
国立大学法人電気通信大学 / The University of Electro-Communications

Similar operation template attack on RSA-CRT
as a case study

著者（英） Sen Xu, Xiangjun Lu, Kaiyu Zhang, Yang Li, Lei
Wang, Weijia Wang, Haihua Gu, Zheng Guo,
Junrong Liu, Dawu Gu

journal or
publication title

Science China Information Sciences

volume 61
number 3
page range 03211
year 2018-03
URL http://id.nii.ac.jp/1438/00009015/

doi: 10.1007/s11432-017-9210-3



SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

Similar operation template attack on RSA-CRT as a
case study

Sen XU1 , Xiangjun LU1 , Kaiyu ZHANG1 , Yang LI2*, Lei WANG1 , Weijia WANG3 ,

Haihua GU1 , Zheng GUO1 , Junrong LIU1 & Dawu GU1*

1Department of Computer Science and Engineering,
ShangHai Jiao Tong University, Shanghai, 200240, China;

2NanJing University of Aeronautics and Astronautics, NanJing 211106, China;
3Shanghai FFan Technology, ShangHai, 200127, China

Abstract A template attack, the most powerful side-channel attack methods, usually first builds the leakage

profiles from a controlled profiling device, and then uses these profiles to recover the secret of the target device.

It is based on the fact that the profiling device shares similar leakage characteristics with the target device.

In this study, we focus on the similar operations in a single device and propose a new variant of the template

attack, called the similar operation template attack (SOTA). SOTA builds the models on public variables (e.g.,

input/output) and recovers the values of the secret variables that leak similar to the public variables. SOTAs

advantage is that it can avoid the requirement of an additional profiling device. In this study, the proposed

SOTA method is applied to a straightforward RSA-CRT implementation. Because the leakage is (almost) the

same in similar operations, we reduce the security of RSA-CRT to a hidden multiplier problem (HMP) over

GF (q), which can be solved byte-wise using our proposed heuristic algorithm. The effectiveness of our proposed

method is verified as an entire prime recovery procedure in a practical leakage scenario.

Keywords Side channel attack, Template attack, RSA-CRT, Hidden number problem, Prime recovery

Citation Sen Xu, Xiangjun Lu, Kaiyu Zhang, et al. Similar operation template attack on RSA-CRT as a case

study. Sci China Inf Sci, for review

1 Introduction

In the field of side-channel attacks (SCAs), the seminal differential power analysis (DPA) method was

proposed by Kocher et al. [2]. Then, researchers proposed many SCA methods, leading to a central

division between non-profiled and profiled attacks. The former attack methods are based on a comparison

of actual leakages and a prior leakage model. Examples include correlation power analysis (CPA) [14],

mutual information analysis (MIA) [24], and differential clustering analysis (DCA) [15] methods. In the

profiled analysis methods, a leakage model is built from the profiling devices that are under adversaries’

control, which implicitly relies on the fact that the leakage characteristics of the profiling and target

devices are similar. Generally, the origin of the leakage similarity (of profiling and under test devices) is

in the similar hardware behaviors or structures. The Gaussian template attack (TA) [29], which operates

by estimating the Gaussian probability density function of the side channel leakages, is the representative

* Corresponding author (email: liyang uec@163.com, dwgu@sjtu.edu.cn)



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 2

attack method. Although it is not yet a perfect model for estimation, the TA can still be viewed as the

most powerful type of SCA.

A large variety of public key cryptosystems (PKC) are employed to protect the security of sensitive

assets. Typically, a PKC scheme is based on hard mathematical problems, such as a large number

factorization problem or discrete logarithm problem, which hereafter are referred to as primitives. In

general, a specific PKC scheme implementation includes (informally) two parts: a primitive and a com-

bination phase. The former part usually contains modular exponentiation or scalar multiplication, e.g.,

RSA or elliptic curve cryptography (ECC). The latter part obtains the final results (encryption, de-

cryption, digital signature, or key exchange) based on the former parts results. The combination of the

two parts varies according to different schemes. Both parts can be threatened by SCAs. The attack

methods can extract the secret cryptographic key or intermediate values, including power consumption,

electromagnetic emissions, timing, or faults collected from a running cryptographic device, by using s-

tatistical tools operating on side channel leakages. Many studies have provided practical attack results

on embedded devices [34–36]. Recently, papers have been published that describe attack procedures on

specific PKC schemes implemented on PCs [31–33] and mobile phones [23]. In the last paper, the SCA

and lattice attack were combined to reveal the secret key of elliptic curve digital signature algorithm

(ECDSA) implementation in the most recent OpenSSL. The attack technique can also be employed to

analyze the security of RSA given a known partial secret prime. A typical technique is Coppersmith’s

method [12]. The method breaks RSA using half the most significant bytes of a secret prime by applying

a lattice attack. Therefore, half the most significant bytes of a prime are fatal in the case of an RSA

implementation.

Researchers are dedicated to constructing secure primitive implementations to mitigate SCAs. The

first step is to counteract simple power analysis (SPA), which can obtain the secret parameters involved

in primitives through different computational patterns, such as modular multiplication and modular

squaring in a modular exponentiation or point addition and point doubling in scalar multiplication.

Typical SPA-resistant methods are the Montgomery powering ladder [5], atomic implementation [7],

and dummy operations [6]. The second step is to thwart DPA. This type of countermeasure includes

exponentiation blinding (splitting) and message blinding. In general, SCA-secure primitives, such as

those presented in [17], usually combine both types of countermeasures. Attention has seldom been paid

to the combination phase of a PKC scheme, even when a CPA attack can be mounted [34, 37]. In [16],

the authors provided an SPA attack on modular inversion implemented with an extended Euclidean

algorithm, which is further evidence that a secure primitive does not ensure a secure implementation.

The requirement of an identical profiling device is a strong assumption in a practical TA. In this

study, we focus on the similarity between two similar operations in the PKC scheme, especially in the

combination phase. We propose the similar operation TA (SOTA, subtraction in [13]) in the combination

phase of RSA-CRT implementation. In our attack scenario, we can mitigate the requirement of an

additional profiling device by construing templates on the public information, based on which we find a

new means of analyzing the security of the RSA-CRT.

Contributions. Our work is based on the intuition that similar operations share similar leakage, which

is confirmed by our experimental results. First, we present a general attack method named SOTA

to exploit the similar leakage of similar operations through side channel leakage. We stress that the

effectiveness of SOTA relies on the preprocessing procedure employed and the TA methods.

Second, we observe that there still may exist a difference in the similar operations’ side channel leakage

characteristics with the same leakage model. This difference negatively affects the SOTA results when

the adversary utilizes raw power traces. A preprocessing procedure named zero-mean [28] is employed to

unify raw leakage to achieve better performance. SOTA is effective because the templates are built on

public information and do not require an additional profiling device. Our results show that the zero-mean

method is suitable for situations involving both cross-device and similar operations.

