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SUBSOLUTION THEOREM FOR THE COMPLEX HESSIAN

EQUATION

by Ngoc Cuong Nguyen

Abstract. We prove the subsolution theorem for a complex Hessian equa-
tion in a smoothly bounded strongly m-pseudoconvex domain in Cn

.

Introduction. Let Ω be a bounded domain in Cn with the canonical
Kähler form β = ddc‖z‖2, where d = ∂ + ∂̄, dc = i(∂̄ − ∂). For 1 ≤ m ≤ n, we
denote C(1,1) the space of (1, 1)-forms with constant coefficients. One defines
the positive cone

(0.1) Γm = {η ∈ C(1,1) : η ∧ βn−1 ≥ 0, . . . , ηm ∧ βn−m ≥ 0}.

A C2 smooth function u is called m-subharmonic in Ω if at every point z ∈ Ω
the (1, 1)-form associated to its complex Hessian belongs to Γm, i.e.

(0.2)
n∑

j,k=1

∂2u(z)

∂zj∂z̄k
idzj ∧ dz̄k ∈ Γm.

It was observed by B locki (see [3]) that one may relax the smoothness condition
in definition (0.2) and consider this inequality in the sense of distributions
to obtain a class, denoted by SHm(Ω) (see preliminaries). When functions
u1, . . . , uk, 1 ≤ k ≤ m, are in SHm(Ω) and are locally bounded, one may still
define ddcu1∧ddcu2∧ . . .∧ddcuk∧βn−m as a closed positive current of bidegree
(n −m + k, n −m + k). In particular (ddcu)m ∧ βn−m is a positive measure
for u bounded m-subharmonic. Thus, it is possible to study bounded solutions
of the Dirichlet problem with positive Borel measures µ in Ω and continuous
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boundary data ϕ ∈ C(∂Ω):

(0.3)


u ∈ SHm(Ω) ∩ L∞(Ω),

(ddcu)m ∧ βn−m = dµ,

u(z) = ϕ(z) on ∂Ω.

The Dirichlet problem for complex Hessian equation (0.3) in smooth cases was
first considered by S.Y. Li (see [15]). His main result says that if Ω is smoothly
bounded and strongly m-pseudoconvex (see Definition 1.5) then, for a smooth
boundary data and for a smooth positive measure, i.e. dµ = fβn and f > 0
smooth, there exists a unique smooth solution of the Dirichlet problem for the
Hessian equation.

The weak solutions of the equation (0.3), when the measure dµ is possibly
degenerate, were first considered by B locki [3]. More precisely, he proved that
there exists a unique continuous solution of the homogeneous Dirichlet problem
in the unit ball in Cn.

Very recently, in [10] Dinew and Ko lodziej investigated weak solutions of
complex Hessian equations (0.3) with the right hand side more general, namely
dµ = fβn where f ∈ Lp, for p > n/m. One of their results extended Li’s the-
orem: they proved that the Dirichlet problem still has a unique continuous
solution with continuous boundary data and dµ in Lp as above. Their method
exploited the new counterpart of pluripotential theory for m-subharmonic
functions, after showing a crucial inequality between the usual volume and
m-capacity which is a version of the relative capacity for m-subharmonic func-
tions.

In the case m = n, the subsolution theorem due to Ko lodziej [13] (see [14]
for a simpler proof) says that Dirichlet problem (0.3) in a strongly pseudocon-
vex domain is solvable if there is a subsolution. Thus, one may ask the same
question when m < n. In this note we show that the subsolution theorem, The-
orem 2.2, for the complex Hessian equation is still true by combining Dinew
and Ko lodziej’s new results for weak solutions of the complex Hessian equations
and the method used to prove the subsolution theorem in the pluripotential
case.

Acknowledgements. I am indebted to my advisor, professor S lawomir
Ko lodziej, for suggesting the problem and for many stimulating discussions.
I would also like to thank the referee whose suggestions and remarks helped
me to improve the exposition of the paper. This work is supported by the
International Ph.D. Programme Geometry and Topology in Physical Models.
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1. Preliminaries.
1.1. m-subharmonic functions. We recall basic notions and results which

are adapted from pluripotential theory. The main sources are [1, 2, 5–8, 14]
for plurisubharmonic functions and [3,10] for m-subharmonic functions. Since
a major part of pluripotential theory can be easily adapted to m-subharmonic
case, when the proof is only a copy of the original one with obvious changes of
notations, for the proofs we refer the reader to the above references. Let C(k,k)

be the space of (k, k)-forms with constant coefficients, and

Γm = {η ∈ C(1,1) : η ∧ βn−1 ≥ 0, . . . , ηm ∧ βn−m ≥ 0}.

We denote by Γ∗m its dual cone

(1.1) Γ∗m = {γ ∈ C(n−1,n−1) : γ ∧ η ≥ 0 for every η ∈ Γm}.

By Proposition 2.1 in [3] we know that {η1∧ . . .∧ηm−1∧βn−m; η1, . . . , ηm−1 ∈
Γm} ⊂ Γ∗m. Moreover if we consider Γ∗∗m = {η ∈ C(1,1) : η∧γ ≥ 0 for every γ ∈
Γ∗m} then we have

Γm = Γ∗∗m

as {η1 ∧ . . . ∧ ηm−1 ∧ βn−m; η1, . . . , ηm−1 ∈ Γm}∗ ⊂ Γm. Therefore

(1.2) Γ∗m = {η1 ∧ . . . ∧ ηm−1 ∧ βn−m; η1, . . . , ηm−1 ∈ Γm}.

Since Γn ⊂ Γn−1 ⊂ . . . ⊂ Γ1, we thus obtain

Γ∗n ⊃ Γ∗n−1 ⊃ . . . ⊃ Γ∗1 = {tβn−1; t ≥ 0}.

In particular, when η ∈ Γ∗m, and it has a representation∑
ajk̄i(n−1)2 ˆdzj ∧ ˆdz̄k

(this notation means that in the (n − 1, n − 1)-form only dzj and dz̄k vanish
in the complete form dz ∧ dz̄ at positions j-th and k-th) then the Hermitian

matrix (ajk̄) is nonnegative definite. In the language of differential forms, a
C2 smooth function u is m-subharmonic (m-sh for short) if

ddcu ∧ βn−1 ≥ 0, . . . , (ddcu)m ∧ βn−m ≥ 0 at every point in Ω.

