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Abstract

In this paper local empirical likelihood-based inference for nonparamet ic ca*~~orical varying coeflicient panel data
models with fixed effects under cross-sectional dependence is investige = Firs , we show that the naive empirical
likelihood ratio is asymptotically standard chi-squared using a nonpa.. metrir * _csion of Wilk’s theorem. The ratio is
self-scale invariant and the plug-in estimate of the limiting variance is not . =eded. As a by product, we propose also
an empirical maximum likelihood estimator of the categorical vary.. ~ coeffi- ient model and we obtain the asymptotic
distribution of this estimator. We also illustrated the proposed 1. hniqu. 1 an application that reports estimates of
strike activities from 17 OECD countries for the period 1951-85.
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1. Introduction

In recent years, there has been an increased .. ~st in the study of panel data models combined with nonparametric
techniques. The results have been promisir z, even t ough the inherent disadvantages of nonparametric techniques
such as the curse of dimensionality [16] remain ., “lid 7 1 this context. Varying-coefficient models appear as a reasonable
avenue to overcome this drawback.

Varying-coefficient models encomp. °s - gre-. variety of simple models applied by econometricians, including
partially linear models or fully nonr arame..’~ models. In applied microeconomic problems, however, it is often
difficult to access all explanatory v .. hles of interest. For this reason, many applied economists have turned their
attention to panel data models. As 1t is we.. “nown, in a regression model, these techniques enable us to estimate the
objects of interest consistently b al wing for individual heterogeneity of unknown form.

Nowadays, we have at our ‘ispr sal a pleiad of varying-coefficient estimators that exhibit good asymptotic prop-
erties under rather different ‘ 2ts o1 . “sumptions such as random effects, fixed effects or cross-sectional dependence;
see, e.2.,[28, 33, 34] for cc apre iensive surveys of the literature. Among others, the problem of considering varying
coefficients that depend on - _rete data has attracted attention because discrete variables are common in economic
analysis. A semiparanr ...c vary g coefficient model with purely categorical covariates is proposed in [20] and in
[12], this setting is ex! :nded t¢ ‘nclude fixed effects and cross-sectional dependence.

Although extensive vesults are reported, e.g., in [12, 20] on the asymptotic behavior of estimator, inference is
not always an eas” wsk. 1ypically, asymptotic normal approximations are obtained. In the discrete covariate case,
under fairly gene al condi ions, if the bandwidth is selected using a cross-validation criterion, the asymptotic bias of
the estimator is nc_ligibl and therefore inference based on the asymptotic distribution is more feasible than in the
continuous ¢ ~*iafe case where some undersmoothing is needed [21]. Unfortunately, the problem becomes much
more complex ‘f r ae also wishes to incorporate cross-sectional dependence. Besides, using confidence bands as a
testing device is 1.t straightforward as uniform confidence bands are necessary to do so; see [18].
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As an alternative, Owen [26] introduced techniques based on the empirical likelihood. (his approach, which
combines the reliability of nonparametric methods with the effectiveness of the likelihoc « . »roach, has several
advantages. For instance, no limiting variance estimation is necessary. For further discussion on the « lvantages of the
empirical likelihood technique, see, e.g., [10, 14, 15, 17, 19, 24-27, 30].

Owing to its good properties, the empirical likelihood approach has already beer “np’.ed to longitudinal data
varying-coefficient models with random effects; see, e.g., [37]. As for the fixed-effe. “< casc, <ee [3, 38]. However,
we are not aware of any results for the panel data discrete/categorical varying coefficien. “=tting. In [3], empirical
likelihood confidence bands are obtained for the varying coefficients, m(Z), unc r re * ~r strong assumptions such
as the continuity of all the vector of covariates, Z, and the assumption of indc, »n- ent and identically distributed
idiosyncratic error terms both across units and along time. Although the kerne' *veig.. ~ considered in this paper are
well suited for continuous data, they are inappropriate for discrete/categoric .| data. “urthermore, the authors derive
the asymptotic theory for T fixed and N — oo.

In this paper, we develop empirical likelihood ratios and derive a nc _ araiuc.:c version of Wilks’ theorem for
a fixed-effects varying-coefficient panel data model, where all covariatc 5 are .ss> ‘med to be discrete/categorical. We
further derive the maximum empirical likelihood estimator of the varving param ters and its asymptotic theory when
cross-sectional dependence in the idiosyncratic error term is allowed. L. ~ed un these results, we can build up confi-
dence regions for the parameter of interest through a standard chi-<quare ap) roximation.

The rest of this paper is organized as follows. In Section ? we | *opr se to construct confidence bands for the
unknown functions by using a naive empirical likelihood techniqu. In Section 3, as a by-product, we provide an

alternative maximum empirical likelihood estimator of the fi- . _l_c. categorical varying parameters. In Section 4,
we illustrate the proposed technique in an application that reports . “imates of strike activities from 17 OECD countries
for the period 1951-85. Concluding remarks are in Sectic ” = the proofs of the main results are in the Appendix.

2. Naive empirical likelihood

~

We consider the following categorical varying-. .. ~e1." panel data regression model
Y = X B(Liy) + w; + Vi, (1)

where for eachi € {1,...,N}andr € {1,... [}, Y; 1. the response, X;; = (Xi11,...,Xia)" and Zy; = (Ziy1, ..., Zig)"
are vectors of dimension d and g respectively, ~d B - (B1,...,B84)" is a d X 1 vector of unknown functions; here, w;
stands for so-called fixed effects and v;; 7 .e the ran.om errors. Note that when Z;; is a vector of continuous random
variables, model (1) stands for the so-r :llec varv ng-coefficient panel data model with fixed effects studied e.g., in
[6, 9, 31, 32, 34, 35]. In this paper * e co.."idr. the case where Z is purely categorical and in order to distinguish
between X and Z, we will refer to t' . m as the regressor and the covariate, respectively. Note that we are not willing
to impose any restriction between w; ana .. = pair (Xj;, Z;).

