
S C H E D A E I N F O R M A T I C A E

VOLUME 20 2011

On the number of clusterings in a hierarchical classification
model with overlapping clusters

Adam Roman, Igor T. Podolak, Agnieszka Deszyńska
Institute of Computer Science, Jagiellonian University,

Prof. Stanis lawa Lojasiewicza 6, 30–348 Cracow, Poland

e-mail: {roman,podolak}@ii.uj.edu.pl, adeszynska@gmail.com

Abstract. This paper shows a new combinatorial problem which emerged

from studies on an artificial intelligence classification model of a hierarchical

classifier. We introduce the notion of proper clustering and show how to count

their number in a special case when 3 clusters are allowed. An algorithm that

generates all clusterings is given. We also show that the proposed approach

can be generalized to any number of clusters, and can be automatized. Finally,

we show the relationship between the problem of counting clusterings and the

Dedekind problem.

1. Motivation

In machine learning, a classifier Cl has to assign an input attribute vector att to
one class from a predefined set K = {1, 2, . . . ,K}. Such a classifier is built using
a training set consisting of examples from set of pairs D = {(atti, xi)}Ni=1, where
xi is the correct classification. Several approaches exist which use neural networks,
decision trees, etc. One possibility is to combine results from several simple classifiers
Cli, which may be weak, i.e. classify only slightly better than a random classifier. For
a simple two–class problem, this would require correct classification of 1/2+ε fraction
of examples, while for a K–class problem, this would be, roughly speaking, above
1/K fraction of examples (it depends on the actual measure used). Such combination
may provide a classifier that would classify correctly almost all examples. One
well-known algorithm is the Adaboost which builds subsequent weak classifiers by
training them on training sets built from the original with example distribution
changed [1, 2].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/196611346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

138

We have proposed a different approach to the above problem by means of a
Hierarchical Classifier (HC) algorithm in which the training set is, upon building
subsequent classifiers, divided into overlapping subsets, which define subproblems to
be solved [3].

Definition 1. For a training set D = {(atti, xi)}Ni=1, xi ∈ K = {1, 2, . . . ,K}, where
K is the set of classes, a Hierarchical Classifier HC is defined as a tree structure

1. the root classifier Cl0 is a weak classifier into K classes

2. a clustering algorithm groups classes which were similarly classified by Cl0 into
set of J clusters C = {C1, . . . , CJ}, Cj ⊂ K,

3. for each cluster Cj

• a new training set Dj = {(atti, xi) ∈ D : xi ∈ Cj} is extracted from the
original set D

• a new classifier Clj is built in the same way.

HC may be built recursively until a low error is achieved. After HC is trained, the
output class for an input vector att is found using the following formula Cl(att) =
arg maxi∈K Cl(i|att), where

Cl(i|att) =
∑
j:i∈Cj

Clmod(Cj |att)Clj(i|att) (1)

and Clmod(Cj |att) stands for the probability of the selection of cluster Cj , provided
that the vector att is given into the classifier’s input. Clj is a classifier associated
with cluster Cj (that is, it is able to recognize only classes that belong to Cj).
By Clj(i|att) we mean the activation of Clj for i-th class, given att vector as the
classifier’s input. If a given classifier Cl does not divide its problem into subproblems
(i.e. Cl is a leaf in the classifiers tree), its answer is just a probability vector:
Cl(att) = [p(1)...p(K)].

A two level HC is depicted in Figure 1. The crucial part of the HC construction is
the clustering process. It is important to note, that the clusters in HC may overlap,
i.e. ∃ i, j, i 6= j : Ci ∩ Cj 6= ∅, none is a subset of another cluster, and none is
composed of all classes from K. Thus, it can be shown that addition of classifier
layer results in low error.

When studying the properties of HC, it became apparent that the overall ac-
curacy depends on the clustering found in the algorithm, reflected in the correct
value found with Clmod. The actual clusterings are found using machine learning
approaches [4, 3]. We have noted that the actual number of possible clusterings is
not known, and it became the motivation for this work.

Moreover, the clustering counting problem itself has not been pursued before and
can be treated as a purely mathematical problem. The cluster number sequences we
have obtained are not to be found in the integer sequence database [5].

In the following sections we shall define the problem of finding the number of
clusters formally and attempt to find an exact formula for a small number of clusters.
The algorithm for explicit selection of all possible clusterings will be shown.

139

Fig. 1. The Hierarchical Classifier HC

2. Problem formulation

Let us formulate the clusterings counting task in a formal way. Fix K,J ∈ N such
that K > J ≥ 2. Let K = {x1, . . . , xK} be the set of all classes. We need to define
a few types of families of sets.

Definition 2. A family C = {C1, C2, . . . , CJ} of J sets is the proper (K,J)-
clustering of K iff the following conditions are fulfilled:

∀i = 1, 2, . . . , J Ci (K = {x1, . . . , xK}, (2)⋃
C = K, (3)

∀i = 1, 2, . . . , J |Ci| ≥ 2, (4)

∀i, j = 1, 2, . . . , J Ci ⊆ Cj ⇒ i = j, (5)

∃i, j ∈ {1, . . . , J}, i 6= j : Ci ∩ Cj 6= ∅. (6)

If a family C fulfills (2),(3),(5),(6) and does not fulfill (4), we will call C the
improper (K,J)-clustering. If C fulfills (2),(3) and does not fulfill (5), we will call it
the (K,J)-clustering with inclusion. By a (K,J)-family over K we understand any
family of J sets fulfilling conditions (2) and (3).

Our main problem is, given K > J ≥ 2, to compute the number of all proper
(K,J)-clusterings. We denote this number by ϑ(K,J):

ϑ(K,J) = |{C : C is a proper (K,J)-clustering}| . (7)

We introduce the linear order <K on K and assume that if K = {x1, . . . , xK},
then x1 <K x2 <K · · · <K xK . If Y ⊆ K, then by max(Y) we denote the maximal
element in Y , with respect to relation <K.

