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Abstract

In this paper local empirical likelihood-based inference for nonparametric categorical varying coefficient panel data
models with fixed effects under cross-sectional dependence is investigated. First, we show that the naive empirical
likelihood ratio is asymptotically standard chi-squared using a nonparametric version of Wilk’s theorem. The ratio is
self-scale invariant and the plug-in estimate of the limiting variance is not needed. As a by product, we propose also
an empirical maximum likelihood estimator of the categorical varying coefficient model and we obtain the asymptotic
distribution of this estimator. We also illustrated the proposed technique in an application that reports estimates of
strike activities from 17 OECD countries for the period 1951–85.
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1. Introduction

In recent years, there has been an increased interest in the study of panel data models combined with nonparametric
techniques. The results have been promising, even though the inherent disadvantages of nonparametric techniques
such as the curse of dimensionality [16] remain valid in this context. Varying-coefficient models appear as a reasonable
avenue to overcome this drawback.

Varying-coefficient models encompass a great variety of simple models applied by econometricians, including
partially linear models or fully nonparametric models. In applied microeconomic problems, however, it is often
difficult to access all explanatory variables of interest. For this reason, many applied economists have turned their
attention to panel data models. As it is well known, in a regression model, these techniques enable us to estimate the
objects of interest consistently by allowing for individual heterogeneity of unknown form.

Nowadays, we have at our disposal a pleiad of varying-coefficient estimators that exhibit good asymptotic prop-
erties under rather different sets of assumptions such as random effects, fixed effects or cross-sectional dependence;
see, e.g.,[28, 33, 34] for comprehensive surveys of the literature. Among others, the problem of considering varying
coefficients that depend on discrete data has attracted attention because discrete variables are common in economic
analysis. A semiparametric varying coefficient model with purely categorical covariates is proposed in [20] and in
[12], this setting is extended to include fixed effects and cross-sectional dependence.

Although extensive results are reported, e.g., in [12, 20] on the asymptotic behavior of estimator, inference is
not always an easy task. Typically, asymptotic normal approximations are obtained. In the discrete covariate case,
under fairly general conditions, if the bandwidth is selected using a cross-validation criterion, the asymptotic bias of
the estimator is negligible and therefore inference based on the asymptotic distribution is more feasible than in the
continuous covariate case where some undersmoothing is needed [21]. Unfortunately, the problem becomes much
more complex if one also wishes to incorporate cross-sectional dependence. Besides, using confidence bands as a
testing device is not straightforward as uniform confidence bands are necessary to do so; see [18].
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As an alternative, Owen [26] introduced techniques based on the empirical likelihood. This approach, which
combines the reliability of nonparametric methods with the effectiveness of the likelihood approach, has several
advantages. For instance, no limiting variance estimation is necessary. For further discussion on the advantages of the
empirical likelihood technique, see, e.g., [10, 14, 15, 17, 19, 24–27, 30].

Owing to its good properties, the empirical likelihood approach has already been applied to longitudinal data
varying-coefficient models with random effects; see, e.g., [37]. As for the fixed-effects case, see [3, 38]. However,
we are not aware of any results for the panel data discrete/categorical varying coefficient setting. In [3], empirical
likelihood confidence bands are obtained for the varying coefficients, m(Z), under rather strong assumptions such
as the continuity of all the vector of covariates, Z, and the assumption of independent and identically distributed
idiosyncratic error terms both across units and along time. Although the kernel weights considered in this paper are
well suited for continuous data, they are inappropriate for discrete/categorical data. Furthermore, the authors derive
the asymptotic theory for T fixed and N → ∞.

In this paper, we develop empirical likelihood ratios and derive a nonparametric version of Wilks’ theorem for
a fixed-effects varying-coefficient panel data model, where all covariates are assumed to be discrete/categorical. We
further derive the maximum empirical likelihood estimator of the varying parameters and its asymptotic theory when
cross-sectional dependence in the idiosyncratic error term is allowed. Based on these results, we can build up confi-
dence regions for the parameter of interest through a standard chi-square approximation.

The rest of this paper is organized as follows. In Section 2 we propose to construct confidence bands for the
unknown functions by using a naive empirical likelihood technique. In Section 3, as a by-product, we provide an
alternative maximum empirical likelihood estimator of the fixed-effect categorical varying parameters. In Section 4,
we illustrate the proposed technique in an application that reports estimates of strike activities from 17 OECD countries
for the period 1951–85. Concluding remarks are in Section 5 and the proofs of the main results are in the Appendix.

2. Naive empirical likelihood

We consider the following categorical varying-coefficient panel data regression model

Yit = X>it β(Zit) + ωi + vit, (1)

where for each i ∈ {1, . . . ,N} and t ∈ {1, . . . ,T }, Yit is the response, Xit = (Xit,1, . . . , Xit,d)> and Zit = (Zit,1, . . . ,Zit,q)>

are vectors of dimension d and q respectively, and β = (β1, . . . , βd)> is a d × 1 vector of unknown functions; here, ωi

stands for so-called fixed effects and vit are the random errors. Note that when Zit is a vector of continuous random
variables, model (1) stands for the so-called varying-coefficient panel data model with fixed effects studied e.g., in
[6, 9, 31, 32, 34, 35]. In this paper we consider the case where Z is purely categorical and in order to distinguish
between X and Z, we will refer to them as the regressor and the covariate, respectively. Note that we are not willing
to impose any restriction between ωi and the pair (Xit,Zit).

Model (1) is an extension of the cross-sectional varying-coefficient model of Li et al. [20] to the panel data
framework as it appears in [12]. First, we will obtain confidence bands for β based on the empirical likelihood
approach; to do so, we need the first-order condition of the minimization problem for obtaining β. Note that for given
z, this condition is, from (1),

E[Xit{Yit − X>it β(Zit)}|Zit = z] , 0,

due to the fixed effects. To deal with this problem, several transformations have been proposed in the literature on
panel data models. For example, when Z is continuous, some differencing transformations combined with a Taylor
series approximation could be applied; see [3]. Unfortunately, this approach is infeasible if the elements of Z are
discrete in nature.

We here propose to keep the same idea of using the within-transformation but instead of using a continuous kernel,
we aim to use a kernel function designed for discrete random variables; see [1]. Thus, let 1 js,it = 1(Zit = Z js) and
L js,it,γ = L(Zit,Z js, γ) for all i, j ∈ {1, . . . ,N} and s, t, ∈ {1, . . . ,T }. Note that L(Zit,Z js, γ) represents a kernel function
for multivariate discrete spaces, viz.