Definition 1.1. Let u be a subharmonic function on an open subset Ω ⊂
Cn. Then u is called m-subharmonic if for any collection of η1, . . . , ηm−1 in
Γm, the inequality

ddcu ∧ η1 ∧ . . . ∧ ηm−1 ∧ βn−m ≥ 0

holds in the sense of currents. Let SHm(Ω) stands for the set of all m-sh
functions in Ω.
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Remark 1.2. (a) Condition (1.1) is equivalent to ddcu ∧ η ≥ 0 for every
η ∈ Γ∗m by (1.2). Hence, a subharmonic function u is m-subharmonic if

(1.3)

∫
Ω
u ddcφ ∧ η =

∫
Ω
u

n∑
j,k=1

ajk̄
∂2φ

∂zj∂z̄k
βn ≥ 0

for every non-negative test function 0 ≤ φ in Ω and for every nonnega-

tive definite Hermitian matrix (ajk̄) with constant coefficients such that η =∑n
j,k=1 a

jk̄i(n−1)2
dz1 ∧ . . . ∧ ˆdzj ∧ . . . ∧ dzn ∧ dz̄1 ∧ . . . ∧ ˆdz̄k ∧ . . . ∧ dz̄n belongs

to Γ∗m. This means that u is subharmonic with respect to a family of elliptic
operators with constant coefficients.

(b) A C2 function v is m-subharmonic iff ddcv(z) belongs to Γm at every
z ∈ Ω. Hence

ddcu ∧ ddcv1 ∧ . . . ∧ ddcvm−1 ∧ βn−m ≥ 0

holds in Ω in the weak sense of currents, for every collection v1, . . . , vm−1 ∈
SHm ∩ C2(Ω) and any u ∈ SHm(Ω).

Proposition 1.3. Let Ω ⊂ Cn be a bounded open subset. Then

1. PSH(Ω) = SHn(Ω) ⊂ SHn−1(Ω) ⊂ · · · ⊂ SH1(Ω) = SH(Ω).
2. SHm(Ω) is a convex cone.
3. The limit of a decreasing sequence in SHm(Ω) belongs to SHm(Ω).

Moreover, the standard regularization u ∗ ρε of a m-sh function is again
a m-sh function. Here ρε(z) = 1

ε2n
ρ( zε ), ρ(z) = ρ(‖z‖2) is a smoothing

kernel, with ρ : R+ → R+ defined by

ρ(t) =

{
C

(1−t)2 exp( 1
t−1) if 0 ≤ t ≤ 1,

0 if t > 1,

for a constant C such that∫
Cn

ρ(‖z‖2)βn = 1.

4. If u ∈ SHm(Ω) and γ : R→ R is a convex, nondecreasing function then
γ ◦ u ∈ SHm(Ω).

5. If u, v ∈ SHm(Ω) then max{u, v} ∈ SHm(Ω).
6. Let {uα} ⊂ SHm(Ω) be a locally uniformly bounded from above and
u = supuα. Then the upper semi-continuous regularization u∗ is m-sh
and is equal to u almost everywhere.

Proof. (1) and (2) and the first part of (3) easily follow from the definition
of m-sh functions. From formula (1.3), for η ∈ Γ∗m, there follows:∫

(u ∗ ρε) ddcφ ∧ η =

∫
u ddc(φ ∗ ρε) ∧ η ≥ 0,
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since φ ∗ ρε is again a nonnegative test function. Thus (3) is proved. For (4),
the smooth function γ ∗ ρε (the standard regularization on R) is convex and
increasing, therefore (γ∗ρε)◦u ∈ SHm(Ω). Since (γ∗ρε)◦u decreases to γ◦u as
ε→ 0, applying the first part of (3) we have γ ◦u ∈ SHm(Ω). In order to prove
(5), note that by using (3) it is enough to show that w = max{uε, vε} is m-sh,
where uε := u ∗ ρε, vε := v ∗ ρε. Since w is semi-convex, i.e. there is a constant
C = Cε > 0 large enough for w+C‖z‖2 = max{uε +C‖z‖2, vε +C‖z‖2} to be
a convex function in R2n, hence it has the second derivative almost everywhere
and ddcw(x) ∈ Γm for almost every x in Ω. Let wε be a regularization of w,
by the formula of the convolution wε(x) =

∫
Ωw(x− εy)ρ(y)βn(y) we have

ddcwε(x) =

∫
Ω
ddcw(x− εy)ρ(y)βn(y).

Thus, for η ∈ Γ∗m

ddcwε(x) ∧ η =

∫
Ω

[ddcw(x− εy) ∧ η] ρ(y)βn(y) ≥ 0.

(6) is a consequence of (5) and Choquet’s Lemma.

1.2. The complex Hessian operator. For 1 ≤ k ≤ m, u1, . . . , uk ∈ SHm ∩
L∞loc(Ω) the operator ddcuk∧ddcuk−1∧ . . .∧ddcu1∧βn−m is defined inductively
by (see [3], [10])
(Hk)
ddcuk ∧ ddcuk−1 ∧ . . . ∧ ddcu1 ∧ βn−m := ddc(ukdd

cuk−1 ∧ . . . ∧ ddcu1 ∧ βn−m)

which is a closed positive current of bidegree (n − m + k, n − m + k). This
operator is also continuous under decreasing sequences and symmetric (see
Remark 1.10). In the case k = m, ddcu1 ∧ ddcu2 ∧ . . . ∧ ddcum ∧ βn−m is a
nonnegative Borel measure, in particular, when u = u1 = . . . = um currents
(measures) (ddcu)m ∧ βn−m are well-defined for u ∈ L∞loc(Ω). The above def-
initions essentially follow from the analogous definitions due to Bedford and
Taylor [1,2] for plurisubharmonic functions.

