is some i s.t. f( E)[i] -I u and 
f(E')[i]-I u. Then (cp(E)-8(E))npi -10 and (cp(E')-8(E'))nPi -10 so 3c 
gives (cp(E)-8(E))nPi = (cp(E')-8(E'))nPi which impliesf(E)[i] = f(E')[iJ, 
and SS follows. 

Proving that the nonlinear plans for IT are exactly the nonlinear SAS­
plans for II' means to prove for every tuple ~ = (A, ----<), s.t. A is a set of 
actions of some type in £ and ----< is a partial order on A, that ACS(~,I) = 
CS(~) iff ACSSAS(~, I) = CS(~), and for all f E CS(~), Result (I, f) = 
~-l(ResultsAs(~(I),f) ) . Proof by induction that for every initial sequence g 
of f , g is admissible relative to I iff g is SAS-admissible relative to ((I), and 
if g is admissible relative to I then ~-l(ResultsAs(~(I), g) = Result (I, g). 

Basis: The empty sequence 0 is both admissible relative to I and SAS­
admissible relative to ((I). Furthermore, 

Cl(ResultsAs(~(I), 0)) = Cl(~(I)) = I = Result(I, 0). 

Induction: Suppose that for some 1 in f, f\1 is admissible relative to 
7 iff f\1 is SAS-admissible relative to ~(7), and also suppose that if f\1 is 
admissible relative to I, then ~-l(ResultsAs(((I), f\1)) = Result(I, f\1). If 
f\1 is not admissible relative to 7, then f / 1 is trivially neither admissible 
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relative to T nor SAS-admissible relative to e(T) and vice versa. Suppose 
instead that f\1 is admissible relative to T, then 

f /1 is admissible relative to T 

iff 1 is admissible relative to Result(T, f\f) 
iff cp(f) <; Result(T, f\f) 

iff 8(f) <; Result(T, f\f) and cp(f) - 8(f) <; Result(T, f\f) 
iff ~(8(J)) ~ ~(Result(I, f\l)) and ~(cp(J) - 8(J)) ~ ~(Result(I, f\l)) 

iff b(f) ~ ResuitsAS(e(T), f\f) and f(f) ~ ResuitsAS(e(T), f\f) 

iff 1 is SAS-admissible relative to ResultsAS(e(T), f\f) 

iff f / 1 is SAS-admissible relative to e(T). 

It remains to prove that if f / 1 is admissible relative to T then 

C1(ResultSAS(e(T),f/f)) = Result(T,f/f). 

We will implicitly make use of the fact that, since f / 1 is both ad­
missible relative to I and SAS-admissible relative to e(T), we have 

lapp(Resuit(T, f ), f)1 lapPsAs(ResultsAs(e(T), f), f)1 1. Let 
5 = Result(T, f\f) and, hence also, 5 = e-1 (ResultsAS(e(T), f\f)) 
by the induction hypothesis. Let 5' = e-1(ResuitsAS(e(T), f/ f)) = 
c 1 (ResultsAS(e(I), f\f) ffie(f)) = e-1(e(S) ffie(f)) . Hence, for all i E M, 

e(5')[i] = e(5) ffi e(f) = {e(f)[i), if e(f)[i] =I u 
e(5)[z], otherwise 

that is, for all i, 

5' n Pi = { {e(f)[i]} , if e(f)[i] =I u = { a(f) n Pi, if a(f) n Pi =I 0 
5 n Pi, otherwise 5 n Pi, otherwise . 

Also, let 5" = Result (I, f/ f) = Result (5, f) = 5 - 8(f) U a(f), then 2d and 
2f implies that for all i, 

It follows that 5' = 5" so e- 1 (Resuit sAS(e(T),f/I)) = Result(T,f/I). This 
ends the induction proof and, hence, the nonlinear SAS-plans for II' are 
exactly the nonlinear plans for II . 

Finally, it remains to prove that a plan for II can be found in polynomial 
time. The major difficulty with the transformation of II into II' is finding the 
partitioning of P. However, this can be done in polynomial time as follows 
(details left to the reader). First ascertain that a and 8 are singletons for all 
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causal rules. Create m = III singleton sets PI, . .. , Pm s.t. each p E I belongs 
to exactly one of the PiS. For each causal rule (t, c.p, a, 8) E n, if 8 ~ Pi for 
some i, then add the proposition in a to Pi. This process must be repeated 
until no more propositions can be added to any Pi. Any propositions in P 
that are not in any of the Pi:s cannot appear in any situation reachable from 
I. Hence, they can either be discarded or put in arbitrary Pi. Finally, the 
remaining restrictions must be tested to see if the partitioning is consistent. 
If not, then II cannot be transformed into a SAS-PUS planning task. The rest 
of the transformation is obviously polynomial and plans for II' can be found 
in polynomial time using the algorithm in Backstrom and Klein [1991a]. This 
algorithm is sound and complete so II can be solved in polynomial time by 
transforming it into an equivalent SAS-PUS planning task II', as described 
above, and applying the algorithm to II' .• 