L(Zit, z, γ) =

q∏

s=1

`(Zit,s, zs, γs) =

q∏

s=1

γ
1(Zit,s,zs)
s , (2)
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where γ = (γ1, . . . , γq)>, 1(Zit,s , zs) denotes the usual indicator function, which takes the value 1 when Zit,s , zs, and
0 otherwise, and

`(Zit,s, zs, γs) =


1 if Zit,s = zs,

γs if Zit,s , zs,

is the kernel function of Aitchison and Aitken [1] for unordered covariates, where γs = 0 leads to an indicator function
and γs = 1 gives a uniform weighted function. We can then conclude that γs ∈ [0, 1] for all s ∈ {1, . . . , q}. Also, note
that the kernel function (2) can be expressed as

L(Zit, z, γ) =

q∏

m=1

`(Zit,m, zm, γm) =

q∏

m=1

{
1(Zit,m = zm) + γm1(Zit,m , zm)

}

=

q∏

m=1

1(Zit,m = zm) +

q∑

m=1

γm1m,itz∗ + · · · +
q∏

m=1

γm1(Zit,m , zm)

= 1(Zit = z) +

q∑

m=1

γm1m,itz∗ + · · · +
q∏

m=1

γm1(Zit,m , zm),

where 1m,itz∗ = 1(Zit,m , zm)
∏q

n=1,n,m 1(Zit,n = zn) is an indicator function which takes value 1 if Zit and z differs only
in their mth component, and 0 otherwise. Note that if we assume that γ → 0 as (N,T ) → (∞,∞), it is reasonable to
simplify the kernel product function (2) as follows:

L(Z js,Zit, γ) = 1 js,it +

q∑

m=1

γm1m, jsit + O(||γ||2). (3)

Here, 1m, jsit = 1(Z js,m , Zit,m)
∏q

n=1,n,m 1(Z js,n = Zit,n) and || · || stands for the Frobenius norm.
Expression (3) is of great interest because it enables us to apply a modified version of a within-transformation

in (1) and then remove the fixed effects. Thus, let Tit =
∑T

s=1 Lp
it,is,γ, where p ≥ 2 is an arbitrarily chosen finite positive

integer. In practice, the choice of p = 2 is enough. Let

X̃it = Xit − 1
Tit

T∑

s=1

Xis1is,it, Ỹit = Yit − 1
Tit

T∑

s=1

Yis1is,it, ṽit = vit − 1
Tit

T∑

s=1

vis1is,it.

Applying this transformation in (1), we obtain

Ỹit = X>it β(Zit) + ωi + vit − 1
Tit

T∑

s=1

{X>isβ(Zis) + ωi + vis}Lp
is,it,γ

= X>it β(Zit) − 1
Tit

T∑

s=1

X>is Lp
is,it,γβ(Zit) +

1
Tit

∑

s=1

X>is Lp
is,it,γβ(Zit) − 1

Tit

T∑

s=1

X>isβ(Zis)L
p
is,it,γ + ṽit

= X̃>it β(Zit) + %it + ṽit, (4)

where %it = T−1
it

∑T
s=1 X>is {β(Zit) − β(Zis)} Lp

is,it,γ stands for the truncation residual. Due to the fact that 1p(·) = 1(·) and
{β(Zit) − β(Zis)} 1(Zis = Zit) = 0, if γ → 0 as (N,T )→ (∞,∞), we obtain

{β(Zit) − β(Zis)} Lp
is,it,γ = O (||γ||p) (5)

uniformly. Therefore, due to (5), the truncation residual %it is controlled by the bandwidth γ only. Given this result
we obtain that the first order condition, for given z, from (4) is

E[X̃it{Ỹit − X̃>it β(Zit)}|Zit = z] = 0. (6)
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In this case, the least squares estimator of β(z) is the solution to (6) when Zit = z. Therefore, the orthogonality
condition (6) for β(z) has the following form:

E[X̃it{Ỹit − X̃>it β(z)}|Zit = z] = 0. (7)

Then, employing the constraint (7), the auxiliary random vector for the modified within-transformation is

Ti {β(z)} =

T∑

t=1

X̃it{Ỹit − X̃>it β(z)}L(Zit, z, γ). (8)

Eq. (8) is the sample analog of (7) using a local smoothing method with a discrete kernel function. If β(z) is the
true parameter, it is easy to show, due to (7), that E[Ti{β(z)}] = 0. Therefore, using the information E[Ti{β(z)}] = 0,
the naive empirical log-likelihood ratio for β(z) is defined as

R {β(z)} = −2 max


N∑

i=1

ln(pi) : pi ≥ 0,
N∑

i=1

pi = 1,
N∑

i=1

piTi {β(z)} = 0

 , (9)

where pi = pi(z) for all i ∈ {1, . . . ,N}. Using the Lagrange multiplier method the probabilities pi are

pi =
1
N

1
1 + λ>Ti {β(z)} . (10)

By (9) and (10), R {β(z)} leads to

R {β(z)} = 2
N∑

i=1

ln[1 + λ>Ti{β(z)}], (11)

where λ is a d × 1 vector of Lagrange multipliers associated to the constraint
∑N

i=1 piTi {β(z)} = 0 and it is given by

N∑

i=1

Ti {β(z)}
1 + λ>Ti {β(z)} = 0, (12)

subject to the constraint that satisfies the non-negativity condition and avoids a convex dual problem; see Chapter 3 in
[27]. Using Eqs. (11)–(12) and a Taylor expansion, and denoting

D̃ {β(z)} =
1

NT

N∑

i=1

Ti {β(z)}T>i {β(z)} ,

it can be shown that

R {β(z)} =


1√
NT

N∑

i=1

Ti {β(z)}

>

[D̃ {β(z)}]−1


1√
NT

N∑

i=1

Ti {β(z)}
 + op(1). (13)

Hence, it is easy to show using (13) that R {β(z)} is asymptotically chi-square. In order to formally introduce this
result, we need the following assumptions.

Assumption 1. (i) Let D be the range of values assumed by Zit. Then p(z) = Pr(Zit = z) > 0 for all z ∈ D. The
function β(z) is bounded on the support D of z, i.e., maxz∈D||β(z)|| < ∞ and it is not constant with respect to z.
Let zm denote the mth component of the q × 1 vector z = (z1, . . . , zq)>, where zm is assume to take cm different
integer values in {0, . . . , cm − 1} for cm ≥ 2 and m ∈ {1, . . . , q}. Moreover, q is finite and max(c1, . . . , cq) < ∞.

4



(ii) Let (Xit,Zit, vit) be independent across i for each fixed t. For each fixed i, the process (Xit,Zit, vit) is strictly
stationary and α-mixing. The α-mixing coefficient between (Xit,Zit, vit) and (X js,Z js, v js) is determined by
αi j(|t − s|), where for each integer k ≥ 1.

α(k) = sup |Pr(A ∩ B) − Pr(A) Pr(B)|,
A ∈ σ{(Xis,Zis, vis) : s ≤ t}

B ∈ σ{(Xis,Zis, vis) : s ≥ t + k}
Furthermore, for some δ > 0,

N∑

i=1

N∑

j=1

T∑

t=1

T∑

s=1

{αi j(|t − s|)}δ/(4+δ) = O(NT ).

