
国立大学法人電気通信大学 / The University of Electro-Communications

Reduction in the Number of Fault Injections
for Blind Fault Attack on SPN Block Ciphers

著者（英） Yang Li, Mengting Chen, Zhe Liu, Jian Wang
journal or
publication title

ACM Transactions on Embedded Computing Systems

volume 16
number 2
page range 1-20
year 2017-04
URL http://id.nii.ac.jp/1438/00009014/

doi: 10.1145/3014583

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Creative Repository of Electro-Communications

https://core.ac.uk/display/196614246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Reduction in Number of Fault Injections for Blind Fault Attack on SPN
Block Ciphers

Yang Li, Mengting Chen, Zhe Liu, Jian Wang, Nanjing University of Aeronautics and Astronautics

In 2014, a new fault analysis called blind fault attack (BFA) was proposed, in which the attackers can only
obtain the number of different faulty outputs without knowing the public data. The original BFA requires
480,000 fault injections to recover a 128-bit AES key. This work attempts to reduce the number of fault
injections under the same attack assumptions. We analyze BFA from an information theoretical perspective
and introduce a new probability-based distinguisher. Three approaches are proposed for different attack
scenarios. The best one realized a 66.8% reduction of the number of fault injections on AES.

CCS Concepts: rSecurity and privacy → Side-channel analysis and countermeasures; Block and
stream ciphers; Embedded systems security;

Additional Key Words and Phrases: Blind fault attack, fault analysis, AES, information theory

ACM Reference Format:
Yang LI, Zhe Liu and Jian Wang. 2016. Reduction in Number of Fault Injections for BFA on SPN Block
Ciphers. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2016), 20 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Cryptographic algorithms implemented in embedded systems are under the threats of
various physical attacks such as side-channel attacks and fault injection attacks. This
work focuses on a new type of fault injection attack called blind fault attack (BFA),
which was proposed in 2014 [Korkikian et al. 2014]. The purpose of this work is to
accurately evaluate the number of fault injections for BFA key recovery.

In fault injection attacks, attackers intentionally inject computational fault into the
executing cryptographic algorithms. Usually, via fault injections, the faulty outputs
and the faulty behaviors of the target embedded device are observed. These fault-
based information is used together with some public data, i.e. plaintext and ciphetext,
to recover the key. Different from all previous attacks, the BFA attacker is assumed to
be blind to the values of public data. Thus, in the BFA key recovery, the attackers can
only rely on the information gained from fault injections without any “main-channel”
information. Previous famous fault attacks, e.g. differential fault analysis [Boneh et al.
1997; Biham and Shamir 1997; Piret and Quisquater 2003; Tunstall et al. 2011] and
fault sensitivity analysis [Li et al. 2010; Moradi et al. 2011; Li et al. 2012] cannot be
applied in the attack scenario of BFA.

All the previous fault attacks rely on the values of the public data in the key recovery.
The assumption of BFA fits many practical applications of a block cipher. For example,

This work is supported by China Postdoctoral Science Foundation (No.2015M581795), Jiangsu Province
Postdoctoral Science Foundation (No.1501014A) and Research start up fund of NUAA under grant
90YAH15029.
Author’s addresses: Yang Li (corresponding author), Zhe Liu and Jian Wang, College of Computer Sci-
ence and Technology, Nanjing University of Aeronautics and Astronautics, Jiangjundadao No. 29, Nanjing,
Jiangsu, China, 211106. Email: li.yang@nuaa.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 ACM. 1539-9087/2016/01-ART1 $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:2 Y. Li, Z. Liu and J. Wang

the encryption system when whitening is applied to both the input and the output.
In addition, when block ciphers are used in an authentication system, the attackers
may have difficulty in accessing the inputs and outputs. The original proposal of BFA
successfully recovered the key of the several block ciphers, i.e. AES [National Institute
of Standards and Technology 2001], LED [Guo et al. 2011] and SAFER++ [Massey
et al. 2000], which are using the substitution permutation networks (SPN) structure.

The fault model used by BFA is the multi-bit reset or set fault injections, in which
the fault injection can probabilistically reset or set the bit values of a specific byte or
nibble. In BFA, it is assumed that the calculation outputs under fault injections can be
compared with each other. Therefore, the attackers can know the total number of dif-
ferent outputs, which are caused by the fault injections when encrypting an unknown
plaintext.

However, a successful BFA key recovery requires much more fault injections com-
pared to other fault attacks. For example, it is estimated that 480,000 faults are re-
quired to recover a 128-bit key of AES. For DFA, it is well known that 1 or 2 fault
injections are enough to identify the same AES key. This is of course due to the diffi-
cult attack setting of BFA. However, by analyzing the original BFA, we find that there
is some room to reduce the required number of fault injections. In order to reveal the
true threats of BFA, this work comprehensively studies the possibility of reducing the
number of fault injections without changing any assumptions.

Contributions. First, this work analyzes the BFA key recovery via an information
theoretical perspective. This is inspired by [Sakiyama et al. 2012], in which the DFA
attack on AES is analyzed to achieve the optimal data complexity. For BFA, we eval-
uate how much information is gained via each time of fault injection, which is called
information gained for a fault injection (IGFI). It is found that both the target inter-
mediate value and the fault position in the injection sequence affect IGFI significantly.
In fact, many fault injections in the original BFA have a low IGFI. If the BFA attacker
can set up a strategy that mainly uses the fault injections with high IGFI, the number
of fault injections for a successful key recovery can be reduced.

We apply the idea of using high IGFI to BFA in three approaches. Each of them
corresponds to an attack scenario, and achieves a reduction to the number of fault
injections compared to the original BFA.

This result is summarized in Table I. The original BFA uses 30,000 fault injections
to achieve a 99% of key identification rate where only the correct key remains. The
first attack, selective plaintext BFA, uses 47.4% of fault injections of the original BFA
to reduce the key space to 1.6 candidates in average. The key identification rate of
this attack is 61.1%. The second attack, fixed faults per plaintext BFA, introduces
a probability-based distinguisher to BFA, which eliminates the possibility that the
correct key being deleted in the key sifting phase. This attack also shows that BFA

Table I. Number of fault injections for recovery of an AES key byte

Attacks References Number
of Faults KIR1 ERK2

Original BFA [Korkikian et al. 2014] 30,000 (100%) 99% 1
Selective

Plaintext BFA Section 4.1 14,219 (47.4%) 61.1% 1.6

Fixed Faults
Per-Plaintext BFA Section 4.2 17,748 (59.2%) 99% 1

Dynamic Fault
Injection BFA Section 4.3 9,978 (33.3%) 99% 1

1 KIR stands for key identification rate.
2 ERK stands for expected remaining keys.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:3

key recovery is possible and efficient when the number of fault injections on every
plaintext is limited. The probability distinguisher BFA achieves 99% key identification
rate using 59.2% of fault injections. The third attack, dynamic fault injection BFA,
requires the attacker dynamically evaluates the expected information gain for each
fault injection and decides whether or not to apply it. This dynamic fault injection
strategy results in the best performance, which uses 33.3% of fault injections to achieve
the same attack result of the original BFA.

