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Zusammenfassung 

Zusammenfassung 
Die Fusion von Vesikeln mit der präsynaptischen Membran ist der letzte Schritt bei 

der Ausschüttung von Neurotransmittern und vielen weiteren Signalmolekülen. Vor 

dem eigentlichen Fusionsereignis durchlaufen die synaptischen Vesikel mehrere 

Reifungsprozesse, wobei die freien Vesikel erst an der Membran verankert (Docking) 

und dann für die Fusion vorbereitet werden (Priming). 

Exozytose lässt sich mit Hilfe von elektrophysiologischen Messungen sehr gut 

untersuchen, dabei ist der Fusionsschritt direkt messbar, während für das Docking 

und Priming bislang nur indirekte Rückschlüsse aus den Messungen möglich sind. 

Totalreflexionsfluoreszenz-Mikroskopie (TIRFM) ermöglicht die Echtzeitvisualisierung 

von fluoreszenten Partikeln mit einem großen Signal-Rausch-Verhältnis, weshalb 

sich TIRFM für die direkte Untersuchung des Verhaltens von fluoreszenzmarkierten 

Vesikeln direkt vor dem Fusionsschritt eignet.  

In der vorliegenden Studie wurden „large dense-core vesicles“ (LDCVs) in bovinen 

chromaffinen Zellen durch Überexpression von fluoreszenten Fusionsproteinen 

markiert und die Bewegungen der Vesikel über die Zeit mittels TIRFM beobachtet. 

Die Bewegungen der LDCVs wurden mit der in dieser Arbeit vorgestellten „caging 

diameter“ Analyse untersucht, welche eine Quantifizierung der dynamischen 

Änderungen des Bewegungsverhaltens von Vesikeln erlaubt. Dabei wurden 

verschiedene Typen von Bewegungsformen identifiziert und die Vesikel 

entsprechend in a) unbewegliche Vesikel, b) beschränkt bewegliche Vesikel, c) 

beschränkt bewegliche und unbewegliche Vesikel, d) Vesikel mit gerichteter 

Bewegung und e) Vesikel mit gemischten Bewegungsmustern klassifiziert.  

Aus früheren Untersuchungen war bekannt, dass die Vesikel in chromaffinen Zellen 

beim Erreichen der Plasmamembran dort immobilisieren und diese immobilen 

Vesikel bevorzugt sekretiert werden. Als zugrundeliegender molekularer 

Mechanismus wurde angenommen, dass während des Primingschrittes der SNARE-

Komplex zwischen Vesikel und Plasmamembran ausgebildet und das Vesikel 

dadurch an der Plasmamembran verankert wird. Aus dieser Modellvorstellung ergibt 

sich, dass Priming zu einer Immobilisierung der Vesikel führen sollte. In dieser Arbeit 

wurden daher den als unbeweglich klassifizierten Vesikeln der geprimte Zustand und 

den beschränkt beweglichen Vesikeln der gedockte ungeprimte Zustand zugeordnet. 

Zur Überprüfung dieser Einordnung wurde das Priming durch Behandlung der 
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Zusammenfassung 

bovinen chromaffinen Zellen mit Phorbolester oder durch Überexpression des 

Primingfaktors Munc13-1 erhöht und die Veränderung der Vesikelbeweglichkeit 

analysiert. Dabei wurde festgestellt, dass der Anteil an unbeweglichen Vesikeln im 

Vergleich zu Kontrollzellen erhöht ist. Da Phorbolester-Behandlung sowie Munc13-1-

Überexpression lediglich die Zahl der geprimten Vesikel erhöhen und nur eine 

Zunahme der Anzahl unbeweglicher Vesikel beobachtet wurde, lässt sich daraus 

schließen, dass es sich bei den unbeweglichen Vesikeln tatsächlich um geprimte 

Vesikel handelt. Es ist daher davon auszugehen, dass es sich bei den gedockten, 

ungeprimten Vesikeln um die beobachteten beschränkt beweglichen Vesikel handelt, 

während Vesikel mit gerichteter Bewegung den weder gedockten noch geprimten 

Vesikeln des „depot pools“ zugeordnet werden können. 

Zur weiteren Überprüfung dieser Hypothese wurde die Ausbildung des SNARE-

Komplexes und damit das Priming von Vesikeln durch Überexpression der leichten 

Kette von Tetanusneurotoxin verhindert und die Auswirkung auf die Beweglichkeit 

der Vesikel untersucht. Die leichte Kette von Tetanusneurotoxin ist der enzymatisch 

aktive Teil, welcher das SNARE-Protein Synaptobrevin proteolytisch spaltet und 

dadurch die Ausbildung des SNARE-Komplexes zwischen Vesikel und 

Plasmamembran verhindert. Die Analyse der Vesikelbeweglichkeit zeigte eine 

Erhöhung der Beweglichkeit. Der Anteil an unbeweglichen Vesikeln war verringert, 

ebenso der Zeitanteil, welchen Vesikel im immobilen Zustand verbrachten. Dagegen 

war die Verweildauer der Vesikel im beschränkt beweglichen Zustand erhöht. Dies 

bestätigt die Hypothese, dass das Priming von Vesikeln mit einer Verringerung der 

Vesikelbeweglichkeit durch die Ausbildung des SNARE-Komplexes einhergeht.  
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Abbreviations 
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1.    Introduction 

1.    Introduction 

1.1. Secretion: an essential process 

The human brain is an organ which stores, computes, integrates and 

transmits information to all parts of the body. The information travels from one 

neuron to another across the synapse when neurotransmitter molecules are 

released from the presynaptic terminal by a process called exocytosis. 

Exocytosis is the fusion of intracellular transport vesicles with the plasma 

membrane resulting in either the release of their content extracellularly 

(regulated exocytosis) or their addition to the plasma membrane (constitutive 

exocytosis). Constitutive exocytosis allows addition of integral plasma 

proteins to the plasma membrane for the maintenance of the membrane’s 

function. Regulated exocytosis allows controlled release of membrane-

impermeable substances. The best known form of regulated exocytosis is the 

release of neurotransmitters at the synaptic cleft via fusion of synaptic 

vesicles with the plasma membrane (PM) of the neuron. Regulated 

exocytosis of neurotransmitters occurs in response to a local increase of the 

calcium concentration resulting from an action potential; this process occurs 

in less than 1 ms. Neurotransmitters in the synaptic cleft then bind to specific 

receptors on the postsynaptic neuron to elicit specific responses. 

Neurotransmitters are contained in synaptic vesicles that are called small 

clear vesicles (SCVs). Another type of vesicle exists which is called the large 

dense core vesicle (LDCV). Neurons can contain both SCVs and LDCVs (De 

Potter et al. 1997). Some endocrine and neuroendocrine cells contain LDCVs 

which secrete their content into the intracellular space by regulated 

exocytosis. Pancreatic β-cells secrete insulin via LDCVs into the bloodstream 

via LDCVs to control several metabolic processes including glucose level in 

the blood. Another type of cell showing regulated exocytosis is the 

neuroendocrine chromaffin cell in the adrenal medulla which releases 

adrenaline and noradrenaline, via LDCVs, into the blood in response to stress 

or danger situations (fight or flight). These are only a few examples of cells 

that possess a mechanism for regulated exocytosis. Due to the variety of cells 
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1.    Introduction 

possessing regulated exocytosis and the importance of this process to 

maintain normal biological functions, it is imperative to understand the 

mechanisms underlying exocytosis. 

1.2. Chromaffin cells: A model of regulated 
exocytosis. 

Neurons consist of a cell body, an axon and one or more dendrites. The distal 

end of the nerve forms a synapse with the adjacent cell, where a 50 nm wide 

synaptic cleft separates the presynaptic terminal from the target cell. Neurons 

have a membrane potential of about -80 mV. When an action potential is 

initiated, voltage-dependent Na+-channels open and Na+ flows into the cell, 

depolarizing the cell. The action potential propagates in the direction of the 

nerve terminal and when it reaches it, the depolarization causes voltage-

gated Ca2+-channels to open. The resulting increase of intracellular Ca2+ 

concentration causes vesicles to fuse with the plasma membrane and release 

their neurotransmitter molecules into the synaptic cleft. These molecules 

diffuse to the postsynaptic membrane and bind to specific receptor molecules 

present on the postsynaptic cell, thereby eliciting a specific response 

(Siegelbaum et al. 1991). (Siegelbaum and Kandel 1991). 

For studying presynaptic function and neurotransmission, the neuron itself is 

the appropriate cell and the most often used method to study 

neurotransmission is to measure postsynaptic responses. However, this is an 

indirect method and has shortcomings. First, the number of receptors on the 

postsynaptic membrane is limited, thus when neurotransmitter saturates 

these receptors, additional neurotransmitters released will not be observed in 

the postsynaptic response. Second, the response measured at the 

postsynaptic side arrives several milliseconds after the actual fast release of 

the neurotransmitters. In order to circumvent these problems, a method to 

measure directly release of neurotransmitters is required. However, 

presynaptic terminals in mammalian synapses are usually quite small and 

very difficult to access with electrodes or other probes. Several solutions have 

been devised to circumvent this problem: the study of giant synapses such as 

the lamprey giant reticulospinal synapse (Low et al. 1999), the goldfish retinal 
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1.    Introduction 

bipolar neurons (Heidelberger et al. 1994), the glutamatergic calyx of Held 

giant synapse in the brainstem (Borst et al. 1995) and the ribbon-type 

synapses of inner hair cells (Beutner et al. 2001). Another solution was 

offered by Rosenmund and Stevens (1996). They prepared a neuronal culture 

in which single neurons grow and form synapses with themselves (autaptic 

culture). In this way both excitatory and inhibitory synapses can be studied 

practically from all regions of the brain. Another problem to overcome is the 

difficulty of measuring and controlling presynaptic Ca2+ concentrations in most 

neurons                                                        . Therefore another system has 

been extensively used: the adrenal chromaffin cell (Voets et al. 2000; Rettig 

et al. 2002). Regulated exocytosis can be measured with different methods 

with high time resolution in chromaffin cells and the experimental conditions 

can be controlled to a great extent.  

(Schneggenburger and Neher 2000) 

Neurons and chromaffin cells originate from the same precursor cells during 

embryonic development. These precursor cells differentiate into neurons if 

they are induced by fibroblast growth factor and nerve growth factor. When 

they are induced by glucocorticoids they differentiate into chromaffin cells 

(Cole et al. 1995). Chromaffin cells migrate from the neural crest to the 

adrenal medulla during embryonic development. The adrenal medulla 

represents the inner part of the adrenal glands (a pair of endocrine organs 

situated cranially to the kidneys). The adrenal glands secrete steroid 

hormones (mineralocorticoids, glucocorticoids as well as androgens) from 

their cortices and catecholamines (CA) from the medulla, into the blood 

stream. Dopamine, adrenaline and noradrenaline are called catecholamines 

because they all contain a catechol (hydroxyl benzene) and an amino group. 

These molecules are also synthesized in the brain and are used for 

neurotransmission in neurons. Chromaffin cells can be separated into 

adrenaline secreting and noradrenaline secreting cells. Additionally, there 

seems to be evidence for a third type which secretes both adrenaline and 

noradrenaline (Cahill et al. 1996). The adrenal medulla is a part of the 

sympathetic nervous system. The stimulus for CA release from chromaffin 

cells originates from sympathetic nerve endings which release acetylcholine. 

Acetycholine, an important neurotransmitter of the peripheral nervous system, 
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1.    Introduction 

causes membrane depolarization and results in the opening of voltage-gated 

Ca2+ channels. The resulting Ca2+ influx triggers exocytosis.  

Chromaffin cells share common features with neurons such as the capability 

to generate action potentials, the presence of fast synchronized transmitter 

release -although the release time constant was found to be 150-1000 ms 

(Kasai 1999)- and expression of the major proteins involved in exocytosis 

(Kits et al. 2000)          . However, the anatomy of the chromaffin cell is 

different from that of the neuron.  Chromaffin cells are spherical (Fig. 1) and 

do not exhibit specific zones for vesicle release (active zones) such as those 

present in neurons. Also, some proteins that are essential for exocytosis in 

neurons are absent in chromaffin cells such as Munc13-1 (which will be 

mentioned in a later chapter). Nevertheless, studies of the proteins involved in 

regulated exocytosis in the chromaffin cell have allowed a better 

understanding of the molecular mechanisms underlying exocytosis. 

(Kits and Mansvelder 2000) 

 

Fig 1: EM of a chromaffin cell: it contains 
20.000 to 30.000 vesicles that store adrenaline 
or noradrenaline. The vesicles darken and 
become electron dense when treated with 
several chromium salts whereby their names: 
large dense core vesicles. 

1.3. Molecular changes prior to membrane fusion in 
chromaffin cells 

Before a vesicle fuses with the plasma membrane, it has to undergo a 

number of molecular changes (Fig. 2). Vesicles originate in the endoplasmic 

reticulum (ER) and mature in the Golgi apparatus (GA). They are then loaded 

with neurotransmitters via transporters already present in the vesicle 

membrane such as vesicular amine transporter. At this point the vesicle 

resides in the depot pool. The depot pool is represented by vesicles that are 

in the cytoplasm, 300 nm away from the PM as visualized by electron 

microscopy (EM).  
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1.    Introduction 

Vesicles leave the depot pool, approach the PM and become “docked”. 

Docked vesicles are located close to the PM (from 0 to 300 nm from the PM 

as seen in EM). Docking was shown to be a reversible process in neurons 

and neuroendocrine cells (Oheim et al. 1998; Zenisek et al. 2000). After 

docking, vesicles must undergo a maturation step called “priming”, which 

renders them fusion competent. As for docking, priming was shown to be a 

reversible process (Rettig et al. 2002)         . (Rettig and Neher 2002) 

After a local increase of [Ca2+]i, the primed vesicle fuses with the PM and its 

content is released in the extracellular space. Much later the membranes of 

the vesicles which fused with the PM are taken up via endocytosis and the 

vesicle can either be recycled via several endosomes and finally to the GAor 

is directly reloaded with neurotransmitters during the kiss and run mechanism 

(Artalejo et al. 2002).  

 
Extracellular 
space 

Fig. 2: Secretory vesicle cycle, steps leading to exocytosis. The vesicles are 
budded from the GA (7), loaded with neurotransmitters (8) then docked to the 
plasma membrane (1) and primed (2). Upon increase of Ca2+ concentration, 
exocytosis occurs (3). The vesicle is then endocytosed (4), acidified and translocated 
at a later time to the Golgi apparatus via endosomes to reenter the cycle (5). 
(Modified from www.uniklinik-saarland.de/physiologie/.)  

 

The sizes of the depot and docked pools have been determined using EM. 

The docked pool consists of both primed and unprimed vesicles. The size of 

the primed pool and the kinetics regulating it were determined using 

membrane capacitance measurements. The PM has electrical properties 

similar to that of a capacitor. Thus, changes in the capacitance of the cell 
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1.    Introduction 

reflect the changes in the membrane’s surface area. Upon exocytosis, the 

vesicle membrane is incorporated into the PM, increasing the area of the PM, 

resulting in an increase in capacitance.  