Model (1) is an extension . u > cross-sectional varying-coefficient model of Li et al. [20] to the panel data
framework as it appears in [1° 1. F.rst, we will obtain confidence bands for 8 based on the empirical likelihood
approach; to do so, we need the f.  order condition of the minimization problem for obtaining 3. Note that for given
z, this condition is, from (1,

E[Xi{Yi — X; BZi))\Ziy = 2] # 0,

due to the fixed effects 10 deal .vith this problem, several transformations have been proposed in the literature on
panel data models. Fc r examp 2, when Z is continuous, some differencing transformations combined with a Taylor
series approximation cu *ld br applied; see [3]. Unfortunately, this approach is infeasible if the elements of Z are
discrete in nature

We here prop ‘se to ke« 1 the same idea of using the within-transformation but instead of using a continuous kernel,
we aim to use a ke. ~1 £ .nction designed for discrete random variables; see [1]. Thus, let 1;5; = 1(Z; = Zj,) and
Lisiy=LZ, -, ~foralli,je{l,...,N}ands,t,€{l,...,T}. Note that L(Z;, Zj,,y) represents a kernel function
for multivariate 17 ,crete spaces, viz.

q q
1(Zis s#2s
LZizy) = | [ 0Zisnzey = [ [ 1257, @

s=1 s=1
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where y = (y1,...,v9)", 1(Zi; s # z;) denotes the usual indicator function, which takes the valv . 1 when Z; ; # z,, and
0 otherwise, and

if Zit,s = s,

1
t Zits: 25, Vs) = .
( " 7 ) {7? lf Zit,x * ss

is the kernel function of Aitchison and Aitken [1] for unordered covariates, where y, = O lea.. *o an indicator function
and y, = 1 gives a uniform weighted function. We can then conclude that y, € [0, 11 for " ¢ € {1,...,g}. Also, note
that the kernel function (2) can be expressed as

q q
L(Zy, z, )’) = l_[ K(Zit,ma Zm>» ')/m) = 1—[ {1(thm =Zm) + y,;‘\Zit,m * ;m)}
m=1

m=1

s

q q
1(Zit,m = Zm) + Z 7m1m,itz* +oeee I—I 'le\Lit,m * Zm)
mo.

m=1

3
I

q q
=1(Zi =2+ ) Ymlmie + -+ | A # 2,
m=1 m=1
where 1+ = WZipym # 2m) szl et 1(Zit, = zy) is an indicator . “nctio.. ~hich takes value 1 if Z;; and z differs only
in their mth component, and 0 otherwise. Note that if we assume thar - — 0 as (N, T) — (o0, 00), it is reasonable to
simplify the kernel product function (2) as follows:

-
LZjs; Ziy) = i+ )Y almjsit + OUYIP). 3)
m=1
Here, 1, jsit = W(Zjsm # Zitm) HZ:l,n 2m W(Zjsn = Zy ) and |, - || stands for the Frobenius norm.

Expression (3) is of great interest because it ena. 'es us to apply a modified version of a within-transformation
in (1) and then remove the fixed effects. Thus, let Ty, = 3, _, Lg sy’ where p > 2 is an arbitrarily chosen finite positive
integer. In practice, the choice of p = 2 is enor_... " et

T T T
- 1 . . 1 - 1
Xir = Xir — T, ; Xislis s Yo i — T, ; Yislisiss Vit = Vi — T, ; VisLis it
Applying this transformation in (" ), we v *# n
[T
~ "
Yi=XiB(Zi) +wi~ .. — T 4{X;I;,B(Zis) + i+ vilLy
o

-

T
1 1 1 ~
= XIB(Zi) ~ 7= D oLy B i) + = " XNLL, BZi) = = > XIB(Zi)Ll, , + Vi
"=l L L

= X”IB(Z,-,) +en+ i 4)
where 0;; = T;' X1, . T{B(Zy — B(Zi)} LT, stands for the truncation residual. Due to the fact that 17(-) = 1(-) and

is,ity

B(Ziy) = BEZN1(Z:- = > = u,if y > 0as (N, T) — (o0, 00), we obtain

BZi) - BZiDY LY, = O(VI") &)

uniformly. T .. “~re due to (5), the truncation residual g; is controlled by the bandwidth y only. Given this result
we obtain that e .irst order condition, for given z, from (4) is

E[Xi{Y: — X3 BZiZy = 2] = 0. (6)



In this case, the least squares estimator of 5(z) is the solution to (6) when Z; = z. There ore, the orthogonality
condition (6) for 5(z) has the following form:

E[Xi{ Vi — X BN Zi = 2] = 0. @)
Then, employing the constraint (7), the auxiliary random vector for the modified within-tra.. formation is

Ti i)} = ) Xl i BOYLZit, 2,7). ®)

T
t=1

Eq. (8) is the sample analog of (7) using a local smoothing method with . discrr *e kernel function. If 5(z) is the
true parameter, it is easy to show, due to (7), that E[T;{5(z)}] = 0. Therefore using t e information E[T;{3(z)}] = O,
the naive empirical log-likelihood ratio for 8(z) is defined as

N N
R(B@) = 2max| Y In(p): pi 2 0. Y pi= 1. Z" HB@) = ©)
i=1 i=1

1
where p; = pi(z) forall i € {1, ..., N}. Using the Lagrange multinlier . ~ethc . the probabilities p; are

1 1

LY 10
PEENT A1, 20) (10

By (9) and (10), R{B(z)} leads to
RIB@I =2 i = AT THEQM, (11)

where 1is a d X 1 vector of Lagrange multipliers associaw 1 to the constraint Zfi  PiTi {B(z)} = 0 and it is given by

N

v T; {B(Z)}

TT R (12)

subject to the constraint that satisfies the ~or -neg- .ivity condition and avoids a convex dual problem; see Chapter 3 in
[27]. Using Egs. (11)—(12) and a Tay’ or expa. ~*on, and denoting

3 1 &
DB}y = — > TiiB} T {B()},
NT ;
it can be shown that

+o0,(1). (13)

RIRC)) - Z T, |B) ] (D BN I T2 Z T (B(2))

Hence, it is easy to . "ow 17 ,ing (13) that R {8(z)} is asymptotically chi-square. In order to formally introduce this
result, we need th- rollowing assumptions.

