
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Research
Report

RR-91-34

On the Computational Complexity
of Temporal Projection and

some Related Problems

Bernhard Nebel, Christer Backstrom

October 1991

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

On the Computational Complexity of Temporal Projection
and some Related Problems

Bernhard Nebel and Christer Backstrom

DFK1-RR-91-34

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8901 8).

© Deutsches Forschungszentrum fU r Kunstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the follow ing : a notice that such copying is by
permission of Deutsches Forschungszentrum fur Kunstl iche Intell igenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of th is copyright notice . Copying , reproducing , or republ ishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

On the Computational Complexity
of Temporal Projection and

some Related Problems*t

Bernhard Nebel
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-6600 Saarbriicken 11, Germany

e-mail: nebel@dfki.uni-sb.de

Christer Backstrom
Department of Computer and Information Science,
Linkoping University, S-581 83 Linkoping, Sweden

e-mail: cba@ida.liu.se

Abstract

One kind of temporal reasoning is temporal projection-the compu­
tation of the consequences for a set of events. This problem is related
to a number of other temporal reasoning tasks such as story under­
standing, plan validation, and planning. We show that one particular
simple case of temporal projection on partially ordered events turns
out to be harder than previously conjectured. However, given the re­
strictions of this problem, planning and story understanding are easy.
Additionally, we show that plan validation, one of the intended appli­
cations of temporal projection, is tractable for an even larger class of
plans. The incomplete decision procedure for the temporal projection
problem that has been proposed by other authors, however, fails to
be complete in the case where we have shown plan validation to be
tractable.

"This work was supported by the German Ministry for Research and Technology
(BMFT) under contract ITW 8901 8 and the Swedish National Board for Technology
Development (STU) under grant STU 90-1675.

tThis paper is also published as Research Report LiTH-IDA-R-91-34, Department of
Computer and Information Science, Linkoping University, Linkoping, Sweden.

Contents

1 Introduction 1

2 Temporal Projection 2

3 A "Simple" Temporal Projection Problem 6

4 A Simple Planning Problem 10

5 Polynomial-Time Planning in Two Different Formalisms 12

6 Planning in a Simple Blocks-World Scenario 19

7 Temporal Projection and Plan Validation 22

8 Approximate Temporal Projection 27

9 Story Understanding 30

10 Conclusions 33

References 34

1 Introduction·

The problem of temporal projection is to compute the consequences of a set
of events. Dean and Boddy [1988J analyze this problem for sets of partially
ordered events assuming a propositional STRIPs-like [Fikes and Nilsson, 1971J
representation of events. They investigate the computational complexity of a
number of restricted problems and conclude that even for severely restricted
cases the problem is N P-hard, which motivate them to develop a tractable
and sound but incomplete decision procedure for the temporal projection
problem.

Among the restricted problems they analyze, there is one they conjecture
to be solvable in polynomial time. As it turns out, however, even in this case
temporal projection is NP-hard, as is shown in Section 3. This result does not
undermine the arguments of Dean and Boddy [1988J, but rather confirms that
the problem of temporal projection as they d.efine it is very difficult-even
in its simplest form. The result is somewhat surprising, however, because
planning, plan validation, and story understanding seem to be easily solvable
given the restriction of this temporal projection problem.

The problem of planning is, given a current world state, a desired world
state, and a set of possible actions that can be executed, find a sequence

of actions that, if executed in the current world state, will bring about the
desired world state. Planning is a very difficult problem [Chapman, 1987;
Bylander, 1991; Chenoweth, 1991; Gupta and Nau, 1991J. However, if we
apply the restrictions of the simple temporal projection problem to the for­
mulation of the planning problem, planning turns out to be trivial. Plans of
minimal length are derivable in polynomial time. Further, this result can be
strengthened to a less restricted problem-the SAS-PUS planning problem
[Backstrom and Klein, 1991aJ.

This observation casts some doubts on whether temporal projection is
indeed the problem underlying planning, plan validation, and story under­
standing, as suggested by Dean and Boddy [1988J. It seems natural to assume
that the validation of plans is not harder than planning. Thus, one would
expect that plan validation is easy for SAS-PUS plans and perhaps for an
even larger class of plans. Our N P-hardness result for the simple temporal
projection problem seems to suggest the contrary, though. One of the most
problematical points in the definition of the temporal projection problem by
Dean and Boddy seems to be that event sequences are permitted to contain
events that do not affect the world because their preconditions are not satis­
fied. If we define the plan validation problem in a way such that all possible
event sequences have to contain only events that affect the world, plan vali­
dation is tractable for the class of plans containing only unconditional events,
a point already suggested by Chapman [1987J. In fact, deciding a conjunc­
tion of temporal projection problems that is equivalent to the plan validation

1

problem appears to be easier than deciding each conjunct in isolation.
These reflections lead to the question of whether the above mentioned

incomplete decision procedure gives useful results. One would expect that the
procedure is complete in important special cases that are tractable. However,
the procedure sometimes fails on unconditional nonlinear plans, where plan
validation is tractable.

Finally, we will discuss the relationships between temporal projection
and story understanding. If we add two reasonable assumptions, namely,
that a story is coherent and non-repeating, then it is trivial to reconstruct
the underlying course of events in polynomial time in the case where we
have proven (contrary to previous conjecture) that temporal projection is
N P-hard. This positive complexity result does not carryover to slight gener­
alizations, however. The modified temporal projection problem for coherent
and non-repeating stories becomes NP-hard, if general unconditional events
are permitted. However, it seems to be the case in story understanding that
more constraints are exploited than can be captured by the original formal­
ization of temporal projection.

The remainder of the paper is structured as follows. Section 2 contains
the definition of the general temporal projection problem for partially or­
dered events. In Section 3, the computational complexity of a simple form of
temporal projection that was conjectured to be tractable by Dean and Boddy
[1988] is shown to be NP-hard. The corresponding planning problem permits
a polynomial planning algorithm, however, as is shown in Section 4. This
positive result is shown to hold for even less restricted planning problems in
Section 5. In Section 6 we use this result to show that optimal planning for
blocks world is tractable under certain restrictions. In Section 7, we show
that plan validation is tractable if all events are unconditional. The degree of
completeness of the incomplete decision procedure mentioned above is ana­
lyzed in Section 8. Finally, we sketch some ideas concerning the relationship
between temporal projection and story understanding in Section 9.

2 Temporal Projection

Given a description of the state of the world and a description of which events
will occur, we are usually able to predict what the world will look like. This
kind of reasoning is called temporal projection. It seems to be the easiest and
most basic kind of temporal reasoning. Depending on the representation,
however, there are subtle difficulties hidden in this reasoning task.

The formalization of the temporal projection problem for partially or­
dered events given below closely follows the presentation by Dean and Boddy
[1988, Sect. 2]. We start with the definition of what a causal structure is,
which fixes our vocabulary to talk about states, event types, and laws of

2

change. We confine ourselves to a particular simple form of causal struc­
tures, where wofld states are represented by sets of propositional atoms and
laws of change are described as propositional STRIPS-like operators. As a sec­
ond step, we introduce sets of partially ordered events over causal structures
that denote all event sequences that satisfy the partial order over the event
set. Finally, the notion of event systems will be introduced that consist of
an initial state and a partially ordered event set. The problem of temporal
projection is to decide whether a given propositional atom holds, possibly or
necessarily, after a given event in an event system.

Definition 1 A causal structure is given by a tuple <I> = (P, E, R), where

• P = {PI, . .. ,Pn} is a set of propositional atoms, the conditions,

• E = {El, ... ,Em } is a set of event types,

• R = {rI, ... ,ra } is a set of causal rules of the form ri = (Ei' <Pi, ai, 8i),
where

Ej E E is the triggering event type,

<Pi ~ P is a set of preconditions,

aj ~ P is the add list,

and OJ ~ P is the delete list.

In order to give an example, assume a toy scenario with a hall, a room
A, and another room B. Room A contains a public phone, and room B
contains an electric outlet. The robot Robby can be in the hall (denoted by
the atom h), in room A (a), or in room B (b). Robby can have a phone card
(p) or coins (c). Additionally, when Robby uses the phone, he can inform
his master on the phone that everything is in order (i). Robby can be fully
charged (f), almost empty (e), or, in unlucky circumstances, his batteries
can be damaged (d). Summarizing, the set of conditions for our tiny causal
structure is the following:

P = {a,b,h,p,c,i,d,e,f}.

Robby can do the following. He can move from the hall to either room
(Eh_a, Eh_b) and vice versa (Ea_h, Eb_h). Provided he is in room a and he has
a phone card or coins, he can call his master (Eeal/). Additionally, if Robby
is in room b, he can recharge himself (Eeharge). However, if Robby is already
fully charged, this results in damaging his batteries. Summarizing, we have
the following set of event types:

3

and the following set of causal rules:

R = { (Eh--+a, {h}, {a}, {h}),
(Eh--+b, {h}, {b}, {h}),
(Ea--+h' {a}, {h}, {a}),
(Eb-+h' {b}, {h}, {b}),

(Ecall' {a,p}, {i }, 0),
(Ecal/, {a, e}, {i }, {e}),
(f.charge, {b, e}, {f}, {e}) ,

(Echarge, {b, f}, { d}, {f})}.

In order to talk about sets of concrete events and temporal constraints
over them, the notion of a partially ordered event set is introduced. 1

Definition 2 Assuming a causal structure <I> = (P, £, R) I a partially or­
dered event set (POE) over <I> is a pair 64> = (A4>' -<) consisting of a set of
actual events A4> = {el, ... , ep } such that type(ei) E £, and a strict partial
orde-r -< over A4>.

In the following, we will often drop the subscript <I> in 64> and A4> if it
is clear from the context which causal structure we mean. Continuing our
example, we assume a set of six actual events A = {A, B, C, 0, E, F} , such that

type(A) Eh--+a

type(B) Ecall

type(C) Ea-+h

type(O) Eh-+b

type(E) Echarge

type(F) Eb h,

and
A -< B -< C

0 -< E -< F.

POEs denote sets of possible sequences of events satisfying the partial
order. A partial event sequence of length m over such a POE (A, -<) is
a sequence f = (h, .. ·, fm) such that (1) {fl, .. . , fm} ~ A, (2) fi =I fj if
i =I j, and (3) for each pair fi' fj of events appearing in f, if fi -< fJ then
i < j. For instance, (A, B, C) is a partial event sequence of length three over
the POE given above, while (A, C, B) is not. If the event sequence is of length
IAI, it is called a complete event sequence over the POE. The sequences

1 This notion is similar to the notion of a nonlinear plan.
2 A strict partial order is a transitive and irreflexive relation.

4

(A, B, C, D, E, F) and \A, D, B, E, C, F) are complete event sequences, for instance.
The set of all complete event sequences over a POE .6. is denoted by CS(.6.).

We say that a partial event sequence f can be extended to an event
sequence g if If I < Igl and for all fi, Ii with i < j there exists gk = fi and
gl = Ii such that k < I. If f = (fl, ... , fk, ... , fm) is an event sequence,
then (fl, ... ,fk) is the initial sequence of f up to fk' written f / fk. Similarly,
f\fk denotes the initial sequence (iI, ... , fk-l) consisting of all events before
fk. Further, we write g; f to denote the sequence (g, iI, ... , fm) and f; 9 to
denote (fl, ... ,fm' g).

