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Abstract

Point particles in 3D gravity are known to behave as topological defects, while gravitational field can be 
expressed as the Chern–Simons theory of the appropriate local isometry group of spacetime. In the case of 
the Poincaré group, integrating out the gravitational degrees of freedom it is possible to obtain the effective 
action for particle dynamics. We review the known results, both for single and multiple particles, and at-
tempt to extend this approach to the (anti-)de Sitter group, using the factorizations of isometry groups into 
the double product of the Lorentz group and AN(2) group. On the other hand, for the de Sitter group one can 
also perform a contraction to the semidirect product of AN(2) and the translation group. The corresponding 
effective action curiously describes a Carrollian particle with the AN(2) momentum space. We derive this 
contraction in a more rigorous manner and further explore its properties, including a generalization to the 
multiparticle case.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Gravity in 2 + 1-dimensional spacetime offers an attractive combination of the conceptual 
foundations descending from ordinary general relativity and the apparent physical simplicity. 
It cannot accommodate local degrees of freedom: there are no forces acting at a distance and 
no gravitational waves. Consequently, spacetime is locally isometric to flat Minkowski space or 
constantly curved (anti-)de Sitter space, depending on the cosmological constant. The theory can 
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be equipped with the topological degrees of freedom, by considering a spatial topology with 
handles (not discussed in this paper) or including point particles, which themselves turn out to 
be topological defects with the geometry of a cone [1–3]. Namely, an embedding of a neigh-
bourhood of such a defect is constructed by taking Minkowski or, respectively, (anti-)de Sitter 
space and removing a wedge whose edge is the particle’s worldline, while the defect’s deficit 
angle is determined by the particle’s relativistic mass. To recover a conical spacetime the faces 
of the wedge have to be identified by the holonomy of a loop encircling the defect, which is a 
Lorentz transformation conjugate to a rotation by the deficit angle. This Lorentz group element 
can actually be interpreted [4,5] as the particle’s physical momentum. Similarly, the effect of 
non-zero spin of the particle (as well as the orbital angular momentum) is a dislocation along 
the wedge, associated with a time translation in the holonomy, which generalizes the defect’s 
geometry to that of a helical cone [2]. Spinning particles may therefore lead to the occurrence of 
closed timelike curves but this problem will hopefully be resolved in the full quantum theory.

Due to the properties of possible local isometry groups of spacetime, gravity in three dimen-
sions can also be formulated [6,7] as the Chern–Simons gauge theory (although there are certain 
subtleties to be taken into account). In principle, if conical defects are coupled to such a theory, 
redundant gravitational degrees of freedom can be integrated out to obtain the effective dynamics 
of particles. In the case of the Poincaré gauge group this can be accomplished in the language of 
the symplectic form [8] or the corresponding action [9]. However, to our knowledge, so far it has 
not been done for the (anti-)de Sitter group. One of the results of the present paper is an explicit 
calculation of the effective particle actions in the latter cases, although they still require a very 
complicated integration. To this end, for each of the gauge groups we use here the same local 
factorization [10] into the product of the (three-dimensional) Lorentz group and the so-called 
ANn(2) group.

What is particularly interesting about such a factorization is that AN(2) (with the timelike 
deformation vector n) is the three-dimensional counterpart of the AN(3) group, which plays 
the role [11] of covariant momentum space under the action of the κ-Poincaré (Hopf) algebra 
[12,13] – the best studied quantum deformation of the Poincaré algebra. Deformations of rel-
ativistic symmetries are conjectured to arise in certain approximations to the quantum theory 
of gravity and have especially been considered in the framework known as doubly (or de-
formed) special relativity, later recast under the name of relative locality, which is motivated 
by the phenomenological speculations [14,15]. For these reasons a natural question is whether 
the (three-dimensional) κ-Poincaré algebra, or its (anti-)de Sitter analogue [16,17], can appear as 
a description of symmetries in the context of quantum gravity in three dimensions, as suggested 
in [18]. A conclusion of the rigorous analysis [19] was that there is no Chern–Simons action 
associated with the κ-deformed relativistic symmetries and simultaneously equipped with the 
scalar product corresponding to three-dimensional gravity. However, a loophole in this argument 
has recently been found [20], which apparently allows the desired symmetries to arise. It has also 
been shown (at least in the Euclidean domain) [21] that one obtains the κ-Poincaré algebra by 
loop-quantizing the algebra of gravitational constraints with positive cosmological constant and 
subsequently performing a contraction of such a quantum algebra.

On the other hand, with a similar motivation, in [22] we introduced a contraction of the Chern–
Simons theory with the de Sitter gauge group that is in a certain sense opposite to the standard 
contraction leading to the theory with the Poincaré group. It gives us the effective action with the 
AN(2) particle momentum space. However, the action actually describes the peculiar κ-deformed 
version of a Carroll (or ultralocal) particle instead of a κ-deformed relativistic particle. In the 
present paper we explain the above contraction (which we call here the reciprocal contraction) in 
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more detail, implement it more rigorously and add a discussion of the obtained gauge algebra and 
the particle’s holonomy, as well as we consider the generalization to multiparticle case. More-
over, we find that the analogous contractions for the anti-de Sitter group and the double-product 
factorization of the Poincaré group lead to diverging Chern–Simons actions.

This paper has the following contents. In the next Section 2 we briefly introduce the Chern–
Simons action describing the dynamics of three-dimensional gravity with a single particle and 
begin the procedure that leads to the effective particle action. The calculations are continued for 
the de Sitter gauge group in Subsection 2.1, where we also recover the final action in the Poincaré 
case. The Subsection 2.2 is devoted to a derivation of the action for the reciprocal contraction 
of the de Sitter group, while in Subsection 2.3 we discuss the cases of anti-de Sitter as well as 
the factorized Poincaré. Subsequently, in Section 3 we generalize our considerations to multiple 
particles. Subsections 3.1 and 3.2 contain an analysis of the Poincaré and κ-Carroll cases, re-
spectively. The essence of results concerning the Poincaré gauge group is well known but here 
we try to present them in a very transparent manner and include massless particles. After a brief 
summary and some outlook for the future research, in the Appendix we collect the mathematical 
knowledge concerning all the gauge groups, including the explicit form of some formulae that 
were not written down in earlier papers.

2. Single particle

As we already mentioned in the Introduction, the special nature of gravity in 2 + 1 spacetime 
dimensions allows to formulate it as the Chern–Simons gauge theory. The appropriate gauge 
group for this purpose is the group of local isometries of spacetime, which is the (double cover 
of the) three-dimensional Poincaré, de Sitter or anti-de Sitter Lie group, respectively for zero, 
positive or negative cosmological constant �. The corresponding Lie algebra can always be 
written in terms of the generators Jα , Pα , α = 0, 1, 2 with the brackets

[Jα, Jβ ] = εαβγ J γ , [Jα,Pβ ] = εαβγ P γ , [Pα,Pβ ] = −�εαβγ J γ , (1)

where we set the conventions for the metric η = diag(1, −1, −1) and Levi-Civita symbol 
ε012 = 1 (for more details see the Appendix). There exists a two-dimensional space of possi-
ble scalar products on the above algebra but to obtain the correct gravitational action we have to 
use the one of the form [7]〈

Jα,Pβ

〉 = ηαβ ,
〈
Jα, Jβ

〉 = 〈
Pα,Pβ

〉 = 0 . (2)

The gauge field of this theory is the Cartan connection, which is an algebra-valued one-form

A = ωαJα + eαPα , (3)

constructed from the spin connection ωα = ωα
μdxμ and dreibein eα = eα

μdxμ (assumed to be 
invertible). Its curvature is given by F = dA + A ∧ A = R + T + C, where

R =
(

dωα + 1

2
εα

βγ ωβ ∧ ωγ

)
Jα , T =

(
deα + εα

βγ ωβ ∧ eγ
)