Assumption 1. ‘1) Le’ D be the range of values assumed by Z;. Then p(z) = Pr(Z; = z) > O for all z € D. The
functio~ R(7) is vounded on the support D of z, i.e., max,cp||B(z)|| < oo and it is not constant with respect to z.
Let z,, & n0’ > e mth component of the g X 1 vector z = (zy,..., zq)T, where z,, is assume to take c,, different
integer var. 2sin {0, ...,¢, — 1} forc,, > 2 and m € {1,.. ., g}. Moreover, ¢ is finite and max(cy, ..., ¢,) < oo.



(i) Let (X, Z;,vi) be independent across i for each fixed r. For each fixed i, the proces‘ (Xits Ziss vig) 1s strictly
stationary and a-mixing. The a-mixing coefficient between (Xj;, Zi;, viy) and (X5, 7 5, . ) is determined by
a;;(|t — s), where for each integer k > 1.

a(k) = sup |Pr(A N B) — Pr(A_Pr( ),
A€ U{(XiSinx’ Vis) s < l}
B € o{(Xis, Zis, vis) : s 2 t + k}

Furthermore, for some § > 0,

T

N N T
Z Z Z Z a;(lt = s/ = ¢ NT).

i=1 j=1 t=1 s=1

(iti) Forallz € O,i € {l,...,Nyandr € {1,...,T}, ux(z) = EXulZ , = -, «~d 2x(z) = E(X;:X]|Z;; = z), where
[ltx ()l and ||Zx(z)|| are uniformly bounded in z.

(iv) Denote X = {X;s,Z;s) : j € {1,...,N},s € {1,...,T}}. Then " vyjn) = 0 and 0 < E(v X)) = a-% < 00
almost surely (a.s.) foralli € {I,...,N}and ¢z € {1,...,7}. For s me constants § > 0 and 0 <a; < oo,
E(Iv;e|**® + ||IX;|I**%) < a; uniformly. Also, over the time dimen. ~n,

1 H LI
WZZZ|E\«%|X)I=O(1).

i=1 t=1 s=1

(v) Let w; be arbitrarily correlated with both Xj; and Z;, w.b anknown correlation structure.

Assumption 1.(i) is quite standard and similar to Ass. . “on 1.(i) in [20]. Note that to deal with the case where D
is infinite, one can use the same normalization as f~+ the ti. ve-varying coefficient model. That is, as in [12], suppose
q=1,7,€{0,1,2,...,u(N,T)}, where u(N,T) — « and u(N,T)/(NT) — cfor0 < ¢ < o0 as (N,T) — (o0, 0).
Then a variant of model (1) is obtained by normalizing Z;; vy u(N, T), viz.

Yii = Xy B t/u(N, T)} + w; + v, (14)

where £ can be treated as a continuous fu’ ction o1 « ,variates. Therefore, (14) is just the model proposed by Sun et al.
[35] with continuous 8. This normalizat on i’ sim’‘ar to that of [5, 8] when dealing with time-varying coefficients.

Assumptions 1.(ii) is similar to A-sun,, “on’ B—C in [4]. The strict stationary assumption is similar to Assump-
tion A4 in Chen et al. [7] and Assur “tion A2 m Chen et al. [8]. For more details and discussion, see [12].

Assumption 1.(iii) sets restric..ons «. the unconditional moments as in Assumption 3.3-3.6 of [31]. Due to
the within-transformation, we ... 1ssume it holds uniformly across i, which is akin to Assumption Al in [9] and
Assumption C in [4]

Assumption 1.(iv) is the same = in [2] and similar to Assumptions A2 and A4 of [8]. This assumption sets up the
cross-sectional dependence s a “veak correlation between individuals by using a spatial error structure, where a gen-
eral spatial correlation str. ~tur . has veen imposed to link together the cross-sectional dependence and the stationary
mixing condition; see, e @ [7, 0 7). Here, the last equation in Assumption 1.(iv) is a simplified version of (A.18) in
[7]; this last equation 7 , neede * due to the within-transformation.

Finally, Assumptic 1 1.(v) i 1poses the so-called fixed effects. Note that we are unwilling to assume any constraint
in the relationship F~*wec.. ".c random heterogeneity w and the vector of regressors and covariates, (X, Z).

Having all thr se assu. “ptions into consideration, we can state formally the following theorem.

Theorem 1. Assun. - . Condition 1 holds and that y,, — 0 and NNTvy,, —» 0 forallm € {1,...,q} as (N,T) —
(00,00). Ther. ~ o ' ~~ )(in, i.e., R{B(2)} converges in law to a chi-square random variable with d degrees of freedom.

Letting c, sta. 1 for the 1 — @ quantile of /\(5, we can then build the confidence bands using Theorem 1 as follows:
R, = {B() : R{BQ)} < cal}. (15)
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Note that this result imposes an extra condition on the sequence of bandwidths y,,, i.e., - NT vm — 0, which is
similar to conditions used in nonparametric regression. As is well known, the latter conditic . .. “nlies that the rate of
convergence is not optimal. As mentioned, e.g., in [21], in the presence of discrete covariates it is po.. ible to improve
the rate of convergence by selecting 1, ..., 7y, to be the minimizer of the cross-validatior (C\ ) criterion function

1

VM = 57

N T R
D Vi - X puZip (16)
=1

t=1

12

where

-1
B_,-Az,-t):{ > X,-SJ?,IL(Z,S,Z”,y)} D KT iLZsy %)

Js,js#it Js,js#it

is the leave-one-out kernel estimator of 5(Z;). We use ¥1,...,%, to der sie th» cross-validated choices of y1,...,y,
that minimize (16). In order to state the asymptotic properties of the cr ss-= alid: :ed choices ¥, ..., ¥, we will need
to borrow the following assumption from [12].