Each event maps states (subsets of P) to states. Let S ~ P denote a state
and let e be an event. Then we say that the causal rule r is applicable in
state S iffr = (type(e), cp, a, 8) and cp ~ S. Given e and S, app(S,e) denotes
the set of all applicable rules for e in state S. An event e is said to affect
the world in a state S iff app(S, e) =I=- 0. In order to simplify notation, we
write cp(r), a(r), 8(r) to denote the sets c.p, a, and b, respectively, appearing
in the rule r = (I':, cp, a, 8). If there is' only one causal rule associated with
the event type type(e), we will also use the notation cp(e), a(e), and 8(e).
Based on this notation, we define what we mean by the result of a sequence
of events relative to a state S.

Definition 3 The function "Result" from states and event sequences to
states is defined recursively by:

Result (S, 0)
Result(S, (f;g))

S

Result(S, f) - {b(r)1 r E app(Result(S,f),g)} U

{a(r)1 r E app(Result(S,f),g)}.

It is easy to verify that the following equation holds for our example
scenarIo:

Result ({h, e, c}, (A, B, C, D, E, F)) = {h, f, i}.

The definition of the function Result permits sequences of events where events
occur that do not affect the world. For instance, it is possible to ask what
the result of (A, D, B, E, C, F) in state {h, e, c} will be:

Result({h,e,c }, (A,D,B,E,C,F)) = {h,e,i}.

Although perfectly well-defined, this result seems to be strange because the
events D, E, and F occurred without having any effect on the state of the
world. Given a state S, we will often restrict our attention to event sequences
such that all events affect the world. These sequences are called admissible
event sequences relative to the state S. The set of all complete event
sequences over .6. that are admissible relative to S are denoted by ACS(.6., S).
If CS(.6.) = ACS(.6., S), we will say that .6. is coherent relative to S.

5

In the following, we will often'talk about which consequences a POE will
have on some initial state. For this purpose, the notion of an event system
is introduced.

Definition 4 An event system 8 is a pair (6..tp, I) I where 6..tp is a POE
over the causal structure <I> = (P,£, R) , and I ~ P is the initial state.

In order to simplify notation, the functions CS and ACS are extended
to event systems with the obvious meaning, i.e., C8((6..,8)) = C8(6.) and
ACS((6..,S)) = ACS(6..,S). Further, if CS(8) = ACS(8), 8 is called co­
herent.

The problem of temporal projection as formulated by Dean and Boddy
[1988] is to determine whether some condition holds, possibly or necessarily,
after a particular event of an event system.

Definition 5 Given an event system 8 , an event e E A, and a condition
pEP:

P E Poss(e, 8) iff :3f E CS(8): p E Result (I, fie)

p E Nec(e, 8) iff \If E CS(8): p E Result (I, fi e).

Continuing our example, let us assume the initial state I = {h, e, c}.
Then the following can be easily verified:

i E Poss(B, 8)
d rf. Poss(E, 8)

i rf. Nec(B, 8)
d rf. Nec(E, 8).

In plain words, Robby is only possibly but not necessarily successful in calling
his master. On the positive side, however, we know that Robby's batteries
will not be damaged, regardless of in which order the events happen.

Given a set of conditions S and a sequence f, Result(S, f) can easily be
computed in polynomial time. Since the set CS(8) may contain exponen­
tially many sequences, however, it is not obvious whether p E Poss(e, 8) and
p E Nec(e, 8) can be decided in polynomial time.

3 A "Simple" Temporal Projection Problem

In the general case, temporal projection is quite difficult. Dean and Boddy
[1988] show that the decision problems p E Poss(e,8) and p E Nec(e, 8)
are NP-complete and co- N P-complete respectively even under some severe
restrictions, such as restricting a or 8 to be empty for all rules, or requiring
that there is only one causal rule associated with each event type.

6

Definition 6 An event system is called unconditional iff for each t E £,
there exists only one causal rule with the triggering event type t. An event

system is called almost simple iff it is unconditional and for each causal
rule r = (t, cp, 0, 0), the sets ° and 0 are singletons and 0 ~ cp. An event
system is called simple iff it is unconditional, I is a singleton, and for each

causal rule r = (t,cp,o,o), the sets cp, 0, and 0 are singletons and cp = o.

Dean and Boddy [1988, Theorem 2.4] prove that temporal projection for
almost simple event systems is NP-hard and conjecture that it is a polyno­
mial-time problem for simple event systems [Dean and Boddy, 1988, p. 379].
As it turns out, however, also this problem is computationally difficult.

Theorem 1 Deciding p E Poss(e, 8) for simple event systems 8 is NP­
complete .

Proof. Membership in N P is obvious. Guess an event sequence f and verify
in polynomial time that f E CS(8) and p E Result (I, fie).

In order to prove NP-hardness, we give a polynomial transformation from
path with forbidden pairs to the temporal projection problem. The for­
mer problem is defined as follows:

Given a directed graph G = (V, A), two vertices s, t E V, and a
collection C = { {aI, bd, ... , {an, bn}} of pairs of arcs from A, is
there a directed path from s to t in G that contains at most one
arc from each pair in C?

This problem is NP-complete, even if the graph is acyclic and all pairs are
disjoint [Garey and Johnson, 1979, p. 203].

First of all, we specify a transformation from directed acyclic graphs

(DAG) to simple event systems. Let G = (V, A) be a DAG, where
V = {VI,"" vd. Then define

P

£

R

A
type(ei,j)

iype(e.)

e -< e.

{ VI, ... , V k} U { * }
{ti,jl (Vi,Vj) E A} U {t.}

{(ti ,j, {vil, {Vj}, {vi})1 (Vi,Vj) E A} U

{ (t., { * }, { * }, { * }) }
{ei,jl ti,j E £} U {e.}

ti,j for all ei,j E A - {e.}

for all e E A - {e.}.

Note that such event systems, which we will call DAG event systems, are
simple, provided III = 1.

7

Let G = (V, A) be a DAG, let C = {{a1, bd, ... , {an, bn}} be a collection
of "forbidden pairs" of arcs from A such that each pair consists of different
arcs and the pairs are pairwise disjoint. Further, let sand t be two vertices
from V and assume without loss of generality that there is no arc (t, Vi) E A.

Let e be the corresponding DAG event system with I = {s}. For each

pair of arcs {(Vi, Vj), (Vk, VI)} E c,
1. if there is a (possibly empty) path from Vj to Vk in G add ek,l -< ei,j as

a temporal constraint to e,

2. if there is a (possibly empty) path from VI to Vi in G, add ei,j -< ek,l as
a temporal constraint to e.

Note that this addition of temporal constraints can be done in polynomial
time. Further note that it is impossible that (1) and (2) applies simultane­
ously to a pair of arcs. Finally note that since the forbidden pairs are pairwise
disjoint, there is no set of events {jb 12, h} ~ A such that it -< 12 -< h·

For the resulting event system, we claim that there is a path from s to t
in G that contains at most one arc from each pair in C iff t E Poss(e., e).

":=;.": Let V1, ... , Vm , 1 ::; m ::; lVI, be a path in G, where V1 = s

and Vm = t, without forbidden pairs from C. Then by construction
of e, there exists a sequence of events g = (gl, ... ,gm-1) such that
(type (gd, { vd, { Vi+ d, { vd) E R. Note that this sequence is indeed a partial
event sequence over e because the path does not contain forbidden pairs,
and, hence there are no temporal constraints for the events appearing in g.
Furthermore, we have for a(gm-d = {t} . By the construction of e, it holds
that

Result(I, (g; e.)/e.) = {t}.

The sequence g; e. can be extended to a complete event sequence hover e
in the following way:

1. add all events j that are not temporally constrained and do not appear
in g immediately before e"

2. add all pairs of events j, l' such that j -< l' and that do not appear in
g immediately before e. respecting -<,

3. add all events j that do not appear III g and j -< 9i for some 9i

appearing in g immediately before gi,

4. add all events j that do not appear III g and gi -< j for some gi
appearing in g immediately after 9i.

Note that for extensions of the forms (1) and (2) it holds trivially that

Result(I,h/e.) = {t} iff Result(I,(g;e.)/e.) = {t}

8

since no precondition .of any rule contains t by assumption. For extensions
of the form (3) it holds that ei,j -< ek,l only if there is path from VI to Vi in G.
Hence, if ei ,j is placed immediately before ek,l, the precondition of the causal
rule associated with ei,j cannot be satisfied. Thus, the above equivalence also
holds for case (3). Since (4) is the converse case, the equivalence also holds.

Summarizing, we have for the complete event sequence h

Result(I,h/e*) = {t}.

Thus, t E Poss(e* , 8).
"~": Assume t E Poss(e*, 8). Then there exists a complete event se­

quence g such that
Result (I, g/ e.) = {t}.

Consider the subsequence h containing only events that affect the world:

By the construction of the causal rules in 8 and the structure of the initial
set it is evident that each event in the subsequence h has an add list that is
identical to the preconditions of the immediately following event. Since the
ini tial conditions are I = {s} and Result (I, h) = {t} , there must be a path
s = VI, V2, ... ,Vm = t in G.

Finally, this path cannot contain any forbidden pair. Assume the
contrary, i.e., the path is of the form S, .. . , Vi, Vj, . .. ,Vk, VI, ... ,t and
{(Vi,Vj),(Vk,VI)} E C. Thus, there is a path from Vj to Vk. In this case,
however, we have ek,1 -< ei,j by the construction of -< in 8. This means,
however, that h cannot be a possible event sequence over 8. Hence, there
cannot be any event sequences leading to t that contain forbidden pairs. -

It is easy to show that p E Nec(e, 8) is computationally equivalent to
p ¢ Poss(e, 8), i.e., co-NP-complete.

Corollary 2 Deciding p E Nec(e, 8) for simple event systems 8 is co-NP­
complete.

Proof. We show that p ¢ Nec(e, 8) is NP-complete. Membership in NP is
obvious. For the N P-hardness part, we start with the same transformation
as in the proof of Theorem 1. We add to 8 a new condition p and a number
of events f with associated causal rules of the form:

(type (I), { V }, {p}, { V }),

for all V E V - {t}. These events are constrained to happen before e. and
after all other events constructed in the above reduction.

9

Now, it follows by the same arguments as in the proof of Theorem 1 that
p tf. Nec(e., 8) iff there is a path from s to t without forbidden pairs. -

These results are somewhat surprising because one might suspect that
planning and story understanding are easy under the restrictions imposed on
the structure of event systems. We will analyze this point more thoroughly
in the following sections.

4 A Simple Planning Problem

One reason for analyzing the temporal projection problem is that it seems to
constitute the heart of plan validation [Dean and Boddy, 1988, p. 378]. If we
now consider the restrictions placed on the simple problem, it turns out that
planning itself-a problem one would expect to be harder than validation-is
quite easy.

In the context of planning, events as introduced above are usually called
actions and POEs are called nonlinear plans, or simply plans. In the
following, we use these terms interchangeably.