Pα ,

C = �

2
εα

βγ eβ ∧ eγ Jα (4)

are respectively the Riemann curvature, torsion and cosmological constant term.
In order to explore the dynamics of point particles coupled to the gravitational field let us 

assume that spacetime has the product structure R × S , where S is a spatial submanifold of 
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genus 0. We accordingly decompose the connection into A = Atdt + AS , with a one-form AS
defined on S and the spatial curvature FS = dAS + AS ∧ AS . A particle can be introduced as 
a (spinning) conical singularity, appearing as a puncture on S . When S has the open topology 
(i.e. for � ≤ 0), we restrict to the connections AS that satisfy such fall-off conditions at spatial 
infinity that the geometry of spacetime is asymptotically conical. Then in the single particle case 
the total Chern–Simons action of the system has the form [19,23,24]

S =
∫

dtL , L = k

4π

∫
S

〈
ȦS ∧ AS

〉 − 〈
c0h

−1ḣ
〉

+
∫
S

〈
At

(
k

2π
FS − hc0h

−1δ2(�x − �x∗) dx1 ∧ dx2
)〉

, (5)

where k = 1/(4G) is the coupling constant and x1, x2 denote coordinates on S with the origin 
at the particle’s position �x∗. Besides, the gauge algebra element c0 = cJ + cP ≡ m J0 + s P0
encodes mass m > 0 and spin s of the particle, while h is a group element that through the conju-
gation hc0h

−1 = pαJα + jαPα determines the particle’s momentum p = pαJα and generalized 
angular momentum j = jαPα . In particular, in the case � = 0 we have the standard relation 
jα = εα

βγ xβpγ + s p̂α (with p̂α ≡ pα/m and x0 ≡ t ). The first term of the Lagrangian in (5)
describes the gravitational field, the second one a free particle and the last one their mutual in-
teraction. Treating At as a Lagrange multiplier we can interpret the latter term as a constraint on 
the spatial curvature:

k

2π
FS = hc0h

−1δ2(�x − �x∗) dx1 ∧ dx2 . (6)

From FS = RS + TS + CS it then follows that the (spatial) Riemann curvature and torsion are 
given by

RS = −CS + 2π

k
p δ2(�x − �x∗) dx1 ∧ dx2 , TS = 2π

k
j δ2(�x − �x∗) dx1 ∧ dx2 . (7)

They both vanish (on the background of constant curvature RS = −CS ) everywhere except the 
puncture, where the momentum p is a source of curvature and the generalized angular momentum 
j a source of torsion.

The constraint (6) allows us to gauge away the gravitational connection by expressing it in 
terms of the particle degrees of freedom, which leads to the effective particle action. To this 
end we will employ the approach introduced in [8,25,26], where it was used to derive the corre-
sponding symplectic form. The first step is to divide the spatial slice S into a region containing 
the particle D, topologically equivalent to a punctured disc, with polar coordinates ρ ∈ (0, 1], 
φ ∈ [0, 2π ], and the remaining empty region E (where ρ ≥ 1). They are separated by the circular 
boundary � (at ρ = 1). On the empty region E the spatial connection is flat (even for � 	= 0) and 
has the general form

A
(E)

S = γ dγ −1 , (8)

where γ is a certain gauge group element. Solving the constraint (6) on the punctured disc D we 
similarly find that the connection is given by

A
(D)

S = γ̄
c0

k
dφ γ̄ −1 + γ̄ dγ̄ −1 , γ̄ (ρ = 0) = h , (9)
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where a group element γ̄ is associated with the particle’s motion and for an infinitesimally small 
D it reduces to h. Furthermore, requiring continuity of AS across the boundary �, i.e. A(D)

S |� =
A

(E)

S |�, is equivalent to the sewing condition

γ −1|� = α e
1
k
c0φγ̄ −1|� , (10)

with an arbitrary constant group element α = α(t), dα = 0. The jump of the value of γ (while 
γ̄ is continuous) at the point φ = 2π , which coincides with φ = 0, is an effect of the conical 
singularity at ρ = 0, characterized by the nontrivial holonomy of A(E)

S (see Subsection 2.1).
As we describe it in the Appendix, every gravitational gauge group can be locally factor-

ized into the product of groups SL(2, R) and ANn(2), with the deformation vector n ∈R
2,1\{0}, 

n2 = � [10]. n is timelike in the de Sitter, lightlike in the Poincaré and spacelike in the anti-de Sit-
ter case. The factorized group has the double product structure SL(2, R) �� ANn(2), where both 
subgroups are acting on each other in a complicated manner. However, in terms of the ann(2)

generators

Sα = Pα + εαβγ nβJ γ , (11)

the scalar product (2) on the corresponding algebra simply becomes〈
Jα,Sβ

〉 = ηαβ ,
〈
Jα, Jβ

〉 = 〈
Sα,Sβ

〉 = 0 . (12)

We choose here the order of factorization in which gauge group elements g are expressed as

g = us= (u31 + uαJα)(s31 + sβSβ) , (13)

under the factorization condition s3 + 1
2 n · s > 0. The choice of the reverse ordering (82) would 

lead to deriving the effective action that differs by the appropriate group conjugations.
Substituting the decomposed connection (8)–(9) into (5) and factorizing both γ and γ̄ , we can 

rewrite the Lagrangian in the boundary form

L = k

2π

∫
�

〈
ds s−1u−1u̇− d s̄ s̄−1ū−1 ˙̄u+ c0

k
dφ

(
s̄−1ū−1 ˙̄u s̄+ s̄−1 ˙̄s

)〉
, (14)

where the contribution from the disc D had to be included with the opposite orientation of �. 
Subsequently, with the help of the sewing condition (10) we can eliminate ds s−1 from (14) to 
obtain

L = k

2π

∫
�

〈
∂0

(
ū−1u

)
u−1ū

(
d s̄ s̄−1 − s̄

c0

k
dφ s̄−1

)
+ c0

k
dφ s̄−1 ˙̄s

〉
. (15)

We will proceed further with this expression in the specific cases.

2.1. De Sitter and Poincaré gauge groups

Let us first consider the Lagrangian (15) for � > 0, with the de Sitter gauge group SL(2, C), 
and take n = (

√
�, 0, 0) as the deformation vector. Strictly speaking, a single particle solution 

for positive � can not exist since in this case the spherical topology of S requires the presence 
of a complementary conical defect [3]. However, here we introduce it as a step towards either 
the multiparticle case or contractions of the theory with the SL(2, C) group. We have S0 = P0, 
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cS ≡ cP and therefore the group element characterizing a particle in (10) has the exceptionally 
simple factorization

e
1
k
c0φ = e

1
k
cJ φe

1
k
cSφ = e

1
k
cSφe

1
k
cJ φ = (σ31 + σ0S0)(μ31 + μ0J0) , (16)

where σ3 ± 1
2

√
�σ0 > 0 is automatically satisfied, since

μ3 = cos
mφ

2k
, μ0 = 2 sin

mφ

2k
,

σ3 = cosh

√
�sφ

2k
, σ0 = 2√

�
sinh

√
�sφ

2k
. (17)

It is suitable to choose the reverse-ordered factorization (82) of the constant group element

α = r v = (r31 + rαSα)(v31 + vβJβ) , (18)

with r3 − 1
2

√
�r0 > 0. Applying (16) and (18) to the sewing condition (10) and using the formu-

lae (83)–(84) from the Appendix, after lengthy calculations we find that the explicit expression 
for u−1 is given by

u−1 = (V31 + V αJα) ū−1 , V3 = 1

NV

(
U3s̄3 + 1

2

√
�(U3s̄0 + ε0αβUαs̄β)