Finally, we find that the SCA against RSA-CRT can be reduced to solving a hidden multiplier problem

(HMP) over GF (q). We propose a heuristic algorithm that, after SOTA recovers secret intermediate data,



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 3

solves the problem by recovering hidden primes byte-by-byte. We applied the proposed attack procedure

to an RSA-CRT software implementation in a practical Hamming weight leakage scenario where both

the SOTA and the prime recover algorithm are effective. In our experiments, we also considered error

matching of secret intermediate data bytes, which means that in the SOTA these bytes’ Hamming weight

may randomly be categorized into adjacent values with a certain probability. We can recover the hidden

prime through 100 inputs with only the Hamming weight even when 50% of the inputs contain noise.

Our work provides a new technique for RSA-CRT security analysis, which is based on the idea of

using similar operations instead of constructing a profile using an additional identical device. We can

reveal partial information about secret intermediate data by focusing on the data transferal instead of the

primitive implementation. Then, a hidden prime can be revealed by solving the HMP. To the best of our

knowledge, no previous studies have been published that used a similar attack procedure. Therefore, this

study makes a novel contribution to the academic literature. Our experiment shows that the efficiency

of our attack is similar to that of existing methods, because SOTA exploits leakage characteristics that

are similar to those used in these methods. The final hidden prime recovery requires no additional power

traces, and its execution time is practical.

2 Preliminaries

2.1 Template attack

TA is one of the most powerful SCA attack methods. Researchers are dedicated to improving it by

introducing new technologies [20,21,26,27]. Cross-device TAs can also be practical [18,28]. This type of

TA employs a transformation to maximize the similarity between a profiling device and a target device.

Both traditional TA and clustering-based TA [25] remains a matter of concern . They involve two steps:

profiling and matching. Let L be the side channel leakage matrix and lt,nm,d be the n-th vector during a

time interval t, where m is input plaintext and d is the actual secret key. Typically, ltinte denotes one

leakage vector in t under an intermediate value inte. The traditional TA procedure is as follows.

Profiling. In this phase, an adversary needs to control a profiling device that is identical (or very

similar) to the target device. Suppose that an adversary obtains |s| leakage vectors for a given class

s ∈ S. The classification is related to an intermediate value v = f(m, d), where the function f is

reversible. The intermediate values can be reflected by power traces. A multivariate Gaussian noise

model is in general considered to describe the leakage characteristics:

N (lt,1m,d|µs,Σs) =
1

(2π)N/2
exp{−1

2
(lt,1m,d − µs)

T Σ−1s (lt,1m,d − µs)}. (1)

where µs is the mean vector and Σs is the covariance matrix. In the profiling stage, the parameters of

each class are estimated. Both parameters reveal completely the noise distribution associated with each

class in S. In a practical situation, an adversary usually utilizes the empirical mean and covariance:

µ̂s =
1

|si|

|si|∑
n=1

lt,nm,d, (2)

Σ̂s =
1

|si|

|si|∑
n=1

(lt,nm,d − µ̂s)(l
t,n
m,d − µ̂s)

T . (3)

Matching. Given an unclassified power trace lt,1new, we employ Bayes’ rule to determine to which class

it belongs. The classification rule is

ŝ = argmaxs∗ P̂ r[s
∗|lt,1new] = argmaxs∗ P̂ r[l

t,1
new|s∗]Pr[s∗]. (4)



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 4

where Pr[s∗] is the prior probability of the class candidate s∗. If the classification is based on the

byte value, the prior probability is Pr[s∗] = 1
256 . In general, we have Pr[s∗] = 1

|S| and P̂ r[s∗|lt,1new] =

N (ltx,d|µs∗ ,Σs∗). The maximum probability indicates the correct classification, which means the inter-

mediate value v∗ is obtained. Then, we obtain d∗ = f−1(x, v∗). The leakage matrix lt,mnew can also be

utilized to assign power traces to the candidate s∗ with a higher probability than one power trace. The

classification rule is slightly modified:

ŝ = argmaxs∗
N∑
i=1

P̂ r[lt,inew|s∗]Pr[s∗]. (5)

Adversaries utilize TA attacks to obtain secret intermediate data in the same time interval t. The

traditional TA is effective under a known or an identical leakage model. However, estimation errors exist

between the practical leakage and the estimated leakage model. To avoid these errors, cluster-based TA

can be employed. In [25], the authors showed how to utilize K-means and agglomerative hierarchical

clustering to build a template without prior knowledge of the leakage model. These cluster techniques

help obtain a template that is close to the practical leakage situation. In this study, we constructed

templates in the practical leakage scenario.

2.2 RSA-CRT implementation

In 1978, the RSA cryptosystem, which has become one of the most widely used public key cryptosystems,

was introduced by Rivest, Shamir, and Adleman [9]. RSA is based on a large number factorization

problems and can be utilized for encryption and signature schemes. In an RSA scheme, N denotes the

public modulus, being the product of two secret large prime integers p and q. d denotes the secret private

key and e is the public key satisfying de = 1 mod φ(N), where φ denotes Euler’s totient function and

φ(N) = (p−1)× (q−1) is also secret. The RSA signature or decryption of a message m ∈ ZN is achieved

by computing the modular exponentiation C = Md mod N . To verify or encrypt C, M = Ce mod N is

computed.

Algorithm 1 RSA-CRT implementation

Require: secret key d, secret primes p and q message M

Ensure: C = Md mod N

1: dp = d mod p, dq = d mod q

2: K = p−1 mod q

3: Mp = M mod p,Mq = M mod q

4: Cp = M
dp
p mod p

5: Cq = M
dq
q mod q

6: C = (((Cq − Cp) ×K) mod q) × p + Cp

7: Return C

As is well known, modular exponentiation is time consuming. Researchers have utilized the Chinese

remainder theorem (CRT) [10] to accelerate the core computation with a factor of four, and this is widely

used in devices having limited resources. The RSA-CRT is described in Algorithm 1. Step 6 can also be

rewritten as

C = x× p+ Cp. (6)

x = ((Cq − Cp) ×K) mod q, p, and Cp are secret for adversaries. However, half the most significant

bytes of C and the secret x × p are identical, because Cp receives the same bit length as p. According

to SCA theory, side channel leakage reflects all the intermediate data. The remaining question is how to

extract this information, which is one of our main concerns in this paper.



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 5

3 Methodology

3.1 Similar operation template attack strategy

In this paper, operations that share similar basic hardware behaviors are referred to as similar operations.

Their leakage functions may resemble each other. Opi and Osi denote two similar operations manipulated

on public and secret information, respectively. The SOTA strategy, in its most general form, is as follows.

1. Acquire power traces on a running cryptographic device, where side channel leakage is L = lt1si‖l
t2
pi

and ‖ is concatenation. lt1si and lt2pi are the side channel leakage of Osi and Opi, respectively.

2. Select the template building method according to the practical leakage scenario. Construct template

T on the side channel leakage of Opi. Utilize the corresponding matching method D(lt1si , T ) to reveal

si.