Definition 7 A planning task II is given by (<I> , I , 9), where <I> = (P, £, R)
is a causal structure as defined above, and I ~ P and 9 ~ P are the
initial state and goal state respectively. A plan ~<l> solves II iff (1)
9 ~ Result(I, f) for all f E CS(~<l», and (2) ACS(~<l>,I) = CS(~<l». A so­

lution ~ = (A, -<) for II is minimal iff for all other solutions ~' = (A', -<'),
it holds that IAI ~ IA'I.

The computational complexity of planning has been investigated only re­
cently. Bylander [1991] analyzed the general problem of deciding the ex­
istence of a solution for a planning task in the context of propositional
STRIPS-like representations and showed that the general problem is PSPACE­
complete. 3 A number of restricted problems turn out to be tractable, how­
ever. For instance, planning with unconditional causal structures and causal
rules restricted by I(a(r) U 8(r))1 = 1 is tractable [Bylander, 1991, Theo­
rem 7]. Similarly, planning with causal rules such that the preconditions are
always empty [Bylander, 1991, Theorem 9] and planning with unconditional
causal structures such that the goal state is restricted in size and all rules
contain only one precondition [Bylander, 1991, Theorem 8] are tractable. It
should be noted, however, that Bylander considers only the existence prob­
lem and not the associated optimization problem of finding minimal plans,

3The representation of causal rules in [Bylander, 1991] is a little more powerful. Pre­
conditions can also be negative, i.e., refer to the absence of atoms. However, the hardness
result applies to our case as well [Bylander, 1991, Corollary 2]. Moreover, all results about
positive preconditions can be easily adapted to our formalism.

10

which is often harder. For example, his Theorem 9 does not apply to the
corresponding optimization problem.

Proposition 3 Deriving minimal plans for planning tasks such that the pre­
conditions of all rules are empty is N P -equivalent.

Proof. The corresponding decision problem of deciding the existence of so­
lutions of a given length is obviously in N P. A straightforward reduction from
minimum cover [Garey and Johnson, 1979, p. 222] shows NP-completeness
of the decision problem. From that the proposition follows immediately. -

Returning to the problem we analyzed in the previous section, similarly
to simple event systems we define simple planning tasks to be planning
tasks that meet the following restrictions: (1) there is only one causal rule
associated with each event type, (2) for all causal rules Icpl = lad = 181 = 1 and
cp = 8, and (3) III = 1. Using Bylander's [1991] Theorem 8, the tractability
of the solution existence problem follows immediately. In this case, also plan
derivation is tractable, however.

Proposition 4 For simple planning tasks, it can be decided in polynomial
time whether there exists a solution. Further, a minimal valid plan can be
derived in polynomial time.

Proof. Given a simple planning task II = \(P,£, R),{s},{t}), construct a
directed graph G = (V, A) as follows. Let

V P,

A {(v,w)I(E,{v},{w},{v}) E R}.

Then the derivation of a minimal solution for II reduces to finding a shortest
path from s to t in G, which can be done in polynomial time. -

This result leads to the question why temporal projection, which is sup­
posed to be the underlying problem in plan validation, is more difficult than
planning itself in some cases. One explanation could be that a planner could
create the complicated structure we used in the proof of Theorem 1, but
it never would do so. Hence, the theoretical complexity never shows up in
reality. This explanation is unsatisfying, however. If this would be really the
case, we should be able to characterize the structure of the nonlinear plans
planning systems create and validate. As is shown in Section 7, the problem
is more subtle. Before we investigate the plan validation problem, however,
we will analyze a different planning problem that turns out to be tractable,
as well.

11

5 Polynomial-Time Planning in Two D iffer­
ent Formalisms

As we have seen, the simple planning problem defined in Section 4 is not
the only planning problem known to be tractable. The results on tractable
planning by Bylander [1991] have already been revised in the previous section.
Backstrom and Klein [1991a; 1991 b) have also presented results on tractable
planning, which will be analyzed in this section. Furthermore, there are
also results on average case tractability of planning using macro-operators
or action hierarchies under certain assumptions [Korf, 1987], but it is out of
the scope of this paper to discuss such approaches.

Backstrom and Klein presents two tractable planning problems: The SAS­
PUBS problem [Backstrom and Klein, 1991b] and the SAS-PUS problem
[Backstrom and Klein, 1991a]. Both problems properly subsume the simple
planning problem defined in Section 4. In the following, we will only consider
the SAS-PUS problem since it properly includes the SAS-PUBS problem. A
direct comparison with the simple problem or Bylander's results is, however,
not possible, since the SAS-PUS problem is defined in another formalism
called simplified actions structures (SAS). Although the restrictions defining
the SAS-PUS problem are possible to express in the formalism used in the
rest of this paper, they are hardly obvious to come up with from the viewpoint
of that formalism. On the other hand, they appear quite natural in the SAS
formalism. This indicates that the choice of modelling formalism can strongly
influence how one defines problems. The rest of this section is devoted to
redefining the restrictions of the SAS-PUS problem in the formalism used in
the rest of this paper, yielding the SAS-PUS equivalent problem, and prove
that this new problem is tractable. Since the proof of tractability is based on
transformation to the SAS-PUS problem, it is unavoidable to first present the
SAS formalism. This presentation, however, will, be very brief and conform
as closely as possi ble to the other formalism. The main differences are that
the planning world is modelled in a somewhat more structured way than just
a set of propositions, and that actions are modelled somewhat differently.

In analogy with the concepts causal structure and planning task, the
corresponding concepts causal SAS-structure and SAS planning task are in­
troduced.

Definition 8 A causal SAS-structure <I>

given by:

• a set of state variable indices, M = {I, ... ,m};

• for each i E M, a d omain Si of mutually exclusive values for the ith
state variable, implicitly defining

12

- for each i E 'M, an extended domain Si+ = Si U {u} where u
denotes the undefined value,

a set of total stat es S = Sl X ... X Sm, and

- a set of partial states S+ = st x ... x S;;;j

• a set of action types E = {tl,' .. ,tn };

• a set of causal SAS-rules C = {Cl,"" Cn} of the form Ci

(ti, b(ti), e(ti), f(ti)) where

- ti E E is the triggering event type,

- b(td E S+ is the precondition,

- e(ti) E S+ is the postcondition, and

- f(ti) E S+ is the prevailconditionj

C must also satisfy the restrictions: .

51. for all tEE and for all i E M, either b(t)[i] = e(t)[i] = u or
u i- b(t)[i] i- e(t)[iJ i- Uj

52. for all tEE and for all i E M, either b(t)[i] = U or f(t)[i] = u;
and

53. for all t, t' E E, if b(t) = b(t'), e(t) = e(t'), and f(t) = f(t') then
t = t'.

where sri] denotes the value of the ith state variable in s.

A SAS planning task II = (<I>,sI,S9) is given by:

• A causal SAS -structure <I> ,

• an initial state SI E S, and

• a goal state S9 E S.

For any action, the conditions of the causal SAS-rule triggered by the
corresponding action type are interpreted as follows: The pre- and post­
conditions express which state variables are changed by the action, and what
values these state variables must have at the beginning of the action and will
have at the end of the action respectively. The prevailcondition expresses
which state variables must have a certain value during the whole execution
of the action but which are not changed by the action. The restrictions
express that an act ion can only change a state variable from a defined value
to another defined value (Sl), a state variable cannot both be changed and
required to have a constant value (S2), and two distinct action types must
differ in at least one of their conditions (S3). The interested reader is referred
to the original papers [Backstrom and Klein, 1991a; Backstrom and Klein,
1991 bJ for further details and intuition regarding the SAS formalism.

13

If sri] = u for some state s E S+, then the value of the ith state variable
in s is treated as irrelevant or unknown. For s, s' E S+, s ~ s' denotes
that for all i EM, either s [i] = u or s [i] = s' [i]. As a convention, we also
write b(e), e(e), and f(e) meaning b(f), e(f), and f(f) respectively, where
f = type (e). Gi ven an action e and a state s E S+, apPSAS (s, e) denotes the
set of applicable causal SAS-rules for e in s, that is, all rules (f, b(f), e(f), f(f))
s.t. type(e) = f, b(f) ~ s, and f(f) ~ s. Note that by the definition of causal
SAS-structures, apPSAS(S, e) is either empty or a singleton. An action e is
said to SAS-affect the world in a state s iff apPSAS(s, e) =f. 0. A state s is
updated by another state s', written s EB s' and defined as follows: 4

(')[.] {S'[i] if s'[i] =f. u ~ 11 · M s EB s z = [.] th . lor a z E . s z 0 erWlse

Event sequences are defined as previously, and the function ResultsAs is de­
fined recursively as:

Result sAs (s, 0) = s

Result sAs (s , (f; g)) =

{
ResultsAs(S, f) EB e(g)
ResultsAs(s, f)

if apPSAS (ResultsAs (s, f), g) =I 0
otherwise.

An event sequence f is SAS-admissible relative to a state s if all actions in
f SAS-affect the world when f is applied in s. Analogously to the definition
of ACS, given a state s E S+, ACSsAs((A,-<),s) denotes the set of all
f E CS((A , -<)) s.t. f is SAS-admissible relative to s.

Nonlinear SAS plans are defined analogously with nonlinear plans, and
the SAS-PUS planning problem is defined as a more restricted version of the
SAS planning problem.

Definition 9 A tuple 6. = (A, -<) is a nonlinear SAS-plan for a SAS
planning task IT = ((M,SI, ... ,S,MJ,E,C),SI,sq) iff type(e) E E for all
e E A) -< is a strict partial order on A) AC5sAs(6., SI) = C5(6.)) and
ResultsAs(SI, f) = Sq for all f E CS(6.).

Definition 10 A SAS planning task IT = (,Nt,S!, ... ,S,M"E,C,sI,sq) is a
SAS-PUS planning task iff it satisfies the restrictions:

Su. for all fEE) there is exactly one i E M s.t. b(f)[i] =I u;

SP. for all f, f' E E) if there is some i E M s.t. e(f)[i] = e(f')[i] =f. u then
f = f'; and

4Note that in SAS worlds the notions of update and revision as defined by Katsuno and
Mendelzon [1991] coincide.

14

SS. for all E, EI E £ and for all i E M, if f(E)[iJ =J u and f(E/)[iJ =J u then
f(E)[iJ = f(E/)[iJ

The restrictions SU, SP, and SS express that the set of action types must
be unary, post-unique, and single-valued respectively.s Unariness means that
each action changes exactly one state variable, i.e., an action cannot have
multiple effects. Post-uniqueness means that there must not be two distinct
action types changing the same state variable to the same value, i.e., no
two distinct action types have the same effect. Single-valuedness means that
if two di stinct action types require the same state variable to have some
constant , defined value during their executions, then they must require the
same constant value for this variable. For example, if one action type requires
the light to be on in a room during its execution, no other action type may
require the light to be off during its execution.

We will now re-express the restrictions for the SAS-PUS planning problem
in the formalism used in the rest of this paper. The resulting problem is called
the SAS-PUS equivalent problem. We finally prove that minimal plans for
the SAS-PUS equivalent problem can be derived in polynomial time.