)
,

V α = 1

NV

(
(s̄3 − 1

2

√
�s̄0)U

α + √
�Uβs̄βηα0

)
,

N2
V ≡ (s̄3 + 1

2

√
�s̄0)

2 + 1
4�s̄αs̄α(U2

1 + U2
2 )

+ √
�(s̄3 + 1

2

√
�s̄0)

( 1
2 (Uαs̄αU0 − UαUαs̄0)

+ U3ε0αβUαs̄β
)
, (19)

which is valid when N2
V > 0 and where

U3 = 1

NU

(μ3v3 − 1
4μ0v0)(σ3 − 1

2

√
�σ0) ,

Uα = 1

NU

(
(σ3 + 1

2

√
�σ0)(μ3v

α +μ0v3η
α0 + 1

2εα
β0μ0v

β)− (μ3v0 +μ0v3)
√

�σ0η
α0

)
,

NU ≡
√

(σ3 − 1
2

√
�σ0)2 + 1

2

√
�σ3σ0(v

2
1 + v2

2) , (20)

which has to satisfy N2
U > 0. Substituting (19) into (15) we obtain the effective Lagrangian

L = k

2π

∫
�

〈
f (V )

(
d s̄ s̄−1 − s̄

c0

k
dφ s̄−1

)
+ c0

k
dφ s̄−1 ˙̄s

〉
,

f (V ) ≡
(
V̇3V

α − V3V̇
α + 1

2εα
βγ V βV̇ γ

)
Jα . (21)

As the last step we should perform the integration in (21) over the boundary coordinate φ ∈
[0, 2π ]. Unfortunately, due to the rather complicated form of variables V3, V α , it is difficult to 
find a way to do this.

Nevertheless, we can still derive the well known limit � −→ 0, n −→ 0 (let us stress that one 
can also have � = 0 but n 	= 0, see Subsection 2.3), which will allow to verify the correctness 
of our calculations. In this case the gauge group becomes the Poincaré group SL(2, R) �< R

2,1, 
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where the subgroup of translations R2,1 is equivalent to the dual algebra sl(2, R)∗. The semidirect 
product �< means that the (double cover of the) Lorentz group SL(2, R) is acting on sl(2, R)∗
from the right, i.e. the product of two elements g and g′ has the form

gg′ = u(1 + s)u′(1 + s′) = uu′ (1 + (u′)−1su′ + s′) . (22)

Consequently, V3 and V α significantly simplify to

V3 = μ3v3 − 1
4μ0v0 , V α = μ3v

α + μ0

(
v3η

α0 + 1
2ε0αβvβ

)
, (23)

which is equivalent to V31 + V αJα = v e
1
k
cJ φ . Then (21) can be expressed via a total spatial 

derivative and integrated out to give the final particle Lagrangian

L = k

2π

∫
�

d

〈
∂0(v e− 1

k
cJ φv−1)v e

1
k
cJ φv−1x + 1

k
cP φ v−1v̇

〉

= κ

〈
�̇−1�x + 1

κ
cP v

−1v̇

〉
, (24)

where we denote κ ≡ k/2π , and introduce new variables of the particle’s momentum � ≡
v ecJ /κv−1 (see below) and position x ≡ v ̄sv−1. Furthermore, to partially restrict the remain-
ing gauge freedom we impose the natural condition γ (φ = 0) = 1, which leads to the relations 
v = ū and r = ū s̄ ū−1, and hence we may set � = ū ecJ /κ ū−1, x = ū s̄ ū−1. The obtained re-
sult (24) obviously agrees with the previous derivations of the effective action [4,9] as well as 
symplectic form [27].

Meanwhile, the holonomy of the connection AS = γ dγ −1 around the boundary � is given by 
the path-ordered exponential (with the counter-clockwise ordering)

P e
∫
� AS = γ (φ = 0) γ −1(φ = 2π)

= �
(
1 +

(
Ad(�−1) − 1

)
x + Ad(�−1)

(
ū 1

κ
cP ū

−1
))

≡ �
(
1 + 1

κ
Ad(�−1)ϒ

)
, (25)

where the adjoint action is Ad(�) Pα = � Pα�−1. In this context a SL(2, R) group element �, 
conjugate to the rotation by m

κ
= 8πGm, is naturally interpreted [4,8] as momentum of the 

self-gravitating particle. Therefore, using the parametrization � := p31 + 1
κ
pαJα we obtain the 

deformed mass shell condition

pαpα = 4κ2 sin2 m

2κ
. (26)

The extended momentum space, which is the SL(2, R) group, as a manifold is the three-
dimensional anti-de Sitter space, determined by the constraint on coordinates p2

3 + pαpα/

(4κ2) = 1. On the other hand, ϒ = jαPα introduced above can be shown [4,27] to be the parti-
cle’s (generalized) angular momentum, with deformed components

jα = p3 εα
βγ xβpγ + 1

2κ

(
xαpβpβ − xβpβpα

) + s p̂α . (27)

Together with � it satisfies the relation pαjα = 4κ2 sin2 m
2κ

s instead of the usual pαjα = ms

(which is valid for p and j in the starting action (5)).
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We also note that the effective Lagrangian (24) can be expressed in the concise form

L =
〈 ˙̄uū−1ϒ

〉
. (28)

For vanishing spin s = 0, evaluating the scalar product in the Lagrangian and treating the mass 
shell condition (26) as a constraint, we can write the corresponding action in terms of coordinates 
xα and pα as

S =
∫

dt

((
−p3ṗα + ṗ3pα − 1

2κ
εαβγ ṗβpγ

)
xα − λ

2

(
pαpα − 4κ2 sin2 m

2κ

))
, (29)

where λ
2 is the Lagrange multiplier (and p3 = √

1 − pαpα/(4κ2)). As one can see, in the no-
gravity limit κ −→ ∞ it reduces to the free particle action. Surprisingly, after some calculations, 
(29) itself gives the equations of motion

ẋα = λ cos
m

2κ
pα , ṗα = 0 , (30)

which are the same (up to the rescaling of λ) as for a free particle [4,22]. What is actually 
modified by the gravitational field is the momentum mass shell. These conclusions remain valid 
in the spinning case, when the on-shell action is

S =
∫

dt

((
−p3ṗα + ṗ3pα − 1

2κ
εαβγ ṗβpγ

)
xα + s

2
ε

β
0α �̇α

γ (−ū)�
γ
β(ū)

)
(31)

where �α
β(ū) are matrix elements of the adjoint representation of the Lorentz group, defined 

via �α
β(ū)Jα := ūJβ ū

−1, while we implicitly have pα = 2κ �α
0(ū) sin m

2κ
and xα = �α

β(ū) ̄sβ . 
Variating (31) with respect to �α

β(ū), it can independently be shown (similarly as it is done for 

a free particle [28]) that j̇α = 0.
Finally, let us briefly discuss the case of a massless particle [4], which is usually neglected in 

the Chern–Simons formulation. In order to correctly include such a particle in the action (5) we 
have to replace c0 with a lightlike algebra element, so that pαpα = 0 for hcJ h−1 = pαJα and 
[cJ , cP ] = 0, e.g. cJ = e (J0 ± J2), cP = s (P0 ± P2), where e is the massless particle’s energy. 
As one can verify, the derivation of (24) (obviously, we do not need to start it from � > 0) is 
unaffected by this change and we arrive at the effective Lagrangian of the same form as in the 
massive case. The off-shell particle action in terms of coordinates can be simply obtained by 
taking the limit m −→ 0 of (29). However, now � := p31 + 1

κ
pαJα on shell is conjugate to the 

null rotation by 8πGe, while pα = e (�α
0(ū) + �α

1(ū)).