6 Planning in a Simple Blocks-World Sce-. 
narlO 

The elementary blocks world problem (EBW) [Gupta and Nau, 1991] is as 
follows. There are n distinctly labelled blocks and a table which is large 
enough to hold at least n blocks. Blocks can be stacked onto each other to 
any height, but no block is allowed to be immediately supported by more 
than one block and no block is allowed to immediately support more than 
one block . There is no metric, so a block cannot be at a specific position on 
the table; it can only be on t he table or on some other block. There are three 
types of actions that can be performed on the blocks. A block can be moved 
from a position on some other block onto the table, it can be moved from the 
table to a position on some other block, and it can be moved from a position 
on some block to a position on some other block. The obvious restrictions 
apply. For example, a block cannot be moved if there is some other block on 
it , and a block cannot be moved onto a block on which there is already some 
other block. The EBW planning problem is, given an initial configuration 
and a desired (goal) configuration, find a plan that, if applied in the initial 
configuration, moves around the blocks so that the desired configuration will 
hold after executing the plan. The primitive blocks world problem (PBW) is 
the EBW problem with the extra restriction that the goal state is completely 
specified. Gupta and Nau [1991] have shown that finding a minimal plan for 
PBW, and thus implicitly also for EBW, is NP-hard. 

Let the restricted EBW problem (EBW-) denote the same problem but 
with the restriction that blocks are not allowed to be moved immediately 
from one block to another block, i.e., they must first be moved to the table 
and then moved onto the new block. Similarly, define the restricted PBW 
problem (PBW-) in the same way. Bylander [1991, Theorem 10] has shown 
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that the plan existence problem for EBW-, and hence also for PBW- , can be 
solved in polynomial time. We will show below that PBW- can be encoded 
in the SAS-PUBS problem [Backstrom and Klein, 1991b], which implies that 
deri vation of minimal plans is also a polynomial time problem. Before we 
show how to encode PBW- in SAS-PUBS we will present a small example 
to illustrate the principle. 

Suppose we have three blocks A, B , and C. Then there are twelve action 
types, for example, block A can be moved from block B onto the table, from 
block C onto the table, from the table onto block B, and from the table onto 
block C. Analogously, there are four action types for each of the other blocks. 
We need six state variables, as follows: AonB, AonC, BonA, BonC, ConA, and 
ConB. Each of these can have the values true (t), false (f), and undefined (u). 
The state variable AonB is true iff block A is immediately on block B; i.e., it 
is not true if block A is on block C which is on block B. The action types for 
moving block A can be encoded as shown in table 6, where states are encoded 
as tuples (AonB, AonC, BonA, BonC, ConA, ConB). 

Action type Pre-condition Post-condition Prevail-condition 
AfromB (t, u, u, u, u, u) (f,u,u,u,u,u) (u,f,f,u,f,f) 
AfromC (u,t,u,u,u,u) (u,f,u,u,u,u) (f,u,f,f,f,u) 
AtoB (f, u, u, u, u, u) (t, u, u, u, u, u) (u,f,f,u,f,f) 
AtoC (u,f,u,u,u,u) (u,t,u,u,u,u) (f, u, f, f, f, u) 

Table 1: Encoding of action types for moving block A. 

Action type AfromB moves block A from block B onto the table, i.e., it 
changes the state variable AonB from true to false. The prevail-condition 
expresses that we must also require that block A is not also on some other 
block7 (AonC false), there is no block on block A (BonA and ConA false), and 
there is no block on block B (ConB false). The encodings of the action types 
AfromC (move block A from block C to the table), AtoB (move block A from 
the table to block B), and AtoC (move block A from the table to block c) 
are motivated analogously. Action types for moving blocks Band C can be 
encoded in the same way. 

The general case wi th n blocks labelled B1 , ... , Bn can be encoded as 
follows. There are n 2 - n state variable indices8 Xij for all i and j s. t. 
1 ~ i ~ n, 1 ~ j ~ n, and i i- j, and each state variable can take on the 
values true (t), false (f), and undefined (u). For each pair of blocks Bi, Bj 

7Strictly speaking, this is not necessary to test here if we make sure that no block can 
be on two other blocks simultaneously in the initial state and that no action type can 
bring about this situation. 

8Note that the symbols x and y, usually with subscripts, denote state variable indices, 
not state variables . 
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s. t. i =J. j, there are twp action types: BifrornBj and BitoBj. The conditions 
of BifrornBj are encoded s.t. 

• b(BifrornBj)[xij] = t and b(BifrornBj)[Y] = u for all Y =J. Xij; 

• e(BifrornBj )[Xij] = f and b(BifrornBj)[Y] = u for all Y =J. Xij; and 

• f(BifrornBJ[xik] = f for all k s.t. i =J. k =J. j (block Bi is not on any other 
block than Bj) , f(BifrornBj)[xki] = f for all k =J. i (no block is on block 
B;), f(BifrornBj)[xkj] = f for all k s.t. i =J. k =J. j (no block is on block 
Bj, except block Bi), and f(BifrornBj)[Y] = u for all other state variable 
indices y . 