3. Verify attack results.

SOTA attempts to reveal secret parameters through templates built on public information through

side channel leakage. In Step 1, we divide the power traces into several parts. lt2pi denotes the leakage of

public information, which can easily be detected by Pearson’s correlation. This part includes the RSA

final output, C. The public information can also be found in other PKC schemes, such as the signature

output in ECDSA. lt1si contains secret information involving all the intermediate values in the combination

phase of RSA-CRT.

Step 2 constitutes the complete template attack procedure. We build templates on leakage lt2pi and then

reveal the secret si by using these templates. In the same power trace collection, the measurements can

be utilized for both template profiling and matching. It is worth mentioning that t1 == t2 is required in

a traditional TA, whereas t1 6= t2 is evaluated in our attack procedure. In addition to traditional TAs,

subspace-based TAs, clustering-based TAs [25], principle component analysis [21,22], and Fisher’s linear

discriminant analysis [20] can also be employed in the SOTA procedure.

In Step 3, verification is performed. In a PKC scheme, our attack results may not be the secret key but

rather the secret intermediate values, which are dependent on the attack target. Then, the verification

step, which attempts to recover the private key or a hidden prime in the RSA scheme, is necessary. Let us

take RSA-CRT as an example. If the secret result x× p is obtained, the factorization of N is successfully

achieved by computing gcd(x × p,N). If partial information about x is obtained, then we must find a

new means of recovering the hidden prime, because no previous method provides a solution. Even half

the most significant bytes of one prime p̂ are sufficient, since Coppersmith’s method can be executed to

reveal the secret key.

In general, the SOTA attack procedure can be viewed as a comparison of two independent leakages.

The attack method proposed in [13] can be viewed as a variant of similar operations that reveal a secret

key by comparing two modular multiplications having one identical input. In our attack procedure, we

attempt to exploit the simpler operations in the RSA-CRT combination phase by applying a combination

TA.

3.2 SOTA in RSA-CRT combination phase

In this study, we attempted to find two similar operations in the combination phase of RSA-CRT. In

Figure 1, the typical RSA-CRT implementation is shown. Message is the input plaintext. In the RSA-

CRT naive implementation, the first step is the precomputation, as shown in Algorithm 1 (line 1-3). All

the corresponding results are stored and transferred to two modular exponentiations, which constitute

the core computation of an RSA-CRT scheme. After the computation of both modular exponentiations,

the final results (C in Algorithm 1) are obtained through the combination.

However, our concern is the combination phase (line 6 in Algorithm 1), which is shown in the lower part

of Figure 1, where the four computation blocks are shown: modular subtraction, modular multiplication,

multiplication, and addition. The modular subtraction is A = (Cq−Cp)mod q, the modular multiplication



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 6

Modular Exponentiation 1

Message
Final 

Results

Target Implementation

 Data flow 

Modular 

Substraction

Modular 

Multiplication
Multiplication

Secret Data 

Transferring

Secret Data 

Transferring

op1 op3op2

Side Channel Leakage
Side Channel Leakage

Combination Phase

Precomputation
Modular Exponentiation 2

Combination

Modular 

Addition

Secret Data 

Transferring

Final Results 

Transferring

op4

Side Channel Leakage
Side Channel Leakage

 Data transferring 

1nx - 2nx - 3nx - 1ix +

2 1nr - 2 2nr - 2 3nr - 2 4nr - 2 5nr -

1 1n nx p
- -
´

2n ir
- 1kr + 1kr - 2kr -

2 1n nx p
- -
´

3 1n nx p
- -
´

1i nx p
-

´

1 2n nx p
- -
´

2 2n nx p
- -
´

3 2n nx p
- -
´

2i nx p
-

´

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

1 3n nx p
- -
´hb lb

i jx p´hb lb 0 0
x p´hb lb

1 0
x p´hb lb

2 0
x p´hb lb

0ix p´

0 1
x p´hb lb

1 1
x p´hb lb

2 1
x p´hb lb

5
r

4
r

3
r

2
r

1
r

0
r

0 2
x p´hb lb

1 2
x p´hb lb

2ix p´hb lb

hb lb

ix 1ix - 1
x

0
x

1np - 2np - 3np - 1ip + ip 1ip - 1
p

0
p

´

kr

Figure 1 Similar operations in the RSA-CRT com-

bination phase.

Figure 2 Byte-wise multiplication from the most signifi-

cant byte.

is B = A ×K mod q, the multiplication is D = B × p, and the addition is C = D + Cp. C is the final

result of Md mod N . In a resource-limited device, the four blocks are executed serially. The results of

the previous block must be transferred into the next one, which means that data transferal occurs after

each computation block. We focus on the data transferal in the combination procedure, shown by arrows

in the lower part of Figure 1.

We refer to op1, op2, op3, and op4 as the similar operations in the combination step (lower part of

Figure 1). This type of similar operations shares a simpler structure than that used in [13]. The transferal

is independent of the specific computation block, but the byte flow is loaded from the previous block to

the next one. op1, op2, and op3 denote the secret intermediate data transferal. op4 denotes the final result

transferal, which is public information. The basic hardware structure of similar operations is identical,

which means that the side channel leakage patterns are similar.

The similar operations provide a link between the secret intermediate data and the public final result.

A SOTA can be mounted during these operations. We can build templates on the side channel leakage of

op4, which transfers the public final result. Then, we reveal the secret intermediate data manipulated by

other operations. Considering practical recovery situations, different adversaries acquire various abilities

for recovering target secret values when utilizing SOTA, as described in the previous steps. We give

following definition of the attack abilities.

Definition 1 (Adversary’s Attack Ability). The adversary’s attack ability is evaluated by the result

set of Target when an adversary, A(SOTA, Target, Template), utilizes a SOTA to reveal Target based

on Template. The evaluation can be described by

A(SOTA, Target, Template) = RCTarget + ζ, (7)

where RCTarget is the result set of Target and ζ is noise.

The result set RCTarget indicates the possibilities of actual results, which are typically dependent

on leakage models. ζ indicates noise during the SOTA. In the definition, two factors affect the final

matching results. Without loss of generality, we take one byte as an example. The upper bound of

one byte recovery is that the adversary can uniquely confirm the target byte value without any noise,

which means |RCTarget| = 1 and ζ = 0. The lower bound is that the adversary cannot obtain any

biased information about Target, which means |RCTarget| = 256 and ζ =∝. The side channel leakage

acquirement quality, template building methods, preprocessing methods, and other elements affect the

adversary’s attack ability.

3.3 Hidden multiplier problem over GF (q)

The HMP over GF (2n) was first introduced at Asiacrypt 2014 [3], and then at CHES 2015 [4]. The

definition of HMP is as follows [4].

Definition 2 (Hidden Multiplier Problem). Let k← GF (2n). Let ` ∈ N. Given a sequence (ai,Li)16i6`,

where ai ← GF (2n) and Li = HW(ai · k) + εi, where εi ← N (0, σ), recover k.



