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Abstract: V-ATPases are multicomponent proton pumps involved in the acidification of single 

membrane intracellular compartments such as endosomes and lysosomes. They couple the 

hydrolysis of ATP to the translocation of one to two protons across the membrane. Acidification of 

the lumen of single membrane organelles is a necessary factor for the correct traffic of membranes 

and cargo to and from the different internal compartments of a cell. Also, V-ATPases are involved in 

regulation of pH at the cytosol and, possibly, extracellular milieu. The inhibition of V-ATPases has 

been shown to induce apoptosis and cell cycle arrest in tumour cells and, therefore, chemicals that 

behave as inhibitors of this kind of proton pumps have been proposed as putative treatment agents 

against cancer. The present review will summarize the major types of V-ATPase inhibitors and their 

mechanisms of action and put them in relation to the patents registered so far for the treatment of 

cancer.
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INTRODUCTION

Transport of cargo and membranes from the endoplasmic reticulum to their final destinations is 

vital for eukaryotic cells. The major players in this flux of vesicles and proteins are the endoplasmic 

reticulum (ER, the site were both proteins and lipids are synthesized), the Golgi apparatus, early and 

late  endosomes,  other  single-membrane  vesicular  organelles  derived  from  these,  such  as 

peroxisomes  and  exocytic  vesicles,  and  the  lysosome.  The  latter,  together  with  the  plasma 

membrane, can roughly be considered as terminal destinations. Nevertheless, membrane and cargo 

can  flow both ways,  for  example,  from ER to the lysosome (anterograde)  or  from the plasma 

membrane to the ER (retrograde). The detailed mechanisms and players involved in fission, fusion 

and transport of vesicles are an active field of research. However, one of the requirements known 

for a correct function of the endo/exocytic pathway is the presence of an electrochemical gradient 

across the membranes of these organelles, mostly in the form of a proton gradient [1, 2]. The extent 

of this gradient is different in each compartment (Fig. 1). While ER remains at near-neutral pH and 

shows  no  remarkable  difference  with  respect  to  the  cytosol,  lysosomes  can  hold  a  3-pH unit 

gradient [2]. Other compartments show pH values somewhere in between these two extremes. As a 

rule of thumb, the extent of lumenal acidification for vesicular organelles is greater the farther they 

are from the ER and the closer they are to a terminal destination (plasma membrane or lysosome). 

Indeed,  to  think  of  these  pH gradients  only  as  part  of  the  vesicle  transport  mechanism is  an 

oversimplification. The acidification of the vesicular lumens are also necessary for the numerous 

functions  of  these  organelles.  For  example,  glycosylation  of  proteins  in  the  Golgi  apparatus  is 

impaired if the pH gradient is abolished in this organelle [3, 4]. The generation of these positive-

inside proton gradients is  carried out by a  class of proton pumping ATPases,  usually called V-

ATPases, in concert with counter ion conductance driven by channels and other transporters. It is 

also  balanced by the  intrinsic  proton  permeability  of  the  membrane  and the  activity  of  proton 

consuming transporters such as H+ antiporters [2]. V-ATPases get their name because they were first 
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described in vacuoles (the plant and fungal equivalent of the animal lysosome), but later they were 

found across the range of single-membrane organelles in all eukaryote organisms. Mitochondria and 

chloroplasts do not bear this kind of proton pumps but the closely related F0F1 type. At any rate, V-

ATPases are not exclusive of the endo/exocytic system. They also exist and fulfil physiologically 

important functions at the plasma membrane of certain mammalian cell types, such as those at the 

vas deferens and osteocytes. Diseases like osteoporosis owe a great deal to plasma membrane V-

ATPase  dysfunction.  In  cancer they  have  been  suggested  to  influence  metastatic  potential  by 

providing an acidic extracellular environment that would ease protease action on the extracellular 

matrix  [5].  Although  it  is  a  promising  hypothesis  that  deserves  future  attention,  the  actual 

importance of V-ATPase-mediated extracellular acidification, as opposed to improvement of other 

intracellular organelle functions, has not been sufficiently addressed yet. Conversely, their effect on 

drug resistance and proliferation through acidification of endocellular compartments and cytosolic 

pH homeostasis seems, comparatively, well established. We will thus concentrate on V-ATPases and 

their inhibitors as modulators of lumenal and cytosolic pH in cancer.