Our work shows that BFA can be applied more efficiently with regard to the number
of fault injections. One third of the fault injections are already enough to achieve the
same key recovery results. This work also shows that even when the attackers cannot
apply many fault injections to the same plaintext, the BFA key recovery is still possible
and efficient. Thus, this work accurately evaluates the key recovery requirement for
BFA.

Organization. The rest of this paper is organized as follows. Section 2 briefly reviews
the previous fault attacks and explains the original BFA. Section 3 explains several ob-
servations by evaluating BFA via an information theoretical perspective. In section 4,
three improved BFA methods under different attack scenarios and their attack results
on AES are explained. In section 5, the impact of this work on the feasibility of BFA is
discussed. Section 6 concludes the paper and discusses the future work.

2. PREVIOUS FAULT ATTACKS AND ORIGINAL BFA
Fault attack uses the faulty calculations of the implemented cryptographic algorithms
to help recovering the secret key, which was first proposed in 1997 [Boneh et al. 1997].
Different kinds of fault attacks have been proposed, which have become serious secu-
rity threats to cryptographic algorithms implemented in embedded systems. In this
section, we briefly review the previous fault attacks on block ciphers and explain the
uniqueness of BFA.

2.1. Existing fault attacks on block ciphers
Differential fault analysis (DFA) is the most widely discussed fault attack applied on
block ciphers. The basic concept of DFA was proposed in [Biham and Shamir 1997]. In
DFA attack, the attackers inject certain computational faults into the running cryp-
tographic devices. DFA attack usually requires the attacker to have certain control of
the injected fault, which is usually called the fault model. With the fault model, the
fault-free output and faulty output for the same input, the key recovery can be per-
formed. The key recovery is similar to the differential cryptanalysis, which analyzes
the differential equations to restrict the key space. With an appropriate fault model,
the data complexity of DFA could be very small. Take AES as an example, a representa-
tive DFA recovers the full key using less than 2 fault injections [Piret and Quisquater
2003]. Later, researchers show that 1 fault injection is enough for the key recovery
[Tunstall et al. 2011]. Note that the fault-free and faulty ciphertexts are necessary for
DFA.

Another type of fault attack depends on the implementation details of the attack
target. Recently, many new fault attacks belong to this type have been proposed. In
2010, fault sensitivity analysis (FSA) has been proposed [Li et al. 2010] and later be
improved in [Moradi et al. 2011; Li et al. 2012]. In FSA, fault injections are used to
measure how much the current calculation is sensitive to the fault injection intensity
as the fault sensitivity. Measuring and analyzing fault sensitivity can obtain the infor-
mation of processed intermediate value, which can be used to recover the secret key.
For FSA, usually a few hundreds to a few thousands of fault injections are required

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:4 Y. Li, Z. Liu and J. Wang

for a successful key recovery. The fault-free ciphertext is a must for a successful FSA
attack.

After FSA, there are a series of new fault attacks, which use the biased (non-
uniformity) of the injected faults [Lashermes et al. 2012a; Wang et al. 2013; Liu et al.
2015], the biased faulty values [Ghalaty et al. 2014] or the biased faulty output [Fuhr
et al. 2013; Li et al. 2013; Santis et al. 2014] to perform key recovery. This type of at-
tack usually requires more than a few hundreds of fault injections for a successful key
recovery and must use the value of ciphertexts in the key recovery.

2.2. BFA on SPN-based block ciphers
All the above mentioned fault attacks cannot succeed if the attacker does not know
the value of neither the plaintexts nor the ciphertexts. BFA was proposed under this
special attack scenario. There are two special requirements for BFA compared to the
previous fault attacks.

— BFA requires the multi-bit reset or set fault model, which is relatively difficult to
realize in practice. These fault models have been applied previously in [Blömer and
Seifert 2003] and [Lashermes et al. 2012b]. Also, successful multi-bit set or reset
fault injections have been verified practically in [Moro et al. 2013; Roscian et al.
2013] based on laser shots at SRAM.
For a set fault, each internal “0” bit has a 50% chance to become “1”, while “1” bit
remains “1”. Denote the fault free intermediate value as D ∈ Fn2 , and faulty interme-
diate value as D′ ∈ Fn2 . We have D′ = D ∨ e, where e is a random number and e ∈ Fn2 .
In contrast, for a reset fault, each “1” bit has a 50% chance to become “0”, while “0”
bit remains “0”. For a reset fault, D′ = D∧e, where e is a random number and e ∈ Fn2 .
Without loss of any generality, the rest of paper only discusses the reset fault model.
In original BFA, the attacker is assumed to be able to inject multi-bit reset fault into
an internal byte/nibble of the block cipher at desired timing and location. This work
follows this assumption.

— The BFA attacker cannot access the value of either the plaintext or the ciphertext.
However, the attackers can encrypt the same plaintext many times and the outputs
for all the encryptions can be compared pairwise. By doing so, the attackers can
understand how many different outputs are generated under the multi-bit reset fault
injections.
To summarize, for each unknown plaintext, the BFA attackers can control the time
of multi-bit reset fault injections at any desired byte/nibble and timing, and can un-
derstand the number of different outputs.

2.2.1. Basic BFA key recovery problem. The BFA is applied to block ciphers with SPN
structure. The basic concept of SPN structure is illustrated in the left part of Figure 1.
The internal state is repeatedly processed by a sequence of a substitution layer, a per-
mutation layer and a key addition layer. The substitution layer uses carefully selected
components such as S-box to achieve non-linear calculation. The permutation layer
shuffles the bit positions or performs a linear transformation of the internal state.
Finally, the internal state is mixed with a round key.

Same with all the other physical attacks, BFA performs the key recovery of the full
key in a divide-and-conquer process. Each time, the attacker only targets the calcula-
tion related to 1 byte or 1 nibble of key. For a block cipher based on the SPN structure,
a round key is divided into small pieces to be recovered one by one. Each small key
piece is inside a basic structure as shown in the right part of Figure 1.

The BFA only focuses on the substitution part and the key addition part. The per-
mutation part does not affect BFA. Note that the sequence of the key addition and the
substitution does not affect the key recovery efficiency. The rest of this paper follows

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:5

���

�����

�����	���	
� �������	
�

���

� �
�������	
�

�����	���	
� �������	
�

� �
�������	
�

�

�

�

Fig. 1. Basic structure of BFA.

the basic structure as shown in Figure 1. The input data, the output data and the key
inside the basic structure are denoted as Din, Dout and K, respectively. The length of
the path of the basic structure is n. For a modern block cipher, n is usually 8, e.g. AES,
or 4 , e.g. LED, in order to achieve a reasonable balance of the implementation cost and
the cryptanalysis resistance.

2.2.2. Original BFA key recovery. This section explains the key recovery for BFA de-
scribed in [Korkikian et al. 2014], which can be divided into two steps as Hamming
weight recovery phase and key recovery phase.