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 7

HW denotes the Hamming weight. ε is the leakage noise where N (0, σ) denotes the Gaussian distri-

bution with null mean and standard deviation σ. Given known ai and σ = 0, the adversary can easily

recover k, because for known ai the least significant bit of HW is a linear function of the bit of secret k.

In our attack scenario, (full or noisy) intermediate values xi can be obtained through SOTA, based on

which we extend it to a new problem as follows.

Definition 3 (Hidden Multiplier Problem over GF (q)). Let N = p× q, where p and q are two n-byte

long big primes. Let ` ∈ N. Given a sequence (Li,Ri)16i6`, where Li = LM(xi) + εi, εi ← N (0, σ),

xi ← GF (q) and Ri = HB(xi × p), recover p.

HB(∗) denotes half the most significant bytes of ∗. The leakage Li is the side channel leakage in a

leakage model LM(∗). ε is the leakage noise. In an RSA-CRT implementation, x, p, and q are the same

length big integer (typically, 64-byte long), where HB(xi × p) are identical to the counterpart of the

corresponding modular exponentiation result. The security of RSA-CRT is reduced to such a problem.

The adversary can easily obtain the hidden prime with known x. However, given biased information about

x, no method for solving the problem has thus far been published. We aim to handle it by revealing the

hidden prime p under the attack results of A(SOTA,xi, C). For convenience, we denote big integers as

n-byte vectors, xi = (xin−1, x
i
n−2, · · · , xi0), and p = (pn−1, pn−2, · · · , p0), where xij represents the j-th

byte of the i-th modular exponentiation, and xi0 is the least significant byte and xin−1 the most significant

byte. ri is the corresponding result of xi×p +Cp . We represent the results with vector {ri2n−1, · · · , ri0}.
We utilize a divide-and-conquer strategy for recovering the hidden prime byte-by-byte. In view of

the byte, the detailed multiplication procedure can be represented (from the most significant byte) by

the method shown in Figure 2. hb and lb respectively denote the high and low byte of 16-bit interme-

diate data. Every rij derives from one or several intermediate bytes, which are labeled using the same

color, and the carries of the former intermediate bytes. In general, given xn−1, xn−2, · · · , xn+1−j and

pn−1, pn−2, · · · , pn+1−j , the next result byte r2n−j can be represented by the function

r2n−j = f(xn−j , xn−j−1, pn−j , c2n−j−1). (8)

c2n−j−1 represents the carries from the computation procedure of r2n−j−1. Obviously, when j ap-

proaches n, the number of intermediate bytes is a linear function of j. For 0 6 j 6 n−1 (or n 6 j 6 2n−1),

ri derives from 2× (j+ 1)− 1 (or 2× (2n− j)− 1) intermediate bytes. In this study, we evaluated how to

solve the problem defined in definition 3 byte-by-byte with the SOTA results. Two obstacles are easily

detected. The first is the linear increment of intermediate bytes, which means that the carries may be

extremely large, which would prevent us from obtaining a precise guess on pn−j . The second obstacle is

the precise calculation of the intermediate bytes, including the selection of a different high or low byte.

In next section, we provide the solution for the two obstacles.

3.4 Byte-by-byte recovery of prime

As mentioned in Section 2, a modular exponentiation result C can be represented by a simpler form

C = x × p + Cp, where x and Cp are secret. Given biased information about x byte-by-byte, we can

recover the secret and fixed prime p byte-by-byte with high probability. Our recovery procedure is shown

in Figure 3. According to adversaries’ attack ability, we can obtain the result set Itm (corresponding to

input xt
m), where 1 6 m 6 w, as shown in Figure 3. If we denote by O all possible values of one single

byte, we can obtain
⋃
Im = O. A typical side channel leakage model is a Hamming weight, where w = 9

and
⋂
Im = ∅ .

If an adversary attempts to reveal the i-th prime byte, given xt = {xtn−1, xtn−2, · · · , xtj+1}, p =

{pn−1, pn−2, · · · , pj+1}, and xtj ∈ Itm, we traverse all possible values in the set Itm and prime byte

values by comparing r2n−i and then we obtain the corresponding result prime set P0. Increasing t from

0 to a certain number, we can obtain all the corresponding prime byte sets Pt. Several prime bytes exist

in each of these result sets, which can be obtained by the interaction between all Pt. These results are

filtered in the procedure, as shown in the Figure 3. However, a big problem is that the carries will be

linear increment when j approaches 0, which can hinder recovery. Our solution is to utilize two adjacent



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 8

Algorithm 2 Byte choice algorithm of 16-bit intermediate value

Require: index i j, attack index BytePosition, 16− bit Intermediate value TempResult;

Ensure: PreviousByte, CurrentByte,NextByte = ByteChoice(TempResult);

1: if i + j == BytePosition− 2 then

2: PreviousByte⇐ TempResult & 0xFF;

3: CurrentByte⇐ 0;

4: NextByte⇐ 0;

5: else if i + j == BytePosition− 1 then

6: PreviousByte⇐ TempResult >> 8 & 0xFF;

7: CurrentByte⇐ TempResult & 0xFF;

8: NextByte⇐ 0;

9: else if i + j == BytePosition then

10: PreviousByte⇐ 0;

11: CurrentByte⇐ TempResult >> 8 & 0xFF;

12: NextByte⇐ TempResult & 0xFF;

13: else if i + j == BytePosition + 1 then

14: PreviousByte⇐ 0;

15: CurrentByte⇐ 0;

16: NextByte⇐ TempResult >> 8 & 0xFF;

17: else

18: PreviousByte⇐ 0;

19: CurrentByte⇐ 0;

20: NextByte⇐ 0;

21: end if

1 1

i i
x IÎ

Result 

Set

t t

i m
x IÎ

0 0

i i
x IÎ

0
R

1
R

k
R

t
R

1 1n nx p
- -
´

2 1n nx p
- -
´

3 1n nx p
- -
´

1i nx p
-

´

1 2n nx p
- -
´

2 2n nx p
- -
´

3 2n nx p
- -
´

2i nx p
-

´

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

1 3n nx p
- -
´hb lb

cur

nex

1 1n nx p
- -
´

2 1n nx p
- -
´

3 1n nx p
- -
´

1i nx p
-

´

1 2n nx p
- -
´

2 2n nx p
- -
´

3 2n nx p
- -
´

2i nx p
-

´

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

hb lb

1 3n nx p
- -
´hb lb

cur

nex

pre

Figure 3 Prime byte filtered procedure. Figure 4 Details of carry reduction procedure.

bytes of input xt, xtj and xtj−1. During our prime byte recovery procedure, the two adjacent bytes can

help eliminate the carry problem and the carries are limited to two choices, 0 and 1.