Assumption 2. (i) Set

CVoy) = D P@B@) 1@ V)T QP B@) — 1z M+ ) pHAR(:Y) = As(z,9) BV

€D €D
+23" p@ux(@) = As@ VY BE) = 1275, Asp(2,9) = Aa(2,7) B}
€D

=CVp1 +CVyo +CVp3,
where
Az, y) =E{L(Zis, 2., s /) Da(zy) = EAXu L (Zis, 2,7 2,7},
Asp(2,y) = EAXiB(Zi)L? (Zis, 2, V)| 2. ¥}, A3(2, ) = Aoz, ¥) /A2, y),  Asp(z,y) = Agp(z,y)/ A1z, y),
Qz,y) = Zx(2) + 32,7, A3z V)T — A3z Vux(@) " — px(2)As(z, ),
Zxx(z,y) = E{Qz, VL Zys, . N7 v}, Zxxp(z,y) = E{Q(z, V)B(Zi)L(Zis, 2, V)| 2,7}

T
_ Y. 1
@ y) = Zxle =xxp &Y)s  Ki = T Z XisLP (Zis, z,7) — A3(Zir, y).
it s=1

(ii) Forallze O,ie{l,...,N} ad: " {,...,T}, As(z,y) and Asg(z,y) are uniformly bounded in z. Suppose that,
together with Assumption ' ~*1)—(iv), one has

T 1 N T
2 _ 2 _
E EllK " = 0(D), &= E E IT/Ty|” = O(1)

t=1 i=1 t=1

[ 1=

1
NT

uniformly in y,, € I0,1) > dme{l,...,q}.

Assumption 2.(i) ! ts restri tions on the unconditional moments as in Assumption 1.(iii). Assumption 2.(ii) is a
panel data version of A “nmr son 2 of [20] which ensures that CVj(y) is uniquely optimize at 0. By Theorem 2.1
of Newey and Mc adder [22], this assumption implies that ¥ obtained by minimizing (16) converges to zero. Under
Assumptions 1-2 we can : :ate the following results; for further discussion and proofs, refer to [12].

Lemma 1. U~"-r Assumptions 1-2, y = op(1) as (N, T) — (o0, 00).

This lemma sures that y converges to zero as the sample size increases. Then it is reasonable to assume that y
is sufficiently smai. and close to zero. Therefore, the product kernel function can be simplified as in (3).

Lemma 2. [If Conditions 1-2 hold, ¥ = Op{1/(NT)} as (N,T) — (o0, 00).
6



This lemma gives the rate of convergence for 9. Note that this result simplifies considr.ably the proof of the
previous result as we are able to use an indicator function, viz. I(Z;, z,¥) = 1(Z; = z), lettir 5, = 0. Further note
that using these results, the proofs of Theorem 1 will simplify considerably since we will be working with

T

T {p) = fon{f/ir - X BW(Ziy = 2) + Op{1/(NT)). a7

t=1

Using (17), we can build up an empirical likelihood ratio function similar to (3), ®{B(z)} and we can state the
following result.

Corollary 1. Taking ¥ to be the minimizer of the cross-validation function (17, .hen un..ler Conditions 1-2, we have
R{B(@)} ~ x5 as (N, T) — (o, 00).

Here we define the confidence bands in the same way as in (15), i.e., "~ sev . . alues B(z) such that V?{ﬂ(z)} <cy
where Pr(/\/i < ¢y) = a. Note that using the empirical likelihood techniqr 2, it 7 p. ssible to implement both Theorem 1
and Corollary 1 without imposing any extra conditions on the random er. _.s.

In the following section, we obtain the maximum empirical liken. ~od cstimator (MELE) using the empirical
likelihood ratio defined in this section. Also, as the usual tool to construc - confidence bands, we will provide the
asymptotic distribution of the estimators.

3. Maximum empirical likelihood estimator

We define the maximizer of (13), ﬁ(z), as the max’ - - empurical likelihood estimator of §(z), i.e., ﬁ(z) =
maxg) R{B(z)} . Using (11) and (13), and following the san. I ies as in [30], we can write

N T A N\
@) = {Z > XX LZz, ) YN AululiZii,2,9) + 0p(1/ YNT). (18)
=1 =1 .

i=1 )

Consequently, for comparison purposes, we derive thc asymptotic distribution of MELE estimator, (18), in the
following theorem.

Theorem 2. Assume that Condition 1 holds, - — 0 a d (N,T) — (00, 00). Then

VNT (B@) = »2)  T7' @b} ~ NOax1, I (@@ (2],
where
T—‘

N .
>3 ) v (X = (@ (X = px@) 1(Zi = D1Zjs = 2],
=1

s=1

. 1
lo@ = Mm <o

N
i=1

q
['1(2) = pIZx(2) - pxte, @V + Oy, by) =T1(2) {BE") - B) Z%ﬂm,m +O(yIP).
m=1

Note that by imposing s.. - ager conditions on the random errors, i.e., v;, are iid over i and ¢, ['y(z) is reduced to a
simpler expression suct as ['g(z) - 0'3 P(2){Zx(2) — ux(Qux(z)"} = 0'31"1 (z). We can then state the following result.

Corollary 2. Assume hat Con ition 1 holds, v;; are iid overiand t, y — 0, and (N, T) — (oo, c0). Then
VNT {B(z) - B(z) - T (@b()} ~ N[Os1, o iT7' )]

Note that unde - unknr wn sequences of y and using Lemmas 1-2, the proof of Theorem 2 will simplify consider-
ably since we *vill be working with B(z) = B(z) + Op{1/(NT)}, where B(z) is a frequency estimator in the same way as

inB(z) wheny = --= v4 = 0. Therefore, is straightforward to obtain that
VNT (B(z) - B(2)} = VNT {B(2) = B@)} + Op(1/ VNT). (19)

Then, we just need to focus on VNT {B(z) — B(z)}.