The conditions of BitoBj are identical except that b(BifrornBj) [Xij] = f and 
e(BifrornBj)[xij] = t . The initial state SI must also satisfy that for each 
i, t here is at most one j s.t. SI[Xij] = t, and similarly for the goal state 
S 9' This encoding of EBW- is essentially the same as in Bylander [1991], 
and it obviously satisfies the restrictions for the SAS-PUBS problem9

. As a 
consequence, optimal planning for PBW- is a polynomial time problem. 

Proposition 6 Th e encoding ofPBW- shown above satisfies the restrictions 
for th e SAS -PUBS problem . 

Proposition 6 together with the results in Backstrom and Klein [1991b] 
immediately lead to the following corollary. 

Corollary 7 Minimal plans for the PBW- problem can be found in polyno­
m ial tim e. 

Furthermore, the planning algorithm in Backstrom and Klein [1991 b] can 
easily be modified to handle incompletely specified goal states, so corollary 7 
also holds for EBW-. Although this result strengthens Bylander's [1991] 
Theorem 10, it does not extend to the general EBW problem, as has been 
shown by Gupta and Nau [1991] . On the other hand, any plan for an EBW­
planning task is also a plan for the corresponding EBW planning task, and 
a minimal plan for an EBW- planning task is at most twice as long as a 
minimal plan for the corresponding EBW planning task. It is also likely that 
one could derive near-minimal plans for an EBW planning task in polynomial 
time from a minimal plan for the corresponding EBW- planning task. 

It is an interesting observation that the PBW- problem can be encoded 
to satisfy the restrict ions both for the SAS-PUBS problem and for one of the 
problems which Bylander has proven tractable. However, neither of these 
problems appear to properly include the other. The exact relationship be­
tween these two problems remains to be investigated, however. 

9The SAS-PUBS problem has the same restrictions as the SAS-PUS problem plus the 
restriction that each state variable domain has only two defined values , i.e., ISd = 2. 
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7 Temporal Projection and Plan Validation 

Dean and Boddy [1988, p. 378] suggest that temporal projection is the basic 
underlying problem in plan validation: 

A nonlinear plan is represented as a set of actions {el, ... , en} 
partially ordered by -<. Each action has some set of intended 
effects: Intended( ei) ~ P . A nonlinear plan is said to be valid 
just in case Intended(ei) ~ Necessary(ei), for 1 ~ i ~ n . 

Although this definition sounds reasonable, there are some points which are 
arguable. As we have seen in Definition 7, a plan is a solution iff (1) it 
achieves its goal, and (2) it is coherent relative to the initial state, i.e., all 
precondi tions are necessarily satisfied.lO If a plan achieves its overall goals 
(ignoring its coherence), it is called partially valid. If it is partially valid 
and coherent relative to the initial state, 'it is called valid. Note that in 
contrast to Dean and Boddy's formulation, we do not refer to the intended 
effects of particular events but to the effects of the overall plan and to the 
state before particular events. 

Deciding whether a plan is partially valid can be straightforwardly re­
duced to temporal projection in linear time. Given a planning task IT = 

(<I>, I, 9), and a plan 6.4>, we extend the plan by an event e. that is not asso­
ciated with any causal rule and occurs after all other events. The resulting 
plan is called 6.~. Now it is easy to see that 6.4> is partially valid if, and only 
if, 9 ~ Nec(e., (6.~,I)). 

Coherence, however, is a property that cannot be easily reduced to tem­
poral projection as defined by Dean and Boddy. If we restrict ourselves to 
unconditional causal structures, however, we can define a variant of the tem­
poral projection problem that refers to the state before an event occurs and 
that can be used to decide coherence. More importantly, the restriction to 
unconditional causal structures will enable us to prove tractability of plan 
validation. Although the restriction may sound severe, it shows that plan 
validation is tractable for a considerable larger class of problems than tem­
poral projection. Furthermore, we will, at the end of this section, argue that 
this restriction is not very severe at all. 

Definition 12 Given an event system 8, an event e E A, and a condition 
pEP: 

P E Possb(e, 8) iff ::If E CS(8): p E Result (I, f\e) 

p E Necb( e, 8) iff Vf E CS(8): p E Result (I, f\e). 

lONote that our definition coincides with Chapman's [1987, p. 340] definition of when a 
plan solves a problem. 
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Proposition 8 An unconditional event system 8 is coherent iff 

"Ie E A: <p(e) ~ Necb(e, 8). 

Deciding p E Necb(e, 8) instead of p E Nec(e, 8) does not simplify the 
problem. All the NP-hardness proofs for Nec can be easily used to show 
N P -hardness for N eCb. For instance, the following corollary is an immediate 
consequence of Corollary 2. 

Corollary 9 Deciding p E Necb(e,8) zs co-NP-complete for simple event 
systems. 