The carry reduction procedure can be summarized by Equation 8. The details of the procedure are

shown in Figure 4. In the figure, cur represents the current prime byte for recovery and pre and nex

represent the previous and next prime bytes, respectively. On the left-hand side of the figure, detailed

byte multiplications corresponding to the first prime byte are shown. Given xn−1, xn−2 and the guess

on pn−1, all the green boxes can be viewed as known intermediate values. The unknown values are the

gray box and the low byte of the addition of all the next green boxes. The unknown intermediate byte

and the known intermediate bytes’ addition result provide two possibilities of carries, 0 or 1. A similar

situation can be found in pn−2 recovery, as shown on the right-hand side of Figure 4. Given xn−1, we

try all possible xn−2, xn−3, and pn−2, and then, the number of unknown intermediate bytes is still two

and the carries are fixed. Therefore, the recovery procedure of all the prime bytes can control the linear

increments of the carries.

As stated in the previous section, another obstacle is the precise calculation of the intermediate bytes.

Algorithm 2 provides a solution of the carry problem. An easily overlooked problem is how to confirm

all previous bytes xn−1, xn−2, · · · xj+1 when traversing xj and xj−1. Given each byte xtj ∈ RCTarget and

j → 0, the traversal time is excessive and computationally infeasible if we cannot confirm all the previous

input bytes. Therefore, we must (approximately) confirm these input bytes. Our solution is the simple



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 9

Algorithm 3 Single prime byte recovery algorithm

Require: xt = {xt
n−1, x

t
n−2, · · · , xt

i, x
t
i−1}, where xt

i ∈ It0 and xt
i−1 ∈ It1, p = {pn−1, pn−2, · · · , pi+1},

previous prime byte set Spre where pi+1 ∈ Spre, result rt = {rt2n−1, · · · , rtn}
Ensure: Spi+1,pi

1: for t = 0 to n do

2: for all pi+1 ∈ Spre do

3: for prime = 0 to 255 do

4: Index⇐ 1 B flag

5: p = {pn−1, pn−2, · · · , pi+1, prime}
6: for all xt

i ∈ It0 do

7: for all xt
i−1 ∈ It1 do

8: xt = {xt
n−1, x

t
n−2, · · · , xt

i, x
t
i−1, x

t
i, x

t
i−1} B obtain previous input bytes

9: TempResult = g(x,p, C2n−i−1) B obtain TempResult

10: {PreviousByte, CurrentByte,NextByte} = ByteChoice(TempResult) B obtain intermediate value

11: if CurrentByte 6 rt2n−i − 1 && PreviousByte ≡ rt2n−i+1 && Index then

12: A[pi+1][prime]+ = 1; B compare intermediate value and rt, count all possible prime byte

13: Index⇐ 0

14: end if

15: end for

16: end for

17: end for

18: end for

19: end for

20: Spi+1,pi ⇐ max(Aprime
pi+1

) B obtain prime byte results

division of r by the previous prime byte. Half of the most significant bytes of the multiplication leaks,

which means that we can easily obtain all the bytes of x given known prime bytes. We claim that the

completely hidden p can be recovered through the recovery procedure shown in Algorithm 3.

As shown in the Algorithm 3, typically |Spre| > 1. We have to uniquely confirm the previous prime

byte, namely, |Spre| = 1. This recovery algorithm provides the solution for this confirmation after the

current prime byte recovery, as shown in line 20 of the algorithm. We emphasize that all the previous

prime bytes can be uniquely confirmed during the next byte recovery.

4 Practical experiments

4.1 Measurement setup and experiment environment

In order to evaluate the proposed attack method, we targeted 1024-bit RSA-CRT implemented on 8-

bit AVR microcontroller clocked at 10 MHz. Its architecture is serialized without any countermeasure

against SCAs. Because of the long integer and the serialized architecture, we can detect feasible outputs

of certain computations. In other words, we can benefit from this architecture. This implementation

utilizes two close primes:

p: 0xcd083568d2d46c44c40c1fa0101af2155e59c70b08423112af0c1202514bba5210765e29ff13036f56c7495

894d80cf8c3baee2839bacbb0b86f6a2965f60db1.

q: 0xca0eeea5e710e8e9811a6b846399420e3ae4a4c16647e426ddf8bbbcb11cd3f35ce2e4b6bcad07ae2c0ec2

ecbfcc601b207cdd77b5673e16382b1130bf465261.

In addition, a LeCroy 610Zi WaveRunner 8-bit oscilloscope is needed. We evaluated this scheme based

on 12,000 profiling traces and 150 attack traces and Algorithm 3 on an Intel Xeon personal computer.

4.2 SOTA in RSA-CRT software implementation

The application of SOTA to an unprotected RSA-CRT software implementation follows the steps de-

scribed in Section 3. We present a detailed description of our attack procedure. We stress that the

signal-to-noise ratio (SNR) of our software implementation is high [1], which allows us to obtain accurate

templates using 12,000 profiling traces and achieve a high success rate within 150 attack traces.



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 10

0 1 2 3 4 5 6 7
x 10

5

−80

−60

−40

−20

0

20

40

60

Samples 

V
ol

ta
ge

(m
V

)

Intermedia Data Final Result

(a) Combination phase overview

0 0.5 1 1.5 2 2.5 3
x 10

4

−60

−40

−20

0

−60

−40

−20

0

Samples

V
ol

ta
ge

(m
V

)

 

 

Intermediate Data
Final Result

(b) Public and secret leakage overview

3000 4000 5000 6000 7000 8000 9000 10000
−60

−40

−20

0

−60

−40

−20

0

Samples

V
ol

ta
ge

(m
V

)

 

 

Intermediate Data
Final Result

(c) Public and secret leakage details

3000 4000 5000 6000 7000 8000 9000 10000
−60

−40

−20

0

Samples

V
ol

ta
ge

(m
V

)

 

 

3000 4000 5000 6000 7000 8000 9000 10000

0

0.1

0.2

0.3

Samples

C
or

re
la

tio
n

(d) Leakage characteristics

Figure 5 Power traces of targeted RSA-CRT implementation.

We first scrutinize the power traces to obtain similar operation locations in the same measurement. An

exemplary power trace of both parts is shown in Figure 5(a) marked by two black squares. It is easy to

detect the two operations that share a similar appearance, as shown in Figure 5(b) and (c), by mere visual

inspection. Both parts indicate the power consumption of two similar operations. The first operation is

the data transferal of secret intermediate data, and the second is the data transferal of the public final

result C. When two operations are executed, the basic hardware behaves similarly and similar leakage

patterns can be detected, as shown in Figure 5. Although the envelopes of the two parts are similar,

slight differences can also be detected, as shown in Figure 5(c) marked by the black crosses. Noise and

different manipulated data cause a slight vibration in the power traces. A practical leakage situation

is depicted in Figure 5 (d). This figure reflects the leakage situation verified by Pearson’s correlation

between power traces and final outputs.

We evaluated the leakage model using clustering techniques. The results show that the leakage model

is a Hamming weight, which is consistent with our knowledge of the leakage characteristics of an AVR

processor. In Figure 6, (a) and (b) are the templates and the secret intermediate data leakage model,

respectively. Both obey the Hamming weight leakage model. However, the two leakages are slightly

different, which makes the matching error high. We utilized a zero-mean method [28] to unify the two

different leakage characteristics. In both Figure 6(c) and (d), a similar leakage after zero-means is shown.