Definition 11 A planning task II = ((P, £, R) , I, 9) is SAS-PUS equiv­
alent iff it satisfi es the following restrictions:

1. Th ere is exactly one causal rule for each event;

2. P can be partitioned into m disjoint subsets PI"'" Pm S.t. IPil > 1 for
1 ~ i ~ m and for all causal rules (E, c.p, a, 8) E R

(a) 8 ~ c.p ,

(b) 181 = 1;

(c) Ic.p n Pi l ~ 1 for all i,

(d) Ian Pil = 18n Pil ~ 1 for all i,

(e)an8=0,and

(f) lIn Pi l = 19 n Pi l = 1 for all i.

3. for all pairs of causal rules (E, c.p, a, 8), V, c.pl, ai, 8/) E R

(a) ifc.p = c.pl, a = ai, and 8 = 81 then E = E';

(b) if E =J EI then a n a' = 0; and

(c) for all i E M , if (c.p - 8) n Pi =J 0 and (c.pl - 81
) n Pi =J 0 then

(<.p - 8) n Pi = (<.pI - 81) n Pi .

5The acronym PUS is derived from the words post-unique, unary, and single-valued .
The B in the acronym SAS-PUBS stands for binary, which means that all state variable
domains must have exactly two defined values.

15

The restrictions 2b, 3b, and 3c correspond to unariness, post-uniqueness,
and single-valuedness respectively. The requirement that IPi I > 1 is not really
a restriction; Suppose Pi = {p}, then we can extend it to a set PI = {p, -,p}
and extend the conditions in the causal rules s.t. whenever an event type
adds p it also deletes -'p, and vice versa.

Theorem 5 Minimal nonlinear plans for SAS-PUS equivalent planning
tasks can be derived in polynomial time.

Proof. Prove that any SAS-PUS equivalent planning task II
((P, £, R),I, Q) can be transformed to an equivalent SAS-PUS planning task
IT' = ((M , Sl , ... , SIM I, £, C), SI, S9) in polynomial time. The proof consists
of three parts: first prove that there is a transformation from II into II' s.t.
IT' is a SAS-PUS planning task, then prove that the solutions for II' are ex­
actly the solutions for II, and, finally, prove that transforming II into II' and
solving II' can both be done in polynomial time.

The transformation from II to II' is defined as follows:

• M = {I, ... , m} where m is the number of partitions of P i

• s = P. for 1 < i < m' t t __ ,

• the function 6 ~ : 2P ~ S+ is defined s.t. for i E M,

e(S)[i] = {u, S n Pi = 0
x, SnPi={x}

and e-1
: S+ ~ 2P , the inverse of e, is defined s. t. for all i

• ICI = IRI and for each causal rule (t:, cp, a, 8) E R, the corresponding
causal SAS-rule (t:, b(to), e(to), f(to)) E C is defined as:

- b(t:)=~(8),

e(t:) = e(a), and

f(t:) = e(cp - 8); and

• SI = e(I) and 89 = eW)·

6In order to make the presentation of the SAS formalism as brief as possible, the
inconsistent values have been left out. This does not have any implications for expressive­
ness, and since 2c, 2d, and 2f guarantees that S7, sc, and all action type conditions are
consistent, there is no need to define ~ for the case where Is n Pd > 1.

16

Except for the restrictions Sl-S3, IT' is obviously a SAS planning task, so
prove that Sl- S3, SU, SP, and SS are satisfied by IT' in order to prove that
it is a SAS-PUS planning task.

S1. For each E E £ and i E M, either a(E) n Pi = 0 or not. First suppose
a(E) n Pi = 0, then 2d gives 8(E) n Pi = 0 so b(E)[i] = ~(8)[i] = u and
e(E)[i] = ~(a)[i] = u. Instead, suppose a(E) n Pi -I 0, then 2e gives
8(E) n Pi -I a(E) n Pi so b(E)[i] = ~(8)[i] -I ~(a)[i] = e(E)[i]. Since
8(10) n Pi -10 only if a(E) n Pi -10, Sl follows trivially.

S2. Suppose b(E)[i] = f(E)[i]-I u for some E E £ and i EM, then 8(E)nPi =
(cp(E) - 8(10)) n Pi -10. This is impossible, so S2 is satisfied.

S3 . Immediate from 3a.

SU o For all E E £, 2b gives 18(E)1 = 1 so there is exactly one i s.t. 8(E)nPi-l
0. Hence, there is exactly one i E M s.t. b(E)[i] = ((8(E))[i] -I u and,
SU follows.

SP. For arbitrary E, 10' E £, suppose there is some i s.t. e(E)[i] = e(E')[i] -I u.
Then a(E) n Pi = a(E') n Pi -I 0 so SP follows from the contrapositive
of 3b.

SS. For arbitrary E, E' E £, suppose there is some i s.t. f(E)[i] -I u and
f(E')[i]-I u. Then (cp(E)-8(E))npi -10 and (cp(E')-8(E'))nPi -10 so 3c
gives (cp(E)-8(E))nPi = (cp(E')-8(E'))nPi which impliesf(E)[i] = f(E')[iJ,
and SS follows.

Proving that the nonlinear plans for IT are exactly the nonlinear SAS­
plans for II' means to prove for every tuple ~ = (A, ----<), s.t. A is a set of
actions of some type in £ and ----< is a partial order on A, that ACS(~,I) =
CS(~) iff ACSSAS(~, I) = CS(~), and for all f E CS(~), Result (I, f) =
~-l(ResultsAs(~(I),f)) . Proof by induction that for every initial sequence g
of f , g is admissible relative to I iff g is SAS-admissible relative to ((I), and
if g is admissible relative to I then ~-l(ResultsAs(~(I), g) = Result (I, g).

Basis: The empty sequence 0 is both admissible relative to I and SAS­
admissible relative to ((I). Furthermore,

Cl(ResultsAs(~(I), 0)) = Cl(~(I)) = I = Result(I, 0).

Induction: Suppose that for some 1 in f, f\1 is admissible relative to
7 iff f\1 is SAS-admissible relative to ~(7), and also suppose that if f\1 is
admissible relative to I, then ~-l(ResultsAs(((I), f\1)) = Result(I, f\1). If
f\1 is not admissible relative to 7, then f / 1 is trivially neither admissible

17

relative to T nor SAS-admissible relative to e(T) and vice versa. Suppose
instead that f\1 is admissible relative to T, then

f /1 is admissible relative to T

iff 1 is admissible relative to Result(T, f\f)
iff cp(f) <; Result(T, f\f)

iff 8(f) <; Result(T, f\f) and cp(f) - 8(f) <; Result(T, f\f)
iff ~(8(J)) ~ ~(Result(I, f\l)) and ~(cp(J) - 8(J)) ~ ~(Result(I, f\l))

iff b(f) ~ ResuitsAS(e(T), f\f) and f(f) ~ ResuitsAS(e(T), f\f)

iff 1 is SAS-admissible relative to ResultsAS(e(T), f\f)

iff f / 1 is SAS-admissible relative to e(T).

It remains to prove that if f / 1 is admissible relative to T then

C1(ResultSAS(e(T),f/f)) = Result(T,f/f).

We will implicitly make use of the fact that, since f / 1 is both ad­
missible relative to I and SAS-admissible relative to e(T), we have

lapp(Resuit(T, f), f)1 lapPsAs(ResultsAs(e(T), f), f)1 1. Let
5 = Result(T, f\f) and, hence also, 5 = e-1 (ResultsAS(e(T), f\f))
by the induction hypothesis. Let 5' = e-1(ResuitsAS(e(T), f/ f)) =
c 1 (ResultsAS(e(I), f\f) ffie(f)) = e-1(e(S) ffie(f)) . Hence, for all i E M,

e(5')[i] = e(5) ffi e(f) = {e(f)[i), if e(f)[i] =I u
e(5)[z], otherwise

that is, for all i,

5' n Pi = { {e(f)[i]} , if e(f)[i] =I u = { a(f) n Pi, if a(f) n Pi =I 0
5 n Pi, otherwise 5 n Pi, otherwise .

Also, let 5" = Result (I, f/ f) = Result (5, f) = 5 - 8(f) U a(f), then 2d and
2f implies that for all i,

It follows that 5' = 5" so e- 1 (Resuit sAS(e(T),f/I)) = Result(T,f/I). This
ends the induction proof and, hence, the nonlinear SAS-plans for II' are
exactly the nonlinear plans for II .

Finally, it remains to prove that a plan for II can be found in polynomial
time. The major difficulty with the transformation of II into II' is finding the
partitioning of P. However, this can be done in polynomial time as follows
(details left to the reader). First ascertain that a and 8 are singletons for all

18

causal rules. Create m = III singleton sets PI, . .. , Pm s.t. each p E I belongs
to exactly one of the PiS. For each causal rule (t, c.p, a, 8) E n, if 8 ~ Pi for
some i, then add the proposition in a to Pi. This process must be repeated
until no more propositions can be added to any Pi. Any propositions in P
that are not in any of the Pi:s cannot appear in any situation reachable from
I. Hence, they can either be discarded or put in arbitrary Pi. Finally, the
remaining restrictions must be tested to see if the partitioning is consistent.
If not, then II cannot be transformed into a SAS-PUS planning task. The rest
of the transformation is obviously polynomial and plans for II' can be found
in polynomial time using the algorithm in Backstrom and Klein [1991a]. This
algorithm is sound and complete so II can be solved in polynomial time by
transforming it into an equivalent SAS-PUS planning task II', as described
above, and applying the algorithm to II' .•

6 Planning in a Simple Blocks-World Sce-.
narlO

The elementary blocks world problem (EBW) [Gupta and Nau, 1991] is as
follows. There are n distinctly labelled blocks and a table which is large
enough to hold at least n blocks. Blocks can be stacked onto each other to
any height, but no block is allowed to be immediately supported by more
than one block and no block is allowed to immediately support more than
one block . There is no metric, so a block cannot be at a specific position on
the table; it can only be on t he table or on some other block. There are three
types of actions that can be performed on the blocks. A block can be moved
from a position on some other block onto the table, it can be moved from the
table to a position on some other block, and it can be moved from a position
on some block to a position on some other block. The obvious restrictions
apply. For example, a block cannot be moved if there is some other block on
it , and a block cannot be moved onto a block on which there is already some
other block. The EBW planning problem is, given an initial configuration
and a desired (goal) configuration, find a plan that, if applied in the initial
configuration, moves around the blocks so that the desired configuration will
hold after executing the plan. The primitive blocks world problem (PBW) is
the EBW problem with the extra restriction that the goal state is completely
specified. Gupta and Nau [1991] have shown that finding a minimal plan for
PBW, and thus implicitly also for EBW, is NP-hard.

Let the restricted EBW problem (EBW-) denote the same problem but
with the restriction that blocks are not allowed to be moved immediately
from one block to another block, i.e., they must first be moved to the table
and then moved onto the new block. Similarly, define the restricted PBW
problem (PBW-) in the same way. Bylander [1991, Theorem 10] has shown

19

that the plan existence problem for EBW-, and hence also for PBW- , can be
solved in polynomial time. We will show below that PBW- can be encoded
in the SAS-PUBS problem [Backstrom and Klein, 1991b], which implies that
deri vation of minimal plans is also a polynomial time problem. Before we
show how to encode PBW- in SAS-PUBS we will present a small example
to illustrate the principle.