Proposition 1.4 (Chern–Levine–Nirenberg inequalities). Let K ⊂⊂ U ⊂⊂
Ω, where K is compact, U is open. Let u1, . . . , uk ∈ SHm∩L∞(Ω), 1 ≤ k ≤ m
and v ∈ SHm(Ω). Then there exists a constant C = CK,U,Ω ≥ 0 such that

(i) ‖ddcu1 ∧ . . . ∧ ddcuk ∧ βn−m‖K ≤ C ‖u1‖L∞(U) . . . ‖uk‖L∞(U),

(ii) ‖ddcu1 ∧ . . . ∧ ddcuk ∧ βn−m‖K ≤ C ‖u1‖L1(Ω).‖u2‖L∞(Ω) . . . ‖uk‖L∞(Ω),

(iii) ‖vddcu1 ∧ . . . ∧ ddcuk ∧ βn−m‖K ≤ C ‖v‖L1(Ω).‖u1‖L∞(Ω) . . . ‖uk‖L∞(Ω).

Proof. (i) By induction we only need to prove that

‖ddcu1 ∧ . . .∧ ddcuk ∧ βn−m‖K ≤ C ‖u1‖L∞(U)‖ddcu2 ∧ . . .∧ ddcuk ∧ βn−m‖U .
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In fact, let χ ≥ 0 be a test function equal to 1 on K. Then an integration by
parts yields

‖ddcu1 ∧ . . . ∧ ddcuk ∧ βn−m‖K ≤ C
∫
U
χddcu1 ∧ . . . ∧ ddcuk ∧ βn−k

= C

∫
U
u1dd

cχ ∧ . . . ∧ ddcuk ∧ βn−k.

Thus,

‖ddcu1 ∧ . . . ∧ ddcuk ∧ βn−m‖K ≤ C ′‖u1‖L∞(U)‖ddcu2 ∧ . . . ∧ ddcuk ∧ βn−m‖U ,

where C ′ depends only on bounds of coefficients of ddcχ and on the set U .
(ii) It is a simple consequence of (i), and the result ‖ddcw ∧ βn−1‖K ≤

CK,U‖w‖L1(U) for every w ∈ SHm(Ω) (see [8], Remark 3.4).
(iii) See [8] Proposition 3.11.

1.3. m-pseudoconvex domains. Let Ω be a bounded domain with ∂Ω in the
class C2. Let ρ ∈ C2 in a neighborhood of Ω̄ be a defining function of Ω, i.e.
a function such that

ρ < 0 on Ω, ρ = 0 and dρ 6= 0 on ∂Ω.

Definition 1.5. A C2 bounded domain is called strongly m-pseudoconvex
if there are a defining function ρ and some ε > 0 such that (ddcρ)k∧βn−k ≥ εβn
in Ω̄ for every 1 ≤ k ≤ m.

It is obvious that a strongly pseudoconvex domain is a strongly m-pseudo-
convex domain. The properties of strongly m-pseudoconvex domains are sim-
ilar to those of strongly pseudoconvex domains, e.g. it can be shown that
strongly m-pseudoconvexity is characterized by a condition on its boundary
(see [15], Theorem 3.1). We also have the criterion that if the Levi form
of Ω corresponding to ρ belongs to the interior of Γm−1 then Ω is strongly
m-pseudoconvex (see [15], Proposition 3.3).

1.4. Cegrell’s inequalities for the complex Hessian operator. It is sufficient
for our purpose in this section to work within the class of m-sh functions which
are continuous up to the boundary and equal to 0 on the boundary. Let Ω be
a strongly m-pseudoconvex domain in Cn. We denote

E0(m) = {u ∈ SHm(Ω) ∩ C(Ω̄); u|∂Ω
= 0,

∫
Ω

(ddcu)m ∧ βn−m < +∞}.

For the case m = n, this class was introduced by Cegrell in [5]. It is a convex
cone for 1 ≤ m ≤ n (see [5], p. 188). Our goal is to establish inequalities very
similar to the one due to Cegrell (see [6], Lemma 5.4, Theorem 5.5) for the
Monge–Ampère operator. In order to avoid confusions and trivial statements,
we only consider 2 ≤ m ≤ n− 1.
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Proposition 1.6. Let u, v, h ∈ E0(m), and 1 ≤ p, q ≤ m, p + q ≤ m. Set
T = −hS where S = ddch1 ∧ . . . ∧ ddchm−p−q ∧ βn−m with h1, . . . , hm−p−q are
also in E0(m), then

∫
Ω

(ddcu)p ∧ (ddcv)q ∧ T ≤
[∫

Ω
(ddcu)p+q ∧ T

] p
p+q
[∫

Ω
(ddcv)p+q ∧ T

] q
p+q

.

Proof. See Lemma 5.4 in [6]. We only here remark that both sides of the
inequality are finite because of the convexity of the cone E0(m).

Remark 1.7. The statement in Proposition 1.5 is still true when h ∈
SHm ∩ L∞(Ω), limζ→∂Ω h(ζ) = 0 and

∫
Ω(ddch)m ∧ βn−m < +∞ since the

integration by parts formula is valid as in the case of the continuous case
(see [6], Corollary 3.4).

Applying Proposition 1.6 for some special cases of m-sh functions in E0(m),
we obtain

Corollary 1.8. If u, v, h ∈ E0(m), 1 ≤ p ≤ m− 1, then
(i) ∫

Ω
−h(ddcu)p ∧ (ddcv)m−p ∧ βn−m

≤
[∫

Ω
−h(ddcu)m ∧ βn−m

] p
m
[∫

Ω
−h(ddcv)m ∧ βn−m

]m−p
m

,

(ii) ∫
Ω

(ddcu)p ∧ (ddcv)m−p ∧ βn−m

≤
[∫

Ω
(ddcu)m ∧ βn−m

] p
m
[∫

Ω
(ddcv)m ∧ βn−m

]m−p
m

.