 

A 

 

[C
a2+

](µ
m

) 
C

m
(p

F)
 

B 

 

 

Fig. 3: (A) The response to a step elevation of [Ca2+]i from 300 nM to 20 µM 
consists of a triphasic capacitance increase. Membrane capacitance increases in 
proportion to the number of vesicles that fuse with the plasma membrane. The 
different components of capacitance response reflect the different pools of vesicles 
as assigned by the color code. (B) The depot pool contains about 2.000 vesicles. 
850 vesicles are morphologically docked and subdivided into the UPP (about 650 
vesicles) and the SRP and RRP (Rettig and Neher 2002).  

 

In chromaffin cells, increasing intracellular [Ca2+] using flash photolysis of 

caged Ca2+ lead to an increase in the capacitance of the cell that can be 

divided into three components (Fig.  3A).  
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1.    Introduction 

The first two components called together “exocytotic burst” can each be fit 

with one time constant, the first “fast burst” corresponding to the rate of 

release of a readily releasable pool (RRP, yellow in Fig. 3) and the second 

“slow burst” corresponding to the rate of release of a more slowly releasable 

pool (SRP, green). These two pools correspond to the primed pool. The third 

and much slower sustained component represents the release of vesicles 

coming from the docked but unprimed pool (UPP, red) that undergo priming 

and then fuse. The kinetics of docking and priming (or undocking and 

unpriming) were calculated from capacitance recording. k0 and k-0 represent 

the rates of docking and undocking, respectively. k1 and k-1  are the rates of 

priming and unpriming and k2/k-2 are the rates of turnover between the RRP 

and SRP.  

To date, no method has been developed to obtain direct information about 

docking and priming kinetics. Therefore, a technique that allows the real-time 

visualization of the vesicles would be the method of choice to observe the 

different molecular states of the vesicle over time.  

The different processes leading to exocytosis are a result of different 

molecular events, such as phosphorylation of ATP, Ca2+-binding and 

conformational changes in the SNARE complex. Various proteins enhance or 

inhibit the different steps leading to exocytosis (translocation of vesicles, 

docking, and priming); these will be described in the next chapter.  

 

1.4. Proteins involved in exocytosis 

For exocytosis to occur, the lipid bilayers of the vesicle and the plasma 

membrane have to fuse. Therefore the repulsive forces of the opposing polar 

headgroups need to be overcome (Oberhauser et al. 1992). These forces 

may be overcome by fusion-mediating proteins. Many proteins involved in 

membrane fusion have been identified and have been found to consist of 

groups of conserved proteins (Jahn et al. 2003). Nevertheless, the 

mechanisms underlying the function of many of these proteins are still 

unknown. The main players in exocytosis are the SNARE proteins. 
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1.    Introduction 

SNARE proteins are a large protein superfamily consisting of more than 60 

members which contain domains that are highly conserved from yeast to 

mammals (Pelham 1999). The primary role of SNARE proteins is to mediate 

fusion of cellular transport vesicles with the PM or with a target compartment 

(such as a lysosome). SNAREs can be divided into two categories: vesicle- or 

v-SNAREs, which are incorporated into the membranes of transport vesicles 

during budding, and target- or t-SNAREs, which are located in the 

membranes of target compartments. Recent classification however takes 

account the structural features of the SNARE proteins and divides them into 

R-SNAREs and Q-SNAREs respectively (Chen and Scheller 2001). Both 

classifications (v/t and Q/R) are widely used. SNAREs are small, abundant 

and mostly plasma membrane-bound proteins. Although they vary 

considerably in structure and size, all share a segment in their cytosolic 

domain called a SNARE motif that consists of 60-70 amino acids that are 

capable of reversible assembly into tight, four-helix bundles called "trans"-

SNARE complexes. The best-studied SNAREs are the neuronal SNAREs. 

These SNAREs are the targets of bacterial neurotoxins responsible for 

botulism and tetanus. In neurons, the readily-formed metastable "trans" 

complexes are composed of three SNAREs: syntaxin 1 and SNAP-25 

resident in cell membrane (t-SNAREs) and synaptobrevin (a v-SNARE; also 

referred to as vesicle-associated membrane protein or VAMP) anchored in 

the vesicular membrane. Syntaxin and synaptobrevin are anchored in their 

respective membranes by their C-terminal domains, whereas SNAP-25 is 

tethered to the PM via several cysteine-linked palmitoyl chains (Washbourne 

et al. 2001).  
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1.    Introduction 

 

 
Fig. 4: Molecular machinery driving exocytosis. The SNARE complex is 
formed by four α-helices contributed by synaptobrevin, syntaxin and SNAP-25. 
Synaptotagmin serves as a Ca2 + sensor and regulates intimately the SNARE 
zipping. (Reproduced from www.en.wikipedia.org/)  

 

The core SNARE complex is composed of four α-helices in a bundle, where 

one α-helix is contributed by syntaxin-1, one α-helix by synaptobrevin and 

two α-helices are contributed by SNAP-25 (Bennett et al. 1993; Sollner et al. 

et al. 1993; Hanson et al. 1997; Sutton et al. 1998; Lonart et al. 2000). The t-

SNAREs have been shown to be present in distinct microdomains or clusters, 

the integrity of which is essential for the exocytotic competence of the cell.  

Prior to fusion, the SNARE proteins involved combine to form a “trans”-

SNARE complex through an intermediate complex composed of SNAP-25 

and    syntaxin-1, which later accommodates synaptobrevin-2 (Bennett and 

Scheller 1993; Sollner et al. 1993; Hanson et al. 1997; Sutton et al. 1998; 

Lonart and Sudhof 2000). Assembly of the SNAREs into the "trans" 

complexes likely bridges the gap between the apposed lipid bilayers of 

membranes belonging to the cell and the secretory granule, bringing them in 

proximity and inducing their fusion. During fusion, the membranes merge and 

SNARE proteins involved in complex formation after fusion are then referred 

to as a "cis"-SNARE complex, because they now reside in a single 

membrane. The influx of calcium into the cell triggers the completion of the 
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1.    Introduction 

assembly reaction, which is thought to be mediated by an interaction between 

the putative calcium sensor, synaptotagmin, with membrane lipids and/or the 

partially assembled SNARE complex. According to the "zipper" hypothesis 

(Hanson et al. 1997; Hay and Scheller 1998), complex assembly starts at the 

N-terminal parts of SNARE motifs and proceeds towards the C-termini that 

anchor interacting proteins in membranes. The disassembly of the SNARE 

complex is catalysed by NSF and α-SNAPs to recycle the SNAREs for 

another round of fusion. Before fusion, the trans- complex is proposed to 

change from a loose into a tight state (Xu et al. 1999). This would be 

consistent with the presence of SRP, reflecting the loose state, from which 

the vesicles are able to fuse at lower rates. The tight state would support the 

fast exocytosis from the RRP (Xu et al. 1999). ; Rettig and Neher 2002) 

As mentioned above the neuronal SNARE proteins are highly sensitive to 

clostridial neurotoxins. These neurotoxins share common features: they 

weigh 150-kD and are made up of two parts, a 100-kD heavy chain (HC) and 

a 50-kD light chain (LC). The HC mainly serves as the delivery system for the 

LC component. The LC is the protease component of the toxin and cleaves a 

specific SNARE protein when it is not in the SNARE complex. Botulinum toxin 

(BoNt) is produced by the bacterium Clostridium botulinum and has seven 

serologically distinct toxin types from A to G.  BoNt/A and E cleave SNAP-25, 

BoNt/C cleaves syntaxin while BoNt/B, D, F and G cleave synaptobrevin (Fig. 

5). This blocks exocytosis of neurotransmitters and leads to total paralysis 

(Breidenbach et al. 2005).  (Breidenbach and Brunger 2005). 

Tetanus toxin (TeNT) is produced by the vegetative spore of Clostridium 

tetani in anaerobic conditions. The LC cleaves synaptobrevin I and II and 

cellubrevin (Schiavo et al. 2000). This cleavage prevents synaptobrevin from 

forming the SNARE complex and exocytosis is blocked (Schiavo et al. 2000).  
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Fig. 5: Clostridial neurotoxins. 
Each toxin specifically cleaves a 
SNARE protein (Sutton et al. 1998). 

1.5. Proteins involved in docking 

Membrane capacitance measurements cannot give information about 

docking, thus not much is known about the proteins that mediate this step. 

Additionally, some proteins seem to have more than one function (docking 

and priming) or even opposite ones (priming and unpriming). One of these 

proteins is Munc18-1. 

 Munc18-1 is a member of the sec1/Munc18 (SM) family. It is expressed at 

synapses and binds to the N-terminal Habc domain of syntaxin1 outside the 

SNARE motif, thereby stabilizing the closed conformation of syntaxin1 and 

preventing its interaction with VAMP and SNAP-25 (Dulubova et al. 1999). 

Thus if Munc18-1 were deleted, secretion would increase. Yet, the opposite 

was observed in chromaffin cells (Voets et al. 2001). It was then suggested 

that   Munc18-1 has a chaperone function by stabilizing syntaxin at the PM 

(Toonen et al. 2005). 

However, it is unclear how the interaction of Munc18-1 with syntaxin mediates 

docking. Hence, other interaction partners might be involved such as Mint and 

DOC2 (Brose et al. 2000; Schutz et al. 2005). These interactions seem to be 

important for docking. 

 The Rab3-RIM complex may also mediate docking. It was shown that 

overexpression of Rab3s in PC12 cells led  to an increase in the number of 

docked vesicles (Martelli et al. 2000) whereas its depletion led to a reduction 

in secretion (Schluter et al. 2004; Schluter et al. 2006). Similarly, a RIM-1 
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knockout leads to a decrease in the number of docked vesicles (Schoch et al. 

2002; Calakos et al. 2004). Finally, it is possible that docking is coordinated 

by other proteins such as bassoon and piccolo (Garner et al. 2000). 

 

1.6. Proteins involved in priming 

Several factors affect priming whether by increasing the rates of priming (k1 

and/or k2, fig. 3) or by decreasing the rates of unpriming (k-1 and/or k-2, fig. 3). 

The complexins, a family consisting of two isoforms, complexin I and II, 

modulate the priming rate. Genetic deletion of complexin I and II greatly 

decreased release efficiency. Release in hippocampal neurons could be 

rescued by increasing the extracellular Ca2+ concentration (Reim et al. et al. 

2001). This result was also obtained in mast cells following siRNA knockdown 

of complexin II (Tadokoro et al. 2005). In contrast, it has been found that 

overexpression of complexin in chromaffin cells led to a reduction in secretion 

and to a faster time course of single secretion events (Archer et al. 2002). So 

it might be possible that complexin plays also a role in fusion pore opening. 

Hence, this protein seems to have more than one function and 

electrophysiological methods have not allowed the determination of its 

precise function.  

Protein kinase A (PKA) was shown to promote priming by decreasing k-1. 

When the intracellular Ca2+ concentration increases, the production of cyclic 

adenosine monophosphate (cAMP) increases which in turn activates PKA. It 

was shown that constitutive PKA activity results in the phosphorylation of 

SNAP-25, a process necessary for the maintenance of a large number of 

vesicles in the primed pool (Nagy et al. 2004).  

Protein kinase C (PKC) was shown to decrease k-1 thus promoting priming. It 

is activated by an increase in the intracellular Ca2+ concentration, since Ca2+ 

binds to PKC’s C2 domains. Also, diacyl glycerol (DAG, a secondary 

messenger) and phorbol esters such as phorbol myristate acetate, that 

imitate DAG in its action, activate PKC (Newton 1997). Both DAG and phorbol 

esters bind to the C1 domain of PKC and lead to its translocation to the 

plasma membrane. PKC may act through phosphorylation of SNAP-25 at Ser 

187 (Nagy et al. 2002). 
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The Munc13’s are a family of proteins consisting of Munc13-1, -2, -3 and -4. 

Munc13’s appear to be required for priming (Aravamudan et al. 1999; 

Augustin et al. 1999; Richmond et al. 1999; Brose et al. 2000). They are the 

mammalian homologues of unc-13, a large family of proteins originally found 

in C. elegans (Brenner 1974). Munc13’s structure is highly conserved. 

C2 C2C2C1 MHD1 MHD2
1

64 567 616 683 768 1106 1248 1357 1526 1571 1665

1735
 

Fig. 6: Munc 13-1 Domain structure. For detailed explanation, see text. 

They contain two “Munc Homology Domains” (MHD), a C1-domain and two 

(Munc13-1, -2 and -3) or three (Munc13-4) C2-domains. The latter function as 

Ca2+/phospholipids-binding domains. The C1-domain is functionally very 

similar to the C2-domain of PKC which is the DAG binding domain (Betz et al. 

1998; Ashery et al. 1999; Rhee et al. 2002). Like PKC, Munc13’s are 

displaced to the plasma membrane after binding DAG and its synthetic 

analogues, the phorbol esters. Munc13-1 is thought to function by interacting 

with syntaxin1. This interaction appears to displace Munc18 from the 

N terminus of syntaxin1 and thus allows syntaxin1 to interact with SNAP25 

and synaptobrevin. Then core complex assembly can occur (Brose et al. 

2000). Recently, it has been shown that point mutations in the MHDs and in 

the C-terminal region of the C2-domain binding regions to syntaxin1, reduce 

the function of Munc13 (Madison et al. 2005; Stevens et al. 2005). The 

Munc13 isoforms also contain a calmodulin binding site. The formation of a 

calmodulin/Munc13 complex may allow a Ca2+ sensing/effector which allows 

modulation of synaptic vesicle priming and synaptic efficacy in response to a 

change of [Ca2+]i (Junge et al. 2004). For example, during sustained synaptic 

activity -thus high [Ca2+]i-, Munc13’s efficacy in keeping syntaxin 1 in its open 

conformation may be enhanced through its binding to calmodulin. Hence, the 

Calmodulin/Munc13 complex could be one molecular target of Ca2+ action 

during sustained synaptic activity and thus mediate short term plasticity 

(Junge et al. 2000), which is dependent on residual [Ca2+]i (Zucker 1999). 
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In chromaffin cells, overexpression of Munc13-1 nearly tripled the amount of 

secretion and significantly increased the size of the primed pool (Ashery et al. 

2000). However, Munc13-1 was not detected in chromaffin cells (Ashery et al. 

2000) and the amount of secretion from chromaffin cells of Munc13 triple-

knockout mice was similar to that of wild type mice (Stevens and Rettig, 

unpublished results). Therefore, it is unclear if Munc13-1 plays a role in 

priming LDCVs in chromaffin cells (the role of Munc13-4 for example needs to 

be elucidated) or if other priming factors are responsible for priming in 

chromaffin cells. Calcium-dependent activator protein for secretion (CAPS) 

was also considered to be a priming factor (Wassenberg and Martin 2002). 

