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Abstract

An algebraic method especially suited to describe strongly anharmonic

vibrational spectra in molecules may be an appropriate framework to study

vibrational spectra of Na+n clusters, where nearly flat potential energy sur-

faces and the appearance of close lying isomers have been reported. As an

illustration we describe the model and apply it to the Be4, H
+

3 , Be3 and Na+3
clusters.

INTRODUCTION

The study of metallic clusters has been mainly concerned with the electronic
properties of these systems. It has been suggested, however, that in analogy to the
way crystalline structure determines the optical response and metallic properties in
solid-state physics, the geometric structure may play a significant role in the case
of cluster physics [1, 2]. Small finite size systems present special problems which
cannot directly be dealt with by means of the methods applied to the bulk. Nu-
clear theorists, on the other hand, have much experience dealing with “the many
body problem” and the application of these methods to clusters is already lead-
ing to significant contributions to their understanding. These techniques, however,
usually ignore the position of atomic nuclei [3]. In [1, 2] ab initio calculations for
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Na+n (n = 2 − 9, 11, 21) clusters at low temperature are reported, which allow the
assignment of specific cluster geometries by comparing the theoretical results with
experimental optical depletion spectra for these systems. While for dimers and
trimers the rovibrational spectra lead to a precise determination of internuclear
distances and ground-state potential energy surfaces (P.E.S.), up to now the reso-
lution of the vibronic structure for n ≥ 4 is not enough to carry out a theoretical
analysis that would confirm the results of ref. [2] and give information on the P.E.S.
for the heavier clusters [4]. Even if the rovibrational data become available in the
near future, the calculations of [2] imply that the corresponding potential surfaces
are in general quite flat and thus one expects anharmonic effects to be significant.
Also, in a number of cases close lying isomeric structures are found [2]. Since the
usual molecular physics calculations are well suited for deep minima and not for
“soft” molecules, it is important to consider alternative models in order to analyse
the experimental results. In this paper we describe a new model which was designed
to incorporate anharmonic behavior from the outset and which has been applied to
a number of molecules, including the Na+3 cluster [5]-[8]. We illustrate the method
with applications to some D3h molecules and clusters and to the Be4 cluster.

THE U(2) VIBRON MODEL

The model is based on the isomorphism of the U(2) Lie algebra and the one
dimensional Morse oscillator, whose eigenstates can be associated with U(2) ⊃
SO(2) states [9]. In the framework of the model the total number of bosons N
is fixed by the potential shape and the eigenvalue m of the SO(2) generator Jz,
takes the values m = ±N/2, ±(N − 2)/2, . . .. The Morse spectrum is reproduced
twice and consequently for these applications the m-values must be restricted to
be positive. In terms of the U(2) algebra, the Morse Hamiltonian has the algebraic
realization

Ĥ = A(J2 − J2
z ) . (1)

with eigenvalues

EM = AN [(v + 1/2)− v2/N ] , (2)

where the label v = j − m denotes the number of quanta in the oscillator. The
parameters N and A appearing in (2) are related with the usual harmonic and
anharmonic constants ωe and xeωe used in spectroscopy [10]. We now consider
the Ui(2) ⊃ SUi(2) ⊃ SOi(2) algebra, generated by the set {Ĝi} ≡
{N̂i, Ĵ+,i, Ĵ−,i, Ĵ0,i}, satisfying the commutation relations

[Ĵ0,i, Ĵ±,i] = ±Ĵ±,i , [Ĵ+,i, Ĵ−,i] = 2Ĵ0,i , [N̂i, Ĵµ,i] = 0 , (3)

with µ = ±, 0. For the symmetric irreducible representation [Ni, 0] of Ui(2) one

can show that the Casimir operator is given by [8] ~J 2
i = N̂i(N̂i + 2)/4, from which

follows the identification ji = Ni/2.