140

3. Case J = 2

The case for J = 2 is easy to solve:

Theorem 3.
ϑ(K, 2) = 3S(K, 3), (8)

where S(K, 3) is the Stirling number of the second kind.

Proof. Consider any partition of K-element set into 3 nonempty subsets C1,
C2, C3. Such a partition defines three different proper (K, 2)-clusterings: C1 =
{C1 ∪ C2, C1 ∪ C3}, C2 = {C1 ∪ C2, C2 ∪ C3}, and C3 = {C1 ∪ C3, C2 ∪ C3}. On
the other hand, each proper (K, 2)-clustering can be identified with some partition
of K into 3 nonempty subsets with one of the subsets marked, representing the
intersection of clusters. �

In the following example we enumerate all 18 proper (4, 2)-clusterings.

Example 1. ϑ(4, 2) = 18.
{{1,2},{1,3,4}} {{1,2},{2,3,4}} {{1,3},{1,2,4}} {{1,3},{2,3,4}}
{{1,4},{1,2,3} {{1,4},{2,3,4}} {{2,3},{1,2,4}} {{2,3},{1,3,4}}
{{2,4},{1,2,3}} {{2,4},{1,3,4}} {{3,4},{1,2,3}} {{3,4},{1,2,4}}
{{2,3,4},{1,3,4}} {{2,3,4},{1,2,4}} {{2,3,4},{1,2,3}} {{1,3,4},{1,2,4}}
{{1,3,4},{1,2,3}} {{1,2,4},{1,2,3}}

For example, partition {{1}, {2, 3}, {4}} defines three different (4, 2)-clusterings,
namely {{1, 2, 3}, {1, 4}}, {{1, 2, 3}, {2, 3, 4}} and {{1, 4}, {2, 3, 4}}.

The sequence {ϑ(K, 2)}∞K=0 = (0, 0, 0, 3, 18, 75, 270, 903, . . .) is known as the
”number of connected 2-element antichains on a labeled n-set” [5]. For J = 3
we have not found a similar sequence; therefore the former one can be considered as
a special case (for J = 2) of the family {ϑ(K,J)}∞K=0 of sequences.

4. Analysis of the general case

Before we pass to the case of J = 3, we shall analyze the general case. The obser-
vations done in this section will be useful in constructing the recurrence relation for
J = 3.

We would like to express ϑ(K + 1, J) in terms of ϑ(L, J) for L ≤ K, or in terms
of other formulae given explicite.

Definition 4. Let C = {C1, C2, . . . , CJ} be a family of subsets such that
⋃
C =

{x1, x2, . . . , xK}. If there exists I ⊆ {1, 2, . . . , J} such that C′ =
⋃
i∈I{Ci∪{xK+1}}∪⋃

j∈{1,...,J}\I{Cj} is a proper (K+1, J)-clustering, then C will be called an extendable
family of sets.

141

Proposition 5. Let C and C′ be the families from Definition 4. If xK+1 belongs to

exactly one subset of C′, then
∑J
i=1 |Ci| > K.

Proof. Contrarily, suppose
∑J
i=1 |Ci| = K. Then C is a partition of K. But xK+1

belongs only to one element of C′, so C′ is also a partition – a contradiction with
(K + 1, J)-clustering of C′. �

Proposition 6. If C = {C1, . . . , CJ} is an extendable family, then all Ci’s are
different.

Proof. Let C′ be a family formed from C by adding a new element to some
elements of C. Suppose contrarily that there exist i, j, i 6= j, such that Ci = Cj .
But then, after adding a new xK+1 element, in C′ there exist two different elements
D1, D2 such that D1 = C1 or D1 = C1∪{xK+1} and D2 = C2 or D2 = C2∪{xK+1}.
In each of these four situations either D1 = D2 or D1 ⊂ D2 or D2 ⊂ D1 – a
contradiction with (K + 1, J)-clustering of C′. �

A proper (K + 1, J)-clustering can be build by adding a new xK+1 element
to some subsets of an extendable (K,J)-family over K = {x1, . . . , xK}. For some
extendable (K,J)-families over K, adding a new element can be done in more than
one way.

Lemma 7 characterizes the extendable (K,J)-families.

Lemma 7. Let C = {C1, . . . , CJ} be an extendable (K,J)-family over K = {x1,
. . . , xK}. Then C has exactly one of the following four properties:

(P1) C is a proper (K,J)-clustering;

(P2) C is an improper (K,J)-clustering;

(P3) C is a partition of K-element set into J nonempty subsets;

(P4) C is a (K,J)-clustering with inclusion, such that Ci ⊆ Cj ⊆ Ck ⇒ i = j ∨ j =
k.

Proof. It is clear that C cannot have two or more properties (P1)–(P4). Let
D = {D1, . . . , DJ} be a proper (K + 1, J)-clustering. We will show that removing
max(

⋃
D) = xK+1 from all subsets of D gives us a family with one of the properties

(P1)–(P4). Let δ = |{Di : xK+1 ∈ Di}|, ε = maxj∈{1,...,J}{|{Di : j ∈ Di}|}. It is
clear that both δ ≥ 1 and ε ≥ 1. Consider three possible cases:

Case 1. δ = 1. From Proposition 5 ε > 1, so in C there exist C1, C2, C1 6= C2 such that
C1 ∩ C2 6= ∅. If C1 ⊂ C2, then from Proposition 6 it is a strict inclusion and
because δ = 1, no two other subsets remain in the inclusion relation. In this
situation C has property (P4). If no two subsets are in the inclusion relation,
then C has property (P1) or (P2).

Case 2. ε = 1. Then C must be a partition and therefore has property (P3).

Case 3. δ > 1, ε > 1. The case reduces to Case 1 or there is more than one pair of sets
Ci, Cj such that Ci ⊂ Cj . Such a family cannot have properties (P1)–(P3).
Because of extendability, C must have the property (P4). �

142

Lemma 7 gives us the complete list of ways in which a proper (K+1, J)-clustering
can be formed. The only thing to do is to count the number of extendable families
with properties (P1)–(P4) and, for each of them, the number of ways in which a new
xK+1th element can be added to form a proper (K + 1, J)-clustering.

