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1 Abstract 

1.1 Abstract 

Glioblastoma multiforme belongs to the group of gliomas and represents the most 

malignant entity of all primary brain tumors in adults. Despite recent diagnostic and 

therapeutic achievements the glioblastoma has the poorest prognosis of all 

primary brain tumors. Improving the initial diagnosis and the assessment of 

response to treatment in malignant gliomas, while avoiding invasive methods as 

much as justifiable, is one major aspect actual research is focusing on. Imaging 

studies are used to calculate tumor volume and to define vital, necrotic and cystic 

areas within a tumor. Since the subjective, visual interpretation of MRI is based on 

qualitative observation of variation in signal intensity, a correlation of signal 

intensities with histological features of a tumor in this manner is not possible. The 

need for an objective method for the reliable description of a tumor and the 

interpretation of follow-up studies in single patients and their collective was the 

inspiration to the concept of the present study. 

In the proposed work histograms of signal intensities from delineated areas in MRI 

scans served as a method of quantitative data acquisition. Using the image 

analysis software DoctorEye, tumors and other pathologic tissues as necrosis or 

edema could easily be rendered, while at the same time histograms of the signal 

intensities within a tumor, as well as mean and median signal intensities were 

calculated. Additionally this technique enabled us to precisely calculate the 

volumes of the different investigated tissues (active tumor, necrosis and edema) 

and to assess their development during the course of disease. To the best of my 

knowledge there was no data available that uses histograms of signal intensities of 

MRI for the characterization of glioblastoma, when the proposed study was 

initiated. 

In total more than 22.000 DICOM-files based on routine-MRI scans, from 33 

anonymized patients suffering from suspected glioblastoma, have been analyzed. 
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These data included T1, T1 with gadolinium contrast enhancement, T2 and T2-

Flair sequences, representing another novelty, as in the common criteria most 

often only the assessment of the T1 with gadolinium contrast enhancement 

sequence in MR images is suggested. The data of the histograms were uploaded 

to Microsoft Office Excel 2007, to perform further statistics, including the 

normalization of the data. In addition to the comparison of the distribution of the 

signal intensities, focus was laid on the calculation and interpretation of the 

respective maximum values and the average signal intensities of the histograms 

and their development over time. In nine of the 33 patients a complete follow-up 

could be analyzed, referring to DICOM data-sets at diagnosis, after surgery and 

after radio- and chemotherapy. 

Since the histograms of the different pathologic tissues vary in all sequences, the 

measurement of volumes and the segmentation of the tumor in the various MR 

sequences offer an optimal way to objectively distinguish between active tumor 

tissue, necrosis and edema. At the time of diagnosis the histogram of all 

glioblastoma showed a bimodal distribution of signal intensities in the T1 with 

gadolinium contrast enhancement sequence. Such similarities of the graphical 

shape are seen during follow-up in individual patients as well. 

It can be assumed that by using combinations of histograms from different 

sequences the tumor can be described in a much better way than by calculating 

solely the tumor volume. With the proposed method one can define necrotic areas 

and active tumor, and simultaneously calculate their volume for any point of time. 

By standardizing the average signal intensity, relatively to the signal intensities of 

the corresponding cerebrospinal fluid, it was possible to demonstrate a clear 

difference between tumor and necrosis at different points of time and in different 

sequences. The results of the present study lead to the conclusion that the use of 

these histograms is an innovative way to gain new, tumor-specific information, 

without performing additional examinations on the patient. This method can be a 

complementary diagnostic tool to distinguish between different intracranial lesions, 

and to assess the response to treatment of glioblastoma or its progression. 
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Nevertheless, a standardized method for image acquisition is needed to apply this 

method center-independent and to achieve a higher comparability between the 

results. Furthermore, the proposed segmentation algorithm too time consuming to 

be applied in routine clinical practice. If these restrictions will be resolved, this 

method can constitute a simple, effective tool for the diagnosis, the assessment of 

individual and collective courses of disease and the modeling of tumor growth and 

response to treatment. 

1.2 Zusammenfassung 

Eine innovative mathematische Analyse von Routine-MRT-Bildern bei 

Patienten mit Glioblastom mithilfe von DoctorEye 

Das Glioblastom gehört zu der Gruppe der Gliome und stellt die häufigste Entität 

aller primären Gehirntumoren im Erwachsenenalter dar. Trotz jüngster 

diagnostischer und therapeutischer Errungenschaften hat das Glioblastom immer 

noch die schlechteste Prognose aller primären Hirntumoren. Die Verbesserung 

der Erstdiagnose und die Beurteilung des Ansprechens auf die Behandlung von 

malignen Gliomen, bei gleichzeitiger, vertretbarer Vermeidung invasiver 

Methoden, ist ein wichtiger Aspekt auf den sich die aktuelle Forschung 

konzentriert. Bildgebende Verfahren werden verwendet, um Tumor-Volumina zu 

berechnen und um zwischen vitalen, nekrotischen und zystischen Tumorarealen 

zu unterscheiden. Da die subjektive, visuelle Interpretation von MRT-Bildern auf 

einer qualitativen Beobachtung von Variationen der Signalintensität basiert, ist 

eine Korrelation von Signalintensitäten mit histologischen Merkmalen eines 

Tumors auf diesem Wege nicht möglich. Der Mangel an objektivierbaren 

Methoden zur zuverlässigen Beschreibung von Tumoren und der Interpretation 

der Follow-up Studien von einzelnen Patienten und deren Kollektiv war Inspiration 

zu dem Konzept der vorgestellten Studie. 

In der vorliegenden Arbeit wurden Histogramme von Signalintensitäten 

umschriebener Areale in MRT Abbildungen als ein Verfahren zur quantitativen 
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Datenerhebung verwendet. Mithilfe der Bildbearbeitungssoftware DoctorEye 

konnten Tumoren und andere patholgische Gewebeveränderungen, wie Ödeme 

und Nekrosen, benutzerfreundlich segmentiert und gleichzeitig Histogramme der 

Signalintensitäten innerhalb eines Tumors, sowie mittlere und mediane 

Signalintensitäten berechnet werden. Zusätzlich war es möglich mit diesem 

Verfahren genaue Volumina der einzelnen Gewebetypen (aktiver Tumor, Nekrose 

und Ödem) zu bestimmen und deren Entwicklung im Krankheitsverlauf zu 

beurteilen. Nach meinem Kenntnisstand gab es zu dem Zeitpunkt, als die 

vorliegende Studie initiiert wurde, keine vergleichbaren Daten, die Histogramme 

der Signalintensitäten von MRTs verwendeten, um Glioblastome zu 

charakterisieren. 

Insgesamt wurden über 22.000 DICOM-Dateien, basierend auf Routine-MRT-

Bildern von 33 anonymisierten Patienten mit histologisch gesichertem oder 

bildmorphologisch verdächtigem Glioblastom, bearbeitet. Diese Bilddateien 

umfassten die Sequenzen T1 ohne Kontrast, T1 mit Gadolinium-Kontrast, T2 und 

T2 Flair. Dies ist insofern eine Neuheit, da in den anerkannten Diagnosekriterien 

meist nur die T1 mit Gadolinium-Kontrast-Sequenzen beurteilt werden. Durch 

DoctorEye war es möglich die gewonnenen Daten zu extrahieren und in Microsoft 

Excel 2007 zu transferieren, um dort weitere statistische Untersuchungen anhand 

der Histogramme, sowie die Normalisierung der Daten durchzuführen. Neben dem 

Vergleich der Verteilung der Signalintensitäten, lag das Hauptaugenmerk auf der 

Berechnung und Interpretation der jeweiligen Maximalwerte und der 

durchschnittlichen Signalintensitäten der Histogramme und deren Entwicklung im 

zeitlichen Verlauf. Dies geschah für die verschiedenen untersuchten Gewebetypen 

in jeder MRT-Modalität, zum Zeitpunkt der Diagnose und während der 

Nachbeobachtungszeit. In 9 der 33 Patienten konnte eine komplette Follow-up-

Studie rekonstruiert und analysiert werden, unter Bezugnahme auf die DICOM-

Daten-Sets zum Zeitpunkt der Diagnose, nach Operation und nach 

Radiochemotherapie. Da sich die Histogramme der verschiedenen pathologischen 

Gewebeveränderungen in allen Modalitäten unterscheiden, bietet die Messung der 

Volumina und die Segmentierung des Tumors in den verschiedenen MR 
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Sequenzen eine optimale Möglichkeit, aktives Tumor-Gewebe, Nekrose und 

Ödem objektiv voneinander unterscheiden zu können. Zum Zeitpunkt der 

Diagnose zeigte das Histogramm aller Glioblastom in T1 mit Gadolinium-Kontrast 

eine bimodale Verteilung der Signalintensitäten. Solche Übereinstimmungen in der 

graphischen Form der Histogramme waren auch in der Verlaufsbeobachtung 

einzelner Patienten gut nachvollziehbar. 

Diese Feststellungen lassen vermuten, dass Tumoren wesentlich besser durch die 

Kombination von Histogrammen verschiedener Modalitäten beurteilt werden 

können, als durch die alleinige Berechnung des Volumens. Mit der vorgestellten 

Methode können nekrotische Areale und aktiver Tumor definiert und gleichzeitig 

das Volumen zum jeweiligen Zeitpunkt berechnet werden. Durch die 

Standardisierung der durchschnittlichen Signalintensitäten anhand einer 

Relativierung mit den Signalintensitäten des entsprechenden Liquor 

cerebrospinalis, ist es gelungen einen Unterschied zwischen den 

Signalintensitäten von Tumor und Nekrose zu verschiedenen Zeitpunkten und in 

verschiedenen Modalitäten nachzuweisen. Diese Ergebnisse lassen die 

Schlussfolgerung zu, dass die Verwendung dieser Histogramme eine innovative 

Methode ist, um neue, tumorspezifische Informationen zu gewinnen, ohne 

zusätzliche Untersuchungen am Patienten durchzuführen. Diese Methode kann 

ein ergänzendes diagnostisches Werkzeug sein, verschiedene intrakranielle 

Läsion voneinander zu unterscheiden, sowie das Ansprechen eines Glioblastoms 

auf die Behandlung oder dessen Progress zu beurteilen. 

Nichtsdestotrotz ist ein standardisiertes Verfahren zur Bildakquisition vonnöten, 

um dieses Verfahren auch Zentren übergreifend anwenden zu können und die 

Ergebnisse vergleichbar zu machen. Desweiteren ist der vorgestellte 

Segmentierungsalgorithmus noch zu zeitintensiv, um im klinischen Alltag 

angewendet werden zu können. Werden diese Einschränkungen jedoch behoben 

könnte das vorgestellte Verfahren ein einfaches und effektives Werkzeug zur 

Diagnose, Verlaufsbeurteilung und Modellbildung von Tumorwachstum und 

Therapieansprechen darstellen. 
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2 Introduction 

Brain tumors comprise a group of neoplasms that either originate from brain tissue 

itself (known as primary brain tumors) or derive from extracranial neoplasms, 

which have metastasized to the brain (known as secondary brain tumors). The 

primary brain tumors may evolve from the brain parenchyma, meninges, cranial 

nerves, and other intracranial structures (the pituitary and pineal glands). 

Even if some of the tumor entities are histologically and biologically benign, the 

constitution of the brain often blurs the differentiation between biologically benign 

and malignant. Also a small and slow proliferating tumor with little or no signs of 

malignancy may cause great damage or even prove to be lethal if located in a 

region where surgery is not possible. 

2.1 Classification of Brain Tumors 

Primary brain tumors are classified by light microscopy according to their 

predominant cell type, belonging to clearly defined histopathological and clinical 

features. Since the German pathologist Rudolf Virchow first introduced the term 

“glioma” in 1860 [91] there have been many attempts of developing a classification 

system for brain tumors. More than 30 years ago, the international classification of 

diseases for oncology (ICD-O) was installed and since then serves as an 

indispensable guideline for the grading of cancers by providing histopathology and 

mortality data for epidemiological as well as oncological studies [93]. In 1979, the 

World Health Organization (WHO) published a classification system, which was 

meant to be the first edition of histological typing of central nervous system (CNS) 

tumors [170]. Since then it is continuously updated, e.g. by the introduction of 

immunhistochemistry and genetic profiling as well as clinical signs, symptoms, 

imaging and many other attributes, aiming at a refined classification [75, 76]. The 

most recent version of the WHO classification system was published in 2007 and 

has combined a nomenclature with an implied grading system, so that the actual 

histological diagnosis correlates with the histological grade of the tumor [93]. A 
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higher grade in this classification system implies a higher mitosis rate, more 

vascular proliferation, giant cells and areas of necrosis (see also chapter 2.4.2 - 

Histopathology). Strikingly, even a histologically relatively well-differentiated 

glioma (e.g. the grade II astrocytoma) can show a tendency to diffusely infiltrate 

the brain and to be biologically highly malignant due to the tumor cells capacity to 

actively migrate along structures within the neuropil. To make matters worse, 

additionally the gliomas show the inherent capacity to progress to a more 

malignant phenotype [93]. 

All these phenomena account for the low survival rates even after all therapeutic 

modalities have been utilized. 

2.2 Gliomas 

The term “glioma” refers to neoplasms believed to be derived from glial cells, e.g. 

astrocytes, oligodendrocytes and ependymal cells. Each of this cell type is capable 

of turning into a certain tumor entity, although many gliomas consist of a 

composite of them [57]. Among the gliomas themselves, which form 30-50% of all 

brain tumors, there are about 50% high malignant glioblastoma (grade IV), 25% 

astrocytomas (grade I-III), 5-18% oligodendrogliomas and 2-9% ependymomas 

[57]. The incidence of gliomas in the United States and in Europe is with 7-

11/100.000 citizens significantly higher than in Asia with 2-4/100.000 citizens. Men 

are affected more often than women [57]. 

2.3 Clinical Manifestation of Malignant Gliomas 

The malignant gliomas (WHO grade III and IV) are a group of rapidly progressive 

brain tumors that are divided into anaplastic gliomas (anaplastic astrocytoma, 

anaplastic oligodendrogliomas, and anaplastic oligoastrocytoma) and glioblastoma 

multiforme (GBM), based upon their histopathologic features [93, 157] (see also 

chapter 2.4.2 - Histopathology). 

The clinical manifestations of malignant gliomas depend upon the location as well 
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as the size of the lesion and act similar to those produced by other primary and 

metastatic brain tumors [17]. 

The Glioma Outcome Project illustrated the spectrum of symptoms produced by 

malignant gliomas by a series of 565 glioma patients (147 grade III and 418 grade 

IV) [34]: 

 Headache emerged in 53 to 57 % of cases. 

 Seizures were found in 56 % of patients with grade III lesions, compared 

with 23 percent in those with grad IV lesions. 

 Other symptoms which were seen in 20 % or more of the patients included 

memory loss, motor weakness, visual symptoms, language deficit and 

cognitive and personal changes. 

2.4 Diagnostic Procedures of Brain Tumors 

2.4.1 Diagnostic Neuroimaging 

To diagnose a patient presenting with signs and symptoms suggesting a brain 

tumor, neuroradiologic imaging is the most important diagnostic modality. MRI has 

become the method of choice in the evaluation of neurological disorders, while 

computer tomography (CT) is used in many cases only in an emergency situation 

or to clarify specific issues [151]. As of all brain tumors the malignant gliomas 

grade III and IV have the highest prevalence in older adults and are the ones with 

the poorest prognosis, it is up to the differential diagnosis to distinguish the variety 

of tumors, as well as benign lesions from these high-grade gliomas [151].  

2.4.1.1 Magnetic Resonance Imaging 

MRI is one alternative of noninvasive tumor imaging. It is characterized by high 

spatial resolution (50-500 µm) and the use of non-ionizing radiation. 

Usually a T1 with gadolinium contrast enhancement sequence (Gd-MRI) is the 

only test needed to suggest a brain tumor, while MRI may also deliver information 
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that indicates the specific tumor type: 

 Typically malignant gliomas appear hypointense on T1-weighted images, 

and enhance heterogeneously following contrast infusion. Hence, an 

enhancing tumor can be distinguished from the surrounding hypointense 

signal of edema on T1-weighted sequences[161]. 

 Without regard to the histologic grade, astrocytomas in general tend to 

show increased T2 and T2 Flair (fluid attenuated inversion recovery) signal 

intensity (SI), whereas some astrocytomas do not manifest in Gd-MRI [123]. 

Additionally to permitting visualization of the tumor mass and its relationship to the 

surrounding normal parenchyma, MRI is also superior to CT for the evaluation of 

the meninges, subarachnoid space, and posterior fossa, and for the definition of 

the vascular distribution of the abnormality [161]. 

2.4.1.2 Computed Tomography (CT) 

The CT has mostly been replaced by the cranial MRI as the imaging modality of 

choice for brain tumors. Nonetheless it remains useful in selected situations [161]: 

 Investigation of the skeleton and vascular system. 

 Search for metastases in regions around the foramen magnum, the clivus 

or the skull base. 

 In cases of emergency, where CT has a higher availability and a faster 

execution than MRI. 

 In any cases where MRI is contraindicated (e.g. implants, containing iron). 

2.4.1.3 PET-Scans 

The Positron Emission Tomography (PET) is an excellent technique for the 

visualization of metabolic and functional processes. In the oncological context it is 

used to detect malignant tumors with high metabolic rates by the help of 

radiolabeled glucose and amino acid molecules [161]. Normally tumors exhibit an 

increased metabolic activity, which can be shown by a higher radiotracer influx 



Introduction 

10 

compared to the surrounding tissues [161].  

2.4.1.4 Additional Imaging Methods 

Due to certain difficulties interpretation of MR images, which will be discussed in 

the following, and to improve the monitoring of tumors under treatment and during 

follow-up, there are certain methods, which can depict changes in the cellular 

metabolism (Magnetic resonance spectroscopy (MRS)), the perfusion (Perfusion-

MRI or -CT), as well as the cellular texture of the tumor and perifocal edemas 

(Diffusion weighted imaging (DWI)) [151]. 

Also worth mentioning are the Functional MRI, to detect eloquent areas of the 

brain in the context of surgery, and the SPECT imaging (Single photon emission 

CT), which is used to detect abnormalities of the blood-brain barrier. 

2.4.2 Histopathology 

Histological examination of a putative brain tumor remains the most important 

component of the diagnostic evaluation of brain tumors. Furthermore, the 

microscopic examination is the precondition to differentiate between the various 

subtypes of neoplasms and to grade malignancy [28]. It is important to mention 

that astrocytomas extensively infiltrate into the healthy brain tissue, and especially 

the GBM proved to display a great variety in the extent, the geometry and the 

character of the infiltrating margin [28]. 

The WHO classification of 2007 comprises 4 different grades standing for an 

“ascending malignancy scale” of intracranial neoplasms. While grade I tumors are 

characterized by a low proliferative potential and offer the chance of cure after 

resection, neoplasms ranked in grad II show infiltrative growth and tend to recur. 

Moreover, some types of grade II tumors can progress to high-grade 

malignancies, for example the low-grade diffuse astrocytoma can develop to an 

anaplastic astrocytoma or even to GBM. The tumor classification of WHO grade III 

matches to histological evidence of malignancy such as strong mitotic activity or 

nuclear atypia [93, 157].  
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Concluding, the WHO grade IV category refers to tumors characterized by 

microvascular proliferation and / or necrosis in addition to the aforementioned 

features [93, 157]. 

2.4.3 Molecular Genetics 

The formation and progression of diffuse gliomas involve an accumulation of 

genetic alterations, which mainly affect the regulation of cell proliferation, 

differentiation, and apoptosis [18]. As with many other types of human cancers the 

activation of oncogenes, inactivation of tumor suppressor genes, abrogation of 

apoptotic genes and the deregulation of DNA repair genes play a critical role in the 

pathogenesis of gliomas [18]. 

As mentioned before, GBMs can arise de novo (primary GBM), usually in older 

patients, or evolve from low-grade gliomas (secondary GBM), normally in younger 

patients. The observed molecular changes differ in these two settings [18]. 

In the different steps of the evolution of malignant gliomas multiple pathways can 

be involved, which appear to include different molecular events. For instance, 

primary GBMs are associated with a variety of molecular changes, most 

remarkably the epidermal growth factor receptor (EGFR) amplification of 

overexpression [94]. Then again, in secondary glioblastomas and lower-grade 

gliomas, typically alterations of the IDH1 and IDH2 genes [165], a 

hypermethylation genotype [106] and inactivation of the TP53 tumor suppressor 

gene can be found [92]. In the changeover from low-grade to high-grad gliomas 

the inactivation of other tumor suppressor genes on chromosomes 9p, 13q and 

19q appear to be of significance [143, 166]. 

Since the survival of patients with malignant gliomas vary substantially and cannot 

be entirely explained by differences in histologic grading or clinical parameters, 

such as age or performance status, genetic markers may be valuable both, in 

assessing prognosis and response to treatment and to predict individual courses 

of disease [63, 67]. Today, genomic analysis can identify four different and 
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clinically relevant subtypes of glioblastoma, which respond differently to treatment 

options as chemotherapy and radiotherapy, namely Proneural, Neural, Classical, 

and Mesenchymal. These four subtypes are characterized by abnormalities in the 

genes of PDGFRA, IDH1, EGFR and NF1 [147].  

2.5 Treatment and Prognosis of Malignant Gliomas 

2.5.1 Initial surgical Approach 

The initial surgical resection is the treatment of choice for malignant gliomas. 

Although maximal resection is an important goal, the extent of surgery must be 

balanced with preservation of neurologic functions [17]. 

The tumor resection has three objectives [17]: 

1. The extraction of sufficient tumor-tissue for accurate histological and 

molecular diagnostics. 

2. The potentially improvement of clinical symptoms like seizures or 

neurological deficiencies.  

3. The reduction of the tumorous cell population, in order to improve the 

overall prognosis. 

Within a substantial retrospective study, including 416 patients, Lacroix et al. 

showed in 2001 that an aggressive resection of 98% or more of the tumor volume 

was a significant, independent predictor of survival in the entire patient population 

[84]. The best currently available data, concerning an influence of the extent of 

resection on the prognosis and the advantage of complete resection compared 

with partial resection, is given in a post-hoc-analysis of data from a prospective-

randomized study about fluorescence supported resection of glioblastoma [118]. 

This study could prove a significant advantage of total resection over partial 

resection regarding the median survival, which was 16,7 versus 11,8 months [111, 

132, 133]. 

In addition to the survival benefit, the surgical resection often comes along with an 
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improvement of clinical symptoms [35]. Furthermore, an extended resection 

permits a more extensive extraction of sufficient tumorous tissue for 

histopathological diagnosis and molecular analysis, compared to stereotactic 

biopsy. 

2.5.2 Adjuvant Radiation Therapy 

Due to the high rate of recurrence in malignant gliomas, the adjuvant radiation 

therapy (RT) is indispensable, at least in malignant gliomas, as part of the 

standard-of-care therapy, using the so called involved field radiation therapy 

(IFRT), which has replaced the whole brain radiation therapy (WBRT) [27, 125]. 

Already in late 1970s the survival benefit of postoperative RT could be 

demonstrated in different studies and is still valid [11]. A daily application of 1,8-2,0 

Gy up to a cumulative dose of 60 Gy in 6 weeks is the radiation-scheme which has 

shown the best results in GBM, as well as in grade III gliomas with a median 

survival of 9-12 months and 3-5 years, respectively [77].  

MRI and functional imaging like [18F]Fluorethyltyrosin(FET)-PET or MRS 

increasingly established themselves in the planning of radiation therapy [86].  

2.5.3 Adjuvant Chemotherapy 

Because of the blood-brain barrier, the applicability of cytostatic agents in the 

treatment of malignant brain tumors is extremely limited. The most utilized 

chemotherapeutics are the lomustine (CCNU) and nitrosoureas carmustine 

(BCNU), as well as the alkylating benzamid procarbazine [9]. 

Since 2005, the combination of RT and concomitant and adjuvant chemotherapy, 

using the alkylating agent temozolomide (TMZ), represents the standard regime in 

the treatment of WHO grad IV glioma after surgery [9]. 