V-ATPASE STRUCTURE AND TRANSPORT MECHANISM

V-type ATPases are very complex biochemical machines. A general model is depicted in Fig. 2. 

They  are  multimeric  proteins  consisting  of  two  main  domains  (V0 and  V1).  From  extensive 

experimentation on the yeast enzyme it is now known that the membrane-embedded domain (V0) is 

composed by 9 polypeptides: single copies of a, c', c'' d and e, and four copies of c. On its turn, the 

hydrophilic V1 domain is composed by 12 polypeptides: three A, three B, single copies of C, D, E, F 

and H and two copies of G. In mammals, subunit c'  is substituted by another c subunit and an 

additional regulatory subunit (Ac45) is present. However, these differences do not alter significantly 

the  catalytic  mechanism or  the  general  model  for  the  mammalian  enzyme.  Proton  pumping is 

achieved by a rotary mechanism similar to that observed in the closely related F0F1 proton pump in 
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mitochondria. Subunits A harbour catalytic domains that, by hydrolysing ATP, provide torque to the 

V1 domain that is transmitted to the V0 domain by stalk subunits D, F and subunit d at the V0 

domain. This makes the membrane ring complex composed of subunits c4, c', c'' to rotate while 

subunit a and the A3B3 complex remain static. This movement provides a path for proton transport 

through two hemi-channels present in subunit a. One proton from the cytosol enters the  first hemi-

channel and it is complexed to a protonable glutamate residue on subunits c, c' or c''. The cation 

remains associated to its ring subunit until sector V0 makes a new full turn; the stability of the 

cation-protein interaction is enhanced due to its direct contact with a non-polar environment such as 

the lipid milieu [6].  When a protonated c-like subunit  in the rotor reaches again subunit  a,  the 

protonated residue enters in contact with the second polar hemi-channel and the cation is released 

into the lumen. Subunits B, albeit carrying ATP binding sites, are not capable of hydrolysis and are 

considered regulatory [6]. 

In vivo modulation of V-ATPase activity can be achieved by several mechanisms. V1 domains can 

exist as both soluble cytosolic complexes or bound to V0 domains. Since neither free V0 nor V1 

domains are capable of proton transport or ATP hydrolysis, respectively, assembly and disassembly 

of V1 from V0 is believed to be a mechanism providing fast regulation of pump activity, especially 

in  situations  of  dynamic  glucose  availability  [1,  7].  Modulation  of  its  H+/ATP  transport 

stoichiometry is another mechanism of regulation. Subunit a holds both hemi-channels on its  C-

terminus and can produce V-ATPases with varying stoichiometry, depending on the integration of 

different isoforms of this polypeptide into the mature protein complex. For example, in yeast, V-

ATPases bearing isoform Stv1p shows a stoichiometry of 1 proton per hydrolysed ATP, whereas if 

the same enzyme carries isoform Vph1p that parameter increases to 2 H+/ATP. Also, other subunits 

may, in theory, alter the ratio of transported protons per ATP as seen in mutagenesis studies over 

subunits A, C or d [8]. In mouse and humans there are four a subunit genes with at least three 

transcript variants for a1, in the case of humans. However, although in mammals it seems plausible 

that  a  similar  mechanism applies,  no  detailed  information  is  available  as  if  it  actually  occurs. 
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Phosphorylation of the holoenzyme has also been reported. In insect cells, it was first described that 

C subunit was phosphorylated by protein kinase A and that this was instrumental for correct V1/V0 

assembly [9]. Shortly after, yeast Dbf2p protein kinase was shown to phosphorylate both A and B 

subunits, moreover dbf2 deletion strains were unable to acidify their vacuoles [10]. In mammals, 

phosphorylation  of  epididymides V-ATPase  by  PKA has  also  been  observed  [11].  Yet  another 

mechanism of transport regulation is the control of the number of pumps resident in an organelle. 

This regulation has been clearly observed for the plasma-membrane resident V-ATPase, where its 

number is affected by the rate of sequestration into recycling endosomes [8]. Indeed, changes in 

exo/endocytic flux dynamics could provide a possible explanation to the increased number of V-

ATPases found at the plasma membrane of malignant tumor cells. However, to date, no indications 

exist as to whether a similar mechanism is at work in other membranes.