2.2. The reciprocal group contraction

From the point of view of the (local) gauge group factorization (13), curved manifold of the 
ANn(2) component group in the limit � −→ 0 is being flattened to the R2,1 group. On the other 
hand, one might theoretically consider the opposite contraction of the de Sitter group, such that 
the Lorentz component SL(2, R) is flattened out and we obtain the group with the semidirect 
product structure R2,1 >� ANn(2), equivalent to ann(2)∗ >� ANn(2) (with the left action of 
ANn(2) on ann(2)∗). This should lead to the particle model with the ANn(2) momentum space 
instead of SL(2, R) and might be connected with the κ-Poincaré symmetry algebra. The proper 
way to accomplish this task, which we did not completely explain in [22], is by rescaling the 
de Sitter group generators and coordinates to
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J̃α := √
�Jα , S̃α := √

�
−1

Sα , ũα := √
�

−1
uα , s̃α := √

�sα (32)

(below we will skip the tildes over coordinates) and subsequently taking the limit � −→ 0. After 
such a contraction the deformation vector effectively reduces to n = (1, 0, 0), while the brackets 
(78) (with � > 0) become

[J̃α, J̃β ] = 0 , [J̃α, S̃β ] = ηβ0J̃α − ηαβJ̃0 , [S̃α, S̃β ] = ηα0S̃β − ηβ0S̃α , (33)

which indeed describe the Lie algebra corresponding to ann(2)∗ >� ANn(2). The product of two 
group elements g and g′ has the form

gg′ = (1 + u)s (1 + u′)s′ =
(
1 + u + su′s−1

)
ss′ . (34)

The scalar product (12) on the algebra (33) remains unchanged, due to the fact that we rescaled 
both subalgebras rather than just sl(2, R). The physical meaning of the Chern–Simons theory 
with the obtained new gauge group will become clear below.

Let us first observe that the algebra (33) bears a certain resemblance to algebra of the three-
dimensional Carroll group. This group is the contraction of the (three-dimensional) Poincaré 
group defined in the limit of vanishing speed of light [29] but can also be seen as a subgroup of 
the de Sitter group, treated as a so-called Bargmann group [30]. The Carroll algebra is given by

[M,Ka] = ε0abK
b , [Ka,Kb] = 0 , [M,Ta] = ε0abT

b , [Ka,Tb] = δabT0 ,

[M,T0] = 0 , [Ka,T0] = 0 , [T0, Ta] = 0 , [Ta,Tb] = 0 , (35)

where M , Ka , Ta , T0, a = 1, 2 are, respectively, the generators of rotations, Carrollian boosts 
and translations in space and time. Carrollian boosts are acting only in the temporal direction 
and the differences between (35) and the Poincaré algebra are associated with them. To facilitate 
a comparison of the Carroll algebra structure with the brackets (33) we may rewrite the latter in 
the form

[M̃, K̃a] = K̃a , [K̃a, K̃b] = 0 , [M̃, T̃a] = −T̃a , [K̃a, T̃b] = δabT̃0 ,

[M̃, T̃0] = 0 , [K̃a, T̃0] = 0 , [T̃0, T̃a] = 0 , [T̃a, T̃b] = 0 , (36)

where we denoted M̃ ≡ S̃0, K̃a ≡ S̃a , T̃a ≡ J̃a and T̃0 ≡ −J̃0. Looking at (35) we observe that 
J̃α’s, S̃0 and S̃a’s occupy the respective positions of the generators of translations, rotations and 
Carrollian boosts but with the altered first and third bracket. As we will see, this strong similarity 
between the algebras (33) and (35) manifests itself at the level of particle dynamics.

We note that the effective symplectic form for particles coupled to the Chern–Simons theory 
with a gauge group of the form G �< g∗, where G is an arbitrary Lie group, was calculated in 
[26]. Starting from (21), we will now finish the derivation of the particle action in the case of the 
considered group ann(2)∗ >� ANn(2). It simplifies the sewing condition (10) to V3 = 1 and

V0 = μ0 + v0 + (σ3 + 1
2σ0)

2(s̄3 − 1
2 s̄0) vas̄a , V a = (σ3 + 1

2σ0)
2(s̄3 − 1

2 s̄0)
2va , (37)

which, as can be shown using formulae from the Appendix, is equivalent to the relation

V31 + V αJ̃α = s̄ e− 1
k
c
S̃
φv e

1
k
c
S̃
φ s̄−1 + e

1
k
c
J̃
φ . (38)

Hence we find that the particle Lagrangian (21) becomes
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L = k

2π

∫
�

d

〈
∂0(s̄ e− 1

k
c
S̃
φ s̄−1x s̄) e

1
k
c
S̃
φ s̄−1 + 1

k
c
J̃
φ s̄−1 ˙̄s

〉

= κ

〈
��̇−1x + 1

κ
c
J̃ s̄

−1 ˙̄s
〉

, (39)

where � ≡ s̄ ec
S̃
/κ s̄−1 and x ≡ s̄v ̄s−1. We can again fix the gauge via the condition

γ (φ = 0) = 1, equivalent to r = s̄, v = s̄−1ū s̄, which allows us to write x = ū. The Lagrangian 
(39) is the confirmation of our findings from [22] but here we arrive at this result in a more 
rigorous manner. Let us also note that, despite some differences, the first lines of (39) and (24)
lead to the almost identical form of the final expression. More precisely, (39) corresponds to the 
counterpart of (24) with the reverse factorization (82) of gauge group elements.

Calculating the holonomy of AS around � we then obtain

P e
∫
� AS = γ (φ = 0) γ −1(φ = 2π) = (

1 + (1 − Ad(�))x + 1
κ
c
J̃

)
�, (40)

which may be compared with (25). By analogy with the latter case, we presume that a group 
element � ∈ ANn(2) is actually the particle’s momentum and x ∈ R

2,1 its position. Indeed, 

after the rescaling (32) the mass constant m̃ ≡ √
�

−1
m acquires the dimension of mass times 

length (i.e. angular momentum), while the spin constant s̃ ≡ √
�s the dimension of mass (i.e. 

momentum). In this sense mass and spin are exchanged and therefore we will denote s J̃0 :=
c
J̃

and m S̃0 := c
S̃

. As expected due to the constraints (7), it can also be shown that a similar 
exchange occurs for the spin connection and dreibein in the Cartan connection (3) (now written 
in terms of the generators J̃α and S̃α). Therefore, the theory with the gauge group considered in 
this Subsection can be seen as related to the Poincaré case from the previous Subsection via a 
kind of the reciprocity (or duality) map. However, since the new dreibein and spin connection do 
not lead to the standard expressions (4) for the Riemann curvature and torsion, such a theory is 
actually a modification of general relativity.

The extended momentum manifold ANn(2) is the elliptic de Sitter space [31]. In the context 
of the κ-Poincaré algebra, ANn(2) is often considered in the exponential parametrization, e.g. 
with the following ordering

� := epa/κ S̃a ep0/κ S̃0 , s̄ := eξaS̃a eξ0S̃0 . (41)

It is connected with the parametrization s = s31 + sαS̃α by the relations ξ0 = 2 log(s3 + 1
2 s0)

and ξa = (s3 + 1
2 s0) sa . However, it turns out that coordinates pα are constrained to [22]

p0 = m, pa = κ
(

1 − e
m
κ

)
ξa , (42)

which means that the particle’s energy p0 always has to be equal to the rest mass. This is a 
characteristic feature for particles with the Carroll group symmetry since in the Carrollian (or 
ultralocal) limit lightcones in spacetime are shrunk into spacelike worldlines, which can equiva-
lently be seen as null geodesics in one dimension higher [30]. By analogy with (25), we also call 
the quantity

ϒ ≡ κ (Ad(�−1) − 1)x + c
J̃

=
(
−xbp

b + s
)

J̃0 + xap0J̃a (43)

the particle’s (quasi-)angular momentum. It satisfies the standard condition pαjα = ms but in the 
limit κ −→ ∞ its components become the expressions j0 = −xap

a + s, ja = p0x
a , which are 

different than in the ordinary situation.
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The Lagrangian (39) can concisely be written as

