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Abstract: Ultrasound assisted compression (USAC) is a manufacturing technique which applies
thermal and mechanical energy to the powder bed, producing tablets with improved characteristics
compared to the direct compression process. This technology is ideal for thermoplastic materials,
as polyurethanes, whose particles usually undergo a sintering process. Thermoplastic polyurethanes
are widely used in sustained drug release systems but rarely seen in tablets due to their elastic
properties. The aim of this work is to investigate the ability of USAC to manufacture sustained release
matrix tablets based on elastic thermoplastic polyurethanes (TPU), overcoming the limitations of
direct compression. The technological and biopharmaceutical characteristics of the TPU matrices have
been evaluated, with special focus on the porous structure due to the implications on drug release.
For the first time, USAC has been successfully employed for manufacturing elastic thermoplastic
polyurethanes-based matrices. TPU tablets show an inert character with a sustained drug release
governed by a diffusional mechanism. Initial porosity of matrices was similar in all batches studied,
with no influence of drug particle size, and a fractal nature of the pore network has been observed.
SEM microphotographs show the continuum medium created by the sintering of the polymer,
responsible for the high excipient efficiency.

Keywords: ultrasound assisted direct compression; polyurethanes; prolonged-release tablets;
percolation theory; porosity; fractal dimension

1. Introduction

Nowadays, tablets remain as the most common dosage form in the pharmaceutical market.
This proportion has even increased thanks to the generic drugs since tableting generally results in
a lower cost of development as well as a higher industrial production capacity [1]. However, in the
majority of cases, either wet or dry granulation has to precede the compaction step to obtain suitable
properties for industrial processing and to achieve the targeted properties of the finished drug product.

Ultrasound-assisted compression (USAC) is a manufacturing technology which combines
a conventional compression process with ultrasound irradiation. Ultrasound energy causes mechanical
and thermal effects which lead to heating and sintering of materials, improving the compression
process [2]. Thus, ultrasounds increase the interparticle bonds resulting in stronger and less porous
tablets at lower pressures as compared to conventional tableting [3–5]. Moreover, the use of
intermediate processes as granulation is also avoided with USAC.

This technology has been successfully employed for different applications as the amorphization
of active pharmaceutical ingredients, production of solid dispersions to enhance the bioavailability of
poorly soluble drugs and formulation of sustained drug release forms [3,6–10]. In the case of prolonged
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release systems, USAC appears as a promising technique, decreasing the cost and the quantity of
excipient needed for the control of the drug release [8], which usually constitutes an important
drawback in the formulation of sustained-release systems.

This process is particularly suitable when the excipient exhibits a thermoplastic deformation,
allowing the formation of a framework that holds the non-thermoplastic particles together. In this way,
the polymer will form an inert skeleton avoiding the disintegration of the matrix, surrounding more
efficiently the drug, and consequently controlling the drug release with a low quantity of excipient.

Thermoplastic polyurethanes (TPU) have stood out as a very interesting group of excipients for
controlled release dosage forms, being successfully used in vaginal rings, stents, coatings, and implants
due to favorable properties as its inert, non-ionic, and water-insoluble character. They also exhibit
a high tensile strength, crack resistance, inherent lubricity, and highly elastomeric character. Recently,
TPU have been researched for the manufacturing of oral sustained drug release forms obtained
by hot-processing techniques, such as hot melt extrusion or injection molding [11,12]. However,
the manufacture of TPU tablets by direct compression has been very limited due to their poor
plastic/elastic balance at room temperature [13].

Due to the water insoluble character of TPU, the porosity of the inert matrices obtained plays an
important role in their performance as it directly affects the liquid uptake rate and influences the drug
release kinetics. Normally, the pore structure is complex and randomly distributed with different sizes,
shapes, and orientations, which makes it difficult to accurately describe it [14]. Therefore, different
techniques have been employed to determine macroscopic and microscopic pore parameters, since its
analysis becomes necessary for the deeper knowledge of these systems.

