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a b s t r a c t 

A major issue in the classification of class imbalanced datasets involves the determination of the most 

suitable performance metrics to be used. In previous work using several examples, it has been shown 

that imbalance can exert a major impact on the value and meaning of accuracy and on certain other well- 

known performance metrics. In this paper, our approach goes beyond simply studying case studies and 

develops a systematic analysis of this impact by simulating the results obtained using binary classifiers. A 

set of functions and numerical indicators are attained which enables the comparison of the behaviour of 

several performance metrics based on the binary confusion matrix when they are faced with imbalanced 

datasets. Throughout the paper, a new way to measure the imbalance is defined which surpasses the 

Imbalance Ratio used in previous studies. From the simulation results, several clusters of performance 

metrics have been identified that involve the use of Geometric Mean or Bookmaker Informedness as 

the best null-biased metrics if their focus on classification successes (dismissing the errors) presents no 

limitation for the specific application where they are used. However, if classification errors must also 

be considered, then the Matthews Correlation Coefficient arises as the best choice. Finally, a set of null- 

biased multi-perspective Class Balance Metrics is proposed which extends the concept of Class Balance 

Accuracy to other performance metrics. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

n  

t  

s  

i  

e  

c  

d

 

m  

a  

a  

o  

b

1. Introduction 

In recent years, the scientific community working on classifi-

cation algorithms has shown an increasing interest in the chal-

lenges that arise when imbalanced datasets are considered. Sev-

eral overviews on these issues have been addressed in [2,17,21,24] .

In these analyses, the Synthetic Minority Over-sampling Technique

(SMOTE) [9] and the AdaBoost [39] are highlighted as general-

purpose solutions, although algorithms of a more specific nature

can also be found, either as general-purpose [3] , as problem-

oriented [15] or as classifier-oriented [33] . Algorithms that address

the imbalance problem in multi-label classification [8] or that use

advanced classifiers such as extreme learning machines [41] can

also be found. An up-to-date comparison of these techniques ad-

dressing a specific problem can be found in [40] . 
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A key aspect of these methods involves the determination of

he classification performance, not only in order to assess the fi-

al result, but also to obtain a figure which has to be optimized by

uning the classifier parameters. However, there is no single way to

elect the best algorithm as any algorithm can obtain good results

n one class but poor scores in other classes. For this reason, sev-

ral metrics are usually considered, which permits the polyhedral

haracteristics of the classification performance to be viewed from

ifferent points of views. 

The impact of class imbalance on classification performance

etrics has therefore become a major issue. Several authors have

ddressed this topic by showing a few examples of this impact on

ccuracy [10,22] and on several other metrics [5,13,20] . To the best

f our knowledge, only one systematic (albeit limited) study has

een published that is not simply based on examples, [25] . 

The quantitative research on classification performance metrics

as traditionally been tackled either by using a collection of known

nd widely available datasets [1,4] , or by randomly simulating the

lassifier results [27,34] . A mixture of random simulated variations

n known datasets is employed in Jeni et al. [25] . 
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In order to overcome the effect of imbalance on performance

etrics, several solutions have been suggested, among which the

ost cited is the use of the Class Balanced Accuracy ( CBA ) [1,6,32] .

pproaches such as relevance-based evaluation [5] , the Normalized

recision Rate [13] , the Index of Balanced Accuracy [18,28,29] , and

he multiclass performance score (MPS) [23] have also been pro-

osed. 

In this paper, an extensive and systematic study is undertaken

f the impact of class imbalance on classification performance

etrics. Several dozen performance metrics can be found in the

cientific literature, some based on a threshold, others based on

robabilities, while yet others are based on ranks [14] . However,

he most widely employed metrics are those based on the confu-

ion matrix [38] , where the multi-class case is usually reduced to

 set of binary cases using the One-versus-All or the One-versus-

ne approach [31] . For these reasons, our research is focused on

lassification performance metrics based on the binary confusion

atrix. 

The rest of the paper is organized as follows. Section 2 presents

he methodology employed to measure the impact of imbalance

n performance metrics, thereby formally defining the confusion

atrix ( Section 2.1 ) and the metrics based thereon ( Section 2.2 ).

ection 2.3 proposes a new figure for the quantification of the class

mbalance, and several functions and indicators of the aforemen-

ioned impact of imbalance are defined in Section 2.4 . The appli-

ation to a set of classification performance metrics based on the

inary confusion matrix is presented in Section 3 . The discussion

nd conclusion of these results are addressed in Section 4 . 

. Methodology 

.1. Definition of the confusion matrix 

Consider a dataset D = { d 1 , d 2 , · · · , d m 

} made up of m elements

here d k represents the k -th element. Let � be a set of C classes

= { θ1 , θ2 , · · · , θC } where θ i defines the i -th class. The classifier C
perating on d k (the k -th element of the dataset D) assigns a label

j and estimates that this element belongs to the j -th class, that

s, d k 
C → θ j or C( d k ) = θ j , while it really belongs to the i -th class θ i ,

hereby causing a misclassification (a confusion) when i � = j . 

Let A = { α1 , α2 , · · · , αm 

} be the set of actual classes corre-

ponding to the dataset D, where αk is the actual class of the ele-

ent d k . Furthermore, let E = { ε 1 , ε 2 , · · · , ε m 

} be the set of classes

stimated by the classifier C for each element in D, where ɛ k is

he estimated class of the element d k . The performance of C can

e assessed using a measuring function M , which assigns a metric

∈ R to the pair ( A , E ) , that is, ( A , E ) M → μ. 

In this paper, we will focus on metrics based on the confu-

ion matrix, which represents one of the most common methods

o present the results obtained by a classifier, and is defined as 

M ≡

⎡ 

⎢ ⎢ ⎣ 

m 11 m 12 . . . m 1 C 

m 21 m 22 . . . m 2 C 

. . . 
. . . 

. . . 
. . . 

m C1 m C2 . . . m CC 

⎤ 

⎥ ⎥ ⎦ 

. (1) 

In this expression, m ij represents the number of elements ac-

ually belonging to the i -th class ( θ i ) but that are classified as

embers of the j -th class ( θ j ). In the context of our research, it is

etter to describe the term m ij in relation to the total number of

lements m i belonging to the i -th class ( θ i ). By denoting λij as the
atio m ij / m i , the confusion matrix can be rewritten as 

M = 

⎡ 

⎢ ⎢ ⎣ 

λ11 m 1 λ12 m 1 . . . λ1 C m 1 

λ21 m 2 λ22 m 2 . . . λ2 C m 2 

. . . 
. . . 

. . . 
. . . 