In the algebraic approach each relevant interatomic interaction is associated
with a Ui(2) algebra [5, 6]. As a first example, we consider the Be4 cluster, which
has a tetrahedral shape. D3h molecules can be similarly treated. In the Be4 case
there are six Ui(2) algebras involved (i = 1, . . . , 6). The operators in the model
are expressed in terms of the generators of these algebras, and the symmetry re-
quirements of the tetrahedral group Td can be readily imposed [6, 11]. The local
operators {Ĝi} acting on bond i can be projected to any of the fundamental irreps
Γ = A1, E and F2. Using the Ĵµ,i generators (3) we obtain the Td tensors

T̂ Γ
µ,γ =

6
∑

i=1

αΓ
γ,i Ĵµ,i , (4)

where µ = ±, 0 and γ denotes the component of Γ. The expansion coefficients are
the same as those given in the one phonon wave functions [7]. The Hamiltonian
operator can be constructed by repeated couplings of these tensors to a total sym-
metry A1, since it must commute with all operations in Td. This is accomplished
by means of the Td-Clebsch-Gordan coefficients [6, 11, 12].

All calculations can be carried out in a symmetry-adapted basis, which is pro-
jected from the local basis

U1(2) ⊗ · · · ⊗ U6(2) ⊃ SO1(2) ⊗ · · · ⊗ SO6(2) ⊃ SO(2)
↓ ↓ ↓ ↓ ↓

| [N1] , . . . , [N6] ; v1 , . . . , v6 ; V 〉
(5)

in which each anharmonic oscillator is well defined. By symmetry considerations,
Ni = N for the six oscillators, vi, denotes the number of quanta in bond i and
V =

∑

i vi is the total number of quanta [13, 8]. The local basis states for each
oscillator are usually written as |Ni, vi〉, where vi = (Ni − 2mi)/2 = 0, 1, . . . [Ni/2]
denotes the number of oscillator quanta in the i-th oscillator. The phonon states
|V φΓ

γ > can be constructed using the Clebsch-Gordan coefficients of Td [6, 11]. Since
all operators are expressed in terms of powers of the Ui(2) generators, their matrix
elements can be easily evaluated in closed form. The symmetry-adapted operators
(11) and states [7] are the building blocks of the model.

We now proceed to explicitly construct the Be4 Hamiltonian. For interactions
that are at most quadratic in the generators the procedure yields

Ĥ0 = ω1 ĤA1
+ ω2 ĤE + ω3 ĤF2

+ b2 V̂E + b3 V̂F2
, (6)

with

ĤΓ =
1

2N

∑

γ

(

T̂ Γ
−,γ T̂

Γ
+,γ + T̂ Γ

+,γ T̂
Γ
−,γ

)

V̂Γ =
1

N

∑

γ

T̂ Γ
0,γ T̂

Γ
0,γ , (7)



The five interaction terms in Eq. (10) correspond to linear combinations of the ones
obtained in lowest order in [6, 13]. However, it is necessary to include interactions
which are related to the vibrational angular momenta associated with the degen-
erate modes E and F2. These kind of terms is absent in the former versions of the
model [6, 13]. We now proceed to show how they can be obtained in the present
model. In configuration space the vibrational angular momentum operator for the
E mode is given by [14]

l̂A2 = −i

(

qE1
∂

∂qE2
− qE2

∂

∂qE1

)

, (8)

where qE1 and qE2 are the normal coordinates associated to the E mode. This rela-
tion can be transformed to the algebraic space by means of the harmonic oscillator
operators

bΓ †
γ =

1√
2

(

qΓγ − ∂

∂qΓγ

)

, bΓγ =
1√
2

(

qΓγ +
∂

∂qΓγ

)

, (9)

to obtain

l̂A2 = −i
(

bE †
1 bE2 − bE †

2 bE1

)

. (10)

Here bEγ =
∑

i α
E
γ,i bi, with a similar form for bΓ †

γ , while the αE
γ i can be read from

(4). In order to find the algebraic expression for l̂A2 we first introduce a scale
transformation in (11)

b̄†i ≡ Ĵ−,i/
√

Ni , b̄i ≡ Ĵ+,i/
√

Ni . (11)

The relevant commutator can be expressed as

[b̄i, b̄
†
i ] =

1

Ni

[Ĵ+,i, Ĵ−,i] =
1

Ni

2Ĵ0,i = 1− 2v̂i
Ni

, (12)

where

v̂i =
N̂i

2
− Ĵ0,i . (13)