Proof. (i) follows from Proposition 1.6 when u = u1 = . . . = up, v =
v1 = . . . = vq. (ii) comes from the fact that for ρ a defining function of Ω we
have

∫
Ω

(ddcu)p ∧ (ddcv)m−p ∧ βn−m = lim
ε→0

∫
{ρ<−ε}

(ddcu)p ∧ (ddcv)m−p ∧ βn−m,
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and ∫
Uε

(ddcu)p ∧ (ddcv)m−p ∧ βn−m

≤
∫

Ω
−h∗Uε,Ω(ddcu)p ∧ (ddcv)m−p ∧ βn−m

≤
[∫

Ω
−h∗Uε,Ω(ddcu)m ∧ βn−m

] p
m
[∫

Ω
−h∗Uε,Ω(ddcv)m ∧ βn−m

]m−p
m

≤
[∫

Ω
(ddcu)m ∧ βn−m

] p
m
[∫

Ω
(ddcv)m ∧ βn−m

]m−p
m

,

where Uε = {ρ < −ε} and hUε,Ω = sup{u ∈ SHm(Ω); u ≤ 0; u|Uε
≤ −1}. It is

clear that −1 ≤ h∗Uε,Ω
≤ 0, limζ→∂Ω h

∗
Uε,Ω

(ζ) = 0 and
∫

Ω(ddch∗Uε,Ω
)m ∧βn−m <

+∞. Hence inequality (i) is still applicable by Remark 1.7.

1.5. m-capacity, convergence theorems, the comparison principle. For E a
Borel set in Ω we define

capm(E,Ω) = sup{
∫
E

(ddcu)m ∧ βn−m, u ∈ SHm(Ω), 0 ≤ u ≤ 1}.

In view of Proposition 1.4, it is finite if E is relatively compact in Ω. This is
the version of the relative capacity in the case of m-subharmonic functions. It
is an useful tool to establish convergence properties, especially the comparison
principle.

Theorem 1.9 (Convergence theorem). Let {ujk}
∞
j=1, k = 1, . . . ,m be locally

uniformly bounded sequences of m-subharmonic functions in Ω, ujk → uk ∈
SHm ∩ L∞(Ω) in capm as j →∞. Then

lim
j→∞

ddcuj1 ∧ . . . ∧ dd
cujm ∧ βn−m = ddcu1 ∧ . . . ∧ ddcum ∧ βn−m

in the topology of currents.

Proof. See the proof of Theorem 1.11 in [14].

Remark 1.10. As in Theorem 2.1 of [2], one may prove that for 1 ≤ k ≤ m,

if uj1, . . . , u
j
k are decreasing sequences of locally bounded m-sh functions such

that limj→∞ u
j
l (z) = ul(z) ∈ SHm ∩ L∞loc(Ω) for all z ∈ Ω and 1 ≤ l ≤ k, then

lim
j→∞

ddcuj1 ∧ . . . ∧ dd
cujk ∧ β

n−m = ddcu1 ∧ . . . ∧ ddcuk ∧ βn−m

in the sense of currents. Thus, the currents obtained in inductive definition
(Hk) of the wedge product of currents associated to locally bounded m-sh
functions are closed positive currents.
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Proposition 1.11. If uj ∈ SHm ∩ L∞(Ω) is a sequence decreasing to a
bounded function u in Ω then it converges to u ∈ SHm ∩ L∞(Ω) with respect
to capm. In particular, Theorem 1.9 holds in this case.

Proof. See Proposition 1.12 in [14].

Theorem 1.12 (Quasi-continuity). For an m-subharmonic function u de-
fined in Ω and for each ε > 0, there is an open subset U such that capm(U,Ω) <
ε and u is continuous in Ω \ U .

Proof. See Theorem 1.13 in [14].

From the quasi-continuity of m-subharmonic functions one can derive sev-
eral important results.

Theorem 1.13. Let u, v be locally bounded m-sh functions on Ω. Then the
following inequality holds:

(ddc max{u, v})m ∧ βn−m ≥ 1{u≥v}(dd
cu)m ∧ βn−m + 1{u<v}(dd

cv)m ∧ βn−m.

Proof. See Theorem 6.11 in [7].

Theorem 1.14 (Comparison principle). Let Ω be an open bounded subset
of Cn. For u, v ∈ SHm ∩ L∞(Ω) satisfying lim infζ→z(u − v)(ζ) ≥ 0 for any
z ∈ ∂Ω, we have∫

{u<v}
(ddcv)m ∧ βn−m ≤

∫
{u<v}

(ddcu)m ∧ βn−m.

Proof. The proof follows the lines of the proof of Theorem 1.16 in [14].
First consider u, v ∈ C∞(Ω), E = {u < v} ⊂⊂ Ω, and smooth ∂Ω. In this
case, put uε = max{u+ ε, v} and use Stokes’ theorem to get

(1.4)

∫
E

(ddcuε)
m ∧ βn−m =

∫
∂E
dcuε ∧ (ddcuε)

m−1 ∧ βn−m

=

∫
∂E
dcu ∧ (ddcu)m−1 ∧ βn−m =

∫
E

(ddcu)m ∧ βn−m

(since uε = u+ε in a neighborhood of ∂E). By Theorem 1.9, (ddcuε)
m∧βn−m

converges weakly∗ to (ddcv)m∧βn−m as ε→ 0 on the open set E, which implies
that ∫

E
(ddcv)m ∧ βn−m ≤ lim inf

ε→∞

∫
E

(ddcuε)
m ∧ βn−m.

This combined with (1.4) implies the statement.
For the general case, suppose ‖u‖, ‖v‖ < 1, fix ε > 0 and δ > 0. By the

quasi-continuity, there is an open set U such that capm(U,Ω) < ε and u = ũ,
v = ṽ on Ω \ U for some continuous functions ũ, ṽ in Ω. Let uk, vk be the
standard regularizations of u and v. By Dini’s theorem uk and vk uniformly
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converge to u and to v, respectively, on Ω \ U . Then for k > k0 big enough,
subsets E(δ) := {ũ+ δ < ṽ} and Ek(δ) := {uk + δ < vk} satisfy

(1.5) E(2δ) \ U ⊂⊂
⋂
k

Ek(δ) \ U and
⋃
k

Ek(δ) \ U ⊂⊂ {ũ < ṽ}.