Theorem 3. Take ¥ to be the minimizer of the cross-validation function (16), assume that Cc ditions 1-2 hold, and
(N, T) — (00, 00). Then
VNT {B(2) = B@)} ~ NlOux1. 7 @@ @),

where T'1(2) = p()(Zx(z) — ux@Qux(2)"} and

T

N T
Do Bl X — px@HX s = ax @)U = 2,77 = )]

Jj=1 t=1 s=1

1
o NT

Mz

To(z) =

1l
—_

i
Here, imposing that v;; are iid over i and ¢, i.e., [o(z) = 02I'1(z) will lead us to the “~lowing result.

Corollary 3. Take ¥ to be the minimizer of the cross-validation function (1€, assum that Conditions 1 and 2 hold,
v, are iid over i and t, and (N, T) — (o0, 00). Then

VNT 14B(2) - B@)} ~> NOas1, 02 7' ).

Note that to invoke asymptotic normality, we need to estimate the va. ~nce-covariance matrix and sometimes this
estimation is no feasible; see variance expressions in Theorems 2 a1 3. To cc pe with this issue, we imposed a stronger
condition on the random errors, i.e., v; are iid over i and ¢; this ~Tlow. ' ne .0 estimate the variance expression using
Corollaries 2-3. Hence, to construct the confidence bands, by (A.3u, '* is easy to show that I'1(z) =p I'1(z), where

0l =7 Z) o~ KBy,

In the following section, we illustrate t : propo. =d technique in an application that reports estimates of strike
activities from 17 OECD countries for the pei. 1 195 —85.

4. Illustration

We report estimates of strike act v “ies from 17 OECD countries for the period 1951-85. Strike activity is defined
as the annual number of days lost per 100y ~orkers though industrial disputes. Strike volume is written as

Y, = X;ﬁ(zz) + Wi + Vi,

where Z; is a categorical var able containing country codes that do not vary with time; Y;, stands for the strike volume
of country i at time 7, X;; = ‘1,7 ;4,1 , Py, UN;;)" is a 4 X 1 vector containing U;;, unemployment, I, inflation, P;;, left
party parliamentary representa. ™0 and UN, a time invariant measure of union centralization. As in [36], we use the
log transformation to ¢ .abilize *he volatility of the strike series.

We first apply the -ithin-tr: nsformation. Due to the time invariant nature of Z; and UN;,, we have

lt lfﬁ(Z) + vll’

where X;; = (U;,.. P> is a3 x 1 vector. Now we apply the empirical likelihood approach (Corollary 1) and
the asympto{ . ... ~~lity (Corollary 3) to estimate the confidence bands of the parameters of interest. Here, we
use Corollary . i stead of Theorem 1 for comparison purposes. The results are shown in Tables 1-3, where NUB
= Normal Upper ound, NLB = Normal Lower Bound, LUB = Empirical Likelihood Upper Bound and ELLB =
Empirical Likelihood Lower Bound. In Tables 1-3, we can see that the confidence bands using empirical likelihood
behave better than the ones estimated using the asymptotic normal distribution.
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Table 1: Confidence bands for ﬁ] (2).

z NLB ELLB fgi(z) ELUB NUB
1 -0.16 -0.02 0.00 0.06 0.16
2 -0.64 -049 -030 -0.12 0.05
3 -022 -0.08 -0.02 0.03 0.17
4 -0.11 -0.15 -0.02 0.10  0.08
5 -0.14 -0.06 0.04 0.15 0.2.
6 -024 -0.12 -0.08 -0.04 0.08
7 -0.04 -0.05 0.10 025  u.25
8 -0.16 -0.07 -0.01 0.05 0.14
9 -038 -022 -0.19 -0.15 .01
10 -259 -2.12 -1.84 -12, -'179

11 -0.08 -0.14 0.01 0.1 0.1)
12 -0.17 0.05 0.09 v 13 .35
13 -0.40 0.11 0.24 0.47 0.88
14 -053 -0.12 0.13 0.40 0.79
15 -0.14 0.74 1.10 1.5 2.34
16 -0.10 0.01 0.05 69 0.19
17 -047 =028 -0... -0.21 -0.02

5. Conclusions

Extending the work of Li et al. [20] to the varying-cu >t "2nt panel data framework with fixed effects, we have
shown that the resulting empirical log-likelihood 1. .o Z~"a s a chi-square distribution. Therefore, we were able to
apply empirical likelihood methods to set up confiden. ~ bands for the functions of interest. As a by-product, we
provided an alternative empirical maximum likelihood estimator of the categorical varying coefficients and derive
its asymptotic theory. Finally, we applied s' ccess.. lly our techniques to an empirical study of estimates of strike

T .ble 2 Confidence bands for B}(z).

NLB ELLB pi(z) ELUB NUB
TA00 005 007 013 0.15
~012 -023 -0.04 013 003
~003 003 008 014 020

006 003 016 027 026

002 -000 009 021 0.17
~0.10 -0.06 -0.02 002 0.06

7 -0.14 -007 008 024 031

8§ -000 000 006 012 0.12

9 -005 -001 003 007 0.1
10 -008 -028 000 054 0.08
11 -0.18 =020 -0.05 0.08 0.07
12 006 009 013 017 021
13 -0.12 -0.15 -001 021 0.9
14 011 -004 021 048 03I
15 -023 -038 -0.02 026 0.19
16 -002 002 005 011 0.12
17 -0.11 -0.03 000 004 0.11

\\M-&‘J»—‘




Table 3: Confidence bands for ﬁg (2).

NLB ELLB fi(z) ELUB NUB

Z

1 -0.04 -0.02 0.00 0.06 0.05
2 =076 -0.77 -0.58 -041 -0.40
3 -0.01 -0.04 0.02 0.07 0.04
4 -0.04 -0.06 0.07 0.19 0.19
5 -0.02 0.02 0.11 0.23 0.2+
6 -003 -0.05 -0.01 0.03 0.02
7 =019 -025 -0.10 0.06 - u.u0
8 —0.11 0.04 0.10 0.16 0.31
9 -0.11 -0.01 0.03 0.07 IR

10 -0.15 -0.34 -0.06 0.4, ~ 03
11 -0.16 -0.13 0.02 0..% 0.2)
12 -0.05 -0.03 0.00 v .06
13 0.07 0.07 0.20 0.43 0.33
14 -0.14 -0.17 0.08 0.35 0.30
15 -0.19 -0.23 0.13 0.2 0.45
16 -0.09 -0.06 -0.02 6o 0.05
17 -0.04 -0.03 (IXV 0.05 0.06

activities from 17 OECD countries for the period 1951-85.