5. Case J = 3

We will use Lemma 7 to count the number of ways to extend each extendable family
into a proper (K + 1, 3)-clustering.

Lemma 8. Let K ≥ 3. There exist 7ϑ(K, 3) proper (K + 1, 3)-clusterings created by
extending some (K, 3)-family with property (P1).

Proof. Having a proper (K, 3)-clustering C = {C1, C2, C3} we must add xK+1 at
least to one of Ci’s and at most to all of them. So there are 7 ways to do that. �

Lemma 9. Let K ≥ 3. There exist 2K
3 3K−3K ·2K+6K proper (K+1, 3)-clusterings

created by extending some (K, 3)-family with property (P2).

Proof. Assume first K ≥ 4. For a (K, 3)-family C = {C1, C2, C3}, in order to
have property (P2), exactly one of the Ci’s must be a singleton. First let us count
the number of extendable families with property (P2). Let {C1, C2, C3} be such
a family and let |C1| = 1. We can choose C1 in K different ways and two other
sets must constitute a proper (K − 1, 2)-clustering, so there are Kϑ(K − 1, 2) such
families. For each of them xK+1 must be added to C1 in order to preserve (4). There
are 4 possibilities to add xK+1 to C2 and C3: xK+1 ∈ C2 \ C3, xK+1 ∈ C3 \ C2,
xK+1 ∈ C2 ∩ C3, xK+1 6∈ C2 ∪ C3. The number of desired clusterings is therefore

4Kϑ(K − 1, 2) = 4K
K−3∑
i=1

(
K − 1

i

)
· (2K−i−1 − 1) =

2K

3
3K − 3K · 2K + 6K.

Note, that if the family has property (P2), then necessarily K ≥ 4, but for K = 3
the formula is still valid, because 4 · 3 · ϑ(2, 2) = 0. �

Lemma 10. Let K ≥ 3. There exist 2
33K −

(
K
4 + 2

)
· 2K +K + 2 proper (K + 1, 3)-

clusterings created by extending some (K, 3)-family with property (P3).

Proof. Let {C1, C2, C3} be a partition of K = {x1, . . . , xK}. Consider 3 possible
cases.

Case 1. |C1| = 1, |C2| = 1, |C3| > 1. Let K ≥ 4. Two singleton sets, C1 and C2 can
be chosen in α =

(
K
2

)
ways and C3 is uniquely determined. xK+1 must be

added to C1 and C2 in order to preserve (4). It can be added or not to C3, so
eventually we have 2

(
K
2

)
ways to create a proper (K + 1, 3)-clustering.

143

Case 2. |C1| = 1, |C2| > 1, |C3| > 1. Let K ≥ 5. C1 can be chosen in K ways.
C2 and C3 form a partition of a K − 1-element set. C2 can be chosen in∑K−3
i=2

(
K−1
i

)
= 2K−1 − 2K ways, then C3 is uniquely determined. Because

the order of C2 and C3 is not important, we must divide the value by 2, so
we have β = K

2 (2K−1 − 2K) partitions with exactly one singleton. For each
such an extendable family xK+1 can be added in 3 ways: it must be added to
C1 and it must be added to at least one of the sets C2, C3. Finally, we obtain
3K
2 (2K−1− 2K) = 3K

4 2K − 3K2 ways to create a proper (K + 1, 3)-clustering.

Case 3. |Ci| > 1 ∀i = 1, 2, 3. Let K ≥ 6. For K ≥ 6 there are S(K, 3) − α − β such
partitions. For each of them, xK+1 must be added to at least two subsets, so
we have 4 possibilities of doing this and 4(S(K, 3) − α − β) = 2

3 · 3
K − (K +

2) · 2K + 2K2 + 2K + 2 proper (K + 1, J)-clusterings.

Getting all three cases together we obtain the desired number of clusterings for
K ≥ 6. Notice that the formula in Case 2. is still valid for K = 4 because it equals
3·4·22

4 − 3 · 42 = 0. Also the formula in Case 3. is still valid for K = 4 or K = 5. In
both cases it equals 0. The formula from the thesis is also valid for K = 3 and it
equals 1: in order to form a proper (4, 3)-clustering from the partition of 3-element
set into 3 singletons we need to add xK+1 to all three sets and we can do it only in
one way. Therefore the thesis holds for all K ≥ 3. �

Lemma 11. Let K ≥ 3. There exist 2 · 5K − 3 · 4K − 5
2 · 3

K +
(
6− K

2

)
· 2K + 2K − 5

2
proper (K + 1, 3)-clusterings created by extending some (K, 3)-family with property
(P4).

Proof. Each extendable (K, 3)-family C = {C1, C2, C3} with property (P4) and
such that C1 ⊂ C2 can be uniquely represented by a ’multi-characteristic’ vector
p(C) = (p1, p2, . . . , pK) in which pi ∈ {A,B,C,D,E} represents the position of xi in
C in the following way:

pi = A ⇔ xi ∈ C1 ∩ C2 ∩ C3,

pi = B ⇔ xi ∈ C2 ∩ C3 ∧ xi /∈ C1,

pi = C ⇔ xi ∈ C1 ∩ C2 ∧ xi /∈ C3,

pi = D ⇔ xi ∈ C3 ∧ x3 /∈ C1 ∪ C2,

pi = E ⇔ xi ∈ C2 ∧ x3 /∈ C1 ∪ C3.