However, it has recently been shown that CAPS is involved in the loading of 

these vesicles with neurotransmitters (Speidel et al. 2005). Another possibility 

would be that priming is a constitutive process in chromaffin cells.  

On the other hand, in neurons, Munc13-1 is considered the priming factor par 

excellence. It was indeed shown by Augustin et al. (1999) that in Munc13-1 

knock-out mice, there was a 90% reduction of readily releasable vesicles and 

evoked transmitter release in excitatory neurons releasing glutamate.  

1.7. Total internal reflection fluorescence microscopy 
(TIRFM) 

 
Although a large number of agents that affect priming are now known, no 

method has allowed the direct observation of the priming event or the 

differentiation between docked and primed vesicles.  

Several imaging techniques were developed in recent years to visualize 

dynamic changes occurring in living cells. TIRFM is one of them. It relies on 

the fact that light travels differently in two media with different refractive 

indices.  

When the light hits the interface between two different media it is refracted 

into the second medium at an angle that is different from the incident angle 

according to Snell’s law: n1sinθ1=n2sinθ2, where n1 and n2 are the refractive 

indices of the two media and θ1 and θ2 are the angles of incidence and 

refraction respectively (Fig. 7A). When the incident angle reaches a critical 
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angle, light is totally refracted in the interface. The critical angle depends on 

the ratio between the refractive indices: θc=sin-1(n2/n1) (Fig. 7A). Beyond this 

angle all light is reflected. However, some light escapes this reflection and 

extends in the z direction thus creating a thin electromagnetic field. The 

strength of this field, also called evanescent field, decreases exponentially 

with increasing penetration depth and extends only a few hundred 

nanometers into the second medium (having the lower refractive index) (Fig. 

7B). 

A 

 

n1

B 

 

Fig. 7: Principle of TIRFM. (A) Only 
granules close to the evanescent wave 
(blue strip) light up. For more details, see 
text. (B) Intensity (Iz/Io) decays 
exponentially with increasing penetration 
depth (dp).  

 

The main advantage of TIRFM over epifluorescence and confocal microscopy 

is the illumination of only a thin section of the specimen whereas the rest of 

the specimen is not illuminated. Due to this, no background fluorescence is 

observed and we can obtain pictures of labeled particles with a very high 

signal-to-noise ratio (Almers et al. 2001; Axelrod et al. 2001; Oheim et al. 
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2001; Toomre et al. 2001). Also, this decreases the danger of 

photobleaching. TIRFM is also a relatively inexpensive and low energy 

consuming technique compared to two-photon microscopy. This method has 

been used for example to qualify the types of movements made by particles, 

to visualize exocytosis in real-time recordings and recently to visualize single 

protein molecules. Therefore TIRFM seems to be the method of choice to 

visualize fluorescent vesicles as they undergo the different molecular 

changes (docking, priming, fusion). 
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1.8. Aim of the work 

The molecular changes leading to fusion are processes that are still 

investigated by many. As mentioned above the number of vesicles in the 

primed pool was determined by measuring the capacitance increase in the 

exocytotic burst and calculating how many vesicles this increase corresponds 

to. Also the rates of docking and priming were determined by using fits to the 

different components of the triphasic capacitance increase. Still, membrane 

capacitance measurements do not give direct information on priming and 

docking, thus it is necessary to develop a method that allows the real-time 

observation of these processes. TIRFM should be the method of choice to 

visualize LDCVs as they undergo changes from one molecular state to the 

other. 

Several groups have been able to identify different types of movements of 

vesicles. Oheim (2001) showed that vesicles could be immobile, restricted in 

motion or could have a directed motion.  

Furthermore, studies  (Steyer et al. 1997; Oheim et al. 1999) have shown that 

as vesicles docked to the PM, their mobility was reduced, as compared to 

their mobility when they were further away from the PM. This is consistent 

with the "zipper" hypothesis (Hanson et al. 1997; Hay and Scheller 1998), 

which states that SNARE complex assembly results in the attachment of the 

vesicle to t- SNAREs via v-SNAREs which anchors the vesicle to the PM 

(Fig. 8). Yet no serious attempt has been made to assign these different types 

of motion to the distinct molecular states. 

 

Fig. 8: Zipper hypothesis. The vesicle docks on the PM then undergoes the first 
priming steps when the SNARE comples starts to form. Upon full priming and zipping 
of the SNARE proteins, the vesicle is tightly attached to the PM and ready to fuse. 
Upon local increase in [Ca2+]i, exocytosis occurs (modified from Chen and Scheller 
2001). 
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We propose a model where, as the SNARE is assembled during priming, the 

vesicle becomes tightly attached to the PM and therefore is not able to move 

freely.  

To verify this hypothesis, I specifically promoted priming using two 

independent methods: 

1- Treating bovine chromaffin cells with phorbol myristate acetate (PMA) 

which was found to increase the pool of primed vesicles without affecting the 

size of docked vesicles (Gillis et al. 1996; Smith et al. 1998). 

2- Overexpression of Munc13-1 which was found to triple the secretion in 

chromaffin cells by increasing the size of the RRP without affecting the size of 

docked but unprimed vesicles (Ashery et al. 2000).  

To confirm our observations about priming, I used a virus containing TeNT-

LC-GFP to prevent the priming reaction and I expected to observe an 

opposite effect to that observed in the primed cells.  

To visualize the LDCVs, I stained bovine chromaffin cells with neuropeptide Y 

fused with the monomeric red fluorescent protein (NPY-mRFP). NPY was 

found to be specifically targeted to LDCVs (Nagai et al. 2002). To track the 

vesicles, we used a homemade tracking program and a new method of 

analysis was devised to allow the observation of the dynamic changes that 

the vesicle is undergoing over time as opposed to the analysis of the Mean 

Square Displacement, which allows only an overall description of the mobility. 

I also ascertained that exocytosis measured by TIRFM is similar to exocytosis 

measured by membrane capacitance recordings.  

Using these different protocols of priming and unpriming, my aim is to 

distinguish between docked and primed vesicles using their mobilities as a 

tool of differentiation. 
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2.    Materials and Methods 

2.1 Materials  

2.1.1 Reagents 

Acetic acid                                                                                    Roth 

Agarose for DNA electrophoresis  Roth 

Agarose for RNA electrophoresis  Sigma 

Albumin  Sigma 

2-Amino-2-(hydroxymethyl-)-1,3-propantriol (Tris) Roth 

Aprotinin  Sigma 

L-aspartic acid  Sigma 

Bovine serum albumin (BSA)  Sigma 

Bromphenolblue (BPB), sodium salt  Serva 

Cesium hydroxide  Sigma 

Chloroform  Fluka 

dATP  Roth 

dCTP Roth 

dGTP  Roth 

DMEM (Cat no. 31966-021)  Invitrogen 

Dithiotreitol (DTT)  Sigma 

D-Glucose  Merck 

Diethylpyrocarbonate (DEPC)  Sigma 

DNase  Roche 

ECL reagent                                                                                 GEhealthcare 
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EDTA  Sigma 

Ethanol  Roth 

Ethidium bromide  Invitrogen 

Fetal calf serum (FCS)  Invitrogen 

Formaldehyde 37%  Sigma 

Formamide  Sigma 

Glutamic acid  Sigma 

Glycerol  Sigma 

H2O  Sigma 

ITS-X  Invitrogen 

L-cysteine  Sigma 

4-Morpholinepropanesulfonic acid (MOPS) Sigma 

Mounting medium                                                                         Vectashield   

Normal goat serum (NGS)  Invitrogen 

NE-buffer 10x  Biolabs 

N-(2-Hydroxyethyl)-1 piperazine-N’-(ethanesulfonic acid)  

(HEPES)  Sigma 

Nitrocellulose membrane (0.2 μm pore size) Roth  

OptiMemI  Invitrogen 

PBS  Invitrogen 

10x PCR Buffer  Sigma 

Penicilline/Streptomycine  Invitrogen 

Phenol for DNA purification Sigma 

Phenol for RNA purification  Roth 

Phorbol 12-myristate 13-acetate (PMA) Sigma  

2-Propanol  Roth 

RNase Inhibitor  Roche 
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Skimmed milk powder                                                                  Naturaflor®  

Tetrodotoxin  Sigma  

Triton® X-100  Serva 

Trypsin-EDTA 10x Invitrogen 

Trypsin Inhibitor Sigma 

Tryptosephosphate  Invitrogen 

Whatman-3 MM-paper  Whatman 

Xylen cyanol FF  Sigma 

All other chemicals were ordered from Merck 

2.1.2 Enzymes 

Chymotrypsin Sigma 

Collagenase CLS  Biochrom AG 

Proteinase K Qiagen 

RedTaq-Polymerase  Sigma 

Trypsin  Invitrogen 

SpeI  Biolabs 

SP6-RNA-Polymerase  Roche  

2.1.3 Plasmids 

The plasmids pSFV1 and pSFV1-PV-IRES were provided by U. Matti (Department of 

Physiology, Saarland university, Homburg, Germany). 

2.1.4 Media and solutions 

2.1.4.1 Solutions for chromaffin cell preparation 

Locke’s

154 mM NaCl 

5.6 mM KCl 
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0.85 mM NaH2PO4 x H2O 

2.15 mM Na2HPO4 x H2O 

10 mM glucose 

pH 7.4 ; ≈ 312 mosm 

 

Collagenase solution 

290 U/ml locke’s solution. 

 

Inactivating solution 

10% FCS in locke’s solution. 

 

Medium 

for two 6-well plates: 

30 ml DMEM 

300 μl ITS-X 

120 μl Pen./Strep. 

 → freshly prepared; 37°C, 9% CO2

2.1.4.2 Solutions for BHK cell culture/virus generation and activation 

OptiMemI + 2,5%FCS 

Tryptosephosphate 100 ml 

HEPES 1M  20 ml 

FCS  25 ml 

Pen. / Strep.  1 ml 

filled up with OptiMemI to 1000 ml 

→ sterile/ 4°C 
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OptiMemI + 5%FCS 

Tryptosephosphat 15 ml 

HEPES 1M 3 ml 

FCS 7,5 ml 

Pen / Strep 150 µl 

filled up with OptiMemI to 150 ml 

→ sterile/ 4°C 

 

OptiMemI without FCS, + 0,2% BSA  

OptiMemI 44ml 

Tryptosephosphat 5ml 

HEPES 1M 1ml 

Pen / Strep 50µl 

BSA 0,1g 

→ sterile/ 4°C 

 

Aprotinin 

6 mg/ ml in HBS (aliquots, -20°C) 

Chymotrypsin 

2 mg/ ml in HBS (aliquots;-20°C) 

Trypsin/ EDTA 10x 

diluted 1:10 in PBS 

 

DEPC-H2O 0.1 % 

1ml DEPC  

in 1l ddH2O 
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5x Mops 

3,28 g Sodium acetate 

20,6 g MOPS 

diluted in 800 ml DEPC-H2O; pH 7.0 
+ 10 ml 0.5 M EDTA pH 8.0  

filled up with DEPC-H2O to 1000 ml  → sterile filtered;stored in the dark 
 
Loading buffer for RNA gel: 

10 ml  5 x MOPS  (1x) 

8,5 ml  37%-Formaldehyde (6,5%) 

25 ml  Formamide (50%) 

2,5 ml  Glycerol (5%) 

10 µl   0.5M EDTA pH8 (0,1mM) 

0,0125 g  BPB (0,025%) 

2,75 ml   H2O 

→ aliquots ; -20°C 

2.1.4.3 Solutions for TIRFM experiments 

Ringer: 140 mM NaCl, 2.4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM Glucose, 10 

mM HEPES (pH 7.3) 

High K+: 52.4 mM NaCl, 90 mM KCl, 3 mM CaCl2, 10 mM Glucose, 10mM HEPES 

(pH 7.3) 

2.1.4.4 Solutions for whole-cell patch experiments 

Extracellular solution: 

146 mM NaCl, 2.4 mM KCl, 10 mM HEPES, 1.2 mM MgCl2, 2.5 mM CaCl2, 10 mM 

Glucose and 10 mM NaHCO3 (pH 7.4). 
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Pipette solution: 

160 mM L-aspartic acid, 1 mM MgCl2, 2 mM MgATP, 0.3 mM Na2GTP, 10mM 

HEPES (pH 7.2). 

 

 

2.2 Methods 

2.2.1 Bovine chromaffin cell preparation 

The adrenal glands were obtained from a slaughterhouse and cleaned of all 

connective tissue with scissors. The glands were perfused with 10 ml Locke’s 

solution through the adrenal vein and put in a shaking water bath for 10 min. This 

step was repeated 4-6 times until all the blood was washed out of the glands. I then 

proceeded with the digestion of the glands with Locke’s solution containing 290 U/ml 

collagenase. Each gland was perfused with 10 ml enzyme solution and put in a 

shaking water bath for 14 min; this step was repeated with the gland positioned on its 

opposite side. The digestion was then stopped by perfusing the glands with 10 ml 

10% FCS, then the glands were cut in two halves to expose the medulla. The 

medulla was carefully removed with a forceps and transferred to a Petri dish 

containing a few milliliters of Locke’s solution. The medulla was then cleaned of any 

traces of blood vessels or impurities. The medulla was shredded with scissors and 

then transferred to a 50 ml falcon tube and completed to 20 ml with Locke’s solution. 

The tissue was gently shaken for 1 min and centrifuged at 700 rpm for 2 min, after 

which the supernatant was discarded and the tissue was resuspended in Locke’s 

solution, and then dispersed by passing through a nylon mesh. Locke’s solution was 

added to bringing the resulting cell suspension to a final volume of 20 ml. The cell 

suspension was then centrifuged at 700 rpm for 7 min. After each centrifugation, the 

resultant supernatant was discarded and the pellet was resuspended in 10 ml of 

Locke’s solution and transferred to a 15 ml falcon tube. The tube was centrifuged 3-4 

times at 600 rpm for 5 min and one last time at 300 rpm for 5 min. Each time, the 

supernatant was discarded and the resultant pellet was resuspended in an 

appropriate amount of modified DMEM medium. The cells were counted and diluted 
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so that they could be plated at a density of 3x105 cells/ml in modified DMEM medium, 

kept at 37oC, 9% CO2 and used 3-5 days after plating. 

 

2.2.2 Protocol for electroporation 

For one electroporation, 800 µl of cells in DMEM solution (2.5x106 cells/ml) were 

incubated with 20 µg of DNA for 3 min on ice. The cells were then transferred in 0.4 

cm Gene Pulser cuvettes and electroporated with the Gene Pulser II (Biorad) with the 

following specifications: 230 V and 1000 µF. The cuvette was then kept on ice for 2 

min and the cells were allowed to recover in a water bath (37oC) for 10 min. The cells 

were then carefully transferred into 15 ml falcon tube and centrifuged at 400 rpm for 

2 min. The supernatant was discarded and the cells were resuspended in 1.5 ml 

DMEM solution then plated on 6 well plates. 