In order to simplify the following discussion, we will restrict ourselves to 
consistent unconditional event systems, which have to meet the restrictions 
that a( e) n 8( e) = 0, for all e E A. Note that any unconditional event system 
8 can be transformed into a consistent unconditional event system 8' in 
polynomial time by setting 

<p'(e) <p(e) 

a'(e) a(e) 

8'(e) 8(e) - a(e), 

for all e E A. Consulting the definition of Result, it is obvious that this 
modification does not change the outcome of Result(S, f) for all S ~ P and 
all partial event sequences f over 0. 

As a first step to specifying a polynomial algorithm that decides coher­
ence for uncondit ional event systems, we define a simple syntactic criterion, 
written Maybeb(e, 0), that approximates Necb(e, 8). 

Definition 13 Given a consistent} unconditional event system 8} an atom 
pEP, and an event e E A} Maybeb(e,8) is defined as follows: 

P E Maybeb(e, 0) iff (l)p E IV 3e' E A: (e' -< e /\p E a(e'))/\ 
(2) ...,3e' E A - {e}: (e' -I< e /\ e -I< e' /\ p E 8( e'))/\ 
(3) "Ie' E A: ((e' -< e /\ p E 8(e')) -+ 

3e" E A: (e' -< e" -< e /\ p E a( ell)) ) . 

This definition resembles Chapman's [1987J modal truth criterion. The 
first condition states that p has to be established before e. The second 
cond ition makes sure t hat there is no event unordered w.r.t. e that could 
delete p, and the third condition enforces that for all events that could delete 
p and that occur before e, some other event will reestablish p. It is obvious 
that this criterion can be checked in polynomial time. 

Proposition 10 Maybeb( e, 0) can be decided in polynomial time. 
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Note that Maybeb is neither sound nor complete w.r.t. Necb in the general 
case because we do not know whether the events referred to in the defini­
tion actually affect the world. However, Maybeb coincides with Nec/j in the 
important special case that the event system is consistent and coherent. 

Lemma 11 Let 8 be an consistent unconditional event system. If 8 is co­
herent, then 

Proof. "~": We will show that all three conditions of p E Maybeb( e, 8) in 
Definition 13 are true for all e E A and all p E Necb(e, 8). 

Assume that the first condition does not hold for some event e and atom 
p E Necb( e, 8), i.e., p tf. I and -'::le': e' -< eAp E a( e'). Since 8 is coherent, we 
can construct an admissi ble complete event sequence f = (11,' .. , e, ... ) such 
that g = f\ e contains only events 9i such that 9i -< e. By induction over the 
length of the length of f\ e, we get p tf. Result(I,f\e), hence p tf. NeCb(e, 8), 
which is a contradiction. 

Assume that the second condition does not hold for some event e and 
atom p E Necb(e, 8), i.e., there exists an event e' unordered with respect to 
e such that p E 8( e'). Since e' is unordered with respect to e, there exists a 
complete event sequence f = (11," " e', e, ... ). Since 8 is coherent, and thus 
e' affects the world, it is obvious that p tf. Result (I, fie') = Result (I, f\e) 2 
Necb(e, 8), which is a contradiction. 

Assume the third condition is not satisfied, i.e., there exists p E Necb( e, 8) 
and an event e' -< e such that p E 8( e'), but there is no e" such that 
e' -< e" -< e and p E a( e") . Consider a complete event sequence f = 

(/1, ... ,e', ... ,e, .. . ) such that there are only events fi between e' and e 
that have to occur between them. Because p tf. Result(I, fie') and there 
are no events after e' that have p in the add list, using induction on the 
length of f\ e, we can infer p tf. Result(I,f\e) 2 NeCb(e, 8), which is again a 
contradiction. 

"2": Assume p E Maybeb( e, 8). We will show that also p E Necb( e, 8). 
Consider any complete event sequence g E C5(8). We want to show that 
p E Result (I, g\e). By condition (1) of the definition of Maybeb and the fact 
that all complete event sequences are admissible, we know that there exists 
9i E A such that Ig\9il ~ Ig\el and p E Result (I, g\9i). Consider the latest 
such event, i.e., 9i with a maximal i. Since all event sequences are finite, 
such an event must exist. If 9i = e, we are ready. Otherwise, we will show 
that i cannot be maximal. 

Since 9i is the latest event in g such that p E Result (I, (g\e)\9i), it must 
be the case that p E 8(9i)' By condition (2) in the definition of Maybeb' we 
know that 9i cannot be unordered with respect to e. By condition (3), we 
know that there exists an event 9j such that 9i -< 9j -< e and p E a(9j). 
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Because cp(gj) ~ Necb(gj,8) it must be the case that p E Result(I,g/gj) 
and Ig\gil < Ig/9jl ~ Ig\ei. Hence,9i cannot be the latest event before e 
such that p holds before the occurrence of gi. Hence, p E Result(I, g\e). 
Because g was an arbitrary element of CS(8), this holds for all complete 
event sequences. Hence, p E Necb( e, 8) . • 

Now we can give a necessary and sufficient condition for coherence of 
consistent unconditional event systems. 

Theorem 12 A consistent unconditional event system 8 is coherent iff 

\Ie E A: cp(e) ~ Maybeb(e, 8). 