In contrast to other combined chemotherapy and radiation regimes, which showed 

no significant survival benefit (e.g. RT plus mitomycin [59]), the concomitant and 

adjuvant TMZ application proved to result in a survival advantage [12, 134]. This 
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statement was supported in a Cochrane review from 2008, published by Hart 

et al., conforming the therapeutic effectiveness and the low incidence of early 

adverse events caused by TMZ [62]. Recently, also Koukourakis et al. reviewed 

investigations on the mechanism of action as well as on resistance effects of 

TMZ[78]. Additionally, this review also presents current clinical studies and 

applications of temozolomide. As reported by Happold et al., patients with a 

methylated O6-methyl-guanine DNA methyltransferase (MGMT) promoter show 

clinical benefits, being more sensitive to alkylating agents such as TMZ [60]. 

2.5.4 Prognosis 

While the tumor grade is of critical prognostic value, also other criteria like the age 

of the patient, tumor location, proliferation indices, genetic alterations and many 

more are to be considered in the prediction of survival time [93]. In spite of 

substantial research for new therapeutic approaches the mean survival of a patient 

with malignant glioma could not be appreciably improved [93]. 

On average, patients who suffer from a WHO grade II glioma survive 5 to 7 years 

after diagnosis, while the ones who suffer from grade III gliomas have an average 

survival of 2-3 years. In contrast, patients with GBM (WHO grad IV) succumb to 

the disease in large part within 1 year after diagnosis [93, 116]. One of the rare 

improvements in the prognosis of GBM recently could be achieved by the 

concomitant and adjuvant application of TMZ plus RT, resulting in a prolongation 

of the survival period from 12 to 15 months [134]. So-called long-term survivors, 

who outlive the disease for more than 5 years, are very rarely seen (3-5% of 

glioma patients) [80]. Exact reasons for such a long-term survival are still unclear, 

although several clinical factors seem to be beneficial, in particular young age at 

the point of diagnosis [80]. 

2.6 Assessment of Response and Progression and its Limitations 

Despite aggressive therapy, in most cases glioblastoma eventually develop a 

progressive or recurrent course of disease. 



Introduction 

15 

The individual decision making for each patient requires an assessment of both, 

response to treatment, as well as following diagnosis of a progressive disease.  

Since 1990 the MacDonald-Criteria, which rely upon measurement of areas of 

contrast enhancement, have been the standard approach for patients with 

malignant glial tumors (Table I) [95]. Even if proved to be helpful these criteria are 

subject to a number of significant limitations, mainly due to innovative biologically 

active systemic therapy, as well as to substantial improvement in MRI technology 

[23]. The Response Assessment in Neuro-Oncology (RANO) Working Group, 

which is an international, multidisciplinary group, pointed out these limitations in 

2010 and also proposed new approaches to evaluate the behavior of malignant 

gliomas [156, 158]. 

2.6.1 MacDonald Criteria 

2.6.1.1 Response Criteria 

The MacDonald Criteria for response assessment in high-malignant gliomas were 

primarily based on contrast-enhanced CT and the two-dimensional WHO oncology 

response criteria using enhancing tumor area (the product of the maximal cross-

sectional enhancing diameters) as the primary tumor measure [101]. In 2000 the 

Response Evaluation Criteria in Solid Tumors (RECIST) first introduced the use of 

one-dimensional measurements [138] and were recently revised (RECIST version 

1.1 – [47]). Subsequently, different studies have compared the RECIST criteria 

with two-dimensional measurements, three dimensional measurements and 

volumetric measurements in malignant gliomas [53, 124, 152]. These studies 

show that there is a good conformance among the different methods in 

determining response in adult patients with both, newly diagnosed and recurrent 

high-grade gliomas [53, 124], as well as in pediatric brain tumors [152]. Still there 

have been no studies prospectively validating the RECIST criteria in gliomas. 

Therefore MacDonald Criteria are still widely used as a reference for assessing 

tumor response in clinical trials, but also for the reason that they enable the results 

of ongoing studies to be easily compared with historical data. 
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The MacDonald Criteria define the following four possible outcomes: 

Table I. Current Response Criteria for Malignant Gliomas 

(Macdonald Criteria [95]) 

Response description Response criteria 

Complete response (CR) Requires the following:  

Disappearance of all enhancing measurable and 
nonmeasurable tumor on consecutive CT or MRI scans 
sustained for at least 1 month, no new lesions, no 
corticosteroids, and neurologically stable or improved  

Partial response (PR) Requires all of the following: 

 ≥ 50% reduction in cross-sectional area of all measurable 
enhancing lesions on consecutive CT or MRI scans 
sustained for at least 1 month, no new lesions, 
corticosteroid stable or reduced, and neurologically stable 
or improved 

Progressive disease (PD) Defined by any of the following:  

 ≥ 25% increase in cross-sectional area of enhancing 
lesions or any new lesion on CT or MRI scans, or 
neurologically worsening and steroids stable or increased 

Stable disease (SD) Requires all of the following:  

All other scenarios 

 

2.6.1.2 Limitations of the MacDonald Criteria 

Besides making new approaches in the evaluation of tumor response and 

progression the RANO Working Group pointed out the following limitations of 

MacDonald Criteria [158]: 

 Pseudoprogression: Pseudoprogression is defined by increased contrast 

enhancement at the first reimaging after RT, which then resolves under 

continued therapy. Approximately one-fourth of patients with glioblastoma 

have evidence of pseudoprogression after receiving the standard treatment 

for malignant gliomas which consists of initial surgery followed by radiation 

therapy and concurrent and adjuvant chemotherapy (see 5.2.2 Imaging 
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Phenomena: Pseudoprogression, Radiation Necrosis and 

Pseudoresponse). 

 Surgical changes: Like Cairncross et al. already showed in 1985, a 

postoperative contrast enhancement in the wall of the surgical cavity in the 

first 48 to 72 hours is significantly common [29]. While neuroradiology is 

aiming to find a way to distinguish these areas from residual tumor, that 

failed to be resected, this confusion can easily be avoided by a baseline 

MRI obtained within 24 to 48 hours after surgery. 

 Pseudoresponse under antiangiogenetic treatment: Recent approaches in 

glioblastoma therapy target the Vascular Endothelia Growth Factor (VEGF) 

pathway, which plays a critical role in the tumor genesis. First results 

showed an immediate decrease of contrast enhancement. Since the effect 

on overall survival is limited the conclusion of a tumor regression is 

doubtful. This effect, known as pseudoregression or pseudoresponse, 

proves another limitation of the MacDonald Criteria, namely that they do not 

take non-enhancing tumors into account (see 5.2.2 Imaging Phenomena: 

Pseudoprogression, Radiation Necrosis and Pseudoresponse). 

 Other issues: Furthermore, irregularly shaped tumors, multiple tumors and 

enhancing lesions in cyst walls following surgery are not considered 

adequately.  

Like Warmuth-Metz recently pointed out, the MacDonald Criteria also suffer from 

measuring inaccuracy, since they only rely on contrast enhancing tissue [151]. The 

enhancement of contrast can easily be influenced by changes in the amount of 

contrast applied, the contrast’s kinetics or the MRI-sequence’s sensitivity for the 

contrast agent. Also technical parameters like changes in sequences and the 

magnet-field’s size can worsen that inaccuracy. 

2.6.2 The RANO Criteria 

The main complementing features contemplated by the RANO Working Group 

include the following criteria for progressive disease [158]: 
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 Contrast enhancement outside the radiation therapy field or histologic 

evidence of viable tumor on biopsy sample during the first twelve weeks. 

The histologic analysis serves to distinguish pseudoprogression from real 

progression. Assuming progression only by clinical signs is not adequate 

during this initial period. 

 New contrast enhancement outside the radiation field or an increase in size 

of the original lesion after the first 12 weeks. For patients taking an 

antianiogenetic drug such as bevacizumab the increase of nonenhancing 

lesion, as visualized in T2/T2 Flair image sequences, should be taken into 

consideration. 

Concerning complete response, partial response, and stable disease the 

definitions of RANO Criteria confirm those from MacDonald. 

Even if the RANO criteria take innovative treatment options and recent alterations 

in neuroimaging into account, they still lack in accuracy [24]: 

 It is the first time that changes in T2-weighted sequences are taken into 

consideration, but there is no specific quantitative measurement given to 

evaluate these changes. This might be due to MR-parameters, as well as 

measurement technology, but to define progress as a “significant increase” 

of the lesion in T2/T2 Flair leaves much room for interpretation. However, 

up to date there are no reliable technologies existing to perform volumetric 

measurements.  

2.6.3 Conclusion 

As seen, despite extensive opportunities to make a relatively accurate diagnosis 

and even if the criteria for assessing response to treatment and progressive 

disease recently have been revised, this process obviously has much potential for 

improvements. To avoid that efficacious therapy will be discontinued prematurely, 

or that an ineffective treatment will be continued without benefit, it is very important 

to have an accurate and standardized way of assessing the response and 
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progress in patients suffering from GBM. From the clinical perspective, a major 

issue is how to differentiate between pseudo-early progression and real early 

progression immediately after RT.  

 

2.7 Objectives 

The aim of our study is to establish a new method of gaining tumor-specific 

information by analyzing MRI scans using DoctorEye - an open-source software 

tool. Our analysis will not only include the segmentation and volumetric 

measurement of tumor-suspicious and enhancing areas, as performed already, 

but also evaluate the distribution of signal intensities in forms of histograms. 

Additionally we will try to subdivide the pathologic findings into active tumor, 

necrosis and edema, to achieve more accurate results and to evaluate their 

development separately and in comparison. 

Primary we want to find out, if our method reveals an average pattern of SI-

distribution in newly diagnosed GBM. If so, we will proceed to review the patients 

follow up and to evaluate the SI changes during treatment, all with the goal of 

finding typical similarities, which can describe the tumors characteristics and might 

help to predict its development. 

Additionally to the aim to generally improve the assessment of response to 

treatment and progressive disease, our study will consequently lead to the 

approach of differentiating real progression from pseudoprogression and radiation 

necrosis, real response from pseudoresponse and postoperative contrast 

enhancement from residual tumor. In addition our method might facilitate the 

essential differential-diagnosis of GBM to other intracranial lesions and the 

detection and measurement of multiple contrast-enhancing and irregular-shaped 

lesions. 
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3 Materials and Methods 

This research was done within the ContraCancrum- (Clinically Oriented 

Translational Cancer Multilevel Modelling; project reference number: 223979; 

http://contracancrum.eu/ ) and TUMOR-project(Transatlantic Tumour Model 

Repositories: project reference number: 247754; http://tumor-project.eu/ ), which 

were funded under the 7th Framework Program of the European Commission.  

Both projects and the related researches are approved by the Ethical Committee 

of the ‘Ärztekammer des Saarlandes’ at the 20th of July 2010 (code number: 

104/10; Appendix 9.4 Ethical Approval, Figure 38).  

3.1 Image Acquisition 

33 patients with assured or suspected glioblastoma were included into the study 

group. To maintain absolute confidentiality all 33 patients were anonymized as G0, 

G1, G2, (…), up to G32. Except one, all of them were diagnosed within the years 

2004 and 2008. The intracranial lesion from 4 of the 33 study subjects 

histologically turned out not to be a WHO Grade 4 glioma, whereas the intracranial 

lesion from 1 of the 33 study subjects could not be securely diagnosed (Table II). 

The corresponding MRI-files were provided by Prof. Reith, Head of the 

Department of Neuroradiology, at the University of Saarland, Homburg, Germany. 

In total this collection contained more than 22.000 single DICOM-images (Figure 

1), including T1, T1 Gd-MRI and T2 sequences, which entirely have been 

examined and rendered. 

Commonly used inclusion criteria as gender and age did not play a crucial role, 

since the statistical analysis of the pathologic MRI-scans was the study’s key 

aspect (Figure 2).  

Finally, only scans created at the time of diagnosis, after surgery (if performed) 

and after RT and chemotherapy were taken into account, to provide a 
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standardized overview of the patient’s individual course of disease and an easy 

comparability between the study subjects. 

Due to the individuality of the different cases and the aggressiveness of the 

disease, a complete follow up (MRI-scans at diagnosis, after surgery, after radio- 

and chemotherapy) was available in 9 of the 33 cases. 

 

Figure 1: DICOM Data-Set 

DICOM data-set of whole study group (33 patients), with 22.014 files and a total size of 6,71 
Gigabytes. 
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Table II. Study Group – Date of Diagnosis, Histology and WHO grading 

 

PseudonymDate of diagnosis Histology WHO grading 

G-0 11.11.2005 Astrocytoma 2

G-1 22.01.2008 Anaplastic Carcinoma  -

G-2 15.02.2008 Glioblastoma 4

G-3 12.09.2007 Glioblastoma 4

G-4 09.01.2008 Glioblastoma 4

G-5 29.06.2007 Glioblastoma 4

G-6 27.10.2006 Glioblastoma 4

G-7 11.02.2008 Glioblastoma 4

G-8 15.02.2008 Bronchial Cancer  -

G-9 18.02.2008 Glioblastoma 4

G-10 19.02.2008 Glioblastoma 4

G-11 25.02.2008 Glioblastoma 4

G-12 26.02.2008 Glioblastoma 4

G-13 05.03.2008 Glioblastoma 4

G-14 08.04.2008 Glioblastoma 4

G-15 14.04.2008 Astrocytoma 3

G-16 22.04.2008 Glioblastoma 4

G-17 15.05.2008 Glioblastoma 4

G-18 20.06.2008 Glioblastoma 4

G-19 23.07.2008 Glioblastoma 4

G-20 30.07.2008 Glioblastoma 4

G-21 04.08.2008 Glioblastoma 4

G-22 19.08.2008 Glioblastoma 4

G-23 26.03.2008 Glioblastoma 4

G-24 04.09.2008 Glioblastoma 4

G-25 19.09.2008 Glioblastoma 4

G-26 26.11.1998 Glioblastoma 4

G-27 24.08.2004 Glioblastoma 4

G-28 22.03.2006  -  -

G-29 02.05.2006 Glioblastoma 4

G-30 05.05.2006 Glioblastoma 4

G-31 25.04.2005 Glioblastoma 4

G-32 09.03.2006 Glioblastoma 4
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Figure 2: Age Distribution of the Study Group 

 

3.2 Investigation Process and Equipment Technology 

3.2.1 Principles of the MRI 

The magnetic resonance imaging is a medical imaging technique, which is based 

on the physical principles of the nuclear magnetic resonance (NMR). Bloch and 

Purcell in 1946 coincidently developed a method to detect this nuclear resonance 

[13]. In 2003 Paul Lauterbur and Sir Peter Mansfield even were awarded with the 

Nobel Prize in Physiology or Medicine for their discoveries concerning the field of 

MRI [13]. 

An MRI scanner is a device that is able to generate a strong static magnetic field. 

Atomic nuclei have an intrinsic angular momentum (nuclear spin), which describes 

the direction and strength of a magnetic field surrounding the nucleus and is 

substance-specific [38]. The most important element for NMR investigations is the 
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nucleus of hydrogen, the proton, which is the most basic and the most frequent 

atomic nucleus in the human body [13].  

While the patient lies within the scanner, the imaging magnet produces a strong, 

constant external magnetic field. Under the influence of this magnetic field a 

fractional part of the nuclei get directed into the direction of the static field, thus 

generating a macroscopic, measurable magnetic moment [38]. The induced 

motion of the spin around the magnetic field is called precession and is 

proportional to the strength of the applied field. The rate at which the spin 

precesses is known as the Larmor frequency [13].  

3.2.2 Image Generation 

To generate an image, the protons have to be excited. This excitation is achieved 

by the application of an additional, momentary, high-frequency alternating field. 

Immediately after their excitation, the nuclei return to their ground state, a 

measurable process that is called relaxation, which differs depending on the 

chemical compound, and the molecular environment of the hydrogen atoms, 

whereby different signal intensities are generated in the resulting image [117]. 

The relaxation is composed of two different processes, the longitudinal and 

transversal relaxations, which are described through tissue-specific time 

constants, T1 for the longitudinal relaxation, lasting 300 – 2000 msec, and T2 for 

the transversal relaxation, lasting 30 – 150 msec. Since the impulse that is emitted 

during the longitudinal relaxation is very little, protons are excited repeatedly by a 

so called pulse-sequence. The repetition time (TR) is the amount of time between 

two single pulses, whereas the elapsed time from the pulse to the peak of the 

echo is called the echo time (TE) [117]. 

Different body tissues generate different signal intensities in MR images, 

depending on the specific tissue properties (T1, T1, and proton density), sequence 

parameters (TR and TE) and the type of sequence. Thus, a contrast between 

different tissues can be generated [117].  
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3.2.3 MRI Sequences 

The MRI includes a broad range of imaging sequences, however, our 

investigations are limited to only a part of these. In our study we examined the two 

classical sequences T1 and T2, as well as their variations, T1 Gd-MRI and T2 

Flair. Other sequences that are comprised within the spectrum of MRI, although 

not part of our study, include susceptibility-weighted imaging (SWI), diffusion- and 

perfusion-weighted imaging (DWI and PWI), and MR angiography. 

The T1-and T2-weighted images are the classical sequences for the anatomical 

representation of the brain and the CSF. The T1-weighted imaging refers to the 

longitudinal relaxation and describes the process of the regeneration of the 

longitudinal magnetization, dissipating measurable energy (spin-lattice relaxation). 

It is characterized by a short TE and TR. Typically tissues that have a short T1 

time constant and contain lipids are displayed hyperintense (e.g. white matter and 

fat), whereas tissues with a long T1 time constant appear hypointense (e.g. gray 

matter, muscle and CSF) [13, 117]. The T2-relaxation time, referring to the 

transversal relaxation, is determined by the rate of the reduction of the transverse 

magnetization, a process that does not emit energy, and can draw conclusions 

about the interaction of the spins between various nuclei (spin-spin relaxation). 

The T2-sequence has typically longer TE and TR and displays tissues with a long 

T2 time constant hyperintense (e.g. water), whereas tissues with a short T2 time 

constant appear hypointense on T2-weighted images (e.g. muscle) [13, 117].  

Usually, a clinical MRI examination includes T1-and T2-weighted image series in 

at least two spatial planes. In the gadolinium contrast-based T1-weighted 

sequence paramagnetic contrast agents (chelates of gadolinium) are used and 

administered intravenously. On such a T1-weighted image the accumulation of the 

contrast-agent is represented by increased SI, and is usually equivalent to an 

increased vascularity [38]. In the T2 Flair sequence the very high signals from the 

CSF in T2-weighted images are suppressed, which is of particular benefit if one 

wants to define a lesion that adjoins to the CSF [13]. 
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By the variation of pulse sequences the MRI is able to emphasize on differences in 

T1, T2 or proton density. Based on the choice of the imaging sequence it is 

possible to detect small differences in the microenvironment of different tissues, 

being flexible in determining the tissue contrast [38]. 

3.2.4 MRI Scanner 

In all patients cranial MR images were acquired by the use of a 1.5 Tesla whole-

body MRI scanner produced by Siemens (Siemens 1.5T MAGNETOM Vision; 

Figure 3). 

 

Figure 3: Siemens 1.5T MAGNETOM Vision MRI Scanner [8] 

3.3 Image-Analysis 

All the images have been preprocessed and analyzed at the Department of 

Pediatric Oncology and Hematology from the University of the Saarland between 

the years 2010 and 2012. The image-rendering was performed with the DoctorEye 

software, a multifunctional open platform for fast annotation and visualization of 
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tumors in medical images [128], while the statistical analysis was done using 

Microsoft Office Excel 2007. 

3.3.1 Background on DoctorEye (4.7) 

DoctorEye is a flexible and easy-to-use annotation platform with a Graphical User 

Interface (GUI) for quick and precise identification and delineation of tumors in 

medical images, under the GNU General Public License [128]. Being an open-

source software tool, DoctorEye easily can be downloaded and tested 

(http://biomodeling.ics.forth.gr; Figure 4). As a clinically driven, interactive and 

multifunctional platform, DoctorEye is frequently revised, to ensure that it can be 

efficiently and intuitively used to annotate large numbers of tomographic datasets 

in the clinical setting. Our close collaboration during the research with the 

developers from the biomodeling group of the BioMedical Informatics [BMI] 

laboratory of FORTH1 in designing the platform helped to optimize the software’s 

user-friendliness and its practical applicability.  

                                            

1 Foundation for Research and Technology – Hellas, Crete, Greece; 
http://www.forth.gr/ 
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Figure 4: DoctorEye Webpage  

Publicly accessible webpage of the biomodeling group, which is part of the BioMedical Informations 
[BMI] laboratory, of FORTH, offering free download of the DoctorEye software and associated files 
- http://biomodeling.ics.forth.gr. 

http://biomodeling.ics.forth.gr/
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3.3.2 Selected Segmentation Method – The Magic Wand Algorithm 

The “Magic Wand” Algorithm is a segmentation tool for semiautomatic rendering, 

which provides high accuracy. Its function is based on finding and selecting all the 

pixels neighboring a predefined, user-selected initial point that are sufficiently 

similar in gray level. To determine how broad the range of summarized gray levels 

is, a tolerance value can also be set by the user (higher tolerance ends up in 

larger selection). If the desired preciseness cannot be achieved by only using the 

magic wand, DoctorEye offers two additional tools for manual refinement, the 

“Pencil” and the “Eraser” (Figure 5). 

 

Figure 5: DoctorEye Task Bar with the Annotation-Tools "Pencil, Eraser" and the "Magic 
Wand" 

3.3.3 Preprocessing 

Segmentations were performed of sequences T1, T1 Gd-MRI, T2 and T2 Flair. To 

specify our results suspected active tumor tissue, necrosis, edema and the 

cerebrospinal fluid (CSF) were separately analyzed in all mentioned sequences. 

To ensure the highest accuracy, all the segmentations were performed by 

semiautomatic rendering of the areas of interest using the so-called “Magic Wand 

Algorithm”. Figure 6 shows an exemplary graphical user interface of the 

DoctorEye 4.7 software, while Figure 7 illustrates the comparison between the 

raw and the processed version of an MR-Image. Additionally, DoctorEye offers the 

option to create a three-dimensional visualization of the segmented tumor 

including all annotations.  

Signal intensities of the CSF were used as reference values for standardization of 

signal intensities within the tumor. After rendering tumor volumes were calculated. 

To guarantee the highest grade of correctness supervision was performed by Prof. 
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Dr. Reith, an expert in the field of neuroradiology and Head of the Department of 

Neuroradiology at the University of Saarland, Homburg, Germany.  

 

 

Figure 6: Graphical User Interface (GUI) of DoctorEye 4.7. 

This snapshot of the software’s main window shows an example of a glioblastoma at the time of 
diagnosis. The contrast enhanced tumor is shown in red, cystic/necrotic area in dark blue/purple 
and edematous area in light blue. Cerebrospinal fluid is marked in yellow (only part of the left and 
right side ventricle). 



Materials and Methods 

31 

 

Figure 7: Comparison between raw and processed MR-Image 

For illustrative purpose, the comparison between a raw (left side) and a processed MR-Image (right 
side) from Patient G-13 at diagnosis is shown (sequence = T1 with gadolinium contrast). The 
contrast enhanced tumor is shown in red, the cystic/necrotic area in dark blue/purple and the 
edematous area in light blue. Cerebrospinal fluid is marked in yellow (only parts of the left and right 
side ventricle). 
 

3.3.4 Measurements and Analysis 

DoctorEye provides the calculation of histograms of the rendered areas and the 

corresponding mean and median values (Figure 8). Histograms were created in 

every patient, based on the four different areas of interest (active tumor, necrosis, 

edema and CSF), in all four investigated MRI-sequences (T1 without contrast, T1 

Gd-MRI, T2 and T2 Flair). The histograms’ data were uploaded to Microsoft Office 

Excel 2007, to perform further statistics, including the normalization of the data 

(Figure 9; 3.3.5 Statistical Analysis). A comparisons of the histograms’ graphical 

shape and the signal intensities’ mean and median value of different tumor areas 

were performed for each sequence, at the time of diagnosis and during follow-up, 

in individual patients and inter-individually. In 9 of the 33 patients a complete 

follow-up could be analyzed, referring to DICOM data-sets at diagnosis, after 

surgery and after radio- and chemotherapy. Up to now, a quantitative analysis of 

signal intensities is not possible, due to the variety of MR machines and the lack of 

standardization in producing MR-images.  
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Figure 8: Histogram calculated by DoctorEye 

This diagram shows the graphical representation of a signal-intensity histogram, automatically 
provided by the DoctorEye software. The histogram corresponds to the rendered MR-Image in 
Figure 6 and Figure 7. 
 