2.2.3 Protocol for virus generation, activation and infection 

For virus infection I used a Semliki forest virus (SFV) which is an alpha virus from the 

family togaviridae and is a useful tool in heterologous protein production (DiCiommo 

and Bremner 1998).  This virus has been found to successfully infect chromaffin cells 

(Ashery et al. 1999). The SFV genome is of positive polarity, i.e. it functions directly 

as mRNA, and infectious particles can be obtained by in-vitro transcription of a full-

length cDNA copy of the genome. Advantages of this system are the efficient RNA 

replication, the relatively late onset of cytopathogenic effects and the broad host 

range of the SFV. In this work, a modified version of the pSFV1 plasmid containing 

an internal ribosome entry site from polyvirus was used. This pSFV1-PV-IRES 

plasmid contains a unique BamHI and BssHII site upstream of the PV-IRES and a 

unique NruI site downstream. Genes cloned into this plasmid also need a Kozak 

sequence and start codon.   

Electroporation was used when a high density of marked vesicles was needed while 

virus infection was used to yield a low density of stained vesicles for the tracking 

experiments. Cells were electroporated with         NPY-mRFP.  

2.2.3.1 Cultivation of BHK21 cells 

The BHK-21 cell line (c-13, ATCC™ccL-10) containing Syrian hamster kidney cell 

type cells was used for SFV production. BHK cells were cultivated in Opti-MemI with 
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2.5% FCS in 75 cm2 cell culture flasks. 80-90 % confluent cells were split routinely 

using trypsin/EDTA. For splitting, the growth medium was aspirated and the cells 

were washed once with OptiMemI. Then 6 ml trypsin/EDTA was added and incubated 

for ≈ 1 minute until cells were detached from the bottom. Cells were triturated with the 

10 ml pipette for separation. The suspension was put into a falcon tube with stop 

medium (OptiMemI+ 5% FCS) and centrifuged 3 min at 1300 rpm. Cells were washed 

with 10 ml OptiMemI and centrifuged (3 min, 1300 rpm) twice. Then they were 

counted and the desired cell number was cultivated in a new cell culture flask (37°C, 

5% CO2). For long term storage cells were harvested in a cryoprotectant medium 

containing DMSO in the cryovials and were frozen in liquid nitrogen.  

2.2.3.2 Preparation of viral RNA 

The pSFV1 vector contains three unique cloning sites (BamHI, BssHII and NruI). 

DNA fragments cloned in these sites must encode their own Kozak sequence and an 

AUG translation initiation site. The cDNA coding for      NPY-mRFP (Tsuboi et al. 

2003) including a Kozak consensus sequence was subcloned into the BamHI-BssHII 

site of the pSFV1 polylinker or in the pSFV1-PV-IRES. The cDNA coding for Munc13-

1-eGFP (Ashery et al. 2000) and the cDNA coding for TeNt-LC-eGFP (Borisovska et 

al. 2005), both including a Kozak sequence, were subcloned each into the NruI site 

of the pSFV1-PV-IRES. Viral RNA was prepared by in-vitro transcription of plasmids 

pSFV1 coding for SFV non-structural and pSFV-helper2 coding for structural 

proteins. Following linearization with SpeI, DNA was transcribed in-vitro using the 

Capscribe SP6 kit (Roche) according to the manual. 

2.2.3.2.1 Linearization of DNA 

Linearization was carried out at singular SpeI sites downstream of the polyA tail 

encoded on pSFV1 and pSFV1-PV-IRES. A total volume of 25 μl containing 3 μg 

DNA, 2.5 μl NE-buffer, 2.5 μl BSA 10%, 1.5 μl SpeI and the calculated volume of 

Sigma H2O was incubated at 37°C for 1.5 hours. To verify complete linearization, 1 μl 

of the DNA diluted in 2 μl 6xSLB (Loading buffer) and 9 μl Sigma H2O was run on a 

1% Agarose gel. Reference was 4% λ-DNA Marker (4 μl Marker+ 2 μl 6xSLB+9 μl 

Sigma H2O). Electrophoresis was carried out at 80 Volts for 60 minutes. DNA was 

visualized by UV illumination (312 nm) on the gel documentation system (Phase, 

Lübeck, Germany). 
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2.2.3.2.2 In-vitro transcription 

Linearized DNA was purified by extraction with phenol-chloroform and ethanol 

precipitation. The remaining 24 μl of the restriction digest were vortexed with   176 μl 

Sigma H2O, 200 μl phenol and 2 drops (≈ 12 μl) of chloroform. The supernatant was 

removed after centrifugation (10 min, 14000 rpm) and the residual phenol present in 

the supernatant was extracted by 200 μl chloroform. After another centrifugation step 

(5 min, 14000 rpm) the DNA was recovered from the supernatant by precipitation at –

20°C (or 2 hours at –80°C) with 500 μl ethanol (100%, cold) in the presence of 20 μl 

3M Sodium Acetate. The DNA was pelleted by centrifugation at 14000 rpm for 15-30 

min, washed with 500 μl 70% ethanol and redissolved in 13 μl of RNase-free water 

after drying in the dessicator at RT. For transcription, the DNA was mixed with 8 μl 

Cap scribe buffer, 1 μl RNase inhibitor, 2 μl SP6, 16μl Sigma H2O and incubated for 

2 hours at 37°C. Afterwards the DNA template was digested by mixing the 

transcription reaction with 36 μl RNase-free water and 4 μl DNase within 20 minutes 

at 37°C. The product was purified by extraction with phenol and chloroform as 

described above for DNA (here phenol for RNA isolation: Aqua Roti phenol pH 4.5-

5). Following precipitation the sample was centrifuged 15-30 min at 14000 rpm, 4°C 

and the pellet was washed twice with cold 70% ethanol, vortexed and centrifuged 

(14000 rpm, 10min, 4°C). The pelleted RNA was collected, desiccated and dissolved 

in 20 μl RNase-free water. 

2.2.3.2.3 Quantification of RNA amount by electrophoresis 

Agarose gels were prepared by dissolving 0.4 g agarose in 20 ml DEPC-H2O, 

heating in a microwave oven, adding 5.3 ml of 5x MOPS buffer and 4.7 ml of 37% 

Formaldehyde. 1 μl RNA sample was mixed with 9 μl loading buffer (20 μl RNA 

buffer+5 μl ethidiumbromide). 3 μl RNA Ladder was diluted in 8 μl loading buffer. 

Both samples were denatured by incubation for 10 minutes at 65° to eliminate 

secondary structures of the RNA. After loading them on the gel electrophoresis was 

performed for 10 min at 80 Volts and then 85 min at 100 Volts. The gel was analyzed 

with the phase gel documentation system and the amount of RNA was estimated by 

comparison with the intensity of marker bands to make appropriate aliquots. 
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2.2.3.3 Electroporation of BHK21 cells with RNA  

BHK21 cells that were 80-90% confluent were washed once with 10 ml    Opti-MemI, 

trypsinyzed and dissociated. The cell suspension was put in a 15 ml Falcon tube with 

OptiMemI+5% FCS. Then the cells were centrifuged (1300 rpm, 20°C, 3 min) and 

washed with OptiMemI three times. After another centrifugation step they were 

counted in a counting chamber. The cells were again centrifuged (1300 rpm, 20°C, 3 

min) and resuspended in an appropriate amount of medium to get 1x107 cells/ml. 

From this suspension 8 μl per well were seeded in a 6-well plate and incubated 

(37°C, 5%) for the determination of virus titer the next day. The electroporation was 

performed with 10 μg RNA and 10 μg helper2 RNA in 400 μl of BHK21 cell 

suspension in a Gene Pulser cuvette. The zero value was obtained with medium only 

in the cuvette. The conditions for the Gene Pulser II (Biorad) were adjusted to 360 

Volts and 0.075 μF and the sample was pulsed twice. The content of the cuvette was 

transferred to prewarmed OptiMemI with 2.5% FCS in a cell culture flask and 

incubated at 31°C, 5% CO2 for 24 hours. During this time the virions are released in 

the culture medium. Following this incubation, the supernatant was collected and 

centrifuged to remove debris. Aliquots of 450 μl supernatant containing virus were 

snap-frozen in liquid nitrogen and stored at 80°C. 

2.2.3.3.1 Virus titer test 

The resulting virus has to be activated by the enzymatic activity of a protease. After 

activation by chymotrypsin, packaged SFV1 particles are fully capable of a single 

cycle of infection. For virus activation, 450 μl OptiMemI with 0.2% BSA was added to 

450 μl virus content and incubated with 100 μl chymotrypsin for 40 minutes at RT. 

Then the reaction was stopped by incubation with aprotinin for 10 min. Dilutions of 

activated virus in medium (0.2% BSA) were made (1:20; 1:200) and, after washing 

the wells with 3 ml medium, 1ml of the dilutions was added to each well. After 90 

minutes incubation (37°C, 5% CO2) the virus containing supernatant was replaced 

by OptiMemI with 2.5% FCS. Cells were incubated on (37°C, 5% CO2) and the virus 

titer was calculated. 

The virus construct is coupled to m-RFP to determine the number of infected cells by 

fluorescence. The red cells were counted using an epi-fluorescence microscope 

(Nikon TS-100F) with a mercury lamp (model name: C-SHG) and a HQ-filter set for 

enhanced GFP (AHF, Tübingen, Germany). 
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The titer was calculated with the formula: 

number of infected cells x factor for magnification x dilution x dilution factor 2.4  

The dilution factor is calculated from the addition of the different solutions, i.e. 

volume of virus, medium, chymotrypsin and aprotinin divided by virus volume.  

2.2.3.4 Infection of bovine chromaffin cells 

For overexpression experiments with pSFV1-NPY-mRFP-IRES-Munc13-1-eGFP 

chromaffin cells were infected with 300 μl virus solution (prepared as in 2.2.3.2) and 

incubated for 12-15 hours (37°C, 9%CO2). The control cells with pSFV1-NPY-mRFP 

and cells infected with pSFV1-NPY-mRFP-IRES-TeNT-eGFP (100 μl/well) were 

incubated for 8-12 hours. These times were chosen so that the cells had 

approximately the same expression level. The control was taken to see whether the 

virus construct without protein had any effect on the measurements. 

2.2.4 TIRFM 

2.2.4.1 Setup 

The setup used for the Munc13-1 experiments and the PMA experiments consisted 

of an inverted Olympus IX 70 microscope, a solid state laser system (85YCA010, 

Melles Griot, Carlsbad, CA, USA) emitting at 561 nm coupled through a single light 

guide with a monochromator (Visichrome, Visitron systems GmBH, Pucheim, 

Germany), a TILL-TIRF condenser (T.I.L.L. Photonics, Gräfeling, Germany) and an 

Acousto Optical Tunable Filter (AOTF)-nC (AA opto-electronic, St-Rémy-les-

Chevreuses, France). The excitation/emission wavelengths were selected with a dual 

band FITC/Texas red set (# 51006, AHF Analysentechnik AG, Tübingen, Germany). 

The setup was equipped with a Micromax 512 BFT camera (Princeton Instruments 

Inc., Trenton, NJ, USA) controlled by Metamorph (Visitron, Puchheim, Germany). A 

100x/1.45 NA TIRF oil-immersion objective (Olympus, Hamburg, Germany) was used 

for the PMA experiments (Pixel size here was 130 nm), while a 60x/1,45 NA TIRF oil-

immersion objective (Olympus, Hamburg, Germany) was used along with the 1.5x 

magnification for the Munc  13-1 experiments (The pixel size was 144 nm). 

The setup used for the TeNt experiments consisted of an inverted Zeiss Axiovert 200 

microscope (Carl Zeiss, Göttingen, Germany), a 100x/1.45 NA oil-immersion 

objective (The pixel size was 150 nm) (Carl Zeiss, Göttingen, Germany), a solid state 
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laser system (85YCA010, Melles Griot, Carlsbad, CA, USA) emitting at 561 nm, a 

TILL-TIRF condenser (T.I.L.L. Photonics, Gräfeling, Germany). The 

excitation/emission wavelengths were selected with a dual band filter set (# 20 

488020-0000, Carl Zeiss, Göttingen, Germany). The setup was equipped with an 

Ixon CCD camera (DV 887, Andor Technology LTD, Belfast, Ireland), controlled by a 

homemade program in LabView. 

2.2.4.2 Experimental protocols  

A. PMA experiments 

Cells were plated as described in section 2.2.1 and incubated for 48 hours to allow 

good adhesion of the cells on the coverslips. Cells were infected with pSFV1-NPY-

mRFP. Cells were recorded for 2 min at rest with 10 Hz acquisition rate in stream 

mode (which is the mode where the camera can acquire images in the fastest way) 

and 100 ms exposure time. Then the cells were incubated for 2 min in 250 nM PMA 

and then washed with ringer solution for 50 s. Another movie was recorded of the 

same cell for 2 min followed by a 10 s depolarization with high K+ solution. Only the 

cells that exhibited secretion were analyzed. 

To test whether TIRFM gives qualitatively similar results to those shown in 

membrane capacitance recordings, I performed depolarization experiments on cells 

electroporated with NPY-mRFP that contain a high density of stained vesicles. Cells 

were recorded for 1 min then depolarized with high K+ for 20 s then incubated for 2 

min in ethanol (control) or in 250 nM PMA. Cells were washed with Ringer’s solution 

for 1 min then depolarized a second time with high K+. The number of secreted 

vesicles at each depolarization was counted. 

B. Munc 13-1 experiments  

Cells were plated as described in section 2.2.1 and incubated for 48 hours to allow 

good adhesion of the cells on the coverslips. The control cells were then infected as 

described in section 2.2.3.4 with pSFV1-NPY-mRFP-IRES-Munc  13-1-eGFP to 

overexpress Munc13-1 and with pSFV1-NPY-mRFP as control. For both conditions, 

3 min movies were acquired in timelapse mode with 5 Hz acquisition rate. The cells 

were continuously perfused with Ringer’s solution. After 2 min of recording, the 

Ringer’s solution was interrupted and high K+ solution was applied to the cell for 20 s. 

Secretion was determined as the disappearance of a vesicle in an interval of only 
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one frame. The count of the number of vesicle per frame was done by a routine in 

Metamorph after background subtraction.  

To verify whether co-expression of NPY and Munc13-1 yielded the same increase in 

secretion as when Munc13-1 was overexpressed alone we measured the increase in 

capacitance of cells infected with both viruses after depolarization (NPY-mRFP-

IRES-Munc13-1-eGFP and pSFV1-Munc13-1-eGFP previously used by Ashery et al. 

2000). The measurements were done using an EPC-9 patch clamp amplifier (HEKA, 

Lambrecht, Germany). The train of depolarizations consisted of 7 depolarizations 

from -70 mV to 0 mV with 100 ms duration separated by a 100 ms interval during 

which a sine wave protocol was applied in order to measure capacitance. The 

measurements were further analysed in IGOR (WaveMetrics, Portland, USA). 

Electrophysiological experiments were performed with the help of U. Becherer. 