(iii) For all z ∈ D, i ∈ {1, . . . ,N} and t ∈ {1, . . . ,T }, µX(z) = E(Xit |Zit = z) and ΣX(z) = E(XitX>it |Zit = z), where
||µX(z)|| and ||ΣX(z)|| are uniformly bounded in z.

(iv) Denote X = {X js,Z js) : j ∈ {1, . . . ,N}, s ∈ {1, . . . ,T }}. Then E (vit |X) = 0 and 0 < E(v2
it |X) = σ2

v < ∞
almost surely (a.s.) for all i ∈ {1, . . . ,N} and t ∈ {1, . . . ,T }. For some constants δ > 0 and 0 < a1 < ∞,
E(|vit |4+δ + ||Xit ||4+δ) ≤ a1 uniformly. Also, over the time dimension,

1
NT

N∑

i=1

T∑

t=1

T∑

s=1

|E (vitvis|X)| = O(1).

(v) Let ωi be arbitrarily correlated with both Xit and Zit with unknown correlation structure.

Assumption 1.(i) is quite standard and similar to Assumption 1.(i) in [20]. Note that to deal with the case whereD
is infinite, one can use the same normalization as for the time-varying coefficient model. That is, as in [12], suppose
q = 1, Zit ∈ {0, 1, 2, . . . , u(N,T )}, where u(N,T ) → ∞ and u(N,T )/(NT ) → c for 0 ≤ c < ∞ as (N,T ) → (∞,∞).
Then a variant of model (1) is obtained by normalizing Zit by u(N,T ), viz.

Yit = X>it β {Zit/u(N,T )} + ωi + vit, (14)

where β can be treated as a continuous function of covariates. Therefore, (14) is just the model proposed by Sun et al.
[35] with continuous β. This normalization is similar to that of [5, 8] when dealing with time-varying coefficients.

Assumptions 1.(ii) is similar to Assumptions B–C in [4]. The strict stationary assumption is similar to Assump-
tion A4 in Chen et al. [7] and Assumption A2 in Chen et al. [8]. For more details and discussion, see [12].

Assumption 1.(iii) sets restrictions on the unconditional moments as in Assumption 3.3–3.6 of [31]. Due to
the within-transformation, we must assume it holds uniformly across i, which is akin to Assumption A1 in [9] and
Assumption C in [4]

Assumption 1.(iv) is the same as in [2] and similar to Assumptions A2 and A4 of [8]. This assumption sets up the
cross-sectional dependence as a weak correlation between individuals by using a spatial error structure, where a gen-
eral spatial correlation structure has been imposed to link together the cross-sectional dependence and the stationary
mixing condition; see, e.g., [7, 8, 29]. Here, the last equation in Assumption 1.(iv) is a simplified version of (A.18) in
[7]; this last equation is needed due to the within-transformation.

Finally, Assumption 1.(v) imposes the so-called fixed effects. Note that we are unwilling to assume any constraint
in the relationship between the random heterogeneity ω and the vector of regressors and covariates, (X,Z).

Having all these assumptions into consideration, we can state formally the following theorem.

Theorem 1. Assume that Condition 1 holds and that γm → 0 and
√

NTγm → 0 for all m ∈ {1, . . . , q} as (N,T ) →
(∞,∞). Then R {β(z)} χ2

d, i.e., R {β(z)} converges in law to a chi-square random variable with d degrees of freedom.

Letting cα stand for the 1 − α quantile of χ2
d, we can then build the confidence bands using Theorem 1 as follows:

Rα = {β(z) : R {β(z)} ≤ cα}. (15)
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Note that this result imposes an extra condition on the sequence of bandwidths γm, i.e.,
√

NTγm → 0, which is
similar to conditions used in nonparametric regression. As is well known, the latter condition implies that the rate of
convergence is not optimal. As mentioned, e.g., in [21], in the presence of discrete covariates it is possible to improve
the rate of convergence by selecting γ1, . . . , γq to be the minimizer of the cross-validation (CV) criterion function

CV(γ) =
1

NT

N∑

i=1

T∑

t=1

{Ỹit − X̃>it β̂−it(Zit)}2 (16)

where

β̂−it(Zit) =


∑

js, js,it

X̃ jsX̃>jsL(Z js,Zit, γ)



−1 ∑

js, js,it

X̃ jsỸ jsL(Z js,Zit, γ)

is the leave-one-out kernel estimator of β(Zit). We use γ̂1, . . . , γ̂q to denote the cross-validated choices of γ1, . . . , γq

that minimize (16). In order to state the asymptotic properties of the cross-validated choices γ̂1, . . . , γ̂q we will need
to borrow the following assumption from [12].

Assumption 2. (i) Set

CV0(γ) =
∑

z∈D
p(z) {β(z) − η(z, γ)}>Ω(z, γ) {β(z) − η(z, γ)} +

∑

z∈D
p(z){∆3β(z, γ) − ∆3(z, γ)>β(z)}2

+ 2
∑

z∈D
p(z){µX(z) − ∆3(z, γ)}>{β(z) − η(z, γ)}{∆3β(z, γ) − ∆3(z, γ)>β(z)}

= CV0,1 + CV0,2 + CV0,3,

where
∆1(z, γ) = E {Lp(Zis, z, γ)| z, γ} , ∆2(z, γ) = E {XitLp(Zis, z, γ)| z, γ} ,

∆2β(z, γ) = E {Xitβ(Zit)Lp(Zis, z, γ)| z, γ} , ∆3(z, γ) = ∆2(z, γ)/∆1(z, γ), ∆3β(z, γ) = ∆2β(z, γ)/∆1(z, γ),

Ω(z, γ) = ΣX(z) + ∆3(z, γ)∆3(z, γ)> − ∆3(z, γ)µX(z)> − µX(z)∆3(z, γ),

ΣXX(z, γ) = E {Ω(z, γ)L(Zit, z, γ)| z, γ} , ΣXXβ(z, γ) = E {Ω(z, γ)β(Zit)L(Zit, z, γ)| z, γ}

η(z, γ) = Σ−1
XX(z, γ)ΣXXβ(z, γ), Kit =

1
Tit

T∑

s=1

XisLp(Zis, z, γ) − ∆3(Zit, γ).