IMPORTANCE OF V-ATPASES FOR A CANCER CELL

A tumour cell's  fast  pace of  growth is  supported  by an accelerated metabolism.  This  fuels  the 

synthesis of new cellular components, such as proteins or lipids, that need to be transported to their 

final  destinations.  In  this  context,  the  importance  of  V-ATPases  for  tumor  cell  can  be  easily 

understood. Despite this, V-ATPases do not seem to be greatly overexpressed in neoplastic cells, as 

opposed to many other important proteins in rapidly dividing cells, such as mitosis-related proteins 

[12]. The subunit/gene complexity of these proton pumps probably makes the overexpression of all 

of them in a coordinated way a phenomenon very unlikely to occur. However, increased expression 

of several isoforms have been reported. For example, it has been shown that ATP6V1C1 human 

gene (encoding subunit C) is overexpressed in oral squamous carcinoma cells and that this may 

promote a greater  degree of V1V0 assembly than in normal  tissue (Otero-Rey 2008).  Similarly, 

different subunit genes have been found to be overexpressed in drug-resistant cell lines, including 

ATP6L (ATP6V0C, subunit c) in the case of cisplatin resistance (Torigoe, 2002). Moreover, it has 
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been demonstrated that overexpression of proteolipid c leads to increased  invasiveness in stable 

transfectants [13]. One of the consequences of this all is that tumour cells depend more heavily on 

the  activity  of  V-ATPases  than  normal  cells.  This  is  exemplified  by  the  well  known apoptosis 

induction capability of V-ATPase inhibitors in tumour cells [14, 15]. It has been proposed that the 

acidic environment within endosomes helps dissociation of ligands from their receptors, helping 

thus the recycling of the later back to the plasma membrane [16]. Alternatively, inhibition of the V-

ATPase would lead to endo/exocytic malfunction that, in turn, should cause receptors for growth 

factors such as EGFR to remain associated to their ligands in endosomes and not properly degraded 

[17].  In  addition,  alkalinization  of  intracellular  vesicular  compartments  would  lead  to  protein 

misorting. In yeast models, plasma membrane proteins have been observed to mislocalize in V-

ATPase mutants [18]. In mammals, glycosyltransferases at the Golgi apparatus have been proven to 

be sensitive to the lumenal ion composition. In particular, these enzymes are rapidly missorted to 

endosomes if Golgi pH is affected by merely 0.4 pH units [3, 4]. This same phenomenon has been 

observed for secreted proteins such as chromogranin A [19] and viral VSV-G [20], although, in the 

later  case,  it  might  also  be  connected  to  the  already  mentioned  redistribution  of 

glycosyltransferases. 

Tumor cells live in a harsh microenvironment. Hypoxic conditions and rapid growth rates make 

these cells to rely on glycolysis and lactic acid fermentation to obtain the energy they need, rather 

than on respiration; this is the so-called Warburg Effect [21]. This anaerobic metabolism has the 

downturn of producing great amounts of protons that need to be neutralized from the cytosol. At the 

same  time,  deficient  perfusion  of  solid  tumors  leads  to  low extracellular  pH that,  in  turn  can 

contribute to select cells able to thrive in such an environment because they can efficiently drive 

away protons from their  cytoplasms. These cells could be more effective sequestering cytosolic 

protons  into  intracellular  vesicular  compartments  or  could  be  expelling  them  back  to  the 

intercellular milieu. In all of these cases, V-ATPases play an important role. It has been proven that 

V-ATPases are present at the plasma membrane of tumor cells and that their abundance correlates 
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with proliferation and metastatic potential [5]. However, it is still unclear if many of the phenotypes 

observed in these cells are caused by V-ATPases at the plasma membrane or due to concomitant 

increased endo/exocytic rates. Cathepsins, matrix metalloproteases and other proteases involved in 

metastasis, have been invoked as the beneficiaries of increased plasma membrane proton extrusion 

and acidification of the extracellular medium since they need an acidic environment to loosen the 

extracellular protein matrix. However, bearing in mind that there are several other factors involved, 

it  is  still  difficult  to  ascertain  to  which  extent  plasma  membrane  V-ATPases  contribute  to 

extracellular acidification. Moreover, many of these proteases are intracellular in normal cells but in 

neoplastic ones become overexpressed and secreted [22]. This differential location can be greatly 

influenced  by  enhanced  activity  of  endocellular  V-ATPases  which  would  make  transit  of  the 