Suppose we have three blocks A, B , and C. Then there are twelve action
types, for example, block A can be moved from block B onto the table, from
block C onto the table, from the table onto block B, and from the table onto
block C. Analogously, there are four action types for each of the other blocks.
We need six state variables, as follows: AonB, AonC, BonA, BonC, ConA, and
ConB. Each of these can have the values true (t), false (f), and undefined (u).
The state variable AonB is true iff block A is immediately on block B; i.e., it
is not true if block A is on block C which is on block B. The action types for
moving block A can be encoded as shown in table 6, where states are encoded
as tuples (AonB, AonC, BonA, BonC, ConA, ConB).

Action type Pre-condition Post-condition Prevail-condition
AfromB (t, u, u, u, u, u) (f,u,u,u,u,u) (u,f,f,u,f,f)
AfromC (u,t,u,u,u,u) (u,f,u,u,u,u) (f,u,f,f,f,u)
AtoB (f, u, u, u, u, u) (t, u, u, u, u, u) (u,f,f,u,f,f)
AtoC (u,f,u,u,u,u) (u,t,u,u,u,u) (f, u, f, f, f, u)

Table 1: Encoding of action types for moving block A.

Action type AfromB moves block A from block B onto the table, i.e., it
changes the state variable AonB from true to false. The prevail-condition
expresses that we must also require that block A is not also on some other
block7 (AonC false), there is no block on block A (BonA and ConA false), and
there is no block on block B (ConB false). The encodings of the action types
AfromC (move block A from block C to the table), AtoB (move block A from
the table to block B), and AtoC (move block A from the table to block c)
are motivated analogously. Action types for moving blocks Band C can be
encoded in the same way.

The general case wi th n blocks labelled B1 , ... , Bn can be encoded as
follows. There are n 2 - n state variable indices8 Xij for all i and j s. t.
1 ~ i ~ n, 1 ~ j ~ n, and i i- j, and each state variable can take on the
values true (t), false (f), and undefined (u). For each pair of blocks Bi, Bj

7Strictly speaking, this is not necessary to test here if we make sure that no block can
be on two other blocks simultaneously in the initial state and that no action type can
bring about this situation.

8Note that the symbols x and y, usually with subscripts, denote state variable indices,
not state variables .

20

s. t. i =J. j, there are twp action types: BifrornBj and BitoBj. The conditions
of BifrornBj are encoded s.t.

• b(BifrornBj)[xij] = t and b(BifrornBj)[Y] = u for all Y =J. Xij;

• e(BifrornBj)[Xij] = f and b(BifrornBj)[Y] = u for all Y =J. Xij; and

• f(BifrornBJ[xik] = f for all k s.t. i =J. k =J. j (block Bi is not on any other
block than Bj) , f(BifrornBj)[xki] = f for all k =J. i (no block is on block
B;), f(BifrornBj)[xkj] = f for all k s.t. i =J. k =J. j (no block is on block
Bj, except block Bi), and f(BifrornBj)[Y] = u for all other state variable
indices y .

The conditions of BitoBj are identical except that b(BifrornBj) [Xij] = f and
e(BifrornBj)[xij] = t . The initial state SI must also satisfy that for each
i, t here is at most one j s.t. SI[Xij] = t, and similarly for the goal state
S 9' This encoding of EBW- is essentially the same as in Bylander [1991],
and it obviously satisfies the restrictions for the SAS-PUBS problem9

. As a
consequence, optimal planning for PBW- is a polynomial time problem.

Proposition 6 Th e encoding ofPBW- shown above satisfies the restrictions
for th e SAS -PUBS problem .

Proposition 6 together with the results in Backstrom and Klein [1991b]
immediately lead to the following corollary.

Corollary 7 Minimal plans for the PBW- problem can be found in polyno­
m ial tim e.

Furthermore, the planning algorithm in Backstrom and Klein [1991 b] can
easily be modified to handle incompletely specified goal states, so corollary 7
also holds for EBW-. Although this result strengthens Bylander's [1991]
Theorem 10, it does not extend to the general EBW problem, as has been
shown by Gupta and Nau [1991] . On the other hand, any plan for an EBW­
planning task is also a plan for the corresponding EBW planning task, and
a minimal plan for an EBW- planning task is at most twice as long as a
minimal plan for the corresponding EBW planning task. It is also likely that
one could derive near-minimal plans for an EBW planning task in polynomial
time from a minimal plan for the corresponding EBW- planning task.

It is an interesting observation that the PBW- problem can be encoded
to satisfy the restrict ions both for the SAS-PUBS problem and for one of the
problems which Bylander has proven tractable. However, neither of these
problems appear to properly include the other. The exact relationship be­
tween these two problems remains to be investigated, however.

9The SAS-PUBS problem has the same restrictions as the SAS-PUS problem plus the
restriction that each state variable domain has only two defined values , i.e., ISd = 2.

21

7 Temporal Projection and Plan Validation

Dean and Boddy [1988, p. 378] suggest that temporal projection is the basic
underlying problem in plan validation:

A nonlinear plan is represented as a set of actions {el, ... , en}
partially ordered by -<. Each action has some set of intended
effects: Intended(ei) ~ P . A nonlinear plan is said to be valid
just in case Intended(ei) ~ Necessary(ei), for 1 ~ i ~ n .

Although this definition sounds reasonable, there are some points which are
arguable. As we have seen in Definition 7, a plan is a solution iff (1) it
achieves its goal, and (2) it is coherent relative to the initial state, i.e., all
precondi tions are necessarily satisfied.lO If a plan achieves its overall goals
(ignoring its coherence), it is called partially valid. If it is partially valid
and coherent relative to the initial state, 'it is called valid. Note that in
contrast to Dean and Boddy's formulation, we do not refer to the intended
effects of particular events but to the effects of the overall plan and to the
state before particular events.

Deciding whether a plan is partially valid can be straightforwardly re­
duced to temporal projection in linear time. Given a planning task IT =

(<I>, I, 9), and a plan 6.4>, we extend the plan by an event e. that is not asso­
ciated with any causal rule and occurs after all other events. The resulting
plan is called 6.~. Now it is easy to see that 6.4> is partially valid if, and only
if, 9 ~ Nec(e., (6.~,I)).

Coherence, however, is a property that cannot be easily reduced to tem­
poral projection as defined by Dean and Boddy. If we restrict ourselves to
unconditional causal structures, however, we can define a variant of the tem­
poral projection problem that refers to the state before an event occurs and
that can be used to decide coherence. More importantly, the restriction to
unconditional causal structures will enable us to prove tractability of plan
validation. Although the restriction may sound severe, it shows that plan
validation is tractable for a considerable larger class of problems than tem­
poral projection. Furthermore, we will, at the end of this section, argue that
this restriction is not very severe at all.

Definition 12 Given an event system 8, an event e E A, and a condition
pEP:

P E Possb(e, 8) iff ::If E CS(8): p E Result (I, f\e)

p E Necb(e, 8) iff Vf E CS(8): p E Result (I, f\e).

lONote that our definition coincides with Chapman's [1987, p. 340] definition of when a
plan solves a problem.

22

Proposition 8 An unconditional event system 8 is coherent iff

"Ie E A: <p(e) ~ Necb(e, 8).

Deciding p E Necb(e, 8) instead of p E Nec(e, 8) does not simplify the
problem. All the NP-hardness proofs for Nec can be easily used to show
N P -hardness for N eCb. For instance, the following corollary is an immediate
consequence of Corollary 2.

Corollary 9 Deciding p E Necb(e,8) zs co-NP-complete for simple event
systems.

In order to simplify the following discussion, we will restrict ourselves to
consistent unconditional event systems, which have to meet the restrictions
that a(e) n 8(e) = 0, for all e E A. Note that any unconditional event system
8 can be transformed into a consistent unconditional event system 8' in
polynomial time by setting

<p'(e) <p(e)

a'(e) a(e)

8'(e) 8(e) - a(e),

for all e E A. Consulting the definition of Result, it is obvious that this
modification does not change the outcome of Result(S, f) for all S ~ P and
all partial event sequences f over 0.

As a first step to specifying a polynomial algorithm that decides coher­
ence for uncondit ional event systems, we define a simple syntactic criterion,
written Maybeb(e, 0), that approximates Necb(e, 8).

Definition 13 Given a consistent} unconditional event system 8} an atom
pEP, and an event e E A} Maybeb(e,8) is defined as follows:

P E Maybeb(e, 0) iff (l)p E IV 3e' E A: (e' -< e /\p E a(e'))/\
(2) ...,3e' E A - {e}: (e' -I< e /\ e -I< e' /\ p E 8(e'))/\
(3) "Ie' E A: ((e' -< e /\ p E 8(e')) -+

3e" E A: (e' -< e" -< e /\ p E a(ell))) .

This definition resembles Chapman's [1987J modal truth criterion. The
first condition states that p has to be established before e. The second
cond ition makes sure t hat there is no event unordered w.r.t. e that could
delete p, and the third condition enforces that for all events that could delete
p and that occur before e, some other event will reestablish p. It is obvious
that this criterion can be checked in polynomial time.

Proposition 10 Maybeb(e, 0) can be decided in polynomial time.

23

Note that Maybeb is neither sound nor complete w.r.t. Necb in the general
case because we do not know whether the events referred to in the defini­
tion actually affect the world. However, Maybeb coincides with Nec/j in the
important special case that the event system is consistent and coherent.

Lemma 11 Let 8 be an consistent unconditional event system. If 8 is co­
herent, then

Proof. "~": We will show that all three conditions of p E Maybeb(e, 8) in
Definition 13 are true for all e E A and all p E Necb(e, 8).

Assume that the first condition does not hold for some event e and atom
p E Necb(e, 8), i.e., p tf. I and -'::le': e' -< eAp E a(e'). Since 8 is coherent, we
can construct an admissi ble complete event sequence f = (11,' .. , e, ...) such
that g = f\ e contains only events 9i such that 9i -< e. By induction over the
length of the length of f\ e, we get p tf. Result(I,f\e), hence p tf. NeCb(e, 8),
which is a contradiction.

Assume that the second condition does not hold for some event e and
atom p E Necb(e, 8), i.e., there exists an event e' unordered with respect to
e such that p E 8(e'). Since e' is unordered with respect to e, there exists a
complete event sequence f = (11," " e', e, ...). Since 8 is coherent, and thus
e' affects the world, it is obvious that p tf. Result (I, fie') = Result (I, f\e) 2
Necb(e, 8), which is a contradiction.

Assume the third condition is not satisfied, i.e., there exists p E Necb(e, 8)
and an event e' -< e such that p E 8(e'), but there is no e" such that
e' -< e" -< e and p E a(e") . Consider a complete event sequence f =

(/1, ... ,e', ... ,e, .. .) such that there are only events fi between e' and e
that have to occur between them. Because p tf. Result(I, fie') and there
are no events after e' that have p in the add list, using induction on the
length of f\ e, we can infer p tf. Result(I,f\e) 2 NeCb(e, 8), which is again a
contradiction.

"2": Assume p E Maybeb(e, 8). We will show that also p E Necb(e, 8).
Consider any complete event sequence g E C5(8). We want to show that
p E Result (I, g\e). By condition (1) of the definition of Maybeb and the fact
that all complete event sequences are admissible, we know that there exists
9i E A such that Ig\9il ~ Ig\el and p E Result (I, g\9i). Consider the latest
such event, i.e., 9i with a maximal i. Since all event sequences are finite,
such an event must exist. If 9i = e, we are ready. Otherwise, we will show
that i cannot be maximal.