λC1 m C λC2 m C . . . λCC m C 

⎤ 

⎥ ⎥ ⎦ 

, (2) 

hich can be expressed as the Hadamard (element-wise) product

f two matrices in the form 

M = 

⎡ 

⎢ ⎢ ⎣ 

λ11 λ12 . . . λ1 C 

λ21 λ22 . . . λ2 C 

. . . 
. . . 

. . . 
. . . 

λC1 λC2 . . . λCC 

⎤ 

⎥ ⎥ ⎦ 

◦

⎡ 

⎢ ⎢ ⎣ 

m 1 m 1 . . . m 1 

m 2 m 2 . . . m 2 

. . . 
. . . 

. . . 
. . . 

m C m C . . . m C 

⎤ 

⎥ ⎥ ⎦ 

. (3) 

In the binary case, that is, when the number of classes is C = 2 ,

hen the confusion matrix can be written as 

M ≡
[

m 11 m 12 

m 21 m 22 

]
. (4) 

In general, one of the classes is called the “Positive” class and

he other is named the “Negative” class. Therefore, the confusion

atrix can be rewritten according to this new terminology as 

M ≡
[

m PP m PN 

m NP m NN 

]
. (5) 

The elements of this matrix are named with the following con-

ention: m PP , “True Positive” ( TP ); m PN , “False Negative” ( FN ); m NP ,

False Positive” ( FP ); and m NN , “True Negative” ( TN ). 

The total number of positive m P and negative m N elements in

meet that they sum m , the total number of elements, that is,

 P + m N = m . Furthermore, it is also true that the number of ele-

ents correctly classified in class P ( m PP ), and the number of ele-

ents misclassified in that class P ( m PN ), adds up to the number of

lements in the positive class ( m P ), that is, m PP + m PN = m P . Simi-

arly, it can be stated that m NP + m NN = m N . The confusion matrix

an therefore be written as 

M = 

[
m PP m P − m PP 

m N − m NN m NN 

]
, (6) 

hich can also be formulated in terms of the λij ratios as 

M = 

[
λPP m P λPN m P 

λNP m N λNN m N 

]
= 

[
λPP m P ( 1 − λPP ) m P 

( 1 − λNN ) m N λNN m N 

]
. (7) 

Additionally, the total number of elements in D estimated by C
s positive (despite their actual class), e P , and those estimated as

egative, e N , can be written as 

 P = m PP + m NP = λPP m P + ( 1 − λNN ) m N . 

 N = m NN + m PN = λNN m N + ( 1 − λPP ) m P . 
(8) 

They also add up to the total number of elements, e P + e N = m .

he definitions regarding the confusion matrix are summarized in

ig. 1 . 

.2. Metrics based on the binary confusion matrix 

Based on the binary confusion matrix, numerous performance

etrics have been proposed [19,27,30,34,37] . For our study, the fo-

us is placed on 10 of these metrics, which are summarized in

able 1 . All these metrics, take values within the [0, 1] range, ex-

ept the last three ( MCC, BM , and MK ), whose ranges lie within

he [ −1 , 1 ] interval. For comparison purposes, these metrics are

sed herein in their normalized version ( MCCn, BMn , and MKn ). By

aming a metric defined within the [ −1 , 1 ] interval as μ, it can be

ormalized within the [0, 1] range by the expression 

n ≡ μ + 1 

. (9) 
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Fig. 1. Confusion matrix for binary classification. 

Table 1 

Definition of classification performance metrics. 

Symbol Metric Defined as 

SNS Sensitivity TP 
TP+ FN 

SPC Specificity TN 
TN+ FP 

PRC Precision TP 
TP+ FP 

NPV Negative Predictive Value TN 
TN+ FN 

ACC Accuracy T P+ T N 
T P+ FN+ T N+ FP 

F 1 F 1 score 2 PRC·SNS 
PRC+ SNS 

GM Geometric Mean 
√ 

SNS · SPC 

MCC Matthews Correlation Coefficient T P·T N−F P·F N √ 

( TP+ FP )( TP+ FN )( TN+ FP )( TN+ FN ) 

BM Bookmaker Informedness SNS + SPC − 1 

MK Markedness P P V + NP V − 1 
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It can easily be shown (see supplementary material in the elec-

tronic version of this paper) that all these metrics can be expressed

as a function μ = μ( λPP , λNN , πP , πN ) , where πP is the ratio of

positive elements in the dataset ( m P / m ) and, analogously, where

πN ≡ m N / m . Furthermore, for balanced classes, when πP = πN =
0 . 5 , them the metrics can be formulated as μ = μ( λPP , λNN ) . These

functions are depicted in Fig. 2 as a heat map for each metric. 

The best classifier achieves a value of λPP = 1 (all the positive

elements are correctly classified as positive) and, also a value of

λNN = 1 (all the negative elements are correctly classified as neg-

ative), corresponding to the upper right-hand-side corner in the

graphic. Instead, the worst classifier ( λPP = 0 , λNN = 0 ) corresponds

to the lower left-hand-side corner of the graphic. 

Although only performance metrics based on the confusion ma-

trix are considered, a marginal approach to Receiver Operating

Characteristics (ROC) analysis [16] can also be carried out. In this

analysis, the Area Under Curve ( AUC ) is commonly used as a per-

formance metric. However, for classifiers offering only a label (and

not a set of scores for each label), or when a single threshold

is used on scores, the value of AUC and BMn are the same [36] .

Therefore, in the forthcoming sections, whenever BMn is men-

tioned it could also be understood as AUC . 

2.3. Defining class imbalance 

The concept of class imbalance is relatively clear: it arises when

the dataset has a different number of elements in positive and

negative classes. However, its formalization is far from being uni-

vocally accepted. For instance, in [18,29] , the imbalance is char-

acterized by the dominance ( Dom ) or prevalence relationship be-

tween the positive class and the negative class, and is defined

as T P R − T NR . This value is later employed to compensate perfor-

mance metrics affected by the imbalance problem. However, the

dominance is not exactly a measure of the imbalance in the dataset

because it considers imbalance in the outcomes of the classifier. 
Other authors formalize this concept by using the entropy

12] or, more commonly, the proportion between positive and neg-

tive instances (formalized as 1: X ) [13] which is similar to the

mbalance ratio ( IR ) defined as m P / m N [1] , also called skew [25] .

his value lies within the [0, ∞ ] range, having a value IR = 1 in

he balanced case. 

Other authors formalize this concept by using the propor-

ion between positive and negative instances (formalized as 1: X )

13] or, which is similar, the imbalance ratio ( IR ) defined as m P / m N 

1] , which is also called skew [25] . This value lies within the [0,

 ] range, having a value IR = 1 in the balanced case. 