overproduced proteases more speedy and become secreted, as a side effect. At any rate, more work 

is  needed  to shed  light  to  the  influence  of  plasma  membrane  V-ATPases  on  extracellular 

acidification.  Under  the mentioned growth conditions,  internal pH homeostasis  is  of paramount 

importance: on the one hand, protons are rapidly produced in glycolysis-lactic acid fermentation 

and, on the other, they also tend to invade the cytosol from the acidic extracellular medium. In this 

context,  a  robust  V-ATPase  activity,  either  at  the  plasma  membrane  or  on  intracellular 

compartments can represent a clear proliferative advantage by transporting protons away from the 

cytosol.  Moreover,  it  is  known that  acidic  conditions  at  the cytosol  promote apoptosis  while  a 

mildly alkaline pH at the cytoplasm is a requisite for proliferation [23]. At the same time, a neutral 

to mildly alkaline cytosol and the establishment of well formed pH gradients across intracellular 

vesicular compartments such as the lysosome is  vital  for drug resistance since many drugs are 

cationic. This means that alkaline cytosols provide a barrier against drug diffusion across the plasma 

membrane  and,  once  inside,  drugs  tend  to  get  sequestered  in  the  lumen  of  acidic  intracellular 

compartments [24, 25]. Remarkably, tumour cells that are able to maintain greater pH gradients in 

these compartments are more drug-resistant than normal ones [26, 27].
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INHIBITORS OF V-ATPASES

Due  to  the  great  importance  of  V-ATPases  in  many  physiological  and  pathological  situations, 

including cancer, there has been an active search for specific inhibitors that could be used both in 

the clinic and in research. As a result, nowadays there are a large amount of different inhibitors 

against V-ATPases that fall into different categories, although they tend to share some common 

characteristics. On the whole, with the exception of the indoles and azaindoles, all inhibitors may be 

considered polyketides, i.e. large structures that are putatively synthesized in a manner akin to the 

first  steps  of  fatty  acid  synthesis  (Claisen  condensation  of  propionyl  or  acetyl  residues). 

Futhermore,  many fall  in  the category of macrolides  (structures  with large lactone rings).  This 

complexity in the structures has made the search for simpler, easier to synthesize compounds and 

active field of research but, to date, successes have been few.

The effect of treatment of tumour cells with V-ATPase inhibitors has been majoritarily analysed 

using the classical macrolide inhibitors bafilomycin A and concanamycin A; however, most of the 

effects seen have been confirmed with other types of inhibitors. As expected, inhibition of proton 

transport  by  V-ATPases  results  in  alkalinization  of  intracellular  vesicular  compartments  and 

acidification of the cytosol [28, 29]. In B cell lymphoma lines, this process has been observed to be 

concomitant to an increase in reactive oxigen species that, in turn, induced cell death [29]. In these 

conditions,  sequestration  of  hydrogen  peroxide  with  N-acetylcisteine  inhibited  cell  death  but 

inhibition of  caspase activity  was ineffective.  In all  reports  where cell  death details  have been 

investigated so far, apoptosis is the described mechanism ensued from inhibition of V-ATPases [15, 

30-33], albeit not all types of compounds have been studied as to their mode of cell death induction. 

Thus, there exist no data yet for archazolids and indoles, and very few in the case of benzolactone 

enamides.  Nevertheless,  with the  exceptions  noted  above,  the  intrinsic  pathway of  apoptosis  is 

involved in this process through mitochondrial depolarization and liberation of cytochrome c to the 

cytosol [15, 29, 34, 35]. Furthermore, caspases are central for V-ATPase inhibitor-induced apoptosis 
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[15, 35, 36], although in B-cell tumor lines it has been reported that bafilomycin A induces caspase-

independent  cell  death [29].  On the other  hand,  in  EGFR overexpressing cancer  cell  lines,  the 

extrinsic pathway of apoptosis has also been reported to play a decisive role through Fas/FasL in 

concanamycin B-induced cell death [14]. 