Since 9i is the latest event in g such that p E Result (I, (g\e)\9i), it must
be the case that p E 8(9i)' By condition (2) in the definition of Maybeb' we
know that 9i cannot be unordered with respect to e. By condition (3), we
know that there exists an event 9j such that 9i -< 9j -< e and p E a(9j).

24

Because cp(gj) ~ Necb(gj,8) it must be the case that p E Result(I,g/gj)
and Ig\gil < Ig/9jl ~ Ig\ei. Hence,9i cannot be the latest event before e
such that p holds before the occurrence of gi. Hence, p E Result(I, g\e).
Because g was an arbitrary element of CS(8), this holds for all complete
event sequences. Hence, p E Necb(e, 8) . •

Now we can give a necessary and sufficient condition for coherence of
consistent unconditional event systems.

Theorem 12 A consistent unconditional event system 8 is coherent iff

\Ie E A: cp(e) ~ Maybeb(e, 8).

Proof. "=}": Since 8 is coherent, we know that \Ie E A: cp(e) ~ Necb(e, 8).
Further, by Lemma 11, M aybeb (e, 8) = N eCb (e, 8), for all e E A. Hence,
\Ie E: A: cp(e) ~ Maybeb(e, 8).

" ~": For the converse direction, we use induction on the number of
conditions appearing in the preconditions of events over the entire event
system: L:eEA Icp(e) I. As the base step, we assume, that for all events e E A,
cp(e) = 0. Clearly, cp(e) ~ Maybeb(e, 0) and <p(e) ~ Necb(e, 0), for all e E A.
Hence, the hypothesis holds for k = o.

Now assume that our claim holds for all event systems with k or less
preconditions. We will show that it also holds for event systems with k + 1
preconditions.

Consider an event system 8 with k + 1 preconditions such that cp(e) ~
Maybeb(e, 8) for all e E A. Choose one event f that has a nonempty set
of preconditions and replace the associated causal rule (type(J) , cp, C¥, 8) by
the rule (type(J), 0, c¥, 8). This new event system is called 0'. We will write
cp'(e), c¥'(e), and 8'(e) in order to refer to the preconditions, add lists, and
delete lists in 0', respectively. Note that for all e E A - {f} it still holds
that <p'(e) ~ Maybeb(e,8') = Maybeb(e,8) because the Maybeb conditions
do not refer to cp. Further, we have vacuously that cp'(J) ~ Maybeb(J,8').
Because k 2 L:eEA' Icp'(e)I, we can apply our induction hypothesis and know
that cp'(e) ~ Necb(e, 8') for all e E A, hence 0' is coherent. Finally note
that by Lemma 11, we still have cp(J) ~ Maybeb(J,0) = Maybeb(J,0') =

Necb(J,8'). Hence, any sequence g E CS(8') that contains f is an admissible
sequence even if <p'(J) = cp(J). Since we have CS(8) = CS(8'), it follows
that all sequences h E CS(0) are admissible. Hence,8 is coherent, whence,
the induction hypothesis holds for k + 1 preconditions . •

From that it follows straightforwardly that coherence can be decided in
polynomial time.

Corollary 13 Coherence of unconditional event systems can be decided in
polynomial time .

25

Proof. The claim follows immediately from Theorem 12, the fact that
p E M aybeb (e, 8) can be decided iil polynomial time, and the fact that
any unconditional event system can be transformed into a consistent one
in polynomial time. -

Plan validation can easily be reduced to coherence, so it is a polynomial
time problem if the causal structure is unconditional.

Theorem 14 Deciding whether a plan ~<I> is a solution for a planning task
IT with an unconditional causal structure is a polynomial time problem.

Proof. Follows immediately from Corollary 13 and the fact that plan vali­
dation can be reduced to coherence in linear time as follows: Add an extra
event e. s. t. 'P(e.) is the intended effects of the plan and e. is constrained to
occur after all other events. -

One interesting point to note about this result is that it appears to be
eas ier to decide a big conjunction of the form

1\ 'P(e) ~ Necb(e, 8)
eEA

than to decide one of the conjuncts. In other words, the claim by Dean
and Boddy [1988] that temporal projection (in some form) is the underlying
problem of plan validation is conceptually correct. However, it turns out that
solving the subproblems is (most probably) harder than solving the original
problem .

Although maybe surprising, the result is not new. Chapman [1987] used a
si milar techniq ue to prove plan validation to be a polynomial time problem for
a slightly different formalism. It should be noted, however, that Chapman's
[1987, p. 368] proof of the correctness and soundness of the modal truth

criterion is correct only if we make the assumption that the plan is already
coherent. Alternatively, we could modify the meaning of the term necessary

as used by Chapman to a notion that is weaker than Necb. It seems to be
the case that Chapman means by "a proposition is necessarily asserted in
a situation" that the postcondition contains a certain proposition (in our
simple formalism). However, because we do not know whether the event
affects the world , i. e., asserts the particular proposition, we cannot make any
claim whether the particular proposition really will get asserted. So it seems
to be the case that Chapman actually means Maybeb instead of Necb and
misses to prove the second half of our Theorem 12.

We will end this section with a brief analysis of the implications of restrict­
ing event systems to be unconditional. There are mainly three motivations
for conditional actions: to handle uncertain initial states, context-dependent
outcome of actions, and external events, i.e., events out of the control of the

26

planner. An example for the first case are the following two rules associated
with the event type teall:

(teall, {a,p}, {i}, 0),
(teall, {a,e}, {i}, 0).

Regardless of whether the robot has coins (e) or a phone card (p), he can
make his call and afterwards the conditions are the same. It seems possible
that under reasonable restrictions such cases could actually be handled by a
slight extension of the plan validation algorithm. However, a further analy­
sis of such cases is necessary. An example for context-dependent actions is
provided by the causal rules describing the effects of the tcharge action. After
this action Robby 's batteries are fully charged or damaged, depending on the
state of the batteries before the event. Chapman [1987] has already shown
that plan validation becomes NP-hard in this case. However, it seems more
reasonable to handle this kind of combinatorics in the planner. The planner
may commit itself in advance to one of the causal rules associated with the
action and rriake sure that only this rule gets applied. In other words, the
task of plan validation is then to check that only the committed rules are
actually applied, which again can be reduced to the plan validation problem
as defined above.

Coping with external events usually means to undo the effects of some
event e whose occurrence is out of our control. This can be done by executing
an action e' after e such that e' undoes the effects of e. This can be done
only if we know when e will occur or if we can plan to wait for its occurrence.
Furthermore, e' need not be a conditional action but can rather be an action
that has the inverse effect of e even if e has not occurred. The only case
where conditional actions are really needed in order to cope with external
events is when there can occur any number of external events and we do not
know when they will occur and possibly not even what events may occur. In
this case, we need more advanced types of conditional plans (see, for exam­
ple, Schoppers [1987]), which cannot be modelled in STRIPS-like formalisms.
It seems that the formalism suggested by Dean and Boddy is too weak to
adequately express those scenarios where conditional actions are needed.

Summarizing, for plan validation purposes in the STRIPS-like formalism
as used in this paper, it hardly seems to be a severe restriction to require the
event systems to be unconditional.

8 Approximate Temporal Projection

Based on the observation that temporal projection is difficult even for sev­
erly restricted cases, Dean and Boddy [1988] develop an incomplete decision
procedure that computes its results in polynomial time. Reconsidering the

27

reflections from the previous sections, one may ask whether this procedure
is based on the right assumptions and whether it gives useful results. Such
a judgement is, of course, difficult.

In the area of reasoning about temporal relations between events [Allen,
1983], it was possible to identify tractable special cases that are natural
for uncertain observations and text understanding [Nokel, 1989; Vilain et
ai., 1989]. Further, the incomplete decision procedure for the full problem
turned out to be complete for the tractable special case. Thus, we have a
good justification for using the incomplete algorithm in this case.

If we consider the incomplete decision procedure for temporal projection,
there is the question what the interesting special cases are where we want the
procedure to be complete. Dean and Boddy [1988, Theorem 3.4] prove their
procedure to be complete if the events are totally ordered, which gives us one
characterization of the behavior of the procedure. Since one of the intended
applications is validation of nonlinear plans, one would also expect that the
procedure is complete for cases where plan validation is tractable, e.g., if we
consider unconditional events only. This is not the case, however. The main
reason for this failure is that the procedure considers all events unordered
with respect to a given event as equally likely to appear. Condition (3) in
the definition of Maybeb' however, tells us that sometimes the deletion of an
atom can be ignored.

Since we cannot reproduce the entire procedure because of space limita­
tions, the reader is referred to the original article [Dean and Boddy, 1988,
p. 380-392J. Here we will only sketch the ideas of the procedure. For every
event e, two sets are computed, namely, Strong(e, 8) and Weak(e, 8), such
that

Strong(e, 8) ~ Nec(e, 8) ~ Poss(e, 8) ~ Weak(e,8),

where Strong(e,8) is intended to contain only conditions that hold after e
in all complete event sequences, while Weak (e, 8) is meant to contain all
conditions that might hold after e in some complete event sequence.

In addition, the sets S-Strong(e, 8) and S- Weak(e, 8) are computed. The
first set contains all of Strong(e, 8) except those conditions that could be
deleted by an event unordered with respect to e. Similarly, S- Weak(e, 8)
contains all of Weak(e,8) plus those conditions that could be added by
events unordered with respect to e.

Consider now the following unconditional event system:

P {p,q,r}

£ {Ea, Eb, Ee}
R {(Ea, {q}, {}, {r}),

(Eb, {q}, {r}, {}),
(Ee, {q, r}, {p}, {})}

28

A {A, B, C, D, E}
I {q}

The types of the events and the partial order is given in Figure 1. It is easy

c D

Figure 1: A valid nonlinear plan

to see that this uncondi t ional event system is coherent and achieves {p, q, r}.
Using Theorem 14, this could be checked in polynomial time. However, the
incomplete decision procedure is too conservative. It misses to report that r

and p are among the necessary consequences, as can be seen from Table 2.

Event Type S-Strong Strong Nee Poss Weak S- Weak
{q} {q} {q} {q} {q} {q}

A lOa {q} {q} {q} {q} {q} {q,r}
B lOb {q} {q,r} {q,r} {q,r} {q,r} {q,r}
C lOa {q} {q} {q} {q} {q} {q,r}
D lOb {q} {q,r} {q,r} {q,r} {q,r} {q,r}
E Ec {q} l{q}1 l{p,q,r}1 {p,q,r} {p,q,r} {p,q,r}

Table 2: Results of the incomplete decision procedure

In the computation of S-Strong(B) and S-Strong(D) , the procedure IS

overly pessimistic with respect to the occurrence of the events A and C. Since
these could delete the condit ion r, it may be the case that r does not hold
before the occurrence of the event E. However, it is easy to see that r is
necessarily added before occurrence of E.

In summary, this result shows that in an important tractable special case
the incomplete decision procedure fails to provide a complete result.