 
 

 

Figure 9: Histogram Data Transfer into Microsoft Office Excel 2007 
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3.3.5 Statistical Analysis 

The definition of possible outcomes in our study for the evaluation of our results 

from active tumor, necrosis and edema and their volume-development was based 

on the RECIST criteria, which were published in 2000 [138]. The definition of 

response requires a decrease of tumor size of more than 50 %, whereas 

progressive disease equals an increase of more than 25 %. Stable disease is a 

status in which neither the criteria for response nor for progressive disease are 

complied. The two exceptionally conditions pseudoprogression and 

pseudoresponse have been described inter alia in the RANO criteria from 2010 

[158]. Since in our patient collective no antiangiogenetic drugs were administered, 

we termed the status in which the development of the whole lesion indicates 

response to treatment, while at the same time the remaining results are 

contradictory, “questionable response” instead of pseudoresponse. 

The statistical analysis of the histograms, provided by DoctorEye, based on our 

segmentations, followed the subsequent steps and was performed in every single 

histogram created: 

1. Transfers of the data into a Microsoft Office Excel 2007 spreadsheet, 

creating for each MRI sequence four excel columns corresponding to the 

different segmentations, namely “active tumor, necrosis, edema” and 

“CSF”. 

2. Summarization of the histograms of “active tumor, necrosis” and “edema” to 

an additional excel histogram called “whole lesion”. 

3. Calculation of the total pixel count for each histogram. 

4. Calculation of the annotation’s volume for each histogram by multiplying the 

total pixel count by the volume of a single pixel corresponding to the 

specific image set. 

5. Calculation of SI-peak for each histogram. 

6. Calculation of mean SI: 

Sum of all SI-values multiplied with corresponding pixel-count, divided by 

sum of all pixels in that specific histogram. 
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7.  Standardization of mean SI: 

Mean SI of the three different tumor-qualities (active tumor, necrosis, and 

edema) divided by mean SI of the CSF. 

Thereafter the histograms of the whole study group were summarized by 

calculating an average histogram for each of the four areas of interest (active 

tumor, necrosis, edema and CSF), in all MRI-sequences investigated. The 

resulting mean histograms underwent the same steps mentioned before in 1.-7., 

calculating an average- total pixel count, tumor-volume, SI-peak, mean SI and 

standardized mean SI. An exemplary screenshot of such a calculation 

spreadsheet is given in Figure 10. 
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Figure 10: Histogram Analysis in Microsoft Office Word 2007 
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4 Results 

4.1 Evaluation of DoctorEye 

DoctorEye presented as an user-friendly segmentation software which allowed us 

to perform fast annotations of different data sets at the same time, with a high level 

of accuracy.  

During the two year research we stood in a lively exchange with the developers of 

FORTH. Our suggestions for improvement had a great influence on the software 

updates, particularly in optimizing the practical handling and its applicability in the 

clinical daily routine. 

4.1.1 Processing Time 

DoctorEye protrudes with its fast reaction and short processing time, which 

permits a smooth and steady workflow. For the following mentioned procedure, we 

used a laptop with “Windows 7 Professional”, an Intel® Core™2 Duo processor at 

2,20 GHz, and 4 GB of memory (RAM). The time that is required for an 

unpracticed user to completely process a directory of DICOM files, using mainly 

the “Magic Wand” algorithm, and to export the acquired histograms is listed below: 

 For getting the program started and ready-to-use: less than 15 seconds. 

 For uploading and opening one set of Images, for example T1 Gd-MRI, 

containing 19 slices of already annotated images and a file size of 10,2 MB 

(Patient = G-13; at diagnosis): less than 10 seconds. 

 For the investigation, differentiation between active tumor, necrosis, edema 

and CSF and their semiautomatic rendering in the given example (G-13 at 

diagnosis), whose lesion is rather voluminous and extends over 9 of the 19 

slices: 16:54 minutes. 

 For the processing of series of average complexity, in comparable size to 

the above mentioned: approximately 15 minutes. 

 For assembling the corresponding histograms: 3 seconds 
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 For saving the processed images, respectively the completed annotations: 

2-3 seconds. 

 For exporting the histogram-data in Excel file format: 30 seconds.  

Naturally an experienced person could distinguish and annotate the lesions in a 

much faster way. The same applies if the semiautomatic segmentation method is 

replaced by a less time-consuming automatic or semi-automatic method. 

To facilitate the usage of the software, all important features have their own 

keyboard short-cut. 

4.1.2 Accuracy 

If very high accuracy is required the semiautomatic segmentation method “magic 

wand” is the method of choice, even if it goes at the expense of the processing 

time. 

Beside technical properties, the user’s knowledge in distinguishing between 

different cerebral tissues is of great importance in that specific context. In our case 

training, control and confirmation was performed by Prof. Reith, Head of the 

Department of Neuroradiology, at the University of Saarland, Homburg, Germany. 

Even though the supervision kept on regularly during the whole research period 

the results already have been promising after a few hours of practice. 

As Figure 11 and 12 impressively illustrate, DoctorEye enables the user to 

perform most precise delineation between different areas of interest. The 

combination of the tools “Magic Wand, Pencil and Eraser” makes it possible to 

correct small details while still being effective in terms of time management. In 

every session the user is able to set a personal balance between accuracy and 

processing time, depending on current priorities in the clinical setting. If certain 

areas are difficult to demarcate, due to their structural complexity, it is possible to 

change from the “Stretch” mode, which makes the current image fill as much of the 

screen as possible, to the “Zoom In” mode. By using this feature, it is possible to 

magnify the selected area of the image to different degrees and thereby to 
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facilitate the differentiation and segmentation of the investigated structures. 

Holding the shift-key allows the user to include areas to the currently selected 

annotation, which are not in direct contact to the initial point or included in the 

preset tolerance value. This is very helpful when one wants to partially enlarge the 

marked area without increasing the tolerance level. Furthermore, the “Undo-

Function” can be used if the last added annotation not conforms to what was the 

desired area, while it is not wished to delete all previously selected parts of this 

annotation. This makes it possible to retry the selection with an unlimited number 

of attempts, until the result is satisfying. 

 

Figure 11: Illustration of DoctorEye’s high Potential of precise Delineation 

Left side: raw images, right side: processed images. 
Upper row: image overview, lower row: amplified image 
For easier delineation and to achieve more precise segmentations of the areas of interest 
DoctorEye allows the user to “zoom in” on the image using the “Magic Wand” algorithm for 
segmentation and the “Pencil and Eraser” tool for manual refinement. 
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Figure 12: Illustration of the Software’s high grade Accuracy in an amplified Image 

 

4.1.3 3D-Visualization 

Additionally to segmentation- and histogram-preparation, DoctorEye offers the 

option to create a three-dimensional visualization of the segmented tumor and all 

other findings. Figure 13 demonstrates this feature, which is given in an 

interactive window that provides the user with a choice of different environment 

settings and the possibility to change parameters concerning the viewing angle, 

the color of the annotations and many more, for the best spatial representation of 

the annotations. 

The illustrated example is the result of the segmentation of 19 cranial MR images 

(T1 with gadolinium contrast enhancement sequence), belonging to the dataset of 

patient G-13 at the time of diagnosis. 
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Figure 13: 3D-Vizualization created by DoctorEye 

Upper image: Annotated areas surrounded by all of the 19 MRI slides. 
Middle image: Annotated areas with active tumor shown in red, necrosis shown in dark blue, 
edema shown in light blue and cerebrospinal fluid shown in yellow. 
Lower image: Isolated active tumor shown in red. 
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4.2 Evaluation of the Histograms 

It is well known that different MR sequences show different shapes of a GBM in a 

single patient at the same time, as depicted in Figure 14, which makes correct 

segmentations of tumors nearly impossible. It can be shown that by measuring 

volumes and segmenting the tumor in different sequences, active tumor-tissue, 

necrotic areas and edema could be distinguished the best by using the histograms 

of the signal intensities. These are different within the tumor and vary distinctly in 

all sequences. Using combinations of histograms from different sequences the 

tumor can be described in a much better way than by calculating solely the tumor 

volume.  

 

Figure 14: Different Sequences of MR Images in a single Patient with Glioblastoma at the 
Time of Diagnosis 

This image is taken from patient G-13 at the time of diagnosis and depicts how the pictorial 
representation of intracranial lesions may differ depending on the MR sequence examined. 
 

4.2.1 At Diagnosis 

In Figure 15 the rendered images of an exemplary patient (G-13), created at the 

time of diagnosis, are given along with the corresponding histograms. It already 

emphasizes that the areas of the different tumorous tissues vary strongly in their 

SI distribution. The same applies for Table III, which demonstrates the 

mathematical analysis of the segmentation-based histograms. In Figure 16 and 

Table IV the mean histograms calculated from all patients of the study group 

(except the 4 non-glioblastomas) and their mathematical analysis are depicted. 

Also in this summary it is obvious that the SI-distribution of the different qualities 
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from the tumorous lesion act different, depending on the MR-sequence 

investigated. Also the SI-peak, the mean SI and the standardized SI of the Active-

Tumor-histogram vary strongly from the necrotic and edematous parts (Table IV) 

at the time of diagnosis. 
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Figure 15: Exemplary annotated DICOM Files of all Sequences from Patient G-13 at the Time 
of Diagnosis with corresponding Histograms of the whole Set. 
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Table III: Exemplary Excel spreadsheet demonstrating the mathematical 
Analysis of Signalintensity Histograms 

This spreadsheet exemplary shows the mathematical analysis of the histograms acquired from the 
annotations rendered in the MRI set of Patient G-13 at the time of diagnosis, presenting the results 
of the T1 with gadolinium contrast enhancement sequence.  

 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,84 4,84 4,84 4,84 4,84

Total Pixel-Count 0 0 57620 57620 11549

Total Volume (mm³) 0 0 279.062 279.062 55.933

Maximum Pixel-Count 0 0 5009 5009 413

Signalintensity-Peak  -  - 85 85 46

Mean Signalintesity  -  - 85,2 85,2 62,7

Standardization to CSF  -  - 1,36 1,36 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,84 4,84 4,84 4,84 4,84

Total Pixel-Count 16310 15956 22553 54819 7517

Total Volume (mm³) 78.992 77.277 109.227 265.496 36.406

Maximum Pixel-Count 420 1299 1531 2830 500

Signalintensity-Peak 93 63 63 63 42

Mean Signalintesity 102,6 63,8 65,4 76,0 49,3

Standardization to CSF 2,08 1,29 1,33 1,54 1,00

Tumor Necrosis Edema whole lesion CSF

Volume of 1 Pixel (mm³) 4,84 4,84 4,84 4,84 4,84

Total Pixel-Count 27286 0 52724 80010 15301

Total Volume (mm³) 131.986 0 255.032 387.018 74.013

Maximum Pixel-Count 470 0 1176 1416 265

Signalintensity-Peak 185  - 152 156 188

Mean Signalintesity 191,2  - 148,2 162,9 164,2

Standardization to CSF 1,16  - 0,90 0,99 1,00

Tumor Necrosis Edema whole lesion CSF

Volume of 1 Pixel (mm³) 4,44 4,44 4,44 4,44 4,44

Total Pixel-Count 13637 0 72557 86194 15864

Total Volume (mm³) 60.585 0 322.346 382.931 70.478

Maximum Pixel-Count 691 0 2114 2330 416

Signalintensity-Peak 142  - 133 140 12

Mean Signalintesity 155,1  - 139,1 141,7 37,9

Standardization to CSF 4,09  - 3,67 3,74 1,00

T2 

Flair

T1   

+  

Gd

T2

T1
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Figure 16: Mean Histogram calculated from all Patients at the Time of Diagnosis 
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Table IV: Results from mathematical Analysis of the mean Histograms at the 
Time of Diagnosis 

 

 

 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,29 4,29 4,29 4,29 4,29

Total Pixel-Count 1696 4221 35651 41567 12701

Total Volume (mm³) 7.273 18.107 152.926 178.306 54.482

Maximum Pixel-Count 174 198 1263 1385 600

Signalintensity-Peak 85 33 79 79 53

Mean Signalintesity 82,0 51,7 72,5 70,8 52,1

Standardization to CSF 1,57 0,99 1,39 1,36 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 2,54 2,54 2,54 2,54 2,54

Total Pixel-Count 13260 9742 31697 54700 12042

Total Volume (mm³) 33.617 24.699 80.358 138.674 30.529

Maximum Pixel-Count 221 486 1372 1837 630

Signalintensity-Peak 88 68 69 69 42

Mean Signalintesity 116,2 67,6 68,6 80,0 51,4

Standardization to CSF 2,26 1,32 1,34 1,56 1,00

Tumor Necrosis Edema whole lesion CSF

Volume of 1 Pixel (mm³) 4,12 4,12 4,12 4,12 4,12

Total Pixel-Count 9863 1393 25917 37173 15363

Total Volume (mm³) 40.623 5.737 106.744 153.104 63.277

Maximum Pixel-Count 150 62 418 504 815

Signalintensity-Peak 255 102 153 153 255

Mean Signalintesity 163,1 102,0 148,8 150,9 174,5

Standardization to CSF 0,93 0,58 0,85 0,86 1,00

Tumor Necrosis Edema whole lesion CSF

Volume of 1 Pixel (mm³) 4,43 4,43 4,43 4,43 4,43

Total Pixel-Count 8783 1561 45886 56230 16388

Total Volume (mm³) 38.878 6.909 203.104 248.891 72.537

Maximum Pixel-Count 256 45 923 1148 438

Signalintensity-Peak 144 126 140 140 17

Mean Signalintesity 141,2 104,6 142,6 141,3 34,4

Standardization to CSF 4,10 3,04 4,14 4,10 1,00

T1

T1   

+  

Gd

T2

T2 

Flair
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4.2.2 Follow-up 

In the first part of this section (4.2.2.1 Single Patient) the follow-up of an exemplary 

patient in all four investigated MR sequences is illustrated. Besides different 

exemplary MR-Images, the corresponding histograms of the whole set from each 

time point (at diagnosis, after surgery and after radiation- and chemotherapy) are 

depicted in Figure 17, showing the results from T1-, Figure 18 from T1 Gd-MRI-, 

Figure 19 from T2- and Figure 20 from T2 Flair-sequence. According to each 

sequence and histogram the mathematical analysis is presented in Tables V-VIII. 

The second part (4.2.2.2 Summary) follows the same structure as the first, only, 

instead of presenting a single patient’s results, it depicts the mean histograms 

calculated from all patients of the study group (except the 4 non-glioblastomas) 

and the corresponding mathematical analysis, shown in Figures 21-24 and 

Tables IX-XII. 

In comparison to the first and second part, the third one (4.2.2.3 Non-

Glioblastoma) pictures the follow-up of an intracranial tumorous lesion that was 

proved not to be a glioblastoma (patient G-8; brain metastasis deriving from 

bronchial cancer). To provide a clear structure only T1 Gd-MRI is given as an 

exemplary MR-Sequence as you can see in Figure 25. Table XIII displays the 

corresponding mathematical analysis. 
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4.2.2.1 Single Patient 

 

Figure 17: Follow-up of Patient G-25 in T1-Sequence 
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Table V: Results from mathematical Analysis of Patient G-25’s Histograms 
from T1-Sequence during Follow-up 

  

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 3,05 3,05 3,05 3,05 3,05

Total Pixel-Count 3038 4718 25530 33286 15272

Total Volume (mm³) 9.271 14.398 77.911 101.581 46.606

Maximum Pixel-Count 334 653 2371 2652 892

Signalintensity-Peak 85 76 86 86 47

Mean Signalintesity 84,8 74,2 83,5 82,3 54,2

Standardization to CSF 1,56 1,37 1,54 1,52 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,84 4,84 4,84 4,84 4,84

Total Pixel-Count 818 1130 3349 5297 9566

Total Volume (mm³) 3.962 5.473 16.220 25.654 46.329

Maximum Pixel-Count 43 68 444 444 449

Signalintensity-Peak 119 16 91 91 50

Mean Signalintesity 118,2 41,2 88,4 82,9 62,3

Standardization to CSF 1,90 0,66 1,42 1,33 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,04 4,04 4,04

Total Pixel-Count 1614 1614 24799

Total Volume (mm³) 6.516 6.516 100.125

Maximum Pixel-Count 168 168 2392

Signalintensity-Peak 60 60 50

Mean Signalintesity 63,4 63,4 55,4

Standardization to CSF 1,14 1,14 1,00

After 

Radiation- 

and Chemo-

therapy

At 

Diagnosis

After 

Surgery
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Figure 18: Follow-up of Patient G-25 in T1 with Gadolinium Enhancement Sequence 
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Table VI: Results from mathematical Analysis of Patient G-25’s Histograms 
from T1 with Gadolinium Enhancement Sequence during Follow-up 

 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 2,22 2,22 2,22 2,22 2,22

Total Pixel-Count 10633 5116 26901 42650 8433

Total Volume (mm³) 23.619 11.364 59.756 94.740 18.732

Maximum Pixel-Count 298 357 2507 2595 605

Signalintensity-Peak 101 56 74 74 39

Mean Signalintesity 118,3 63,5 73,0 83,1 48,5

Standardization to CSF 2,44 1,31 1,50 1,71 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,84 4,84 4,84 4,84 4,84

Total Pixel-Count 5472 1214 4144 10830 10021

Total Volume (mm³) 26.502 5.880 20.070 52.451 48.533

Maximum Pixel-Count 167 76 480 500 395

Signalintensity-Peak 115 16 85 85 47

Mean Signalintesity 127,3 42,9 84,8 101,6 63,8

Standardization to CSF 1,99 0,67 1,33 1,59 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,04 4,04 4,04 4,04

Total Pixel-Count 2943 986 3929 22102

Total Volume (mm³) 11.882 3.981 15.863 89.236

Maximum Pixel-Count 131 57 131 2105

Signalintensity-Peak 108 55 108 47

Mean Signalintesity 121,2 61,5 106,2 52,7

Standardization to CSF 2,30 1,17 2,02 1,00

After 

Radiation- 

and Chemo-

therapy

At 

Diagnosis

After 

Surgery
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Figure 19: Follow-up of Patient G-25 in T2 Sequence 
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Table VII: Results from mathematical Analysis of Patient G-25’s Histograms 
from T2-Sequence during Follow-up 

 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 3,37 3,37 3,37 3,37

Total Pixel-Count 6633 26458 33091 8121

Total Volume (mm³) 22.348 89.141 111.488 27.361

Maximum Pixel-Count 1809 483 1938 3465

Signalintensity-Peak 255 154 255 255

Mean Signalintesity 211,8 174,1 181,6 230,9

Standardization to CSF 0,92 0,75 0,79 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,84 4,84 4,84 4,84 4,84

Total Pixel-Count 7436 818 39150 47404 11482

Total Volume (mm³) 35.969 3.957 189.373 229.299 55.540

Maximum Pixel-Count 3756 42 870 3756 185

Signalintensity-Peak 255 10 127 255 200

Mean Signalintesity 224,8 39,9 133,7 146,4 181,9

Standardization to CSF 1,24 0,22 0,73 0,80 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,04 4,04 4,04 4,04 4,04

Total Pixel-Count 118 1388 27993 29499 33150

Total Volume (mm³) 477 5.612 113.175 119.264 134.024

Maximum Pixel-Count 7 65 1112 1114 1420

Signalintensity-Peak 134 208 98 98 172

Mean Signalintesity 113,2 192,6 107,9 111,9 162,8

Standardization to CSF 0,70 1,18 0,66 0,69 1,00

After 

Radiation- 

and Chemo-

therapy

At 

Diagnosis

After 

Surgery
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Figure 20: Follow-up of Patient G-25 in T2 Flair Sequence 
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Table VIII: Results from mathematical Analysis of Patient G-25’s Histograms 
from T2 Flair-Sequence during Follow-up 

 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 3,37 3,37 3,37 3,37

Total Pixel-Count 9443 76159 85602 21727

Total Volume (mm³) 31.815 256.590 288.405 73.201

Maximum Pixel-Count 482 2478 2496 628

Signalintensity-Peak 135 153 153 18

Mean Signalintesity 133,8 147,0 145,6 36,3

Standardization to CSF 3,68 4,05 4,01 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,84 4,84 4,84 4,84 4,84

Total Pixel-Count 5976 868 45696 52540 11664

Total Volume (mm³) 28.907 4.199 221.037 254.142 56.420

Maximum Pixel-Count 373 33 1172 1183 315

Signalintensity-Peak 167 13 130 130 17

Mean Signalintesity 163,4 40,0 139,6 140,6 36,3

Standardization to CSF 4,51 1,10 3,85 3,88 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,04 4,04 4,04 4,04 4,04

Total Pixel-Count 53 899 46496 47448 25902

Total Volume (mm³) 214 3.635 187.982 191.831 104.721

Maximum Pixel-Count 6 72 1500 1500 1812

Signalintensity-Peak 131 51 119 119 16

Mean Signalintesity 133,6 53,4 121,7 120,4 29,2

Standardization to CSF 4,58 1,83 4,17 4,13 1,00

After 

Radiation- 

and Chemo-

therapy

After 

Surgery

At 

Diagnosis
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4.2.2.2 Summary 

 

Figure 21: Mean Histogram from T1-Sequence during Follow-up 
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Table IX: Results from mathematical Analysis of the mean Histograms from 
T1-Sequence during Follow-up 

 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,29 4,29 4,29 4,29 4,29

Total Pixel-Count 1696 4221 35651 41567 12701

Total Volume (mm³) 7.273 18.107 152.926 178.306 54.482

Maximum Pixel-Count 174 198 1263 1385 600

Signalintensity-Peak 85 33 79 79 53

Mean Signalintesity 82,0 51,7 72,5 70,8 52,1

Standardization to CSF 1,57 0,99 1,39 1,36 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,06 4,06 4,06 4,06 4,06

Total Pixel-Count 7009 15735 5480 28224 14078

Total Volume (mm³) 28.443 63.850 22.236 114.529 57.126

Maximum Pixel-Count 147 850 149 850 724

Signalintensity-Peak 127 46 91 46 50

Mean Signalintesity 121,3 54,8 102,2 80,5 61,2

Standardization to CSF 1,98 0,89 1,67 1,32 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 3,95 3,95 3,95 3,95 3,95

Total Pixel-Count 3145 6599 9519 19263 12997

Total Volume (mm³) 12.434 26.090 37.638 76.162 51.389

Maximum Pixel-Count 159 355 291 381 651

Signalintensity-Peak 76 28 109 79 51

Mean Signalintesity 90,0 43,2 93,7 75,8 56,6

Standardization to CSF 1,59 0,76 1,66 1,34 1,00

After 

Radiation- 

and Chemo-

therapy

At 

Diagnosis

After 

Surgery
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Figure 22: Mean Histogram from T1 with Gadolinium Contrast Enhancement during Follow-
up 
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Table X: Results from mathematical Analysis of the mean Histograms from 
T1 with Gadolinium Contrast Enhancement during Follow-up 

 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 2,54 2,54 2,54 2,54 2,54

Total Pixel-Count 13260 9742 31697 54700 12042

Total Volume (mm³) 33.617 24.699 80.358 138.674 30.529

Maximum Pixel-Count 221 486 1372 1837 630

Signalintensity-Peak 88 68 69 69 42

Mean Signalintesity 116,2 67,6 68,6 80,0 51,4

Standardization to CSF 2,26 1,32 1,34 1,56 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 3,82 3,82 3,82 3,82 3,82

Total Pixel-Count 9702 13109 8455 31266 13778

Total Volume (mm³) 37.096 50.126 32.331 119.553 52.682

Maximum Pixel-Count 238 422 229 491 578

Signalintensity-Peak 127 47 85 47 46

Mean Signalintesity 121,4 63,1 74,4 84,2 53,0

Standardization to CSF 2,29 1,19 1,40 1,59 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 3,89 3,89 3,89 3,89 3,89

Total Pixel-Count 4417 6653 6869 17938 12416

Total Volume (mm³) 17.198 25.908 26.746 69.852 48.347

Maximum Pixel-Count 93 292 366 427 570

Signalintensity-Peak 119 24 97 97 48

Mean Signalintesity 125,5 46,3 89,7 82,4 54,5

Standardization to CSF 2,30 0,85 1,65 1,51 1,00

After 

Radiation- 

and Chemo-

therapy

At 

Diagnosis

After 

Surgery
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Figure 23: Mean Histogram from T2-Sequence during Follow-up 
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Table XI: Results from mathematical Analysis of the mean Histograms from 
T2-Sequence during Follow-up 