In this paper, it is preferred to feature the imbalance with a

alue within the [ −1 , 1 ] range, while reserving the 0 value for

hen the classes are perfectly balanced (lack of imbalance). For

his purpose, we propose the imbalance coefficient δ as 

= δP ≡ 2 πP − 1 = 2 

m P 

m 

− 1 . (10)

For the negative class, the coefficient δN = 2 πN − 1 is also de-

ned. The sum of these coefficients is 

P + δN = 2 πP − 1 + 2 πN − 1 = 2 ( πP + πN ) − 2 = 0 . (11)

Hence δN = −δP = −δ. From (10) , the value of πP can be ob-

ained as 

P = 

1 + δ

2 

. (12)

Moreover, the value of πN can be derived from (11) 

N = 

1 − δ

2 

. (13)

Therefore, the metrics μ = μ( λPP , λNN , πP , πN ) can be redefined

s μ = μ( λPP , λNN , δ) . It is clear that the value of the metric μ
epends not only on the classifier’s performance, but also on the

mbalance δ. 

It can easily be derived that the relationship between the im-

alance ratio ( IR ) and the imbalance coefficient ( δ) is 

R = 

1 + δ

1 − δ
. (14)

.4. Assessing the impact of imbalance 

In order to assess the impact of the imbalance in a certain met-

ic, its value ( μb ) for the balanced case (when δ = 0 ) is first con-

idered. 

b ≡ μ| δ=0 = μ( λPP , λNN , 0 ) = μb ( λPP , λNN ) . (15)

This definition is later employed to propose a family of met-

ics where the effect of the imbalance is dismissed. In the scien-

ific literature, a few examples of these metrics can be found, as in

he case of Class Balance Accuracy ( CBA ) [35] . On generalizing this

pproach, the metrics μb are called Class Balance Metrics ( CBM ).

able 2 summarizes the equations for each metric, both in the class

mbalance and balance cases. These results are derived in the sup-

lementary material of the paper, available online. 

With these definitions, it is now possible to quantify the impact

f imbalance, by using the bias of the metric which is defined as

 μ ≡ μ − μb = μ( λPP , λNN , δ) − μb ( λPP , λNN ) . (16)

Table 3 summarizes the definition of bias for each metric. These

esults are derived in the supplementary material of the paper,

vailable online. 

As can be observed, bias depends on three variables: B μ =
 μ( λPP , λNN , δ) . In order to study this function, a 4-dimensional

pace is required. Its representations are first tackled using heat

olumes (3D), where each point in the 3-dimensional ( λPP , λNN , δ)

pace has a bias-dependent colour. 
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Fig. 2. Heat maps for metrics with balanced classes. 

Table 2 

Classification performance metrics as a function of imbalance. 

Metrics Class imbalance metrics μ( λPP , λNN , δ) Class Balance metrics μb ( λPP , λNN ) 

SNS λPP λPP 

SPC λNN λNN 

PRC λPP ( 1+ δ) 
λPP ( 1+ δ)+( 1 −λNN )( 1 −δ) 

λPP 

λPP +( 1 −λNN ) 

NPV λNN ( 1 −δ) 
λNN ( 1 −δ)+( 1 −λPP )( 1+ δ) 

λNN 

λNN +( 1 −λPP ) 

ACC λPP 
1+ δ

2 
+ λNN 

1 −δ
2 

λPP + λNN 

2 

F 1 
2 λPP ( 1+ δ) 

( 1+ λPP )( 1+ δ)+( 1 −λNN )( 1 −δ) 
2 λPP 

2+ λPP −λNN 

GM 

√ 

λPP · λNN 

√ 

λPP · λNN 

MCCn 1 
2 
( λPP + λNN −1 √ 

[ λPP +( 1 −λNN ) 
1 −δ
1+ δ ][ λNN +( 1 −λPP ) 

1+ δ
1 −δ

] 
+ 1 ) 1 

2 
( λPP + λNN −1 √ 

[ λPP +( 1 −λNN ) ][ λNN +( 1 −λPP ) ] 
+ 1 ) 

BMn λPP + λNN 

2 
λPP + λNN 

2 

MKn 1 
2 
( 1+ δ

( 1+ δ)+ 1 −λNN 
λPP 

( 1 −δ) 
+ 

1 −δ

( 1 −δ)+ 1 −λPP 
λNN 

( 1+ δ) 
) 1 

2 
( 1 

1+ 1 −λNN 
λPP 

+ 

1 

1+ 1 −λPP 
λNN 

) 

Table 3 

Bias of performance metrics due to class imbalance. 

Metrics Bias B μ( λPP , λNN , δ) 

SNS 0 

SPC 0 

PRC 1+ δ
( 1+ δ)+ 1 −λNN 

λPP 
( 1 −δ) 

− 1 

1+ 1 −λNN 
λPP 

NPV 1 −δ

( 1 −δ)+ 1 −λPP 
λNN 

( 1+ δ) 
− 1 

1+ 1 −λPP 
λNN 

ACC δ
2 
( λPP − λNN ) 

F 1 
2 λPP ( 1+ δ) 

( 1+ λPP )( 1+ δ)+( 1 −λNN )( 1 −δ) 
− 2 λPP 

2+ λPP −λNN 

GM 0 

MCCn λPP + λNN −1 

2 

√ 
[ λPP +( 1 −λNN ) 

1 −δ
1+ δ ][ λNN +( 1 −λPP ) 

1+ δ
1 −δ

] 
− λPP + λNN −1 

2 
√ 

[ λPP +( 1 −λNN ) ][ λNN +( 1 −λPP ) ] 

BMn 0 

MKn 1 
2 
( 1+ δ

( 1+ δ)+ 1 −λNN 
λPP 

( 1 −δ) 
− 1 

1+ 1 −λNN 
λPP 

+ 

1 −δ

( 1 −δ)+ 1 −λPP 
λNN 

( 1+ δ) 
− 1 

1+ 1 −λPP 
λNN 

) 

 

c  

a  

i  

s

 

s  

a  

a  

Table 4 

Bias indicators for singular classifiers. 