Hamming weight recovery phase. First, BFA attacker recovers the Hamming
weights of Din and Dout one by one to obtain a Hamming weights pair, i.e.
(WDin

,WDout
). Denote target data as D, the Hamming weight and the bit length of

D are denoted as WD and n, respectively. Under a multi-bit reset fault injection, the
total number of possible faulty outputs is B = 2WD . With enough fault injections, the
attacker can obtain all the possible faulty outputs and know the number of it. Thus, B
and WD can be recovered.

The relations between the fault injections and faulty outputs can be considered as
an “occupancy problem”. The probability that after L fault injections, T out of B dif-
ferent possible ciphertexts are received can be considered as the probability that T
out of B bins are occupied after throwing randomly L balls. This probability T = t,
t ∈ {0, 1, . . . ,min(L,B)} can be calculated as follows:

Pr(T = t) =

{
B!αt,L

(B−t)!Bt , t ∈ {1, 2, ...,min(L,B)},
0, else

(1)

where αt,L is the Stirling number of the second kind, i.e.

αt,L =
1

t!

t∑
i=1

(−1)t−i
(
t

L

)
it. (2)

In BFA, the values of L and T are known by fault injections, and WD must be deter-
mined. To estimate WD, a maximum likelihood estimator ŴD as a function of T and L
is used as

ŴD = arg max
Wi

Pr(T |Wi, L). (3)

With simulation-based fault injection experiments, achieving the 99% accuracy of
recovering a Hamming weight requires 15 and 62 fault injection for n = 4 and n = 8,
respectively.

Key recovery phase. With the several Hamming weight pairs for a certain K. BFA
attackers try to identify K, which is divided into two steps. The first step is key sifting,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:6 Y. Li, Z. Liu and J. Wang

which eliminates the key candidates that fail to satisfy any obtained Hamming weight
pair with any possible Din ∈ Fn2 .

The second step is key likelihood estimation. For each key candidate K,
one can pre-compute the Hamming weight probability distribution (HWPD) as
Pr
(
WDin

,WS(Din⊕K)

)
for uniformly distributed Din ∈ Fn2 and an S-box S. It turns out

the HWPD, Pr
(
WDin

,WS(Din⊕K)

)
, depends on the value of K. The attackers have an

observed distribution of Prr(WDin ,WDout) with the Hamming weight pairs obtained in
the Hamming weight recovery phase. By comparing the obtained HWPD and the key-
dependent pre-computed real HWPD, the attackers can identify which key candidate
likes the real key the most. In [Korkikian et al. 2014], the Euclidean distance between
two probability distributions is used as the distinguisher to identify the likelihood. The
Euclidean distance between Prr and Prk is computed for each key as

D(Prr,Prk) =

√ ∑
∀wi,wj

(Prr(Wi,Wj)−Prk(Wi,Wj))2. (4)

The key candidate with the minimum Euclidean distance is considered as the correct
one:

k̂ = arg min
k
D(Prr,Prk). (5)

The required amount of Hamming weight pairs for the successful key recovery de-
pends on the S-box lookup table. Based on attack simulations, it is found that the 99%
key recovery success rate requires 50 plaintexts for LED and 250 plaintexts for AES.
The number of fault injections for the recovery of a byte/nibble key is shown in Table
II. For AES, each key byte requires 30,000 fault injections.

Table II. Number of fault injections to recover a byte/nibble key in
original BFA attack

Cipher Number of Number of faults Total number
plaintexts per plaintext of faults

AES 250 120 30,000
LED 50 40 2,000

For AES-128, the original BFA requires 480,000 fault injections to recover the 128-
bit full key. Obviously, the number of fault injections is the main limitation of the
feasibility of BFA. The challenge is whether or not the number of fault injections can be
reduced for BFA key recovery. Then the security threat of BFA can be more accurately
evaluated.

3. REVIEW BFA VIA INFORMATION THEORETICAL PERSPECTIVE
This section reviews BFA key recovery via an information theoretical perspective in
order to find the possibility of reducing the number of fault injections. In this perspec-
tive, each fault injection is considered as a method to obtain the information of the
intermediate values, which is linked to the recovery of the secret. By analyzing the
information gained from each fault injection, the minimum number of fault injections
for a key recovery can be evaluated accurately. This approach has been applied to eval-
uate the DFA attack on AES in [Sakiyama et al. 2012] and DFA attack on CLEFIA in
[Krämer et al. 2014]. Both of them achieved a more accurate evaluation. Without loss
of generality, the following discussion focuses on AES where n = 8.

As mentioned in Section 3, the original BFA first recovers the Hamming weight
of intermediate values, then recovers the secret key. Instinctively, we can have the
following observations for the original BFA.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:7

— The recovered Hamming weights contribute differently to the key recovery consid-
ering the remaining entropy of the target value given the Hamming weights. For
example, the recovery of WD = 0 corresponds to the recovery of the target value,
whose remaining entropy is 0 bit. On the other hand, with the recovery of WD = 4,
the remaining entropy of the target value still has − log2 1/70 = 6.129 bits.

— The higher the Hamming weight of the target intermediate value is, the more fault
injections are required to recover the Hamming weight. When WD = 0, since every
reset fault does not lead to a different output from the fault-free one, the attackers
can easily identify WD = 0 with only a few fault injections. However, in the case
of WD = 8, at least 27 = 128 fault injections are required to accurately distinguish
whether WD = 7 or WD = 8.

— For a given WD and a sequence of fault injections in the recovery process of WD, the
information gain for each fault injection is different from each other. Instinctively,
the first ten or so fault injections are the most valuable ones for the key recovery.
Note that the number of different outputs is the only clue for the attackers to recover
WD. Along the sequence of fault injections, the probability to obtain a new output is
generally decreasing. Thus, the expected information gain for the fault injection is
decreasing as well.

By summarizing these observations, it is found that in the recovery of information of
D, the information gain of fault injections has a large difference. Mainly, it is related
to the Hamming weights of D and the position of the fault in the injection sequence. In
the process of BFA, the recovery of secret information is the result of accumulating the
information recovery of intermediate values. Each fault injection is contributing to the
entropy reduction of the secret key. The total entropy of the secret key is fixed, in order
to reduce the number of fault injections, the BFA attacker should take advantage of
the fault injections that has higher information gains.

All the probabilities and entropy transformation in the key recovery process men-
tioned in the observations can be calculated. Thus, the attackers can take advantage
of them to understand the expected information gain of each fault injection that is to
be performed. By setting up a fault injection strategy, the attacker makes sure that
each performed fault injection is expected to have a high information gain for the key
recovery. Then, the required number of fault injections is reduced and optimized,

3.1. Evaluation of Information Gain of Fault Injections
Increasing the expected information gain of each performed fault injection is the key
idea of this work. Hereafter, the expected information gain for each fault injection is
evaluated for AES.

Given n = 8 and the total number of fault injections L = l, l ∈ {1, 2, . . .}, a tuple of
Hamming weight ofD and total number of different outputs as (WD, T), the probability
Pr(WD = wD, T = t) for wD ∈ {0, 1, . . . , 8} and t ∈ {1, 2, . . . , l+1} can be computed. They
can form a joint probability distribution Pr(WD, T)L=l.