Note, that no other possibility is allowed, because C1 ⊂ C2 implies that if xi ∈ C1

then necessarily xi ∈ C2 and thus xi ∈ C1 ∪ C2 ∪ C3 for all i = 1, 2, . . . ,K. It is
clear that there is a well defined bijection between the set of all ’multi-characteristic’
vectors {A,B,C,D,E}K and the set of all (K, 3)-families (C1, C2, C3) with all Ci’s
ordered, and such that C1 ⊆ C2. We will count the number of all vectors representing
different extendable (K, 3)-families with property (P4). For the sake of simplicity,
for a given vector p we will use A (resp. B,C,D,E) for denoting the number of pi = A
(resp. B, C, D, E) in p. This will not lead to any misunderstanding. Naturally, for
each p we have A + B + C + D + E = K. For a (K, 3)-family to be an extendable
one with property (P4) some conditions must be fulfilled and these conditions can
be transformed into some algebraic relations concerning A,B,C,D,E values. The

144

set of all conditions and the corresponding algebraic relations are given below.

C1 (C2 ⇒ B + E > 0 (9)

|C1| ≥ 1 ⇒ A+ C > 0 (10)

C3 6⊂ C1 ⇒ B +D > 0 (11)

C2 6⊂ C3 ⇒ C + E > 0 (12)

¬(C1 ⊆ C3 ⊆ C2) ⇒ C +D > 0. (13)

Conditions (9) and (10) come directly from the assumptions on the (K, 3)-family.
Conditions (11)–(13) come from the property (P4) which says that 3 different sets in
C cannot form a descending family (w.r.t. the inclusion). We will count the number
of vectors fulfilling (9)–(13). There are 12 possible cases (see Fig. 2):

(BC) C3 = C2 \ C1,

(ABC) C2 = C1 ∪ C3, C1 ∩ C3 6= ∅,

(ADE) C2 \ C3 6= ∅, C3 \ C2 6= ∅, C2 ∩ C3 = C1,

(BCD) C2 (C1 ∪ C3, C1 ∩ C3 = ∅,

(BCE) C1 ∩ C3 = ∅, C1 ∪ C3 (C2,

(CDE) C3 ∩ C2 = ∅,

(ABCD) C3 ∩ C1 6= ∅, C1 \ C3 6= ∅, C2 \ C1 (C3, C3 \ C2 6= ∅,

(ABCE) C3 ∩ C1 6= ∅, C3 (C2,

(ABDE) C1 (C3, C3 ∩ (C2 \ C1) 6= ∅, C3 \ C2 6= ∅,

(ACDE) C3 ∩ C1 6= ∅, C1 \ C3 6= ∅, C3 ∩ (C2 \ C1) = ∅, C3 \ C2 6= ∅,

(BCDE) C3 ∩ C1 = ∅, C3 ∩ C2 6= ∅, C3 \ C2 6= ∅, C2 \ (C1 ∪ C3) 6= ∅,

(ABCDE) C3 ∩ C1 6= ∅, C1 \ C3 6= ∅, C3 ∩ (C2 \ C1) 6= ∅, C2 \ (C1 ∪ C3) 6= ∅,
C3 \ C2 6= ∅.

If vector p falls under the case (X), we will say that p is of type (X). The case
number symbolically describe the set of allowed values in p falling under that case.
For example, if p is of type (BC), then p contains only B’s and C’s and B,C > 0.
Note, that in some cases two different vectors can represent the same (K, 3)-family.
This case holds if there is a ”symmetry” between C1 and C3 or between C2 and
C3. For example, vectors (A,B,C) and (A,C,B) represent one family in two ways:
in the first x2 ∈ C3, x3 ∈ C1 and in the second x2 ∈ C1, x3 ∈ C3. After changing
C1 with C3 the structure of the family remains the same. Such a symmetry occurs
in cases (BC), (ABC), (ADE), (BCE), (ABCE) and (ABDE), so in each of these
cases the number of all different vectors of a given type must be divided by 2. Let
α(X) denote the number of proper (K + 1, 3)-clusterings created from (K, 3)-family
of type (X). Now we will count α(X) for all 12 cases. In all of them, in order to
create a proper (K + 1, 3)-clustering, a new element xK+1 cannot be added to C2

145

Fig. 2. All possible cases

and must be added to C1, because of inclusion C1 (C2. Therefore, the number of
ways of creating a proper (K + 1, 3)-clustering from a given family depends only on
the fact whether we have to add xK+1 to C3 or we may do this. In the first case
there is only one way to create a proper clustering; in the second one there are two
ways of doing that.

Case (BC). There are 2K−2
2 different (K, 3)-families of type (BC). In order to

extend it into a proper (K + 1, 3)-family we must add xK+1 to C3; therefore we can

do it in only one way, so α(BC) = 1 · 2
K−2
2 .

Cases (ABC), (ADE) and (BCE). These cases are identical modulo type names.
From the inclusion-exclusion principle we have that there are 3K−

(
3
2

)
2K+

(
3
1

)
vectors

of type (ABC). In cases (ABC) and (BCE) xK+1 must be added to C3; in (ADE)
it cannot be added, therefore in each of these cases there is only one possibility of
adding xK+1. Because of the symmetry between C1 and C3 in (ABC) and (BCE)
and between C2 and C3 in (ADE) we have α(ABC) = α(ADE) = α(BCE) =

1 · 3
K−(3

2)2
K+(3

1)
2 .

Case (BCD). xK+1 can be added or not to C3; the case is not a symmetric one,
so α(BCD) = 2α(ADE).

Case (CDE). This is a nonsymmetric case. Consider two subcases: |C3| = 1 and
|C3| > 1. If |C3| = 1, then we must add xK+1 to C3 and there are 1 ·K(2K−1 − 2)
vectors of this type. If |C3| > 1 then xK+1 can be added or not to C3 and there are∑K−2
i=2

(
K
i

)
(2K−i−2) vectors of this type (here i goes through the number of elements

in C3). Eventually, we have α(CDE) = K(2K−1 − 2) + 2 ·
∑K−2
i=2

(
K
i

)
(2K−i − 2) =

2 · 3K − (K2 + 6) · 2K + 2K + 6.
Cases (ABCD), (ACDE) and (BCDE). These are nonsymmetric cases, identical

modulo type names, and xK+1 can be added or not to C3. We have α(ABCD) =
α(ACDE) = α(BCDE) = 2(4K −

(
4
3

)
3K +

(
4
2

)
2K −

(
4
1

)
).