In what follows we shall often use the estimate∫
U

(ddcw)m ∧ βn−m ≤ capm(U,Ω) < ε where 0 ≤ w ≤ 1,

not mentioning this any more. Since {u+ 2δ < v} = {ũ+ 2δ < ṽ} on Ω \ U ,

(1.6)

∫
{u+2δ<v}

(ddcv)m ∧ βn−m ≤
∫
{ũ+2δ<ṽ}\U

(ddcv)m ∧ βn−m + ε

=

∫
E(2δ)\U

(ddcv)m ∧ βn−m + ε.

Since (ddcvk)
m∧βn−m weakly∗ converges to (ddcv)m∧βn−m and E(2δ) is open,

by (1.5) we get

(1.7)

∫
E(2δ)

(ddcv)m ∧ βn−m ≤ lim inf
k→∞

∫
E(2δ)

(ddcvk)
m ∧ βn−m

≤ lim inf
k→∞

∫
Ek(δ)

(ddcvk)
m ∧ βn−m + ε.

Now, by Sard’s theorem, we may assume that Ek(δ) has smooth boundary
(changing δ if needed), thus using the argument of the smooth case we have

(1.8)

∫
Ek(δ)

(ddcvk)
m ∧ βn−m ≤

∫
Ek(δ)

(ddcuk)
m ∧ βn−m.

Therefore, by (1.6), (1.7) and (1.8), we have

(1.9)

∫
{u+2δ<v}

(ddcv)m ∧ βn−m ≤ lim inf
k→∞

∫
Ek(δ)

(ddcuk)
m ∧ βn−m + 2ε.

Furthermore, using (1.5) and the fact that (ddcuk)
m∧βn−m weakly∗ converges

to (ddcu)m ∧ βn−m we obtain

(1.10) lim sup
k→∞

∫
∪kEk(δ)\U

(ddcuk)
m ∧ βn−m ≤

∫
∪kEk(δ)\U

(ddcu)m ∧ βn−m.

Thus, from (1.5), (1.9) and (1.10) there follows

(1.11)

∫
{u+2δ<v}

(ddcv)m ∧ βn−m ≤
∫
{ũ<ṽ}

(ddcu)m ∧ βn−m + 3ε

≤
∫
{u<v}

(ddcu)m ∧ βn−m + 4ε.

Finally, letting δ and ε tend to 0 in (1.11) the statement is proved.
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Corollary 1.15. Under the assumption of Theorem 1.14 we have

(a) If (ddcu)m ∧ βn−m ≤ (ddcv)m ∧ βn−m then v ≤ u,
(b) If (ddcu)m ∧ βn−m = (ddcv)m ∧ βn−m and limζ→z(u − v)(ζ) = 0 for

z ∈ ∂Ω then u = v,
(c) If limζ→∂Ω u(ζ) = limζ→∂Ω v(ζ) = 0 and u ≤ v in Ω, then∫

Ω
(ddcv)m ∧ βn−m ≤

∫
Ω

(ddcu)m ∧ βn−m.

Proof. For (a) and (b) see Corollary 1.17 in [14]. For (c), let ε > 0.
Applying Theorem 1.14 we have∫

Ω
(ddcv)m ∧ βn−m ≤ (1 + ε)n

∫
Ω

(ddcu)m ∧ βn−m.

Then, letting ε→ 0, we obtain the result.

2. Subsolution theorem. In this section we will prove our main the-
orem. The method we use here is similar to the one from the proof of the
plurisubharmonic case (see [14], Theorem 4.7). We first recall the theorem
due to Dinew and Ko lodziej about the weak solution of the complex Hessian
equation with the right hand side in Lp (see [10], Theorem 2.10). From now
on we only consider 1 < m < n.

Theorem 2.1 ( [10]). Let Ω be a smoothly strongly m-pseudoconvex do-
main. Then for p > n/m, f ∈ Lp(Ω) and a continuous function ϕ on ∂Ω there
exists u ∈ SHm(Ω) ∩ C(Ω̄) satisfying

(ddcu)m ∧ βn−m = fβn,

and u = ϕ on ∂Ω.

Let us state the subsolution theorem.

Theorem 2.2. Let Ω be a smoothly strongly m-pseudoconvex domain in
Cn, and let µ be a finite positive Borel measure in Ω. If there is a subsolution
v, i.e.

(2.1)


v ∈ SHm ∩ L∞(Ω),

(ddcv)m ∧ βn−m ≥ dµ,
limζ→z v(ζ) = ϕ(z) for any z ∈ ∂Ω,

then there is a solution u of the following Dirichlet problem

(2.2)


u ∈ SHm ∩ L∞(Ω),

(ddcu)m ∧ βn−m = dµ,

limζ→z u(ζ) = ϕ(z) for any z ∈ ∂Ω.
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Proof. We first prove Theorem 2.1 under two additional assumptions:
1) the measure µ has compact support in Ω;
2) the function ϕ is in the class C2.
Using the first of those conditions we can modify v so that v is m-subhar-

monic in a neighborhood of Ω (and still is a subsolution). To do this take an
open subset U such that supp µ ⊂⊂ U ⊂⊂ Ω and consider the envelope

v̂ = sup{w ∈ SHm(Ω) : w ≤ 0, w ≤ v on U}.
Then from Proposition 1.3-(6) v̂∗ is a competitor in the definition of the enve-
lope, hence v̂ = v̂∗ ∈ SHm(Ω). The balayage procedure implies that v̂ = v on
U and limζ→z v̂(ζ) = 0 for any z ∈ ∂Ω (the balayage still works as in the case
of plurisubharmonic functions by results in [3], Theorem 1.2, Theorem 3.7).
Thus, (ddcv̂)m ∧βn−m ≥ dµ as supp µ ⊂⊂ U . Next, take ρ a defining function
of Ω which is smooth on a neighborhood Ω1 of Ω̄ and (ddcρ)k ∧ βn−k ≥ εβn,
1 ≤ k ≤ m, in Ω̄ for some ε > 0. Since v̂ is bounded, we can further choose ρ
satisfying ρ ≤ v̂ on Ū . Put

v1(z) :=

{
max{ρ(z), v̂(z)} on Ω̄,

ρ(z) on Ω1 \ Ω̄.