Our first attempt is to follow equations (1) and (2) to mathematically compute
Pr(WD, T)L=l. However, we find the probability calculation described in equations (1)
and (2) is not accurate. They omit the fact that the attackers can always obtain a fault-
free output when no fault injection action is applied, which should be counted in a
calculation output. For example, with only 1 time of fault injection. i.e. L = 1, there
is a possibility to obtain 2 different outputs as the fault-free output and a faulty one
caused by the fault injection. Thus, when L = 1, we have t ∈ {1, 2}.

When L is small enough, it is relatively easy to calculate the probability distribu-
tion Pr(WD, T)L. For example, in the case of L = 1, the probability distribution of
Pr(WD, T)L=1 is shown in Table III. For example, when WD = 2, the probability of

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:8 Y. Li, Z. Liu and J. Wang

obtaining a fault-free output for a fault injection is (1/2)WD = 1/4. Thus, we have
Pr(T = 1|WD = 2) = 1/4 and Pr(T = 2|WD = 2) = 3/4, when L = 1. By multi-
plying them with Pr(WD = 2) = 28/256, one have Pr(T = 1,WD = 2) = 7/256 and
Pr(T = 2,WD = 2) = 21/256, which is shown in the third column of Table III. One can
calculate all the joint probability for WD ∈ {0, 1, . . . , 8} and T ∈ {1, 2, . . . , l + 1}. Note
that Pr(WD, T)L can be converted to Pr(D,T)L since D is uniformly distributed for
every WD.

Table III. Probability distribution of Pr(wD, t) when l = 1

wD

0 1 2 3 4 5 6 7 8

t 1 1
256

4
256

7
256

7
256

35
2048

7
1024

7
4096

1
4096

1
65536

2 0 4
256

21
256

49
256

525
2048

385
1024

441
4096

127
4096

255
65536

Using the joint probability table as shown in Table III, one can evaluate how much
information of WD and information of D are obtained by this fault injection. Before
this fault injection, the entropy of the WD, i.e. H(WD), can be calculated as

H(WD) = −
8∑
i=0

(
8
i

)
256

log2

((
8
i

)
256

)
= 2.544 bits. (6)

After this 1 time of fault injection, the conditional entropy of WD after knowing T is

H(WD|T)L=1 = −
∑
t,wD

Pr(WD = wD, T = t) log2(Pr(WD = wD|T = t)) (7)

= 2.465 bits, (8)

where t ∈ {1, 2} and wD ∈ {0, 1, . . . , 8}. Therefore, the average information gain of WD

for this fault injection is 2.544 − 2.465 = 0.079 bits. One can calculate the information
gain of D for this fault injection by H(D) − H(D|T) as 0.079 bits as well. Following
the same approach, using the joint probability distribution Pr(WD, T)L=l where l ∈
{1, 2, . . .}, one can use H(D|T)L=l − H(D|T)L=l−1 to obtain the expected information
gain of D for the l-th time fault injection.

In our evaluation, it is not easy to mathematically compute Pr(WD, T)L=l for all
possible l. Since the purpose of this evaluation is to have a sense of the fault injection
efficiency, we decided to use a Monte Carlo approach to replace all the probability
calculations. In the Monte Carlo approach, random numbers are generated to perform
the fault injection simulations. After repeating the simulated fault injections for 107

times, the occurrences of all the events are counted to obtain the estimation of the
corresponding probabilities. By the Monte Carlo approach, we obtained all the joint
probability distribution of Pr(WD, T)L=l for l = {1, 2, . . . , 100} with reasonably small
noise.

Finally, we can evaluate the information gain of D for each fault injection in BFA.
The evaluation results are shown in Figures 2 and 3. Figure 2 shows the remaining
entropy of D for the first 100 fault injections. Figure 3 shows the information gain of
D for the first 100 fault injections.

As shown in Figure 2, the remaining entropy of D decreases dramatically for the
first 20 fault injections. Then the decreasing speed decreases. After about 60 fault in-
jections, the remaining entropy does not decrease any more and close to the limitation,
which fits the result shown in the original BFA. The meaning of the limitation around
60 fault injections is that WD is almost fully recovered but no more information can be

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:9

0 20 40 60 80 100
5

5.5

6

6.5

7

7.5

8

Fault injection time

R
e
m

a
in

in
g
 E

n
tr

o
p
y
 o

f
T

a
rg

e
t
V

a
lu

e
 [
b
it
s
]

Fig. 2. Expected remaining entropy of D for first 100 fault injections.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fault injection time

In
fo

rm
a

ti
o

n
 G

a
in

 o
f

E
a

c
h

 F
a

u
lt
 I

n
je

c
ti
o

n
 [

b
it
s
]

Fig. 3. Information gain of D for 100 fault injections.

recovered for D. In Figure 3, one can see that the 4-th fault injection has the peak in-
formation gain. After 60 fault injections, the information gain is much less. The large
difference of information gain between fault injections implies a large improvement
room of the original BFA.

3.1.1. Information gain for different Hamming weights. As mentioned in our observations,
the Hamming weight of target value WD affects the information gain a lot. Assume
WD = 0, the attackers will observe T in the probability distribution corresponding to

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:10 Y. Li, Z. Liu and J. Wang

WD = 0, which is the first column of Table III. The attacker tries to recover the infor-
mation of D with the observed distribution of T . Table III can be used to calculate the
expected distribution of WD given an observed distribution of T . Then the expected
distribution of WD can be converted to a distribution of D, which is used to compute
the remaining entropy of D. Following these calculations, one can understand the in-
fluence of WD for the information gain of each fault injection.

We compute the results based on the probability distribution obtained with a Monte
Carlo approach. Figures 4 and 5 show the evolution of the expected entropy of D and
the information gain of D against the first 100 fault injections when WD is fixed. Note
that the attackers don’t have any information of the fixed WD, the attackers only try
to recover the information of D based on the observation of T , while the distribution of
T is determined with a fixed WD.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Fault injection time

R
e
m

a
in

in
g
 E

n
tr

o
p
y
 o

f
T

a
rg

e
t

V
a
lu

e
 [

b
it
s
]

�
�
��

�
�
��

�
�
��

�
�
��

�
�
���

�
��

�
�
�	

�
�
�

�
�
��

Fig. 4. Expected remaining entropy of D along fault injections for different WD .

As shown in Figures 4 and 5, we can see the result is fitting the expectations. The
first a few fault injections are most efficient for D = 0, which can be as high as 1.8 bits
for the information gain for recovering D. After repeating a few fault injections, the
entropy of D can be reduced to 0 since D can be identified. In the case of wD = 4, the
information gain of each fault injection is always below 0.2 bits, and the entropy of D
cannot be reduced to below log2(1/70) ≈ 6.13 bits, The attackers can take advantage
of the above result to perform fault injections with high information gain as much as
possible.