Acknowledgments

We thank the Editor-in-Chief, Christian Genest, an A. “ociate Editor and the referees, as well as our financial spon-
sors. The authors gratefully acknowledge financial support from the Programa Estatal de Fomento de la Investigacién
Cientifica y Técnica de Excelencia/Spanish M inistry ~f Economy and Competitiveness. Ref. ECO2016-76203-C2-1-
P. This work is part of the Research Project .* PIE 1/ 015-17: “New methods for the empirical analysis of financial
markets” of the Santander Financial Instit «te (SA. 1) of UCEIF Foundation resolved by the University of Cantabria
and funded with sponsorship from Banc s Sar .and~r. Any errors are ours.

Appendix

From here on, we will be us" ~ the notation that has been defined in the previous Assumptions 1 and 2 and
Theorems 1 and 2. Also, as in I .2], + (1) denotes some constants which may be different at each appearance.

Proof of Theorem 1.

Using Eq. (13), the pr of ¢ this theorem is carried out in three steps. First, we show the asymptotic normality
of Zf\;  TiB()}/ VNT; seco.. wr show the consistency of D {B(2)}; and finally, we use a Cramér—Wold device to
conclude. In order to ¢ stain th= asymptotic distribution of Zf\il Ti{B()}/ VNT note that

N N

1 ! 1 O
7 B@)y - NT 2 [T: {B()} = E[T: (B} X]] + NT ;E[Ti {B@NX] = Uinr + Uanr,

NT i=1
where X = {(Xj5,2, - “€{l,...,N},s € {1,...,T}}. Also note that, as we already mentioned, y — 0 as (N,T) —

(00, 00); this¢ «.. =~ along the same lines as [21], to simplify the kernel product function as in (3) and using the same
argument we a1 7 vle to write

T T
T =Y WZis=Zi) + OUNIP), Y =Yi— > Yil(Zis = Zo)/T; + o(1),
s=1 s=1

10



T T
=X = ) Xisl (Zig = Z) [Ty + o), vy =vig = Y visl(Zy = Zo)/ T, A1),

s=1

0; = Z TB(Zi) — BZi) N (Zis = Zi) /Ty + o(1), (A1)

We first work on the bias term Ujy7; then, substituting T;{8(z)} by (8) into Uy avoply ~e Assumption 1.(iv) and
replacing L(Z;, z,7y) with (3) and using (A.1), we have

Uonr =

M=
M~

Mir[}?i—;r B(Ziy) - B(2)} + Qit]Lit,z,y

1]
—_
~

Il
—_

q
X X*T {B(th) B(Z)} + Q,t]( itz ” L v 1m,itz*J + Op(“7”2)

t=1

Il
2|_ 2|_ 2|_
~ ~ ~
M'\!

M=
M”

q
Xi X" BZi) = BV Y Yl (U1, (A2)
m=1

1]
—_
l
—_

1 t

where Ly .y = L(Zi.2,7), Lie = WZi = 2) and Lyjee = 1Ziwm # = ) 12 oy 1Zirn = 2n) is an indicator function
which takes value 1 if Z;; and z differs only in their mth conr~~=~=* -~ 1 0 otherwise. Note that in the last equality,
by construction, {8(Z;;) — B(2)} lir; = Ogx1 and {B(Z;;) — B(Zis)} 1.7~ = Ziy) = 041 ; therefore, all the terms containing
o}, vanish. We continue the analysis of (A.2); to do so, w *~low |12] and use Lemma A2 of [23]. This lemma is a
three-step process given that the cardinality of D is finite.

Step 1: [0, 1]7 is a compact subset of R? with Euclideai. . ~m |, '
Step 2: Rewrite (A.2) as

i=1 t=1
I vy 10 1 T
i ﬁ;;(&t T %1‘ Jlms] [Xit T, & IX”]””] B(Zin) - p2)} Z)fm mitz*
1 &< g
= ﬁ Z Z 4 itXi—zr {lB(L,,) _ﬂ(Z)} Z lem,irz*
=1l t=" —
: q
+ N_ J T* Z thl 11[151 T+ Z isy m'sz {B(Z”) —ﬁ(z)} Z ymlm,itz*
it SH= —
\‘N q
— T ZJ 2 it T* Z Lisis {ﬂ(Zi,) _,B(Z)} Z ymlm,izz*
S =L el it 521 a
1 Iy T 1 T
— ﬁ 2 Z T l&‘ ttu {B(Z”) B(Z) Z,ym itz (AS)

=1 =1 it =1

where 1;;; = 1(Z = Z;;). For the last two terms of (A.3), note that we can write

1N111

N T q
1
E ﬁ A/J A lelmsx B(th) Z Ym m,itz* W Z Zﬂ(X,t)X;ﬂ(Z,, Z Ym mitz*
=1 = it g=1 =1 =1 m=1
1 N T 1 N T
= v _ T
=E| 7 ; ; it uﬁ(Zn)mZ:;ym mi || < ; ;E KX, ﬁ(Z,t)Zym itz

11



which can then be bounded above by

L53]

i=1 t=1

q
XiBZi) ) Y lmie

m=1

2}1/2
L& 172
)
{ﬁ 2. 2 Ellk; }
=1 t=1
where K}, = Z:l XisLiis/ T}, — u(Zi;). We now obtain that, for any givenz € D ~=~dy « [, 1]9,