Singular classifier Symbol σB μ( δ) 

Worst classifier wcB μ( δ) lim 

ε→ 0 
B μ( ε , ε , δ) 

Best classifier bcB μ( δ) lim 

ε→ 0 
B μ( 1 − ε, 1 − ε, δ) 

Worst-positive classifier wpcB μ( δ) lim 

ε→ 0 
B μ( ε, 1 − ε, δ) 

Worst-negative classifier wncB μ( δ) lim 

ε→ 0 
B μ( 1 − ε , ε , δ) 

Medium classifier mcB μ( δ) B μ(0.5, 0.5, δ) 

m  

o  

w  

a

 

t  

f  

s  

v  

f  

t  

t  

m

 

o  
Alternatively, B μ is also represented as a set of heat maps (or

ontour graphs). Each heat map (2D) represents the metric bias for

 certain fixed value of the imbalance (let us say δ0 ), thereby mak-

ng bias dependent on two variables ( λPP , λNN ) and on one con-

tant ( δ0 ). Hence, B μ = B μ( λPP , λNN , δ0 ) . 

Nevertheless, drawing conclusions regarding a 4-dimensional

pace is, in most cases, a challenging task. Several partial prospects

re therefore proposed that reduce the bias function dimension-

lity. In this respect, the first approach involves considering the
etric bias for classifiers whose performance is singularly located

n the ( λPP , λNN ) plane, thereby obtaining a set of bias indicators

hich are generically denoted as σB μ( δ). The singular classifiers

nd their formulations are proposed in Table 4. 

An alternative way to reduce the dimensionality of B μ is

hrough the consideration that λPP and λNN are randomly and uni-

ormly distributed within the [0, 1] range. Bias can therefore be

een for each value of the imbalance coefficient δ as a random

ariable B μ( δ), which is characterized by its probability density

unction ( pdf [ B μ( δ)]). Additionally, several local statistical indica-

ors can be defined, which are generically denoted as ψB μ( δ). The

erm local attributed to these indicators (summarized in Table 5 )

eans that they are defined for each value of δ. 

Definitions in Tables 4 and 5 have introduced several prospects

f bias, all of which depend on the imbalance δ. They are gener-
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Table 5 

Local statistical indicators on bias. 

Local statistical indicator Symbol ψB μ( δ) 

Mean mB μ( δ) ∫ ∫ B μ( λPP , λNN , δ) d λPP d λNN 

Standard deviation sdB μ( δ) 

√ ∫ ∫ 
[ B μ( λPP , λNN , δ) − m B μ(δ) ] 

2 
d λPP d λNN 

Root-Mean-Square Bias rmsB μ( δ) 
√ ∫ ∫ 

B 2 μ( λPP , λNN , δ) d λPP d λNN 

Maximum absolute value maxaB μ( δ) max 
0 ≤ λPP ≤ 1 

0 ≤ λNN ≤ 1 

| B μ( λPP , λNN , δ) | 

Skewness skB μ( δ) 1 
sdB 3 μ(δ) 

√ ∫ ∫ 
[ B μ( λPP , λNN , δ) − m B μ(δ) ] 

3 
d λPP d λNN 

Kurtosis kB μ( δ) 1 
sdB 4 μ(δ) 

√ ∫ ∫ 
[ B μ( λPP , λNN , δ) − m B μ(δ) ] 

4 
d λPP d λNN 

Table 6 

Global statistical indicators on bias. 

Global statistical indicator Symbol �B μ( δ) 

Mean MB μ
1 
2 

∫ ∫ ∫ 
B μ( λPP , λNN , δ) d λPP d λNN dδ

Standard deviation SDB μ

√ 

1 
2 

∫ ∫ ∫ 
[ B μ( λPP , λNN , δ) − M B μ] 

2 
d λPP d λNN dδ

Root-Mean-Square Bias RMSB μ

√ 

1 
2 

∫ ∫ ∫ 
B 2 μ( λPP , λNN , δ) d λPP d λNN dδ

Maximum absolute value MAXAB μ max 
0 ≤ λPP ≤ 1 

0 ≤ λNN ≤ 1 

0 ≤ δ ≤ 1 

| B μ( λPP , λNN , δ) | 

Skewness SKB μ
1 

SDB 3 μ

√ 

1 
2 

∫ ∫ ∫ 
[ B μ( λPP , λNN , δ) − M B μ] 

3 
d λPP d λNN dδ

Kurtosis KB μ
1 

SDB 4 μ

√ 

1 
2 

∫ ∫ ∫ 
[ B μ( λPP , λNN , δ) − M B μ(δ) ] 

4 
d λPP d λNN dδ
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ically denoted as x B μ(δ) = { σB μ(δ) , ψ B μ(δ) } . It should be ob-

served that these are not numbers but functions. In order to obtain

a single value derived from these functions, we can make the hy-

pothesis that δ is randomly and uniformly distributed within the

[ −1 , 1 ] range. Mean values of each function can therefore be com-

puted as 

xB μ ≡ 1 

2 

∫ 1 

−1 

x B μ( δ) dδ. (17)

Another way to reduce the generic function xB μ( δ) to a single

value is by focusing on its value for extremely positive-imbalanced

datasets where δ → 1. A generic value can therefore be obtained

through the expression 

xB 

εP 
μ ≡ lim 

ε→ 0 
x B μ( 1 − ε ) . (18)

The corresponding negative counterpart is defined as 

xB 

εN 
μ ≡ lim 

ε→ 0 
x B μ( −1 + ε ) . (19)

A global regard of bias can also be undertaken by considering

that λPP and λNN are randomly and uniformly distributed within

the [0, 1] range, and also that δ lies within the [ −1 , 1 ] range.

Bias can now be seen as a random variable B μ that is indepen-

dent of the imbalance coefficient δ. Bias can therefore be char-

acterized by its probability density function ( pdf [ B μ]). Based on

this overall pdf , several global statistical indicators can be de-

fined, which are generically denoted as �B μ and are summarized

in Table 6 . 

Definitions in Eqs. (17) –(19) and in Table 6 have introduced sev-

eral single-valued indicators regarding bias which will generically

be denoted as X B μ(δ) = { xB μ, xB εP 
μ , xB εN 

μ , �B μ(δ) } . 
Throughout this subsection, several function and single-valued

indicators have been introduced to assess the impact of dataset
mbalance on classification performance metrics. A summary of

hese indicators is depicted in Fig. 3 . 

. Results 

.1. Performance metric bias function 

The methods described in Section 2 will now be applied to the

en metrics defined in Table 1 . As explained above, bias depends

n three variables, that is, B μ = B μ( λPP , λNN , δ) and its formulation

or the selected metrics is also shown in Table 3 . The first approach

or their representation is based on the heat volumes as depicted

n Fig. 4 , where each point in the 3-dimensional ( λPP , λNN , δ) space

as a bias-dependent colour. 