C. TeNt expermints  

Control cells were infected with pSFV1-NPY-mRFP-IRES-TeNt-eGFP to overexpress 

TeNt and with pSFV1-NPY-mRFP as control. Cells were recorded for 2 min with an 

acquisition rate of 10 Hz and an exposure time of 90 ms. Cells were continuously 

perfused with Ringer’s solution. 

A few cells overexpressing TeNt were tested for secretion using whole cell patch 

capacitance measurements as described above. 

Electrophysiological experiments were performed with the help of M. Pasche. 

All experiments were performed at room temperature. 

2.2.5 Analysis of movies 

The movies acquired were processed using a program developed in house (Dr. Hof) 

using LabView.  

A. Vesicle detection: 

Every frame of the stack was first high-pass filtered using a Fast Fourier 

Transform (FFT), i.e. regions with low spatial frequency are darkened while 

regions with higher spatial frequencies are left unchanged. Thus, so-called long-

scale objects like haze are removed and contrast is enhanced (Fig. 9) 
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      Fig. 9: Frame before FFT-high pass                         Frame after FFT-high pass 
      filtering                                    filtering   

 

 
Then every frame is “thresholded”: Pixels whose grey level lies within a lower and 

upper limit were assigned the value 1, while all other pixels were assigned the 

value 0, thus creating a binary frame (Fig. 10). Only those particles whose pixel 

number is within a defined range (e.g. 3-15 pixels large) are selected as vesicles. 

The exact position of a vesicle is defined by its centre of mass, while its 

brightness is determined using the intensity of the original frame. 

 

                                     

Fig. 10:          Actual frame                                                         Binary frame 
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B. Trajectory determination: 

When vesicle detection is completed for all frames of the movie, the tracking 

algorithm is started. The following procedure is carried out for all frames in the 

stack, beginning with frame 0 and vesicle 0: 

For vesicle n in frame 0, new positions in frame 1 are determined. A radius of 3 

pixels is determined; if a vesicle in frame 1 falls within this radius of the position 

of vesicle n in frame 0, then the vesicle is identified as vesicle n and its position 

is added to the trajectory (the sum of all positions occupied by the vesicle). If the 

new position does not fall within the radius of the position in frame 0, the track is 

terminated e.g. in fig. 11, in the four first frames the positions are in close 

proximity thus these positions are assigned to only one vesicle. However, the 

position in the last frame is at a greater distance, thus this position is assigned 

to another vesicle. 

We analyzed trajectories only if vesicles were visible for at least three 

consecutive frames. When two trajectories overlap and it is no longer possible 

to distinguish between them, we assign the resulting track to one of the vesicles 

and the other vesicle is no longer tracked. And of course, trajectories belonging 

to certain vesicles are no longer available for other vesicles. 

Fig. 11: Tracking of a vesicle. 

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 

Sometimes the program looses track of a vesicle for a number of frames due to 

an intensity decrease below threshold level, resulting in two or more trajectories 

describing the fate of a single vesicle; yet that the vesicle is still visible by eye. 

To overcome this problem, a merging routine is provided which merge the two 

components of this trajectory provided that the track was lost only during a few 

frames.   
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A. Resulting files: 

In the end of the tracking procedure three files are obtained: 

One containing the xy position and the fluorescence of the vesicles vs. time and 

frame number. 

One containing the lateral, axial and 3D velocities of the vesicles. 

One containing the MSD vs. Δt values of the vesicles tracks.  

 

2.2.6 Analysis of caging diameter 

After obtaining the xy positions of the vesicles, this information was processed in 

IGOR as follows:    
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Fig. 12: The xy positions of the vesicles 
of a single cell were plotted: 
Each color represents the trajectory of one 
vesicle 

 
The caging diameter (CD) is determined: the CD is the maximum distance measured 

between two positions occupied by the vesicle in a sliding time window of 6 s. The 

routine starts from the 1st position occupied by a vesicle and measures the distance 

between this position and all consecutive positions in a window of 6 s. The largest 

distance measured is taken as CD for this position (Fig. 13). Then the program 

moves to the 2nd position of the vesicle and repeats the previous steps. This routine 

is repeated up to the end of the trajectory of the vesicle. Due to the fact that our time 

window is 6 s, vesicles that are visible for less than 6 s are not taken into 

consideration in the analysis of the CDs.  
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Fig. 13: positions occupied by a vesicle 
within 6 s starting from the red and ending at 
the dark blue, red line represents the CD. 

Last 
position 

1st 

 position 

When all the CDs are calculated from all the vesicles in a cell they are concatenated 

in a plot of CD versus time (Fig. 14).  
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Fig. 14: CD vs. time. Every 
color represents the CD of 
one vesicle over time. Inset 
shows the CD of one vesicle 
over the 2 min of recording.  

A histogram of the CDs is then derived from the previous plot and then a cumulative 

histogram is plotted (Fig. 15) 

                

Fig. 15: Size distribution of CD. A, Histogram of CD. B, Cumulative histogram of the CD. 

 

Other parameters are derived from the analysis of the CD and will be discussed in 

the results. 
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This method of analysis enables us to actually see the changes of mobility over time, 

thus it might allow the visualization of the dynamic changes occurring during the 

lifetime of the vesicle. In contrast, the analysis of the Mean Square Displacement 

(MSD) (Qian et al. 1991) cannot show the changes in mobility occurring during the 

lifetime of the vesicle; it only gives an overall description of the mobility of the vesicle 

as if it had only one type of mobility. In Fig. 16, part of a trajectory of a vesicle is 

illustrated. The green circles represent the positions occupied by the vesicle starting 

from light to dark green; the blue line represents the distances taken to calculate the 

MSD for the first increment which in this example is 100 ms. The red and black lines 

represent the distances taken to calculate the MSD for the second and third 

increment respectively. 

  

Fig.16: trajectory of a vesicle 
used to calculate the MSD. 

Then the MSD vs. Δt is plotted and the curvature of the MSD gives an indication as 

to the nature of the motion studied. If the curve saturates (increases then reaches a 

plateau) then the vesicle is moving within a cage or restricted space. The diffusion 

coefficient is then derived from the plot and if the coefficient is low then the vesicle is 

considered immobile otherwise it is considered caged. If the curvature of the MSD 

plot increases exponentially then the vesicle is considered to have a directed motion. 

If the curvature is linear, then the vesicle is considered to have a random motion. In 

some cases, the analysis of the MSD gives an accurate interpretation of the motion 

of the vesicle but in other cases it does not. 

For example, Fig. 17A shows the trajectory of a vesicle that was immobile in the red 

area then entered a phase where it had a directed motion (green area) then the 

vesicle was moving in a restricted area (blue area). This is just a very general 

description.  
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Fig. 17: Comparison between the analysis of the MSD and the CD. A, XY position of an 
exemplary vesicle. B, MSD vs. Δt of the trajectory of the vesicle. C, CD vs. time of the 
trajectory of the vesicle. 

The MSD of this track was calculated and plotted (Fig. 17B). Since this vesicle shows 

a multitude of different motions, the expected curvature would be a linear increase 

with time increment to be interpreted as random walk. But a curve showing an 

exponential increase with the time increment is obtained, denoting directed motion. 

This is not the case but the short period of time where the vesicle has a directed 

motion (green area) dominates the overall motion of the vesicle and this is the reason 

the MSD gives a false result. The plot of the caging diameter on the contrary shows 

that the vesicle had a low caging diameter in the beginning of the trajectory (average 

CD=120 nm) (Fig. 17C). Then the vesicle entered the phase of directed motion and 

the CD showed a great increase to 0.8 µm. In the end, when the vesicle was moving 

in a restricted area, the CD was around 342 nm. So the analysis of the CD gives an 

accurate description of the vesicle’s motion over time. 

2.2.7 Statistical analysis 

Statistical analysis was performed in SigmaStat using Student t-test analysis paired 

or independent.  

For comparison of data that was found to have a skewed distribution, the Mann-

Whitney test was used. 

For comparison of cumulative distributions, the Kolmogoroff-Smirnoff test was used. 
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3.    Results 

3.1 Effect of PMA on bovine chromaffin cells 

3.1.1 Effect on secretion 

In previous studies (Gillis et al. 1996; Smith et al. 1998), PMA was found to 

significantly increase secretion as determined using membrane capacitance 

measurements. We have used PMA to enhance priming and have used TIRFM to 

detect release of vesicles. This experiment was performed to show that TIRFM gives 

qualitatively similar results to those observed in membrane capacitance 

measurements. Bovine chromaffin cells (BCC) were electroporated with NPY-mRFP 

to obtain a high density of stained vesicles (1 vesicle/µm2). Test cells were recorded 

for 2 min at 10 Hz and then depolarized for 20 s with 90 mM KCl solution to 

determine a baseline for secretory activity. The cells were then incubated for 2 min in 

250 nM PMA; washed for 1 min with Ringer’s solution, then depolarized a second 

time. Control cells were treated similarly except that they were incubated with ethanol 

(final concentration 3%) instead of PMA as ethanol was the solvent of the PMA 

solution. The number of vesicles per frame in control and test cells was not different 

nor was the number of vesicles per frame after PMA treatment different from that 

before PMA treatment (Fig. 18A). This shows that PMA has no effect on docking as 

demonstrated previously (Gillis et al. 1996; Smith et al. 1998). Vesicles were 

considered to be secreted when they disappeared suddenly within one interval (100 

ms). The numbers of secreted vesicles was normalized to the number of vesicles per 

frame prior to the depolarization, so that the fraction of vesicles secreted could be 

compared. To compare the secretion events, I compared the ratios of the 2nd over the 

1st secretion of the PMA treated cells with that of the control cells e.g. if the number 

of vesicles/frame=10 before depolarization and 11 afterwards, and the number of 

secretory events at the 1st stimulation is 3 and 2 at the 2nd then the ratio is 

=2:11/3:10. 

The distribution of the secretion events was not bell shaped but skewed to the left, so 

a non-parametric test was used (Mann-Whitney) to compare the ratios (Fig. 18B). 
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 A                     B 

    

     C 

 

Fig. 18: Effect of PMA on the number of docked and secreted vesicles. A, the number of 
vesicles/frame before and after HK application was not changed after PMA treatment. B, 
number of secretions normalised to the number of vesicles/frame before each stimulation. 
Error bars represent SEM. *, p<0.05. C, the ratios between the second and the first secretion 
were calculated and the medians were compared using a Mann-whitney test. Secretion was 
tripled after PMA treatment. 

 

This test compares the medians and not the averages as is the case in normal 

student T test. In Fig. 18B, the solid line represents the means and the dashed line 

represents the medians, error bars represent 75% percentiles and the black circles 

represent values that are outside of the 75% confidence interval. Using this test, 

secretion after PMA treatment was found to be three times higher than secretion in 

control cells. Thus, TIRFM gives qualitatively similar results to those obtained using 

membrane capacitance recordings. 

When TIRFM can give us correct information about the fusion step, it could also give 

us direct information about processes that occur prior to fusion. We propose to 

monitor the changes in mobility that occur during priming. We expect to be able to 

show that priming leads to a certain type of motion.     
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3.1.2 Mobility of vesicles in cells treated with PMA 

As PMA specifically promotes priming and as our hypothesis is that priming -which 

probably corresponds to SNARE complex formation- leads to a reduction in the 

mobility of LDCVs, I devised the following experimental protocol (Fig. 19) to test this 

hypothesis. Using this protocol, I could compare the mobility of LDCVs before and 

after priming with PMA in the same cell. Thus the cell acts as its own control which 

allows the reduction of variability between cells and also allows us to use paired 

Student t test.  

BCC were infected with pSFV1-NPY-mRFP for 10 hrs before the start of the 

experiment.  

Movie
(2min, 10Hz)

Movie
(2min, 10Hz)

PMA
(2min)

Wash
(30-50sec)  

Fig. 19: Experimental protocol 

Vesicles were tracked as described in the methods section and the caging diameter 

was determined. Fig. 20A depicts the trajectories of LDCVs of a representative cell 

before (control) and after PMA application. It is easily seen that most large range 

movements of LDCVs disappeared after PMA application. The CD analysis of the 

LDCVs movement shows that before PMA application most LDCVs moved over a 

large distance while only few vesicles were immobile (Fig. 20B, right panel). Indeed, 

many LDCVs had, at least transiently, CDs exceeding 400 nm, which means that 

within 6 s the LDCVs had a displacement greater than 400 nm. Moreover, only a 

small fraction of vesicles were immobile since few LDCVs had CDs near 100 nm. 

After application of PMA, the mobility of LDCVs was dramatically changed (Fig. 20B, 

left panel). Indeed, many vesicles were nearly immobile displaying CDs of about 

100 nm and only few moved over large distances as the CDs of most LDCVs stayed 

below 400 nm. The histogram of the CDs of this exemplary cell (Fig 20C) shows a 

large increase in the incidence of CDs having low values after PMA treatment. To 

illustrate this finding in a simple manner, the normalized cumulative histogram of the 

CDs of all LDCVs of this exemplary cell is plotted and shows a large leftward shift 

indicating that vesicles lost mobility after PMA application as compared to control 

conditions (before PMA application, Fig. 20D). The 50% value of the normalized 

cumulative histogram revealed a leftward shift of 156 nm for this exemplary cell. 
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  A 

 

B 

DC 

 

Fig. 20: Analysis of CD in an exemplary cell. A, XY position of the vesicles in the cell 
before and after PMA treatment, each color represents the trajectory of a vesicle. Note that 
large tracks such as the dark blue one are rare after PMA treatment. B, CD over time of the 
vesicles illustrated in A, inset represents the CD of one vesicle over the 2 min recording time. 
C, histogram of the CD of the cell before (control, black) and after PMA treatment (red), note 
the higher incidence of CD with lower values after PMA treatment. D, normalised cumulative 
histogram of CD of the cell before and after PMA treatment, note the large shift to the left 
after PMA treatment. 

 

 

42 



Results  

Twenty one cells were analyzed the same way and the cumulative histograms of the 

CDs were plotted. For simplification two plots are represented in Fig. 21A. Note that 

there was a large variability between cells; some had large left shifts while some had 

almost none. To obtain a value of the reduction in the CD after PMA treatment an 

average histogram for the 21 cells was plotted before and after PMA treatment. 

A                   

  

B               C 

 

Fig. 21: PMA reduces the mobility of LDCVs. A, normalised cumulative histograms of CDs 
of vesicles from 21 cells before (dashed lines) and after (solid lines) PMA treatment; each 
color represents the histogram of one cell. B, normalised cumulative histogram of 21 cells 
showing a large shift to the left after PMA treatment (N=21, n=417) compared to control 
(N=21, n=461). C, CD at 50% is significantly reduced after PMA treatment. Error bars 
represent SEM; **, p<0.01  
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The cumulative histogram of the caging diameters (Fig. 21B) shows a significant shift 

to the left after PMA treatment (N=21, n=417) in comparison to those observed in 

control cells (N=21, n=461). This shift to lower caging diameters after PMA treatment 

indicates that the mobility of the vesicles is reduced. On analyzing the distributions 

with the Kolmogoroff-Smirnoff test, the difference was found to be significant 

(p=0.05). The CD after PMA treatment at 50 % of the distribution was also found to 

be significantly different from that of control (Fig. 20C, p=0.01) and the decrease was 

of 24%. 