29

9 Story Understanding

Besides plan validation, Dean and Boddy [1988, p. 375] also mention story
understanding as one domain where temporal projection is important:

" ... an author may not provide the reader with the exact time
of all events mentioned in a narrative, knowing that it is not
critical that the reader have such information in order to follow
the story."

Theorem 1, however, tells us that we are lost, as authors or readers. Even
in the simplest case, the author has better to provide complete information
or there is the danger that the reader gets lost in figuring out what is the
case. ll However, if we place some reasonable restrictions on the problem, the
computational problems vanish.

First of all, it seems reasonable that we consider only admissible event
sequences. It simply makes no sense that an author tells a reader that an
event takes place that does not have any effect on the world. Conversely, one
could argue that an author does not tell the exact time of events if the reader
is able to recover the sequential information by other means, for instance,
by the coherence of the events. If we take, for instance, the event system
introduced in Section 2 and assume that the partial ordering over the events
is all the author told us about temporal relations, then the natural way to
interpret the story is to assume that either (A, B, C, D, E, F) or (D, E, F, A, B, C)
is the course of events because all other possible complete sequences are not
admissible. With this assumption, we are able to infer that under the given
initial conditions {h, e, q} afterwards Robby has informed his master (i),
recharged his batteries (f) and returned to the hall (h). Secondly, we will
assume that a story is non-repeating, i.e., all states are different. Other­
wise, the story would contain more than once the same situation-which is
rather unlikely. In order to capture this formally, we introduce the notion of
non-repeating sequences of an event system, written NCS((/:1,I)), with
the intention that for all events g, h, where 9 # h, appearing in an event
sequence, we have Result (I, f / g) # Result (I, f / h). Evidently, it is the case
that NCS(8) ~ ACS(8) because the occurrence of an event e that does not
affect the world leads to the same state as before the occurrence of e. Using
this formalization of story-understanding, yet another variant of temporal
projection is defined.

llNote that NP-completeness means that we (most probably) cannot hope to solve the
problem effortlessly. Instead, "puzzle mode" reasoning is necessary to arrive at a conclusion
[Levesque, 1988].

30

Definition 14 Given an event system 8, an event e E A, and a condition

pEP:

P E Poss+(e, 8) iff 3f E NCS(8): p E R esult (I, fie)

p E Nec+(e, 8) iff 'If E NCS(8): p E R esult (I, fi e).

Proposition 15 For simple event systems 8 , p E Nec+(e,I) and p E

Poss+(e, 8) can be decided in polynomial time.

Proof. The restriction to non-repeating sequences over simple event systems
implies that the effects of all events are unique, i.e., there are no two events
with the same add list and the initial state is different from all add lists. The
uniqueness of the add lists implies the uniqueness of the preconditions. If
the preconditions are not unique, there is no non-repeating event sequence.
Thus, we can construct the (unique) event sequence incrementally-provided
there exists one- starting with the set of initial conditions. This can be done
in polynomial time. p E Poss+(e, 8) iff there exists a non-repeating complete
event sequence and the add list of e contains p. p E Nec+(e, 8) iff there exists
a non-repeating complete event sequence and p E a(e) or there is no such

sequence. -

Thus story understanding (in the highly abstract form as defined here)
is easier than temporal projection in the case of simple event systems. The
question is, in how far this result can be generalized.

If we remove the restriction that the event sequence is non-repeating
and require only that the course of events is admissible, the complexity of
story understanding for simple event systems is not obvious. The resulting
problem is equivalent to finding an Euler tour in a graph such that the arcs
on this tour respect a given partial ordering. It is not obvious whether this
problem can be solved in polynomial time. However, as we remarked above,
the non-repeating restriction seems to be quite reasonable.

Generalizing the problem to general conditional event systems leads im­
mediately to N P-completeness because we can design the causal rules in a
way such that all sequences are non-repeating. A more interesting question
is, whether we can solve the problem for general unconditional event sys­
tems. Because plan-validation is easy in this case, one may suspect that
this also holds for temporal projection in an story understanding context.
Unfortunately, this is not true, though. 12

Theorem 16 For unconditional event systems 8, deciding p E Poss+ (e, 8)
is NP-complete.

12Note that instead of requiring that all complete event sequences are admissible, here
we quantify over the non-repeating complete sequences, which is a subset of the admissible
sequences .

31

Proof. Again, membership in N P is obvious. For the hardness part we use
the problem of directed Hamilton path, which is NP-complete [Garey and
Johnson, 1979, p. 199] .

Let Let G = (V, A) be a digraph, where V = {VI,"" Vn }, and let Vs , Vt E
V. Let V = {VI, ... , vn } be a disjoint copy of V. Define the event system 8
as follows:

£
p

R

A
type(e;)

I

{Ei! Vi E V}
V u V u {p}

{(Ei,{V;},{Vi,Vjll,.·,Vjm}, V)! (Vi,Vjk) E A,Vi =1= vd u
{ (lOt, { Vt}, {p}, V) }

{ei!Ei E £}
Ei for all ei E A, 1 ~ i ~ n

for all e E A such that e =1= es

{ vs}.

Note that 8 is an unconditional event system and, that it can be constructed
in polynomial time.

Now we claim that there exists a Hamilton path from Vs to Vt in G iff
p E Poss+(et, 8).

":::}": Let WI~ W2, ... , Wn be a Hamilton path in G with WI = Vs and
Wn = Vt. By construction of 8, there exists a non-repeating complete event
sequence, f = !I, ... , In such .that !I = es and In = et. Since the add list of
et is {p}, we have p E Poss+(et,8).

"¢::": Assume that there exists a non-repeating complete event sequence
f = !I, ... ,In, where In = et. Then there exists by construction of 8 a path
from Vs to Vt that contains every vertex exactly once, i.e., there is a Hamilton

path from Vs to Vt. -

Assuming that story understanding is an easy (i.e., tractable) task, this
result implies that the formalization of the problem is still too general to
account for the structure of the domain. It is desirable to identify restrictions
that lead to polynomial algorithms for temporal projections in this domain,
but there do not seem to be natural and obvious such conditions.

However, it should be noted that story understanding most probably
involves more than can be expressed in our formalism. It seems plausible
that plan recognition is one crucial part in story understanding and that
abduction in general plays a vital role in such a task. Since we cannot express
any of these phenomena, it seems to make not much sense to speculate about
the complexity of this task. What seems to be clear, however, is that story
understanding is more than temporal projection and that most probably
other mechanisms than temporal projection are responsible for inferring the
ou tcome of a story.

32

10 Conclusions

Reconsidering the problem of temporal projection for sets of partially ordered
events as defined by Dean and Boddy [1988], we noted that one special case
conject ured to be tractable turned out to be NP-complete. Although this
result does not undermine the arguments of Dean and Boddy [1988], it leads
to some counter-intuitive results .

Planning is easier than temporal projection in this special case. This
positive result can be generalized to a less restricted problem, namely, the
so-called SAS-PUS planning problem.

Further, we noticed that plan validation, if defined appropriately, is tract­
able for an even larger problem, namely validation of unconditional nonlinear
plans. This means that the problem of validating a plan as a whole is easier
than validating all its actions separately. In other words, what might look
like a divide and conquer strategy at a fir~t glance is rather the opposite.

These two observations lead to the question of whether the formalization
[Dean and Boddy, 1988] really captures one of the intended applications,
namely, validation of nonlinear plans. In particular, one may ask whether
the incomplete decision procedure for temporal projection developed by Dean
and Boddy .[1988J is based on the right assumptions .

Dean and Boddy [1988] showed that their incomplete decision procedure
is complete if the order of events is total. However, under the assumption that
plan validation is one of the intended applications, one would expect that the
procedure is also complete for other important tractable special cases, such
as validation of nonlinear plans containing only unconditional events, where
the plan-validation problem is tractable. It turns out, however, that this is
not the case.

Also the task of story understanding, which was another motivation for
the formalization of the temporal projection problem and the development
of an incomplete decision procedure, does not seem to be particularly well
described as a temporal projection problem. Under some reasonable further
restrictions, this task is also tractable in the special case where temporal pro­
jection is NP-hard. Unfortunately, however, this positive complexity result
cannot be straightforwardly generalized. For general unconditional events,
the problem can be shown to be NP-complete, while the corresponding plan­
validation problem is still tractable. However, it seems to be the case that
there is more to story understanding than just temporal projection. Plan
recognition seems to playa crucial role which cannot be accounted for in the
framework of temporal projection used in this paper.

As a final remark, it should be noted that the criticisms expressed in this
paper are possible only because Dean and Boddy [1988] made their ideas and
claims very explicit and formal. Although the general direction of isolating
and formalizing a problem, followed by the development of an incomplete

33

decision procedure, as exercised by Dean and Boddy, seems a promising way
to go, two points should be emphasized. First , sometimes the decomposition
of a problem into subproblems can lead to problems that are more difficult
than the original problem, as demonstrated by the decomposition of the plan
validation problem into temporal projection problems. Second, it is hard to
judge the merit of an incomplete decision procedure if there are no well
justified criteria for doing this, and such criteria should be given for each
proposed incomplete procedure.

Acknowledgements

We would like to thank Bart Selman, who provided helpful com­
ments on an earlier version of this paper.

References

[Allen, 1983] James F . Allen. Maintaining knowledge about temporal inter­
vals. Communications of the ACM, 26(11):832- 843, November 1983.

[Backstrom and Klein, 1991a] Christer Backstrom and Inger Klein. Paral­
lel non-binary planning in polynomial time. In Proceedings of the 12th
Int ernational Joint Conference on Artificial Intelligence, pages 268- 273,
Sydney, Australia, 1991. An extended version of this paper is available as
Research Report LiTH-IDA-R-91-11, Department of Computer and Infor­
mation Science, Linkoping University, Linkoping, Sweden.

[Backstrom and Klein, 1991 b] Christer Backstrom and Inger Klein. Plan­
ning in polynomial time: The SAS-PUBS class. Computational Intelli­
gence, 7(4), November 1991. To appear.

[Bylander, 1991] Tom Bylander. Complexity results for planning. In Pro­
ceedings of the 12th International Joint Conference on Artificial Intelli­
gence, pages 274- 279, Sydney, Australia, 1991.

[Chapman, 1987] David Chapman. Planning for conjunctive goals. Artificial
Int elligence, 32(3):333- 377, July 1987.

[Chenoweth, 1991] Stephen V. Chenoweth. On the NP-hardness of blocks
world. In Proceedings of the 9th National Conference of the American
Association for A dificial Intelligence, pages 623- 628, Anaheim, CA, 1991.

[Dean and Boddy, 1988] Thomas L. Dean and Mark Boddy. Reasoning
about partially ordered events. Artificial Intelligence, 36(3):375- 400, Oc­
tober 1988.

34

[Fikes and Nilsson, 197.1] Richard E. Fikes and Nils Nilsson. STRIPS: A
new approach to the application of theorem proving as problem solving.
Artificial Intelligence, 2:198- 208, 1971.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Com­
puters and Intractability-A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, CA, 1979.

[Gupta and Nau, 1991] Naresh Gupta and Dana S. Nau. Complexity results
for blocks-world planning. In Proceedings of the 9th National Conference of
the American Association for Artificial Intelligence, pages 629-633, Ana­
heim, CA, 1991.