3.1.2. Proposal of Probability-Based Distinguisher for BFA. The original BFA has a possibil-
ity of eliminating the correct key in its key sifting step. In the first step of the original
BFA, the attackers want to identify the Hamming weight of intermediate value. How-
ever, even after 62 fault injections, there is still a possibility that the identified Ham-
ming weight is different from the real one. The problem is that if this error Hamming
weight is used in the key sifting step, there is a possibility that the correct key byte
is eliminated from the key space. Then it results in a failed key recovery. Considering
that this 99% success rate of identifying correct Hamming weight is repeated over 500
trails, the possibility of eliminating the correct key should not be ignored.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:11

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fault injection time

In
fo

rm
a
ti
o
n
 G

a
in

 o
f

E
a
c
h
 F

a
u
lt
 I

n
je

c
ti
o
n
 [

b
it
s
]

�
�
��

�
�
��

�
�
��

�
�
��

�
�
���	

Fig. 5. Information gain of D along fault injections for different WD .

Note that in [Korkikian et al. 2014], it is possible to omit the key shifting step in the
key recovery. Then, the possibility of eliminating the correct key can be fixed. However,
the key recovery efficiency is further reduced since more fault injections is required to
identify the correct key.

Our work proposes a new approach to connect two attack phases for BFA, which has
two main differences from the previous one.

— First, in the phase of Hamming weight recovery, instead of identifying the Hamming
weight, the attack result is a probability distribution of the Hamming weights. The
probability distributions for WDin

and WDout
can be combined to form a probability

distribution of the Hamming weights pair, i.e., Pr(WDin
,WDout

). The idea is to use
probability distribution to replace the necessity of identification, then all the infor-
mation in the Hamming weight recovery phase is used in the key recovery phase.
The key recovery efficiency and flexibility is increased.

— Second, in the key recovery phase, instead of using the Euclidean distance as the
distinguisher, we apply a new distinguisher as shown in Eq. (9).

k̂ = arg max
k

∏
i

Pr(k|Pr(WDin
,WDout

)i)). (9)

The idea is to calculate the probability of each key candidate using the probability
distribution of the Hamming weights pair and HWPD for each key candidate. After
the calculation, the key candidate with the highest probability is considered as the
correct key. In this distinguisher, the key sifting and the accumulation of key like-
lihood are combined. A key with a 0 probability will be eliminated automatically in
the multiplication of the probability distinguisher. The probability distribution of the
Hamming weights pair as Pr(WDin

,WDout
) can directly connect two attack phases.

As long as enough data is used in the key recovery, the correct key can be identified
just like other side-channel attacks such as differential power analysis. The disadvan-
tage is that in our approach the attackers need more computational abilities to perform
the probability distribution calculations. In the new key recovery approach, there is no
need to identify the correct Hamming weight. There is also no worry about eliminat-
ing the correct key since all the keys are evaluated in the key recovery phase using
probability calculations.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:12 Y. Li, Z. Liu and J. Wang

4. IMPROVED BFA ATTACK WITH REDUCED FAULT INJECTION TIMES
Based on analyzing BFA from an information theoretical perspective and the newly
proposed distinguisher for BFA, this section discusses several methods to reduce the
number of fault injections. Specifically, we describe three BFA methods.Each BFA
method is optimized under a certain attack scenario, which is related to the size of
plaintext space, fault injection times per plaintext and the calculation ability of the
attackers.

4.1. Selective Plaintexts BFA
The first attack scenario is the case where the attackers can freely choose plaintext,
and there is no limitation of the fault injection times for each plaintext. In this BFA
method, we follow the original fault attack to identify the Hamming weight in the first
attack phase, without using the probability-based distinguisher. The point of showing
this attack is to illustrate that instead of the new distinguisher, the selection of fault
injections with high information gain is the main contribution of this work.

As mentioned in Section 4, the Hamming weight of the target value largely affects
the information gain per fault injection. The attackers can use a few fault injections to
test the plaintexts first. For the basic BFA structure shown in Figure 1, a few fault in-
jections are applied at Din first. With the fault injection results, the attackers already
be able to identify whether the Hamming weight is extremely low. A low Hamming
weight implies that the performed fault injections are information theoretically effi-
cient. For each plaintext that has efficient fault injections at Din, we keep on perform-
ing fault injections at Dout to identify its Hamming weights to obtain the Hamming
weight pair. We can repeat the same process by focusing on obtaining the efficient
plaintext with regard toDout. After the fault injections, we obtain the pair of Hamming
weights of Din and Dout, i.e. (WDin ,WDout)). The fault injection strategy is described in
Algorithm 1.

In the selective plaintexts BFA, the attackers first use a few fault injections to se-
lect the plaintext that has a high information gain per fault injection. Then only those
plaintexts are used in the further analysis for the key recovery. All the inefficient plain-
texts are abandoned.

Note that we consider WD < 2 as the efficient plaintexts in Algorithm 1. In Algo-
rithm 1, Λ0

r is the set of the Hamming weight pairs with WDin
= 0, which is obtained

from the fault injection results. Similarly, Λ1
r, Λ2

r, Λ3
r are the sets of the Hamming

weight pairs with WDin
= 1, WDout

= 0 and WDout
= 1, respectively. The number of

total fault injections σ can be estimated as follows

σ = Nl1 +Nl2
(

Pr(WDin
∈ {0, 1}) + Pr(WDout

∈ {0, 1})
)
, (10)

=
128l1 + 9l2

128
N, (11)

where N is the number of used plaintexts, l1 is the number of fault injections to find
good efficiency plaintext, l2 is the number of fault injections required to recover a Ham-
ming weight.

In the key identification phase, for each key guess, the perfect set of the Hamming
weight pairs are calculated for all the efficient plaintexts. Then as long as the fault
injection result is a subset of the corresponding perfect set of the Hamming weight
pair, we consider the current key guess as a key candidate. The key recovery algorithm
is illustrated in Algorithm 2. Note that the key distinguisher in Algorithm 2 directly
matches the Hamming weight pairs between the experiment result and the expected
result for every possible key guess. Unlike the one used in [Korkikian et al. 2014], this
distinguisher does not rely on the distribution of Hamming weight pairs.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:13

ALGORITHM 1: Data Collection of Improved BFA with Selective Plaintexts
Input: N random plaintexts: P0, P2, . . . , PN−1.
Output: Hamming weight pair set Λ0

r = {(0,WDout)}, Λ1
r = {(1,WDout)}, Λ2

r = {(WDout , 0)}
and Λ3

r = {(WDout , 1)}.
for i = 0 to N − 1 do

Fix Pi as plaintext;
Inject fault at Din for l1 times ;
if t = 0 then

Inject faults at Dout for l2 times to get Λ0
r = {(0,WDout)} ;

end
if t = 1 then

Inject faults at Dout for l2 times to get Λ1
r = {(1,WDout)} ;

end
Inject fault at Dout for l1 times ;
if t = 0 then

Inject faults at Din for l2 times to get Λ2
r = {(WDin , 0)} ;

end
if t = 1 then

Inject faults at Din for l2 times to get Λ3
r = {(WDin , 1)} ;

end
end

ALGORITHM 2: Key Recovery of Improved BFA with Selective Plaintexts
Input: Λr = {(WDin ,WDout)|WDin ∈ {0, 1}} ∪ {(WDin ,WDout)|WDout ∈ {0, 1}}, key space

κ = ∅.
Output: Key byte space κ.
for kg ∈ κ do

Λ0
kg

= {(WDin ,WDout)|WDin = 0,K = kg} ;
Λ1

kg
= {(WDin ,WDout)|WDin = 1,K = kg} ;

Λ2
kg

= {(WDin ,WDout)|WDout = 0,K = kg} ;
Λ3

kg
= {(WDin ,WDout)|WDout = 1,K = kg} ;

if Λ0
r ⊂ Λ0

kg
and Λ1

r ⊂ Λ1
kg

and Λ2
r ⊂ Λ2

kg
and Λ3

r ⊂ Λ3
kg

then
κ = kg ∩ κ ;

end
end

We evaluate the appropriate value of l1 so that the error rate of identifying a low
Hamming weight is reasonably low. The calculation is similar to the one discussed in
Section 3. The probability of obtaining an error Hamming weight against the l1 fault
injections is shown in Figure 6. One can see that only 10 times of fault injections are
good enough to identify them.