The aim of this work is to investigate the ability of USAC to overcome the undesirable
elastic properties of thermoplastic polymers, allowing one to obtain tablets by direct compression.
An additional objective is the study of the properties of the obtained tablets.

For this purpose, we employed the elastic thermoplastic polyurethane (TPU) TecoflexTM EG-72D
as the matrix forming excipient in tablets obtained by USAC. The main properties of the obtained high
drug content TPU matrices have been evaluated, including the study of their porous system through
fractal dimension and the influence of drug particle size.

2. Materials and Methods

2.1. Materials

Anhydrous theophylline (batch151209-P-1, Acofarma, Barcelona, Spain) was used as model drug.
Medical grade elastomer thermoplastic polyurethane TecoflexTM EG-72D (TPU) was used as matrix
forming excipient, which was kindly supplied by Lubrizol Advanced Materials Spain S.L. (Bacelona,
Spain). The TPU chemical structure consists of polytetrahydrofuran (soft segment) and hydrogenated
methylene diphenyl diisocyanate (hard segment) at a molar ratio of 3.5. The molecular weight is
59,000 g/mol and its melting point is 53◦ [11]. TPU ultimate tensile strength and elongation at break
are 55.8 MPa and 310%, respectively.

2.2. Methods

2.2.1. Blends Preparation

TecoflexTM EG-72D pellets were frozen in liquid nitrogen and subsequently milled with a Restch
ZM 200 equipment (Haan, Germany), using a 1.0 mm output sieve. Three fractions of drug particle
size (<90 µm, 90–150 µm and 150–355 µm) were obtained by sieving in order to evaluate the influence
of this factor on the technological and biopharmaceutical behavior of the systems.

Blends of theophylline and polymer powder (70/30 w/w proportion) have been mixed during
15 min (Turbula mixer, Willy A. Bachofen, Basel, Switzerland). The optimum blend time was calculated
based on the drug content of 5 representative samples at different times tested. The quantity of drug
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was determined by UV–Vis spectrophotometry (Agilent 8453 (California, CA, USA)) at 272 nm [15].
Variation coefficient values lower than 5% were considered as appropriate.

2.2.2. Preparation of TPU Tablets by Direct Compression

An eccentric tableting machine (Bonals A-300, Barcelona, Spain) was used to compact 300 mg
of blends, using manual feeding and applying the maximum compression force accepted by
the formulation.

2.2.3. Preparation of TPU Tablets by Ultrasound-Assisted Direct Compression

Tablets of 300 mg weight for each lot were obtained using an ultrasound-assisted tableting
machine (Tecnea Engineering, Casale Monferrato, Italy). An ultrasonic energy of 650 J was applied to
the mixture at 20 kHz frequency. Flat cylindrical punches of 11 mm were employed. The parameters
established for the proper compression were: compression pressure 0.3 MPa, compaction time 6 s,
cool time 9 s and detach time 0.5 s.

2.2.4. Physical Characterization of TPU Tablets

The weight (EP214, Ohaus Corporation, Parsippany, NJ, USA), thickness and diameter (VWR
International, Leuven, Belgium) of the TPU tablets were determined as the mean of 10 tablets for
each lot.

2.2.5. Dissolution Testing of TPU Tablets and Modelling

Drug release studies were carried out using a USP Apparatus II Sotax AT7 smart (Allschwil,
Switzerland) with 900 mL of deionized water at 37 ± 0.5 ◦C and 50 rpm. Samples were withdrawn
at specific interval times and filtered through 0.45 mm filters (Millipore Ltd., Cork, Ireland).
The percentage of drug released was measured in a UV–Vis spectrophotometer Agilent 8453 (California,
CA, USA) at 272 nm [15]. The assay was performed in triplicate and sink conditions were met
throughout the dissolution test.