Cell cycle arrest is also a common outcome of V-ATPase inhibition. Cells tend to arrest in G1 due to 

increased  expression  of  the  G1/M transition  inhibitor  p21 [28,  30,  37,  38],  although the  exact 

mechanisms to this end are still somewhat obscure. In HT-29 colon cancer cells, it was observed 

that intracellular compartment alkalinization triggered-p21 induction was partially p53 independent, 

although p53 was stabilised as a response [28]. Alternatively, G1 arrest may be related to inhibition 

of the degradation of hipoxia-inducible factor 1α (HIF-1α) [38]; HIF-1α is a transcription factor 

responsible  for  the  induction  of  p21 under  conditions  of  hypoxia  and is  kept  at  low levels  in 

oxygenic conditions by degradation via the proteasome [39]. The link between HIF-1α degradation 

and V-ATPase inhibition is yet unknown.

PLECOMACROLIDES: BAFILOMYCINS AND CONCANAMYCINS

Bafilomycin A was the first  reported specific  inhibitor  of  V-ATPases  [40],  closely followed by 

concanamycin A [41]. Both compounds are very similar, consisting of large macrocyclic lactone 

rings, which place them in the macrolide group, and are generally referred to as plecomacrolides. In 

nature,  they  can  be  isolated  from  several  species  of  Streptomyces bacteria  when  grown  as  a 

mycelium [42]. General structures of bafilomycin A and concanamycin A are shown in Fig. 3. It 

took  more  than  ten  years  to  ascertain  the  binding  site  of  these  compounds  on  the  V-ATPase 

complex,  although  it  was  clear  that  they  bound  somewhere  in  the  V0 domain.  Indeed,  early 

suspicions of binding to subunit a [43] have been confirmed recently [44], thus explaining some 

details of their effect. However, it is now well established that the major inhibitory mechanism of 

plecomacrolides is another: these compounds bind to the c proteolipid subunit at a site near or the 
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same  where  DCCD  binds,  and  impair  the  transport  of  protons  through  this  peptide  [45].  An 

important consequence of this is that bafilomycins and concanamycins are not selective against V-

ATPases from different origins, since proteolipid c is the most conserved subunit in V-ATPases. 

Their IC50 are in the low nanomolar range, which makes this type of compounds extremely potent 

and useful in research to distinguish between different types of ATPases in a cell. In contrast, P-type 

ATPases are only inhibited by plecomacrolides in the micromolar range and the closely related F0F1 

ATPases from mitochondria are not inhibited at all. 

Apart from its effect on the proton conductance through V0, there are other possibilities to explain 

the anticancer capability of plecomacrolides. For example, it has been proposed that bafilomycin A 

induces  the  expression  of  hypoxia-inducible  factor  1α (HSF-1α)  and,  concomitantly,  p21  [38] 

leading to cell cycle arrest. Similar results have been reported for the bafilomycin analog hygrolidin 

[37]. Also, both concanamycin A and bafilomycin A1 have been shown to induce the production of 

nitric oxide in RAW 264.7 leukemia cells which, in turn, activated c-Jun N-terminal kinase and NF-

κB leading to apoptosis [46]. These effects might be related to a different mode of action recently 

reported for bafilomycin A: in mitochondria isolated from rat liver, sub-micromolar concentrations 

of this compound were found to transport potassium leading to swelling and depolarization in a 

manner resembling that observed for valinomycin; this phenomenon was independent of any effects 

on the F0F1 ATPase [47]. 

Total synthesis of bafilomycin A was achieved as early as 1997 [48] and that of  concanamycin 

(concanamycin F) in 2001 [49]. Prior to that, their first putative use in cancer chemotherapy was 

already  filed  [50].  Since  then,  several  other  derivatives  and  uses  have  been  patented.  The 

importance of intracellular  compartment acidification is  recognised as central  for the anticancer 

mechanism of  plecomacrolides  [51]  and the  usefulness  of  these  compounds  to  overcome drug 

resistance [52].  On the other  hand,  plecomacrolides  tend  to  be unstable  in  alkaline  conditions, 

which  has  driven  the  search  for  more  stable  derivatives  [53].  Apoptolidin  is  a  peculiar 

plecomacrolide:  its  mechanism of  action was described as  inhibition of  the  mitochondrial  F0F1 
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ATPase [54], but in later patent filings it has been suggested that the actual mechanism is similar to 

that of bafilomycins and concanamycins [55]. However, no data support this hypothesis in peer-

reviewed journals to date.