The results show that zero-mean is a feasible preprocessing method for cross-device TA and SOTA.

Despite the visual similarity of the leakage patterns, we must confirm the leakage uniformity of two

similar operations in our measurement. Perceived information (PI) [11] is a convenient statistics tool

for this purpose. Researchers utilize PI to evaluate the leakage of a cryptographic implementation. PI

reflects the bias between the model and the target leakage, which is defined by

PI(S;L) = H[S]−
∑
x∈S

Pr[s]
∑
l∈L

P̂ rchip[lt|s]log2 P̂ rmodel[s|lt]. (9)

P̂ rmodel[s|lt] = N (ltx,d|µs∗ ,Σs∗) (described in Section 2) corresponds to the 256 maximum likelihood

estimates of conditional density functions Prchip[L|x]. In our case, PI is computed by

PI(S;L) = H[S]−
∑
x∈S

Pr[s]
∑
l∈L

P̂ rchip[lt1si |s]log2 P̂ rmodel[s|lt2pi]. (10)

Our leakage model is built on lt2pi. Then, PI can be used as a tool for testing the similarity between the

template and the actual leakage lt1si . The PI results are shown in Figure 7. As can be seen, PI increases

with the profiling traces, which means that the leakages of similar operations are similar. Then, we can



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 11

0 5 10 15 20 25 30
−42

−41

−40

−39

−38

−37

−36

Samples

V
ol

t (
m

v)

 

 

Hamming weight is 0
Hamming weight is 1
Hamming weight is 2
Hamming weight is 3
Hamming weight is 4
Hamming weight is 5
Hamming weight is 6
Hamming weight is 7
Hamming weight is 8

(a) Template

0 5 10 15 20 25 30
−42

−41

−40

−39

−38

−37

−36

Samples

V
ol

t (
m

v)

 

 

Hamming weight is 0
Hamming weight is 1
Hamming weight is 2
Hamming weight is 3
Hamming weight is 4
Hamming weight is 5
Hamming weight is 6
Hamming weight is 7
Hamming weight is 8

(b) Leakage

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples

M
ag

ni
tu

de

 

 

Hamming weight is 0
Hamming weight is 1
Hamming weight is 2
Hamming weight is 3
Hamming weight is 4
Hamming weight is 5
Hamming weight is 6
Hamming weight is 7
Hamming weight is 8

(c) Template after zero-mean

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples

M
ag

ni
tu

de

 

 

Hamming weight is 0
Hamming weight is 1
Hamming weight is 2
Hamming weight is 3
Hamming weight is 4
Hamming weight is 5
Hamming weight is 6
Hamming weight is 7
Hamming weight is 8

(d) Leakage after zero-mean

Figure 6 Raw power traces before and after preprocessing.

2000 5000 8000 10000 12000
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Profiling trace number

P
er

ce
iv

ed
 In

fo
rm

at
io

n

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0.9

0.92

0.94

0.96

0.98

1

Traces

S
uc

ce
ss

 R
at

e

Figure 7 Perceived information vs. profiling traces. Figure 8 Matching success rate vs. various traces.

conclude that SOTA is reasonable. We utilize SOTA to obtain the Hamming weight of x through the

templates built on the final results.

We show the success rate results in Figure 8, based on Equation 5 described in Section 2. Given a

specific number of power traces acquired under the same intermediate data, the success rate is obtained

by dividing the total attempts by the occurrences of correct matching. As shown in Figure 8, the success

rate reaches 90% with 10 power traces and 100% with approximately 100 power traces in our experimental

environment.

4.3 Secret prime recovery

We show the first two prime byte recovery results based on Algorithm 3 in Figure 9. In Figure 9(a), the

results show the occurrences of all the possibilities, where the highest peak is located at 0xCD. However,

we did not uniquely confirm the first byte value, but two elements, 0xCD and 0xCE, remain in the result

set. We utilize the two values to reveal the second prime byte; the results are shown in Figure 9(b). The

peak on the left-hand side of the figure uniquely confirms the first prime byte. As shown in Figure 9, we

can obtain our expected results even on 20 inputs x.

We traversed all pn−1 and pn−2 under 100 inputs x. The results are shown in Figure 10. A similar

situation, that the highest peak occurs under the correct pn−1, can be seen in the figure. All the incorrect

guess results are apparently lower than the correct one. The curve peak also indicates the result set of



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 12

0 128 255
0

10

20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 

10 inputs
20 inputs
40 inputs
60 inputs
80 inputs
100 inputs

(a) First prime byte recovery results

0 128 255 128 255
0

10

20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 

10 inputs
20 inputs
40 inputs
60 inputs
80 inputs
100 inputs

(b) Second prime byte recovery results

Figure 9 Two most significant prime bytes recovery results.

0 128 255
0

10

20

30

40

50

60

70

80

90

100

All Prime Byte

O
cc

ur
an

ce

0 128 255 128 255
20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 

2nd Prime Byte
3rd Prime Byte
4th Prime Byte
5th Prime Byte
6th Prime Byte
7th Prime Byte
8th Prime Byte

The Second Option of
Previous Prime Byte

The First Option of
Previous Prime Byte

Figure 10 First two prime byte recovery results. Figure 11 Results of 2nd-8th prime byte recovery.

pn−2. We can conclude that, given sufficient computational power, adversaries can execute recovery word

by word. We present the recovery results from 2ndC8th prime bytes in Figure 11. Each byte recovery

result is distinct. In addition, we present the remaining prime byte recovery results in Figure 12. In both

figures, we just select two possibilities of the previous prime byte, where the correct one is arranged on

the left-hand side of these figures.

Adversaries’ attack abilities vary. In a practical attack scenario, we believe ζ 6= 0, which occurs when

poor denoise methods are used, limits the template side channel leakage or limits the matching traces

in a TA procedure. Error in matching is a natural result under noise conditions. Here, we consider the

situation where the adversary obtains incorrect matching with a certain probability, which means that xi
are randomly categorized into adjacent Hamming weights. The differences between these adjacent and

actual values are 1 or 2. We evaluated the situations where 10%, 20%, 30%, and 50% of inputs obtain

incorrect matching. The first two prime byte results are shown in Figure 13. The first prime byte recovery

is shown in Figure 13(a). The result set is still distinct at 50% noisy traces, when the difference is 1.

The adversary can still find the correct prime byte involved in the highest peak with a Hamming weight

matching difference of 2 and 30% noisy traces, but the highest one is not the correct result. We need to

enlarge the set Spre in the next byte recovery. We cannot obtain sufficient information about the first

prime byte when the noisy traces reach 50% and meanwhile the Hamming weight matching difference is

2. However, in similar situations, the second byte recovery result peak can also be detected, as shown in

Figure 13(b). The correct prime byte is involved in the highest peak even in the worst case, where 50%

of inputs are noisy and the difference is 2.