(ii) For all z ∈ D, i ∈ {1, . . . ,N} and t ∈ {1, . . . ,T }, ∆3(z, γ) and ∆3β(z, γ) are uniformly bounded in z. Suppose that,
together with Assumption 1(iii)–(iv), one has

1
NT

N∑

i=1

T∑

t=1

E||Kit ||2 = O(1),
1

NT

N∑

i=1

T∑

t=1

|T/Tit |2 = O(1)

uniformly in γm ∈ [0, 1] for all m ∈ {1, . . . , q}.
Assumption 2.(i) sets restrictions on the unconditional moments as in Assumption 1.(iii). Assumption 2.(ii) is a

panel data version of Assumption 2 of [20] which ensures that CV0(γ) is uniquely optimize at 0. By Theorem 2.1
of Newey and McFadden [22], this assumption implies that γ̂ obtained by minimizing (16) converges to zero. Under
Assumptions 1–2 we can state the following results; for further discussion and proofs, refer to [12].

Lemma 1. Under Assumptions 1–2, γ̂ = oP(1) as (N,T )→ (∞,∞).

This lemma ensures that γ converges to zero as the sample size increases. Then it is reasonable to assume that γ
is sufficiently small and close to zero. Therefore, the product kernel function can be simplified as in (3).

Lemma 2. If Conditions 1–2 hold, γ̂ = OP{1/(NT )} as (N,T )→ (∞,∞).
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This lemma gives the rate of convergence for γ̂. Note that this result simplifies considerably the proof of the
previous result as we are able to use an indicator function, viz. L(Zit, z, γ) = 1(Zit = z), letting γ = 0q×1. Further note
that using these results, the proofs of Theorem 1 will simplify considerably since we will be working with

T̃i {β(z)} =

T∑

t=1

X̃it{Ỹit − X̃>it β(z)}1(Zit = z) + OP{1/(NT )}. (17)

Using (17), we can build up an empirical likelihood ratio function similar to (13), R̃ {β(z)} and we can state the
following result.

Corollary 1. Taking γ̂ to be the minimizer of the cross-validation function (16), then under Conditions 1–2, we have
R̃ {β(z)} χ2

d as (N,T )→ (∞,∞).

Here we define the confidence bands in the same way as in (15), i.e., the set of values β(z) such that R̃{β(z)} ≤ cα
where Pr(χ2

d ≤ cα) = α. Note that using the empirical likelihood technique, it is possible to implement both Theorem 1
and Corollary 1 without imposing any extra conditions on the random errors.

In the following section, we obtain the maximum empirical likelihood estimator (MELE) using the empirical
likelihood ratio defined in this section. Also, as the usual tool to construct confidence bands, we will provide the
asymptotic distribution of the estimators.

3. Maximum empirical likelihood estimator

We define the maximizer of (13), β̂(z), as the maximum empirical likelihood estimator of β(z), i.e., β̂(z) =

maxβ(z) R {β(z)} . Using (11) and (13), and following the same lines as in [30], we can write

β̂(z) =


N∑

i=1

T∑

t=1

X̃itX̃>it L(Zit, z, γ)



−1 N∑

i=1

T∑

t=1

X̃itỸitL(Zit, z, γ) + oP(1/
√

NT ). (18)

Consequently, for comparison purposes, we derive the asymptotic distribution of MELE estimator, (18), in the
following theorem.

Theorem 2. Assume that Condition 1 holds, γ → 0 and (N,T )→ (∞,∞). Then
√

NT {β̂(z) − β(z) − Γ−1
1 (z)b(γ)} N[0d×1,Γ

−1
1 (z)Γ0(z)Γ−1

1 (z)],

where

Γ0(z) = lim
N,T→∞

1
NT

N∑

i=1

N∑

j=1

T∑

t=1

T∑

s=1

E
[
vitv js {Xit − µX(z)} {X js − µX(z)}>1(Zit = z)1(Z js = z)

]
,

Γ1(z) = p(z){ΣX(z) − µX(z)µX(z)>} + O (||γ||) , b(γ) = Γ1(z∗) {β(z∗) − β(z)}
q∑

m=1

γm1m,itz∗ + O(||γ||2).

Note that by imposing stronger conditions on the random errors, i.e., vit are iid over i and t, Γ0(z) is reduced to a
simpler expression such as Γ0(z) = σ2

v p(z){ΣX(z) − µX(z)µX(z)>} = σ2
vΓ1(z). We can then state the following result.

Corollary 2. Assume that Condition 1 holds, vit are iid over i and t, γ → 0, and (N,T )→ (∞,∞). Then
√

NT {β̂(z) − β(z) − Γ−1
1 (z)b(γ)} N[0d×1, σ

2
vΓ−1

1 (z)].

Note that under unknown sequences of γ and using Lemmas 1–2, the proof of Theorem 2 will simplify consider-
ably since we will be working with β̂(z) = β̃(z) + OP{1/(NT )}, where β̃(z) is a frequency estimator in the same way as
in β̂(z) when γ1 = · · · = γq = 0. Therefore, is straightforward to obtain that

√
NT {β̂(z) − β(z)} =

√
NT {β̃(z) − β(z)} + OP(1/

√
NT ). (19)

Then, we just need to focus on
√

NT {β̃(z) − β(z)}.
7



Theorem 3. Take γ̂ to be the minimizer of the cross-validation function (16), assume that Conditions 1–2 hold, and
(N,T )→ (∞,∞). Then √

NT {β̃(z) − β(z)} N[0d×1,Γ
−1
1 (z)Γ0(z)Γ−1

1 (z)],

where Γ1(z) = p(z){ΣX(z) − µX(z)µX(z)>} and

Γ0(z) = lim
N,T→∞

1
NT

N∑

i=1

N∑

j=1

T∑

t=1

T∑

s=1

E
[
vitv js{Xit − µX(z)}{X js − µX(z)}>1(Zit = z)1(Z js = z)

]
.

Here, imposing that vit are iid over i and t, i.e., Γ0(z) = σ2
vΓ1(z) will lead us to the following result.

Corollary 3. Take γ̂ to be the minimizer of the cross-validation function (16), assume that Conditions 1 and 2 hold,
vit are iid over i and t, and (N,T )→ (∞,∞). Then

√
NT t{β̃(z) − β(z)} N[0d×1, σ

2
vΓ−1

1 (z)].

Note that to invoke asymptotic normality, we need to estimate the variance-covariance matrix and sometimes this
estimation is no feasible; see variance expressions in Theorems 2 and 3. To cope with this issue, we imposed a stronger
condition on the random errors, i.e., vit are iid over i and t; this allowed us to estimate the variance expression using
Corollaries 2–3. Hence, to construct the confidence bands, by (A.30) it is easy to show that Γ̂1(z)→P Γ1(z), where

Γ̂1(z) =
1

NT

N∑

i=1

T∑

t=1

X̃itX̃>it 1(Zit = z),

and if vit are iid over i and t, σ̂2
v →P σ

2
v , where

σ̂2
v =

1
NT

N∑

i=1

T∑

t=1

{Ỹit − X̃>it β̂(Zit)}2.

In the following section, we illustrate the proposed technique in an application that reports estimates of strike
activities from 17 OECD countries for the period 1951–85.