1 N T 1 T
ﬁ Z Z F Z Xislyis X {ﬁ(zzr) B(2)} Z Y Ltz

N T q
1 .
= NT E E i Zi)" o Zi) = B2} § Ymlmjieze + 0p(IlYID.
i=1 1= m=1

12

h

ﬂ(z,»f it “} = 0, (A4

=1 t=1

ESn

Similarly, for the second term of (A.3), we have

1 LI &
NT Z Z T* Z Xis, 1 itis) 7 Z is, Litis, {B(Zir) = B(2)} ZJ o Amire

i=1 (=1 it g =1 T 5= -
N T

1 " 4 et
=% 2\ fL_l‘“(Zif)'“(Z”)T B(Zi) — B(2)} Z; Y Lmiezr + 0p(IlYID-

el

Z/ it — M(Zi)H Xt ﬂ(Zzz) B(Zi) — B(2)} 27171 m,itz* +0p(||7||)

1=

:/‘_f

for any given z € D and y € [0, 1]9. ¥/e then . ¢ need to consider
1 N T q
T 2 D XiXi BZ) Yk i = PR Z Yol

d N 1 r
= (NlT)z ? z Z B l{ zth,zt’,Bh(Zzz)Z?’m m,itz* P(Z )Zth(z )ﬁh(z )Zym itz }

X {X,»s,hxjs,gﬁh@,-s) D Wnlmjszs = PEOExne(@Bu() Z Yol joc H :
m=1 m=1

which can be bov .ded at ~ve by

N

! T
OB S catags (1 = s/

YD
(N7 'Elu_:ilts:l
d N T
< O >(NT)2 D00 D e = sh 0 = OflyIP/(NT)), - (A5)
hit=1i,j=1t:s=1

12



where ¢5; = 24+20/449)(4 1 6)/6; the first inequality comes from using Cauchy—Schwarz ine aality, and the second
inequality from the fact that 1(Z; = z) is uniformly bounded. Also, let X, be the Ath ele .c. * of X;; and Xy ;(z")
denotes the (A, £)th element of Zx(z*) for h, £ € {1,...,d}. Therefore, we have proved that

| LT g
7 0 2 XX i) = B} Y Yl
m=1

i=1 t=1

q
—p PENEX(Z) = px(@ux(@) THBE) - )} Z ol
m=1

q
=T1(@) BE) =1 D} Y Ynlmiw = b(y)  (A6)
m=1

for any given z € D and y € [0, 1]9. Therefore, (A.2) has the required e» jress i
Step 3: By Step 2, we can write
| MZ q
= 3 S XX ABZi) ~ BV Y ¥l = F ) + OnlyIP.
m=1

NT i=1 t=1

and for any y1, 7y, € [0, 119, we have ||b(y1) — b(y2)Il < O(1) |ly, - v2ll, which implies the third condition of Lemma A2
of [23] holds. Therefore, we can conclude that
Uavr = b) + 7 p(lyIP). (A7)
Now we obtain the limiting distribution of the quanti. NNTU w7 By substituting (8) into Uyy7 and replacing
L(Z;,z,y) with (3), we obtain
| & 1 LT
UlNT = ﬁ [Ti{ﬁ(z)}— [T {ﬁ(Z ,1\J N WE;X,V [ zt7+’;'ym mztz]+0p(||7” ) (AS)

i=1

Therefore, we first focus on the analysis . va,l Lr Xvil(Zy = 2)/(NT). We have

23 lf

T N r T
1 1
D Xz =2 = o Z( — qul,s )( = visli.;,i,] 1Zi=2.  (A9)
it g=1

=1 i=1 t=1 ” s=1

1
NT 4

™M=

]
—_

Applying Step 2, we can wr' ¢ t1, * leading term of VNT Uyt as

N N T
Z N Xl = 0 = Z D X = ux @} Vil (Zi = 2) + 0p(1 + IIYIP). (A.10)
i=1 *l

i=1 t=1

3\

Then we will focus on ;. ZT-_1 (i — ux@Wil(Z;; = z)/ VNT. For notational simplicity, denote

T

N
\/% Z Z it — pux(2)} Wil(Zyy = 2) = Z VTN(t) (A.11)

i=1 t=1

~

By Assumption ., and construction, Vr y(f) is stationary and @-mixing. Thus, the large-block and small-block
technique cai. be « |, '"=d in order to prove the normality below; see Lemma A.1 in [13], Theorem 2.21 in [11] and
Lemma A.1 in | 7. To employ this technique, we partition the set {1,..., T} into 2ky + 1 subsets with large blocks of
size {7, small bloc. s of size sy and the remaining set of size T — ky(¢{; + s7), where {7 and sy are selected such that

sy —> oo, sp/tyr =0, €7/T -0, kr={T/(Cr+ s7r)} = O(sy).
13



For instance, for any ¢ > 2, &7 = T¢"V/? sp = TV9: thus kr = O(T'/%) = O(sy). Forn € {1,. .,kr}, define

nlr+(n—-1)sr n(lr+srt) T

v, = Z Ven(, V, = Z V), V= Z (D).

t=(n-1)(tr+s7)+1 t=nlr+(n—1)sp+1 t=kp(br+ /)+1

Note that &(T) = o(1/T) and krsy/T — 0. Then, by the properties of @-mixing . ¥ usn,_ similar techniques as
the used in the previous results, we find

BV, + - + Vi I = Ollkrsr)/T} = o(1),  EIVIP = O(T —. -£7 /T} = o(1).

Therefore, we just need to focus the analysis on V; +---+V,,. Using the F iler-Li~deberg Central Limit Theorem,
we first need to show that V; + - - + V. are asymptotically mutuallly indepe1 ient. By Proposition 2.6 in [11] and the
condition of @-mixing coefficients, we have

kr
B(exp IV + -+ + Vi I = [ [ ElexpIValh|

n=1

Clkr =V a(sp) = 0, (A.12)

where C is a constant and « is the upper bounded of the a-mixing ~oefli ient defined in Assumptlon 1. (11) This
upper bound is achievable in the same way as Assumption A.4 . [7]. Therefore we obtain that V,,..., V}, are
asymptotically independent. Furthermore, as in the proof of Than=~= ~ 10@i) in [11], we have to show Feller’s finite
variance condition. We have

cov(vl)—cov{zvma)}—cov[ = - @) vl 2 = 9

)
=1 /NT o
1 N ({7

=57 Zl Zl e A(Zy = 2)] = 6 To(2) Uy + o)} /T, (A.13)
which implies that

kr

D cov(V) = kr (V1) = krbrTo(2) (s + o(D} /T = To(2). (A.14)

n=1

As a result, the Feller condition is satisf »d. " .ow - /e just need to check the Lindeberg condition, viz.