 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,12 4,12 4,12 4,12 4,12

Total Pixel-Count 9863 1393 25917 37173 15363

Total Volume (mm³) 40.623 5.737 106.744 153.104 63.277

Maximum Pixel-Count 150 62 418 504 815

Signalintensity-Peak 255 102 153 153 255

Mean Signalintesity 163,1 102,0 148,8 150,9 174,5

Standardization to CSF 0,93 0,58 0,85 0,86 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,27 4,27 4,27 4,27 4,27

Total Pixel-Count 8830 9318 11465 29613 16197

Total Volume (mm³) 37.688 39.768 48.931 126.387 69.128

Maximum Pixel-Count 736 433 251 1190 226

Signalintensity-Peak 255 255 119 255 163

Mean Signalintesity 176,0 193,4 136,8 166,3 169,1

Standardization to CSF 1,04 1,14 0,81 0,98 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 3,90 3,90 3,90 3,90 3,90

Total Pixel-Count 5158 6535 13473 25167 15684

Total Volume (mm³) 20.109 25.480 52.530 98.119 61.147

Maximum Pixel-Count 103 498 171 516 267

Signalintensity-Peak 156 255 141 255 204

Mean Signalintesity 164,0 165,3 140,2 151,6 179,3

Standardization to CSF 0,91 0,92 0,78 0,85 1,00

After 

Radiation- 

and Chemo-

therapy

At 

Diagnosis

After 

Surgery
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Figure 24: Mean Histogram from T2 Flair-Sequence during Follow-up 
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Table XII: Results from mathematical Analysis of the mean Histograms from 
T2 Flair-Sequence during Follow-up 

 

 

4.2.2.3 Non-Glioblastoma 

Patient G-8 represents one of the four patients in our study group that did not 

suffer from GBM (see Table II). In this patient a brain metastasis, deriving from 

bronchial cancer, could be diagnosed as the cause of disease. 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,43 4,43 4,43 4,43 4,43

Total Pixel-Count 8783 1561 45886 56230 16388

Total Volume (mm³) 38.878 6.909 203.104 248.891 72.537

Maximum Pixel-Count 256 45 923 1148 438

Signalintensity-Peak 144 126 140 140 17

Mean Signalintesity 141,2 104,6 142,6 141,3 34,4

Standardization to CSF 4,10 3,04 4,14 4,10 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,47 4,47 4,47 4,47 4,47

Total Pixel-Count 13381 5298 22447 41126 13858

Total Volume (mm³) 59.825 23.687 100.357 183.869 61.957

Maximum Pixel-Count 921 142 487 927 450

Signalintensity-Peak 255 15 130 255 17

Mean Signalintesity 159,2 75,0 130,6 132,8 36,9

Standardization to CSF 4,32 2,03 3,54 3,60 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 4,09 4,09 4,09 4,09 4,09

Total Pixel-Count 8140 4874 20580 33593 14148

Total Volume (mm³) 33.275 19.923 84.128 137.326 57.837

Maximum Pixel-Count 235 255 340 574 469

Signalintensity-Peak 136 8 146 136 17

Mean Signalintesity 137,9 49,1 139,4 126,0 36,5

Standardization to CSF 3,77 1,34 3,82 3,45 1,00

After 

Radiation- 

and Chemo-

therapy

At 

Diagnosis

After 

Surgery
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Figure 25: Follow-up of Patient G-8 in T1 with Gadolinium Contrast Enhancement Sequence 



Results 

65 

Table XIII: Results from mathematical Analysis of Patient G-8 from T1 with 
Gadolinium Contrast Enhancement during Follow-up 

 

 

4.2.3 Summary Analysis – Overview 

Tables XIV-XVI give a clear overview about the three most meaningful aspects of 

our mathematical analysis, the SI-peak, the mean SI and the standardized mean 

SI, calculated from all patients of this study. Emphasis is placed on the 

comparison between active tumor and necrosis in the different sequences and the 

summarized whole lesion. 

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 2,00 2,00 2,00 2,00

Total Pixel-Count 19913 27780 47693 4394

Total Volume (mm³) 39.826 55.560 95.386 8.788

Maximum Pixel-Count 1488 3195 3249 347

Signalintensity-Peak 80 66 66 42

Mean Signalintesity 83,0 66,1 73,1 52,9

Standardization to CSF 1,57 1,25 1,38 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 5,72 5,72 5,72 5,72

Total Pixel-Count 6749 4435 11184 7136

Total Volume (mm³) 38.618 25.377 63.995 40.833

Maximum Pixel-Count 544 203 544 605

Signalintensity-Peak 107 79 107 49

Mean Signalintesity 113,3 73,6 97,5 54,9

Standardization to CSF 2,06 1,34 1,78 1,00

Tumor Necrosis Edema Whole Lesion CSF

Volume of 1 Pixel (mm³) 2,89 2,89 2,89

Total Pixel-Count 1092 1092 3293

Total Volume (mm³) 3.157 3.157 9.521

Maximum Pixel-Count 51 51 199

Signalintensity-Peak 156 156 51

Mean Signalintesity 152,9 152,9 57,1

Standardization to CSF 2,68 2,68 1,00

After 

Radiation- 

and Chemo-

therapy

At 

Diagnosis

After 

Surgery
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Table XIV: SI-Peak of all Sequences at different Time Points calculated from 
all Patients of this Series 

 

 

Table XV: Mean Signalintensity of all Sequences at different Time Points 
calculated from all Patients of this Series  

 

 

 

T1 T1 + Gd T2 T2 Flair

Tumor 85 88 255 144

Necrosis 33 68 102 126

Tumor 127 127 255 255

Necrosis 46 47 255 15

Tumor 76 119 156 136

Necrosis 28 24 255 8

79 69 153 140

46 47 255 255

79 97 255 136

After 

Radiation- 

and Chemo-

therapy

After Surgery

At Diagnosis

After Surgery

After Radiation- and Chemoth.

Whole Lesion

Signalintensity-Peak

At Diagnosis

T1 T1 + Gd T2 T2 Flair

Tumor 82,0 116,2 163,1 141,2

Necrosis 51,7 67,6 102,0 104,6

Tumor 121,3 121,4 176,0 159,2

Necrosis 54,8 63,1 193,4 75,0

Tumor 90,0 125,5 164,0 137,9

Necrosis 43,2 46,3 165,3 49,1

70,8 80,0 150,9 141,3

80,5 84,2 166,3 132,8

75,8 82,4 151,6 126,0

After Surgery

After Radiation- and Chemoth.

Mean Signalintensity

At Diagnosis

After Surgery

After 

Radiation- 

and Chemo-

therapy
Whole Lesion

At Diagnosis
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Table XVI: Standardized mean SI of all Sequences at different Time Points 
calculated from all Patients of this Series 

 

 

4.2.4 Volume Changes during Follow-up 

By multiplying the total pixel-counts of the different lesions with its particular pixel-

size, we were able to calculate the exact volume of each area that we have 

rendered. Figure 26 exemplary shows the course of disease of a single patient 

(G-25), by illustrating a volumetric development for the whole lesion, as well as the 

different subunits of tumorous tissues during the different time points and for all 

MR-Sequences. 

The second image in this section, Figure 27, depicts the mean volume changes 

during therapy in all MR-Sequences, calculated from all patients of the study group 

(except the non-glioblastomas). As the previous image does, it also compares the 

whole lesion with its three subunits active tumor, necrosis and edema. 

T1 T1 + Gd T2 T2 Flair

Tumor 1,57 2,26 0,93 4,10

Necrosis 0,99 1,32 0,58 3,04

Tumor 1,98 2,29 1,04 4,32

Necrosis 0,89 1,19 1,14 2,03

Tumor 1,59 2,30 0,91 3,77

Necrosis 0,76 0,85 0,92 1,34

1,36 1,56 0,86 4,10

1,32 1,59 0,98 3,60

1,34 1,51 0,85 3,45

After Surgery

After Radiation- and Chemoth.

Standardized Signalintensity

At Diagnosis

After Surgery

After 

Radiation- 

and Chemo-

therapy
Whole Lesion

At Diagnosis
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4.2.4.1 Single Patient 

 

Figure 26: Volume Changes during Follow-up in Patient G-25 for all Sequences. Comparison  
of the whole Lesion to the three Subunits (Active Tumor, Necrosis and Edema). 
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4.2.4.2 Summary 

 

Figure 27: Volume Changes during Follow-up in the Summary, for all Sequences. 
Comparison of the whole Lesion to the three Subunits (Active Tumor, Necrosis and Edema). 
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4.2.5 Assessment of Progression and Response 

This section illustrates four different possible courses of disease on the basis of 

the individual volume development during treatment and follow-up. Figure 28 

shows how the volume of the whole lesion and the different pathologic subunits 

develops in a patient that clearly suffers from real tumor recurrence, after receiving 

surgery, RT and chemotherapy (G-17). In Figure 29 the volume development of a 

patient that shows pseudoprogression, after receiving surgery, RT and 

chemotherapy (G-12), is depicted. Figure 30 displays the course of disease from 

a patient with stable disease (G-7), whereas the response shown in Figure 31 is 

rather questionable due to the contradictory volume development of the three 

subunits (G-23). 
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4.2.5.1 Real Progression in T1 with Gadolinium Contrast Enhancement 

 

Figure 28: Volume Development during different Time points in a Patient that suffers from 
real Tumor Progression after receiving Surgery and Radiation- and Chemotherapy (G-17) 
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4.2.5.2 Pseudoprogression in T1 with Gadolinium Contrast Enhancement 

 

Figure 29: Volume Development during different Time Points in a Patient that shows 
questionable Progression after receiving Surgery and Radiation- and Chemotherapy (G-12) 
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4.2.5.3 Stable Disease in T1 with Gadolinium Contrast Enhancement 

 

Figure 30: Volume Development during different Time Points in a Patient that shows stable 
Disease after receiving Surgery and Radiation- and Chemotherapy (G-7) 



Results 

74 

4.2.5.4 Questionable response in T1 with Gadolinium Contrast Enhancement 

 

Figure 31: Volume Development during different Time Points in a Patient that shows 
questionable Response after receiving Surgery and Radiation- and Chemotherapy (G-23) 
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5 Discussion 

5.1 Evaluation of Software and Segmentation Methods 

DoctorEye represents an user-friendly segmentation software which allowed us to 

perform relatively fast annotations of different data sets at the same time, with a 

high level of accuracy. Our lively cooperation with the developers of FORTH 

enabled us to impact the platform’s updates and designing. Over the two years of 

our research project our suggestions and input for improvement primarily focused 

on the software’s practical handling and its applicability in the clinical routine. 

Additionally we came up with the idea to create histograms based on the 

annotated areas, a suggestion that was immediately implemented into the 

software by the developers. 

During the last two decades there have been multiple attempts to analyze medical 

images using modern information technologies. Currently there are several other 

existing image-annotation platforms, including VANO [109], CMAS [90], Hybrid 

System [99], Annotor [2], Amiravis [1], Itk-SNAP [4] and many more [3, 5]. Even if 

these various tools have been developed to speed up the process of data analysis 

for different biomedical applications, still most of the open access solutions require 

extensive engineering skills to understand their sophisticated user interface. In 

contrast to DoctorEye their whole design rarely takes the actual clinical user’s 

needs or the specific features required in the clinical setting and the goal to derive 

qualitative and quantitative diagnostic information into account [126]. DoctorEye 

on the other hand was found to be an impressively user-friendly segmentation 

software that allowed us to simultaneously perform fast annotations of different 

data sets, with a high level of accuracy. After using the software over a large 

number of datasets, in our hands, the platform’s environment appeared very 

intuitive and easy to handle. In fact, our experience over the complete study period 

confirmed our initial impression that only basic knowledge of annotation/simulation 

processes is required to start up using this system effectively. 
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The main advantages of DoctorEye in comparison to already available image-

processing tools have already been pointed out by Skounakis et al. and include 

the following [49, 126]:  

 Open access software with free distribution for testing and no need for 

registration or activation. 

 Easy to use, due to the platform’s design as a GUI environment with 

standard menus and buttons. Its interface is flexible and can be easily 

customized to different viewing setups by adjusting the width and height of 

the thumbnail and the main window by sliding the window separator bar. In 

consequence, the user can actively alter the number of the thumbnails 

visible on the screen as well as the size of the selected image. The 

resolution and size of the user’s screen are also taken into account for 

ensuring an optimal representation. 

 Fast and accurate delineation of tumors in large number of 3D tomographic 

datasets, especially in areas with complicated shapes, facilitated by manual 

and semiautomatic segmentation techniques combined with integrated 

correction tools. The fast operation-time is realizable due to the fact that the 

applied algorithms are fully integrated in the platform and run “on the fly” 

and not as calls to external programs. 

 The ability to set multiple labels that allow the user to annotate and manage 

multiple areas of interest in each selected slide at the same session. 

 The user is permitted to view the effects of the features that are being 

implemented in the selected medical image while experimenting with 

various parameters. 

 More importantly the clinical driven modular design and functionality, 

ensuring that the software has the potential to be implemented in routine 

clinical practice. 
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 Additionally to “standard” features like annotation/segmentation and 3D 

visualization the flexible architecture of DoctorEye provides the opportunity 

for easy incorporation of more specific and sophisticated plug-ins that can 

empower the clinician to use modern technologies for enhanced diagnosis 

and therapy design. An exemplary plug-in enables the user to do 

computational “in-silico” models of cancer growth and simulation algorithms 

of therapy response in order to provide a future integrated platform for 

modeling assisted therapy decision making. 

As a tool for predictive oncology research and clinical work DoctorEye can allow 

cancer modellers to easily plug in their models for cancer growth and therapy 

simulation. Moreover, besides being a tool for analyzing cancer imaging data, at 

the same time it could also serve as a validation environment for clinicians, where 

the simulation predictions can be compared with the actual therapy outcome, in 

order to achieve a global optimization of the modeling modules.  

The final assessment of the methods engaged indicates that the “Magic Wand” 

method provides great ease of use and is more applicable to medical images, 

especially when the gray level profile of the tumor is very homogenous and there 

is enough contrast to the surrounding tissues. In more problematic settings the 

software offers sophisticated solutions. If the regions of interest exhibit a high 

structural complexity, the “Zoom In” mode can facilitate the rendering enormously 

by magnifying the investigated area. If the result obtained by only using the Magic 

Wand is not satisfactory, manual refinement can be performed by engaging the 

correction tools “pencil and eraser”, to achieve a most precise result, as illustrated 

in Figure 11 and 12. 

The accuracy of this technology was confirmed by the well-recognized expert in 

neuroradiology Prof. Reith from the University of the Saarland. Our results 

regarding the delineation of different pathologic areas in different MRI scans were 

in total accordance with the expert’s assessment, clearly demonstrating that a 

higher accuracy cannot be achieved by any other segmentation method. However, 

it has to be acknowledged that even with DoctorEye the evaluation of very 
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complex structured lesions with a highly heterogeneous distribution of SI still 

requires a high amount of patience and time. An untrained user most likely 

requires a processing time of more than 15 minutes (see results 4.1.1) for one 

sequence, respectively 20 slices. Such time consuming evaluations would prove to 

be still very inexpedient for a clinician’s tight scheduled daily workflow. Although 

the time necessary to get the software ready-to-use, to up-load large datasets und 

to evaluate and safe the results is almost invincible fast, the use of the “Magic 

Wand” algorithm is yet too time-consuming and not practicable to be utilized in 

clinical daily routine.  

Apart from still being clinically unsuitable due to the time consuming evaluation 

processes, manual- and largely semiautomatic-segmentation techniques have an 

additional drawback. According to Weltens et al. inter-observer variability in brain 

tumor delineation with different physician specialties performing contours in both 

CT alone and CT with MRI ranged between 9-32% [155]. Mazzara et al. showed 

that the intra- and inter-rater variability performing manual segmentations on MRI 

scans of patients with gliomas varies significantly, being reported to be 

approximately 20%±16% and 28%±12%, respectively [98].  

Following our experience with DoctorEye a more expeditious technique has to be 

implemented to make the method applicable for the routine medical environment 

as well as to reduce operator-dependency during evaluation. Either an automatic 

or an advanced semi-automatic methodology probably can achieve this. Kaus 

et al. reported in 2001 that their technique of automated tumor segmentation in 

MR images performed essentially faster than the compared technique of manual 

rendering, which is in principle comparable to our software [74]. 

Such an automatic segmentation technique should on the one hand provide the 

option to accurately delineate complex pathologic areas and on the other hand 

speed up the operating time in treatment planning, by keeping the need for user 

interaction as low as possible. Additionally, the measurement protocol should be 

standardized and reproducible, so that it can be applied in any clinical environment 

independent from the clinician’s prior training. 
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The publication mentioned above by Mazzara et al. reported about the evaluation 

of two different segmentation methods, an automatic and a semiautomatic one. 

Validation was performed by the comparison to manual segmentation [98]. The 

fact that all the study subjects suffered from primary brain cancer (glioma) but not 

specifically from GBM slightly reduces the comparability of these results with our 

observations. This is related to the structural complexity often found with GBM in 

medical images, which frequently affects accuracy and operation-time. Mazzara 

et al. evaluated the k-nearest neighbor (kNN) system, as a representative of 

operator-assisted semiautomatic segmentation, and the knowledge-guided (KG) 

method, as a representative of fully automated tumor volume measurement. While 

the kNN system requires the user to select training data from each MRI slice, the 

KG method does not need any user input and has therefore in principle no 

variability in its output. Both methods have been successfully studied and clinically 

used for improved accuracy of tumor volume measurements since almost 25 years 

[40, 145]. From the three methods investigated the KG method required the least 

operation time, in average 8,2 minutes per patient, followed by the kNN system, 

requiring 20 minutes per patient. The manual method proved to be the slowest and 

was recorded to consume in average 30 minutes for the evaluation of an individual 

patient. Relevant for our studies on GBM is the fact that in comparison to the kNN 

method the KG method performed poorly for glioma cases, which showed Gd-

enhancement with non-enhancing cystic necrotic centers. This is considered to be 

due to the need of user input for the initial selection of training pixel data in the 

kNN method. As glioblastoma often exhibit cystic necrotic centers, the technique 

described by Mazzara appears to be inappropriate to provide valid volume data. 

Also the KG method does not segment non-enhancing tumors. In conclusion the 

two methods described by Mazzara lack accuracy compared to the manual 

assessment of radiation oncologists, but are superior in terms of reproducibility 

and processing time. 

Kumar M. et al proposed in 2011 another automatic seeded region growing 

method to segment brain tumors in 2 D MR images [82]. However, while their 

results indicate that fast and accurate segmentation by automatically finding the 
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seed points for the region growing method can be achieved, the tumors analyzed 

in this study appear to be structurally less complex as the GBMs analyzed by us. 

Before this approach is not validated in lesions comparable to glioblastoma, the 

value of this technique for our purposes cannot be judged. 

In 2011 Mohd Saad et al. applied an automated region growing technique on 

Diffusion-weighted MRI, focusing not only on brain tumors but also on acute 

infarction, haemorrhage and abscesses [102]. First, region splitting and merging 

was performed to subdivide the image with preservation of the pathological area. 

Second, the histogram threshold was used to find the optimal intensity threshold 

value, which is the prerequisite for the automatic selection of the initial seed-point. 

The results of their study showed that their automatic solution of region growing 

provided comparable results with the semiautomatic segmentation in terms of 

accuracy. However, their sample-set again was highly heterogeneous, consisting 

not only of glioblastoma but also including 3 cases of abscesses, 4 haemorrhage, 

11 acute infarction and 2 tumors with unmentioned histology. As discussed with 

the study before this method needs to be validated on GBM cases before its value 

in GBM diagnostics can be assessed reliably. Choubey and Agrawal published 

their results in 2012, also describing an automatic segmentation method based on 

the region growing, the so called “random walk movement”. Once more in this 

approach the seed point is automatically calculated, following a skull removal to 

prevent falsified seed point selection. As proposed, this method ought to be 

effective in 2 dimensional MRI, but the accuracy depends on the lesion’s shape 

and size (very small tumors fail to be detected) [39]. 

Another frequently used segmentation method is the so called “fuzzy connectivity” 

or “fuzzy connectedness algorithm”. Through the fuzzy process the fuzzy 

connectedness algorithm joins related pixels in the investigated region despite 

inhomogeneity of signal intensities or gradient variations [61]. This concept of 

fuzziness was firstly introduced by Rosenfeld in 1970, as affirmed by Harati et al. 

[61, 120]. Just as with Region-Growing, the selection of the initial seed point in this 

technique is a substantial and time-consuming task and inevitably requires an 
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operator. Therefore Harati V. et al. developed a fully automatic segmentation 

procedure with the purpose to eliminate user interactions in the seed point 

selection and to improve the performance of the general fuzzy connectedness 

[61]. To automatically select the seed point and to execute the tumor segmentation 

algorithm in average an operation time of 30 s and 2 min was consumed [61]. The 

authors claim that this procedure does not go at the expanse of accuracy. To 

confirm this assertion, they compared their method with the general fuzzy 

connectedness, represented in 1996 by Udupa and Samarasekera [142]. Almost 

all recent approaches in the field of fuzzy connectedness are based on the 

principles of that specific algorithm. The criteria values revealed that the 

performance of the proposed method is superior to that of general fuzzy 

connectedness in all investigated cases. In a more topical study from 2006, 

Pednekar et al. proposed one of the state-of-the-art approaches related to the 

improved generalized fuzzy connectedness [108]. An important drawback of this 

study in comparison to the study mentioned before lies in the small amount of data 

that has been investigated and the fact that seed points were selected manually, 

whereas in the aforementioned method seed points were selected automatically. 

One advantage, however, is that the method, according to Pednekar et al., can be 

applied to different types of radiologic images such as MR, CT and infrared data 

[108]. This is attributable to the dynamic tuning of weights of affinity components 

as required in the fuzzy connectedness algorithm, whereas in the method 

proposed by Harati V. et al. constant optimized weights are used, which is only 

applicable to brain MR images [61]. 

Another recently proposed approach for fully automatic brain tissue segmentation 

was published by Bauer S. et al. in 2011. This group is part of the ContraCancrum 

project and obtained images of 10 study patients from the ContraCancrum brain 

tumor database [22]. In this study the combination of the Support Vector machine 

classification (SVM) using multispectral intensities and textures with subsequent 

hierarchical regularization based on Conditional Random Fields showed promising 

results. According to the authors, there is a strong dependency of most voxel 

labels on their neighbors, a statement that is in disagreement with the assumption 
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that the data in MR images are independent and identically distributed (iid). Bauer 

and coworkers engaged the Conditional Random Field (CRF) method to respect 

these spatial relationships. The way of applying the CRF was inspired by a study 

performed by Lee et al. in 2008 [88]. As in our study, Bauer et al. subdivided the 

tumor area hierarchically into necrotic, active and edematous tumor portions, 

besides generally distinguishing between normal healthy and tumor region. By 

using the Insight Toolkit for Segmentation and Registration (ITK) they were able to 

incorporate the preprocessing completely with the SVM classification and CRF 

regularization components [70]. Quantitative evaluation of the tumor tissue 

segmentation again was performed with the ground truth defined by manual 

segmentation, using the dice similarity coefficient. As a result it was shown that 

this coefficient is evidently a worse measure when no hierarchical regularization is 

applied. The operation time for the segmentation algorithm mainly depends on the 

size of the image dataset and on the complexity of the SVM optimization. It 

performs obviously faster than our approach, taking between 20 and 120 seconds 

on a single CPU (Central Processing Unit) running at 2,33 GHz. However, it has to 

be taken into account that preprocessing was not included in this estimation. 

Compared to other studies, like Corso et al [42] and Wels et al. [154], dice 

similarity coefficients for the gross tumor volume are in a similar range, but 

different data-sets were used. Additionally, although in this approach differentiation 

into tumor and healthy subsets was performed, the operation time was shorter. In 

terms of accuracy the results are comparable to manual segmentation, with the 

advantage of excluding biased subjectively of the operators in longitudinal studies. 

Since differentiating the tumor into its subunits causes additional difficulties, the 

dice similarity coefficients for the subunits are lower than for the gross tumor 

volume. In conclusion, this new approach has great potential, as its operation time 

appears to be acceptable for the clinical workflow and by including the CRF based 

hierarchical regularization, improved conformity with the ground truth was 

achieved. 