4. Illustration

We report estimates of strike activities from 17 OECD countries for the period 1951–85. Strike activity is defined
as the annual number of days lost per 1000 workers though industrial disputes. Strike volume is written as

Yit = X>it β(Zi) + ωi + vit,

where Zi is a categorical variable containing country codes that do not vary with time; Yit stands for the strike volume
of country i at time t, Xit = (1,Uit, Iit, Pit,UNit)> is a 4× 1 vector containing Uit, unemployment, Iit, inflation, Pit, left
party parliamentary representation, and UNit, a time invariant measure of union centralization. As in [36], we use the
log transformation to stabilize the volatility of the strike series.

We first apply the within-transformation. Due to the time invariant nature of Zi and UNit, we have

Ỹit = X̃>it β(Zi) + ṽit,

where X̃it = (Ũit, Ĩit, P̃it)> is a 3 × 1 vector. Now we apply the empirical likelihood approach (Corollary 1) and
the asymptotic normality (Corollary 3) to estimate the confidence bands of the parameters of interest. Here, we
use Corollary 1 instead of Theorem 1 for comparison purposes. The results are shown in Tables 1–3, where NUB
= Normal Upper Bound, NLB = Normal Lower Bound, LUB = Empirical Likelihood Upper Bound and ELLB =

Empirical Likelihood Lower Bound. In Tables 1–3, we can see that the confidence bands using empirical likelihood
behave better than the ones estimated using the asymptotic normal distribution.
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Table 1: Confidence bands for β̂1(z).

z NLB ELLB β̂1(z) ELUB NUB
1 −0.16 −0.02 0.00 0.06 0.16
2 −0.64 −0.49 −0.30 −0.12 0.05
3 −0.22 −0.08 −0.02 0.03 0.17
4 −0.11 −0.15 −0.02 0.10 0.08
5 −0.14 −0.06 0.04 0.15 0.22
6 −0.24 −0.12 −0.08 −0.04 0.08
7 −0.04 −0.05 0.10 0.25 0.25
8 −0.16 −0.07 −0.01 0.05 0.14
9 −0.38 −0.22 −0.19 −0.15 0.01

10 −2.59 −2.12 −1.84 −1.31 −1.09
11 −0.08 −0.14 0.01 0.14 0.10
12 −0.17 0.05 0.09 0.13 0.35
13 −0.40 0.11 0.24 0.47 0.88
14 −0.53 −0.12 0.13 0.40 0.79
15 −0.14 0.74 1.10 1.39 2.34
16 −0.10 0.01 0.05 0.10 0.19
17 −0.47 −0.28 −0.25 −0.21 −0.02

5. Conclusions

Extending the work of Li et al. [20] to the varying-coefficient panel data framework with fixed effects, we have
shown that the resulting empirical log-likelihood ratio follows a chi-square distribution. Therefore, we were able to
apply empirical likelihood methods to set up confidence bands for the functions of interest. As a by-product, we
provided an alternative empirical maximum likelihood estimator of the categorical varying coefficients and derive
its asymptotic theory. Finally, we applied successfully our techniques to an empirical study of estimates of strike

Table 2: Confidence bands for β̂2(z).

z NLB ELLB β̂1(z) ELUB NUB
1 −0.00 0.05 0.07 0.13 0.15
2 −0.12 −0.23 −0.04 0.13 0.03
3 −0.03 0.03 0.08 0.14 0.20
4 0.06 0.03 0.16 0.27 0.26
5 0.02 −0.00 0.09 0.21 0.17
6 −0.10 −0.06 −0.02 0.02 0.06
7 −0.14 −0.07 0.08 0.24 0.31
8 −0.00 0.00 0.06 0.12 0.12
9 −0.05 −0.01 0.03 0.07 0.11

10 −0.08 −0.28 0.00 0.54 0.08
11 −0.18 −0.20 −0.05 0.08 0.07
12 0.06 0.09 0.13 0.17 0.21
13 −0.12 −0.15 −0.01 0.21 0.09
14 0.11 −0.04 0.21 0.48 0.31
15 −0.23 −0.38 −0.02 0.26 0.19
16 −0.02 0.02 0.05 0.11 0.12
17 −0.11 −0.03 0.00 0.04 0.11
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Table 3: Confidence bands for β̂3(z).

z NLB ELLB β̂1(z) ELUB NUB
1 −0.04 −0.02 0.00 0.06 0.05
2 −0.76 −0.77 −0.58 −0.41 −0.40
3 −0.01 −0.04 0.02 0.07 0.04
4 −0.04 −0.06 0.07 0.19 0.19
5 −0.02 0.02 0.11 0.23 0.24
6 −0.03 −0.05 −0.01 0.03 0.02
7 −0.19 −0.25 −0.10 0.06 −0.00
8 −0.11 0.04 0.10 0.16 0.31
9 −0.11 −0.01 0.03 0.07 0.18

10 −0.15 −0.34 −0.06 0.48 0.03
11 −0.16 −0.13 0.02 0.15 0.20
12 −0.05 −0.03 0.00 0.04 0.06
13 0.07 0.07 0.20 0.43 0.33
14 −0.14 −0.17 0.08 0.35 0.30
15 −0.19 −0.23 0.13 0.41 0.45
16 −0.09 −0.06 −0.02 0.04 0.05
17 −0.04 −0.03 0.01 0.05 0.06

activities from 17 OECD countries for the period 1951–85.
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Appendix

From here on, we will be using the notation that has been defined in the previous Assumptions 1 and 2 and
Theorems 1 and 2. Also, as in [12], O(1) denotes some constants which may be different at each appearance.

Proof of Theorem 1.
Using Eq. (13), the proof of this theorem is carried out in three steps. First, we show the asymptotic normality

of
∑N

i=1 Ti{β(z)}/√NT ; second, we show the consistency of D̃ {β(z)}; and finally, we use a Cramér–Wold device to
conclude. In order to obtain the asymptotic distribution of

∑N
i=1 Ti{β(z)}/√NT note that

1
NT

N∑

i=1

Ti {β(z)} =
1

NT

N∑

i=1

[
Ti {β(z)} − E

[
Ti {β(z)}| X]]

+
1

NT

N∑

i=1

E
[
Ti {β(z)}| X] ≡ U1NT + U2NT ,

where X = {(X js,Z js) : j ∈ {1, . . . ,N}, s ∈ {1, . . . ,T }}. Also note that, as we already mentioned, γ → 0 as (N,T ) →
(∞,∞); this allow us, along the same lines as [21], to simplify the kernel product function as in (3) and using the same
argument we are able to write