The selection of N relates to the total number of fault injections. When N is too
small, the random plaintexts cannot cover all the available information theoretically
efficient plaintexts. Generally, N should be big enough so that all Din and Dout that
has a Hamming weight less than 2 can be covered. We performed the attack simulation
against the used number of plaintext N , whose result is shown in Figure 7 where
l1 = 10.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:14 Y. Li, Z. Liu and J. Wang

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of fault injections

E
rr

o
r

ra
te

 o
f

in
d

e
n

ti
fy

 W
D
 <

 2

Fig. 6. Error rate of identify WD < 2.

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

40

45

Total number of random plaintexts

S
iz

e
of

 k
ey

 s
pa

ce
 κ

 a
fte

r
ke

y
re

co
ve

ry

Fig. 7. Key space size after key recovery against the number of used plaintexts N .

From Figure 7, one can see that when N = 1000, the key space is reduced to about
1.6. The simulation result shows that this attack cannot identify K in all the cases. We
further analyzed that the key identification rate in this case is 61.1%. Even with more
fault injections, the key identification rate cannot extend 67% for this attack method.
However, the number of fault injections for a byte key only requires (10 + 60× 9/128)×
1000 = 14219 fault injections, which is a 52.6% reduction compared to 30,000 in the
original BFA. As a summary, using the exactly same assumptions, about a half of the
fault injections are enough to almost identify the key bytes by selecting plaintexts with
higher information gain. Since the probability distinguisher is not used, the selective
plaintexts BFA still has a possibility to identify wrong Hamming weight in the first
attack phase.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:15

ALGORITHM 3: Data Collection of Improved BFA with Limited Faults Per Plaintext
Input: N random plaintexts: P0, P2, . . . , PN−1, fixed fault injection time l1.
Output: Hamming weight pair probability distribution Pr(WDin ,WDout)i where

i ∈ {0, 1, . . . , N}.
for i = 0→ N − 1 do

Fix Pi as plaintext;
Inject fault at Din for l times ;
Count number of different outputs as tin ;
Use (l, tin) to obtain probability distribution, Pr(wDin) ;
Inject fault at Dout for l times ;
Count number of different outputs as tout ;
Use (l, tout) to obtain probability distribution, Pr(WDout) ;
Combine Pr(WDin) and Pr(WDout) for Pri(WDin ,WDout);

end

4.2. Fixed Faults Per Plaintext BFA
The second attack scenario assumes that there is a number limitation of encrypting the
same plaintext. It becomes suspicious when a plaintext is encrypted for many times.
In this attack scenario, the number of fault injections for each plaintext is limited.

When the faults per plaintext are limited to below 120, there are no enough fault
injections to identify WDin and WDout accurately. In this attack scenario, the proposed
probability-based distinguisher shows its advantages. Without identifying the Ham-
ming weights, the fault injections are used to obtain a probability distribution of WDin

and WDout
. In the key recovery phase, the Hamming weight probability distributions

are directly used in the distinguisher.
Assume that for each plaintext only 2l times fault injections are allowed, the at-

tacker applies l times fault injections to each of WDin
and WDout

. Simply, the attackers
count the number of different outputs as t after l fault injections. Then (l, t) provides
the attackers a Hamming weight probability distribution of the target value Pr(WD).
Finally, the Hamming weight probability distributions for Din and Dout, i.e. Pr(WDin)
and Pr(WDout), are combined to obtain Pri(WDin ,WDout) for the i-th plaintext. We
summarize the data collection for BFA with limited faults per plaintext in Algorithm
3.

The key recovery for BFA with limited faults per plaintext is similar to side channel
attack, such as correlation power analysis [Brier et al. 2004]. Each key candidates kg
is given a credibility, γ(kg), as its likelihood to be the real key. For each probability
distribution of the Hamming weight pair, we update the credibility for each key can-
didate using HWPD. After the data for all plaintexts are used, the key candidate with
the highest credibility is the recovered key. In many cases, the correct key can be iden-
tified much faster than using the data for all the plaintexts. The key recovery for BFA
with limited faults per plaintext is shown in Algorithm 4.

We evaluated the value of fixed fault injection time l ranges in {1, 2, . . . , 100}. It is
found that the best attack efficiency with regard to the fault injection time appears
when l = 18, in which 36 fault injections are applied to each plaintext. The attack
result for l = 18 is shown in Figure 8. In order to illustrate the improvement, we
also plot the key recovery success rate for l = 60. The 99% success rate of the key
identification takes 17,748 fault injections for l = 18, and 25,320 faults injections for
l = 60. Using the proposed distinguisher l = 18 has a 30% reduction of the fault
injection times compared to l = 60. Compared to the original BFA that uses 30,000
fault injections, the reduction is 40.8%.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:16 Y. Li, Z. Liu and J. Wang

ALGORITHM 4: Key Recovery of Improved BFA with Limited Faults Per Plaintext
Input: Pri(WDin ,WDout), i ∈ {0, 1, . . . , N − 1}, original key space κ.
Output: Recovered key byte k̂.
for kg ∈ κ do

γ(kg) = 1;
for i = 0→ N − 1 do

γ(kg) = γ(kg)Pr(kg|(WDin ,WDout))Pri(WDin ,WDout);
end

end
k̂ = arg maxk γ(kg)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of Fault Injections

K
ey

 R
ec

ov
er

y
S

uc
ce

ss
 R

at
e

BFA with fixed 36 faults per plaintext
BFA with fixed 120 faults per plaintext

Fig. 8. Key recovery success rate with limited faults per plaintext.

The proposal of probability-distinguisher BFA with limited fault injections per plain-
texts does not intend to reduce the number of fault injections. However, due to the fact
that the first 20 fault injections have much larger information gain than the others,
the attack efficiency is largely improved from the original BFA.

4.3. Dynamic Fault Injection BFA
The third attack is about a dynamic system applied in the fault injections. In this
system, the attackers always calculate the expected information gain for a fault injec-
tion. The expected information gain is compared with a pre-set threshold. Only when
the expected information gain is higher than the threshold, the fault injection will be
actually performed. Otherwise, no more fault injections will be applied to this target
intermediate value.