The other two commutators in (11) are not modified by (11). In the harmonic limit,
which is defined by Ni → ∞, Eq. (12) reduces to the standard boson commutator

[b̄i, b̄
†
i ] = 1. This limit corresponds to a contraction of SU(2) to the Weyl algebra

and can be used to obtain a geometric interpretation of the algebraic operators in
terms of those in configuration space. In the opposite sense, Eq. (5) provides a pro-
cedure to construct the anharmonic representation of harmonic operators through
the correspondence b†i → b̄†i = Ĵ−,i/

√
Ni and bi → b̄i = Ĵ+,i/

√
Ni. Applying this

method to the vibrational angular momentum (4) we find

l̂A2 = − i

N

(

ĴE
−,1Ĵ

E
+,2 − ĴE

−,2Ĵ
E
+,1

)

. (14)



Table 1: Vibrational excitations of Be4 using the algebraic Hamiltonian with
parameters given in the text. The ab initio (N → ∞) spectrum is generated with
the parameters from [15]. The energies are given in cm−1.

V (ν1, νm2 , νl
3
) Γ Ab initio Present V (ν1, νm2 , νl

3
) Γ Ab initio Present

N → ∞ N = 44 N → ∞ N = 44

1 (1, 00, 00) A1 638.6 637.0 3 (1, 00, 20) A1 2106.8 2105.6
(0, 11, 00) E 453.6 455.0 (1, 00, 22) E 2000.1 1999.8
(0, 00, 11) F2 681.9 678.2 F2 2056.8 2052.8

2 (2, 00, 00) A1 1271.0 1269.2 (0, 31, 00) E 1341.3 1343.7
(1, 11, 00) E 1087.1 1087.0 (0, 33, 00) A1 1355.5 1352.5
(1, 00, 11) F2 1312.6 1308.3 A2 1355.5 1354.4
(0, 20, 00) A1 898.3 901.4 (0, 20,2, 11) F2 1565.5 1565.7
(0, 22, 00) E 905.4 906.1 F2 1584.4 1583.1
(0, 11, 11) F1 1126.7 1125.1 (0, 22, 11) F1 1578.5 1578.0

F2 1135.5 1134.1 (0, 11, 20,2) E 1821.4 1821.6
(0, 00, 20) A1 1484.0 1483.0 E 1929.5 1929.0
(0, 00, 22) E 1377.3 1373.9 (0, 11, 22) A2 1813.3 1813.1

F2 1434.1 1429.6 A1 1830.8 1831.7
3 (3, 00, 00) A1 1897.0 1896.7 F2 1874.4 1873.2

(2, 11, 00) E 1714.3 1714.3 F1 1883.2 1883.0
(2, 00, 11) F2 1937.0 1933.7 (0, 00, 31,3) F2 2136.5 2134.2
(1, 20, 00) A1 1526.6 1529.2 F2 2327.3 2326.9
(1, 22, 00) E 1533.7 1532.8 (0, 00, 33) F1 2199.8 2197.1
(1, 11, 11) F1 1752.2 1749.7 A1 2256.5 2254.4

F2 1761.0 1759.8

For the vibrational angular momentum l̂F1

γ associated with the F2 mode we find a
similar expression.

We can now use our model to fit the spectroscopic data of several polyatomic
molecules. In the case of Be4 the energy spectrum was analyzed by ab initio meth-
ods in [15], where force-field constants corresponding to an expansion of the po-
tential up to fourth order in the normal coordinates and momenta were evaluated.
We have generated the ab initio spectrum up to three phonons using the analysis
in [14]. For the algebraic Hamiltonian we take [7]

Ĥ = ω1 ĤA1
+ ω2 ĤE + ω3 ĤF2

+X33

(

ĤF2

)2

+X12

(

ĤA1
ĤE

)

+X13

(

ĤA1
ĤF2

)

+ g33
∑

γ

l̂F1

γ l̂F1

γ + t33 Ô33 + t23 Ô23 . (15)

The terms Ô33 and Ô23 represent the algebraic form of the corresponding interac-
tions in [14] which are responsible for the splitting of the vibrational levels in the
(ν1, ν

m
2 , νl3) = (0, 00, 22) and the (0, 11, 11) overtones.