T ∗it =

T∑

s=1

1(Zis = Zit) + O (||γ||p) , Y∗it = Yit −
T∑

s=1

Yis1(Zis = Zit)/T ∗it + o(1),
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X∗it = Xit −
T∑

s=1

Xis1 (Zis = Zit) /T ∗it + o(1), v∗it = vit −
T∑

s=1

vis1(Zis = Zit)/T ∗it + o(1),

%∗it =

T∑

s=1

X>is{β(Zit) − β(Zis)}1(Zis = Zit)/T ∗it + o(1). (A.1)

We first work on the bias term U2NT ; then, substituting Ti{β(z)} by (8) into U2NT , applying Assumption 1.(iv) and
replacing L(Zit, z, γ) with (3) and using (A.1), we have

U2NT =
1

NT

N∑

i=1

T∑

t=1

X̃it[X̃>it {β(Zit) − β(z)} + %it]Lit,z,γ

=
1

NT

N∑

i=1

T∑

t=1

X∗it[X
∗>
it {β(Zit) − β(z)} + %∗it]

1itz +

q∑

m=1

γm1m,itz∗

 + Op(||γ||2)

=
1

NT

N∑

i=1

T∑

t=1

X∗itX
∗>
it {β(Zit) − β(z)}

q∑

m=1

γm1m,itz∗ + Op(||γ||2), (A.2)

where Lit,z,γ = L(Zit, z, γ), 1itz = 1(Zit = z) and 1m,itz∗ = 1(Zit,m , zm)
∏q

n=1,n,m 1(Zit,n = zn) is an indicator function
which takes value 1 if Zit and z differs only in their mth component and 0 otherwise. Note that in the last equality,
by construction, {β(Zit) − β(z)} 1itz = 0d×1 and {β(Zit) − β(Zis)} 1(Zis = Zit) = 0d×1; therefore, all the terms containing
%∗it vanish. We continue the analysis of (A.2); to do so, we follow [12] and use Lemma A2 of [23]. This lemma is a
three-step process given that the cardinality ofD is finite.

Step 1: [0, 1]q is a compact subset of Rq with Euclidean norm ||·||.
Step 2: Rewrite (A.2) as

1
NT

N∑

i=1

T∑

t=1

X∗itX
∗>
it {β(Zit) − β(z)}

q∑

m=1

γm1m,itz∗

=
1

NT

N∑

i=1

T∑

t=1

Xit − 1
T ∗it

T∑

s=1

Xis1itis


Xit − 1

T ∗it

T∑

s=1

Xis1itis


>
{β(Zit) − β(z)}

q∑

m=1

γm1m,itz∗

=
1

NT

N∑

i=1

T∑

t=1

XitX>it {β(Zit) − β(z)}
q∑

m=1

γm1m,itz∗

+
1

NT

N∑

i=1

T∑

t=1

1
T ∗it

T∑

s1=1

Xis1 1itis1

1
T ∗it

T∑

s2=1

X>is2
1itis2 {β(Zit) − β(z)}

q∑

m=1

γm1m,itz∗

− 1
NT

N∑

i=1

T∑

t=1

Xit
1

T ∗it

T∑

s=1

X>is1itis {β(Zit) − β(z)}
q∑

m=1

γm1m,itz∗

− 1
NT

N∑

i=1

T∑

t=1

1
T ∗it

T∑

s=1

Xis1itisX>it {β(Zit) − β(z)}
q∑

m=1

γm1m,itz∗ , (A.3)

where 1itis = 1(Zis = Zit). For the last two terms of (A.3), note that we can write

E

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
1

NT

N∑

i=1

T∑

t=1

1
T ∗it

T∑

s=1

Xis1itisX>it β(Zit)
q∑

m=1

γm1m,itz∗ − 1
NT

N∑

i=1

T∑

t=1

µ(Xit)X>it β(Zit)
q∑

m=1

γm1m,itz∗

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

= E

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
1

NT

N∑

i=1

T∑

t=1

K∗itX
>
it β(Zit)

q∑

m=1

γm1m,itz∗

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
≤ 1

NT

N∑

i=1

T∑

t=1

E

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
K∗itX

>
it β(Zit)

q∑

m=1

γm1m,itz∗

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
,
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which can then be bounded above by

1
NT

N∑

i=1

T∑

t=1


E

∣∣∣
∣∣∣K∗it

∣∣∣
∣∣∣2 E

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
X>it β(Zit)

q∑

m=1

γm1m,itz∗

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2


1/2

≤


1
NT

N∑

i=1

T∑

t=1

E
∣∣∣
∣∣∣K∗it

∣∣∣
∣∣∣2


1/2 
1

NT

N∑

i=1

T∑

t=1

E

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
X>it β(Zit)

q∑

m=1

γm1m,itz∗

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2


1/2

= op(||γ||), (A.4)

where K∗it =
∑T

s=1 Xis1itis/T ∗it − µ(Zit). We now obtain that, for any given z ∈ D and γ ∈ [0, 1]q,

1
NT

N∑

i=1

T∑

t=1

1
T ∗it

T∑

s=1

Xis1itisX>it {β(Zit) − β(z)}
q∑

m=1

γm1m,itz∗

=
1

NT

N∑

i=1

T∑

t=1

µ(Zit)µ(Zit)> {β(Zit) − β(z)}
q∑

m=1

γm1m,itz∗ + op(||γ||).

Similarly, for the second term of (A.3), we have

1
NT

N∑

i=1

T∑

t=1

1
T ∗it

T∑

s1=1

Xis1 1itis1

1
T ∗it

T∑

s2=1

X>is2
1itis2 {β(Zit) − β(z)}

q∑

m=1

γm1m,itz∗

=
1

NT

N∑

i=1

T∑

t=1

µ(Zit)µ(Zit)> {β(Zit) − β(z)}
q∑

m=1

γm1m,itz∗ + op(||γ||).

In view of all the above, we obtain

1
NT

N∑

i=1

T∑

t=1

X∗itX
∗>
it {β(Zit) − β(z)}

q∑

m=1

γm1m,itz∗

=
1

NT

N∑

i=1

T∑

t=1

{Xit − µ(Zit)} {Xit − µ(Zit)}> {β(Zit) − β(z)}
q∑

m=1

γm1m,itz∗ + op(||γ||)

for any given z ∈ D and γ ∈ [0, 1]q. We then just need to consider

E

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
1

NT

N∑

i=1

T∑

t=1

XitX>it β(Zit)
q∑

m=1

γm1m,itz∗ − p(z∗)ΣX(z∗)β(z∗)
q∑

m=1

γm1m,itz∗

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=
1

(NT )2

d∑

h,`=1

N∑

i, j=1

T∑

t,s=1

E



Xit,hXit,`βh(Zit)
q∑

m=1

γm1m,itz∗ − p(z∗)ΣX,h`(z∗)βh(z∗)
q∑

m=1

γm1m,itz∗



×
X js,hX js,`βh(Z js)

q∑

m=1

γm1m, jsz∗ − p(z∗)ΣX,h`(z∗)βh(z∗)
q∑

m=1

γm1m, jsz∗



 ,

which can be bounded above by

O(||γ||2)
1

(NT )2

d∑

h,`=1

N∑

i, j=1

T∑

t,s=1

cδ{αi j (|t − s|)}δ/(4+δ)