[Katsuno and Mendelzon, 1991] Hirofumi Katsuno and Alberto O. Mendel­
zon. On the difference between updating a knowledge base and revising it.
In J. A. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowl­
edge Representation and Reasoning: Proceedings of the 2nd International
Conference, pages 387- 394, Cambridge, MA, April 1991.

[Korf, 1987] Richard E. Korf. Planning as search: A quantitative approach.
Artificial Intelligence, 33:65- 88, 1987.

[Levesque, 1988] Hector J. Levesque. Logic and the complexity of reasoning.
Journal of Philosophical Logic, 17:355- 389, 1988.

[Nokel, 1989] Klaus Nokel. Convex relations between time intervals. In
J. Rettie and K. Leidlmair, editors, Proceedings der 5. Osterreichischen
Artificial Intelligence- Tagung, pages 298- 302. Springer-Verlag, Berlin, Hei­
delberg, New York, 1989.

[Schoppers, 1987] Marcel J. Schoppers. Universal plans for reactive robots
in unpredictable envi.wnments. In Proceedings of the 10th International
Joint Conference on Artificial Intelligence, pages 1039-1046, Milan, Italy,
1987.

[Vilain et al., 1989] Marc B. Vilain, Henry A. Kautz, and Peter G. van Beek.
Constraint propagat ion algorithms for temporal reasoning: A revised re­
port. In D. S. Weld and J. de Kleer, editors, Readings in Qualitative Rea­
soning about Physical Systems, pages 373- 38l. Morgan Kaufmann, San
Mateo, CA, 1989.

35

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz G m b H

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen kbnnen von der oben angcgebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR·90-03
Andreas Dengel, Nelson M. Mallos : Integration of
Document Representation, Processing and
Management
18 pages

RR-90-04
Bernhard Hal/under, Werner NUll: Subsumption
Algorithms for Concept Languages
34 pages

RR·90·0S
Franz Baader: A FOnllal Definition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR·90-06
Bernhard Hal/under: Hybrid Inferences in KL-ONE­
based Knowledge Representation Systems
21 pages

RR-90-07
Elisabeth Andre, Thomas Rist: Wissensbasierte
Informationsprasentation:
Zwei Beitrage zum Fachgespriich Graphik und KI :
1. Ein planbasierter Ansatz zur Synthese

ill ustrierter Dokumenle
2 . Wissensbasierte Perspektivenwahl fur die

automatische Erzeugung von 3D­
Objektdarstellungen

24 Seiten

RR-90-08
Andreas Dengel: A Step Towards Understanding
Papcr Documents
25 pages

RR-90-09
Susanne Biundo : Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

DFKI
-Bibliothek­
PF 2080
6750 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-90-10
Franz Baader,llans-Jurgen Burckert, Bernhard
lIol/under, Werner NUll, Jorg H. Siekmann:
Concept Logics
26 pages

RR·90·11
Elisabeth Andre, Thomas Rist: Towards a Plan­
Based Synthesis of Illustrated Documents
14 pages

RR·90-12
lIarold Boley: Declarative Operations on Nets
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR·90·14
Franz Schmalhofer, Otto Kahn, Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages

RR-90-1S
lIarald Trost : The Application of Two-level
Morphology to Non-concatenative Gennan
Morphology
13 pages

RR·90·16
Franz Baader, Werner Nutt: Adding Homomor­
phisms to Commutative/Monoidal Theories, or:
How Algebra Can Help in Equational Unification
25 pages

RR·90·17
Stephan Busemann: Generalisierte
Phasenstrukturgrammatikcn und ihre Verwendung
zur maschinellen Sprachverarbeitung
114 Seilen

RR-91-01
Franz Baader, Hans-Jiirgen Burckert. Bernhard
Nebel. Werner NUll. Gert Smolka: On ,the
Expressivity of Feature Logics with Negation,
Functional Uncertainty, and Sort Equations
20 pages

RR-91-02
Francesco Donini. Bernhard Hollunder. Maurizio
Lenzerini, Alberto Marchetti Spaccamela. Daniele
Nardi , Werner NUll: The Complexity of Existential
Quantification in Concept Languages
22 pages

RR-91-03
BHoliunder. Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR-91-04
Harald Trost: X2MORF: A Morphological
Component Based on Augmented Two-Level
Morphology
19 pages

RR-91-0S
Wolfgang Wahlster. Elisabeth Andre. Win/ried
Graf, Thomas Rist: Designing I1luslnlled TexL~:
How Language Production is Influenced by
Graphics Generation.
17 pages

RR-91-06
Elisabeth Andre. Thomas Rist: Synthesizing
Illustrated Documents A Plan-Based Approach
11 pages

RR-91-07
Gunter Neumann. Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91-08
Wolfgang Wahlster, Elisabeth Andre. Som
Bandyopadhyay. Winfried Graf. Thomas Rist:
WIP: The Coordinated Generation of Mullimodal
Presentations from a Common RepreSenLalion
23 pages

RR-91-09
Hans-Jurgen Burckert, .1urgen Muller .
Achim Schupeta: RATMAN and iL~ Relalion to
Other Multi-Agent Testbeds
31 pages

RR-91-10
Franz Baader. Philipp Ilanschke : A Scheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR-91-11
Bernhard Nebel: Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR-91-12
J.Mark Gawron, John Nerbonne, Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smolka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR-91-14
Peter Breuer, Jurgen Muller: A Two Level
Representation for Spatial Relations, Part I
27 pages

RR-91-1S
Bernhard Nebel. Gert Smolka: Attributive
Description Formalisms ... and the Rest of the
World
20 pages

RR-91-16
Stephan Busemann: Using Pattern-Action Rules for
the Generalion or GPSG Slructures from Separate
Semantic Representations
18 pages

RR-91-17
Andreas Dengel. Nelson M. Mattos:
The Use of Abstraction Concepts for Representing
and Structuring DoCumenL'i
17 pages

RR-91-18
John Nerbonne. Klaus Netter, Abdel Kader Diagne,
Ludwig Dickmann. Judith Klein:
A Diagnostic Tool for German Syntax
20 pages

RR-91-19
Munindar P. Singh: On the Commitments and
Precommitments of Limited Agents
15 pages

RR-91-20
Christoph Klauck, Ansgar Bernardi. Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
4/l pages

RR-91-21
Klaus Netter : Clause Union and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Sclf-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter, Ansgar Bernardi, Christoph
Klauck, Ralf Legleitner: Akquisition und
Reprasentation von technischem Wisscn fUr
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
lochen Heinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-2S
Karin Harbusch, Wolfgang Finkler, Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer, S. Biundo, D. Dengler, M. flecking,
1. Koehler, G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

RR-91-27
A. Bernardi, 11. Boley, Ph.flanschke,
K. Hinkelmann, Ch. Klauck, O. Kuhn,
R. Legleitner, M. Meyer, M. M. Richter,
F. SchmalhoJer, G. Schmidt, W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf BackoJen, Harald Trost , flans Uszkoreit :
Linking Typed Feature Formalisms and
Terminological Knowledge Represenlation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger, John Nerbonne :
Inheritance and Complemcntation: A Case Study of
Easy Adjectives and Related Nouns
39pages

RR-91-31
H.-V. Krieger, J . Nerbonne:
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf BackoJen, Lutz Euler, Gunther Garz:
Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages

RR-91-33
Franz Baader, Klaus Schulz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-35
WinJried GraJ, Wolfgang MaajJ: Constraint-basierte
Verarbeitung graphischcn Wissens
14 Seilen

DFKI Technical Memos

TM-90-03
Franz Baader, Bernhard Hollunder: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader, Ham-Jurgen Burckert, Jochen
fleinsohn, Bernhard flollunder, Jurgen Muller,
Bernhard Nebel , Werner NUll, Hans-lurgen
Profitlich: Terminological Knowledge Represen­
tation: A Proposal for a Terminological Logic
7 pages

TM-91-01
Jana Kohler: Approaches to the Reuse of Plan
Schemata in Planning Formalisms
52 pages

TM-91-02
Knut llinkelmann: Bidirectional Reasoning of Hom
Clause Programs: Transformation and Compilation
20 pages

TM-91-03
Otto Kuhn, Marc Linster, Gabriele Schmidt:
Clamping, COKAM, KADS, and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM.-91-04
Harold Boley (Ed.):
A sampler of Relational/Functional Definitions
12 pages

TM-91-0S
Jay C. Weber, Andreas Dengel, Rainer Bleisinger:
Theoretical Considenltion of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

TM-91-06
lohannes Stein: AspecL<; of Cooperating Agents
22 pages

TM-91-08
Munindar P. Singh: Social and Psychological
Commitments in Multiagent Systems
11 pages

TM-91-09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM-91-10
Bela Buschauer. Peter Paller. Anne Schauder. Karin
Harbusch: Tree Adjoining Grammars mit
Unifikation
149 pages

TM-91-11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM-91-12
Klaus Becker . C hrislOph K lau ck, .I oh(llllles
Schwagereit : FEAT-PATR: Eine Erwciterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann :
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

DFKI Documents

D-90-05
Ansgar Bernardi . Christoph Klauck, Ralf
Legleitner: Formalismus zur Repriisentation von
Geo-metrie- und Technologieinformationen als Teil
eines Wissensbasierten Produktmodells
66 Seiten

D-90-06
Andreas Becker: The Window Tool Kit
66 Sciten

D-91-01
Werner Stein, Michael Simek: RelfunlX - An
Experimental Prolog Implemen1411ion of Relfun
48 pages

D-91-03
Harold Boley. Klaus Elsbernd, !!ans-Gunther ffein,
Thomas Krause: RFM Manual: Compil ing
RELFUN into the Relational/Functional Machine
43 pages

0-91-04
DFKI Wissenschaftlich-Technischer Jahresbericht
1990
93 Sci len

0-91-06
Gerd Kamp: Entwurf, vergleichende Beschreibung
und Integration eines Arbeitsplanerstellungssystems
fUr Drehteile
130 Scitcn

0-91-07
Ansgar Bernardi. Christoph Klauck. Ralf Legleitner
TEC-REP: Reprasentation von Geometrie- und
Technologieinformationen
70 Scilen

0-91-08
Thomas Krause: Globale DatenOu/3analyse und
horizontalc Compilation der relational-funktionalen
Sprache RELFUN
137 pages

0-91-09
David Powers and Lary Reeker (Eds):
Proceedings MLNLO '91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US -S).

0-91-10
Donald R. Steiner. lurgen Muller (Eds.) :
MAAMA W'91: Pre-Proceedings of the 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-~gent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 OM (or 15 US-$).

0-91-11
Thito C. lIorstmann:Distributed Truth Maintenance
61 pages

0-91-12
Bernd Bachmann:
Hientcon - a Knowledge Representation System
with Typed Hierarchies and Constraints
75 pages

0-91-13
International Workshop on Terminological Logics
Organizers: Bernhard Nebel. Christo! Peltason. Kai

von Luck
131 pages

0-91-14
Erich Achilles. Bernhard Hollunder. Armin Laux.
J6rg-Peter Mohren : WS : ~nowledge
1(epresentation and fnference System
- Benutzerhandbuch -
2ll Seilen

On the Computational Complexity of Temporal Projection
and some Related Problems

Bernhard Nebel and Chrlster BackstrOm

RR-91-34
Research Report