These results demonstrate that PMA treatment results in a reduction in the mobility of 

vesicles.  

But we could still not distinguish between primed and unprimed vesicles. To do this, 

we analysed the mobility of secreted vesicles which are primed prior to fusion and 

the mobility of vesicles that did not fuse with the PM and are not necessarily primed. 

3.2 Determination of limits of mobility 

Our working hypothesis is that as the SNARE complex is formed during priming and 

that this complex anchors vesicles tightly to the PM, rendering vesicles immobile. To 

determine what immobility is in terms of CD, we decided to analyse the mobility of 

beads (175 nm in diameter) which were fixed on coverslips. We recorded them for 2 

min at 10 Hz. The light intensity was adjusted so that their fluorescence intensity was 

comparable to that of vesicles. After analyzing the CD of the beads, I found that fixed 

beads had a CD lesser than 100 nm (median=56 nm) (Fig. 22A).  

We then analyzed the mobility and the CD of 10 secreted vesicles in the last 15 s of 

their lifetime. We expected that the distribution of the CD would be similar as that of 

beads and that the average CD would be comparable with that of fixed beads. 

However, the histogram of the CD of secreted vesicles had multiple peaks which we 

have fit using the fit routines of Igor. The individual Gaussian curves are represented 

as dashed curves in Fig. 22B and C. The first Gaussian had a peak value of 60 nm 

thus comparable with the median CD of the fixed beads, so we considered this to be 

jitter inherent in the experimental setup. This peak accounted for 25% of the CDs. 

The second Gaussian had a peak value of 101 nm and accounted for 58% of the 

CDs, the third Gaussian had a peak value of 220 nm and accounted for 10% of the 

CDs while the fourth Gaussian had a peak value of 520 nm and accounted for 7% of 
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the CDs. Since this distribution included only secreted vesicles, they must have been 

primed. Since the first peak appears to be experimental jitter, it is likely that primed 

vesicles belong to the remaining population with the lowest mobility. This is the 

second peak which is also the most prominent peak (Fig. 22B). The last 2 Gaussians 

could represent short periods of time where the vesicles unprimed prior to fusion.  

To strengthen this conclusion, we analyzed the movement of vesicles that were not 

secreted (n=15), thus were less likely to have been primed (Fig. 22C). The 

distribution of the CDs could also be fit with 4 Gaussians with the same peak values 

as those obtained for the secreted vesicles. The first and fourth Gaussians 

accounted for 30% and 6% of the CD distribution respectively which is similar to the 

values obtained for the secreted vesicles. As the first Gaussian represents the 

inherent movement of our recording system, it affects all vesicles equally. The fourth 

Gaussian represents vesicles with very large movements possibly having a directed 

type of motion. The integral values of the second and third peaks were different. The 

integral of the second Gaussian was decreased from 58% to 19%, a third of the 

value for secreted vesicles. The third Gaussian’s integral value was increased by a 

factor of 4.5 from 10% to 45% as compared to secreted vesicles. Since the vesicles 

in Fig. 21B were primed and the vesicles in Fig. 22C were docked but not necessarily 

primed, we deduced that primed vesicles are represented by the second Gaussian 

having a peak at CD=101 nm and that docked but unprimed vesicles are represented 

by the third Gaussian and have a peak at CD=220 nm. So we conclude that primed 

vesicles were nearly immobile, docked vesicles were caged vesicles or vesicles 

having a restricted motion and vesicles in the depot pool were vesicles having a 

directed motion. Since PMA increases the primed pool and decreases mobility, we 

have tested whether PMA increases the incidence of vesicles exhibiting a CD near 

101 nm while reducing that with higher mobilities. 

To distinguish nearly immobile from caged vesicles, we used the intersection point 

between the second and third Gaussian (170 nm, Fig. 22B) and to distinguish caged 

vesicles from vesicles with directed motion, we used the intersection point between 

the third and the fourth Gaussian (403 nm). 
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Fig. 22: Size distribution of CD of beads, secreted, and non-secreted vesicles. A, 
Histogram of CD of beads with a peak value of 56 nm. B, Histogram of CD of secreted 
vesicles (n=10) with peak values and integral values of 60 (25%), 101 (58%), 220 (10%) and 
520 nm (7%). C, Histogram of CD of non secreted vesicles (n=15) with peak values similar to 
those in B and integral values of 30%, 19%, 45% and 6%.  

 

As can be seen in Fig. 22B and C, vesicle mobility is not a constant, but can rather 

change over time. This is to be expected since the transition from the docked state to 

the primed state is reversible. Therefore, we have followed mobility (CD) over time to 

determine how vesicle mobility changes. We have, based on these results, defined 

different types of mobility.  

 

I   C        D       IC    M 

 

Fig. 23: Classification of vesicles. I, Immobile vesicle: CD < 169 nm for 75% of the time. C, 
Caged vesicle: 169 nm < CD < 403 nm for 75 % of the time. D, Vesicle with directed motion: 
CD > 403 nm for 75% of the time. IC, Immobile-caged vesicle: CD oscillating between the I 
and the C states. M, Vesicle with mixed motion: CD constantly oscillating between the three 
states. 

 

We considered vesicles as nearly immobile (I) when their CD was below 170 nm for 

75% of the time. Vesicles were considered caged (C) when their CD was between 
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170 nm and 403 nm for 75% of the time. Vesicles had a directed motion (D) when 

their CD was larger than 403 nm for 75% of the time. Immobile-caged vesicles (IC) 

were those that spent 75% of the time below 403 nm but whose CD was oscillating 

between the nearly immobile state and the caged state. Finally, vesicles were 

considered to have a mixed motion (M) when their CD was constantly oscillating 

between the three mobility states (Fig. 23).   

 

3.2.1 PMA treatment increases the number of nearly immobile 
vesicles 

I used the previously determined limits to classify vesicles from cells treated with 

PMA. I expected to observe an increase in the fraction of nearly immobile vesicles 

after PMA treatment. 

The LDCVs of the cells treated with PMA were tracked at rest (before depolarization 

with the high K+ solution). The CDs were analyzed and the vesicles classified using 

the limits determined in the previous section. 

       A          B 

 

Fig. 24: A, Fraction of vesicles in each type of motion, I=immobile, C=caged, IC=immobile-
caged, D=directed motion, M=mixed. The fraction of nearly immobile vesicles significantly 
increased while the fraction of vesicles with mixed motion was reduced. B, Fraction of time 
spent in each type of motion. The fraction of time spent in the nearly immobile state was 
significantly increased and the fraction of time spent in the restricted and directed state was 
significantly reduced. Error bars represent SEM; *, p<0.05; **, p<0.01; ***, p<0.005; paired 
student test. 
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After treatment with 250 nM PMA, the fraction of immobile vesicles increased 

significantly (N=21, n=417) by 19% (p=0.0049) as compared to control cells (N=21, 

n=461, Fig. 24A). As mentioned before, since priming is believed to be the 

association of vesicles into SNARE complexes, we hypothesize that priming should 

lead to immobilization of vesicles.  

This result confirms our prediction that priming leads to immobility. This supports the 

idea that primed vesicles are represented by immobile vesicles. In addition, the 

fraction of vesicles with mixed behavior was significantly decreased by 45% 

(p=0.002) indicating that when priming was promoted, the mobility of the vesicles 

was more targeted to definite types of motion (Fig 24A). 

Note that the advantage of this experiment was the fact that the cell acted as its own 

control, thus paired student t-test was used for the statistical analysis and although 

the SEM bars was large, the changes were still significant. 

The fraction of time spent in each type of motion corresponded well with the changes 

in the numbers of vesicles displaying the different types of mobility. The fraction of 

time spent in the immobile state was significantly increased (N=21, n=461, p=0.002) 

and vesicles spent significantly less time in the caged state (N=21, n=461, p=0.016) 

and in directed motion (N=21, n=461, p=0.007) (Fig. 24B). This indicates that tracked 

vesicles spend more time in the immobile than in the caged state. 

As stated in the methods, our tracking protocol enables us to obtain information on 

the velocities of the vesicles and their dwell time (the time they remain visible). Table 

1 lists the parameters of the tracked vesicles. 

The number of tracked vesicles and the number of vesicles per frame were 

unchanged after PMA treatment indicating that PMA has no effect on docking. Also 

no effect was observed on the velocity indicating that the increase of the fraction of 

immobile vesicles was not a result of a reduced velocity. The dwell time of the 

vesicles was not altered after PMA treatment. Visitors are the vesicles that were 

tracked but were visible for less than 6 s, thus their CD was not analyzed. 
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Table 1: Characteristics of tracked vesicles: 

  Control PMA 

Number of tracked vesicles  947 848 

Vesicles/cell  45.1 ±  5.5  40.4 ± 5.2 

Vesicles/frame  11.5 ± 1.0  11.4 ±  1.0 

Dwell time (s)  23.1 ± 1.8  27.6 ±3.4 

Average velocity (nm.s-1) 331.0 ± 20.0 340.2 ± 23.9

Number of visitors 486 431 

Visitors/cell  20.0 ± 3.0  20.0 ± 3.7 

N = 21, n = 1795. 

 

3.3 Overexpresssion of Munc13-1 alone and fused with 
NPY-mRFP. 

To check our hypothesis with an independent method, I promoted priming by 

overexpressing Munc13-1 in BCCs. In previous studies using overexpression of 

Munc13-1, the protein was fused with eGFP in a pSFV1 plasmid (Ashery et al. 2000). 

Here I use pSFV1-NPY-mRFP-IRES-Munc13-1-eGFP. To determine whether 

overexpression of Munc13-1 using this expression vector gives comparable results to 

those reported by Ashery et al. (2000), I compared the effect of overexpression of 

Munc13-1 in BCCs. The secretion in overexpressing cells was compared to that in 

wild type control cells. Cells were measured in the whole cell configuration at room 

temperature. 
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Fig. 25: Expression of Munc13-1 
alone and co-expression of NPY 
and Munc13-1. The black trace 
represents secretion from control 
cells after atrain of depolarizations. 
The blue trace represents secretion 
from Munc13-1 overexpressing cells; 
secretion was tripled compared to 
control cells. The red trace 
represents secretion from cells co-
expressing Munc13-1 and NPY. 
There was no difference between the 
red and blue traces. Control, n=8; 
Munc13-1, n=10; Munc13-1+NPY, 
n=6.  

Co-expression of NPY and Munc13-1 yielded a strong increase in capacitance 

(843.0±221.8 fF, n=6) in comparison to control cells (252.7±57.4 fF, n=8) (Fig. 25). 

Expression of Munc13-1 alone resulted in an increase in capacitance that is 

comparable with that of the co-expression of NPY and Munc13-1 (1041.0±239.8 fF, 

n=10). This shows that the pSFV1-NPY-mRFP-IRES-Munc13-1-eGFP virus is 

effective in enhancing secretion and thus suitable as a tool to enhance priming. So I 

used BCC overexpressing Munc13-1 to monitor exocytosis and mobility of vesicles 

from these cells. 

 

3.4 Effect of Munc13-1 on secretion from chromaffin cells 

3.4.1 Munc13-1 increases secretory events observed in TIRFM 

The present experiment was performed to confirm that secretion observed using 

TIRFM is similar to that recorded using membrane capacitance measurements. 

BCC were infected with the pSFV1-NPY-mRFP virus for control and with the pSFV1-

NPY-mRFP-IRES-Munc13-1-eGFP virus for 12-15 hrs, then a movie was recorded of 

the cells at rest for 2 min with a frequency of 5 Hz. The cells were then depolarized 

for 20 s with a high K+ solution. The total number of vesicles and the number of 

vesicles per frame were determined using Metamorph. The total number of vesicles 

and the number of vesicles per frame were similar in control and test cells indicating 

that Munc13-1 has no effect on docking as stated before (Ashery et al. 2000) 

(Fig. 26A and B, Table 2). 
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Fig. 26: Munc13-1 has no effect on docking. A, number of vesicles/frame; the number of 
visible vesicles per frame was similar in Munc13-1 overexpressing cells and in control ones. 
B, total number of vesicles; the total number of vesicles was similar in Munc13-1 
overexpressing cells and in control ones. Control (n=28), Munc13-1 (n=33). Error bars 
represent SEM. 

 
When a vesicle was visible in one frame then disappeared in the next frame, this was 

considered a secretory event (after 200 ms). The number of secretory events was 

then normalized to the number of vesicles per frame. Secretory events were counted 

over the period of the 20 s of stimulation. The number of secretions was increased by 

32% but the difference was not significant (Fig. 27A).  

 

A       B 

             

Fig. 27: Secretion in Munc13-1 overexpressing cells. A, Number of secretions normalized 
to the number of vesicles/frame; Control, n=28; Munc13-1, n=33. The number of secretions 
in Munc13-1 overexpressing cells increased but was not significant compared to control cells 
due to the large variability between cells and the long duration of the stimulation protocol (20 
s). B, Distribution of secretion over time, bin=2 s. The distribution of secretion from Munc13-1 
overexpressing cells shows a peak at 5 s  then a gradual decrease (black bars), while the 
disrtribution of secretion in control cells is continuous over the time of stimulation (white 
bars). Error bars represent SEM.  
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Ashery et al. (2000) have reported an approximately three fold increase in secretion. 

We observe a similar effect of Munc13-1 overexpression on depolarization induced 

secretion (Fig. 25). Thus, our results with potassium stimulation indicates a weaker 

than expected effect of Munc13-1 on secretion observed in TIRFM. This may be due 

to the relatively long duration of the potassium stimulation. We have examined the 

time course of secretion in the experiment described in Fig. 27A and found that a 

strong enhancement of secretion was present in Munc13-1 overexpressing cells in 

the first 10 s of stimulation (Fig. 27B). This probably shows that the vesicles that are 

released first are already primed, which also shows that Munc13-1 increases the 

primed pool as already shown in previous studies (Ashery et al. 2000). So I 

determined the normalized number of secretory events in the first 10 s of secretion 

only (Fig. 28). The secretion was tripled in Munc13-1 overexpressing cells (n=33) 

(p<0.005) in comparison to control cells (n=28). Note that the numbers of secreted 

vesicles are low because some cells did not secrete in the first 10 s of depolarization 

thus they were given a value of zero and taken into account in the calculation; also, 

in virus infected cells, the density of stained vesicles is low (0.1 vesicle/µm2) and we 

obtain cells that secrete only one vesicle per depolarization. From these data, I 

conclude that Munc13-1 specifically promotes priming since docking was unaffected. 

We also confirm that TIRFM gives similar results to those obtained by membrane 

capacitance recordings. 