L =
〈 ˙̄ss̄−1ϒ

〉
. (44)

However, since there is the relation s̄J̃0s̄
−1 = J̃0, calculating a variation of the spin term we 

obtain the total time derivative δ
〈
c
J̃ s̄

−1 ˙̄s〉 = ∂0
〈
c
J̃
ε
〉
, where δs̄ = ε s̄, ε ∈ ann(2). Since it does 

not contribute to the equations of motion, let us now restrict to the spinless case. The action 
corresponding to the Lagrangian (39), with the mass shell constraint (42) included, in coordinates 
is given by

S =
∫

dt

(
ẋ0p0 + ẋapa + κ−1xapaṗ0 − λ

2

(
p2

0 − m2
))

. (45)

Infinitesimal symmetries of this action are described in [22]. Without the constraint it would 
be the off-shell action of a particle with the κ-Poincaré symmetries [32]. On the other hand, 
in the κ −→ ∞ limit it becomes the action of a free Carroll particle [33] in three dimensions. 
Furthermore, (45) leads to the equations of motion (on the mass shell)

ẋ0 = λm, ẋa = 0 , ṗα = 0 , (46)

which are actually identical to the ones of a Carroll particle. Taking everything into account, 
one can say that the action (45) describes a κ-deformed Carroll particle, although the underlying 
gauge group is not a κ-deformation of the Carroll group.

2.3. Anti-de Sitter group and the lightlike deformation

Another case to analyze is the Lagrangian (15) with � < 0 and the anti-de Sitter gauge group 
SL(2, R) × SL(2, R). Choosing the deformation vector n = (0, 0, 

√|�|), we factorize a constant 
α in the sewing condition (10) in the same way as in (18) (but now we have r3 + 1

2

√|�| r2 > 0) 
and write the group element of a particle as

e
1
k
c0φ = e

1
k
cP φe

1
k
cJ φ = rcvc . (47)

However, in this case the second line of (17) becomes

σ3 = cos

√|�| sφ
2k

, σ0 = 2√|�| sin

√|�| sφ
2k

, (48)

while (47) acquires the nontrivial form

vc = 1√
σ 2

3 + �
4 σ 2

0

(
μ3σ31 + μ0σ3J0 − √|�|μ3σ0J1 − 1

2

√|�|μ0σ0J2

)
,

rc = 1√
σ 2

3 + �
4 σ 2

0

(
σ 2

3 1 + σ3σ0S0 − 1
2

√|�|σ 2
0 S2

)
, (49)

and the corresponding factorization condition σ 2
3 + �

4 σ 2
0 = cos(

√|�| sφ/k) > 0 is not always 
satisfied. We subsequently calculate that the counterparts of the formulae (19)–(20) are given by
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u−1 = (V31 + V αJα) ū−1 ,

V3 = 1

NV

(
U3s̄3 + 1

2

√|�|(U3s̄2 + εαβ2U
αs̄β)

)
,

V α = 1

NV

(
(s̄3 − 1

2

√|�| s̄2)U
α + √|�|Uβs̄βηα2

)
,

NV ≡
√

(s̄3 + 1
2

√|�| s̄2)2 + 1
4�s̄αs̄α(U2

0 + U2
1 )

+√|�|(s̄3 + 1
2

√|�| s̄2)
( 1

2 (Uαs̄αU2 − UαUαs̄2) + U3εαβ2Uαs̄β
)
, (50)

which exists when N2
V > 0, and

U31 + UαJα = (W31 + WαJα)vc ,

W3 = 1

NW

√
σ 2

3 + �
4 σ 2

0

(
(σ 2

3 + �
4 σ 2

0 )v3 − 1
2

√|�|σ3σ0v1

)
,

Wα = 1

NW

√
σ 2

3 + �
4 σ 2

0

(
vα − √|�|σ0(σ3v0 − 1

2

√|�|σ0v2)η
α2

)
,

NW ≡
√

σ 2
3 + �

4 σ 2
0 − √|�|σ3σ0(v3v1 + 1

2v0v2) , (51)

which has to satisfy N2
W > 0. For brevity we do not present the explicit expressions for U3, Uα . 

However, similarly as it is for � > 0, we do not know how to perform the final integration in 
the particle Lagrangian (21) after substituting (50)–(51). In the limit � −→ 0 we obviously re-
cover the sewing condition for the Poincaré gauge group (23) and the corresponding ultimate 
Lagrangian (24). On the other hand, although in the case of the anti-de Sitter group one can also 
define the counterpart of the group contraction from the previous Subsection, the obtained La-
grangian turns out to be divergent. This result seems to be associated with the term proportional 
to J1 in vc.

Lastly, we may take � = 0 but with a non-zero, lightlike deformation vector, e.g. n = (q, 0, q), 
q ∈ R. We find that the sewing condition is then given by complicated expressions analogous to 
(50)–(51) and therefore we do not show them here. It might seem that the effective action in such 
a case should be equivalent to the one for the Poincaré group in the standard form SL(2, R) �<
R

2,1 but (24) is recovered in the limit q −→ 0, which reflects the fact that q is an extra parameter. 
The situation of the reciprocal group contraction is the same as above for � < 0.

3. Multiple particles

We will now generalize our derivation of the effective action to multiple particles. In the 
Subsections below we concentrate on these gauge groups for which we have managed to obtain 
the final form of the single particle Lagrangian but what we do previously is valid for any �. 
The starting point is the Chern–Simons action for a system of n particles coupled to gravity [19], 
given by the straightforward counterpart to the single particle case (5)
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S =
∫

dtL , Ln = k

4π

∫
S

〈
ȦS ∧ AS

〉 − n∑
i=1

〈
c(i)h

−1
i ḣi

〉

+
∫
S

〈
A0

(
k

2π
FS −

n∑
i=1

hic(i)h
−1
i δ2(�x − �x(i)) dx1 ∧ dx2

)〉
, (52)

where particles are labelled by i = 1, . . . , n and appear as punctures at points �x(i) of a spatial 
slice S of genus 0, while their masses and spins are encoded in the algebra elements c(i) =
m(i)J0 + s(i)P0, and momenta and angular momenta determined by the group elements hi . The 
topology of S can be either open or closed (for � ≤ 0 the latter is possible when n ≥ 3 [2]). 
In the open case we also should impose the appropriate boundary conditions at spatial infinity, 
which are given by the requirement that spacetime is asymptotically conical, corresponding to a 
single effective particle [5]. It can elegantly be done [8,26] by treating S as a topological sphere 
on which the infinity is represented by the boundary of a removed disc, and then shrinking this 
boundary into a special additional puncture, which carries the total mass and spin of the system. 
Nevertheless, for simplicity we consider here the reduced setting, assuming that the boundary 
conditions are already satisfied.

To solve the constraint on FS from the second line of (52) it is convenient to decompose S
in the manner [8,25] that generalizes what we did in the previous Section. We first choose a 
point on S far away from the punctures and starting from it draw a separate loop around each of 
them, dividing S into n disjoint particle regions Di and the asymptotic empty region E with the 
boundary �. Similarly as before, every region Di can be deformed into a punctured disc, with 
polar coordinates ρi ∈ (0, 1], φi ∈ [0, 2π ], where the connection AS has the form

A
(Di )

S = γ̄i

c(i)

k
dφi γ̄

−1
i + γ̄idγ̄ −1

i , γ̄i (ρi = 0) = hi . (53)

Meanwhile, the empty region E (where AS is given by (8)) can be seen as a n-sided polygon 
whose edges �i (� = ⋃

i �i ) correspond to the boundaries of discs Di . At the i’th vertex of the 
polygon the endpoint φi = 2π of the incoming edge �i coincides with the endpoint φi+1 = 0
of the outgoing edge �i+1. However, on every �i we have an independent sewing condition 
A

(Di )

S |�i
= A

(E)

S |�i
and therefore we can apply the same methods as for a single particle.