Proof. "=}": Since 8 is coherent, we know that \Ie E A: cp(e) ~ Necb(e, 8). 
Further, by Lemma 11, M aybeb (e, 8) = N eCb (e, 8), for all e E A. Hence, 
\Ie E: A: cp(e) ~ Maybeb(e, 8). 

" ~": For the converse direction, we use induction on the number of 
conditions appearing in the preconditions of events over the entire event 
system: L:eEA Icp( e) I. As the base step, we assume, that for all events e E A, 
cp(e) = 0. Clearly, cp(e) ~ Maybeb(e, 0) and <p(e) ~ Necb(e, 0), for all e E A. 
Hence, the hypothesis holds for k = o. 

Now assume that our claim holds for all event systems with k or less 
preconditions. We will show that it also holds for event systems with k + 1 
preconditions. 

Consider an event system 8 with k + 1 preconditions such that cp( e) ~ 
Maybeb( e, 8) for all e E A. Choose one event f that has a nonempty set 
of preconditions and replace the associated causal rule (type(J) , cp, C¥, 8) by 
the rule (type(J), 0, c¥, 8). This new event system is called 0'. We will write 
cp'(e), c¥'(e), and 8'(e) in order to refer to the preconditions, add lists, and 
delete lists in 0', respectively. Note that for all e E A - {f} it still holds 
that <p'(e) ~ Maybeb(e,8') = Maybeb(e,8) because the Maybeb conditions 
do not refer to cp. Further, we have vacuously that cp'(J) ~ Maybeb(J,8'). 
Because k 2 L:eEA' Icp'(e)I, we can apply our induction hypothesis and know 
that cp'( e) ~ Necb( e, 8') for all e E A, hence 0' is coherent. Finally note 
that by Lemma 11, we still have cp(J) ~ Maybeb(J,0) = Maybeb(J,0') = 

Necb(J,8'). Hence, any sequence g E CS(8') that contains f is an admissible 
sequence even if <p'(J) = cp(J). Since we have CS(8) = CS(8'), it follows 
that all sequences h E CS(0) are admissible. Hence,8 is coherent, whence, 
the induction hypothesis holds for k + 1 preconditions . • 

From that it follows straightforwardly that coherence can be decided in 
polynomial time. 

Corollary 13 Coherence of unconditional event systems can be decided in 
polynomial time . 
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Proof. The claim follows immediately from Theorem 12, the fact that 
p E M aybeb (e, 8) can be decided iil polynomial time, and the fact that 
any unconditional event system can be transformed into a consistent one 
in polynomial time. -

Plan validation can easily be reduced to coherence, so it is a polynomial 
time problem if the causal structure is unconditional. 

Theorem 14 Deciding whether a plan ~<I> is a solution for a planning task 
IT with an unconditional causal structure is a polynomial time problem. 

Proof. Follows immediately from Corollary 13 and the fact that plan vali­
dation can be reduced to coherence in linear time as follows: Add an extra 
event e. s. t. 'P( e.) is the intended effects of the plan and e. is constrained to 
occur after all other events. -

One interesting point to note about this result is that it appears to be 
eas ier to decide a big conjunction of the form 

1\ 'P( e ) ~ Necb(e, 8) 
eEA 

than to decide one of the conjuncts. In other words, the claim by Dean 
and Boddy [1988] that temporal projection (in some form) is the underlying 
problem of plan validation is conceptually correct. However, it turns out that 
solving the subproblems is (most probably) harder than solving the original 
problem . 

Although maybe surprising, the result is not new. Chapman [1987] used a 
si milar techniq ue to prove plan validation to be a polynomial time problem for 
a slightly different formalism. It should be noted, however, that Chapman's 
[1987, p. 368] proof of the correctness and soundness of the modal truth 

criterion is correct only if we make the assumption that the plan is already 
coherent. Alternatively, we could modify the meaning of the term necessary 

as used by Chapman to a notion that is weaker than Necb. It seems to be 
the case that Chapman means by "a proposition is necessarily asserted in 
a situation" that the postcondition contains a certain proposition (in our 
simple formalism). However, because we do not know whether the event 
affects the world , i. e., asserts the particular proposition, we cannot make any 
claim whether the particular proposition really will get asserted. So it seems 
to be the case that Chapman actually means Maybeb instead of Necb and 
misses to prove the second half of our Theorem 12. 

We will end this section with a brief analysis of the implications of restrict­
ing event systems to be unconditional. There are mainly three motivations 
for conditional actions: to handle uncertain initial states, context-dependent 
outcome of actions, and external events, i.e., events out of the control of the 
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planner. An example for the first case are the following two rules associated 
with the event type teall: 

(teall, {a,p}, {i}, 0), 
(teall, {a,e}, {i}, 0). 