146

Cases (ABCE) and (ABDE). We have a symmetry between C1 and C3 in (ABCD)
and between C2 and C3 in (ABDE). The new xK+1 element must be added to C3 in
(ABCE) and cannot be added to C3 in (ABDE). In both cases there is only one way

to create a proper clustering and α(ABCE) = α(ABDE) =
4K−(4

3)3
K+(4

2)2
K−(4

1)
2 .

Case (ABCDE). In this nonsymmetric case xK+1 can be added or not to C3, so
α(ABCDE) = 2(5K −

(
5
4

)
4K +

(
5
3

)
3K +

(
5
2

)
2K −

(
5
1

)
).

Let I be the set of all 12 possible types. Getting all the cases together we obtain∑
X∈I

α(X) = 2 · 5K − 3 · 4K − 5

2
· 3K +

(
6− K

2

)
· 2K + 2K − 5

2
,

and notice that the formula is also valid for K = 4, 5, therefore it is valid for each
K ≥ 4. This ends the proof of Lemma 10. �

Now we are ready to state the main theorem.

Theorem 12.

ϑ(3, 3) = 1

ϑ(K + 1, 3) = 7ϑ(K, 3) + 2 · 5K − 3 · 4K +
4K − 11

6
· 3K + (4− 15K

4
) · 2K

+9K − 1

2
,

where K ≥ 3.

Proof. The proof comes directly by applying Lemmata 7 and 8–11. �
In Tab. 1 some values of the ϑ(K, 3) are given. It can be noticed, that the growth

rate is exponential and is O(nK) where n is the number of all properties of elements
of multi-characteristic vector p(C) (see Lemma 11). It can be easily shown that for
arbitrary J ≥ 3 value n = 2J−1 + 2J−2 + 1. In other words, the exponent in the
growth rate is the multiple of number of clusters J and number of classes K.

Tab. 1. Some first values of ϑ(K, 3).

K 3 4 5 6 7 8 9 10
ϑ(K, 3) 1 38 675 7 840 74 291 630 546 5 014 843 38 290 580

6. Algorithm for clusterings generation for J = 3

Generation of all possible (K, 3)-clusterings can be done in several ways. The sim-
plest one is to generate all 0-1 matrices MK×3, representing clusterings (that is,

147

Mi,j = 1⇔ xi ∈ Cj) and for each matrix check if it fulfills all assumptions for clus-
tering to be proper. But basing on Lemma 7 and the proof of Theorem 12 we can
construct an algorithm which produces all possible (K, 3)-clusterings and nothing
more. This algorithm is shown in listing 4. It uses four procedures, corresponding
to Lemmata 8–11. The procedures are shown in listings 1–3. The fourth procedure
is described in an informal way, in order to simplify the considerations.

Algorithm 1 GenProperClusterings

1: INPUT: X = {x1, . . . , xK}
2: OUTPUT: Q – the set of all (K, 3)-proper clusterings created from extendable

(K − 1, 3) families with property (P1).
3: if K < 3 then return ∅;
4: if K == 3 then return {{x1, x2}, {x1, x3}, {x2, x3}}
5: else
6: P =GenProperClusterings(K − 1, X \ {xK});
7: Q = ∅;
8: foreach p = {C1

p , C
2
p , C

3
p} ∈ P do

9: Q = Q ∪ {{C1
p ∪ {xK}, C2

p , C
3
p}} ∪ {{C1

p , C
2
p ∪ {xK}, C3

p}};
10: Q = Q ∪ {{C1

p , C
2
p , C

3
p ∪ {xK}}} ∪ {{C1

p ∪ {xK}, C2
p ∪ {xK}, C3

p}};
11: Q = Q∪ {{C1

p ∪ {xK}, C2
p , C

3
p ∪ {xK}}} ∪ {{C1

p , C
2
p ∪ {xK}, C3

p ∪ {xK}}};
12: Q = Q ∪ {{C1

p ∪ {xK}, C2
p ∪ {xK}, C3

p ∪ {xK}}};
13: return Q;

Algorithm 2 GenImproperClusterings

1: INPUT: X = {x1, . . . , xK}
2: OUTPUT: Q – the set of all (K, 3)-proper clusterings created from extendable

(K − 1, 3) families with property (P2).
3: if K ≤ 4 then return ∅
4: else
5: Q = ∅;
6: for i = 1 to K − 1
7: R =Gen2ProperClustering(X \ {xi, xK});
8: foreach r = {C1

r , C
2
r} ∈ R do

9: Q = Q ∪ {{C1
r ∪ {xK}, C2

r , {xi, xK}}} ∪ {{C1
r , C

2
r ∪ {xK}, {xi, xK}}};

10: Q = Q ∪ {{C1
r , C

2
r , {xi, xK}}} ∪ {{C1

r ∪ {xK}, C2
r ∪ {xK}, {xi, xK}}};

11: return Q;

Procedure Gen2ProperClustering(X) generates all proper (K, 2)-clusterings.
It can be simply implemented in a following way: for a given X generate all Y ⊂ X
such that 1 ≤ |Y | ≤ |X| − 2, then generate all partitions {P,R} of X ⊂ Y for 2
subsets and put C1 = P ∪ Y , C2 = R ∪ Y . Algorithms for generating subsets and
partitions of sets are well-known (see for example [6]).

The idea of the GenInclusionClusterings is similar to the one from algo-
rithms 1–3. As the input the algorithm receives {x1, . . . , xK} and generates all
proper (K, 3)-clusterings from extendable (K − 1, 3) families with property (P4).