In certain performance metrics (for instance in MCCn ), bias has

ow values for many points in the ( λPP , λNN , δ) space. In these

ases, the expressive power of the whole range of colours is not

ompletely exploited. It is therefore better to select the colour of

ach point not directly based on bias, but on the relative value

f bias within the range of values for their corresponding met-

ic. The colour-map is then rescaled to show the relative bias

ith the value −1 corresponding to the minimum bias, and the

alue +1 to the maximum. The result is depicted in Fig. 5 , where

he range of each metric is shown in its corresponding subplot

itle. 

As explained above, B μ can also be represented as a set of heat

aps. Each heat map represents the metric bias for a certain fixed

alue of the imbalance B μ = B μ( λPP , λNN , δ0 ) . The result for preci-

ion ( PRC ) is portrayed in Fig. 6 . Similar graphics can be obtained

or the remaining metrics. 

Now let us suppose that the value of δ is known, for in-

tance δ = δ0 = 0 . 95 . Therefore B μ = B μ( λPP , λNN , δ0 ) depends on

nly two variables ( λPP and λNN ) and can be represented as a heat

ap. The results for each metric are shown in Fig. 7 where the

olours represent the absolute value of bias. 
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Fig. 3. Functions and single-valued indicators assessing bias in performance metrics due to class imbalance. 

Fig. 4. Heat volumes of bias for each performance metric. 
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Table 7 

Bias indicators for singular classifiers: σB μ( δ). 

PRC NPV ACC F 1 MCCn MKn 

wcB μ 0 0 0 0 0 0 

bcB μ 0 0 0 0 0 0 

wpcB μ δ/2 −δ/ 2 −δ/ 2 0 0 0 

wncB μ δ/2 −δ/ 2 δ/2 2( 1+ δ) 
3+ δ − 2 

3 
0 0 

mcB μ δ/2 −δ/ 2 0 1+ δ
2+ δ − 1 

2 
0 0 

 

a

 

a  
This information can also be presented in the form of contour

raphs as in Fig. 8 where the colours represent the absolute value

f bias. 

.2. Bias indicators depending on δ

In the previous section, several bias indicators depending only

n the imbalance coefficient δ were defined. As mentioned therein,

he first approach is to consider classifiers whose performance is

ingularly located on the ( λPP , λNN ) plane. The results obtained for

ach bias indicator and performance metric σB μ( δ) are summa-

ized in Table 7 , where unbiased performance metrics ( SNS, SPC,

M, BMn ) have been omitted. 
It can be observed that only four types of non-null indicators

ppear. Their dependence on δ is plotted in Fig. 9 . 

Alternatively, it can be assumed that λPP and λNN are randomly

nd uniformly distributed across the [0, 1] range and the bias
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Fig. 5. Heat volumes of relative bias for each performance metric. 

Fig. 6. Set of heat maps of bias for precision. 
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B μ( δ) can then be statistically characterized. First, the probability

density function ( pdf [ B μ( δ)]) is derived for each performance met-

ric. The results are shown in Fig. 10 , where, for each δ and each

bias B μ, the values of pdf are shown using different colours (dark

blue corresponds to pdf = 0 ). 

Additionally, several local statistical indicators have been de-

fined (see Table 5 ) and these are generically denoted as ψB μ( δ).

The results obtained for each performance metric are depicted in

Fig. 11 . For easier reading, unbiased performance metrics ( SNS, SPC,

GM, BMn ) have been omitted. Moreover, NPV presents symmetric

behaviour to PRC and has also been disregarded from the graphs
for the sake of simplicity. T
.3. Single-valued bias indicators 

As has already been pointed out, there are various ways to ob-

ain single-valued bias indicators. First, we consider bias functions

B μ( δ) as summarized in Table 7 . By assuming that δ is randomly

nd uniformly distributed within the [ −1 , 1 ] range, the mean val-

es of each measure can be computed. The results for each perfor-

ance metric are shown in Table 8 . 

Now let us consider bias functions ψB μ( δ) depicted in Fig. 11 .

y applying the same method, mean values of these measures

an also be obtained. Results for each metric are shown in

able 9 . 
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Fig. 7. Heat maps of bias for each performance metric ( δ = 0 . 95 ). 

Fig. 8. Contour graphs of bias for each performance metric ( δ = 0 . 95 ). 

Table 8 

Mean values of bias functions for singular classifiers σB μ( δ). 

Symbol PRC NPV ACC F 1 MCCn MKn 

1 wcB μ 0 0 0 0 0 0 

2 bcB μ 0 0 0 0 0 0 

3 wpcB μ 0 0 0 0 0 0 

4 wncB μ 0 0 0 −0 . 053 0 0 

5 mcB μ 0 0 0 −0 . 049 0 0 

Table 9 

Mean values of bias of local statistical indicators ψB μ( δ). 

Symbol PRC NPV ACC F 1 MCCn MKn 

6 mB μ 0 0 0 −0 . 041 0 0 

7 sdB μ 0.082 0.082 0.102 0.066 0.038 0.066 

8 rmsB μ 0.228 0.228 0.102 0.135 0.038 0.066 

9 maxaB μ 0.308 0.308 0.25 0.244 0.090 0.154 

10 skB μ 0 0 0 0.129 0 0 

11 kB μ 0.080 0.080 −0 . 6 −1 . 093 0.006 0.028 
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Instead of computing the mean of a function, single-valued bias

ndicators can also be obtained by focusing on their value for ex-

remely imbalanced datasets. By first considering the bias metrics

f singular classifiers ( σB μ( δ)), their results are shown in Table 10 .

Regarding the extremely imbalanced case for local statistical in-

icators ( ψB μ( δ)), their results are shown in Table 11 . 

For a global view of bias, let us consider that λPP and

NN are randomly and uniformly distributed across the [0, 1]

ange while δ lies within the [ −1 , 1 ] range, and then bias B μ
s statistically characterized. First, the probability density func-

ion ( pdf ( B μ)) is derived for each performance metric. The re-

ults are shown in Fig. 12 , where NPV has been omitted from the

raph because it shows symmetric behaviour to PRC and has the

ame pdf . 

Finally, several global statistical indicators based on pdf ( B μ)

ave been defined (see Table 6 ), which are generically denoted as

B μ. The results obtained for each performance metric are shown

n Table 12 . 
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Table 10 

Bias indicators on singular classifiers ( σB μ( δ)) for extremely imbalanced datasets. 