3.1. The Poincaré case

Let us first restrict to the Poincaré gauge group, with � = 0 and n = 0. Following Section 2, 
for each particle we derive the effective Lagrangian of the form (24), i.e. (after evaluating the 
scalar product)

L(i) = κ
(
�̇−1

i �i

)
α
(xi )

α + s(i)

(
v

−1
i v̇i

)
0

, (54)

with momentum �i = vie
1
κ
m(i)J0v

−1
i and position xi = vi s̄iv

−1
i . Moreover, we have to ensure 

the continuity of γ at all vertices of E except i = 1 (where γ has a jump, analogously to (10)), 
imposing the conditions γ (φi+1 = 0) = γ (φi = 2π), i < n. Similarly as in the previous Section, 
we may also fix the gauge at the first vertex via γ (φ1 = 0) = 1. Together this leads to the sequence 
of relations

v1ū
−1
1 = 1 , v2ū

−1
2 = �1 , v3ū

−1
3 = �1�2 , . . . ,

r1 = x1 , r2 = �1x2�
−1
1 + 1

κ
ϒ1 , r3 = �1�2x3�

−1
2 �−1

1

+ �1
1
κ
ϒ2�

−1
1 + 1

κ
ϒ1 , . . . , (55)
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where now �i ≡ ūie
1
κ
m(i)J0 ū

−1
i , xi ≡ ūi s̄i ū

−1
i and angular momentum ϒi = κ (1 −Ad(�i)) xi +

ūi s(i)P0ū
−1
i .

Substituting the conditions (55) into individual Lagrangians (54), we choose to eliminate vari-
ables vi in favour of ūi . Performing the summation over all particles we then obtain the effective 
n-particle Lagrangian, which can be written as

Ln =
n∑

i=1

( ˙̄ui ū
−1
i − ∂0(�

−1
i−1 . . .�−1

1 )�1 . . .�i−1

)
α
(ϒi)

α

=
n∑

i=1

(
κ

(
�̇−1

i �i

)
α
(xi )

α + s(i)

(
ū

−1
i

˙̄ui

)
0

−
(
∂0(�

−1
i−1 . . .�−1

1 )�1 . . .�i−1

)
α
(ϒi)

α
)

. (56)

In particular, in the 3-particle case the explicit expression for Ln is (here we arrange it in a 
different way)

L3 =
3∑

i=1

(
κ

(
�̇−1

i �i

)
α
(xi )

α + s(i)

(
ū

−1
i

˙̄ui

)
0

)
−

(
�̇−1

1 �1

)
α

(
ϒ2 + �2ϒ3�

−1
2

)α

−
(
�̇−1

2 �2

)
α
(ϒ3)

α . (57)

The Lagrangian (56) agrees with the corresponding symplectic form [8]. As one can observe, 
it describes a collection of self-gravitating particles whose angular momentum ϒi is coupling 
to the total momentum of preceding particles (i.e. the ones labelled by j ’s smaller than a given 
i ≤ n). Furthermore, the terms proportional to ϒi depend on the order of particle labels.

To verify the composition rule for such group-valued momenta and angular momenta we note 
that the holonomy of AS along an edge �i is given by γ (φi = 0) γ −1(φi = 2π) (similarly to 
(25)), and hence for the holonomy circumventing j ≤ n particles along �(j) ≡ ⋃j

i=1 �i we have

P e
∫
�(j) AS = γ (φ1 = 0) γ −1(φj = 2π)

= �1 . . .�j

(
1 + 1

κ
�−1

j . . .�−1
1 ϒ1�1 . . .�j + . . . + 1

κ
�−1

j ϒj�j

)
. (58)

It confirms that the composition rule is determined by the non-Abelian group multiplication 
(22), leading to the deformed addition of both pi and ji . When (58) is calculated along the 
whole boundary �, we naturally interpret � ≡ �1 . . .�n as the total momentum of the sys-
tem and �−1ϒ� ≡ �−1

n ϒn�n + �−1
n �−1

n−1ϒn−1�n−1�n + . . . as the total angular momentum 
conjugated by �. By construction, for a closed topology of S it has to be � = 1, ϒ = 0. The 
holonomy (58) also depends on the ordering of particles. This peculiar property [34] is actu-
ally a natural feature of non-Abelian field theories in two spatial dimensions, where a system of 
topological defects is not invariant under a usual permutation of the pair characterized by group 
elements gi and gi+1: (gi, gi+1) → (gi+1, gi), but instead under a so-called braid: right-handed 
(gi, gi+1) → (gi+1, g

−1
i+1gigi+1), i.e.

(�i,�i+1) →
(
�i+1,�

−1
i+1�i�i+1

)
,

(ϒi,ϒi+1) →
(
ϒi+1,Ad(�−1

i+1) (ϒi − (1 − Ad(�i))ϒi+1)
)

(59)
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or left-handed (gi, gi+1) → (gigi+1g
−1
i , gi), i.e.

(�i,�i+1) →
(
�i�i+1�

−1
i ,�i

)
,

(ϒi,ϒi+1) →
(

Ad(�i)ϒi+1 + (1 − Ad(�i�i+1�
−1
i ))ϒi,ϒi

)
, (60)

for i < n. Simply speaking, a loop �i can not be pulled through �i+1, or vice versa, but has to 
be deformed around the latter, which accordingly modifies the holonomy gi or gi+1 (see [35]
for the illustrations). Taking this into account, once a given particle ordering is chosen, the total 
holonomy (58) (with j = n) is defined unambiguously, since it is invariant under the braid group 
of n elements. The above braid symmetry is obviously reflected in the properties of particle 
scattering and statistics at the quantum level [9,34–36].

Finally, considering the spinless case ∀is(i) = 0, we may rewrite the Lagrangian (56) in the 
form that includes the mass shell constraints for individual particles, analogously to (29). Despite 
the presence of coupling between different particles, we find that it leads to the equations of 
motion

ẋα
(i) = λ(i) cos

m(i)

2κ
pα

(i) , ṗα
(i) = 0 , (61)

which are the same as for a single particle (37), reflecting the absence of local interactions in 
three-dimensional gravity. The derivation of these equations can conveniently be done in the 
recursive manner, starting from the 1’st particle for variations of the Lagrangian with respect to 
positions and then from the n’th particle for variations with respect to momenta. Nevertheless, 
the particles experience a topological interaction between themselves via the sewing conditions 
(55) (see also [5]).

3.2. The κ-deformed Carroll case

The other possibility that can be studied is to take the action (52) with � > 0, n = (
√

�, 0, 0)

and later perform the contraction of the gauge group to ann(2)∗ >� ANn(2), introduced in Sub-
section 2.2. Following the steps from the beginning of this Section and repeating calculations of 
the single particle case (39), we derive the effective Lagrangians for individual particles

L(i) = κ
(
�i�̇

−1
i

)
α
(xi )

α + s(i)

(
s̄
−1
i

˙̄si

)
0

, (62)

with momentum �i = s̄ie
1
κ
m(i)S̃0 s̄

−1
i and position xi = s̄ivi s̄

−1
i . Then, requiring the continuity 

conditions at the vertices γ (φi+1 = 0) = γ (φi = 2π) and partially fixing the gauge via γ (φ1 =
0) = 1, we again obtain the relations

r1s̄
−1
1 = 1 , r2s̄

−1
2 = �1 , r3s̄

−1
3 = �1�2 , . . . ,

s̄1v1s̄
−1
1 = x1 , s̄2v2s̄

−1
2 = x2 + 1

κ
ϒ1 , s̄3v3s̄

−1
3 = x3 + 1

κ
ϒ2 + �−1

2
1
κ
ϒ1�2 , . . . ,

(63)

where the (quasi-)angular momentum ϒi = κ (Ad(�−1
i ) − 1) xi + s(i)J̃0 and now xi ≡ ūi . After 