148

Algorithm 3 GenPartitionClusterings

1: INPUT: X = {x1, . . . , xK}
2: OUTPUT: Q – the set of all (K, 3)-proper clusterings created from extendable

(K − 1, 3) families with property (P3).
3: if K < 3 then return ∅
4: else
5: Q = ∅;
6: foreach p = {C1, C2, C3} – partition of X \{xK}, such that |C1| ≤ |C2| ≤ |C3|
7: if |C1| = |C2| = |C3| = 1 then
8: return {{x1, x4}, {x2, x4}, {x3, x4}};
9: if |C1| = |C2| = 1, |C3| > 1 then return

10: {{C1 ∪ {xK}, C2 ∪ {xK}, C3}} ∪ {{C1 ∪ {xK}, C2 ∪ {xK}, C3 ∪ {xK}}};
11: if |C1| = 1, |C2| > 1 then
12: return {{C1 ∪{xK}, C2 ∪{xK}, C3}}∪{{C1 ∪{xK}, C2, C3 ∪{xK}}}∪
13: ∪{{C1 ∪ {xK}, C2 ∪ {xK}, C3 ∪ {xK}}};
14: if |C1| > 1 then
15: return {{C1 ∪ {xK}, C2 ∪ {xK}, C3}} ∪ {{C1 ∪ {xK}, C2, C3 ∪ {xK}∪
16: ∪{{C1, C2∪{xK}, C3∪{xK}}}∪{{C1∪{xK}, C2∪{xK}, C3∪{xK}}};

For each of the 12 cases (BC), (ABC), (ADE),. . . , (ABCDE), defined in the proof of
Lemma 11, a set S of K − 1-element vectors is generated. Vector corresponding to
a given case contains at least one of each property defined in this case and does not
contain any other properties. In this stage symmetries are excluded; for example, in
case (BC) vectors (B,B,C,B,C) and (C,C,B,C,B) represent the same (5, 3)-clustering
with inclusion. Therefore one of this vectors is excluded from S. For each case we
know what are the possibilities of adding a new element xK . We perform all allowed
adding operations for all vectors in S. For example, for vector (BBCBC) we know
that because it is of type (BC), xK must be added to C1 and C3, and cannot be
added to C2 – we have only one way to add xK and we obtain a proper (K, 3)-
clustering {C1 ∪ {xK}, C2, C3 ∪ {xK}}. The other cases are dealt with in a similar
way.

Algorithm 4 GenAllClusterings

1: INPUT: X = {x1, . . . , xK}
2: OUTPUT: Q – the set of all (K, 3)-proper clusterings
3: Q = ∅;
4: Q = Q∪GenProperClusterings(X);
5: Q = Q∪GenImproperClusterings(X);
6: Q = Q∪GenPartitionClusterings(X);
7: Q = Q∪GenInclusionClusterings(X);
8: return Q;

149

7. Dedekind problem

The Dedekind problem concerns determining exact formula for the number of mono-
tonic boolean functions with fixed number of variables. These numbers – known as
Dedekind numbers – form a rapidly growing sequence (denoted by ψ(n) where n
is the number of function variables) and also define the numbers of antichains of
n-element set.

Let us introduce the necessary definitions.

Definition 13. A partially ordered set is a pair P = (X,v) where X is a set
and v is a binary relation over X which fulfils following conditions:

1. ∀x∈X x v x (reflexivity),

2. ∀x,y∈X x v y ∧ y v x⇒ x = y (antisymmetry),

3. ∀x,y,z∈X x v y ∧ y v z ⇒ x v z (transitivity).

An example of partially ordered set is a power set with inclusion relation.

Definition 14. A chain in a partially ordered set P = (X,v) is a subset A of set
X whose any pair of elements are comparable, i.e.

∀x,y∈A x v y ∨ y v x.

Definition 15. An antichain in a partially ordered set P = (X,v) is a subset A
of set X in which any two elements are not comparable, i.e.

∀x,y∈A x 6v y ∧ y 6v x.

Definition 16. A boolean function is a function f : X → Y , where X ⊂ {0, 1}n
and Y ⊂ {0, 1}. A boolean function is called monotonic if

∀a1,...,an,b1,...,bn∈{0,1} a1 6 b1, . . . , an 6 bn ⇒ f(a1, . . . , an) 6 f(b1, . . . , bn).

Monotonic boolean functions are an important class of boolean functions. Their
characteristic is that they can be defined by composition of logical conjunctions and
disjunctions, but not negations.

The problem of determining ψ(n) was formulated in 1897 by Richard Dedekind
[7]. He solved it for values n 6 4. In 1940 Church [8] presented the solution for
n = 5, whereas Ward [9] for n = 6.

More general properties were proved later. In 1953 Yamamoto [10] showed that
ψ(n) is even for even values of n. In 1954 Gilbert [11] proved the inequality

2(n
[n/2]) 6 ψ(n) 6 n(n

[n/2])+2,

while Yamamoto [12]

log2 ψ(n) <

(
n

[n/2]

)(
1 +O

(
n−1

))
log2

√
πn

2
.

150

In [13] Korobkov improved the upper bound of ψ(n) for 24.23(
n

[n/2]). In 1966

Hansel [14] managed to move it to 3(n
[n/2]).

In Kleitman’s paper [15] it is shown that

2(1+αn)(n
[n/2]) 6 ψ(n) 6 2(1+βn)(n

[n/2]),

where αn = ce−
n
4 , βn = c′(log n)/n

1
2 .

The more precise estimation was reached by Korshunov [16]:

ψ(n) ∼ 2(n
[n/2]) exp

((
n

n
2 − 1

)(
1

2
n
2

+
n2

2n+5
− n

2n+4

))
for even n and

ψ(n) ∼ 2 · 2(n
(n−1)/2) exp

((
n

(n− 3)/2

)
a(n) +

(
n

(n− 1)/2

)
b(n)

)
for odd n, where

a(n) =
1

2(n−3)/2
− n2

2n+6
− n

2n+3

whereas

b(n) =
1

2(n+1)/2
+

n2

2n+4
.