Symbol PRC NPV ACC F 1 MCCn MKn 

Extremely 

positive- 

imbalanced 

12 wcB εP 
μ 0.667 0 0 0 0.211 0.333 

13 bcB εP 
μ 0 −0 . 667 0 0 −0 . 211 −0 . 333 

14 wpcB εP 
μ 0.5 −0 . 5 −0 . 5 0 0 0 

15 wncB εP 
μ 0.5 −0 . 5 0.5 0.333 0 0 

16 mcB εP 
μ 0.5 −0 . 5 0 0.167 0 0 

Extremely 

negative- 

imbalanced 

17 wcB εN 
μ 0 0.667 0 0 −0 . 211 0.333 

18 bcB εN 
μ −0.667 0 0 −0 . 5 0.211 −0 . 333 

19 wpcB εN 
μ −0 . 5 0.5 0.5 0 0 0 

20 wncB εN 
μ −0 . 5 0.5 −0 . 5 −0 . 667 0 0 

21 mcB εN 
μ −0 . 5 0.5 0 −0 . 5 0 0 

Table 11 

Bias measures on local statistical indicators ( ψB μ( δ)) for extremely imbalanced datasets. 

Symbol PRC NPV ACC F 1 MCCn MKn 

Extremely 

positive- 

imbalanced 

22 mB εP 
μ 0.5 −0.5 0 0.137 0 0 

23 sdB εP 
μ 0.238 0.238 0.204 0.088 0.213 0.226 

24 rmsB εP 
μ 0.554 0.554 0.204 0.163 0.213 0.226 

25 

maxaB εP 
μ

1 1 0.5 0.333 0.5 0.5 

26 skB εP 
μ 0 0 0 0.244 0 0 

27 kB εP 
μ −0 . 651 −0 . 651 −0 . 6 −1 . 043 −0 . 790 −1 . 014 

Extremely 

negative- 

imbalanced 

28 mB εN 
μ −0 . 5 0.5 0 −0 . 477 0 0 

29 sdB εN 
μ 0.238 0.238 0.204 0.241 0.213 0.226 

30 rmsB εN 
μ 0.554 0.554 0.204 0.534 0.213 0.226 

31 

maxaB εN 
μ

1 1 0.5 1 0.5 0.5 

32 skB εN 
μ 0 0 0 0.168 0 0 

33 kB εN 
μ −0 . 651 −0 . 651 −0 . 6 −0 . 933 −0 . 790 −1 . 014 

Fig. 9. Four types of bias indicators for singular classifiers. 

Table 12 

Global statistical indicators of bias �B μ for each performance metric. 

Symbol PRC NPV ACC F 1 MCCn MKn 

34 MB μ 0 0 0 −0 . 041 0 0 

35 SDB μ 0.271 0.271 0.118 0.169 0.055 0.086 

36 RMSB μ 0.271 0.271 0.118 0.174 0.055 0.086 

37 MAXAB μ 1 1 0.5 1 0.5 0.5 

38 SKB μ 0 0 0 −1 . 269 0 0 

39 KB μ −0 . 046 −0 . 046 1.32 2.043 6.9 3.061 
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In this section, 39 single-valued bias indicators have been con-

sidered, which can also be presented in a graphical form, as

shown in Fig. 13 . Here, the bias indicators σB μ(δ) , detailed in

Table 8 , have been omitted, since all these indicators are null

(except for F 1 score) and therefore their comparison would be

meaningless. 
.4. Symmetry of bias functions 

In order to categorize the bias functions for each performance

etric, it is convenient to study their symmetry. For this pur-

ose, let us begin by considering the Matthews Correlation Co-

fficient ( MCC ), since this coefficient is particularly clear. Its heat

ap for an imbalance coefficient δ = 0 . 95 is shown in the upper

eft-hand-side plot of Fig. 14 . A first anti-clockwise 90 ° rotation

n the ( λPP , λNN ) plane is performed, and the result is shown in

he upper right-hand-side plot. The result of a second 90 º rotation

s shown in the lower right-hand-side graph. Finally, the sign of

he bias values is changed, as shown in the lower left-hand-side

lot. It can be observed that the result coincides with the original

eat map. 

The 180 º rotation enables the bias to be defined on a new set

f axes ( �PP , �NN ), which are related to the original ( λPP , λNN )

hrough the expressions �PP = 1 − λPP ; �NN = 1 − λNN . This sym-

etry can therefore be formalized as 

 MCC ( λPP , λNN , δ) = −B MCC ( �PP , �NN , δ) 

= −B MCC ( 1 − λPP , 1 − λNN , δ) . (20)

Hence, the MCC bias function shows an order-2 (180 º) rota-

ional odd symmetry (or anti-symmetry) on the ( λPP , λNN ) plane.

urthermore, this bias function shows symmetry with respect to

he principal diagonal on the ( λPP , λNN ) plane if the sign of δ is

nverted, that is, 

 MCC ( λNN , λPP , −δ) = B MCC ( λPP , λNN , δ) . (21)

This dual behaviour is called Type I symmetry. Bias functions

or ACC and MK also exhibit this type of symmetry. 

When the bias of precision ( PRC ) is considered, no symmetry

n the ( λPP , λNN ) plane can be found. However, it exhibits a sym-

etry in the ( λPP , λNN , δ) space as can be observed in Fig. 15

here its heat volume for an imbalance coefficient δ = 0 . 95 is

hown in the upper left-hand-side plot. First, a mirror symme-

ry, with respect to the δ = 0 plane, is performed and the result is
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Fig. 10. Probability density function pdf [ B μ( δ)] for each performance metric. 

Fig. 11. Local statistical indicators of bias ψB μ( δ) for each performance metric. 

Fig. 12. Probability density function pdf ( B μ) for each performance metric. 
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hown in the upper right-hand-side plot. The sign of the bias val-

es is then changed and the results are shown in the lower right-
and-side plot. Finally, a second mirror symmetry is performed,

his time with respect to the anti-diagonal plane drawn in the

hird plot. The result is shown in the lower left-hand-side plot. It

an be observed that the result coincides with the original heat

olume. 

The double mirror symmetry enables the bias to be defined

n a new set of axes ( �PP , �NN , ), which are related to the

riginal set ( λPP , λNN , δ) through the expressions �PP = 1 − λNN ;

NN = 1 − λPP ;  = −δ. This symmetry can hence be formalized

s 

 PRC ( λPP , λNN , δ) = −B PRC ( �PP , �NN , ) 

= −B PRC ( 1 − λNN , 1 − λPP , −δ) . (22) 

Therefore, the PRC bias function shows a double mirror odd

ymmetry (or anti-symmetry) in the ( λPP , λNN , δ) space. This be-

aviour is called Type II symmetry. Bias functions for each metric

except F 1 score) exhibit this type of symmetry. 

Additionally, the symmetry of each pdf can be measured

hrough the skewness statistics. 
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Fig. 13. Single-valued bias indicators for each performance metric. 