Regardless of whether the robot has coins (e) or a phone card (p), he can 
make his call and afterwards the conditions are the same. It seems possible 
that under reasonable restrictions such cases could actually be handled by a 
slight extension of the plan validation algorithm. However, a further analy­
sis of such cases is necessary. An example for context-dependent actions is 
provided by the causal rules describing the effects of the tcharge action. After 
this action Robby 's batteries are fully charged or damaged, depending on the 
state of the batteries before the event. Chapman [1987] has already shown 
that plan validation becomes NP-hard in this case. However, it seems more 
reasonable to handle this kind of combinatorics in the planner. The planner 
may commit itself in advance to one of the causal rules associated with the 
action and rriake sure that only this rule gets applied. In other words, the 
task of plan validation is then to check that only the committed rules are 
actually applied, which again can be reduced to the plan validation problem 
as defined above. 

Coping with external events usually means to undo the effects of some 
event e whose occurrence is out of our control. This can be done by executing 
an action e' after e such that e' undoes the effects of e. This can be done 
only if we know when e will occur or if we can plan to wait for its occurrence. 
Furthermore, e' need not be a conditional action but can rather be an action 
that has the inverse effect of e even if e has not occurred. The only case 
where conditional actions are really needed in order to cope with external 
events is when there can occur any number of external events and we do not 
know when they will occur and possibly not even what events may occur. In 
this case, we need more advanced types of conditional plans (see, for exam­
ple, Schoppers [1987]), which cannot be modelled in STRIPS-like formalisms. 
It seems that the formalism suggested by Dean and Boddy is too weak to 
adequately express those scenarios where conditional actions are needed. 

Summarizing, for plan validation purposes in the STRIPS-like formalism 
as used in this paper, it hardly seems to be a severe restriction to require the 
event systems to be unconditional. 

8 Approximate Temporal Projection 

Based on the observation that temporal projection is difficult even for sev­
erly restricted cases, Dean and Boddy [1988] develop an incomplete decision 
procedure that computes its results in polynomial time. Reconsidering the 
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reflections from the previous sections, one may ask whether this procedure 
is based on the right assumptions and whether it gives useful results. Such 
a judgement is, of course, difficult. 

In the area of reasoning about temporal relations between events [Allen, 
1983], it was possible to identify tractable special cases that are natural 
for uncertain observations and text understanding [Nokel, 1989; Vilain et 
ai., 1989]. Further, the incomplete decision procedure for the full problem 
turned out to be complete for the tractable special case. Thus, we have a 
good justification for using the incomplete algorithm in this case. 

If we consider the incomplete decision procedure for temporal projection, 
there is the question what the interesting special cases are where we want the 
procedure to be complete. Dean and Boddy [1988, Theorem 3.4] prove their 
procedure to be complete if the events are totally ordered, which gives us one 
characterization of the behavior of the procedure. Since one of the intended 
applications is validation of nonlinear plans, one would also expect that the 
procedure is complete for cases where plan validation is tractable, e.g., if we 
consider unconditional events only. This is not the case, however. The main 
reason for this failure is that the procedure considers all events unordered 
with respect to a given event as equally likely to appear. Condition (3) in 
the definition of Maybeb' however, tells us that sometimes the deletion of an 
atom can be ignored. 

Since we cannot reproduce the entire procedure because of space limita­
tions, the reader is referred to the original article [Dean and Boddy, 1988, 
p. 380-392J. Here we will only sketch the ideas of the procedure. For every 
event e, two sets are computed, namely, Strong(e, 8) and Weak(e, 8), such 
that 

Strong(e, 8) ~ Nec(e, 8) ~ Poss(e, 8) ~ Weak(e,8), 

where Strong(e,8) is intended to contain only conditions that hold after e 
in all complete event sequences, while Weak ( e, 8) is meant to contain all 
conditions that might hold after e in some complete event sequence. 

In addition, the sets S-Strong(e, 8) and S- Weak(e, 8) are computed. The 
first set contains all of Strong(e, 8) except those conditions that could be 
deleted by an event unordered with respect to e. Similarly, S- Weak(e, 8) 
contains all of Weak(e,8) plus those conditions that could be added by 
events unordered with respect to e. 

Consider now the following unconditional event system: 

P {p,q,r} 

£ {Ea, Eb, Ee} 
R {(Ea, {q}, {}, {r}), 

(Eb, {q}, {r}, {}), 
(Ee, {q, r}, {p}, {})} 
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A {A, B, C, D, E} 
I {q} 

The types of the events and the partial order is given in Figure 1. It is easy 

c D 

Figure 1: A valid nonlinear plan 

to see that this uncondi t ional event system is coherent and achieves {p, q, r}. 
Using Theorem 14, this could be checked in polynomial time. However, the 
incomplete decision procedure is too conservative. It misses to report that r 

and p are among the necessary consequences, as can be seen from Table 2. 

Event Type S-Strong Strong Nee Poss Weak S- Weak 
{q} {q} {q} {q} {q} {q} 

A lOa {q} {q} {q} {q} {q} {q,r} 
B lOb {q} {q,r} {q,r} {q,r} {q,r} {q,r} 
C lOa {q} {q} {q} {q} {q} {q,r} 
D lOb {q} {q,r} {q,r} {q,r} {q,r} {q,r} 
E Ec {q} l{q}1 l{p,q,r}1 {p,q,r} {p,q,r} {p,q,r} 

Table 2: Results of the incomplete decision procedure 

In the computation of S-Strong(B) and S-Strong(D) , the procedure IS 

overly pessimistic with respect to the occurrence of the events A and C. Since 
these could delete the condit ion r, it may be the case that r does not hold 
before the occurrence of the event E. However, it is easy to see that r is 
necessarily added before occurrence of E. 