 

  

Fig. 28: Secretion in the 
first 10 s of depolarization. 
Munc13-1 overexpression 
triples the number of 
exocytosed vesicles in the 1st 
10 s of depolarization 
compared to control. Control, 
n=28; Munc13-1, n=33. Error 
bars represent SEM; ***, 
p<0.005. 
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3.4.2 Munc13-1 overexpression increases the number of 
immobile vesicles 

Since Munc13-1 specifically promotes priming, I decided to test whether 

overexpression of Munc13-1 has similar effects on mobility as PMA treatment. The 

cells used in the previous section were used, their LDCVs tracked at rest, and the 

CDs were analyzed.  

A 

 

B        C 

 

Fig. 29: Munc13-1 overexpression reduces the mobility of vesicles. A, normalised 
cumulative histograms of 24 control cells (black) and 31 Munc13-1 overexpressing cells 
(red). B, CD histogram shows a shift to the left in Munc13-1 overexpressing cells; Control 
N=24, n=686; Munc13-1 N=31, n=695. The difference between the two distributions is 
significant. C, Shift of the CD at 50%; the decrease is of 40 nm. Error bars represent SEM; 
***, p<0.005. 
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The cumulative histograms of 24 control cells and 31 Munc13-1 overexpressing cells 

were plotted (Fig. 29A, right and left). These cells cannot be compaired in a paired 

manner like the PMA treated cells were. It is even more complicated to obtain 

information from such plots. Therefore, the average cumulative histograms of 

Munc13-1 overexpressing cells and control ones were plotted (Fig. 29B). The 

cumulative histogram of the CD of vesicles from Munc13-1 overexpressing cells was 

shifted to the left as was the case with PMA treated cells (Fig. 29B), so the CD was 

smaller in Munc13-1 overexpressing cells (N=31, n=695) in comparison to control 

cells (N=24, n=686).  

The difference between the two distributions was found to be significant (p=0.05, 

Kolmogoroff-Smirnoff test. Fig. 29B) and the decrease of CD at 50% was of 40 nm 

and was significant compared to control (p=0.0001) (Fig. 29C). 

Then the vesicles were classified according to their mobility. In spite of the variability 

between cells, the fraction of nearly immobile vesicles was significantly increased 

(68%, p=0.006) in Munc13-1 overexpressing cells as compared to control cells 

(Fig. 30A). On the other hand, the number of caged vesicles was significantly 

reduced by 46.8% (p=0.001), while the number of immobile-caged vesicles did not 

change. Notably, the number of docked vesicles (sum of nearly immobile, caged and 

immobile-caged vesicles) was not significantly changed after Munc13-1 

overexpression (control, 84.1±6%; Munc13-1, 89.6±10%) indicating that Munc13-1 

has no effect on docking as shown in previous studies. The number of vesicles 

having directed motion and mixed behavior did not change. 

The time the vesicles spend in the immobile state was significantly increased by 33% 

(p=0.0002) in Munc13-1 overexpressing cells compared to control cells (Fig. 30B). 

The time the vesicles spend in the caged state was significantly reduced by 37% 

(p=0.0002). The time they spend in directed motion was significantly reduced by 43% 

(p=0.005) but these vesicles represent less than 5% of the vesicles in both control 

and Munc13-1 overexpressing cells.  
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Fig.  30: Munc13-1 overexpression increases the number of nearly immobile vesicles. 
A, fraction of vesicles in each type of motion. The fraction of nearly immobile vesicles was 
significantly increased while that of caged vesicles was significantly reduced. B, Fraction of 
time spent in each type of motion; Control, N=24, n=686; Munc13-1, N=31, n=695. The 
fraction of time spent in the immobile state was significantly increased while the fraction of 
time spent in the two remaining state was significantly reduced. Error bars represent SEM; 
**, p<0.01; ***, p<0.005. 

 

Table 2: Parameters of LDCVs in Munc13-1 overexpressing cells: 

  Control Munc13-1 

Number of tracked vesicles  1313 1267 

Vesicles/cell  54.7 ±  6.2  36.5 ± 4.9 

Vesicles/frame 9.4 ± 1.0 8.7 ±  1.0 

Dwell time (s)  22.5 ± 1.7  17.8 ± 2.0 

Average velocity (nm.s-1) 318.8 ± 31.6 256.6 ± 25.5

Number of visitors 627 572 

Visitors/cell  26.1 ±  3.7  20.1 ± 2.8 

Control: N = 24, n = 1313; Munc13-1: N = 31, n = 1267.  
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As was the case in PMA treated cells, the parameters of tracked vesicles were 

unchanged in Munc13-1 overexpressing cells as listed in table 2. 

Our previous results obtained from PMA treated cells and the present results from 

Munc13-1 overexpressing cells show that enhancing priming leads to immobilization 

of vesicles. This has reinforced our hypothesis that when the vesicles undergo 

priming when the SNARE complex probably forms, the vesicle becomes attached to 

the PM and is then not able to move freely.  

To challenge our hypothesis, we verified our results by preventing priming. We thus 

expect to see an opposite effect on mobility to that observed when priming was 

promoted.  

 

3.5 Overexpression of tetanus toxin light chain increases 
the mobility of vesicles 

To verify our previous conclusions, I have blocked SNARE complex formation which 

should prevent priming and result in increased mobility of vesicles. I used a virus 

containing both NPY-mRFP to visualize the vesicles and eGFP-TeNt-LC (the light 

chain of tetanus toxin) which cleaves synaptobrevin and prevents it from forming 

SNARE complexes.  

 

 

Fig. 31: Secretion in TeNt-
LC overexpressing cells: 
TeNt-LC overexpressing 
cells (n=4) show a complete 
block of exocytosis 
compared to control cells 
(n=6). 
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BCC were infected with pSFV1-NPY-mRFP for control cells and with pSFV1-NPY-

mRFP-IRES-TeNt-LC-eGFP for 10-12 hrs. To demonstrate that the virus containing 

the TeNt-LC blocks exocytosis, I performed membrane capacitance recordings on 

control cells and cells expressing tetanus toxin. Cells expressing TeNt-LC showed a 

complete block of exocytosis in comparison to control cells (Fig. 31). 

Vesicles from control cells and from cells overexpressing TeNt-LC were tracked and 

their CDs was analyzed. The cumulative histograms of the CDs of 22 TeNt-LC 

expressing cells and 25 control ones were represented in two plots for clarity (Fig. 32 

A). It was impossible to obtain a definit information from these plots.  

A 

 

 

B C 

Fig. 32: Overexpression of TeNt-LC increases the mobility of vesicles. A, normalised 
cumulative histograms of 22 TeNt-LC expressing cells (green) and 25 control cells (black). B,  
Cumulative histogram of CDs showing a shift to the right in TeNt-LC overexpressing cells 
(N=22, n=453) compared to control cells (N=25, n=553). C, Shift of CD at 50% showing a 
significant increase in TeNt overexpressing cells. Error bars represent SEM; *, p<0.05. 
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Thus, the average cumulative histograms of the CD of TeNt-LC expressing cells and 

control ones were plotted (Fig. 32B). As expected, the cumulative histogram of the 

CD of TeNt-LC expressing cells (N=22, n=453) was shifted to the right indicating that 

the CD was larger so the vesicles have larger movements in comparison to control 

cells (N=25, n=553) (Fig. 32B).  

The reduction of CD at 50% was of 21.5 nm but the difference between the two 

distributions (control and TeNt-LC expressing cells) was significant (p=0.03) (Fig. 

32C). 

 

Table 3: Parameters of LDCVs in TeNt-LC overexpressing cells: 

  Control TeNt 

Number of tracked vesicles  1213 1267 

Vesicles/cell  52.5 ±  4.3  58.5 ± 7.0 

Vesicles/frame 6.5 ±  0.5 8.4 ±  0.9 

Dwell time (s)  17.0 ± 1.0  12.6 ± 0.9**

Average velocity (nm.s-1) 532.0 ± 27.0 546.7 ± 31.0

Number of visitors 660 883 

Visitors/cell  28.4 ±  2.9  37.9 ± 5.0 

Control: N = 25, n = 1213; TeNt: N = 22, n = 1267. 

Table 3 shows the parameters of LDCVs of TeNt-LC overexpressing cells compared 

to control cells. In all previous cases, the fraction of visitors ranged from 50% to 55%, 

but in TeNt-LC overexpressing cells the fraction of visitors was 63±3% in comparison 

to control (55±2%, p=0.02); this result is in agreement with data obtained previously 

(Johns et al. 2001) where the time the vesicles spent near the PM was significantly 

lower than the time they spend further from the PM. The increase in the number of 
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visitors in turn affected the dwell time at the footprint of the cell which was 

significantly reduced by 26% in TeNt-LC overexpressing cells (p=0.01) 

Then the vesicles were classified according to their mobility. The fraction of nearly 

immobile vesicles was reduced in TeNt expressing cells while the fraction of 

immobile-caged vesicles was increased (Fig. 33A). Although the changes were not 

significant, they were the opposite of the changes induced by PMA treatment or 

Munc13-1 overexpression.  

 

Fig. 33: TeNt-LC overxpression reduces the number of nearly immobile LDCVs. A, 
Fraction of vesicles in each type of motion. The fraction of nearly immobile vesicles was 
reduced but not significantly. B, Fraction of time spent in each type of motion; control, N=25, 
n=553; TeNt-LC, N=22, n=453. The fraction of time spent in the immobile state was 
significantly reduced and the fraction of time spent in the caged state was significantly 
increased. Error bars represent SEM; *, p<0.05. 

 
The fraction of time the LDCVs spend in the immobile state was significantly reduced 

(p=0.04) in cells overexpressing TeNt-LC compared to control cells. On the other 

hand, LDCVs spend significantly more time in the caged state in TeNt-LC 

overexpressing cells (p=0.04) compared to control cells. These results are also the 

opposite to those obtained when cells were overexpressing Mun13-1 or treated with 

PMA (Fig. 33B).  

These results support our hypothesis in which we state that nearly immobile vesicles 

represent primed vesicles and that caged vesicles represent docked but unprimed 

vesicles.  
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4.    Discussion 

In the present study, we asked the question whether primed vesicles had a different 

mobility than docked but unprimed vesicles. It has been previously shown that as 

they approach the PM, vesicles lose mobility and that immobilized vesicles are 

preferentially secreted. So, are primed vesicles immobile? To answer this question, 

we have devised a new method of analysis which allows us to monitor changes in 

mobility over time. 

We have verified that the results acquired using TIRFM to measure secretion are 

qualitatively similar to those obtained using membrane capacitance recordings. This 

confirms the complementary role of TIRFM in measuring secretion, in addition to its 

irreplaceable role in monitoring presecretion events such as docking and priming.

   

4.1 The caging diameter: a novel method to analyze 
motion 

We have devised a new method of analyzing the mobility of LDCVs in chromaffin 

cells which we call “caging diameter analysis”. The caging diameter is the maximal 

distance traveled by a vesicle in a sliding time window of six seconds. This method 

allowed us to obtain a CD for each position occupied by the vesicle over the time of 

observation. We were able to observe immediately changes in CD of vesicles in a 

cell towards a higher or lower CD (higher or lower mobility).   

We were also able to distinguish between three different mobility states: Nearly 

immobile vesicles (I), caged vesicles (C) and vesicles with directed motion (D). In 

addition, we showed that, with this method, we could recognize two transitional 

states for vesicles: Immobile-caged vesicles (IC) and vesicles that have a mixture of 

the three main types of mobility states (M). The three main mobility states were 

recognized in previous studies (Burke et al. 1997; Steyer et al. 1999; Oheim et al. 

2000; Johns et al. 2001). In these studies, the analysis of the LDCVs motion was 

made by calculating the MSD, which gave the diffusion coefficient and the caging 

radius of single vesicles or by the change in the fluorescence intensity for analyzing 
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the motion in the “z” direction. I have shown in the materials and methods section 

that analyzing the movement by calculating the MSD can yield incorrect results since 

the MSD calculation does not take into account the dynamic changes that could 

occur over time. This leads to false interpretations of the actual movement of the 

vesicle.  In addition, one of the disadvantages of MSD analysis is that the accuracy of 

MSD values decrease with Δt due to averaging over smaller number of positions. 

Oheim et al. (1999) succeeded in observing changes in mobility by plotting the 3 -D 

diffusion coefficient over time, yet this method cannot differentiate between an 

immobile vesicle and one that has a directed motion for a relatively short period of 

time and having a low velocity.  

More recently, Huet et al. (2006) have developed a method that seems to accurately 

describe the changes in mobility that vesicles undergo. This method depends on the 

calculation of three parameters: the diffusion coefficient to detect immobility, MSD 

curvature to detect caged motion and asymmetry to detect directed motion. Similar to 

our method of CD analysis, Huet et al. (2006) had to choose a time window of 

analysis, but this sliding window depended on the type of motion to be analyzed and 

thus was different for each case. Our sliding time window was in all cases six 

seconds long. This period of time was chosen after meticulous observation of the 

tracked vesicles. When we analyzed the CD with shorter time windows, it did not 

allow a reliable classification of the trajectory and the data were extremely noisy, 

whereas a larger time window did not allow the detection of brief specific motions due 

to averaging of the vesicle’s behavior. Also, Huet et al. (2006) had to verify and 

manually correct several of their sliding windows, while our method of analyzing the 

CD is fully automatic and human interference is minimal.  

In the present work, I chose to ignore the motion in the “z” direction due to the error 

in determining the evanescent wave’s depth and because the fluorescence intensity 

was different from one vesicle to the other.  
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4.2 Secreted vesicles motion is different  

By analyzing the CD of secreted and non secreted vesicles, I was able to show that 

secreted vesicles had a different mobility than that of non secreted ones.  

Analyzing the size distribution of CDs, I found that there were four populations of 

CDs with different means and fractions of incidence. The first one with a mean of 

56 nm represented the jitter inherent to our experimental system. The second 

population had a mean of 101 nm in both secreted and non secreted vesicles, but the 

incidence of this population was three times larger in secreted vesicles compared to 

non-secreted ones. This prompted us to think that this large population of CDs which 

is reduced in size when analyzing the mobility of non-secreted vesicles represented 

the mobility of primed vesicles (since the vesicles analyzed were exocytosed, they 

must have been primed prior to fusion). The third population had a mean of 220 nm 

and its incidence was four and a half times larger in non-secreted vesicles than in 

secreted ones. We thus assumed that this population of CDs represented the docked 

but not necessarily primed vesicles. The fourth population had a mean of 520 nm and 

its incidence was similar in secreted and non-secreted vesicles (less than 7%). This 

population represented the vesicles with large movements.  

The CD corresponds to double the caging radius i.e. a CD of 101 nm would 

correspond to a caging radius of 50.5 nm. Our caging radii may differ slightly from 

those obtained by others (Oheim et al. 2000; Huet et al. 2006). This may be due the 

difference in the inherent jitter of the different experimental setups. The inherent jitter 

of our system was tested using beads fixed to the coverslip. The system jitter was 

tested (Oheim et al. 2000; Huet et al. 2006) and was found to be different from our 

calculated jitter value. This may be due to the difference in equipment, cameras, pixel 

size and signal to noise ratio. Oheim et al. (2000) uses a system that has a very low 

signal compared to ours and uses an image intensifier to correct for the low signal. 