4.4 Computation complexity estimation

In this section, we present a computation complexity analysis of Algorithm 3. Considering the practical

side channel leakage scenario, as described in Section 4, we present the analysis based on Hamming weight

leakage. The four iterations (lines 1, 3, 6, and 7) of the algorithm are the primary computational load.

The expectation of elements in traversing a set is
∑8

h=0 prh × |Hamh| ≈ 50, where prh and |Hamh|



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 13

0 128 255 128 255

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 

9th Prime Byte
10th Prime Byte
11th Prime Byte
12th Prime Byte
13th Prime Byte
14th Prime Byte
15th Prime Byte
16th Prime Byte

(a) 9-16 prime byte recovery results

0 128 255 128 255
20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 17th Prime Byte
18th Prime Byte
19th Prime Byte
20th Prime Byte
21st Prime Byte
22nd Prime Byte
23rd Prime Byte
24th Prime Byte

(b) 17-24 prime byte recovery results

0 128 255 128 255
20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 
25th Prime Byte
26th Prime Byte
27th Prime Byte
28th Prime Byte
29th Prime Byte
30th Prime Byte
31st Prime Byte
32nd Prime Byte

(c) 25-32 prime byte recovery results

0 128 255 128 255
20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 33rd Prime Byte
34th Prime Byte
35th Prime Byte
36th Prime Byte
37th Prime Byte
38th Prime Byte
39th Prime Byte
40th Prime Byte

(d) 33-40 prime byte recovery results

0 128 255 128 255
20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 41st Prime Byte
42nd Prime Byte
43rd Prime Byte
44th Prime Byte
45th Prime Byte
46th Prime Byte
47th Prime Byte
48th Prime Byte

(e) 41-48 prime byte recovery results

0 128 255 128 255
20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 49th Prime Byte
50th Prime Byte
51st Prime Byte
52nd Prime Byte
53rd Prime Byte
54th Prime Byte
55th Prime Byte
56th Prime Byte

(f) 49-56 prime byte recovery results

0 128 255 128 255
20

30

40

50

60

70

80

90

100

All Prime Bytes

O
cc

ur
en

ce

 

 

57th Prime Byte
58th Prime Byte
59th Prime Byte
60th Prime Byte
61st Prime Byte
62nd Prime Byte
63rd Prime Byte
64th Prime Byte

(g) 57-64 prime byte recovery results

Figure 12 During these recovery experiments, the results show the two options of the previous prime bytes. All the

left-hand sides of all the figures show the correct previous prime bytes.

0 128 255
0

10

20

30

40

50

60

70

80

90

100

All Prime Byte

O
cc

ur
en

ce

 

 

no noisy traces
10% noisy traces and Hamming Weight difference is 1
20% noisy traces and Hamming Weight difference is 1
30% noisy traces and Hamming Weight difference is 1
50% noisy traces and Hamming Weight difference is 1
10% noisy traces and Hamming Weight difference is 2
20% noisy traces and Hamming Weight difference is 2
30% noisy traces and Hamming Weight difference is 2
50% noisy traces and Hamming Weight difference is 2

192 208

40

60

80

100

 

 

correct prime byte 0xCD

(a) First prime byte results with noisy inputs

0 128 255 128 255
20

30

40

50

60

70

80

90

100

All Prime Byte

O
cc

ur
en

ce

 

 

no noisy traces
10% noisy traces and Hamming Weight difference is 1
20% noisy traces and Hamming Weight difference is 1
30% noisy traces and Hamming Weight difference is 1
50% noisy traces and Hamming Weight difference is 1
10% noisy traces and Hamming Weight difference is 2
20% noisy traces and Hamming Weight difference is 2
30% noisy traces and Hamming Weight difference is 2
50% noisy traces and Hamming Weight difference is 216

40

60

80

100

 

 

correct prime byte 0x08

(b) Second prime byte results with noisy inputs

Figure 13 First and second prime byte recovery results with different noisy inputs. When recovering the second prime

byte, we give two options of the first prime byte. The left part shows the correct one.



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 14

are the probability and the element number of Hamming weight h, respectively. Lines 6 and 7 require

approximately 212 loops in total. The prime byte requires approximately 28 loops (line 3). The trace

iteration (line 1) requires approximately 28 loops. Considering line 2, each prime byte recovery needs

to traverse 230 elements on average. Therefore, the time complexity is O(2n), where n ≈ 30. In our

experiments, we utilized 100 inputs for single prime byte recovery, where n < 30 is satisfied. The average

time of the single byte recovery is about 30 sec on the computer used in our experiment.

5 Conclusion

In this study, we introduced the similar operation template attack (SOTA) as a new variant of the TA to

evaluate the security of PKC schemes. A heuristic algorithm was proposed to solve the HMP over GF (q)

in the secret prime recovery for an RSA-CRT implementation. The proposed SOTA does not require an

additional profiling device. The template is constructed based on public values and then used to reveal

secret intermediate values. It is noteworthy that our method can be combined with a lattice attack (e.g.,

Coppersmith’s method) to obtain a wider applicability in security analysis for PKC implementations.

Acknowledgements This work is supported by the National Natural Science Foundation of China (Nos.,

U1536103, 61402286, 61472249, 61602239, 61572192, 61472250), the Major State Basic Research Development

Program (973 Plan, 2013CB338004), the Minhang District cooperation plan (No. 2016MH310), and the Natural

Science Foundation of JiangSu Province (BK20160808).

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Santos Merino Del Pozo and François-Xavier Standaert. Blind source separation from single measurements using

singular spectrum analysis. In: Proceedings of Cryptographic Hardware and Embedded Systems, Saint-Malo, France,

2015. 42–59

2 Paul C. Kocher, Joshua Jaffe, Benjamin Jun. Differential power analysis. In: Proceedings of Advances in Cryptology,

Santa Barbara, California, USA, August 1999. 15–19

3 Sonia Beläıd, Pierre-Alain Fouque, Benôıt Gérard. Side-Channel analysis of multiplications in GF (2128) - application

to AES-GCM. In: Proceedings of Advances in Cryptology, Kaoshiung, Taiwan, 2014. 306–325

4 Sonia Beläıd, Jean-Sébastien Coron, Pierre-Alain Fouque, et al. Improved side-channel analysis of finite-field multipli-

cation. In: Proceedings of Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 2015. 395–415

5 Marc Joye, Sung-Ming Yen. The montgomery powering ladder. In: Proceedings of Cryptographic Hardware and

Embedded Systems, Redwood Shores, CA, USA, 2002. 291–302

6 Eric Brier, Marc Joye. Weierstraß Elliptic curves and side-channel attacks. In: Proceedings of Public Key Cryptogra-

phy, Paris, France, 2002. 12-14

7 Benôıt Chevallier-Mames, Mathieu Ciet et al. Low-cost solutions for preventing simple side-channel analysis: side-

channel atomicity. IEEE Trans Comp, 2004, 53(6): 760–768

8 François-Xavier Standaert, Tal Malkin, Moti Yung. A unified framework for the analysis of side-channel key recovery

attacks. In: Proceedings of Advances in Cryptology, Cologne, Germany, 2009. 443–461