≤ O(||γ||2)
1

(NT )2

d∑

h,`=1

N∑

i, j=1

T∑

t,s=1

{αi j (|t − s|)}δ/(4+δ) = O{||γ||2/(NT )}, (A.5)
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where cδ = 2(4+2δ)/(4+δ)(4 + δ)/δ; the first inequality comes from using Cauchy–Schwarz inequality, and the second
inequality from the fact that 1(Zit = z) is uniformly bounded. Also, let Xit,h be the hth element of Xit and ΣX,h`(z∗)
denotes the (h, `)th element of ΣX(z∗) for h, ` ∈ {1, . . . , d}. Therefore, we have proved that

1
NT

N∑

i=1

T∑

t=1

X∗itX
∗>
it {β(Zit) − β(z)}

q∑

m=1

γm1m,itz∗

→P p(z∗){ΣX(z∗) − µX(z∗)µX(z∗)>}{β(z∗) − β(z)}
q∑

m=1

γm1m,itz∗

= Γ1(z∗){β(z∗) − β(z)}
q∑

m=1

γm1m,itz∗ = b(γ) (A.6)

for any given z ∈ D and γ ∈ [0, 1]q. Therefore, (A.2) has the required expression.

Step 3: By Step 2, we can write

1
NT

N∑

i=1

T∑

t=1

X∗itX
∗>
it {β(Zit) − β(z)}

q∑

m=1

γm1m,itz∗ = b(γ) + OP(||γ||2),

and for any γ1, γ2 ∈ [0, 1]q, we have ‖b(γ1)− b(γ2)‖ ≤ O(1) ‖γ1 − γ2‖, which implies the third condition of Lemma A2
of [23] holds. Therefore, we can conclude that

U2NT = b(γ) + Op(||γ||2). (A.7)

Now we obtain the limiting distribution of the quantity
√

NTU1NT . By substituting (8) into U1NT and replacing
L(Zit, z, γ) with (3), we obtain

U1NT =
1

NT

N∑

i=1

[
Ti {β(z)} − E

[
Ti {β(z)}| X]]

=
1

NT

N∑

i=1

T∑

t=1

X∗itv
∗
it

1itz +

q∑

m=1

γm1m,itz∗

 + Op(‖γ‖2). (A.8)

Therefore, we first focus on the analysis of
∑N

i=1
∑T

t=1 X∗itv
∗
it1(Zit = z)/(NT ). We have

1
NT

N∑

i=1

T∑

t=1

X∗itv
∗
it1(Zit = z) =

1
NT

N∑

i=1

T∑

t=1

Xit − 1
T ∗it

T∑

s=1

Xis1is,it


vit − 1

T ∗it

T∑

s=1

vis1is,it

 1(Zit = z). (A.9)

Applying Step 2, we can write the leading term of
√

NTU1NT as

1√
NT

N∑

i=1

T∑

t=1

X∗itv
∗
it1(Zit = z) =

1√
NT

N∑

i=1

T∑

t=1

{Xit − µX(z)} vit1(Zit = z) + oP(1 + ||γ||2). (A.10)

Then we will focus on
∑N

i=1
∑T

t=1{Xit − µX(z)}vit1(Zit = z)/
√

NT . For notational simplicity, denote

1√
NT

N∑

i=1

T∑

t=1

{Xit − µX(z)} vit1(Zit = z) =

T∑

t=1

VT,N(t). (A.11)

By Assumption 1.(ii) and construction, VT,N(t) is stationary and α-mixing. Thus, the large-block and small-block
technique can be applied in order to prove the normality below; see Lemma A.1 in [13], Theorem 2.21 in [11] and
Lemma A.1 in [7]. To employ this technique, we partition the set {1, . . . ,T } into 2kT + 1 subsets with large blocks of
size `T , small blocks of size sT and the remaining set of size T − kT (`t + sT ), where `T and sT are selected such that

sT → ∞, sT /`T → 0, `T /T → 0, kT ≡ {T/(`T + sT )} = O(sT ).
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For instance, for any φ > 2, `T = T (φ−1)/φ, sT = T 1/φ; thus kT = O(T 1/φ) = O(sT ). For n ∈ {1, . . . , kT }, define

Ṽn =

n`T +(n−1)sT∑

t=(n−1)(`T +sT )+1

VT,N(t), V̄n =

n(`T +sT )∑

t=n`T +(n−1)sT +1

VT,N(t), V̂ =

T∑

t=kT (`T +sT )+1

VT,N(t).

Note that α(T ) = o(1/T ) and kT sT /T → 0. Then, by the properties of α-mixing and using similar techniques as
the used in the previous results, we find

E‖V̄1 + · · · + V̄kT ‖2 = O{(kT sT )/T } = o(1), E‖V̂‖2 = O{(T − kT `T )/T } = o(1).

Therefore, we just need to focus the analysis on Ṽ1 + · · ·+ ṼkT . Using the Feller–Lindeberg Central Limit Theorem,
we first need to show that Ṽ1 + · · ·+ ṼkT are asymptotically mutuallly independent. By Proposition 2.6 in [11] and the
condition of α-mixing coefficients, we have

∣∣∣∣∣∣∣
E(exp ‖Ṽ1 + · · · + ṼkT ‖) −

kT∏

n=1

E(exp ||Ṽn||)
∣∣∣∣∣∣∣
≤ C(kT − 1)α(sT )→ 0, (A.12)

where C is a constant and α is the upper bounded of the α-mixing coefficient defined in Assumption 1.(ii). This
upper bound is achievable in the same way as Assumption A.4 of [7]. Therefore we obtain that Ṽ1, . . . , ṼkT are
asymptotically independent. Furthermore, as in the proof of Theorem 2.210(ii) in [11], we have to show Feller’s finite
variance condition. We have

cov(Ṽ1) = cov


`T∑

t=1

VN,T (t)

 = cov


1√
NT

N∑

i=1

`T∑

t=1

{Xit − µX(z)} vit1(Zit = z)



=
1

NT

N∑

i=1

`T∑

t=1

cov
[{Xit − µX(z)} vit1(Zit = z)

]
= `T Γ0(z) {Id + o(1)} /T, (A.13)

which implies that
kT∑

n=1

cov(Ṽn) = kT cov(Ṽ1) = kT `T Γ0(z) {Id + o(1)} /T → Γ0(z). (A.14)

As a result, the Feller condition is satisfied. Now we just need to check the Lindeberg condition, viz.