Fig. 14. Study of symmetry for B MCC ( λNN , λPP ) with δ = 0 . 95 . 
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3.5. Clustering performance metrics based on their bias 

In previous sections, the impact of imbalance on ten classifica-

tion performance metrics is studied. Based on their bias, the per-

formance metrics can now be grouped into several clusters. In or-

der to perform this clustering, the 39 single-valued bias indicators

are considered. That is, each performance metric is to be featured

by a point in an R 

39 space. 

To tackle the issue of how to visualize such a high-dimensional

vector, a reduction of dimensionality to a plane (2D) must be
ndertaken. The first approach ( Fig. 16 -A) involves the selection

f 2 highly significant bias indicators and the projection of the

oints on that plane. Our selection is of RMSB μ, which is an

ndicator of the mean global bias, and of rmsB εP 
μ , which is a

ean gauge of bias for extremely positive-imbalanced datasets.

n this graphic, it can be observed that: bias for SNS, SPC, GM

nd BMn performance metrics are at the same point; bias for

CC, MCCn and MKn are very close to each other; bias for F 1 
s not far from these metrics; and, finally, bias for PRC and

PV are at the same point but distant from the other metrics.
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Fig. 15. Study of symmetry for B PRC ( λNN , λPP , δ) with δ = 0 . 95 . 
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ollowing these criteria, either 3 or 4 clusters could be esta-

lished. 

However, a more in-depth insight shows that PRC and NPV

ave symmetric behaviour for many bias indicators. They have ap-

eared together in the previous graph because the selected indi-

ators ( RMSB μ and rmsB εP 
μ ) compute a squared mean, which hides

heir symmetric characteristics. In order to overcome this issue, the

imensionality reduction can be made by selecting a different pair

f bias indicators. In Fig. 16 -B, MAXAB is a global indicator of the

bsolute maximum value of bias (and still hides the symmetry),

nd mB εP 
μ is another mean gauge of bias for extremely positive-

mbalanced datasets that reveals the symmetry. Five clusters now

learly appear. 

An alternative to the previous somewhat arbitrary and reduc-

ionist selection of the pair of bias indicators involves the con-

ideration of the full set of indicators and the performance of

ome kind of bidimensional reduction. Principal Component Anal-

sis (PCA), shown in Fig. 16 -C [26] , and Multi-dimensional Scaling

MDS), shown in Fig. 16 -D [7] , are employed as the techniques for

his reduction. 

Each panel on Fig. 16 represents a different bidimensional

erspective of highly dimensional ( R 

39 ) set of points. Therefore,

lightly different clustering may arise in any of them. But consid-

ring all the panels, it can be seen that the following 5 clusters

ppear: 

I. Cluster comprised of SNS, SPC, GM and BMn with metrics having

null bias. 

II. Cluster comprised of ACC, MCCn and MKn with the following

features: 
• Bias has Type I symmetry, that is, B μ( λPP , λNN , δ) =

−B μ( 1 − λPP , 1 − λNN , δ) and B μ( λNN , λPP , −δ) = B μ( λPP ,

λNN , δ) . 
• Bias pdf has null skewness. 
• Bias values are moderate: 0.5 for maximum ( MAXAB μ,

maxaB εP 
μ and maxaB εN 

μ ); and about 0.2 for average bias in

extremely imbalanced datasets ( rmsB εP 
μ and rmsB εN 

μ ). 
• Sign of bias does not depend on sign of imbalance. 

II. Cluster (with 2 subclusters) comprised of PRC and NPV with the

following features: 
• Bias has Type II symmetry, that is, B μ( λPP , λNN , δ) =

−B μ( 1 − λNN , 1 − λPP , −δ) . 
• Bias pdf has null skewness. 
• Bias values are high: 1 for maximum ( MAXAB μ, maxaB εP 

μ and

maxaB εN 
μ ); and about 0.5 for average bias in extremely im-

balanced datasets ( r msB εP 
μ and r msB εN 

μ ). 
• The relationship between the sign of bias and the sign of

imbalance establishes 2 subclusters. 

A. PRC , with bias and imbalance having the same sign. 

B. NPV , with bias and imbalance having the opposite sign. 

V. Cluster comprised by F 1 with the following features: 
• Bias has no symmetry. 
• Bias pdf has non-null skewness. 
• Bias values are low for positive imbalance: 0.33 for maxi-

mum ( maxaB εP 
μ ); and approximately 0.15 for average bias in

extremely imbalanced datasets ( rmsB εP 
μ ). 

• Bias values are high for negative imbalance: 1 for maximum

( maxaB εN 
μ ); and approximately 0.5 for average bias in ex-

tremely imbalanced datasets ( rmsB εN 
μ ). 

• Sign of bias and sign of imbalance are the same. 

Clustering information is summarized in Table 13 . 

Another way to represent how performance metrics are

rouped according to the bias behaviour is by drawing a dendro-

ram. To this end, the full set of bias indicators is employed to fea-

ure each performance metric. The distances between the metrics

re then computed in the space of the R 

39 bias indicators. These
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Fig. 16. Bidimensional representation of performance metrics according to their bias indicators. 

Table 13 

Clusters of performance metrics attending to their bias. 

I II III.A III.B IV 

SNS SPCGM BM ACC MCC MK PRC NPV F1 

δ > 0 maxaB εP 
μ Null 0 Medium 0.5 High 1 High 1 Low 0.333 

rmsB εP 
μ 0 ∼ 0.2 0.554 0.554 0.163 

δ < 0 maxaB εN 
μ 0 0.5 1 1 High 1 

rmsB εN 
μ 0 ∼ 0.2 0.554 0.554 0.534 

Symmetry Type I Yes Yes Yes Yes No 

Type II Yes Yes No No No 

Skewness 0 0 0 0 � = 0 

sgn ( B ) vs. sgn ( δ) = Independent = � = = 
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distances are employed to gauge how separated the metrics are, as

shown in Fig. 17 . Once again, 5 clusters clearly appear. 

4. Discussion 

The first issue to be discussed is the comparison between the

imbalance ratio ( IR ), defined by several authors to quantify imbal-

ance, and the imbalance coefficient ( δ) as proposed in this paper.

Although they are both valid indicators of the degree to which the

datasets are imbalanced, we prefer δ because it is defined within

the [ −1 , +1 ] bounded range with the balanced case ( δ = 0 ) in the

middle of the segment (and hence it is symmetric); whilst IR is
efined within the [ 0 , + ∞ ] unbounded range with the balanced

ase IR = 1 , which is clearly asymmetric. In order to obtain sym-

etric behaviour based on IR , the logarithm of IR could be used

 LIR ), whose range is [ −∞ , + ∞ ] with the balanced case ( LIR = 0 )

n the middle; however, its range still remains unbounded. Fig. 18

hows an example of a local statistical indicator of bias ( rmsB ) as

 function of the imbalance using δ (left-hand-side) and IR in log-

rithmic scale (right-hand-side). 