BENZOLACTONE  ENAMIDES:  SALICYLIHALIMIDES,  LOBATIMIDES  AND 

APICULARENS

Following the discovery of plecomacrolides, in the late 1990s a series of compounds with strong 

inhibitory  potency  against  V-ATPases  were  described  within  a  short  period.  The  first  of  these 

(salicylihalimide) was obtained from sponges of the genus  Haliclona sp [56], lobatimides where 

first  obtained  from the  tunicate  Aplidium lobatum (hence  its  name)  [57]  and apicularens  from 

mixobacteria  of  the genus  Chondromyces [58].  The apparent  wide  range  of  organisms  used as 

sources may be misleading, since it is plausible that they are actually synthesized by symbiotic 

microorganisms [59]. All these compounds share a benzolactone enamide core and show a cytotoxic 

profile similar to that of plecomacrolides in NCI's 60-Cell screens [59]. Their IC50s also lie in the 

nanomolar range [42, 60]. Structures for representative compounds of this class are depicted in Fig 

4.

Benzolactone enamides have arisen a great interest due to its selectivity towards animal V-ATPases, 

as opposed to fungal proton pumps (no studies on plant enzymes have been published so far) [59, 

61]. The reason for this selectivity is still unknown, but it is probably related to their different mode 

of inhibition. In studies using brain V-ATPase, it was shown that salicylilhalimide A bound the V0 

domain  and  that  this  binding  could  not  be  competed  by  the  addition  of  bafilomycin  or 

concanamycin derivatives [45, 60]. This was later confirmed for lobatamide [61]. However, a clear 

picture on the actual subunit and binding site for this type of compounds still has to emerge. 

Total synthesis of benzolactone enamides was reported within a few years of their discovery. Thus, 

salicylihalimide A synthesis was published in the year 2000 [62], followed by lobatamide C [63] 
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and apicularen A [64]. Apart from these representatives, this class of compounds have rendered 

many other chemicals that are not dealt with here but that they share a similar structure and mode of 

action, such as the cruentarens, the oximidines or the closely related palmerolides. These have been 

reviewed in more detail  elsewhere [42].  Patents  have not  lagged behind and the application of 

salicylihalimides and apicularens was filed as early as 2003 [65] and extended later in successive 

applications [66, 67]. At times, the potential use of V-ATPase inhibitors as a whole has been found 

of  interest,  thus,  a  patent  comprising  the  use  of  plecomacrolides  or  benzolactone  enamides 

(salicylihalimides, lobatamides and oximidines) as sensitizers towards irradiation has also been filed 

[51].  Lobatamides,  together  with  other  benzolactone  enamides,  have  recently  received  some 

attention [68]. The last of these compounds to be registered have been the palmerolides, with a 

patent application in 2008 [69].

OTHER COMPOUNDS: CHONDROPSINS, ARCHAZOLIDS AND INDOLES

The seek for new V-ATPase inhibitors have rendered new classes of compounds: chondropsins, 

archazolids and indoles (and their derivatives, the azaindoles). Most of them have been obtained 

from natural sources but indoles have been obtained from chemical synthesis.

Chondropsins are complex macrolides comprising 33-37 members in a large lactone ring and long 

polyketide extensions (Fig. 5A). They show potent death inducing capability and were first isolated 

from marine sponges of the genera  Chondropsis and  Siliquariaspongia [70, 71]. Later they were 

described as V-ATPase inhibitors on the basis of their profile on NCI-60 tests and  in vitro assays 

[72].  Surprisingly,  these  compounds  inhibit  preferentially  fungal  V-ATPases,  with  IC50s  in  the 

submicromolar range, rather than mammalian V-ATPases, where they show IC50s typically in the 

low micromolar range. Despite this, chondropsins seem to share a similar mode of inhibition with 

plecomacrolides  such  as  bafilomycins,  since  mutations  affecting  bafilomycin  sensitivity  in  the 

Neurospora crassa enzyme also affect chondropsin inhibition [72].
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Archazolids are compounds structurally related to the plecomacrolides that also comprise a thiazole 

ring in a side chain (Fig. 5B). First isolated from the mixobacterium  Archangium gephyra [73], 

archazolid A was shown to inhibit V-ATPases from the tobacco hornworm Manduca sexta (IC50 = 20 

nM)  and  acidification  of  intracellular  compartments  in  mammalian  cells  [61].  Their  mode  of 

inhibition  seems  to  be  binding  to  subunit  c  and  inhibiting  rotation  of  the  holoenzyme,  since 

archazolid  A competes  with  plecomacrolide  concanolide  A for  binding  to  the  V0 domain  [61]. 