Finally, the incorporated adaptive active contour algorithm, developed by ICS 

group of FORTH, has shown promising results in closely following clinical 
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annotations, as demonstrated by Farmaki et al. [50]. As described by Skounakis 

et al., this method is non intuitive, implying that the user might find it difficult to 

interpret the physical meaning of the related parameters and to predict the optimal 

values to be selected and adjusted individually for every tumor case [127]. 

5.2 Assessment of Progression and Response 

Since 1990 the MacDonald criteria [96], based on measurable changes in 

contrast-enhancing lesions on MR scans, have been the standard approach for 

measuring response or progression in patients with malignant glial tumors. In 2010 

the RANO Working Group suggested new criteria [159] that indicated the 

limitations of the above mentioned approach and added additional aspects. 

Nevertheless, neither a concrete assessment of changes in T2-/Flair-sequence is 

required nor is a volumetric measurement of the contrast enhanced lesions 

suggested. The dependence of the contrast enhancement in the T1 sequence on 

many parameters is another source of inaccuracy of these criteria [151]. In 

consequence it has to be acknowledged that the currently available guidelines are 

still insufficient and lack in accuracy [24]. Therefore, the process of analyzing the 

follow-up of individual patients with malignant gliomas requires more research and 

improvement of diagnostic procedures to achieve better understanding and 

facilitate individualized treatment of this currently still fulminant and lethal disease.  

The lack of an established concept to follow tumor development and progression 

inspired us to search for an innovative approach of gaining tumor specific 

characteristics from routinely acquired MR images. The current routine to measure 

tumor size only by the product of the longest diameter and its longest 

perpendicular diameter in a single slice seems to be highly inappropriate, as 

glioblastoma tend to be very irregularly shaped. For that reason we decided to 

also incorporate a three dimensional volume measurement of the different 

tumorous tissues into our study. Furthermore, we applied our method not only on 

T1 Gd-MRI scans, but also on the other routinely acquired sequences, particularly 

T1 without contrast, T2 and T2 Flair. As mentioned above, these sequences do 
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not play any role in the official criteria and clinically just serve for visual 

interpretation performed by neuroradiologists. However, it was our goal to extract 

as much information from standardly available images as possible. Our findings 

support the observation that by measuring volumes and segmenting the tumor in 

different sequences active tumor-tissue, necrotic areas and edema may be 

distinguished ideally by using the histograms of the signal intensities, which differ 

within the tumor and vary strongly in most sequences. Using combinations of 

histograms from different sequences the tumor can be described in a much better 

way than by calculating solely the tumor volume. 

It is important to state that, despite recent diagnostic and therapeutic 

achievements, patients with glioblastoma have a poor prognosis and oncologists 

and neuroradiologists have to face multiple diagnostic problems. Early diagnosis 

of progressive disease (PD) and its distinction from different neuroradiologic 

phenomena, particularly radiation necrosis (RN), pseudoprogression (PP) and 

pseudoresponse (PR) is crucial since these entities request different treatment 

approaches [31]. To this end, several imaging techniques recently have been 

evaluated with varying results (see 5.2.1 Different Imaging Modalities) [10].  

Texture analysis and feature extraction from images has been a long standing 

topic of radiologic research [58], reviving in some kind of a “texture renaissance” 

during the last decade [73]. Obviously this trend is related to the steep increase in 

digital technology and storage capability, computerized image management and 

the established acceptance of computer-aided diagnosis, engaging automatic or 

semiautomatic image analysis tools [140]. Stated by Kassner and Thornhill, Lerski 

et al. were the first to introduce MR image texture analysis for the characterization 

of intracranial tissues, the identification of brain tumors and the differentiation 

between them [73, 89]. What Tourassi calls a “texture signature” refers to the idea 

of a reproducible and robust method of extracting pathologic findings from 

radiologic images, while being refractory to possible bias caused by individual 

attitude, beliefs, preconceptions, expectations or fatigue [140]. Especially in the 

evaluation of malignant brain tumors texture analysis seems to be a reasonable 
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approach due to the limitations of image interpretation. With the basic 

mathematical method which we have engaged in our study we tried to obtain such 

a “texture signature”, which may provide a worthwhile way to improve image 

analysis and to reveal new tumor-specific information that helps to distinguish 

between PD and the afore mentioned imaging phenomena. 

Our results, gained by the use of the DoctorEye software, indicate that the 

proposed innovative method of texture analysis can be a complementary 

diagnostic tool to differentiate various intracranial lesions from each other as well 

as to assess response to treatment or progression in malignant glioma. At the time 

we initiated our study to the best of our knowledge no information was available 

that histograms of signal intensities from MR images were used for the 

characterization of glioblastoma. This is probably caused by the lack of 

standardization in MRI technologies, which hampers the comparability of the 

results. 

Evaluating our results, the first thing we noticed was that at the time of diagnosis 

the histogram of all glioblastoma showed a bimodal distribution of signal intensities 

in T1 Gd-MRI sequence, with one peak each representing active tumor and 

necrosis. Figure 15 exemplarily illustrates our results from patient G-13 at the time 

of diagnosis. It is obvious that especially in the T1 Gd-MRI sequence the major 

part of the active tumor- and necrosis-area occupy different areas on the SI scale 

as well as their peaks do. As listed in Table III, the corresponding statistical values 

differ strongly from each other as well. The SI-peak of the active tumor is 93 on the 

SI scale and the mean SI 102,6, whereas for necrosis it is 63 and 63,8, 

respectively. These regularities of the SI distribution can also be found in the 

average histograms. Above all in the T1 Gd-MRI, but also in the other sequences, 

a clear distinction of the SI-peak and mean SI between active tumor and necrosis 

can be detected. Depending on the examined MR sequence, also edema can be 

discriminated easily either from active tumor or necrosis. 

Such similarities of the shape and the statistical values are seen during the course 

of disease in individual patients as well. This is valid for the images after surgery, 



Discussion 

86 

after radio- and chemotherapy and during the subsequent follow-up. 

Nevertheless, we are faced with the problem of insufficient standardized 

procedures in the acquisition of MR images. To overcome this issue we 

normalized the mean SI of the vital tumor area and of the necrotic tumor area by 

relating them to the mean SI of the corresponding CSF, resulting in a clear 

difference between tumor and necrosis at all analyzed time points in T1, T1 Gd-

MRI and T2 Flair (Table XVI). According to our observations, it seems that the 

more the standardized mean value of SI for the “whole lesion” in T1 with contrast 

enhancement is increasing during follow-up in a single patient, the more likely the 

patient suffers from disease progression or tumor recurrence. If this value is going 

down, the more likely a tumor response or a stable disease can be diagnosed. 

Typically after surgery we find an increase of the standardized SI and after 

radiation- and chemotherapy a decrease. Patient G-17 illustrates the SI 

development as an example of a patient suffering from tumor recurrence. While 

the SI after surgery is increasing, it decreases after radiation- and chemotherapy, 

as explained. Nevertheless, during follow-up the tumor is recurring, revealed by 

the increase of volume, already shown in Figure 28. Simultaneously to this 

volume changes, also the values for the SI peak, mean SI and standardized SI are 

increasing, as demonstrated in Figures 32-34. In contrast patient G-7 illustrates 

the course of disease from a patient with stable disease. Figure 30 depicts the 

volume development of this patient during follow-up, indicating a state of stable 

disease by the absence of any volume increase. Consistently also the SI values of 

patient G-7 (SI peak, mean SI and standardized SI) do not show any 

augmentation during follow up, as depicted in Figures 35-37. 

This statistical distinctiveness is an ideal condition to develop an automatic 

segmentation algorithm, which would be the ideal advancement to increase the 

practicality of our approach. Therefore, we have involved Prof. Joachim Weickert 

from the Faculty of Mathematics and Computer Science at the Saarland University 

into our study. Prof. Weickert is an expert in the field of image processing and the 

head of the Mathematical Image Analysis Group (MIA) at the Saarland University. 
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He and his team are working on a more sophisticated, automatic segmentation 

method to improve the accuracy and reproducibility of the results of our 

measurements. 

 

Figure 32: Development of SI-Peak during Follow-up in a Patient that suffers from Tumor 
Recurrence (G-17) 
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Figure 33: Development of Mean-SI during Follow-up in a Patient that suffers from Tumor 
Recurrence (G-17) 
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Figure 34: Development of Standardized-SI during Follow-up in a Patient that suffers from 
Tumor Recurrence (G-17) 
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Figure 35: Development of SI-Peak during Follow-up in a Patient with stable Disease (G-7) 
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Figure 36: Development of Mean-SI during Follow-up in a Patient with stable Disease (G-7) 
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Figure 37: Development of Standardized SI during Follow-up in a Patient with stable Disease 
(G-7) 
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Currently studies focusing also on the topic of texture analysis in GBM images 

have been published, e.g. by Drabycz et al., Pope et al. and Najafi et al.. In 2010 

Drabycz et al. tried to noninvasively predict the MGMT methylation promotor 

status by texture analysis of MRI scans [46]. They could show that the ring 

enhancement on MR images from glioblastoma patients significantly correlated 

with an unmethylated MGMT promoter status. Nevertheless, their application of a 

space-frequency texture analysis did not deliver any valuable results [46]. 

Recently Pope et al. presented their results after testing the predictive value of 

apparent diffusion coefficient (ADC) histogram analysis, with the aim to 

prognosticate the progression-free survival (PFS) and overall survival (OS) in 

bevacizumab-treated patients suffering from recurrent GBM. In this attempt the 

histograms were computed from areas of enhancing tumor on T1 weighted post-

contrast images. By the combined interpretation of the mean ADC from the lower 

curve (ADC-L) and the mean lower curve proportion (LCP) a maximum specificity 

of 87 % for the prediction of progression-free survival was achieved [113]. Another 

topical approach was published by Najafi et al., trying to predict the response to 

bevacizumab treatment in patients with GBM [103]. Aspiring to extract significant 

statistical features especially from T1Gd-MRI, but also for T1-, T2- and T2 

Flair-weighted images, they applied signal decomposition and histogram analysis 

methods. Volume estimation was accomplished for areas of gadolonium-

enhancement, edema and necrosis. By comparing SI of T1-weigehted images and 

corresponding T1-postcontrast images they designed an elegant and innovative 

method for the normalization of the images and their grey levels. By analyzing the 

standard deviation of the grey matter histograms, it proved to provide a potentially 

significant tool to predict the response of GBM to bevacizumab treatment before it 

was initiated [103]. 

In future research the use of our technique especially for the discrimination of the 

radiologic phenomena described below has to be validated. It is our position that 

the extraction of information from routinely performed investigations has to be 

optimized and exhausted before creating the need for additional investigations, 

potentially at the expense of the patient’s physical- and the hospital’s 
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economical-well-being. Hereinafter current neuroradiologic approaches towards 

these issues will be outlined. Furthermore, the mentioned phenomena are 

described in more detail. 

5.2.1 Different Imaging Modalities 

Today neuroradiologic imaging is the major diagnostic modality for the evaluation 

of brain tumors. The T1 Gd-MRI sequence is usually sufficient to suggest a brain 

tumor, while further sequences may already provide detailed information that 

indicates the specific tumor type. Currently there are several additional imaging 

modalities available, like magnetic resonance spectroscopy (MRS), diffusion 

weighted MRI (DWI), perfusion weighted imaging, positron emission tomography 

(PET), and single photon emission CT (SPECT). Nevertheless, to specify the 

diagnosis and to optimize the subsequent treatment strategy the acquisition of an 

adequate tissue sample by invasive procedures is essential. This will be acquired 

either at the time of the surgical resection of the tumor or by stereotactic biopsy, 

performed separately. 

With the innovative mathematical method of analyzing routine MRI scans 

proposed by us we sought to reveal new tumor-specific information in order to 

facilitate the description of the tumor’s development and possibly to differentiate 

between response to treatment and progressive disease. Furthermore, our 

approach could support the better identification of the different challenging 

radiologic phenomena like PP, PR and RN, described below. To this end our 

method is easily feasible in daily clinical care and, since it can provide results 

without additional imaging studies, it proves to be more cost-effective. 

Nevertheless it has to be validated to prove its effectiveness and justification to be 

a diagnostic tool on the basis of conventional MRI, which is increasingly seen 

critical. 

Concerning this matter Payer argues that conventional MRI is not sufficient to 

display the structural complexity, physiology and metabolism of GBMs. MRI may 

miss transformation and infiltration of healthy tissue [107]. Moreover, there is a risk 
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to misinterpret changes of contrast enhancement as progression or therapy 

response, even if PP, RN or PR represent the true cause of variation, or vice versa 

[107]. These limitations demand the introduction of more versatile procedures, 

imaging acquisition techniques on the one hand, which will be discussed in the 

following and image analysis techniques on the other hand, such as the one 

presented by us.  

Three MR-based techniques have been established lately, to achieve more 

precise assessment of tumor development, DWI, perfusion-weighted imaging and 

MRS. DWI represents a dynamic method to display areas of water diffusion, using 

the apparent diffusion coefficient (ADC), thereby revealing lower diffusion values 

especially in areas of ischemia and areas of high cellularity [41]. Hein et al. 

demonstrated in 2004 that DWI could serve as a helpful tool in the differentiation 

between tumor progression and treatment-induced imaging changes, as recurrent 

tumor typically has significantly lower ADC values than RN [64]. Another 

advantage comes with the fact that DWI in many institutions is part of standard 

neuroimaging and therefore does not generate additional costs. In addition, the 

processing time can be kept short with the use of fast imaging sequences (echo 

planer imaging) and an integrated ADC calculating software in the workstation 

[64]. As Payer states, the introduction of MR-diffusion analysis in the clinical 

routine could enable to better characterize edema, necrosis and active tumor 

[107]. Perfusion weighted imaging allows the illustration of intracranial 

hemodynamics by assessing regional cerebral blood flow and blood volume, 

typically revealing an elevated microcirculation in high grade brain tumors [41]. In 

a small study Hu et al. indicated in 2009 that the relative cerebral blood volume 

(rCBV) can differentiate between recurrence and posttreatment radiation effects 

with a high degree of accuracy. According to their observation, recurrent tumor 

typically exhibits an elevated rCBV, whereas treatment induced contrast 

enhancement shows a reduced rCBV [68]. These findings are supported by a 

study of Baraja et al. that demonstrated with 57 patients suffering from GBM that 

rCBV was significantly higher in the group of recurrent tumor than within the 

radiation necrosis group [16]. Nevertheless, a considerable overlap for this 
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parameter was noted between both groups, possibly due to the tumors 

heterogeneity. Therefore the notion seems reasonable that relative peak height 

(rPH), which proved to be more reliable, could also be helpful in the differentiation 

between recurrent GBM and radiation necrosis, thereby complementing the 

noninvasive investigations [16]. In 2010 Mangla et al. suggested that the survival 

of patients with glioblastoma, after receiving combined radiation- and 

TMZ-therapy, shows a negative correlation with the rCBV. The increase of 

posttreatment rCBV seemed to be a strong predictor of poor survival and vice 

versa, whereas the Gd-MRI based McDonald-criteria did not appear to be useful in 

such a setting [97]. Innovative approaches of analyzing perfusion values, as 

proposed by Tsien et al., might also facilitate the differentiation between 

progressive disease and pseudoprogression [141]. Nevertheless, these methods 

are not accurate enough to be the only decisive value for distinguishing tumor from 

PP or RN, as Clarke et al. concludes [41]. MRS on the other hand reveals 

biochemical information about the concentration of brain metabolites like choline 

(Cho), N-acetylaspartate (NAA), creatine and lactate, with special emphasis on the 

Cho/NAA ratio. As Clarke et al. reviewed, an elevated Cho/NAA ratio, caused by 

an elevation of the Cho peak and a decrease of the NAA peak, can indicate active 

tumor. A typical indicative of necrosis is the general flattening of all peaks, 

whereas the overlap of two peaks corresponds to lipids and lactate. Nevertheless 

the most commonly available type of MRS, single-voxel MRS, is restricted in its 

clinical use due to the large size of the voxels. Although the introduction of 

multivoxel MRS improved precision, the significant heterogeneity caused by the 

voxel’s size is still a problem. Moreover, the applicability is limited by the fact that 

the Cho/NAA ratio lacks in precision, as it may also be seen in the setting of 

significant inflammation or infection and therefore is not specific for progressive 

disease [41]. Nevertheless, in their review from 2012 Caroline and Rosenthal 

proposed that decreased Cho combined with a lipid or lactate peak indicates RN 

[31, 112]. In addition, recent literature provides studies that illustrate that sensitivity 

could be improved, if MRS was performed months after RT (89-100%), while the 

results were more specific if it was performed in weeks after treatment (100%) 

[104, 112, 168]. 
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Payer reports that nuclear investigation methods through PET-based imaging can 

help to display the metabolism of glucose and amino acids in malignant gliomas by 

the use of radiotracers. There has been extensive research on the value of PET as 

a tool to distinguish between PD and PP. Currently radiotracers like 

fluorodeoxyglucose ([18F]FDG), representing the glucose metabolism, as well as 

the amino acids methionine ([11C]MET) and fluorothymidine ([18F]FLT) and the 

amino acid analog fluorethyltyrosin ([18F]FET), representing cellular and vascular 

proliferation, are widely available tracers [54, 107, 153]. Caroline and Rosenthal 

state that tissue hypermetabolism, visualized by an increased radiotracer uptake, 

is associated with tumor recurrence [31]. This hypothesis is supported by the study 

from Chao et al. published in 2001, where [18F]FDG was 75% sensitive and 81% 

specific in distinguishing recurrent brain tumor from RN [36]. However, la Fougere 

et al. argue that the sensitivity of [18F]FDG, the most frequently used radiotracer, is 

significantly limited since many areas, such as the cerebral cortex, the basal 

ganglia, and the thalamus in the brain exhibit high physiologic glucose 

consumption, causing difficulties in the differentiation between tumor and normal 

brain. The same applies to the method’s specificity due to the accumulation of 

[18F]FDG in macrophages and inflamed tissue, hampering the delineation of active 

tumor additionally [83]. Inspired by the knowledge of the importance of amino acid 

metabolization for the proliferation of glioma, radiolabeled amino acids were 

introduced as PET tracers in 1982 [69, 72, 153]. Due to the limitations of [18F]FDG 

as a PET tracer considerable research projects have engaged radiolabled amino 

acids, aiming to find tracers with both improved sensitivity and specificity. Already 

in 1996 Wurker et al. presented their results on the methionin uptake in patients 

with low-grade gliomas treated with brachytherapy, which suggested that amino 

acid tracers might be superior in monitoring therapeutic effects [162]. Regardless 

of the phase of the cell cycle it was shown experimentally that tumor cells are 

capable of up regulating the expression of amino acid transporters in their cell 

membrane in order to increase the transmembrane amino acid influx, particularly if 

growth conditions deteriorate [122]. Different studies proved that the distribution of 

[11C]MET and [18F]FET in brain tumors is comparable [85], whereas the clinical 

availability of [18F]FET is superior due to its longer physical half life [153]. La 
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Fougere et al. concluded that both markers, [11C]MET and [18F]FET [83], hold high 

diagnostic power. For [11C]MET a sensitivity between 75 and 90% and a specificity 

between 72 and 92% for the detection of malignant transformation and its 

distinction to RN was demonstrated in different studies [137, 144, 146]. For 

[18F]FET a positive predictive value of 84%, a sensitivity of 82% and a specificity 

100% for the differentiation between tumor recurrence and reactive changes was 

reported [100, 114]. To improve the accuracy of [18F]FET PET scans in the 

discrimination of tumor recurrence from posttherapeutic changes, Rachinger et al. 

analyzed the maximal standardized uptake value (SUVmax) for the slice with the 

highest FET uptake in the area with suspected tumor. A sensitivity of 100% and a 

specificity of 93% could be achieved for [18F]FET PET, which was significantly 

higher compared to the results of conventional MRI with 94% and 50%, 

respectively [115]. Nevertheless, the damage of the blood-brain barrier could 

possibly be a source of misinterpretation, as the amino acid uptake might be 

governed by alteration of the blood brain barrier, causing an increased passive 

influx [119]. La Fougere conclude that although amino acid PET is not precise 

enough to replace histological verification yet, it provides additional information 

that might be helpful in the detection of glioma recurrence as well as to monitor 

new treatment modalities like antiangiogenic therapies [83]. 

CT today has widely been replaced by MRI as the imaging modality of choice in 

the initial assessment of intracranial lesions. Moreover, in recent years SPECT, 

using various isotopes to detect abnormalities in the blood brain barrier, shows 

promising results in the diagnosis of different types of intracranial lesions, the 

determination of residual or recurrent tumor and the assessment of response to 

treatment [135]. Currently utilized tracers are 201Thallium (201Tl), 

99mtechnetium (99mTc)-glucoheptonic-acid, 123iodine (123I)-alpha-methyl-tyrosine 

and 99mTchexakis-2-methoxyisobutylisonitrile (99mTc-MIBI). These radionuclides 

possess longer half-lives than most PET tracers (e.g. 13,2 h for 123I and 6 h for 

99mTc, compared to 110 min for 18F and 20 min for 11C), which offers advantages 

like a facilitated chemical synthesis [167]. Generally a high tracer uptake in 

SPECT indicates PD, whereas a negative SPECT result suggests the absence of 
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active tumor growth [31]. As Tie et al. state, in their study 201Tl-SPECT provided a 

superior diagnostic accuracy to conventional MRI and could also serve as a 

potential prognostic tool, as low tracer uptake was reflected in a significantly 

longer post imaging survival time [139]. In the last decade many studies have 

been focusing on this topic. While 201Tl offers a 100% specificity and sensitivity in 

the range of 83-100% in distinguishing RN from PD [30, 56, 139], 99mTc and 123I 

showed comparable results trying to identify tumor recurrence with an accuracy of 

93 and 96%, respectively [14, 112]. 99mTc-MIBI also has been investigated in 

various studies to detect recurrence with acceptable results; presenting a 

sensitivity of 93 and 89% and a specificity that was little lower with 83 and 83% 

[87, 164]. As Caroline and Rosenthal point out, the major advantage of Thallium is 

its exclusive uptake in pathologic tissue and not in healthy tissue, as it is found 

with other tracers. Nevertheless, certain limitations, like spatial resolution and low 

energy photon emission, are restricting the administration dose [15, 31]. 

Technetium on the other hand is not restricted by these limitations, but shows 

deficits in image interpretation, as the choroid plexus and the temporalis and 

extraocular muscles demonstrate an intense physiologic tracer uptake [15].  

Two studies cited by Caroline and Rosenthal suggest that the combination of 

imaging methods might offer additional benefits detecting tumor recurrence. 

Gomez et al. could demonstrate in 2008 that combined 201Tl -SPECT and MRI 

were more sensitive (97%) than the combination of 18F-FDG PET and MRI (83%) 

[56]. Van Laere et al. proposed in 2005 that the use of [18F]FET PET combined 

with [11C]MET presented higher accuracy (83%) than using each one of them 

solely (80 and 73%) [146]. 

As these results show, there is still potential for improvement and the need for 

innovative ideas, as proposed by us, to assess the development of this disease 

more precisely, without burdening the patients with additional investigations and 

the hospitals with additional costs. 
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5.2.2 Imaging Phenomena: Pseudoprogression, Radiation Necrosis and 

Pseudoresponse 

Different treatment induced radiologic phenomena have hampered the work of 

radiologists and oncologists in interpreting images of intracranial lesions, 

especially the so called pseudoprogression (PP), radiation necrosis (RN) and 

pseudoresponse (PR). 

The term “Pseudoprogression” was originally inaugurated by Hoffman et al. in 

1979 [66] and characterizes treatment-induced imaging changes, occurring 

particularly in the period immediately following completion of RT [19]. It is believed 

that PP is caused by cytotoxic effects of chemotherapy and radiation, resulting in a 

subacute inflammatory response with abnormal vessel permeability and local 

edema. Up to 20% of the patients develop this phenomenon after treatment with 

TMZ chemoradiotherapy. It is believed that in the case of PP the patients often 

remain asymptomatic and the image changes decrease in size or normalize 

without additional interventions [26]. De Witt et al. revisited this phenomenon in the 

year 2004 in patients with newly diagnosed GBM treated with RT and with or 

without carmustine [43]. They showed that from all patients presenting with 

disease progression immediately after RT (28% to 51%), more than half (28% to 

33%; 9% to 14% of the total) subsequently either improved or demonstrated stable 

brain imaging. 