In summary, this result shows that in an important tractable special case 
the incomplete decision procedure fails to provide a complete result. 
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9 Story Understanding 

Besides plan validation, Dean and Boddy [1988, p. 375] also mention story 
understanding as one domain where temporal projection is important: 

" ... an author may not provide the reader with the exact time 
of all events mentioned in a narrative, knowing that it is not 
critical that the reader have such information in order to follow 
the story." 

Theorem 1, however, tells us that we are lost, as authors or readers. Even 
in the simplest case, the author has better to provide complete information 
or there is the danger that the reader gets lost in figuring out what is the 
case. ll However, if we place some reasonable restrictions on the problem, the 
computational problems vanish. 

First of all, it seems reasonable that we consider only admissible event 
sequences. It simply makes no sense that an author tells a reader that an 
event takes place that does not have any effect on the world. Conversely, one 
could argue that an author does not tell the exact time of events if the reader 
is able to recover the sequential information by other means, for instance, 
by the coherence of the events. If we take, for instance, the event system 
introduced in Section 2 and assume that the partial ordering over the events 
is all the author told us about temporal relations, then the natural way to 
interpret the story is to assume that either (A, B, C, D, E, F) or (D, E, F, A, B, C) 
is the course of events because all other possible complete sequences are not 
admissible. With this assumption, we are able to infer that under the given 
initial conditions {h, e, q} afterwards Robby has informed his master (i), 
recharged his batteries (f) and returned to the hall (h). Secondly, we will 
assume that a story is non-repeating, i.e., all states are different. Other­
wise, the story would contain more than once the same situation-which is 
rather unlikely. In order to capture this formally, we introduce the notion of 
non-repeating sequences of an event system, written NCS( (/:1,I)), with 
the intention that for all events g, h, where 9 # h, appearing in an event 
sequence, we have Result (I, f / g) # Result (I, f / h). Evidently, it is the case 
that NCS(8) ~ ACS(8) because the occurrence of an event e that does not 
affect the world leads to the same state as before the occurrence of e. Using 
this formalization of story-understanding, yet another variant of temporal 
projection is defined. 

llNote that NP-completeness means that we (most probably) cannot hope to solve the 
problem effortlessly. Instead, "puzzle mode" reasoning is necessary to arrive at a conclusion 
[Levesque, 1988]. 
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Definition 14 Given an event system 8, an event e E A, and a condition 

pEP: 

P E Poss+( e, 8) iff 3f E NCS(8): p E R esult (I, fie) 

p E Nec+( e, 8) iff 'If E NCS(8): p E R esult (I, fi e). 

Proposition 15 For simple event systems 8 , p E Nec+(e,I) and p E 

Poss+( e, 8) can be decided in polynomial time. 

Proof. The restriction to non-repeating sequences over simple event systems 
implies that the effects of all events are unique, i.e., there are no two events 
with the same add list and the initial state is different from all add lists. The 
uniqueness of the add lists implies the uniqueness of the preconditions. If 
the preconditions are not unique, there is no non-repeating event sequence. 
Thus, we can construct the (unique) event sequence incrementally-provided 
there exists one- starting with the set of initial conditions. This can be done 
in polynomial time. p E Poss+(e, 8) iff there exists a non-repeating complete 
event sequence and the add list of e contains p. p E Nec+( e, 8) iff there exists 
a non-repeating complete event sequence and p E a( e) or there is no such 

sequence. -

Thus story understanding (in the highly abstract form as defined here) 
is easier than temporal projection in the case of simple event systems. The 
question is, in how far this result can be generalized. 

If we remove the restriction that the event sequence is non-repeating 
and require only that the course of events is admissible, the complexity of 
story understanding for simple event systems is not obvious. The resulting 
problem is equivalent to finding an Euler tour in a graph such that the arcs 
on this tour respect a given partial ordering. It is not obvious whether this 
problem can be solved in polynomial time. However, as we remarked above, 
the non-repeating restriction seems to be quite reasonable. 

Generalizing the problem to general conditional event systems leads im­
mediately to N P-completeness because we can design the causal rules in a 
way such that all sequences are non-repeating. A more interesting question 
is, whether we can solve the problem for general unconditional event sys­
tems. Because plan-validation is easy in this case, one may suspect that 
this also holds for temporal projection in an story understanding context. 
Unfortunately, this is not true, though. 12 

Theorem 16 For unconditional event systems 8, deciding p E Poss+ (e, 8) 
is NP-complete. 

12Note that instead of requiring that all complete event sequences are admissible, here 
we quantify over the non-repeating complete sequences, which is a subset of the admissible 
sequences . 
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Proof. Again, membership in N P is obvious. For the hardness part we use 
the problem of directed Hamilton path, which is NP-complete [Garey and 
Johnson, 1979, p. 199] . 