9 Ronald L. Rivest, Adi Shamir, Leonard M. Adleman. A method for obtaining digital signatures and public-key

cryptosystems. Commun ACM, 1983, 21(1): 96–99

10 J.-J. Quisquater. Fast decipherment algorithm for RSA public-key cryptosystem. Elec Lett, 2007, 18(21) :905–907

11 Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon et al. A formal study of power variability

issues and side-channel attacks for nanoscale devices. In: Proceedings of Advances in Cryptology, Tallinn, Estonia,

2011. 109–128

12 Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J Cryptol, 1997,

10(4): 233–260

13 Colin D. Walter. Sliding windows succumbs to big Mac attack. In: Proceedings of Cryptographic Hardware and

Embedded Systems, Paris, France, 2001. 286–299

14 Eric Brier, Christophe Clavier, Francis Olivier. Correlation power analysis with a leakage model. In: Proceedings of

Cryptographic Hardware and Embedded Systems, MA, USA, 2004. 16–29

15 Lejla Batina, Benedikt Gierlichs, Kerstin Lemke-Rust. Differential cluster analysis. In: Proceedings of Cryptographic

Hardware and Embedded Systems, Lausanne, Switzerland, 2009. 112–127

16 Aldaya, Alejandro Cabrera, Sarmiento et al. SPA vulnerabilities of the binary extended Euclidean algorithm. J Cryp

Engi, 2016. 1(1): 1–13



Sen Xu DO NOT DISTRIBUTE, et al. Sci China Inf Sci 15

17 Sujoy Sinha Roy, Kimmo Järvinen, Ingrid Verbauwhede et al. Lightweight coprocessor for Koblitz curves: 283-Bit

ECC including scalar conversion with only 4300 gates. In: Proceedings of Cryptographic Hardware and Embedded

Systems, Saint-Malo, France, 2015. 102–122

18 Omar Choudary, Markus G. Kuhn. Template attacks on different devices. In: Proceedings of Constructive Side-

Channel Analysis and Secure Design, Paris, France, 2014. 179–198

19 M. Abdelaziz Elaabid, Sylvain Guilley. Portability of templates. J Cryp Engi, 2012, 2(1): 63–74

20 François-Xavier Standaert, Cédric Archambeau. Using subspace-based template attacks to compare and combine

power and electromagnetic information leakages. In: Proceedings of Cryptographic Hardware and Embedded Systems,

Washington, D.C., USA, 2008. 411–425

21 Cédric Archambeau, Eric Peeters, François-Xavier Standaert et al. Template attacks in principal subspaces In: Pro-

ceedings of Cryptographic Hardware and Embedded Systems, Yokohama, Japan, 2006. 1–14

22 Omar Choudary, Markus G. Kuhn. Efficient template attacks. In: Proceedings of Smart Card Research and Advanced

Applications, Berlin, Germany, 2013. 253–270

23 Daniel Genkin, Lev Pachmanov,Itamar Pipman. ECDSA key extraction from mobile devices via nonintrusive physical

side channels. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,

Vienna, Austria, 2016. 1626–1638

24 Benedikt Gierlichs, Lejla Batina, Pim Tuyls. Mutual information analysis. In: Proceedings of Cryptographic Hardware

and Embedded Systems, Washington, D.C., USA, 2008. 426–442

25 Carolyn Whitnall, Elisabeth Oswald. Robust profiling for DPA-style attacks. In: Proceedings of Cryptographic

Hardware and Embedded Systems, Saint-Malo, France, 2015. 3–21

26 Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder et al. Machine learning in side-channel analysis: a first study.

J Cryp Engi, 2011, 1(4): 293–305

27 Lerman, Liran, Bontempi et al. Power analysis attack: an approach based on machine learning. Inte J Appl Cryp,

2014, 3(2): 97–115

28 David P. Montminy, Rusty O. Baldwin, Michael A. Temple et al. Improving cross-device attacks using zero-mean

unit-variance normalization. J Cryp Engi, 2013, 3(2): 99–110

29 Suresh Chari, Josyula R. Rao, Pankaj Rohatgi. Template attacks. In: Proceedings of Cryptographic Hardware and

Embedded Systems, Redwood Sores, CA, USA, 2002. 13–28

30 Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat et al. Side-channel analysis of Weierstrass and Koblitz curve

ECDSA on Android smartphones. In: Proceedings of The Cryptographers’ Track at the RSA Conference 2016, San

Francisco, CA, USA, 2016. 236–252

31 Daniel Genkin, Adi Shamir, Eran Tromer. RSA Key Extraction via low-bandwidth acoustic cryptanalysis. In: Pro-

ceedings of Advances in Cryptology, Santa Barbara, CA, USA, 2014. 444–461

32 Daniel Genkin, Itamar Pipman, Eran Tromer. Get your hands off my laptop: physical side-channel key-extraction

attacks on PCs. In: Proceedings of Cryptographic Hardware and Embedded Systems, Busan, South Korea, 2014.

242–260

33 Daniel Genkin, Lev Pachmanov, Itamar Pipman et al. Stealing keys from PCs using a radio: cheap electromagnetic

attacks on windowed exponentiation. In: Proceedings of Cryptographic Hardware and Embedded Systems, Saint-Malo,

France, 2015. 207–228

34 Frédéric Amiel, Benoit Feix, Karine Villegas. Power analysis for secret recovering and reverse engineering of public

key algorithms. In: Proceedings of Selected Areas in Cryptography, Ottawa, Canada, 2007. 110–125

35 Josep Balasch, Benedikt Gierlichs, Oscar Reparaz et al. DPA, bitslicing and masking at 1 GHz. In: Proceedings of

Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 2015. 599–619

36 Tang M, Qiu Z L, Peng H B et al.Toward reverse engineering on secret S-boxes in block ciphers. SCI CHINA Inf Sci,

2014, 57: 032208

37 Marc Witteman. A DPA attack on RSA in CRT mode. Riscure Technical Report, 2009, https://www.riscure.com/

archive/DPA attack on RSA in CRT mode.pdf

https://www.riscure.com/archive/DPA_attack_on_RSA_in_CRT_mode.pdf
https://www.riscure.com/archive/DPA_attack_on_RSA_in_CRT_mode.pdf

	Introduction
	Preliminaries
	Template attack
	RSA-CRT implementation

	Methodology
	Similar operation template attack strategy
	SOTA in RSA-CRT combination phase
	Hidden multiplier problem over GF(q)
	Byte-by-byte recovery of prime 

	Practical experiments
	Measurement setup and experiment environment
	SOTA in RSA-CRT software implementation
	Secret prime recovery
	Computation complexity estimation

	Conclusion