We denote the information gain threshold as εth and the expected information gain
for the next fault injection as εl,t. Obviously, εl,t only depends on l and t, which means
l times of fault injections lead to t different outputs. In Section 3.1, we obtained the
joint probability distribution Pr(WD, T)L=l using a Monte Carlo approach. As used
in Algorithm 3, using l, t together with Pr(WD, T)L=l, one can calculate the expected
distribution of WD based on Bayes’ theorem from the probability theory. As shown in
Figure 5, the expected information gain for different Hamming weights can be calcu-
lated. Thus, using the expected distribution of WD, εl,t can be calculated as a weighted

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:17

summation of the information gain for different Hamming weights when T = t + 1.
Until εl,t < εth, the attackers always perform fault injection to the target value and
update the values of l and t. When εl,t ≤ εth, no more fault injection is applied to this
target value. The attack algorithm is illustrated in Algorithm 5.

ALGORITHM 5: Data Collection of Improved Blind Fault Analysis with Dynamic Faults.
Input: N random plaintexts, P0, P2, . . . , PN−1, Information gain threshold, εth.
Output: Probability distribution Pri(WDin ,WDout), i ∈ {0, 1, . . . , N}.
for i = 0 to N − 1 do

Fix Pi as plaintext;
l = 0; t = 1;
while εl,t > εth do

Inject fault at Din;
l = l + 1;
Update t ;

end
Use (l, t) to compute Hamming weight probability distribution, Pr(WDin) ;
l = 0; t = 1;
while εl,t > εth do

Inject fault at Dout;
l = l + 1 ;
Update t ;

end
Use (l, t) to compute Hamming weight probability distribution, Pr(WDout) ;
Combine Pr(WDin) and Pr(WDout) for Pr(WDin ,WDout)i;

end

The key recovery phase is the same with BFA with limited faults per plaintext us-
ing the probability-based distinguisher, which is illustrated in Algorithm 4. This BFA
with dynamic fault injection strategy requires a real-time feedback system in the fault
injection phase. Furthermore, in order to achieve the least fault injection time, it is
better to process the key recovery in real-time of the fault injections. These conditions
make the practical attack more difficult. However, it is expected to achieve the mini-
mum number of fault injections for a success key recovery.

The choice of the threshold εth is important to achieve the least number of fault in-
jections. Intuitively, we want to set this threshold relatively high so that the average
information gain for each fault injection is high. However, the problem is that when
the threshold is too high, many plaintexts will be abandoned in the first ten or so fault
injections. As shown in Section 3, the information gain curve is not a monotonous de-
creasing function. Furthermore, the curves of the information gain for different Ham-
ming weights have totally different shapes. It is difficult to decide the best threshold
instead of running simulation tests.

In order to evaluate the effects of the threshold choices, we perform attack simula-
tions to evaluate the key identification rate for different threshold setting that ranges
from 0.01 bits to 0.60 bits in the step of 0.01 bits. We found that when the threshold is
set to 0.29 bit, the key recovery achieved the best efficiency with regard to the number
of fault injections. The attack result for εth = 0.29 is shown in Figure 9, which achieved
the 99% key identification rate using only 9,979 fault injections. For comparison, the
attack results for BFA with fixed faults per plaintext are plotted in Figure 9 as well.

Actually, the attack efficiency is stable when the threshold setting ranges from 0.01
to 0.40, in which less than 13,000 fault injections can achieve a 99% key identification

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:18 Y. Li, Z. Liu and J. Wang

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of Fault Injections

K
e

y
 R

e
c
o

v
e

ry
 S

u
c
c
e

s
s
 R

a
te

BFA with fixed 36 faults per plaintext

BFA with fixed 120 faults per plaintext

BFA with dynamic fault injections

BFA with fixed 36 faults per plaintext
BFA with fixed 120 faults per plaintext
BFA with dynamic fault injections

Fig. 9. Key recovery success rate with dynamic faults injections.

rate. The dynamic fault injection strategy achieved the least number of fault injections,
which is less than one third of the original BFA.

5. FEASIBILITY OF BFA AFTER THIS WORK
Cryptographic engineers should pay more attentions to BFA due to its unique assump-
tions among all existing fault attacks. In specific systems, only BFA has a chance to
recover the key. Furthermore, BFA is also the only fault attack that can directly re-
cover any round key. The disadvantage of BFA includes the special fault model and a
large amount of fault injections.

This work proved that only one third of the fault injections of the original BFA is
enough to achieve the same key recovery result. Furthermore, this work showed that
when the number of fault injections to the same plaintext is limited, the BFA key re-
covery is still possible and efficient. Thus, we believe the feasibility of BFA is largely
improved under the study of this work. A more accurate evaluation of the BFA vulner-
ability is achieved.

Note that, along the reduction to the number of fault injections, the proposed at-
tacks require more plaintexts and more computational ability from the attacker. As
for the increased plaintexts, both original BFA and the proposed one requires a large
amount of plaintexts. Since there are some cases the number of plaintexts are lim-
ited, a BFA strategy that minimizes the number of plaintexts is an interesting future
work to explore. As for the increased computational complexity, it is totally tolerable
in a practical attack. In this work, the most complex attack is the dynamic fault in-
jection BFA. However, it is possible to pre-calculate all the information gain for all
possible fault injection results in an off-line phase. Thus, in the online attack phase,
table lookups can be used to replace the calculations. The newly proposed distinguisher
does not change the divide-and-conquer concept as well, thus the increased complexity
is not significant at all. The entire key recovery can finish with in 1 minute using a
personal PC. We believe the trade-off for fewer fault injections is meaningful in the
evaluation of BFA feasibility. When considering the practical threat of BFA attack, the
most applicable target could be a micro-controller with an AES hardware module with
a serial architecture, in which the multi-bit set or reset faults are more likely to be
achieved for every S-box calculation.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Reduction of Fault Injection Time for BFA on SPN block Ciphers 1:19

As for the countermeasures, those countermeasures that fundamentally disable the
information leakage, e.g. masking mentioned in [Korkikian et al. 2014], are still secure.
The countermeasures that are based on the limitations of the total number of fault
injections or the fault injections for each plaintext should reconsider their parameters
based on this work.

6. CONCLUSION
This work improved the lately proposed blind fault attack (BFA) by reducing the num-
ber of required fault injections without changing the attack assumptions. First, this
work analyzed the BFA fault injections from an information theoretical perspective,
and discussed the strategies to take advantage of the fault injections with high infor-
mation gain. Second, this work introduced a probability-based distinguisher to BFA
to make the key recovery process error-tolerant. Finally, three improved BFA methods
were proposed specifically for three slightly different attack scenarios. Improved BFA
methods can reduce 40.8% to 66.8% of the fault injections when targeting AES. The
future work includes exploiting the possible application of cryptanalysis techniques for
BFA.