kT∑

n=1

E
{‖Ṽn‖21(‖Ṽn‖ ≥ ε)

}→p 0, (A.15)

where ε > 0. Using the Cauchy–Schwarz inequality, we have

E
{‖Ṽn‖21(‖Ṽn‖ ≥ ε)

} ≤ (E‖Ṽn‖3)2/3{Pr(‖Ṽn‖ ≥ ε)}1/3 ≤ C(E‖Ṽn‖3)2/3(E‖Ṽn‖2)1/3, (A.16)

and by Lemma B.2 in [7],

E‖Ṽn‖3 ≤ (`T /T )3/2

E
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
1√
N

N∑

i=1

{Xi1 − µX(z)} vi11(Zi1 = z)

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

4

3/4

< ∞, (A.17)

E‖Ṽn‖2 ≤ (`T /T )

E
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
1√
N

N∑

i=1

{Xi1 − µX(z)} vi11(Zi1 = z)

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

4

1/2

< ∞. (A.18)

Thus, E‖Ṽn‖3 = O{(`T /T )3/2} and , E‖Ṽn‖2 = O(`T /T ) which, using (A.16), implies

E
{‖Ṽn‖21(‖Ṽn | ≥ ε)

} ≤ O{(`T /T )4/3} = o(`T /T ). (A.19)
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Therefore,
kT∑

n=1

E
{‖Ṽn‖21(‖Ṽn‖ ≥ ε)

}
= o(kT `T /T ) = o(1). (A.20)

Consequently, the Lindeberg condition is satisfied; using (A.6), (A.12), (A.14) and (A.20), it is easy to see that if
γm → 0 we can conclude that, as (N,T )→ (∞,∞),

√
NT U1NT  N[0d×1,Γ0(z)]. (A.21)

Now we prove the consistency of D̃ {β(z)}. Similar to the proof of (A.11)–(A.14), it is straightforward to show that

D̃ {β(z)} =
1

NT

N∑

i=1

Ti {β(z)}T>i {β(z)} = Γ0(z){Id + op(1)}. (A.22)

From (A.6), (A.21) and (A.22), and using the same arguments as in the proof of (2.14) in [24], we can prove that

λ = Op(1/
√

NT ), (A.23)

where λ was defined in (12). Then applying Taylor expansion to (11) and invoking (A.6), (A.21) and (A.22), we get

R{β(z)} = 2
N∑

i=1

[T>i {β(z)} λ − [T>i {β(z)} λ]2/2] + op(1). (A.24)

By (12), and applying Taylor expansion again, it follows that

0 =

N∑

i=1

Ti {β(z)}
1 + λ>Ti {β(z)} =

N∑

i=1

Ti {β(z)} −
N∑

i=1

Ti {β(z)}T>i {β(z)} λ +

N∑

i=1

Ti {β(z)} [T>i {β(z)} λ]2

1 + T>i {β(z)} .

Then, recalling (A.6), (A.21) and (A.22), we can prove that

N∑

i=1

[T>i {β(z)} λ]2 =

N∑

i=1

T>i {β(z)} λ + op(1), (A.25)

and

λ =


N∑

i=1

Ti {β(z)}T>i {β(z)}

−1 N∑

i=1

Ti {β(z)} + op{(NT )−1/2}. (A.26)

Relying on (A.6), (A.21)–(A.22), we can conlude the proof of Theorem 1 by applying the Cramér–Wold device. �

Proof of Theorem 2. Note that, without loss of generality, we can write

β̂(z) − β(z) =
[
β̂(z) − E{β̂(z)|X}] +

[
E{β̂(z)|X} − β(z)

] ≡ I1NT + I2NT . (A.27)

To prove the desired result, under Assumption 1, we will show first that I2NT = Γ−1(z)b(γ) and second that
√

NT I1NT  
N[0d×1,Γ

−1
1 (z)Γ0(z)Γ−1

1 (z)], as (N,T )→ (∞,∞) and γs → 0. If we substitute (18) into (A.27), we obtain

I2NT = E{β̂(z)|X} − β(z) =


1

NT

∑

it

X̃itX̃>it L(Zit, z, γ)



−1 
1

NT

∑

it

X̃it{X̃>it β(Zit) + %it − β(z)}L(Zit, z, γ)

 . (A.28)

We begin with the inverse term in (A.28). Replacing L(Zit, z, γ) with (3), and using (A.5)–(A.6), we get

1
NT

∑

it

X̃itX̃>it L(Zit, z, γ) =
1

NT

∑

it

X∗itX
∗>
it 1itz + Op (||γ||)→P p(z){ΣX(z) − µX(z)µX(z)>} + Op (||γ||) . (A.29)
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Then, using (A.29) we find that

1
NT

∑

it

X̃itX̃>it L(Zit, z, γ)→P p(z){ΣX(z) − µX(z)µX(z)>} + Op (||γ||) = Γ1(z). (A.30)

Continuing with the second term of (A.28), and using (A.2)–(A.7), we obtain

1
NT

∑

it

X̃it{X̃>it β(Zit) + %it − β(z)}L(Zit, z, γ)→P Γ1(z∗) {β(z∗) − β(z)}
q∑

m=1

γm1m,itz∗ + Op(||γ||2) = b(γ). (A.31)

In order to show the asymptotic behavior of I1N note that by (18) we have

I1NT = β̂(z) − E{β̂(z)|X,Z} =


1

NT

∑

it

X̃itX̃>it L(Zit, z, γ)



−1 
1

NT

∑

it

X̃itṽitL(Zit, z, γ)

 , (A.32)

where the inverse term was already study; see (A.30). Therefore, we will study the asymptotic behavior of (A.32) by
studying the behavior of the second term. Based on the results obtained in (A.8)–(A.20) in the proof of Theorem 1
and (A.30) the following result holds

√
NT I1NT  N[0d×1,Γ

−1
1 (z)Γ0(z)Γ−1

1 (z)].

Thus the proof of Theorem 2 is complete. �

Proof of Corollary 1. From Eq. (17) we know that Ti {β(z)} = T̃i {β(z)}, where

T̃i {β(z)} =

T∑

t=1

X̃it{Ỹit − X̃>it β(z)}1(Zit = z) + OP{1/(NT )}.

Then, the proof of Corollary 1 is similar to the proof of Theorem 1 by setting γ1 = · · · = γq = 0. �

Proof of Corollary 3. From Eq. (19) we now that
√

NT {β̂(z) − β(z)} can be rewrite as
√

NT {β̂(z) − β(z)} =
√

NT {β̃(z) − β(z)} + OP(1/
√

NT ),

where β̃(z) is a frequency estimator in the same way as in β̂(z) when γ1 = · · · = γq = 0. Then, the proof of Corollary 3
is similar to the proof of Theorem 2 by setting γ1 = · · · = γq = 0. �
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