With the aim to identify certain characteristics, Chamberlain et al. analyzed this 

phenomenon with the principles of pathology [33]: Within all patients 50% showed 

progressive disease of which 50% were treated surgically (25% of the total). 

Remarkably, half of the re-operated patients (14% of the total) displayed treatment 

injury without identifiable glioblastoma tissue. Hence, PP was characterized as to 

appear mainly (approximately 58%) within the first 3 months after completing RT 

plus TMZ. Nevertheless, this cannot be interpreted as an average course of 

disease, as only one third of all patients have been reinvestigated within the first 3 

month after the completion of RT plus TMZ. Taal et al. investigated the incidence 

of early PP and its clinical features, based on the MacDonald Criteria, by reviewing 
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a cohort of patients with newly diagnosed malignant gliomas, who were treated 

with RT plus concomitant and adjuvant TMZ [136]. In this retrospective study 36 of 

85 patients (42% of the total) exhibited early disease progression in the first follow-

up scan 4 weeks after the end of RT. PP was diagnosed in 18 of these 36 patients 

(50%). Brandes et al. analyzed the phenomenon with regard to the tumor’s MGMT 

promotor methylation status [25]. In 103 reviewed patients 36 (35%) were found 

with MGMT promotor methylation. Of the 50 patients who showed early 

progression at the first MRI scan subsequently 32 were classified with PP. Within 

23 patients with methylated MGMT promotor and early disease progression 21 

(91%) were recorded as PP. The detection of PP and of MGMT status both 

significantly influenced survival. 

Commenting on Brandes et al. study from 2008 and referring to the mentioned 

studies, M.C. Chamberlain concludes that PP is characterized by signs of early 

disease recurrence seen on Gd-MR scans immediately post-RT plus TMZ with 

improvement or stabilization after 2 months [32]. 

Radiation Necrosis was first reported in 1930 in a case of basal cell epithelioma 

[51] and has been initially described as a side effect following radiation therapy of 

extracranial malignancies [55]. It can occur between a few months and many 

years post-irradiation. Most cases present within a six-month to two-year period, 

the time during which tumor recurrence is also most frequent [10]. It most often 

can be found around blood vessels within the white matter. Typical histopathologic 

findings in the vessel walls are fibrinoid necrosis followed by hyalinization with 

consecutive luminal narrowing caused by wall thickening. Surrounding 

perivascular coagulative necrosis have the potential to coalesce, forming large 

areas of parenchymal necrosis with subsequent deposition of mineral salts (ie, 

dystrophic calcification). Additionally, abnormal telangiectasias, as well as focal 

and diffuse demyelination of the white matter, can be observed [81]. For a 

standard therapy course with a cumulative dose of 60 Gy and 1,8-2 Gy per single 

dose an incidence of 3-5% has been shown [107]. If higher dosages or additional 

treatments as brachytherapy, experimental chemotherapy protocols or stereotactic 
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RT following standard RT are applied, the chance to develop RN can rise up to 

40% [107, 121]. Moreover, Chamberlain et al. in 2007 presented a study of 51 

patients who received the standard of care for patients with newly diagnosed GBM 

(TMZ given concurrently with RT followed by 6 monthly cycles of TMZ), which 

indicates that daily administration of TMZ may represent a strong radio-sensitizing 

regimen. They reported that from 15 patients who underwent re-operation within 6 

months of completion of RT for suspected progressive GBM almost 50% (7 

patients) showed histologically confirmed necrosis without evidence of active 

tumor (14% of the whole study group) [33]. These results support the assumption 

that the RN and PP cannot be separated clearly and that PP might just be a mild, 

self-limited type of therapy-induced necrosis. Usually the radiation-related injury is 

placed around the initial tumor bed, but can also occur in other areas included in 

the radiation field [10]. As the clinical symptoms are very inconsistent they easily 

can mimic tumor recurrence. Most commonly observed are clinical signs as 

headache, seizures, personality changes and neurologic deficits [110]. 

Another radiologic phenomenon caused by the use of antiangiogenetic drugs was 

named by the term Pseudoresponse or Pseudoregression. Because 

hypervascularisation by the help of VEGF plays a critical role in the genesis of 

malignant gliomas, recent approaches include antiangiogenetic agents, especially 

those targeting VEGF, such as bevacizumab, and the VEGF receptor, such as 

cediranib. The use of such agents like the monoclonal antibody bevacizumab, 

which binds VEGF and by that is able to normalize the tumor vasculature, can 

cause marked decrease in contrast enhancement as early as 1 to 2 days after 

initiation of therapy and commonly result in high radiologic response rates of 25% 

to 60%, a rate that was never documented before [21, 52, 79, 148]. However, the 

conclusion of a tumor regression appears to be doubtful. Even if the imaging 

implies a tumor regression the effect on overall survival is limited, which suggests 

that these changes may not correlate with actual tumor regression. The clinical 

significance of this phenomenon was shown in 2010 by Wick et al., who 

highlighted the discrepancy between high response rate (measured by MacDonald 

Criteria) and the comparatively modest survival benefit [160]. The apparent 
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response mostly is due to normalization of the tumors blood-brain barrier, rather 

than to a real anti-tumorous effect. It is common that normalization like that might 

cause decrease of perifocal edema, which consequently leads to neurological 

improvements [20, 24].  

This effect proves another aspect where the MacDonald Criteria fail to be 

adequate, namely in not taking nonenhancing tumors into account [159]. Norden 

et al. even imply that in this context progression-free-survival might be an 

inappropriate endpoint for phase II trials [105]. 

As described in 5.1, using the DoctorEye software is an elegant way of analyzing 

changes in the texture of routine MRI scans. There is a chance that by testing our 

method on proven cases of PP, RN and PR a new diagnostic procedure could be 

developed to address these radiologic issues, as implied in chapters 4.2.3 and 

4.2.5. This procedure would be based on the use of DoctorEye, the incorporation 

of all four MR sequences into the diagnosis process and the combined 

interpretation of SI-histograms and specific volume-developments, which is 

described in the following chapter. 

5.2.3 Volumetric Measurements 

The approximation of tumor size is often used as an end point in clinical trials of 

oncology therapy. Traditionally it has been assessed by measuring the cross-

sectional area, as suggested by the McDonald-criteria, which is calculated as the 

product of the lesion’s longest diameter and its longest perpendicular diameter 

[96]. Especially in our study these criteria appeared inappropriate, as they bear a 

high risk of error due to the typically irregular shaped GBM lesions and the 

regularly included necrotic areas. Therefore, we decided to determine tumor-

volume measurement as described in chapter 3.3.5 Statistical Analysis. Since we 

did not only investigate our segmentations of the whole tumor, but also of the 

subunits active tumor, necrotic area and edema, we were able to calculate the 

specific volume for each of these single qualities and compare them with each 

other and the whole lesion over the course of time. This allowed us to evaluate the 
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volume-development from different patients, different tumor qualities and 

sequences at the time of diagnosis and during follow-up. Especially in the 

evaluation of the follow-up data this gain of presumably objective, complementary 

information might be of great value. The precise knowledge of the volumetric 

development of active tumor, necrosis and edema could be a helpful tool in the 

explanation of individual symptoms caused by the lesion, in the assessment of 

response or reaction to different treatment strategies and in the estimation of 

prognosis and survival. In addition this approach could provide a new end point in 

clinical trials in oncology. Nevertheless, to prove the reliability and the usefulness 

as a prognostic marker, further validation has to be done.  

In the study published by Ertl-Wagner et al. in 2009 the authors assessed the 

reliability of tumor volume estimation by two semi-automatic segmentation 

methods and a manual method, comparing the results of 16 independent readers. 

They could show that semi-automated software systems are more reliable than 

manual measurements [48]. Challenging the classical cross-sectional volume 

estimation on T1 postcontrast images, proposed by the McDonald criteria, Wang 

et al. investigated the value of software supported volume measurement in high 

resolution 3D MRI [149]. Even though volumetric measurement allows a more 

accurate estimation of irregular shaped tumors, the results of cross sectional area 

measurement were almost comparable and revealed a high correlation. 

Nevertheless, Wang et al. underline that cross sectional area measurement 

retains the already mentioned limitations and that volumetric measurements might 

be more accurate, as confirmed in several other studies [45, 65, 71, 129, 163], 

whereas the proposed method was much more time consuming. Even though 

tumor volume might not be a prognostic factor, as shown by Iliadis et al., it still is 

of important oncologic value [71]. 

5.2.4 Tumor Modeling 

On the threshold of a new era of personalized medicine, the use of in silico cancer 

modeling is gaining more and more importance [44]. Nevertheless, just a few 

groups investigate simulation models based on MR technologies for the prediction 
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of tumor response in GBM [37, 150, 169]. Chen et al. could show in 2010 that 

such simulations are able to successfully predict the region of recurrence in 

glioblastoma. Precise data from imaging studies are of utmost importance to gain 

such results in silico oncology models. The better these data are the more 

accurate predictions can be achieved [130, 131]. For the validation of the models 

the analysis of segmentations from tumor images at diagnosis and during follow-

up is of utmost importance. A correlation between tumor texture and signal 

intensities in MRI expressed by histograms of signal intensities is a step forward in 

precisely differentiating between and calculating volumes of different tumor areas, 

e.g. necrotic and vital tumor. The value of such histogram data in in-silico oncology 

models and the onco-simulator is under investigation in different EU funded 

projects [6, 7]. The results of our study and our influence on the development of 

the DoctorEye software made a great contribution to the progress of these 

projects.  

5.3 Limitations and Perspectives 

To start with the limitations of our approach we had to realize, that the inter-

individual comparability of our results, i.e. from one patient to another or from one 

MRI study to another, was limited due to the still insufficient standardization of 

technical procedures in neuroimaging. For example, various diagnostic centers 

often use different MRI technology and settings. Moreover, even within the same 

center there often is a lack of standardization due to different preferences for 

operating procedures. In addition, the semiautomatic rendering we had to engage, 

proved to be very time consuming if high accuracy was required. 

On the other hand, the new methodological approach we investigated has the 

potential to provide important new information, without the need to perform 

additional investigations of the patient. Besides offering more convenience for the 

patient, this also spares time and money. Furthermore, we could gain objective 

data as a basis for the modeling of tumor growth or therapeutic response. It also 

could provide a complementary tool for objective documentation and follow-up of a 
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patient’s clinical record. As GBM exhibits a typical bimodal distribution of signal 

intensities it can be questioned whether other brain tumor entities express different 

shapes of the histogram of signal intensities as well. If shown to be so, this method 

would support a better characterization of brain tumors by MRI. 

Nevertheless, before this method can be transferred into routine clinical praxis, 

several prerequisites have to be provided, as mentioned earlier. First of all an 

improved standardization of the imaging procedures is of utmost importance as 

well as the extended validation of our results, for example by the help of PET-

scans. Finally, as human beings represent a very slow performing and potentially 

imprecise rendering device, an automatic segmentation tool definitely would 

improve the clinical applicability of the method. Therefore, with the help of our 

partners we are working on solutions for these issues. 



References 

107 

6 References 

1. Amiravis. Available from: http://www.amiravis.com/. 

2. Annotor. Available from: 
http://www.montefiore.ulg.ac.be/services/stochastic/biomod/doku.php?id=so
ftware. 

3. Internet Analysis Tools Registry. Available from: 
http://www.cma.mgh.harvard.edu/iatr/display.php?spec=all#hbp. 

4. Itk-SNAP. Available from: http://www.itksnap.org/. 

5. NeuroLib - Library for Image Processing. Available from: 
http://www.ia.unc.edu/dev/download/index.htm. 

6. p-medicine.  22.09.2012; Available from: http://p-medicine.eu. 

7. TUMOR. Available from: http://tumor-project.eu. 

8. AG, S. MAGNETOM Vision.  2002-2013; Available from: 
http://www.medical.siemens.com/webapp/wcs/stores/servlet/PSGenericDis
play?storeId=10001&langId=-1&catalogId=-1&pageId=77335. 

9. Alberta-Provincial-CNS-Tumor-Team (2009) Clinical Practice Guideline - 
Management of Glioblastoma Multiforme. Alberta Cancer Board. 

10. Alexiou, G.A., S. Tsiouris, A.P. Kyritsis, S. Voulgaris, M.I. Argyropoulou, 
A.D. Fotopoulos (2009) Glioma recurrence versus radiation necrosis: 
accuracy of current imaging modalities. Journal of Neuro-Oncology. 95(1): 
1-11. 

11. Andersen, A.P. (1978) Postoperative irradiation of glioblastomas. Results in 
a randomized series. Acta Radiol Oncol Radiat Phys Biol. 17(6): 475-84. 

12. Athanassiou, H., M. Synodinou, E. Maragoudakis, M. Paraskevaidis, C. 
Verigos, D. Misailidou, D. Antonadou, G. Saris, K. Beroukas, P. 
Karageorgis (2005) Randomized phase II study of temozolomide and 
radiotherapy compared with radiotherapy alone in newly diagnosed 
glioblastoma multiforme. J Clin Oncol. 23(10): 2372-7. 

13. Atlas, S.W. (2009) Magnetic Resonance Imaging of the Brain and Spine. 
4th ed: Lippincott Williams & Wilkins. 

14. Barai, S., G.P. Bandopadhayaya, P.K. Julka, K.K. Naik, A.K. Haloi, R. 

Kumar, A. Seith, A. Malhotra (2004) Role of 
99m

Tc-glucoheptonic acid brain 
single photon emission computed tomography in differentiation of recurrent 



References 

108 

brain tumour and post-radiation gliosis. Australasian Radiology. 48(3): 296-
301. 

15. Barai, S., Rajkamal, G.P. Bandopadhayaya, G.S. Pant, A.K. Haloi, A. 
Malhotra, H. Dhanpathi (2005) Thallium-201 versus Tc99m-glucoheptonate 
SPECT for evaluation of recurrent brain tumours: a within-subject 
comparison with pathological correlation. J Clin Neurosci. 12(1): 27-31. 

16. Barajas, R.F., Jr., J.S. Chang, M.R. Segal, A.T. Parsa, M.W. McDermott, 
M.S. Berger, S. Cha (2009) Differentiation of recurrent glioblastoma 
multiforme from radiation necrosis after external beam radiation therapy 
with dynamic susceptibility-weighted contrast-enhanced perfusion MR 
imaging. Radiology. 253(2): 486-96. 

17. Batchelor, T., W.T. Curry. Clinical manifestations and initial surgical 
approach to patients with malignant gliomas.  2011 Aug 31, 2011; Available 
from: www.uptodate.com. 

18. Batchelor, T., D. Louis. Pathogenesis and biology of malignant gliomas.  
2012 Feb 14, 2012; Available from: www.uptodate.com. 

19. Batchelor, T., H.A. Shih, B.S. Carter. Management of recurrent malignant 
gliomas.  2012 Jul 31, 2012; Available from: www.uptodate.com. 

20. Batchelor, T.T., D.G. Duda, E. di Tomaso, M. Ancukiewicz, S.R. Plotkin, E. 
Gerstner, A.F. Eichler, J. Drappatz, F.H. Hochberg, T. Benner, D.N. Louis, 
K.S. Cohen, H. Chea, A. Exarhopoulos, J.S. Loeffler, M.A. Moses, P. Ivy, 
A.G. Sorensen, P.Y. Wen, R.K. Jain (2010) Phase II study of cediranib, an 
oral pan-vascular endothelial growth factor receptor tyrosine kinase 
inhibitor, in patients with recurrent glioblastoma. Journal of Clinical 
Oncology (JCO). 28(17): 2817-23. 

21. Batchelor, T.T., A.G. Sorensen, E. di Tomaso, W.T. Zhang, D.G. Duda, 
K.S. Cohen, K.R. Kozak, D.P. Cahill, P.J. Chen, M. Zhu, M. Ancukiewicz, 
M.M. Mrugala, S. Plotkin, J. Drappatz, D.N. Louis, P. Ivy, D.T. Scadden, T. 
Benner, J.S. Loeffler, P.Y. Wen, R.K. Jain (2007) AZD2171, a pan-VEGF 
receptor tyrosine kinase inhibitor, normalizes tumor vasculature and 
alleviates edema in glioblastoma patients. Cancer Cell. 11(1): 83-95. 

22. Bauer, S., L.P. Nolte, M. Reyes. Fully automatic segmentation of brain 
tumor images using support vector machine classification in combination 
with hierarchical conditional random field regularization. in Medical Image 
Computing and Computer-Assisted Intervention – MICCAI 2011. 2011. 
Toronto, Canada. 

23. Bendszus, M., M. Platten [Neuroradiological response criteria for malignant 
gliomas]. Nervenarzt. 81(8): 950-5. 



References 

109 

24. Bendszus, M., M. Platten (2010) [Neuroradiological response criteria for 
malignant gliomas]. Nervenarzt. 81(8): 950-5. 

25. Brandes, A.A., E. Franceschi, A. Tosoni, V. Blatt, A. Pession, G. Tallini, R. 
Bertorelle, S. Bartolini, F. Calbucci, A. Andreoli, G. Frezza, M. Leonardi, F. 
Spagnolli, M. Ermani (2008) MGMT promoter methylation status can predict 
the incidence and outcome of pseudoprogression after concomitant 
radiochemotherapy in newly diagnosed glioblastoma patients. Journal of 
Clinical Oncology (JCO). 26(13): 2192-7. 

26. Brandsma, D., L. Stalpers, W. Taal, P. Sminia, M.J. van den Bent (2008) 
Clinical features, mechanisms, and management of pseudoprogression in 
malignant gliomas. Lancet Oncology. 9(5): 453-61. 

27. Buatti, J., T.C. Ryken, M.C. Smith, P. Sneed, J.H. Suh, M. Mehta, J.J. 
Olson (2008) Radiation therapy of pathologically confirmed newly 
diagnosed glioblastoma in adults. Journal of Neuro-Oncology. 89: 313-337. 

28. Burger, P.C., E.R. Heinz, T. Shibata, P. Kleihues (1988) Topographic 
anatomy and CT correlations in the untreated glioblastoma multiforme. J 
Neurosurg. 68(5): 698-704. 

29. Cairncross, J.G., J.H. Pexman, M.P. Rathbone, R.F. DelMaestro (1985) 
Postoperative contrast enhancement in patients with brain tumor. Ann 
Neurol. 17(6): 570-2. 

30. Caresia, A.P., J. Castell-Conesa, M. Negre, A. Mestre, G. Cuberas, A. 
Manes, X. Maldonado (2006) Thallium-201SPECT assessment in the 
detection of recurrences of treated gliomas and ependymomas. Clinical and 
Translational Oncology. 8(10): 750-4. 

31. Caroline, I., M.A. Rosenthal (2012) Imaging modalities in high-grade 
gliomas: pseudoprogression, recurrence, or necrosis? Journal of Clinical 
Neuroscience. 19(5): 633-7. 

32. Chamberlain, M.C. (2008) Pseudoprogression in glioblastoma. J Clin Oncol. 
26(26): 4359; author reply 4359-60. 

33. Chamberlain, M.C., M.J. Glantz, L. Chalmers, A. Van Horn, A.E. Sloan 
(2007) Early necrosis following concurrent Temodar and radiotherapy in 
patients with glioblastoma. Journal of Neuro-Oncology. 82(1): 81-3. 

34. Chang, S.M., I.F. Parney, W. Huang, F.A. Anderson, Jr., A.L. Asher, M. 
Bernstein, K.O. Lillehei, H. Brem, M.S. Berger, E.R. Laws (2005) Patterns 
of care for adults with newly diagnosed malignant glioma. JAMA. 293(5): 
557-64. 

35. Chang, S.M., I.F. Parney, M. McDermott, F.G. Barker, 2nd, M.H. Schmidt, 
W. Huang, E.R. Laws, Jr., K.O. Lillehei, M. Bernstein, H. Brem, A.E. Sloan, 



References 

110 

M. Berger (2003) Perioperative complications and neurological outcomes of 
first and second craniotomies among patients enrolled in the Glioma 
Outcome Project. J Neurosurg. 98(6): 1175-81. 

36. Chao, S.T., J.H. Suh, S. Raja, S.Y. Lee, G. Barnett (2001) The sensitivity 
and specificity of FDG PET in distinguishing recurrent brain tumor from 
radionecrosis in patients treated with stereotactic radiosurgery. International 
Journal of Cancer. 96(3): 191-197. 

37. Chen, L.L., S. Ulmer, T.S. Deisboeck (2010) An agent-based model 
identifies MRI regions of probable tumor invasion in a patient with 
glioblastoma. Physics in Medicine and Biology. 55(2): 329-338. 

38. Chernoff, D., P. Stark. Principles of magnetic resonance imaging.  2012 
05.04.12; Available from: http://www.uptodate.com. 

39. Choubey, M., S. Agrawal (2012) A Fully Automatic Approach to Detect 
Brain Cancer Using Random Walk Algorithm. International Journal of 
Computer Technology and Applications. 03(01): 265-268. 

40. Clark, M.C., L.O. Hall, D.B. Goldgof, R. Velthuizen, F.R. Murtagh, M.S. 
Silbiger (1998) Automatic tumor segmentation using knowledge-based 
techniques. IEEE Trans Med Imaging. 17(2): 187-201. 

41. Clarke, J.L., S.M. Chang (2012) Neuroimaging: diagnosis and response 
assessment in glioblastoma. The Cancer Journal. 18(1): 26-31. 

42. Corso, J.J., E. Sharon, S. Dube, S. El-Saden, U. Sinha, A. Yuille (2008) 
Efficient multilevel brain tumor segmentation with integrated bayesian 
model classification. IEEE Trans Med Imaging. 27(5): 629-40. 

43. de Wit, M.C., H.G. de Bruin, W. Eijkenboom, P.A. Sillevis Smitt, M.J. van 
den Bent (2004) Immediate post-radiotherapy changes in malignant glioma 
can mimic tumor progression. Neurology. 63(3): 535-7. 

44. Deisboeck, T.S., L. Zhang, J. Yoon, J. Costa (2009) In silico cancer 
modeling: is it ready for prime time? Nature Clinical Practice Oncology. 
6(1): 34-42. 

45. Dempsey, M.F., B.R. Condon, D.M. Hadley (2005) Measurement of tumor 
"size" in recurrent malignant glioma: 1D, 2D, or 3D? AJNR American 
Journal of Neuroradiology. 26(4): 770-776. 

46. Drabycz, S., G. Roldan, P. de Robles, D. Adler, J.B. McIntyre, A.M. 
Magliocco, J.G. Cairncross, J.R. Mitchell (2010) An analysis of image 
texture, tumor location, and MGMT promoter methylation in glioblastoma 
using magnetic resonance imaging. Neuroimage. 49(2): 1398-1405. 

47. Eisenhauer, E.A., P. Therasse, J. Bogaerts, L.H. Schwartz, D. Sargent, R. 



References 

111 

Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. 
Shankar, L. Dodd, R. Kaplan, D. Lacombe, J. Verweij (2009) New response 
evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). 
Eur J Cancer. 45(2): 228-47. 

48. Ertl-Wagner, B.B., J.D. Blume, D. Peck, J.K. Udupa, B. Herman, A. 
Levering, I.M. Schmalfuss (2009) Reliability of tumor volume estimation 
from MR images in patients with malignant glioma. Results from the 
American College of Radiology Imaging Network (ACRIN) 6662 Trial. 
European Radiology. 19(3): 599-609. 

49. Farmaki, C., A spatially adaptive active contour approach for improving 
semi-automatic cancer image segmentation, in Department of Computer 
Science. 2009, University of Crete: Heraklion. 

50. Farmaki, C., K. Marias, V. Sakkalis, N. Graf (2010) Spatially adaptive active 
contours: a semi-automatic tumor segmentation framework. International 
Journal of Computer Assisted Radiology and Surgery. 5(4): 369-384. 

51. Fischer, A.W., Holfelder (1930) Lokales Amyloid im Gehirn. Deutsche 
Zeitschrift für Chirurgie. 227(1): 475-483. 

52. Friedman, H.S., M.D. Prados, P.Y. Wen, T. Mikkelsen, D. Schiff, L.E. 
Abrey, W.K. Yung, N. Paleologos, M.K. Nicholas, R. Jensen, J. 
Vredenburgh, J. Huang, M. Zheng, T. Cloughesy (2009) Bevacizumab 
alone and in combination with irinotecan in recurrent glioblastoma. Journal 
of Clinical Oncology (JCO). 27(28): 4733-40. 