Let Let G = (V, A) be a digraph, where V = {VI,"" Vn }, and let Vs , Vt E 
V. Let V = {VI, ... , vn } be a disjoint copy of V. Define the event system 8 
as follows: 

£ 
p 

R 

A 
type( e;) 

I 

{Ei! Vi E V} 
V u V u {p} 

{(Ei,{V;},{Vi,Vjll,.·,Vjm}, V)! (Vi,Vjk) E A,Vi =1= vd u 
{ (lOt, { Vt}, {p}, V) } 

{ei!Ei E £} 
Ei for all ei E A, 1 ~ i ~ n 

for all e E A such that e =1= es 

{ vs}. 

Note that 8 is an unconditional event system and, that it can be constructed 
in polynomial time. 

Now we claim that there exists a Hamilton path from Vs to Vt in G iff 
p E Poss+(et, 8). 

":::}": Let WI~ W2, ... , Wn be a Hamilton path in G with WI = Vs and 
Wn = Vt. By construction of 8, there exists a non-repeating complete event 
sequence, f = !I, ... , In such .that !I = es and In = et. Since the add list of 
et is {p}, we have p E Poss+(et,8). 

"¢::": Assume that there exists a non-repeating complete event sequence 
f = !I, ... ,In, where In = et. Then there exists by construction of 8 a path 
from Vs to Vt that contains every vertex exactly once, i.e., there is a Hamilton 

path from Vs to Vt. -

Assuming that story understanding is an easy (i.e., tractable) task, this 
result implies that the formalization of the problem is still too general to 
account for the structure of the domain. It is desirable to identify restrictions 
that lead to polynomial algorithms for temporal projections in this domain, 
but there do not seem to be natural and obvious such conditions. 

However, it should be noted that story understanding most probably 
involves more than can be expressed in our formalism. It seems plausible 
that plan recognition is one crucial part in story understanding and that 
abduction in general plays a vital role in such a task. Since we cannot express 
any of these phenomena, it seems to make not much sense to speculate about 
the complexity of this task. What seems to be clear, however, is that story 
understanding is more than temporal projection and that most probably 
other mechanisms than temporal projection are responsible for inferring the 
ou tcome of a story. 

32 



10 Conclusions 

Reconsidering the problem of temporal projection for sets of partially ordered 
events as defined by Dean and Boddy [1988], we noted that one special case 
conject ured to be tractable turned out to be NP-complete. Although this 
result does not undermine the arguments of Dean and Boddy [1988], it leads 
to some counter-intuitive results . 

Planning is easier than temporal projection in this special case. This 
positive result can be generalized to a less restricted problem, namely, the 
so-called SAS-PUS planning problem. 

Further, we noticed that plan validation, if defined appropriately, is tract­
able for an even larger problem, namely validation of unconditional nonlinear 
plans. This means that the problem of validating a plan as a whole is easier 
than validating all its actions separately. In other words, what might look 
like a divide and conquer strategy at a fir~t glance is rather the opposite. 

These two observations lead to the question of whether the formalization 
[Dean and Boddy, 1988] really captures one of the intended applications, 
namely, validation of nonlinear plans. In particular, one may ask whether 
the incomplete decision procedure for temporal projection developed by Dean 
and Boddy .[1988J is based on the right assumptions . 

Dean and Boddy [1988] showed that their incomplete decision procedure 
is complete if the order of events is total. However, under the assumption that 
plan validation is one of the intended applications, one would expect that the 
procedure is also complete for other important tractable special cases, such 
as validation of nonlinear plans containing only unconditional events, where 
the plan-validation problem is tractable. It turns out, however, that this is 
not the case. 

Also the task of story understanding, which was another motivation for 
the formalization of the temporal projection problem and the development 
of an incomplete decision procedure, does not seem to be particularly well 
described as a temporal projection problem. Under some reasonable further 
restrictions, this task is also tractable in the special case where temporal pro­
jection is NP-hard. Unfortunately, however, this positive complexity result 
cannot be straightforwardly generalized. For general unconditional events, 
the problem can be shown to be NP-complete, while the corresponding plan­
validation problem is still tractable. However, it seems to be the case that 
there is more to story understanding than just temporal projection. Plan 
recognition seems to playa crucial role which cannot be accounted for in the 
framework of temporal projection used in this paper. 

As a final remark, it should be noted that the criticisms expressed in this 
paper are possible only because Dean and Boddy [1988] made their ideas and 
claims very explicit and formal. Although the general direction of isolating 
and formalizing a problem, followed by the development of an incomplete 
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decision procedure, as exercised by Dean and Boddy, seems a promising way 
to go, two points should be emphasized. First , sometimes the decomposition 
of a problem into subproblems can lead to problems that are more difficult 
than the original problem, as demonstrated by the decomposition of the plan 
validation problem into temporal projection problems. Second, it is hard to 
judge the merit of an incomplete decision procedure if there are no well 
justified criteria for doing this, and such criteria should be given for each 
proposed incomplete procedure. 
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