Hence v1 is a subsolution which is defined and m-subharmonic in a neigh-
borhood of Ω̄. We still write v instead of v1 in what follows. Further-
more, using the balayage procedure (as above) one can make the support of
dν := (ddcv)m ∧ βn−m compact in Ω.

Now, we can sketch the rest of the proof of the theorem. We will ap-
proximate dµ by a sequence of measures µj for which the Dirichlet problem
is solvable (using Theorem 2.1) obtaining a sequence of solutions {uj} corre-
sponding to µj . Then we take a limit point u of {uj} in L1(Ω). Finally we
show that uj → u with respect to capm in order to conclude that u is a solution
of (2.2).

By the Radon–Nikodym theorem, dµ = hdν, 0 ≤ h ≤ 1. For the subso-
lution v one can define the regularizing sequence wj ↓ v in a neighborhood of
the closure of Ω. Let us write (ddcwj)

m∧βn−m = gjβ
n, µj := hgjβ

n. Then by
Proposition 1.11 limj→∞ µj = µ. As µ has the compact support, so µj ’s does.
In particular, hgj ∈ Lp(Ω) for every p > 0. Therefore, applying Theorem 2.1
we have uj solving

(2.3)


uj ∈ SHm(Ω) ∩ C(Ω̄),

(ddcuj)
m ∧ βn−m = µj ,

uj(z) = ϕ(z) for z ∈ ∂Ω.

Now we set u = (lim supuj)
∗, and passing to a subsequence we assume that uj

converges to u in L1(Ω). By the definition of wj they are uniformly bounded.
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Choosing a uniform constant C such that wj−C < ϕ on ∂Ω, by Corollary 1.15-
(a), wj − C ≤ uj ≤ supΩ̄ ϕ. Thus, {uj} is uniformly bounded. In particular,
u also is bounded and now we shall check that limΩ3ζ→z u(ζ) = ϕ(z) for every
z ∈ ∂Ω. For this we only need ϕ to be continuous.

Since wj converges uniformly to v on ∂Ω and ∂Ω is compact, given ε > 0
we have |wj − v| < ε on a small neighborhood of ∂Ω when j big enough. Since

ϕ is continuous on ∂Ω, there is an approximant g ∈ C2(Ω) of the continuous
extension of ϕ such that |g−ϕ| < ε on ∂Ω. For A > 0 big enough, Aρ+g is a m-
sh function. By the comparison principle, it implies that wj +Aρ+g−2ε ≤ uj
on Ω. Then v + Aρ + ϕ − 4ε ≤ uj on a small neighborhood of ∂Ω for j big
enough. Hence, v+Aρ+ϕ−4ε ≤ lim infj→∞ uj ≤ u on a small neighborhood of
∂Ω. Because this is true for an arbitrary ε > 0, we obtain limζ→z u(ζ) = ϕ(z)
for any z ∈ ∂Ω.

The difficult part is to show that uj converges in capm to u.

Lemma 2.3. The function u defined above solves Dirichlet problem (0.3)
provided that for any a > 0 and any compact K ⊂ Ω we have

(2.4) lim
j→∞

∫
K∩{u−uj≥a}

(ddcuj)
m ∧ βn−m = lim

j→∞
µj(K ∩ {u− uj ≥ a}) = 0.

Proof of Lemma 2.3. Using Theorem 1.13 we have

(ddcuj)
m ∧ βn−m = 1{u−uj≥a}(dd

cuj)
m ∧ βn−m + 1{u−uj<a}(dd

cuj)
m ∧ βn−m

≤ 1{u−uj≥a}µj + (ddc max{u, uj + a})m ∧ βn−m.

It follows that

(2.5) µj ≤ 1{u−uj≥a}µj + (ddc max{u− a, uj})m ∧ βn−m.

Now, for any integer s we may choose j(s) such that µj(s)({u−uj(s) ≥ 1/s}) <
1/s. From (2.4) and (2.5) we infer that

(2.6) µ ≤ lim inf
s→∞

(ddcρs)
m ∧ βn−m,

which means that µ is less than any limit point of the right hand side, where
ρs = max{u − 1/s, uj(s)}. By the Hartogs lemma, ρs → u uniformly on any
compact E such that u|E is continuous. So it follows from the quasi-continuity
of m-sh functions that ρs converges to u in capm. Therefore, by Theorem 1.9
(ddcρs)

m ∧ βn−m → (ddcu)m ∧ βn−m as measures. This combined with (2.6)
implies

(2.7) µ ≤ (ddcu)m ∧ βn−m.
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For the reverse inequality, let Ωε = {z ∈ Ω ; dist(z, ∂Ω) < ε}. We will show
that for ε > 0

(2.8) µ(Ω) ≥
∫

Ωε

(ddcu)m ∧ βn−m.

Indeed, firstly we note that ρs = uj(s) on a neighborhood of ∂Ωε for ε small
enough since u − uj(s) < 1/s on ∂Ω, u − uj(s) is upper semi-continuous on Ω
and ∂Ω is compact. Hence, by the weak∗ convergence µj(s) → µ and Stokes’
theorem,

µ(Ω) ≥ µ(Ωε) ≥ lim sup
j(s)→∞

µj(s)(Ωε)

≥ lim inf
j(s)→∞

µj(s)(Ωε)

= lim inf
j(s)→∞

∫
Ωε

(ddcuj(s))
m ∧ βn−m = lim inf

j(s)→∞

∫
Ωε

(ddcρs)
m ∧ βn−m

≥
∫

Ωε

(ddcu)m ∧ βn−m,

where in the last inequality we use the weak∗ convergence (ddcρs)
m ∧βn−m →

(ddcu)m ∧ βn−m. Therefore, (2.8) is proved. Let ε → 0; there follows µ(Ω) ≥
(ddcu)m∧βn−m(Ω). Thus the measures in (2.7) are equal. The lemma follows.

It remains to prove (2.4) in Lemma 2.2 above. It is a consequence of the
following lemma.