53. Galanis, E., J.C. Buckner, M.J. Maurer, R. Sykora, R. Castillo, K.V. 
Ballman, B.J. Erickson (2006) Validation of neuroradiologic response 
assessment in gliomas: measurement by RECIST, two-dimensional, 
computer-assisted tumor area, and computer-assisted tumor volume 
methods. Neuro Oncol. 8(2): 156-65. 

54. Gerstner, E.R., A.G. Sorensen, R.K. Jain, T.T. Batchelor (2008) Advances 
in neuroimaging techniques for the evaluation of tumor growth, vascular 
permeability, and angiogenesis in gliomas. Current Opinion in Neurology. 
21(6): 728-735. 

55. Glass, J.P., T.L. Hwang, M.E. Leavens, H.I. Libshitz (1984) Cerebral 
radiation necrosis following treatment of extracranial malignancies. Cancer. 
54(9): 1966-72. 

56. Gomez-Rio, M., A. Rodriguez-Fernandez, C. Ramos-Font, E. Lopez-
Ramirez, J.M. Llamas-Elvira (2008) Diagnostic accuracy of 201Thallium-
SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. 
European Journal of Nuclear Medicine and Molecular Imaging. 35(5): 966-
75. 



References 

112 

57. Grosu, A.L., M. Bamberg (2011) Gliome. Der Onkologe. 17: 6-8. 

58. Hall, E.L., R.P. Kruger, S.J. Dwyer, D.L. Hall, R.W. Mclaren, G.S. Lodwick 
(1971) A Survey of Preprocessing and Feature Extraction Techniques for 
Radiographic Images. IEEE Transactions on Computers. C-20(9): 1032-
1044. 

59. Halperin, E.C., J. Herndon, S.C. Schold, M. Brown, N. Vick, J.G. 
Cairncross, D.R. Macdonald, L. Gaspar, B. Fischer, E. Dropcho, S. 
Rosenfeld, R. Morowitz, J. Piepmeier, W. Hait, T. Byrne, M. Salter, J. 
Imperato, J. Khandekar, N. Paleologos, P. Burger, G.C. Bentel, A. 
Friedman (1996) A phase III randomized prospective trial of external beam 
radiotherapy, mitomycin C, carmustine, and 6-mercaptopurine for the 
treatment of adults with anaplastic glioma of the brain. CNS Cancer 
Consortium. Int J Radiat Oncol Biol Phys. 34(4): 793-802. 

60. Happold, C., P. Roth, W. Wick, N. Schmidt, A.M. Florea, M. Silginer, G. 
Reifenberger, M. Weller Distinct molecular mechanisms of acquired 
resistance to temozolomide in glioblastoma cells. Journal of 
Neurochemistry. 

61. Harati, V., R. Khayati, A. Farzan (2011) Fully automated tumor 
segmentation based on improved fuzzy connectedness algorithm in brain 
MR images. Computers in Biology and Medicine. 41(7): 483-92. 

62. Hart, M.G., R. Grant, R. Garside, G. Rogers, M. Somerville, K. Stein (2008) 
Temozolomide for high grade glioma. Cochrane Database Syst Rev(4): 
CD007415. 

63. Hegi, M.E., L. Liu, J.G. Herman, R. Stupp, W. Wick, M. Weller, M.P. Mehta, 
M.R. Gilbert (2008) Correlation of O6-methylguanine methyltransferase 
(MGMT) promoter methylation with clinical outcomes in glioblastoma and 
clinical strategies to modulate MGMT activity. J Clin Oncol. 26(25): 4189-
99. 

64. Hein, P.A., C.J. Eskey, J.F. Dunn, E.B. Hug (2004) Diffusion-weighted 
imaging in the follow-up of treated high-grade gliomas: tumor recurrence 
versus radiation injury. AJNR American Journal of Neuroradiology. 25(2): 
201-9. 

65. Henson, J.W., S. Ulmer, G.J. Harris (2008) Brain tumor imaging in clinical 
trials. AJNR American Journal of Neuroradiology. 29(3): 419-424. 

66. Hoffman, W.F., V.A. Levin, C.B. Wilson (1979) Evaluation of malignant 
glioma patients during the postirradiation period. J Neurosurg. 50(5): 624-8. 

67. Houillier, C., J. Lejeune, A. Benouaich-Amiel, F. Laigle-Donadey, E. 
Criniere, K. Mokhtari, J. Thillet, J.Y. Delattre, K. Hoang-Xuan, M. Sanson 



References 

113 

(2006) Prognostic impact of molecular markers in a series of 220 primary 
glioblastomas. Cancer. 106(10): 2218-23. 

68. Hu, L.S., L.C. Baxter, K.A. Smith, B.G. Feuerstein, J.P. Karis, J.M. 
Eschbacher, S.W. Coons, P. Nakaji, R.F. Yeh, J. Debbins, J.E. Heiserman 
(2009) Relative cerebral blood volume values to differentiate high-grade 
glioma recurrence from posttreatment radiation effect: direct correlation 
between image-guided tissue histopathology and localized dynamic 
susceptibility-weighted contrast-enhanced perfusion MR imaging 
measurements. AJNR American Journal of Neuroradiology. 30(3): 552-8. 

69. Hubner, K.F., J.T. Purvis, S.M. Mahaley, Jr., J.T. Robertson, S. Rogers, 
W.D. Gibbs, P. King, C.L. Partain (1982) Brain tumor imaging by positron 
emission computed tomography using 11C-labeled amino acids. Journal of 
Computer Assisted Tomography. 6(3): 544-50. 

70. Ibanez, L., W. Schroeder, L. Ng, J. Cates. The ITK Software Guide. Second 
Edition.  2005; Available from: http://www.itk.org/ItkSoftwareGuide.pdf. 

71. Iliadis, G., P. Selviaridis, A. Kalogera-Fountzila, A. Fragkoulidi, D. Baltas, N. 
Tselis, A. Chatzisotiriou, D. Misailidou, N. Zamboglou, G. Fountzilas (2009) 
The importance of tumor volume in the prognosis of patients with 
glioblastoma: comparison of computerized volumetry and geometric 
models. Strahlentherapie und Onkologie. 185(11): 743-750. 

72. Isselbacher, K.J. (1972) Sugar and amino acid transport by cells in culture--
differences between normal and malignant cells. The New England Journal 
of Medicine. 286(17): 929-933. 

73. Kassner, A., R.E. Thornhill (2010) Texture analysis: a review of neurologic 
MR imaging applications. AJNR American Journal of Neuroradiology. 31(5): 
809-816. 

74. Kaus, M.R., S.K. Warfield, A. Nabavi, P.M. Black, F.A. Jolesz, R. Kikinis 
(2001) Automated segmentation of MR images of brain tumors. Radiology. 
218(2): 586-91. 

75. Kleihues, P., P.C. Burger, B.W. Scheithauer (1993) The new WHO 
classification of brain tumours. Brain Pathol. 3(3): 255-68. 

76. Kleihues, P., L.H. Sobin (2000) World Health Organization classification of 
tumors. Cancer. 88(12): 2887. 

77. Kortmann, R.D. (2011) Strahlentherapie bei Hirngliomen im 
Erwachsenenalter. Der Onkologe. 17: 37-43. 

78. Koukourakis, G.V., V. Kouloulias, G. Zacharias, C. Papadimitriou, P. 
Pantelakos, G. Maravelis, A. Fotineas, I. Beli, D. Chaldeopoulos, J. 
Kouvaris (2009) Temozolomide with radiation therapy in high grade brain 



References 

114 

gliomas: pharmaceuticals considerations and efficacy; a review article. 
Molecules. 14(4): 1561-77. 

79. Kreisl, T.N., L. Kim, K. Moore, P. Duic, C. Royce, I. Stroud, N. Garren, M. 
Mackey, J.A. Butman, K. Camphausen, J. Park, P.S. Albert, H.A. Fine 
(2009) Phase II trial of single-agent bevacizumab followed by bevacizumab 
plus irinotecan at tumor progression in recurrent glioblastoma. Journal of 
Clinical Oncology (JCO). 27(5): 740-5. 

80. Krex, D., B. Klink, C. Hartmann, A. von Deimling, T. Pietsch, M. Simon, M. 
Sabel, J.P. Steinbach, O. Heese, G. Reifenberger, M. Weller, G. Schackert 
(2007) Long-term survival with glioblastoma multiforme. Brain. 130(Pt 10): 
2596-606. 

81. Kumar, A.J., N.E. Leeds, G.N. Fuller, P. Van Tassel, M.H. Maor, R.E. 
Sawaya, V.A. Levin (2000) Malignant gliomas: MR imaging spectrum of 
radiation therapy- and chemotherapy-induced necrosis of the brain after 
treatment. Radiology. 217(2): 377-84. 

82. Kumar, M., K. Mehta (2011) A Modified Method to Segment Sharp and 
Unsharp Edged Brain Tumors in 2 D MRI Using Automatic Seeded Region 
Growing Method. International Journal of Soft Computing and Engineering 
(IJSCE). 1(2): 37-40. 

83. la Fougere, C., B. Suchorska, P. Bartenstein, F.W. Kreth, J.C. Tonn (2011) 
Molecular imaging of gliomas with PET: opportunities and limitations. 
Neuro-Oncology. 13(8): 806-819. 

84. Lacroix, M., D. Abi-Said, D.R. Fourney, Z.L. Gokaslan, W. Shi, F. DeMonte, 
F.F. Lang, I.E. McCutcheon, S.J. Hassenbusch, E. Holland, K. Hess, C. 
Michael, D. Miller, R. Sawaya (2001) A multivariate analysis of 416 patients 
with glioblastoma multiforme: prognosis, extent of resection, and survival. J 
Neurosurg. 95(2): 190-8. 

85. Langen, K.J., M. Jarosch, H. Muhlensiepen, K. Hamacher, S. Broer, P. 
Jansen, K. Zilles, H.H. Coenen (2003) Comparison of fluorotyrosines and 
methionine uptake in F98 rat gliomas. Nuclear Medicine and Biology. 30(5): 
501-8. 

86. Laprie, A. (2009) [Proton magnetic resonance spectroscopic imaging and 
other types of metabolic imaging for radiotherapy planning in adult and 
pediatric high-grade gliomas]. Cancer Radiother. 13(6-7): 556-61. 

87. Le Jeune, F.P., F. Dubois, S. Blond, M. Steinling (2006) Sestamibi 
technetium-99m brain single-photon emission computed tomography to 
identify recurrent glioma in adults: 201 studies. Journal of Neuro-Oncology. 
77(2): 177-183. 



References 

115 

88. Lee, C.H., S. Wang, A. Murtha, M.R. Brown, R. Greiner. Segmenting brain 
tumors using pseudo-conditional random fields. in Medical Image 
Computing and Computer-Assisted Intervention – MICCAI 2008. 2008. New 
York, NY, USA. 

89. Lerski, R.A., K. Straughan, L.R. Schad, D. Boyce, S. Bluml, I. Zuna (1993) 
MR image texture analysis--an approach to tissue characterization. Magn 
Reson Imaging. 11(6): 873-87. 

90. Lin, I., H. Chao. CMAS: a rich media annotation system for medical 
imaging. in Medical Imaging 2006: PACS and Imaging Informatics. 2006. 
San Diego, CA, USA: SPIE. 

91. Louis, D., D. Schiff, T. Batchelor. Classification of gliomas.  2012; Available 
from: www.uptodate.com. 

92. Louis, D.N. (2006) Molecular pathology of malignant gliomas. Annu Rev 
Pathol. 1: 97-117. 

93. Louis, D.N., H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. 
Jouvet, B.W. Scheithauer, P. Kleihues (2007) The 2007 WHO classification 
of tumours of the central nervous system. Acta Neuropathol. 114(2): 97-
109. 

94. Louis, D.N., S.L. Pomeroy, J.G. Cairncross (2002) Focus on central 
nervous system neoplasia. Cancer Cell. 1(2): 125-8. 

95. Macdonald, D.R., T.L. Cascino, S.C. Schold, Jr., J.G. Cairncross (1990) 
Response criteria for phase II studies of supratentorial malignant glioma. J 
Clin Oncol. 8(7): 1277-80. 

96. Macdonald, D.R., T.L. Cascino, S.C. Schold, Jr., J.G. Cairncross (1990) 
Response criteria for phase II studies of supratentorial malignant glioma. 
Journal of Clinical Oncology (JCO). 8(7): 1277-80. 

97. Mangla, R., G. Singh, D. Ziegelitz, M.T. Milano, D.N. Korones, J. Zhong, 
S.E. Ekholm (2010) Changes in relative cerebral blood volume 1 month 
after radiation-temozolomide therapy can help predict overall survival in 
patients with glioblastoma. Radiology. 256(2): 575-84. 

98. Mazzara, G.P., R.P. Velthuizen, J.L. Pearlman, H.M. Greenberg, H. 
Wagner (2004) Brain tumor target volume determination for radiation 
treatment planning through automated MRI segmentation. Int J Radiat 
Oncol Biol Phys. 59(1): 300-12. 

99. Mechouche, A., X. Morandi, C. Golbreich, B. Gibaud. A hybrid system for 
the semantic annotation of sulco-gyral anatomy in MRI images. in 11th 
International Conference in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2008. 2008. New York, NY, USA. 



References 

116 

100. Mehrkens, J.H., G. Popperl, W. Rachinger, J. Herms, K. Seelos, K. Tatsch, 
J.C. Tonn, F.W. Kreth (2008) The positive predictive value of O-(2-
[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma 
recurrence after multimodal treatment. Journal of Neuro-Oncology. 88(1): 
27-35. 

101. Miller, A.B., B. Hoogstraten, M. Staquet, A. Winkler (1981) Reporting results 
of cancer treatment. Cancer. 47(1): 207-14. 

102. Mohd Saad, N., S.A.R. Abi-Bakar, S. Muda, M. Mokji, A.R. Abdullah. 
Automated Region Growing for Segmentation of Brain Lesion in Diffusion-
weighted MRI. in International MultiConference of Engineers and Computer 
Scientists 2012 (IMECS 2012). 2012. Hong Kong. 

103. Najafi, M., H. Soltanian-Zadeh, K. Jafari-Khouzani, L. Scarpace, T. 
Mikkelsen (2012) Prediction of glioblastoma multiform response to 
bevacizumab treatment using multi-parametric MRI. PLoS One. 7(1): 
e29945. 

104. Nakajima, T., T. Kumabe, M. Kanamori, R. Saito, M. Tashiro, M. Watanabe, 
T. Tominaga (2009) Differential diagnosis between radiation necrosis and 
glioma progression using sequential proton magnetic resonance 
spectroscopy and methionine positron emission tomography. Neurologia 
medico-chirurgica (Tokyo). 49(9): 394-401. 

105. Norden, A.D., J. Drappatz, A. Muzikansky, K. David, M. Gerard, M.B. 
McNamara, P. Phan, A. Ross, S. Kesari, P.Y. Wen (2009) An exploratory 
survival analysis of anti-angiogenic therapy for recurrent malignant glioma. 
Journal of Neuro-Oncology. 92(2): 149-55. 

106. Noushmehr, H., D.J. Weisenberger, K. Diefes, H.S. Phillips, K. Pujara, B.P. 
Berman, F. Pan, C.E. Pelloski, E.P. Sulman, K.P. Bhat, R.G. Verhaak, K.A. 
Hoadley, D.N. Hayes, C.M. Perou, H.K. Schmidt, L. Ding, R.K. Wilson, D. 
Van Den Berg, H. Shen, H. Bengtsson, P. Neuvial, L.M. Cope, J. Buckley, 
J.G. Herman, S.B. Baylin, P.W. Laird, K. Aldape Identification of a CpG 
island methylator phenotype that defines a distinct subgroup of glioma. 
Cancer Cell. 17(5): 510-22. 

107. Payer, F. (2011) [Pseudoprogression or pseudoresponse: a challenge for 
the diagnostic imaging in Glioblastoma multiforme]. Wiener Medizinische 
Wochenschrift. 161(1-2): 13-19. 

108. Pednekar, A.S., I.A. Kakadiaris (2006) Image segmentation based on fuzzy 
connectedness using dynamic weights. IEEE Trans Image Process. 15(6): 
1555-62. 

109. Peng, H., F. Long, E.W. Myers (2009) VANO: a volume-object image 
annotation system. Bioinformatics. 25(5): 695-7. 



References 

117 

110. Perry, A., R.E. Schmidt (2006) Cancer therapy-associated CNS 
neuropathology: an update and review of the literature. Acta 
Neuropathologica. 111(3): 197-212. 

111. Pichlmeier, U., A. Bink, G. Schackert, W. Stummer (2008) Resection and 
survival in glioblastoma multiforme: an RTOG recursive partitioning analysis 
of ALA study patients. Neuro Oncol. 10(6): 1025-34. 

112. Plotkin, M., J. Eisenacher, H. Bruhn, R. Wurm, R. Michel, F. Stockhammer, 
A. Feussner, O. Dudeck, P. Wust, R. Felix, H. Amthauer (2004) 123I-IMT 
SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of 
recurrent or residual gliomas: a comparative study. Journal of Neuro-
Oncology. 70(1): 49-58. 

113. Pope, W.B., X.J. Qiao, H.J. Kim, A. Lai, P. Nghiemphu, X. Xue, B.M. 
Ellingson, D. Schiff, D. Aregawi, S. Cha, V.K. Puduvalli, J. Wu, W.K. Yung, 
G.S. Young, J. Vredenburgh, D. Barboriak, L.E. Abrey, T. Mikkelsen, R. 
Jain, N.A. Paleologos, P.L. Rn, M. Prados, J. Goldin, P.Y. Wen, T. 
Cloughesy (2012) Apparent diffusion coefficient histogram analysis stratifies 
progression-free and overall survival in patients with recurrent GBM treated 
with bevacizumab: a multi-center study. Journal of Neuro-Oncology. 108(3): 
491-498. 

114. Pöpperl, G., C. Gotz, W. Rachinger, O. Schnell, F.J. Gildehaus, J.C. Tonn, 
K. Tatsch (2006) Serial O-(2-[(18)F]fluoroethyl)-L: -tyrosine PET for 
monitoring the effects of intracavitary radioimmunotherapy in patients with 
malignant glioma. European Journal of Nuclear Medicine and Molecular 
Imaging. 33(7): 792-800. 

115. Rachinger, W., C. Goetz, G. Popperl, F.J. Gildehaus, F.W. Kreth, M. 
Holtmannspotter, J. Herms, W. Koch, K. Tatsch, J.C. Tonn (2005) Positron 
emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic 
resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery. 
57(3): 505-511. 

116. Rees, J. (2002) Glioma Therapy. ANCR. 2(2): 11. 

117. Reiser, M., F.-P. Kuhn, J. Debus (2011) Duale Reihe Radiologie. 3rd ed: 
Thieme, Stuttgart. 

118. Ringel, F., J. Gempt, N. Buchmann, S. Krieg, H. Pape, E. Shiban, Y.M. 
Ryang, B. Meyer (2011) Stellenwert der Tumorresektion in der 
interdisziplinären Behandlung hirneigener Tumore. Der Onkologe. 17: 31-
36. 

119. Roelcke, U., E.W. Radu, K. von Ammon, O. Hausmann, R.P. Maguire, K.L. 
Leenders (1995) Alteration of blood-brain barrier in human brain tumors: 
comparison of [18F]fluorodeoxyglucose, [11C]methionine and rubidium-82 



References 

118 

using PET. Journal of the Neurological Sciences. 132(1): 20-27. 

120. Rosenfeld, A. (1970) Connectivity in digital pictures. Journal of the 
Association for Computing Machinery (JACM). 17(1): 146-160. 

121. Ruben, J.D., M. Dally, M. Bailey, R. Smith, C.A. McLean, P. Fedele (2006) 
Cerebral radiation necrosis: incidence, outcomes, and risk factors with 
emphasis on radiation parameters and chemotherapy. International Journal 
of Radiation Oncology • Biology • Physics. 65(2): 499-508. 

122. Sasajima, T., T. Miyagawa, T. Oku, J.G. Gelovani, R. Finn, R. Blasberg 
(2004) Proliferation-dependent changes in amino acid transport and 
glucose metabolism in glioma cell lines. European Journal of Nuclear 
Medicine and Molecular Imaging. 31(9): 1244-1256. 

123. Scott, J.N., P.M. Brasher, R.J. Sevick, N.B. Rewcastle, P.A. Forsyth (2002) 
How often are nonenhancing supratentorial gliomas malignant? A 
population study. Neurology. 59(6): 947-9. 

124. Shah, G.D., S. Kesari, R. Xu, T.T. Batchelor, A.M. O'Neill, F.H. Hochberg, 
B. Levy, J. Bradshaw, P.Y. Wen (2006) Comparison of linear and 
volumetric criteria in assessing tumor response in adult high-grade gliomas. 
Neuro Oncol. 8(1): 38-46. 

125. Shih, H.A., T. Batchelor. Adjuvant radiation therapy for malignant gliomas.  
2012; Available from: www.uptodate.com. 

126. Skounakis, E., C. Farmaki, V. Sakkalis, A. Roniotis, K. Banitsas, N. Graf, K. 
Marias (2010) DoctorEye: A clinically driven multifunctional platform,for 
accurate processing of tumors in medical images. The Open Medical 
Informatics Journal. 4: 105-115. 

127. Skounakis, E., V. Sakkalis, K. Marias, K. Banitsas, N. Graf. DoctorEye: A 
multifunctional open platform for fast annotation and visualization of tumors 
in medical images. in 31st Annual international conference of the IEEE 
Engineering in Medicine and Biology Society. 2009. Minneapolis, 
Minnesota, USA. 

128. Skounakis, E., V. Sakkalis, K. Marias, K. Banitsas, N. Graf, DoctorEye: A 
multifunctional open platform for fast annotation and visualization of tumors 
in medical images, in Engineering in Medicine and Biology Society, 2009. 
EMBC 2009. Annual International Conference of the IEEE. 2009: 
Minneapolis, Minnesota. p. 3759-3762. 

129. Sorensen, A.G., T.T. Batchelor, P.Y. Wen, W.T. Zhang, R.K. Jain (2008) 
Response criteria for glioma. Nature Clinical Practice Oncology. 5(11): 634-
644. 

130. Stamatakos, G.S., V.P. Antipas, N.K. Uzunoglu (2006) A spatiotemporal, 



References 

119 

patient individualized simulation model of solid tumor response to 
chemotherapy in vivo: the paradigm of glioblastoma multiforme treated by 
temozolomide. IEEE Transactions on Biomedical Engineering. 53(8): 1467-
1477. 

131. Stamatakos, G.S., D.D. Dionysiou, N.M. Graf, N.A. Sofra, C. Desmedt, A. 
Hoppe, N.K. Uzunoglu, M. Tsiknakis (2007) The "Oncosimulator": a 
multilevel, clinically oriented simulation system of tumor growth and 
organism response to therapeutic schemes. Towards the clinical evaluation 
of in silico oncology. Conf Proc IEEE Eng Med Biol Soc. 2007: 6629-32. 

132. Stummer, W., U. Pichlmeier, T. Meinel, O.D. Wiestler, F. Zanella, H.J. 
Reulen (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for 
resection of malignant glioma: a randomised controlled multicentre phase III 
trial. Lancet Oncol. 7(5): 392-401. 

133. Stummer, W., H.J. Reulen, T. Meinel, U. Pichlmeier, W. Schumacher, J.C. 
Tonn, V. Rohde, F. Oppel, B. Turowski, C. Woiciechowsky, K. Franz, T. 
Pietsch (2008) Extent of resection and survival in glioblastoma multiforme: 
identification of and adjustment for bias. Neurosurgery. 62(3): 564-76; 
discussion 564-76. 

134. Stupp, R., W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. 
Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. 
Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, 
J.G. Cairncross, E. Eisenhauer, R.O. Mirimanoff (2005) Radiotherapy plus 
concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 
352(10): 987-96. 

135. Sun, D., Q. Liu, W. Liu, W. Hu (2000) Clinical application of 201Tl SPECT 
imaging of brain tumors. The Journal of Nuclear Medicine. 41(1): 5-10. 