(63) is applied to every L(i) to replace the variables vi with ūi , summing over i we ultimately 
arrive at the effective n-particle Lagrangian
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Ln =
n∑

i=1

(( ˙̄si s̄
−1
i

)
α
(ϒi)

α +
(
�i�̇

−1
i

)
α

(
ϒi−1 + . . . + �−1

i−1 . . .�−1
2 ϒ1�2 . . .�i−1

)α)

=
n∑

i=1

((
�i�̇

−1
i

)
α

(
κ xi + ϒi−1 + . . . + �−1

i−1 . . .�−1
2 ϒ1�2 . . .�i−1

)α

+ s(i)

(
s̄
−1
i

˙̄si

)
0

)
. (64)

This expression can also be arranged analogously to (56), as we show in the simple example

L3 =
3∑

i=1

(
κ

(
�i�̇

−1
i

)
α
(xi )

α + s(i)

(
s̄
−1
i

˙̄si

)
0

)
+

(
�3�̇

−1
3

)
α
(ϒ2)

α

+
(
�2�3�̇

−1
3 �−1

2 + �2�̇
−1
2

)
α
(ϒ1)

α . (65)

Repeating what we did in (45), for vanishing spins ∀is(i) = 0 we may add to (64) the mass shell 
constraint for every particle. This leads us to the equations of motion

ẋ0
(i) = λ(i)m(i) , ẋa

(i) = 0 , ṗα
(i) = 0 , (66)

which are again the same as in the single particle case (46). In the recursive derivation of these 
equations we start from the n’th particle for variations of the Lagrangian with respect to positions 
and then from the 1’st particle for variations with respect to momenta.

Moreover, calculating the holonomy of AS along �(j) ≡ ⋃j

i=1 �i , j ≤ n we find

P e
∫
�(j) AS = γ (φ1 = 0) γ −1(φj = 2π)

=
(
1 + 1

κ
�1ϒ1�

−1
1 + . . . + 1

κ
�1 . . .�jϒj�

−1
j . . .�−1

1

)
�1 . . .�j , (67)

which is determined by the group multiplication (34) and allows to call � ≡ �1 . . .�n the total 
momentum and ϒ ≡ ϒn + �−1

n ϒn−1�n + . . . the total (quasi-)angular momentum of all parti-
cles. For a closed S there is � = 1, ϒ = 0. The holonomy (67) is invariant under the braids of 
individual holonomies but here the transformations of angular momenta from (59) and (60) have 
the form

(ϒi,ϒi+1) →
(
ϒi+1,Ad(�−1

i+1)ϒi + (1 − Ad(�−1
i+1�

−1
i �i+1))ϒi+1

)
(68)

and

(ϒi,ϒi+1) →
(

Ad(�i)
(
ϒi+1 − (1 − Ad(�−1

i+1))ϒi

)
,ϒi

)
, (69)

respectively.
We note that, as in the Poincaré case (56), the final Lagrangian (64) consists of both free 

and interacting terms. The only difference is that now angular momentum of a given particle 
is coupling to the total momentum of the following particles, instead of the preceding ones. 
This is associated with the fact that in the initial Lagrangians (54) we have a right action of the 
momentum sector of the gauge group on R2,1, while for (62) it is a left action. The Lagrangian 
(56) can be transformed into the expression analogous to (64) through the following change of 
variables
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�i → �−1
1 . . .�−1

i−1�i . . .�1 ,

xi → �−1
1 . . .�−1

i−1xi�i−1 . . .�1 − 1
κ
�−1

1 . . .�−1
i−1ϒi−1�i−1 . . .�1 − . . .

− 1
κ
�−1

1 ϒ1�1 ,

ūi → �−1
1 . . .�−1

i−1ūi , (70)

while the corresponding transformation for (64) is

�i → �−1
1 . . .�−1

i−1�i . . .�1 ,

xi → �−1
1 . . .�−1

i−1xi�i−1 . . .�1 − 1
κ
�−1

1 . . .�−1
i−2ϒi−1�i−2 . . .�1 − . . . − 1

κ
ϒ1 ,

s̄i → �−1
1 . . .�−1

i−1s̄i . (71)

4. Summary

In this paper we considered the Chern–Simons theory describing gravity in three spacetime 
dimensions, with a system of point particles. Our approach was to apply the local factorization 
of gauge groups into the product of the Lorentz group and the ANn(2) group. This allowed us 
to solve the sewing condition for the Cartan connection and obtain partial results for the effec-
tive (single) particle actions with the (anti-)de Sitter group as well as with the double-product 
factorization of the Poincaré group. However, it remains an open question how to perform the 
final integration in these actions, while another complication is that the variables of particle’s 
momentum and angular momentum belong to the subalgebras spanned by the generators Jα and 
Pα , instead of Jα and Sα . It also turns out to be similarly problematic to simplify the expressions 
for the holonomy of a particle in all the above cases, using the standard gauge fixing condition 
γ (φ = 0) = 1 at the boundary of a punctured disc.

On the other hand, we reviewed the known final results for particles in the theory with the 
Poincaré gauge group, trying to stress certain of their aspects. Furthermore, we extended the 
analysis of the so-called reciprocal contraction of the de Sitter group (introduced by us in an 
earlier paper), including the generalization to a system of multiple particles, which have not been 
discussed before. In this way we showed that, apart from the different type of the mass shell 
condition, it is completely analogous to the Poincaré case.

Finally, let us speculate about possibilities for the related future research. An area that es-
pecially deserves more interest are applications of the Chern–Simons theory in the context of 
general relativity in four spacetime dimensions. In particular, the latter can also be expressed 
[37] as a topological gauge field theory but with an extra term that breaks down the full gauge 
symmetry to the Lorentz symmetry, restoring local degrees of freedom. There has been a par-
tial attempt [38] to use the Chern–Simons theory to describe a system of point particles coupled 
to four-dimensional gravity (with positive cosmological constant) in the limit where this gauge 
symmetry is preserved. A different potential research direction are (planar) gravitational waves, 
which effectively are three-dimensional objects, while the appropriately reduced Chern–Simons 
theory can be defined on a hypersurface in four dimensions [39].

One can also notice a certain similarity between three-dimensional gravity and relativis-
tic physics in the Carrollian limit (for any number of dimensions). Namely, while in the first 
case there are no local interactions between particles coupled to the theory, in the second one 
the worldlines of particles turn out to be causally disconnected. However, the latter apparently 
changes when we introduce some interaction potential [33] and the considered analogy is proba-
bly superficial. On the other hand, as we mentioned in Subsection 2.2, spacetime in the Carrollian 
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limit can be embedded as a null hypersurface in one dimension higher. A manifestation of this 
fact is that the three-dimensional Carroll group contains the symmetries of a gravitational wave 
in four dimensions [40]. The hybrid model of κ-deformed Carroll particles derived in our paper 
may also be worth to explore as such a link between the three and four dimensions, perhaps in the 
quantum context. We note here that its effective action (45) can be straightforwardly generalized 
to higher dimensions, in contrast to (29).