Lemma 2.4. Suppose that there is a subsequence of {uj}, still denoted by
{uj}, such that∫

{u−uj≥a0}
(ddcuj)

m ∧ βn−m > A0, A0 > 0, a0 > 0.

Then, for 0 ≤ p ≤ m, there exist ap, Ap, k1 > 0 such that

(2.9)

∫
{u−uj≥ap}

(ddcvj)
m−p ∧ (ddcvk)

p ∧ βn−m > Ap, j > k > k1,

for vj being the solution of the following of Dirichlet problem (cf. Theorem 2.1):

(2.10)


vj ∈ SHm(Ω) ∩ C(Ω̄),

(ddcvj)
m ∧ βn−m = νj (= gjβ

n),

vj(z) = 0 on ∂Ω.

Note that {vj} is uniformly bounded as a consequence of the uniform bounded-
ness of {wj} and Corollary 1.15-(a).
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Proof of Lemma 2.4. We will prove it by induction over p. For p = 0
the statement holds by the hypothesis. Suppose that (2.9) is true for p < m, we
need to prove it for p+ 1. The first observation is that if T (r, s) := (ddcur)

q ∧
(ddcvs)

m−q ∧ βn−m then there is a constant C independent of r, s such that

(2.11)

∫
Ω
T (r, s) ≤ C.

Indeed, fix a C2 extension of ϕ to a neighborhood of the closure of Ω.
If ρ is a defining function of Ω, then there is a constant A > 0 such that
Aρ ± ϕ ∈ SHm(Ω). We shall check that ur + Aρ − ϕ belongs to E0(m). It is
enough to verify ∫

Ω
(ddc(ur +Aρ− ϕ))m ∧ βn−m < +∞.

In fact, from (ddcur)
m ∧ βn−m = hgrβ

n ≤ (ddc(Mrρ + ϕ))m ∧ βn−m for some
Mr > 0 and Corollary (1.15)-(a) we have ur ≥ Mrρ + ϕ in Ω. Hence, ur +
Aρ− ϕ ≥ (Mr +A)ρ in Ω. Thus, by Corollary 1.15-(c)∫

Ω
(ddcur +Aρ− ϕ)m ∧ βn−m ≤

∫
Ω

(ddc(Mr +A)ρ)m ∧ βn−m < +∞.

Now, we note that µr(Ω) and νs(Ω) are bounded as µ and ν have compact
supports. Next, from Cegrell’s inequalities, Corollary 1.8-(ii), for 1 ≤ k ≤
m− 1, there follows∫

Ω
(ddc(ur +Aρ− ϕ))k ∧ (ddcρ)m−k ∧ βn−m

≤
[∫

Ω
(ddc(ur +Aρ− ϕ))m ∧ βn−m

] k
m
[∫

Ω
(ddcρ)m ∧ βn−m

]m−k
m

.

Hence,

(2.12)

I(r) =

∫
Ω

(ddc(ur +Aρ− ϕ))m ∧ βn−m

≤
∫

Ω
(ddcur)

m ∧ βn−m +

∫
Ω

(ddc(Aρ− ϕ))m ∧ βn−m

+ C(A,ϕ)

m−1∑
k=1

∫
Ω

(ddcur +Aρ− ϕ)k ∧ (ddcρ)m−k ∧ βn−m

≤µr(Ω) + C(A, ρ, ϕ) + C(A,ϕ)·

·
m−1∑
k=1

[∫
Ω
(ddc(ur+Aρ−ϕ))m∧βn−m

]k
m
[∫

Ω
(ddcρ)m∧βn−m

]m−k
m

≤µr(Ω) + C(A, ρ, ϕ) + C ′(A,ϕ, ρ)

m−1∑
k=1

[I(r)]
k
m .
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Consider the two sides of inequality (2.12) as two positive functions in r.
µr(Ω)’s are bounded, and the degree of I(r) on the right hand side is strictly
less than the degree of I(r) on the left hand side; therefore, I(r) are bounded by
a constant independent of r. Again, by Cegrell’s inequalities, Corollary 1.8-(ii),
as vs obviously belongs to E0(m),∫

Ω
T (r, s) ≤

∫
Ω

(ddc(ur +Aρ− ϕ))q ∧ (ddcvs)
m−q ∧ βn−m

≤
[∫

Ω
(ddc(ur +Aρ− ϕ))m ∧ βn−m

] q
m
[∫

Ω
(ddcvs)

m ∧ βn−m
]m−q

m

≤ [I(r)]
q
m [νs(Ω)]

m−q
m

≤ C ′′(A,ϕ, ρ),

because I(r) and νs(Ω) are bounded. Thus we have proved (2.11). We may as-
sume that −1 < uj , vj < 0, because all functions uj , vj are uniformly bounded
by a constant independent of j. Then the estimates in the statement of
Lemma 2.4 will only be changed by a positive constant. To simplify nota-
tions we set S(j, k) := (ddcvj)

m−p−1 ∧ (ddcvk)
p ∧βn−m. Fix a positive number

d > 0 (specified later in (2.19)) and recall that we need a uniform estimate
from below for

∫
{u−uj≥d} dd

cvk ∧ S(j, k). From the assumption on uj , vj , we

have u− uj ≤ 1{u−uj≥d} + d. It follows that

J(j, k) :=

∫
Ω

(u− uj)(ddcvk) ∧ S(j, k)

≤
∫

Ω
1{u−uj≤d}dd

cvk ∧ S(j, k) + d

∫
Ω
ddcvk ∧ S(j, k)

≤
∫
{u−uj≥d}

ddcvk ∧ S(j, k) + dC,

where C is as in (2.11). Therefore

(2.13)

∫
{u−uj≥d}

ddcvk ∧ S(j, k) ≥ J(j, k)− dC.

The induction hypothesis says that there exist ap, Ap > 0 and k1 > 0 such that

(2.14)

∫
{u−uj≥ap}

(ddcvj)
m−p ∧ (ddcvk)

p ∧ βn−m > Ap, j > k > k1.