Table 2: Least-square energy fit for the vibrational excitations of H+

3 , Be3 and Na+3 .
The energy differences ∆E = Eth − Eexp are given in cm−1.

H+

3
Be3 Na+

3

V (ν1, νl2) Γ ∆E ∆E ∆E

1 (0, 11) E -1.55 0.51 0.93
(1, 00) A1 0.42 0.02 1.95

2 (0, 20) A1 7.48 -0.74 0.37
(0, 22) E -5.69 0.17 0.84
(1, 11) E -0.61 0.82 1.68
(2, 00) A1 -0.11 -0.04 1.26

3 (0, 31) E -4.46 -2.05 -1.19
(0, 33) A1 3.18 -1.23 -0.34
(0, 33) A2 2.44 0.61 -0.33
(1, 20) A1 0.66 1.90 -0.01
(1, 22) E -5.00 -1.36 0.34
(2, 11) E 4.07 0.79 -0.19
(3, 00) A1 -1.23 -1.66 -2.06

r.m.s. 5.84 1.35 1.33

Parameters 8 4 4

Note that the Be4 Hamiltonian (15) preserves the total number of quanta V .
This is a good approximation for this case according to the analysis of [14, 15],
but it is known that Fermi resonances can occur for certain molecules when the
fundamental mode frequencies are such that (V, V ′) states with V 6= V ′ are close
in energy. These interactions can be introduced in the Hamiltonian by means of
a polyad analysis [16]. For D3h molecules we can follow an analogous procedure,
namely, we can construct the D3h symmetry-adapted operators and states corre-
sponding to (4) and [7] and carry out the building up procedure to construct the
Hamiltonian and higher phonon states, using in this case the appropriate projection
operators and Clebsch-Gordan coefficients [6, 11].

EXAMPLES

We now present the results of our least-square fits to the energy spectra of Be4,
Be3, Na

+
3 and H+

3 . In Table 1 we show the fit to Be4 using the Hamiltonian (15).
The fit includes all levels up to V = 4 quanta and gives a r.m.s. deviation of 2.6



cm−1, which can be considered of spectroscopic quality. In Table 1 we only show
the results for the levels with V ≤ 3. We point out that in [14, 15] several higher
order interactions are present which we have neglected. Since our model can be
put into a one to one correspondence with the configuration space calculations, it
is in fact possible to improve the accuracy of the fit considerably, but we have used
a simpler Hamiltonian than the one of [14, 15]. When no ab initio calculations
are available (or feasible) the present approach can be used empirically, achieving
increasingly good fits by the inclusion of higher order interactions [7]. In Table 2
we present fits to the spectra of Be3, Na

+
3 and H+

3 up to three phonons. While
remarkably accurate descriptions of the first two molecules can be achieved using
a four-parameter Hamiltonian, we were forced to include four additional higher
order terms in the H+

3 Hamiltonian in order to properly describe this molecule.
This is in accordance with the work of Carter and Meyer [17], who were forced to
include twice as many terms in the potential energy surface for H+

3 than for the
Na+3 molecule. The H+

3 ion is a very “soft” molecule which, due to the light mass of
its atomic constituents carries out large amplitude oscillations from its equilibrium
positions [17]. This may also be the case for the potentials associated to metallic
clusters [2].

SUMMARY

In this paper we have studied the vibrational excitations of several molecules
and clusters in a symmetry-adapted algebraic model. These studies suggest that the
symmetry-adapted algebraic model provides a numerically efficient tool to study
molecular vibrations with high precision. The main difference with other methods is
the use of symmetry-adapted tensors in the construction of the Hamiltonian. In this
approach, the anharmonicity can be introduced from the outset, interactions can be
constructed in a systematic way, each term has a direct physical interpretation, and
spurious modes can be eliminated exactly [16]. It is important to further explore
the scope and applicability of the present approach, and in particular study the
vibrational spectra in metallic clusters, including the appearance of isomeric shapes
with different point symmetries.
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M. Arias, Ann. Phys. (N.Y.) 252 (1996), 211; F. Pérez-Bernal, J. M. Arias,
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