Three-dimensional gravity naturally serves as a testing ground for different ideas associated 
with the quantization of general relativity. In particular, in light of the recent results that were 
discussed in the Introduction, the issue to be verified is whether the κ-Poincaré algebra actu-
ally describes symmetries of the effective theory of quantum gravity with particles included (as 
already tentatively analyzed in [21]). Then the AN(2) group would play the role of curved mo-
mentum space, which is a characteristic ingredient in the hypothetical relative locality regime of 
quantum gravity [15]. However, since the above result is presumably derived in the limit of van-
ishing cosmological constant, it is not yet clear how it can be reconciled with the corresponding 
classical case, reviewed in our Subsection 2.1. The situation is additionally complicated by the 
peculiar case from Subsection 2.2, which is obtained instead of the expected classical particle 
with the AN(2) momentum space. On the other hand, the κ-deformed Carroll particles can be 
treated as another example of the model with curved momentum space. Furthermore, the multi-
particle dynamics presented in this paper may help to improve the formulation of the principle of 
relative locality, as it was attempted in [41]. On a separate note, let us mention that the quantum 
statistics satisfying the braid symmetry, called the non-Abelian anyonic statistics, can theoreti-
cally be realized in the fractional quantum Hall effect and on spin lattices, as well as be applied 
in the topological quantum computing [42]. This allows us to establish links between these areas 
and gravity, see e.g. [43] (which also shows how the Chern–Simons theory can model a black 
hole horizon in the quantum theory) and references therein.
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Appendix A

For any value of the cosmological constant �, the (local) isometry group of three-dimensional 
spacetime is generated by the algebra [7]

[Jα, Jβ ] = εαβγ J γ , [Jα,Pβ ] = εαβγ P γ , [Pα,Pβ ] = −�εαβγ J γ , (72)

where the first bracket defines the three-dimensional Lorentz subalgebra sl(2, R) (or equivalently 
su(1, 1)). Introducing a formal parameter θ , such that θ2 = −�, it is possible to make the identi-
fication of generators: Pα ≡ θJα . Then each of the three isometry algebras becomes isomorphic 
to an extension of sl(2, R) over the Abelian ring R� (with a given �), whose elements have the 
form a + θb ∈ R�, a, b ∈ R [44]. For � > 0 we have θ = i

√
�, R�

∼= C but in other cases θ
cannot be expressed via 

√|�| and therefore is not a number.
It is convenient to use the (double cover of the) Lorentz group SL(2, R) (or SU(1, 1)) in 

the quaternionic representation. Namely, one can easily see that SL(2, R) is isomorphic to the 
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group of unit pseudo-quaternions HL
1 (the Lorentzian version of the group of unit quaternions). 

Generators eα of the algebra of pseudo-quaternions HL are defined by the relation

eαeβ = −ηαβ1 + εαβγ eγ , (73)

with the identity element 1. This leads to the following map Jα → 1
2eα . Consequently, all isome-

try groups can be represented as the group HL
1

∼= SL(2, R) over a given ring R�, whose elements 
can be parametrized as [10]

g = (k3 + θq3)1 + (kα + θqα)Jα , (74)

where real-valued group coordinates satisfy the conditions k3q3 + 1
4 k · q = 0 and k2

3 − �q2
3 +

1
4 (k2 −�q2) = 1, so that g is a unit pseudo-quaternion. In particular, for � > 0 the parametriza-
tion (74) explicitly describes the SL(2, C) group. For � = 0 the standard group structure 
SL(2, R) �< R

2,1 can be recovered as a special (global) case of the factorization (79). Finally, 
the situation is more subtle for � < 0. In order to recover the SL(2, R) × SL(2, R) factorization 
one defines new generators J±

α := 0±Jα , where 0± ≡ 1
2 (1 ± θ√−�

) are the zero divisors of R�, 

satisfying the relations 02± = 0± and 0±0∓ = 0. Indeed, in terms of J±
α the algebra (72) (with 

� < 0) becomes

[J±
α , J±

β ] = εαβγ J
γ
± , [J±

α , J∓
β ] = 0 , (75)

while group elements (74) split into the pairs of g+, g− ∈ SL(2, R), i.e.

g = 0+g+ + 0−g− = 0+
(
u+

3 1 + uα+J+
α

) + 0−
(
u−

3 1 + uα−J−
α

)
, (76)

where u±
3 = k3 ± √−�q3 and uα± = kα ± √−�qα .

On the other hand, introducing the generators

Sα := Pα + εαβγ nβJ γ , n2 = �, (77)

where n is some vector from R2,1, we can rewrite the algebra (72) as

[Jα, Jβ ] = εαβγ J γ , [Jα,Sβ ] = εαβγ Sγ + nβJα − ηαβnγ Jγ ,

[Sα,Sβ ] = nαSβ − nβSα . (78)

The third bracket defines the so-called ann(2) algebra, which can be seen as a deformed R2,1

algebra, with the deformation vector n. In the case n = 0 (when � = 0), the algebra actually be-
comes R2,1. Furthermore, it has been shown [10] that there exists the corresponding factorization 
of isometry group elements into

g = us= (u31 + uαJα)(s31 + sβSβ) , (79)

where u ∈ SL(2, R), s ∈ ANn(2) (or s ∈ R
2,1), if the condition s3 + 1

2 n · s > 0 is satisfied. u3

and s3 are given by u3 =
√

1 − 1
4 u2, s3 =

√
1 + 1

4 (n · s)2. The relation with the global group 
parametrization (74) is presented in [10], although not in terms of coordinates. Here we calculate 
their explicit form (the same for any �)

u3 = 1

NL

(k3 + 1
2 n · q) , uα = 1

NL

(
kα − 2q3n

α + εα
βγ nβqγ

)
,

s3 = 1

2NL

(N2
L + 1) , sα = 1

NL

(
k3q

α − q3k
α − 1

2εα
βγ kβqγ + 2(q2

3 + 1
4 q2)nα

)
,

(80)
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where the normalizing constant

N2
L ≡ k2

3 + �q2
3 + 1

4 (k2 + �q2) + k3n · q − q3n · k − 1
2εαβγ nαkβqγ , (81)

which is equivalent to NL = s3 + 1
2 n · s.

On the other hand, a group element can be factorized in the reverse order into

g = r v = (r31 + rαSα)(v31 + vβJβ) , (82)

where r ∈ ANn(2), v ∈ SL(2, R) (or r ∈ R
2,1), under the condition r3 − 1

2 n · r > 0. v3 and r3

are again given by v3 ≡
√

1 − 1
4 v2, r3 ≡

√
1 + 1

4 (n · r)2. The expressions for coordinates of (82)
are similar to the previous ones (80). Furthermore, when both factorizations exist, it is naturally 
possible to make a transformation from the first to the second one or vice versa [10]. In the former 
case we calculate here the following explicit formulae

v = 1

NR

(ν31 + ναJα) , ν3 = u3
(
s3 − 1

2 n · s
) + 1

2εαβγ uαnβsγ ,

να = (
s3 − 1

2 n · s
)
uα + n · suα − u · snα (83)

and

r = 1

NR

(�31 + �αSα) , �3 = 1 + 1
8 s2

(
n2u2 − (n · u)2

)
+ 1

2

(
s3 − 1

2 n · s
)(

− n · s + 1
2

(
n · s u2 − n · u u · s

)
+ u3εαβγ uαnβsγ

)
,

�α = 1
2 s2

(
1
2

(
n · uuα − u2nα

)
− u3ε

α
βγ nβuγ

)
+ (

s3 − 1
2 n · s

)(
sα + 1

2

(
u · suα − u2sα

)
+ u3ε

α
βγ uβsγ

)
.

(84)

The normalizing constant NR can be written as NR = r3 − 1
2 n ·r, with the condition r3− 1

2 n ·r > 0
or explicitly

N2
R ≡ 1 + 1

4 s2
(

n2u2 − (n · u)2
)

+ (
s3 − 1

2 n · s
)(

− n · s + 1
2

(
n · s u2 − n · u u · s

)
+ u3εαβγ uαnβsγ

)
, (85)

and by construction it satisfies the relations N2
R = �2

3 − 1
4 (nα�α)2, �3 > 1

2 as well as N2
R =

ν2
3 + 1

4νανα . For clarity let us also note that �3 + 1
2nα�α = 1.
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