The exact formula of Dedekind numbers was obtained by Kisielewicz [17]:

ψ(n) =
22

n∑
k=1

2n−1∏
j=1

j−1∏
i=0

1− bki bkj
log2 i∏
m=0

(
1− bim + bimb

j
m

) ,

where bki = [k/2i] − 2[k/2i+1]. Unfortunetely, it requires too much calculation to
prove usable for n > 5.

Similar result was presented in [18]:

ψ(n) =
22

n∑
k=1

2n−1∏
j=1

j−1∏
i=0

1− bki
(
1− bkj

) log2 i∏
m=0

(
1− bim

(
1− bjm

)) .

Despite the differences ((1− bkj) instead of bkj) both formulas give the same values.
The first one was found by counting antichains and the second by monotonic boolean
functions (and this was the source of the difference).

Values of Dedekind numbers known today are presented in Table 2.

One of general methods of counting monotonic boolean functions of n variables
is to divide them into smaller, disjoint groups and to count objects in every group.
Two sample classification criteria [21] are presented below.

151

Tab. 2. Known values of Dedekind numbers.

n ψ(n) Who
0 2 R.Dedekind, 1897 [7]
1 3 R.Dedekind, 1897 [7]
2 6 R.Dedekind, 1897 [7]
3 20 R.Dedekind, 1897 [7]
4 168 R.Dedekind, 1897 [7]
5 7581 R. Church, 1940 [8]
6 7828354 M. Ward, 1946 [9]
7 2414682040998 R. Church, 1965 [19]
8 56130437228687557907788 D. Wiedemann, 1991 [20]

Tab. 3. Number of monotonic boolean functions mapping determined number of
input states into 1 for n = 3.

k number of functions
0 1
1 1
2 3
3 3
4 4
5 3
6 3
7 1
8 1

Total: 20

7.1. Number of input states which are mapped into 1.

Having determined the number of domain’s elements (denoted by k, where k ∈
{0, . . . , 2n}) we count monotonic functions which map into 1 exactly that number
of input states.

Sample values for n = 3, 4, 5 are presented in Tabs resp. 3, 4, 5.
As can be seen, the partition is symmetrical.

7.2. Additional parameter

Having the second parameter (determining the number of sets in the antichain) fixed,
it is possible to obtain the exact formula for Dedekind number:

152

Tab. 4. Number of monotonic boolean functions mapping determined number of
input states into 1 for n = 4.

k number of functions
0 1
1 1
2 4
3 6
4 10
5 13
6 18
7 19
8 24
9 19
10 18
11 13
12 10
13 6
14 4
15 1
16 1

Total: 168

Tab. 5. Number of monotonic boolean functions mapping determined number of
input states into 1 for n = 5.

k number of events with k states k number of events with k states
0 1 17 605
1 1 18 580
2 5 19 530
3 10 20 470
4 20 21 387
5 35 22 310
6 61 23 215
7 95 24 155
8 155 25 95
9 215 26 61
10 310 27 35
11 387 28 20
12 470 29 10
13 530 30 5
14 580 31 1
15 605 32 1
16 621 Total: 7581

153

ψ(n, 0) = 1,

ψ(n, 1) = 2n,

ψ(n, 2) = 2n · 2n − 1

2
− 3n + 2n,

ψ(n, 3) = 2n · (2n − 1)(2n − 2)

6
− 6n + 5n + 4n − 3n.

The general procedure of obtaining the formula for ψ(n, k) with k fixed was presented
by Kilibarda i Jovoviæ in [22] (2003). They showed formulas for n 6 10. The
problem was reduced to the issue of counting bipartite graphs with fixed number of
vertices and edges and number of 2-colouring of determined type. The generalization
of this method can be found in [23].

The difficulty is that the number of sets forming the antichain – on the basis of
Sperner’s theorem cited below – can be very large.

Definition 17 (Sperner family). Sperner family of subsets of set X is an antichain
in the partially ordered set (P (X),⊆) (where P (X) denotes the family of all subsets
of X).

Theorem 18. If A is a Sperner family in set X then

|A| 6
(
|X|
b|X|/2c

)
.

8. Connection between Dedekind problem and number of clusterings
problem

We will show how Dedekind problem and the number of clusterings problem can
be connected. In order to do that, we will express Dedekind number by means of
ϑ(K,J).

Let A(n) denote the set of all antichains of the power set of n-element set (ψ(n) =
|A(n)|). We will divide the antichains with regard to some of their properties, namely
– form of their union, existence of nonempty intersection between their elements and
including singletons.

8.1. Types of antichains

We begin by identifing the following groups of antichains:

154

1. with elements having nonempty intersections, i.e.

A1(n) = {A ∈ A(n) : ∃a,b∈A a ∩ b 6= ∅}.

We will denote its number by ψ1(n). Among them we will distinguish an-
tichains:

• not containing singletons (=: ψ11(n))

• containing singletons (=: ψ12(n))

2. with disjoint elements (=: ψ2(n)).

The total number of antichains will take form

ψ(n) = ψ1(n) + ψ2(n) = ψ11(n) + ψ12(n) + ψ2(n).

8.2. Number of antichains of each type

8.2.1. ψ11(n)

ψ11(n) determines the number of antichains in which at least two elements have
nonempty intersection and no element is a singleton. Such families satisfy the proper-
clusterings conditions with various K and J .

When K is determined J can not be greater than
(

K
bK/2c

)
(from Sperner theorem

(18)). Let N denote this number.

The number of such families can be expressed as

ψ11(n) =

(
n

3

)
ϑ(3, 2) + · · ·+

(
n

i

) N∑
j=2

ϑ(i, j) + · · ·+
(
n

n

) N∑
j=2

ϑ(n, j) =

=
n∑
i=3

(
n

i

) N∑
j=2

ϑ(i, j) (14)

Explanation:

•
(
n
i

)
– choice of i elements being union of antichain elements,

•
∑N
j=2 ϑ(i, j) – possible numbers of antichain elements.

The minimimum number of elements in set for which there exists at least one an-
tichain fulfiling required conditions is 3 hence the initial value of i is 3.