Drug release data (Mt/M∞ ≤ 0.6) were analyzed according to Higuchi (1963) [16], Korsmeyer et al.
(1983) [17] and Peppas and Sahlin (1989) [18] Equations (1)–(3):

Mt

M∞
= kt

1
2 , (1)

Mt

M∞
= kktn, (2)

Mt

M∞
= kdtm+krt2m, (3)

where Mt/M∞ is the drug released fraction at time t (the drug loading was considered as M∞), k is the
Higuchi’s release rate constant, kk is the Korsmeyer’s kinetic constant, t the release time, n the release
exponent that depends on the release mechanism and the shape of the matrix tested [19], kd and kr

are, respectively, the diffusion and relaxation rate constants, and finally m which is the purely Fickian
diffusion exponent for a device of any geometrical shape which exhibits controlled release.

2.2.6. Mercury Porosimetry Measurements

Mercury porosimetry runs were undertaken using an Autopore IV 9510 (Micromeritics, Madrid,
Spain) porosimeter with a 3 cm3 penetrometer. An adequate number of tablets per tested formulation
was used in order to obtain a stem volume between 25% and 90% of the penetrometer capacity.
Working pressures covered the range 0.1–60,000 psi. Total porosity and pore size distribution of tablets
were determined before and after the drug release study in duplicate and for each tested batch.
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In the case of leached tablets, the porosity results have been normalized by subtracting the initial
mercury intrusion, in order to perform a clearer comparison of the structure of the pore network inside
these systems.

2.2.7. Measurement of Fractal Dimension

Volume fractal dimension Dv of TPU matrices has been estimated according to the idealized
model of the Menger sponge [20,21]. This model correlates the relative density of the system with
the pore diameter filled with mercury at a certain intrusion pressure through the following equation
(Equation (4)):

log ρr = (3 − Dv)logd + c, (4)

where the relative density ρr is obtained by the pore volume fraction filled with mercury intrusion
pressure ρr = 1 − ε and c is a constant.

Volume fractal dimension can be calculated by the slope of the straight line obtained by plotting
the relative density of the system ρr as a function of diameter in a double logarithmic plot.

2.2.8. Scanning Electron Microscopy (SEM)

The surface of TPU matrices were evaluated at the Microscopy Service of the CITIUS in the
University of Seville by using Scanning Electron Microscopy (SEM) with a FEI TENEO electronic
microscope (FEI Company, Hillsboro, OR, USA), operating at 5 kV. Tablets were coated with a 10 nm
thin Pt layer with Leica EM SCD500 high vacuum sputter coater.

2.2.9. Estimation of the Excipient Efficiency

The Excipient Efficiency is a parameter to quantify the ability of an excipient to control the drug
release from a pharmaceutical formulation [15]. This parameter has been calculated for TPU according
to the following equation (Equation (5)):

E =
ε

b
1

(1.43 − 0.00244d)
1

(1.963 − 0.246lnCs)
, (5)

where ε is the total porosity of the matrices, b is the Higuchi’s release rate constant, d is the mean
particle size of excipient (µm) and Cs is the drug solubility in mg/mL.

3. Results and Discussion

Tablets of TPU and theophylline were successfully obtained by USAC for all batches. Conversely,
when the same blends of TPU and theophylline were processed through a standard eccentric tableting
machine, the obtained tablets do not show suitable technological characteristics, mainly due to their
elastic properties leading to a crumbling of tablets during the relaxation step (in less than 24 h).
Therefore, all the following sections, devoted to the characterization of the obtained tablets, are referred
to the USAC tablets.

3.1. Characterization of TPU Tablets Obtained by USAC

Physical characteristics of tablets were consistent with the established compression conditions,
obtaining an average weight, diameter, and thickness of 297.3 ± 1.0 mg, 11.247 ± 0.000 mm,
and 2.856 ± 0.034 mm, respectively. Tablet hardness or tensile strength of tablets could not be
measured due to the elastic nature of the system. Tablets were deformed instead of broken when they
were subjected to the crushing strength tester.
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3.2. Dissolution Testing of TPU Tablets and Modelling

Drug release profiles of TPU tablets are shown in Figure 1. Matrices made with different particle
size of drug display similar biopharmaceutical behavior, achieving a prolonged theophylline release
during more than 8 h. The integrity of tablets was maintained in all cases at the end of the study.
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Figure 1. Drug release profiles of thermoplastic polyurethanes (TPU) tablets with different drug
particle size.