This may affect the inherent jitter of the system and thereafter the values for caging 

radii obtained. 

Our concern at this point was to verify whether the different molecular states 

corresponded to certain types of movements. To answer this question, we classified 

motion according to the size distribution of the CDs and we delimited each type of 

motion. 
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The first limit was set as the intersection point of the two populations of CDs which 

was 169 nm to differentiate nearly immobile vesicles (I) from caged ones (C). With 

the same reasoning we set 403 nm, the intersection point between the caged 

vesicles and those having a directed motion (D), as the CD that distinguishes these 

two populations.  

Now that the method of analysis of the movement was established and that we found 

a notable difference in mobility between secreted thus primed vesicles and those that 

were not secreted, it remained to be proven that primed vesicles are indeed nearly 

immobile. 

4.3 Priming leads to a reduction in the LDCV mobility 

I enhanced priming using two independent methods: treatment with PMA and 

overexpression of Munc13-1. The cells used in both cases were recorded at rest. 

The cells were depolarized only at the end of the experiment to ascertain their 

viability and to monitor exocytosis. Also, I did not interfere with the [Ca2+]i of the cells 

thus only enhanced priming affected the LDCVs mobility.  

In PMA treated cells, there was a notable reduction in mobility after priming. This was 

seen as a reduction in the CD at 50% of PMA treated cells by 24% compared to 

control cells. To check which type of motion was affected, I classified the vesicles 

into the different mobility types (I, C, IC, D, M).  

Docked vesicles are defined as those vesicles residing close to the PM (within 300 

nm of the PM). These include both primed and unprimed vesicles. If our assumptions 

are correct and primed vesicles are nearly immobile while docked but unprimed ones 

are caged then the sum of immobile, caged, and immobile-caged vesicles represents 

the docked vesicles. After treatment with PMA this fraction of vesicles (I+C+IC) was 

unchanged compared to control which means that docking was not affected by PMA 

as observed previously (Gillis et al. 1996; Smith et al. 1997). In contrast, the fraction 

of immobile vesicles was increased by 19% compared to control whereas the fraction 

of caged and immobile caged vesicles was not markedly changed. This indicated that 

primed vesicles are indeed nearly immobile since PMA increases only the primed 

pool. If that is correct then the fraction of nearly immobile vesicles (primed vesicles) 

should be five times smaller than the fraction of caged vesicles (docked but unprimed 

vesicles, UPP) as shown previously by Ashery et al. 2000. Yet, I find that immobile 
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vesicles represented 45% of the total number of vesicles while caged vesicles 

represented only 8% in control condition. This would mean that the number of primed 

vesicles is 6 times larger than that of docked but unprimed vesicles (UPP). This 

discrepancy can be explained by the transfection method that I used to label the 

vesicles with NPY-mRFP. The transfection by means of the semliki virus system  

yields cells with a low density of stained vesicles (0.1 vesicle/µm-2) which facilitates 

tracking. However, this method of transfection allows the staining of only the newly 

generated vesicles which were shown to be preferentially secreted thus primed 

(Duncan et al. 2003). Hence, it is likely that this method of transfection allows us to 

see a greater fraction of primed vesicles than docked ones. The fraction of vesicles 

with mixed behavior decreased by 45% compared to control, probably meaning that 

the probability that a vesicle transitions between different states decreases and that 

vesicles tend to remain longer in distinct molecular states (primed or docked). In 

agreement with the changes observed in the fractions of immobile and caged 

vesicles, the fraction of time spent in the immobile state was increased by 20% 

compared to control and the fraction of time spent in caged and directed motion was 

decreased after PMA treatment. 

I then used a second independent method to enhance priming by overexpressing 

Munc13-1. Munc13-1 was found to increase the RRP size without affecting the UPP 

(Ashery et al. 2000). Overexpression of Munc13-1 caused a reduction in the CD by 

28%, thus priming via Munc13-1 causes a reduction in the mobility of vesicles. As 

was the case with PMA treated cells, the number of immobile, caged and immobile-

caged vesicles was unchanged in Munc13-1 overexpressing cells confirming 

previous findings that Munc13-1 does not affect docking. The fraction of immobile 

vesicles was increased by 68% in Munc13-1 overexpressing cells compared to 

control cells, while the fraction of caged vesicles was reduced by 48%. As Munc13-1 

specifically promotes priming, then the increase in nearly immobile vesicles is due to 

the increase of the primed pool. Consistent with these results, the fraction of time 

spent in the nearly immobile state was increased by 33% and that spent in the caged 

state was decreased by 37%. The changes observed in Munc13-1 overexpressing 

cells were more marked than those observed in PMA treated cells. This could be 

because PMA is applied to the cell by perfusion and acts through second 

messengers while Munc13-1 is expressed in the cells and its action is direct. Thus, 

the effects observed in Munc13-1 overexpressing cells are larger compared to the 
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effects observed in PMA treated cells even though the analysis of the latter was done 

pair wise.  

Taken together, the previous findings show that priming by PMA incubation or 

Munc13-1 overexpression increase the fraction of immobile vesicles while leaving the 

sum of the fractions of immobile, caged and immobile caged unchanged (Fig. 34). 

This strongly reinforces our hypothesis that primed vesicles are nearly immobile and 

that docked but unprimed ones are caged. This is also consistent with the results 

previously obtained (Steyer et al. 1997; Oheim et al. 1998; Johns et al. 2001) 

showing that immobilized vesicles were preferentially secreted. In these studies, the 

axial mobility (perpendicular to the PM) was analyzed rather than the lateral mobility 

(parallel to the PM). They found that as the vesicle approaches the PM its mobility 

diminished 4-fold. This suggests that a system or a matrix restricts the mobility of the 

vesicle at the PM. This matrix could either consist of the actin filaments or of the 

SNARE complex which is supposed to initiate priming. It has been shown that actin 

polymerization or depolymerization does not affect exocytosis from already 

immobilized vesicles (Oheim et al. 2000). More recently, it was shown that the actin 

skeleton provides a system to transport the vesicles from the cytoplasm to the 

subplasmalemmal areas and may play a role in bringing the vesicles to the docking 

sites (Giner et al. et al. 2005). But it has not been shown to play a role in the priming 

process. Therefore SNARE complex formation could be the second possible 

explanation for the immobilization of primed vesicles at the PM. 

 

 

Fig. 34: The different molecular states have different mobilities. The primed pool is 
represented by the nearly immobile pool (I); the docked but unprimed pool (UPP) is 
represented by the caged pool (C); the depot pool is represented by the vesicles having a 
directed motion (D). 
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4.4 Mobility of LDCVs increases when priming is 
prevented 

In order to confirm our hypothesis, I expressed the light chain of tetanus toxin in 

chromaffin cells. This toxin prevents synaptobrevin from interacting with syntaxin and 

SNAP-25 to form the SNARE complex. And since priming is thought to correspond to 

the SNARE complex formation, then preventing its formation should prevent priming. 

In this way, the fraction of nearly immobile vesicles should decrease and not 

increase. As expected, the CD at 50% of vesicles of cells expressing TeNt-LC was 

increased by 21.5% compared to control and although the increase was small it was 

significant. The fraction of nearly immobile vesicles was decreased by 30% in cells 

expressing TeNt-LC compared to control cells but this decreased was not significant. 

Yet the fraction of time spent in the nearly immobile state was significantly decreased 

by 15% and the fraction of time spent in the caged state was increased by 23%. 

We expected that the changes in mobility would be large, but this was not the case. 

One reason could be that some vesicles were primed before tetanus toxin was 

expressed, and the formed SNARE complex did not allow the toxin to cleave 

synaptobrevin. We performed membrane capacitance recordings and found that cells 

expressing tetanus toxin showed no secretion, invalidating this. Another reason for 

the small changes in mobility could be that synaptotagmin, a vesicular protein, binds 

to the t-SNAREs in a constitutive manner before synaptobrevin does (Rickman et al. 

2006). This forms a ternary SNARE complex (not including synaptobrevin) that 

tethers the vesicle to the PM and thus can mimic priming. This SNARE complex does 

not function as a fusogenic complex and is not Ca2+ dependent. It may rather be a 

preliminary process for the quick formation of the fusogenic SNARE complex. Thus 

the tethering function of synaptobrevin in the priming process could be replaced by 

that of synaptotagmin. However, although the changes were not spectacular, they 

were opposite to the changes observed when priming was enhanced. Again, this 

reinforced our hypothesis that primed vesicles correspond to nearly immobile 

vesicles. Our findings agree with those of Toonen et al. (2006) who found that 

expression of BoNt/C has a large effect on the axial mobility (perpendicular to the 

PM) of LDCVs whereas expression of TeNt-LC had a minor effect and the mobility of 

LDCVs was not increased.  
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I also found that there was a significant increase in the number of visitors (vesicles 

visible for less than 6 s) in TeNt-LC expressing cells compared to control cells. This 

was consistent with the increase in the fraction of time spent in directed motion and 

probably means that the equilibrium between the depot pool and the docked pool is 

disturbed in favor of the depot pool. So either docking is prevented or the undocking 

process is enhanced (Fig. 34). This finding agreed with that of Johns et al. (2001) 

where cleavage of synaptobrevin using tetanus toxin reduced the time the vesicles 

spend near the PM.  

Finally, our method of analysis has shown that analyzing the lateral movement 

(parallel to the PM) is a good means to study priming since expressing tetanus toxin 

yielded visible changes in lateral mobility compared to the analysis of axial mobility 

where there was no visible effect of tetanus toxin (Toonen et al. 2006).  

 

4.5 Perspectives  

I have shown that the analysis of the caging diameter is a reliable tool to study the 

mobility of vesicles and that changes in mobility can be interpreted as changes in the 

molecular processes occurring prior to exocytosis. This can allow the investigation of 

numerous questions about docking and priming.  

1- An important point that can be addressed is the calculation of the different rates of 

priming and docking. As mentioned in the introduction, the rate of priming was 

calculated using membrane capacitance recordings and the docking rate was 

obtained by simulation. Since we can distinguish clearly when a vesicle is in the 

primed pool or in the UPP, it should be possible -after optimization of the software- to 

calculate these rates in a more direct manner. 

 

2- The analysis of the caging diameter can be a means to clarify the roles of proteins 

that showed conflicting effects such as complexinI and II. Genetic deletion of 

complexin I and II greatly decreased release efficiency (Reim et al. 2001). 

 In contrast, it has been found that overexpression of complexin in chromaffin cells 

led to a reduction in secretion (Archer et al. 2002). So it might be possible that 

complexin plays also a role in fusion pore opening. 
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3- In future studies, faster acquisition rates of recordings will be needed to be able to 

view subfractions of motion if they exist. This would help to elucidate the dilemma 

between studies stating that vesicles prior to exocytosis have a higher mobility 

(Allersma et al. 2006) where a recording frequency of 14 Hz was used whereas we 

and others (Steyer et al. 1999; Oheim et al. 2000; Johns et al. 2001) find that prior to 

exocytosis the vesicles are nearly immobile. 

 

4- Besides its undisputed effect on fusion, calcium has also several effects on the 

processes occurring prior to fusion; TIRFM and analysis of the motion of LDCVs can 

elucidate these different effects by applying different concentrations of calcium 

through a patch pipette and observing the effect on motion. This approach could also 

be used to examine the role of ATP in presecretion events. 

 

5- The role of Botulinum toxin B could also be studied since this toxin cleaves both 

synaptobrevin and synaptotagmin. This will probably prevent formation of any ternary 

SNARE complex whether fusogenic or not. What could be expected from such an 

experiment would be a great increase in the mobility of LDCVs and an absence of 

nearly immobile vesicles. The changes observed here should be greater than those 

observed when tetanus toxin was used. 

 

6- Finally, it has recently been shown that using TIRFM, the observation of single 

molecules of proteins is possible (Mashanova et al. 2003; Xiao et al. 2006). Thus it 

could be possible to monitor these molecules from the place of their formation to the 

site of their interaction over time.  
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5.    Summary 

The fusion of vesicles with the presynaptic membrane represents the final event in 

the release of neurotransmitters and many other signalling molecules. Prior to fusion, 

synaptic vesicles undergo a series of maturation events leading to docking and 

priming.  

Conventional electrophysiological studies have extensively studied the fusion step 

and provided important insights into the docking and priming processes. Up to now, 

no method has delivered direct information about the processes occurring prior to 

fusion. Total internal reflection fluorescence microscopy allows the real-time 

visualization of fluorescent particles with a very high signal to noise ratio. The use of 

TIRFM to observe the behaviour of fluorescently marked vesicles allows us to study 

the processes occurring prior to fusion with greatly enhanced fidelity. 

In the present study, we visualize fluorescent large dense-core vesicles in bovine 

chromaffin cells using TIRFM to observe their movements over time. We analyze the 

motion of LDCVs using a novel technique we called the “caging diameter” analysis 

that permits us to observe the dynamic changes in mobility occurring over time. 

Using this method, we have been able to recognize vesicles with different types 

motion: a) nearly immobile vesicles, b) caged vesicles, c) immobile-caged vesicles, 

d) vesicles with directed motion and e) vesicles with mixed types of motion. 

It has previously been shown in chromaffin cells that as the vesicles approach the 

plasma membrane, they tend to immobilize and that immobilized vesicles 

preferentially fuse with the plasma membrane. It has also been proposed that priming 

is the step in which the SNARE complex is formed and that this complex tightly 

tethers the vesicles to the plasma membrane. This suggested that priming should 

lead to immobilization of vesicles. We have tentatively assigned the behaviour we 

termed “nearly immobile” to primed vesicles and the “caged” behaviour to the docked 

but unprimed state. To verify this hypothesis, we used a pharmacological approach 

to enhance priming. We treated cells with either a phorbol ester or we have 

overexpressed Munc13-1 in bovine chromaffin cells; these two methods are known to 

enhance priming by increasing the size of the primed pool without affecting the 
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docked but unprimed pool. Using these treatments, we found that the percentage of 

nearly immobile vesicles was increased. As PMA and Munc13-1 increase only the 

primed pool and as only the fraction of nearly immobile vesicles was increased, we 

conclude that primed vesicles are nearly immobile. With similar reasoning, we 

conclude that docked but unprimed vesicles are indeed caged vesicles and that 

vesicles with directed motion are neither primed nor docked and thus belong to the 

depot pool. 

To challenge our hypothesis, we have prevented priming by expressing the light 

chain of tetanus toxin in bovine chromaffin cells. This toxin cleaves synaptobrevin 

and prevents it from participating in the SNARE complex formation. We found that 

the mobility of LDCVs was increased. The fraction of nearly immobile vesicles was 

decreased as well as the fraction of time spent in the immobile state. The fraction of 

time spent in the caged state was increased. Although the changes were not 

spectacular, they were the opposite from the changes observed when priming was 

enhanced. This confirms our hypothesis that priming corresponds to immobilization 

of vesicles and agrees well with the previous findings that immobilized vesicles 

preferentially fuse with the plasma membrane.  
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