? E{[V,IP1(IV,]l = &)} -7 0, (A.15)

h=

where € > 0. Using the Cauch; -Scl ~arz inequality, we have
E{IV,I1PY IV, > &), < (EIV,IPY P Pr(IVall > &)}/ < CEIVIP P EIVIH', (A.16)

and by Lemma B.2 in [7],

LR < (6p )T |E

—ux@}vil(Zyy = z)

443/4
} < 00, (A.17)

N

Z —ux@}vil(Zyy = 2)

=1

Thus, E||V,|? = O\ ¢7/T)*?} and , E||V,,|]> = O(¢r/T) which, using (A.16), implies

47172
E|IV,I* < (¢r/T)|E } < co. (A.18)

E(IV,IP13IV, | > &)} < O{(tr/T)*?} = o(tr/T). (A.19)
14



Therefore,
kr

Z E{IV,IP11V,ll = &)} = olkrr/T) = o(1). (A.20)

n=1
Consequently, the Lindeberg condition is satisfied; using (A.6), (A.12), (A.14) and (/ 20) it is easy to see that if
vm — 0 we can conclude that, as (N, T) — (o0, 0),

VNT Uiyt ~ N[Oax1,To(2)]. (A2D)

Now we prove the consistency of D {B(z)}. Similar to the proof of (A.11)—(A.14,, " is straightforward to show that

} 1 &
D{B(2)} = NT Z T (BT {B(2)} = To(@){L, + 0p(1) . (A.22)
i=1

From (A.6), (A.21) and (A.22), and using the same arguments as in the | o7 . of ( 1.14) in [24], we can prove that
A= 0,(1/VNT), (A.23)

where A was defined in (12). Then applying Taylor expansion to “11) « "1 i- voking (A.6), (A.21) and (A.22), we get

RIB()) = ZZ[TT (B@Y A= 117 1B} AT/2] + 0,(1). (A.24)

By (12), and applying Taylor expansion again, it follows b .t

- TR . T BV T] {B(2)) AT
T B ZT BG) - T T @) T (B A+ Z TGO
Then, recalling (A.6), (A.21) and (A.22), we can prove that
N N
Z[nT oAl = Z T {BR)} A+ 0p(1), (A.25)
i=1 i=1
and
& -1y
A= BT B@Y D TiB@Y + op(NT) ). (A.26)

i=1 i=1

Relying on (A.6), (A.21)—-(A.22 , we can conlude the proof of Theorem 1 by applying the Cramér—Wold device. [

Proof of Theorem 2. Note tb .t, withu. « loss of generality, we can write

B B@ = [B@) ~ EB@IX)] + [E(B@IX) ~ B@)] = Linr + Loy (A.27)

To prove the desired re ,ult, unc *r Assumption 1, we will show first that Ly = I'~!(z)b(y) and second that VNT Iy ~=
N[del,Fl‘l(z)Fo(z)Fl‘ ‘7)],as ' N, T) — (o0, 0) and y; — 0. If we substitute (18) into (A.27), we obtain

A 1 ~ o~
Ly = BB X} - () = {ﬁ Z X XT LZin 2oy } Zx,, (X7pZi) + 01 - BMZinz V)| (A28)
We begin v ‘th che inverse term in (A.28). Replacing L(Z;, z, y) with (3), and using (A.5)—(A.6), we get
1 v vl 1 sy T T
NT Z XXy LZit,2,7) = NT Z XXy Lz + Op (IVI) = p p(Zx(2) — px(@Dux(@) "} + O, Ayl - (A.29)
it it

15



Then, using (A.29) we find that

1 - -
NT XXy LZis, 2,7) —=p P@{Ex(2) — ux@px(@) "} + O, (Iyl) = T (2). (A.30)

Continuing with the second term of (A.28), and using (A.2)—(A.7), we obtain

1 o q
NT Xil Xt B(Zir) + 0ir = B@YL(Zis, 2,7) —p T1(Z) {BE") = B(2)} Z Yl iz 4 <, P = by). (A31)
it m=1

In order to show the asymptotic behavior of I,y note that by (18) we have

-1
) ) | w i g
Linr = B(2) - E{p(2)IX, Z} = NT ; XX L(Zy,z,y) ] I8 >TJ XiVil(Zit,2,Y) ¢ » (A.32)

where the inverse term was already study; see (A.30). Therefore, we w.™ stuw, the asymptotic behavior of (A.32) by
studying the behavior of the second term. Based on the results obtained in ‘A.8)—(A.20) in the proof of Theorem 1
and (A.30) the following result holds

VNT Liny ~ N[Oga, T~ T 7 )],
Thus the proof of Theorem 2 is complete. U

Proof of Corollary 1. From Eq. (17) we know that T; {R(z)} = “{B(z)}, where

T
T;{B(2)) = Zin{f/{. FTRG(Zy = 2) + Op{1/(NT)).

t=1

Then, the proof of Corollary 1 is similar to the : = ~f of Theorem 1 by setting y; = --- =y, = 0. g

Proof of Corollary 3. From Eq. (19) we now u_t VI T {B(z) - B(z)} can be rewrite as

VNT (B0 )~ " 2)} - VNT {B(z) - B(2)} + Op(1/ VNT),

where B(z) is a frequency estimator i the same way as in 3(z) wheny; = - - - = 4 = 0. Then, the proof of Corollary 3
is similar to the proof of Theorem . by sc*ingy; = --- =y, = 0. g
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