A practical application of the above results is that the bias’s

ean value of every performance metric (and other related statis-

ics) can be computed using the equations in Table 6 , and their

esults for the ten studied metrics are shown in Table 12 . 
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Fig. 17. Dendrogram of performance metrics according to their bias measures. 
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Table 14 

Behaviour of performance metrics with imbalanced datasets. 

Cluster Metric Bias RMSB μ Focus on classes Focus on results 

(Positive, Negative) (Successes, Errors) 

I SNS Null 0 P S 

SPC Null 0 N S 

GM Null 0 P & N S 

BM Null 0 P & N S 

II ACC Medium 0.118 P & N S 

MCC Medium 0.055 P & N S & E 

MK Medium 0.086 P & N S & E 

III PRC High 0.271 P & N S & E 

NPV High 0.271 P & N S & E 

IV F 1 High 0.174 P & N S & E 
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In the cases where the dataset is known, the expected bias of

very performance metric can be computed. Indeed, the dataset

etermine the value of the imbalance coefficient δ and, for that

alue, the bias (its root-mean-square value) can be obtained as it

s shown in Fig. 18 . The full set of bias’s statistics can be computed

sing the equations in Table 5 and their results are depicted in

ig. 11 . 

Additionally if the classifier results on that dataset are also

nown (that is, the values of λPP and λNN ) the bias’s exact value

f every performance metric can be computed using the equations

n Table 3 . 

Let us now focus on the bias functions. From the above results

t is clear that the best performance metrics, that is, those with

o bias due to imbalance, are those of sensitivity ( SNS ) and speci-

city ( SPC ). These metrics can be considered one-dimensional (or

artial) performance metrics however, since they take into account

nly the results on either the positive ( SNS ) or the negative ( SPC )

lass, but not both. 

Null bias is also shown by two metrics directly depending on

NS and SPC : geometric mean ( GM ) and bookmaker informedness

 BM or single-threshold AUC ). These solve the one-dimensionality
Fig. 18. Comparison of δ and IR 
roblem of the SNS and SPC metrics by considering either their

rithmetic ( BM ) or geometric ( GM ) mean. Although these two

etrics constitute good alternatives to be used with imbalanced

atasets, they have the drawback of focusing on only the classi-

cation successes ( λPP and λNN ), and fail to directly consider the

lassification errors ( λPN and λNP ). 

The second best (lowest biased) cluster of metrics is that

hich is comprised of accuracy ( ACC ), Matthews correlation co-

fficient ( MCC ), and markedness ( MK ). These all have a global

not partial) perspective, since classification results on both pos-

tive and negative classes are considered. From among these 3

etrics, ACC focuses only on the classification successes, which is

 drawback and, additionally, has the highest bias (except when

xtreme balanced datasets are used). In this cluster, the lowest

ias is shown by MCC with moderate values (lower than 0.2 in

he normalized version) for almost every value of the imbalance

oefficient. 

Finally, the metrics in the third and fourth clusters, precision

 PRC ), negative predictive value ( NPV ), and F 1 score ( F 1 ), are highly

iased and should be avoided for use in imbalanced datasets.

able 14 summarizes the behaviour of performance metrics with

mbalanced datasets. 

As a practical conclusion, when dealing with imbalanced

atasets, GM and BM are the best performance metrics if their fo-

us on successes (dismissing the errors) presents no limitation for

he specific application where they are used. However, if classifi-

ation errors must also be considered, then MCC arises as the best

hoice. 
to measure the imbalance. 
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Concordant results have been obtained in other studies, al-

though most of these previous results were only shown and not

exhaustively explored and quantified. The weakness of ACC in im-

balanced problems has been signalled by many authors [10,22] .

Furthermore, the use of PRC has been extensively discouraged

[5,13,20] . F 1 score, which depends on PRC , is also indirectly dis-

missed by those authors and directly rejected by Jeni, Cohn & De

La Torre [25] . Most of the literature on this issue does not select

any performance metrics, thereby limiting their study to a mere

indication that they are biased. A few authors also suggest that the

best choice is the MCC metric [4,11] . 

Probably the most cited solution to overcome the effect of im-

balance on performance metrics is the use of the Class Balanced

Accuracy ( CBA ). In the terminology used throughout this paper, this

is the accuracy for the classifier operating on a balanced dataset

( ACC b ). Nevertheless, according to our study, this idea can be ex-

tended to the remaining performance metrics, by obtaining their

balanced counterpart ( μb ), generally called Class Balance Metrics

( CBM ), as formulated in the last column of Table 2 . These exten-

sions permit different null-bias perspectives to be used in the as-

sessment of the results obtained by a classifier in the imbalanced

case. 

The Class Balance version of the ten studied metrics ( μb ) will

show a null bias and, therefore, a value of RMS B μ = 0 (columns 3

and 4 in Table 14 ). As every metric is now unbiased, choosing any

of them should be based on other criteria, for instance, on their

symmetry (column 1), their focus on classes (column 5) or their

focus on results (last column). These values remain unaltered with

respect to their biased counterpart. 

The behaviour of each Class Balance Metric is shown in

Fig. 2 which can also be used as a guide for the selection of the

metric. 

5. Conclusions 

In this paper, an extensive and systematic study of the impact

of class imbalance on classification performance metrics is under-

taken. To the best of our knowledge, no quantitative and complete

study of this issue has been previously published. 

To characterize the disparity between classes the Imbalance Co-

efficient has been defined: a new measure which surpasses the Im-

balance Ratio or the Entropy used in previous studies. 

Throughout our analysis several practical procedures to deter-

mine the bias’s quantitative value of a metric have been derived,

either for a general case, for a certain dataset or for a given exper-

iment (pair of classifier and dataset). 

From the simulation results, a quantitatively justified guide to

select performance metrics in the presence of imbalance classes

has been developed. In our analysis, several clusters of perfor-

mance metrics have been identified that involve the use of Geo-

metric Mean or Bookmaker Informedness as the best null-biased

metrics if their focus on classification successes (dismissing the er-

rors) present no limitation for the specific application where they

are used. However, if classification errors must also be consid-

ered, then the Matthews Correlation Coefficient arises as the best

choice. 

Finally, a set of null-biased multi-perspective Class Balance

Metrics is proposed which extends the concept of Class Balance

Accuracy to other performance metrics. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.patcog.2019.02.023 . 
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