Derivatives of archazolides have been produced in order to assess the important residues in the 

molecule.  Substitutions  at  carbon 7 in  these  compounds (marked with  an  asterisk on Fig.  5B) 

affected severely their effectiveness in mammalian cell assays with comparatively minor effects on 

their inhibitory capacity in in vitro assays; the ultimate reasons for this are still unknown.

Ten  years  after  the  discovery  of  bafilomycin,  Farina  and  co-workers  applied  the  information 

obtained so far in structural  studies to produce simpler compounds that were able to inhibit  V-

ATPases while easy to synthesize [74, 75]. These compounds are characterized by an indole core 

with electron-withdrawing residues (usually chloro) at positions 5 and 6, and an amino substituent 

after a three- to four-carbon atom spacer. Similarly to plecomacrolides, this kind of inhibitors also 

bind subunit c [76, 77]. Also, alike bafilomycins and concanamycins, for some time it was thought 

that binding to subunit a could also be part of its mechanism of action, but this hypothesis is now 

abandoned  [78].  It  was  an  attractive  hypothesis  because  binding  to  this  subunit  could  help 

explaining  their  unique  preferential  inhibition  of  osteoclast  ATPases  vs other  mammalian  V-

ATPases [74, 75, 79].

The synthesis and registration of all these compounds have fared different paths. No reports on the 

total synthesis of chondropsins are known to the authors to date. However, this or the difficulty in 

isolating this compounds from scarce natural sources have not been obstacles to register their use 

either alone or in conjunction with irradiation [80-82]. Archazolids are still in a preliminary stage 

and neither total  synthesis or putative uses have been reported.  Indoles,  on their  part,  are fully 

synthetic molecules and, due to their apparent selectivity against osteoclast V-ATPases, they were 
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first registered as putative treatment agents against osteoporosis [83]. Recently, it has been shown 

that they can also inhibit metastasis initiation and bone invasion in animal models [84, 85], and 

probably this has fueled the registration of this kind of compounds as anticancer agents [86].

PERSPECTIVES AND FUTURE WORK

So far, no cancer clinical trials with V-ATPase inhibitors are known, probably because of their high 

toxicity. This drawback stems from the high potency but lack of selectivity towards different tissues 

that  most  inhibitors  show  to  date.  Indoles  could  be  considered  and  exception,  but  the  small 

differences in affinity they show might not make them specific enough. In this sense, inhibition of 

V-ATPases in pancreas have been suggested to be linked to risk of induced glucose intolerance [87]. 

This is probably the most important issue to overcome before any compound inhibiting intracellular 

compartment acidification can reach the market. To this end, studies on different derivatives are 

paramount,  specially  those involving compounds already showing some kind of specificity.  No 

doubt that these studies must come accompanied by structural studies on the mode of inhibition and 

binding site of these inhibitors. A fruitful approach can also be the simplification of compounds, as 

it was done with plecomacrolides rendering indoles and azaindoles. This can be specially important 

for compounds such as the chondropsins, which can be cumbersome to synthesize and difficult to 

obtain from natural sources. The search for new classes of compounds can also yield interesting 

results, as it is proven from the fact that several classes of totally unrelated compounds and tens of 

derivatives are already available since the discovery of bafilomycin A in 1988. With the availability 

of high throughput screening techniques, it  can be expected that new compounds will  come up 

soon. As it is, the interest in these compounds remains high as judged by the fair amount of patents 

issued. 
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Figure legends

Fig.(1). Traffic  between  intracellular  compartments  and  their  characteristic  pH.  Vesicle  flux 

between single membrane organelles is shown by arrows.

Fig.(2). Subunit  structure of V-ATPases. Subunits  A to F constitute the hydrophilic V1 domain; 

subunits a to e comprise the V0 membrane-embedded domain.

Fig. (3). Structure of some plecomacrolides. A, bafilomycin A; B, concanamycin A.

Fig.(4). Examples of benzolactone enamides. A, salicylihalimide A; B, lobatimide A; C, apicularen 

A.

Fig.(5). Other  diverse  V-ATPase  inhibitors.  A,  chondropsin  A;  B,  Archazolid  A;  C,  NiK12192 

(indole).
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