136. Taal, W., D. Brandsma, H.G. de Bruin, J.E. Bromberg, A.T. Swaak-Kragten, 
P.A. Smitt, C.A. van Es, M.J. van den Bent (2008) Incidence of early 
pseudo-progression in a cohort of malignant glioma patients treated with 
chemoirradiation with temozolomide. Cancer. 113(2): 405-10. 

137. Terakawa, Y., N. Tsuyuguchi, Y. Iwai, K. Yamanaka, S. Higashiyama, T. 
Takami, K. Ohata (2008) Diagnostic accuracy of 11C-methionine PET for 
differentiation of recurrent brain tumors from radiation necrosis after 
radiotherapy. The Journal of Nuclear Medicine. 49(5): 694-9. 

138. Therasse, P., S.G. Arbuck, E.A. Eisenhauer, J. Wanders, R.S. Kaplan, L. 
Rubinstein, J. Verweij, M. Van Glabbeke, A.T. van Oosterom, M.C. 
Christian, S.G. Gwyther (2000) New guidelines to evaluate the response to 
treatment in solid tumors. European Organization for Research and 
Treatment of Cancer, National Cancer Institute of the United States, 
National Cancer Institute of Canada. J Natl Cancer Inst. 92(3): 205-16. 



References 

120 

139. Tie, J., D.H. Gunawardana, M.A. Rosenthal (2008) Differentiation of tumor 
recurrence from radiation necrosis in high-grade gliomas using 201Tl-
SPECT. Journal of Clinical Neuroscience. 15(12): 1327-34. 

140. Tourassi, G.D. (1999) Journey toward computer-aided diagnosis: role of 
image texture analysis. Radiology. 213(2): 317-320. 

141. Tsien, C., C.J. Galban, T.L. Chenevert, T.D. Johnson, D.A. Hamstra, P.C. 
Sundgren, L. Junck, C.R. Meyer, A. Rehemtulla, T. Lawrence, B.D. Ross 
(2010) Parametric response map as an imaging biomarker to distinguish 
progression from pseudoprogression in high-grade glioma. Journal of 
Clinical Oncology (JCO). 28(13): 2293-9. 

142. Udupa, J.K., S. Samarasekera (1996) Fuzzy Connectedness and Object 
Definition: Theory, Algorithms, and Applications in Image Segmentation. 
Graphical Models and Image Processing. 58(3): 246-261. 

143. Ueki, K., Y. Ono, J.W. Henson, J.T. Efird, A. von Deimling, D.N. Louis 
(1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas 
and are inversely correlated. Cancer Res. 56(1): 150-3. 

144. Ullrich, R.T., L. Kracht, A. Brunn, K. Herholz, P. Frommolt, H. Miletic, M. 
Deckert, W.D. Heiss, A.H. Jacobs (2009) Methyl-L-11C-methionine PET as 
a diagnostic marker for malignant progression in patients with glioma. The 
Journal of Nuclear Medicine. 50(12): 1962-1968. 

145. Vaidyanathan, M., L.P. Clarke, R.P. Velthuizen, S. Phuphanich, A.M. 
Bensaid, L.O. Hall, J.C. Bezdek, H. Greenberg, A. Trotti, M. Silbiger (1995) 
Comparison of supervised MRI segmentation methods for tumor volume 
determination during therapy. Magn Reson Imaging. 13(5): 719-28. 

146. Van Laere, K., S. Ceyssens, F. Van Calenbergh, T. de Groot, J. Menten, P. 
Flamen, G. Bormans, L. Mortelmans (2005) Direct comparison of 18F-FDG 
and 11C-methionine PET in suspected recurrence of glioma: sensitivity, 
inter-observer variability and prognostic value. European Journal of Nuclear 
Medicine and Molecular Imaging. 32(1): 39-51. 

147. Verhaak, R.G., K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, 
C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. 
O'Kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. 
Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, 
A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, 
G. Getz, C.M. Perou, D.N. Hayes Integrated genomic analysis identifies 
clinically relevant subtypes of glioblastoma characterized by abnormalities 
in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17(1): 98-110. 

148. Vredenburgh, J.J., A. Desjardins, J.E. Herndon, 2nd, J. Marcello, D.A. 
Reardon, J.A. Quinn, J.N. Rich, S. Sathornsumetee, S. Gururangan, J. 



References 

121 

Sampson, M. Wagner, L. Bailey, D.D. Bigner, A.H. Friedman, H.S. 
Friedman (2007) Bevacizumab plus irinotecan in recurrent glioblastoma 
multiforme. Journal of Clinical Oncology (JCO). 25(30): 4722-9. 

149. Wang, M.Y., J.L. Cheng, Y.H. Han, Y.L. Li, J.P. Dai, D.P. Shi (2012) 
Measurement of tumor size in adult glioblastoma: classical cross-sectional 
criteria on 2D MRI or volumetric criteria on high resolution 3D MRI? 
European Journal of Radiology. 81(9): 2370-2374. 

150. Wang, Z., T. Deisboeck (2008) Computational modeling of brain tumors: 
discrete, continuum or hybrid? Scientific Modeling and Simulation SMNS. 
15(1-3): 381-393. 

151. Warmuth-Metz, M. (2011) Neuroradiologie bei Gliomen und Metastasen. 
Der Onkologe. 17: 18-30. 

152. Warren, K.E., N. Patronas, A.A. Aikin, P.S. Albert, F.M. Balis (2001) 
Comparison of one-, two-, and three-dimensional measurements of 
childhood brain tumors. J Natl Cancer Inst. 93(18): 1401-5. 

153. Weber, W.A., A.L. Grosu (2011) PET bei Hirntumoren. Der Onkologe. 
17(4): 318-328. 

154. Wels, M., G. Carneiro, A. Aplas, M. Huber, J. Hornegger, D. Comaniciu. A 
discriminative model-constrained graph cuts approach to fully automated 
pediatric brain tumor segmentation in 3-D MRI. in Medical Image 
Computing and Computer-Assisted Intervention - MICCAI 2008. 2008. 

155. Weltens, C., J. Menten, M. Feron, E. Bellon, P. Demaerel, F. Maes, W. Van 
den Bogaert, E. van der Schueren (2001) Interobserver variations in gross 
tumor volume delineation of brain tumors on computed tomography and 
impact of magnetic resonance imaging. Radiother Oncol. 60(1): 49-59. 

156. Wen, P.Y. Assessment of disease status and surveillance after treatment in 
patients with brain tumors.  2011; Available from: www.uptodate.com. 

157. Wen, P.Y., S. Kesari (2008) Malignant gliomas in adults. N Engl J Med. 
359(5): 492-507. 

158. Wen, P.Y., D.R. Macdonald, D.A. Reardon, T.F. Cloughesy, A.G. Sorensen, 
E. Galanis, J. Degroot, W. Wick, M.R. Gilbert, A.B. Lassman, C. Tsien, T. 
Mikkelsen, E.T. Wong, M.C. Chamberlain, R. Stupp, K.R. Lamborn, M.A. 
Vogelbaum, M.J. van den Bent, S.M. Chang (2010) Updated response 
assessment criteria for high-grade gliomas: response assessment in neuro-
oncology working group. J Clin Oncol. 28(11): 1963-72. 

159. Wen, P.Y., D.R. Macdonald, D.A. Reardon, T.F. Cloughesy, A.G. Sorensen, 
E. Galanis, J. Degroot, W. Wick, M.R. Gilbert, A.B. Lassman, C. Tsien, T. 
Mikkelsen, E.T. Wong, M.C. Chamberlain, R. Stupp, K.R. Lamborn, M.A. 



References 

122 

Vogelbaum, M.J. van den Bent, S.M. Chang (2010) Updated response 
assessment criteria for high-grade gliomas: response assessment in neuro-
oncology working group. Journal of Clinical Oncology (JCO). 28(11): 1963-
72. 

160. Wick, W., M. Weller, M. van den Bent, R. Stupp (2010) Bevacizumab and 
recurrent malignant gliomas: a European perspective. Journal of Clinical 
Oncology (JCO). 28(12): e188-9; author reply e190-2. 

161. Wong, E.T., J.K. Wu. Clinical presentation and diagnosis of brain tumors.  
2010; Available from: www.uptodate.com. 

162. Würker, M., K. Herholz, J. Voges, U. Pietrzyk, H. Treuer, B. Bauer, V. 
Sturm, W.D. Heiss (1996) Glucose consumption and methionine uptake in 
low-grade gliomas after iodine-125 brachytherapy. European Journal of 
Nuclear Medicine. 23(5): 583-6. 

163. Xue, D., R.E. Albright, Jr. (1999) Preoperative anaplastic glioma tumor 
volume effects on patient survival. Journal of Surgical Oncology. 72(4): 199-
205. 

164. Yamamoto, Y., Y. Nishiyama, Y. Toyama, K. Kunishio, K. Satoh, M. 
Ohkawa (2002) 99mTc-MIBI and 201Tl SPET in the detection of recurrent 
brain tumours after radiation therapy. Nuclear Medicine Communications. 
23(12): 1183-1190. 

165. Yan, H., D.W. Parsons, G. Jin, R. McLendon, B.A. Rasheed, W. Yuan, I. 
Kos, I. Batinic-Haberle, S. Jones, G.J. Riggins, H. Friedman, A. Friedman, 
D. Reardon, J. Herndon, K.W. Kinzler, V.E. Velculescu, B. Vogelstein, D.D. 
Bigner (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med. 360(8): 
765-73. 

166. Yong, W.H., D. Chou, K. Ueki, G.R.t. Harsh, A. von Deimling, J.F. Gusella, 
H.W. Mohrenweiser, D.N. Louis (1995) Chromosome 19q deletions in 
human gliomas overlap telomeric to D19S219 and may target a 425 kb 
region centromeric to D19S112. J Neuropathol Exp Neurol. 54(5): 622-6. 

167. Yu, W., L. Williams, E. Malveaux, V.M. Camp, J.J. Olson, M.M. Goodman 
(2008) Synthesis and evaluation of [123I] labeled iodovinyl amino acids 
syn-, anti-1-amino-3-[2-iodoethenyl]-cyclobutane-1-carboxylic acid, and 1-
amino-3-iodomethylene-cyclobutane-1-carboxylic acid as potential SPECT 
brain tumor imaging agents. Bioorganic & Medicinal Chemistry Letters. 
18(4): 1264-1268. 

168. Zeng, Q.S., C.F. Li, K. Zhang, H. Liu, X.S. Kang, J.H. Zhen (2007) 
Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma 
from radiation injury. Journal of Neuro-Oncology. 84(1): 63-9. 



References 

123 

169. Zhang, L., Z. Wang, J.A. Sagotsky, T.S. Deisboeck (2009) Multiscale agent-
based cancer modeling. Journal of Mathematical Biology. 58(4-5): 545-559. 

170. Zulch, K.J. (1980) Principles of the new World Health Organization (WHO) 
classification of brain tumors. Neuroradiology. 19(2): 59-66. 

 



Acknowledgment 

124 

7 Acknowledgment 

An dieser Stelle möchte ich mich ganz herzlich bei allen bedanken, die mich 

unterstützt und das Gelingen dieser Arbeit ermöglicht haben. 

An erster Stelle bedanke ich mich ganz herzlich bei Herrn Prof. Norbert Graf, 

Direktor der Klinik für Pädiatrische Onkologie und Hämatologie, für die 

Überlassung des Themas dieser Doktorarbeit und die ausgezeichnete Betreuung 

bei der Durchführung der Arbeit. Seine freundliche Unterstützung, die 

wissenschaftlichen Anregungen, aber auch seine Geduld waren meine Triebfeder 

und schafften ein Arbeitsklima, welches für jeden Doktoranden wünschenswert 

wäre. Außerdem bedanke ich mich für die Möglichkeit, Teile dieser Arbeit auf 

einem internationalen Kongress vorzustellen. 

Herrn Prof. Wolfgang Reith danke ich für die Bereitstellung der untersuchten Bild-

Daten und seiner fachlichen Kompetenz bei verschiedenen Fragestellungen. 

Ich danke Frau Elisabeth Friedel für ihre stets freundliche Hilfsbereitschaft. 

Mein Dank gilt auch dem Team der Biomodeling-Group (FORTH,  Kreta) um 

Kostas Marias, für die konstruktive Zusammenarbeit und den beiden EU Projekten 

ContraCancrum und TUMOR, in deren Rahmen wir unsere Studie durchführten. 

Liebe Verena, vielen Dank für deine unermüdliche Geduld, dein Verständnis, 

deinen Ansporn und deinen wohl dosierten Optimismus, zum Erreichen dieses 

gemeinsam lange herbeigesehnten Zieles. 

Von Herzen gilt mein Dank in besonderem Maße meinen Eltern Fred und 

Cornelia, aber auch meiner Schwester Charlotte, meinen Großeltern Elfriede, Bütt, 

Ebs und Willi, und meiner Patentante Wilma, die immer für mich da waren und in 

jeder Lebenslage ein aufmunterndes Wort gefunden haben. Ohne euch wären mir 

viele Dinge im Leben sicherlich nicht in dieser Form möglich gewesen. 

Ihnen ist diese Arbeit gewidmet. 



Publications 

125 

8 Publications 

Nov. 2012 An innovative mathematical analysis of routine MRI scans 

in patients with glioblastoma using DoctorEye 

Jonathan Zepp, Norbert Graf, Ioannis Karatzanis, Holger 

Stenzhorn, Georgios C. Manikis, Vangelis Sakkalis, Wolfgang 

Reith, Georgios Stamatakos, Konstantinos Marias 

IEEE 12th International Conference on Bioinformatics & 

Bioengineering (BIBE 2012), Larnaca, Cyprus, Nov. 11-13, 

2012  

 

Sep. 2010 Tumor segmentation: The impact of standardized signal 

intensity histograms in glioblastoma 

Jonathan Zepp, Norbert Graf, Emmanouil Skounakis, Rainer 

Bohle, Eckart Meese, Holger Stenzhorn, Yoo-Jin Kim, 

Christina Farmaki, Vangelis Sakkalis, Wolfgang Reith, 

Georgios Stamatakos, Konstantinos Marias 

4th International Advanced Research Workshop on In Silico 

Oncology and Cancer Investigation (4th IARWISOCI) – The 

ContraCancrum Workshop, Athens, Greece, Sept. 8-9, 2010 

(www.4th-iarwisoci.iccs.ntua.gr)



Appendix 

126 

9 Appendix 

9.1 List of Figures 

Figure 1: DICOM Data-Set ................................................................................... 21 

Figure 2: Age Distribution of the Study Group ...................................................... 23 

Figure 3: Siemens 1.5T MAGNETOM Vision MRI Scanner [8]............................. 26 

Figure 4: DoctorEye Webpage ............................................................................. 28 

Figure 5: DoctorEye Task Bar with the Annotation-Tools "Pencil, Eraser" and the 

"Magic Wand" ....................................................................................................... 29 

Figure 6: Graphical User Interface (GUI) of DoctorEye 4.7. ................................. 30 

Figure 7: Comparison between raw and processed MR-Image ............................ 31 

Figure 8: Histogram calculated by DoctorEye ...................................................... 32 

Figure 9: Histogram Data Transfer into Microsoft Office Excel 2007 .................... 32 

Figure 10: Histogram Analysis in Microsoft Office Word 2007.............................. 35 

Figure 11: Illustration of DoctorEye’s high Potential of precise Delineation .......... 38 

Figure 12: Illustration of the Software’s high grade Accuracy in an amplified Image

 ............................................................................................................................. 39 

Figure 13: 3D-Vizualization created by DoctorEye ............................................... 40 

Figure 14: Different Sequences of MR Images in a single Patient with 

Glioblastoma at the Time of Diagnosis ................................................................. 41 

Figure 15: Exemplary annotated DICOM Files of all Sequences from Patient G-13 

at the Time of Diagnosis with corresponding Histograms of the whole Set. ......... 43 



Appendix 

127 

Figure 16: Mean Histogram calculated from all Patients at the Time of Diagnosis 45 

Figure 17: Follow-up of Patient G-25 in T1-Sequence ......................................... 48 

Figure 18: Follow-up of Patient G-25 in T1 with Gadolinium Enhancement 

Sequence ............................................................................................................. 50 

Figure 19: Follow-up of Patient G-25 in T2 Sequence .......................................... 52 

Figure 20: Follow-up of Patient G-25 in T2 Flair Sequence .................................. 54 

Figure 21: Mean Histogram from T1-Sequence during Follow-up ........................ 56 

Figure 22: Mean Histogram from T1 with Gadolinium Contrast Enhancement 

during Follow-up ................................................................................................... 58 

Figure 23: Mean Histogram from T2-Sequence during Follow-up ........................ 60 

Figure 24: Mean Histogram from T2 Flair-Sequence during Follow-up ................ 62 

Figure 25: Follow-up of Patient G-8 in T1 with Gadolinium Contrast Enhancement 

Sequence ............................................................................................................. 64 

Figure 26: Volume Changes during Follow-up in Patient G-25 for all Sequences. 

Comparison  of the whole Lesion to the three Subunits (Active Tumor, Necrosis 

and Edema). ......................................................................................................... 68 

Figure 27: Volume Changes during Follow-up in the Summary, for all Sequences. 

Comparison of the whole Lesion to the three Subunits (Active Tumor, Necrosis 

and Edema). ......................................................................................................... 69 

Figure 28: Volume Development during different Time points in a Patient that 

suffers from real Tumor Progression after receiving Surgery and Radiation- and 

Chemotherapy (G-17) .......................................................................................... 71 

Figure 29: Volume Development during different Time Points in a Patient that 

shows questionable Progression after receiving Surgery and Radiation- and 



Appendix 

128 

Chemotherapy (G-12) .......................................................................................... 72 

Figure 30: Volume Development during different Time Points in a Patient that 

shows stable Disease after receiving Surgery and Radiation- and Chemotherapy 

(G-7) ..................................................................................................................... 73 

Figure 31: Volume Development during different Time Points in a Patient that 

shows questionable Response after receiving Surgery and Radiation- and 

Chemotherapy (G-23) .......................................................................................... 74 

Figure 32: Development of SI-Peak during Follow-up in a Patient that suffers from 

Tumor Recurrence (G-17) .................................................................................... 87 

Figure 33: Development of Mean-SI during Follow-up in a Patient that suffers from 

Tumor Recurrence (G-17) .................................................................................... 88 

Figure 34: Development of Standardized-SI during Follow-up in a Patient that 

suffers from Tumor Recurrence (G-17) ................................................................ 89 

Figure 35: Development of SI-Peak during Follow-up in a Patient with stable 

Disease (G-7) ....................................................................................................... 90 

Figure 36: Development of Mean-SI during Follow-up in a Patient with stable 

Disease (G-7) ....................................................................................................... 91 

Figure 37: Development of Standardized SI during Follow-up in a Patient with 

stable Disease (G-7) ............................................................................................ 92 

Figure 38: Ethical Approval from the ‘Ärztekammer des Saarlandes’ ................. 134 

 

9.2 List of Tables 

Table I. Current Response Criteria for Malignant Gliomas ................................... 16 



Appendix 

129 

Table II. Study Group – Date of Diagnosis, Histology and WHO grading ............. 22 

Table III: Exemplary Excel spreadsheet demonstrating the mathematical Analysis 

of Signalintensity Histograms ............................................................................... 44 

Table IV: Results from mathematical Analysis of the mean Histograms at the Time 

of Diagnosis .......................................................................................................... 46 

Table V: Results from mathematical Analysis of Patient G-25’s Histograms from 

T1-Sequence during Follow-up ............................................................................ 49 

Table VI: Results from mathematical Analysis of Patient G-25’s Histograms from 

T1 with Gadolinium Enhancement Sequence during Follow-up ........................... 51 

Table VII: Results from mathematical Analysis of Patient G-25’s Histograms from 

T2-Sequence during Follow-up ............................................................................ 53 

Table VIII: Results from mathematical Analysis of Patient G-25’s Histograms from 

T2 Flair-Sequence during Follow-up .................................................................... 55 

Table IX: Results from mathematical Analysis of the mean Histograms from T1-

Sequence during Follow-up .................................................................................. 57 

Table X: Results from mathematical Analysis of the mean Histograms from T1 with 

Gadolinium Contrast Enhancement during Follow-up .......................................... 59 

Table XI: Results from mathematical Analysis of the mean Histograms from T2-

Sequence during Follow-up .................................................................................. 61 

Table XII: Results from mathematical Analysis of the mean Histograms from T2 

Flair-Sequence during Follow-up .......................................................................... 63 

Table XIII: Results from mathematical Analysis of Patient G-8 from T1 with 

Gadolinium Contrast Enhancement during Follow-up .......................................... 65 

Table XIV: SI-Peak of all Sequences at different Time Points calculated from all 

Patients of this Series ........................................................................................... 66 



Appendix 

130 

Table XV: Mean Signalintensity of all Sequences at different Time Points 

calculated from all Patients of this Series ............................................................. 66 

Table XVI: Standardized mean SI of all Sequences at different Time Points 

calculated from all Patients of this Series ............................................................. 67 

9.3 Abbreviations 

In addition to the abbreviations of the English spelling dictionary and the 
international units, the following abbreviations have been used: 

[11C]MET Methionine 

[18F]FDG Fluorodeoxyglucose 

[18F]FET Fluorethyltyrosin 

[18F]FLT Fluorothymidine 

123I  123Iodine-Alpha-Methyl-Tyrosine 

201Tl  201Thallium 

99mTc   99mTechnetium-Glucoheptonic-Acid 

99mTc-MIBI 99mTchexakis-2-Methoxyisobutylisonitrile 

ADC  Apparent Diffusion Coefficient 

ADC-L ADC from the Lower curve 

BCNU  Bis-Chloroethyl-Nitrosourea 

CCNU  Chemotherapy Consisting of Lomustine 

Cho  Choline  

CNS  Central Nervous System 

CPU  Central Processing Unit 

CR  Complete response 

CRF  Conditional Random Fields 

CT  Computer Tomography 



Appendix 

131 

DICOM Digital Imaging and Communications in Medicine 

DWI  Diffusion Weighted Imaging 

EGFR  Epidermal Growth Factor Receptor 

ET  Echo Time 

EU  European Union 

FLAIR  Fluid Attenuated Inversion Recovery 

FORTH Foundation for Research and Technology – Hellas 

GBM  Glioblastoma Multiforme 

Gd  Gadolinium 

Gd-MRI Gadolinium-enhanced Magnetic Resonance Imaging 

GUI   Graphical User Interface 

Gy  Gray 

ICD-O  International Classification of Diseases for Oncology 

ICS  Institute of Computer Science, Crete 

IFRT  Involved Field Radiation Therapy 

iid  identically distributed 

ITK  Insight Toolkit for Segmentation and Registration 

KG  Knowledge-guided 

kNN  k Nearest Neighbor 

LCP  Lower Curve Proportion 

MGMT O6-Methyl-Guanine-DNA-Methyltransferase  

MRI  Magnetic Resonance Imaging 

MRS  Magnetic Resonance Spectroscopy 

NAA  N-acetylaspartate 

NMR   Nuclear Magnetic Resonance 
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OS  Overall Survival 

PD  Progressive Disease 

PET  Positron Emission Tomography 

PFS  Progression-free Survival 

PP  Pseudoprogression  

PR  Partial Response 

PR  Pseudoresponse 

RANO  Response Assessment in Neuro-Oncology 

rCBV  Relative Cerebral Blood Volume 

RECIST Response Evaluation Criteria in Solid Tumors 

RN  Radiation Necrosis 

rPH  Relative Peak Height 

RT  Radiation Therapy 

SD  Stable Disease 

SI  Signal-Intensity 

SPECT Single Photon Emission CT 

SVM  Support Vector machine classification 

SWI  Susceptibility-weighted Imaging 

TMZ  Temozolomide 

TR  Repetition Time 

VEGF  Vascular Endothelia Growth Factor 

WBRT  Whole Brain Radiation Therapy 

WHO   World Health Organization 
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9.4 Ethical Approval 
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Figure 38: Ethical Approval from the ‘Ärztekammer des Saarlandes’ 

Ethical Approval given by the Ethical Committee of the ‘Ärztekammer des Saarlandes’ at the 20
th
 of 

July 2010 for the ContraCancrum- (Clinically Oriented Translational Cancer Multilevel Modelling; 
project reference number: 223979; http://contracancrum.eu/) and TUMOR-Project (Transatlantic 
Tumour Model Repositories: project reference number: 247754; http://tumor-project.eu/) that were 
funded under the 7

th
 Framework Program of the European Commission.
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