155

8.2.2. ψ12(n)

Element belonging to singleton – from antichain definition – can not belong to its
any other elements. Because of that fact the only thing to do to determine ψ12(n)
with i singletons (i = 1 . . . n) is to multiply the number of possible choices of i
singletons by ψ12(n − i) (the number of antichains with no singletons for properly
reduced set):

ψ12(n) =

(
n

1

)
ψ11(n− 1) + · · ·+

(
n

i

)
ψ11(n− i) + · · ·+

(
n

n

)
ψ11(0) =

=
n∑
i=1

(
n

i

)
ψ11(n− i). (15)

8.2.3. ψ2(n)

The last group of antichains is formed by families which elements have no intersec-
tions. These can be counted easily using the formula for the number of partitions of
k-element set (Bk denotes Bell number):

ψ2(n) =

(
n

1

)
B1 + · · ·+

(
n

i

)
Bi + · · ·+

(
n

n

)
Bn =

=
n∑
i=1

(
n

i

)
Bi. (16)

In above sum i denotes the number of elements covered by antichain.

8.3. Final formula

Joining above formulas together we obtain:

ψ(n) = ψ11(n) + ψ12(n) + ψ2(n) =

=
n∑
i=3

(
n

i

) N∑
j=2

ϑ(i, j) +
n∑
i=1

(
n

i

)
ψ11(n− i) +

n∑
i=1

(
n

i

)
Bi =

=
n∑
i=3

(
n

i

) N∑
j=2

ϑ(i, j) +
n∑
i=1

(
n

i

)n−i∑
k=3

(
n− i
k

) N∑
j=2

ϑ(k, j) +Bi

 , (17)

where Bi – is i-th Bell number.

156

9. Final remarks

In this paper we presented a method for counting all proper clusterings for a hi-
erarchical classifier model with 3 clusters. This method, described in section 5.,
can serve as the basis for the computer assisted method for deriving the formula
for (K,J) for any J ≥ 3. Properties (P1)–(P4) give a set of properties like A–E
in Lemma 11. These properties allow to derive equations, like (9)–(13), which can
be used to generate conditions like (BC),(ABC),. . . ,(ABCDE) in the case J = 3.
For each such case a machine can check if there are any ”symmetries” and what
is the number of possibilities of adding a new, xK+1 element. A formula counting
the number of proper vectors can be attached to each case. From these equations
and from Lemma 7 we can easily obtain a general formula for ϑ(K,J). We also
show that the considered problem is equivalent with Dedekind problem of count-
ing Boolean functions by expressing the number of Boolean functions in terms of θ
function values.

10. References

[1] Schapire R. E.; The strength of weak learnability, Machine Learning, 5, 1990, pp. 197–
227.

[2] Eibl G., Pfeiffer K.-P.; Multiclass boosting for weak classifiers, Journal of Machine
Learning, 6, 2005, pp. 189–210.

[3] Podolak I. T.; Hierarchical Classifier with Overlapping class groups, Expert Systems
with Applications, 34(1), 2008, pp. 673–682.

[4] Podolak I. T.; Hierarchical rules for a hierarchical classifier, Adaptive and Natural
Computing Algorithms, 4431, 2007, pp. 749–757.

[5] On-Line Encyclopedia of Integer Sequences. Available via http://www.research.att.

com/~njas/sequences.

[6] Lipski W.; Kombinatoryka dla programistow, PWN, 2007.

[7] Dedekind R.; Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler,
Festschrift Hoch. Braunschweig u. ges. Werke(II), 1897, pp. 103–148.

[8] Church R.; Numerical analysis of certain free distributive structures, Duke Math. J.,
6(3), 1940, pp. 732–734.

[9] Ward M.; Note on the order of free distributive lattices, Bull. Amer. Math. Soc., 52,
1946, pp. 423.

[10] Yamamoto K. A.; A note on the order of free distributive lattices, The Science Reports
of the Kanazawa University, 2, 1953, pp. 5–6.

[11] Gilbert E. N.; Lattice theoretic properties of frontal switching functions, J. Math. Phys.,
33(1), 1954, pp. 57–67.

157

[12] Yamamoto K. A.; Logaritmic order of free distributive lattice, J. Math. Soc. Japan,
6(3–4), 1954, pp. 343–353.

[13] Korobkov B. K.; On monotone functions in Boolean algebra (in Russian), Problemy
Kibernet., 13, 1965, pp. 5–28.

[14] Hansel G.; Sur le nombre des fonctions boolennes monotones de n variables, C.C.
Acad. Sci Paris, 262(20), 1966, pp. 1088–1090.

[15] Kleitman D.; On Dedekind’s problem: The number of monotone Boolean functions,
Proc. Amer. Math. Soc., 21, 1969, pp. 677–682.

[16] Korshunov A. D.; The number of monotone Boolean functions, Problemy Kibernet.,
38, 1981, pp. 5–108.

[17] Kisielewicz A.; A solution of Dedekind’s problem on the number of isotone Boolean
functions, Journal für die Reine und Angewandte Mathematik, 386, 1988, pp. 139–144.

[18] Tombak M., Isotam A., Tamme T.; On Logical Method for Counting Dedekind Num-
bers, Lecture Notes in Computer Science, 2138, 2001, pp. 424–427.

[19] Church R.; Enumeration by rank of the elements of the free distributive lattice with
seven generators, Not. Amer. Math. So., 12, 1965, pp. 724.

[20] Wiedemann D.; A computation of the eighth Dedekind number, Order, 8, 1991, pp. 5–6.

[21] Dedekind’s Problem. Available via http://www.mathpages.com/home/kmath030.htm.

[22] Kilibarda G., Jovović V.; On the number of monotone Boolean functions with fixes
number of lower units (in Russian), Intellektualnye sistemy, 7, 2003, pp. 193–217.

[23] Kilibarda G., Jovović V.; Antichains of Multisets, Journal of Integer Sequences, 7,
2007.

Received September 30, 2010

View publication statsView publication stats

https://www.researchgate.net/publication/228452046