We fix another small positive constant ε > 0 and put J ′(j, k) :=
∫

Ω(u −
uj)dd

cvj ∧ S(j, k).
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Claim.

(a) J ′(j, k)− J(j, k) ≤ ε,
(b) J ′(j, k) ≥ apAp − ε(1 + C) for j > k > k2.

Proof of Claim. (a) By the quasi-continuity, we can choose an open
set U such that functions u, v are continuous off the set U and capm(U,Ω) <
ε/2m+1. Then

(2.15)

∫
U

(ddc(vj + vk))
m ∧ βn−m < 2mcapm(U,Ω) < ε/2,

(2.16)

∫
U

(ddc(uj + vk))
m ∧ βn−m < ε/2.

Therefore

J ′(j, k)− J(j, k)

(2.17)

=

∫
Ω

(u− uj)ddcvj ∧ S(j, k)−
∫

Ω
(u− uj)ddcvk ∧ S(j, k)

=

∫
Ω
vjdd

c(u− uj) ∧ S(j, k)−
∫

Ω
vkdd

c(u− uj) ∧ S(j, k)

=

∫
Ω

(vj − vk)ddc(u− uj) ∧ S(j, k)

=

∫
Ω\U

(vj − vk)ddc(u− uj) ∧ S(j, k) +

∫
U

(vj − vk)ddc(u− uj) ∧ S(j, k)

≤
∫

Ω\U
‖vj − vk‖ddc(u+ uj) ∧ S(j, k) +

∫
U
ddc(u+ uj) ∧ S(j, k),

where in the second equality we used the integration by parts formula twice
with u = uj = ϕ, vj = 0 on the boundary, and in the last estimate we used the
fact −1 < uj , vj < 0. Since the sequence (vj) converges uniformly to v on Ω\U ,
one can find l > k1 such that ‖vj − vk‖ < ε/2C on Ω \ U for j > k > l > k1.
From (2.11) and us converges in L1

loc to u, we have∫
Ω
ddcu ∧ S(j, k) ≤ lim inf

s→+∞

∫
Ω
ddcus ∧ S(j, k) < C.

This combined with (2.15) and (2.16) implies that each of the integrals in the
last line of (2.17) is at most ε/2. The first part of the claim follows.

(b) We first observe that since supϕ (resp. 0) is the upper bound of all
uj (resp. vj) on the boundary, then, for k > k2 > l, in a neighborhood of ∂Ω,
there is

(2.18) vk ≤ v + ε and uk ≤ u+ ε.
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Those inequalities are still valid (after increasing k2) on Ω \ U thanks to the
Hartogs lemma. Hence, using (2.11), (2.15) and (2.18) for j > k > k2 there is

J ′(j, k) =

∫
Ω

(u− uj)ddcvj ∧ S(j, k)

≥ ap
∫
{u−uj≥ap}

ddcvj ∧ S(j, k) +

∫
{u−uj<ap}

(u− uj)ddcvj ∧ S(j, k)

= ap

∫
{u−uj≥ap}

ddcvj ∧ S(j, k) +

∫
{u−uj<ap}∩(Ω\U)

(u− uj)ddcvj ∧ S(j, k)

+

∫
{u−uj<ap}∩U

(u− uj)ddcvj ∧ S(j, k)

≥ ap
∫
{u−uj≥ap}

ddcvj ∧ S(j, k)− ε
∫

Ω\U
ddcvj ∧ S(j, k)

−
∫
U
ddcvj ∧ S(j, k)

≥ apAp − ε(1 + C).

Thus the proof of the claim is finished.

From Claim and (2.13) we get∫
{u−uj≥d}

ddcvk ∧ S(j, k) ≥ J(j, k)− dC ≥ J ′(j, k)− ε− dC

≥ apAp − ε(1 + C)− ε− dC.

If we take

(2.19) am+1 := d =
apAp
4C

and ε ≤ apAp
2(2 + C)

,

then ∫
{u−uj≥d}

ddcvk ∧ S ≥
apAp

4
:= Ap+1 for j > k > k2,

which finishes the proof of the inductive step and that of Lemma 2.4.

We will now finish the proof of Theorem 2.2. It is enough to prove condition
(2.4) in Lemma 2.3. We argue by contradiction. Suppose that it is not true.
Then the assumptions of Lemma 2.4 are valid and its statement for p = m
tells that for a fixed k > k1∫

{u−uj≥am}
(ddcvk)

m ∧ βn−m > Am when j > k.
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Thus
(2.20)

V ({u− uj ≥ am}) ≥
1

Mk

∫
{u−uj≥am}

(ddcvk)
m ∧ βn−m >

Am
Mk

for j > k,

because (ddcvk)
m ∧ βn−m = gkβ

n ≤ Mkβ
n for some Mk > 0. But (2.20) con-

tradicts the fact uj → u in L1
loc, i.e. every subsequence of {uj} also converges

to u in L1
loc. Thus, the theorem is proved under two extra assumptions.

General case (we remove two extra assumptions). 1) Suppose that ϕ ∈
C(∂Ω) and the measure µ has a compact support in Ω. We choose a decreasing
sequence ϕk ∈ C2(∂Ω) converging to ϕ. Then we obtain a sequence of solutions
uk satisfying 

uk ∈ SHm ∩ L∞(Ω),

(ddcuk)
m ∧ βn−m = µ,

limζ→z uk(ζ) = ϕk(z) for any z ∈ ∂Ω.

It follows from the comparison principle and Corollary 1.15-(a) that uk is
decreasing and uk ≥ v0 with v0 a subsolution without modifications. Set
u = limuk. Then u ≥ v0 and (ddcu)m ∧ βn−m = µ by Proposition 1.11. Thus,
u is the required solution.

2) Suppose that µ is a finite positive Borel measure, ϕ ∈ C(∂Ω). Let
χj be a non-decreasing sequence of cut-off functions χj ↑ 1 on Ω. Since χjµ
have compact supports in Ω, one can find solutions corresponding to χjµ,
the solutions will be bounded from below by the given subsolution v0 (by the
comparison principle) and they will decrease to the solution by the convergence
theorem. Thus we have proved Theorem 2.2.
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