REFERENCES
Eli Biham and Adi Shamir. 1997. Differential Fault Analysis of Secret Key Cryptosystems. In CRYPTO

(Lecture Notes in Computer Science), Burton S. Kaliski Jr. (Ed.), Vol. 1294. Springer, 513–525.
Johannes Blömer and Jean-Pierre Seifert. 2003. Fault based cryptanalysis of the advanced encryption stan-

dard (AES). In Financial Cryptography. Springer, 162–181.
Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. 1997. On the Importance of Checking Cryptographic

Protocols for Faults (Extended Abstract). In EUROCRYPT (Lecture Notes in Computer Science), Walter
Fumy (Ed.), Vol. 1233. Springer, 37–51.

Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power Analysis with a Leakage Model.
In CHES (Lecture Notes in Computer Science), Marc Joye and Jean-Jacques Quisquater (Eds.), Vol.
3156. Springer, 16–29.

Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. 2013. Fault Attacks on AES with Faulty
Ciphertexts Only. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos,
CA, USA, August 20, 2013, Wieland Fischer and Jörn-Marc Schmidt (Eds.). IEEE Computer Society,
108–118. DOI:http://dx.doi.org/10.1109/FDTC.2013.18

Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa Taha, and Patrick Schaumont. 2014. Differential Fault
Intensity Analysis. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2014 Workshop on. IEEE,
49–58.

Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. 2011. The LED block cipher. In Crypto-
graphic Hardware and Embedded Systems–CHES 2011. Springer, 326–341.

Roman Korkikian, Sylvain Pelissier, and David Naccache. 2014. Blind Fault Attack against SPN Ci-
phers. In 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2014, Busan,
South Korea, September 23, 2014, Assia Tria and Dooho Choi (Eds.). IEEE Computer Society, 94–103.
DOI:http://dx.doi.org/10.1109/FDTC.2014.19

Juliane Krämer, Anke Stüber, and Ágnes Kiss. 2014. On the Optimality of Differential Fault Analyses on
CLEFIA. IACR Cryptology ePrint Archive 2014 (2014), 572. http://eprint.iacr.org/2014/572

Ronan Lashermes, Guillaume Reymond, Jean-Max Dutertre, Jacques J. A. Fournier, Bruno Robisson, and
Assia Tria. 2012a. A DFA on AES Based on the Entropy of Error Distributions. In 2012 Workshop on
Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium, September 9, 2012, Guido Bertoni and
Benedikt Gierlichs (Eds.). IEEE Computer Society, 34–43. DOI:http://dx.doi.org/10.1109/FDTC.2012.18

Ronan Lashermes, Guillaume Reymond, Jean-Max Dutertre, Jacques Fournier, Bruno Robisson, and As-
sia Tria. 2012b. A DFA on AES Based on the Entropy of Error Distributions. In Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2012 Workshop on. IEEE, 34–43.

Yang Li, Yu-ichi Hayashi, Arisa Matsubara, Naofumi Homma, Takafumi Aoki, Kazuo Ohta, and Kazuo
Sakiyama. 2013. Yet Another Fault-Based Leakage in Non-uniform Faulty Ciphertexts. In Foundations
and Practice of Security - 6th International Symposium, FPS 2013, La Rochelle, France, October 21-22,
2013, Revised Selected Papers (Lecture Notes in Computer Science), Jean Luc Danger, Mourad Debbabi,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:20 Y. Li, Z. Liu and J. Wang

Jean-Yves Marion, Joaquı́n Garcı́a-Alfaro, and A. Nur Zincir-Heywood (Eds.), Vol. 8352. Springer, 272–
287. DOI:http://dx.doi.org/10.1007/978-3-319-05302-8 17

Yang Li, Kazuo Ohta, and Kazuo Sakiyama. 2012. New Fault-Based Side-Channel Attack Using Fault Sen-
sitivity. IEEE Transactions on Information Forensics and Security 7, 1 (2012), 88–97.

Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Takahashi, and Kazuo Ohta.
2010. Fault Sensitivity Analysis. In CHES (Lecture Notes in Computer Science), Stefan Mangard and
François-Xavier Standaert (Eds.), Vol. 6225. Springer, 320–334.

Yannan Liu, Jie Zhang, Lingxiao Wei, Feng Yuan, and Qiang Xu. 2015. DERA: Yet another differential fault
attack on cryptographic devices based on error rate analysis. In Design Automation Conference (DAC),
2015 52nd ACM/EDAC/IEEE. IEEE, 1–6.

James L Massey, Gurgen H Khachatrian, and Melsik K Kuregian. 2000. Nomination of SAFER++ as can-
didate algorithm for the New European Schemes for Signatures, Integrity, and Encryption (NESSIE).
Primitive submitted to NESSIE by Cylink Corp (2000), 5.

Amir Moradi, Oliver Mischke, Christof Paar, Yang Li, Kazuo Ohta, and Kazuo Sakiyama. 2011. On the
Power of Fault Sensitivity Analysis and Collision Side-Channel Attacks in a Combined Setting. In CHES
(Lecture Notes in Computer Science), Bart Preneel and Tsuyoshi Takagi (Eds.), Vol. 6917. Springer, 292–
311.

Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and Emmanuelle Encrenaz. 2013.
Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller. In Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2013 Workshop on. IEEE, 77–88.

National Institute of Standards and Technology. 2001. FIPS 197: Advanced Encryption Standard. (Novem-
ber 2001).

Gilles Piret and Jean-Jacques Quisquater. 2003. A Differential Fault Attack Technique against SPN Struc-
tures, with Application to the AES and KHAZAD. In CHES (Lecture Notes in Computer Science),
Colin D. Walter, Çetin Kaya Koç, and Christof Paar (Eds.), Vol. 2779. Springer, 77–88.

Cyril Roscian, Alexandre Sarafianos, J-M Dutertre, and Assia Tria. 2013. Fault model analysis of laser-
induced faults in sram memory cells. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2013
Workshop on. IEEE, 89–98.

Kazuo Sakiyama, Yang Li, Mitsugu Iwamoto, and Kazuo Ohta. 2012. Information-Theoretic Approach to
Optimal Differential Fault Analysis. IEEE Transactions on Information Forensics and Security 7, 1
(2012), 109–120.

Fabrizio De Santis, Oscar M. Guillen, Ermin Sakic, and Georg Sigl. 2014. Ciphertext-Only Fault Attacks
on PRESENT. In Lightweight Cryptography for Security and Privacy - Third International Work-
shop, LightSec 2014, Istanbul, Turkey, September 1-2, 2014, Revised Selected Papers (Lecture Notes
in Computer Science), Thomas Eisenbarth and Erdinç Öztürk (Eds.), Vol. 8898. Springer, 85–108.
DOI:http://dx.doi.org/10.1007/978-3-319-16363-5 6

Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. 2011. Differential Fault Analysis of the Ad-
vanced Encryption Standard Using a Single Fault. In WISTP (Lecture Notes in Computer Science),
Claudio Agostino Ardagna and Jianying Zhou (Eds.), Vol. 6633. Springer, 224–233.

An Wang, Man Chen, Zongyue Wang, and Xiaoyun Wang. 2013. Fault Rate Analysis: Breaking Masked AES
Hardware Implementations Efficiently. Circuits and Systems II: Express Briefs, IEEE Transactions on
60, 8 (2013), 517–521.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2016.