On the basis of percolation theory, pharmaceutical systems can be described as randomly
distributed materials where geometrical phase transitions can occur [22,23]. When a component
reaches its percolation threshold, it starts to extend over the whole sample, having much greater
influence on the properties of the system.

In our case, as the excipient undergoes thermoplastic deformation, the continuum percolation
model can be used to predict the changes in the system. This model considers a continuum distribution
function of the components and the percolation threshold of a substance is situated at approximately
16% v/v of occupation probability [2]. According to the densities of the components, TPU constitutes
37.5% v/v, being therefore above its percolation threshold. This is consistent with the inert matrix
formed and the controlled drug release obtained. With respect to the drug, being at a proportion of
62.5% v/v is also clearly above its percolation threshold. That ensures the complete release of the
drug dose.

Drug release data have been analyzed according to different kinetic models: Higuchi, Korsmeyer
and Peppas and Sahlin (Table 1). The good determination coefficients for the diffusional model
(Higuchi), the Korsmeyer n values close to 0.5, and the predominance of kd over kr in the Peppas and
Sahlin equation reveal a drug release mechanism predominantly controlled by drug diffusion.

Table 1. Main kinetic parameters from TPU tablets.

TPU Tablets
with Different Drug Particle Size (µm)

Higuchi Korsmeyer Peppas & Sahlin

b (min−0.5) r2 n r2 kd (min−0.5) kr (min−1) r2

<90 0.0339 0.9986 0.4915 0.9988 0.0387 −2.10−4 0.9994
90–150 0.0373 0.9966 0.5366 0.9896 0.0361 9.10−5 0.9974

150–355 0.0354 0.9947 0.513 0.9938 0.0361 −2.10−6 0.9957

b, Higuchi kinetic constant; n, release exponent; kd, Peppas diffusion kinetic constant; kr, Peppas relaxation kinetic
constant; r2, determination coefficient.

3.3. Mercury Porosimetry Measurements

As TPU tablets are inert matrix systems, the knowledge of total porosity—the sum of the initial
pores plus the pores that appear once the drug is dissolved—is critical to ensure the complete drug
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leaching and plays an important role in the release kinetics. TPU tablets showed initial porosity values
between 17.1%–19.8% with a median pore diameter around 2 µm (Table 2). Figure 2A shows the
cumulative mercury intruded by the matrices at different pressures, where no difference of porosity
has been found as a function of drug particle size. Porosity of matrices after dissolution testing (total
porosity) was measured since the integrity of tablets was maintained in all cases at the end of the assay.

Table 2. Porosity and fractal dimension Dv of TPU matrices obtained by ultrasound assisted
compression (USAC), containing three different fractions of theophylline.

Drug Fraction

TPU Matrices Porosity
(%)

Median Pore
Diameter (µm)

Dv
(and range in µm)

<90 µm 17.9 ± 0.7 2.1 2.883 (3.2–1.1)
90–150 µm 19.8 ± 2.9 1.8 2.882 (2.5–1.1)

150–355 µm 17.1 ± 1.9 1.7 2.899 (2.5–0.8)

Drug Fraction

TPU Matrices
after Dissolution Testing

<90 µm 59.1 ± 0.4 33.7 2.9203 (17.2–90.6)
90–150 µm 58.6 ± 1.8 41.1 2.9344 (21.3–90.3)

150–355 µm 60.3 ± 0.1 40.5 2.9542 (13.9–90.5)

In the case of leached tablets, the obtained results showed different porosity patterns depending
on particle size, as shown in Figure 2B. Matrices containing larger drug particle size have higher
mercury intrusion at atmospheric pressure, due to the presence of higher pores left by the coarser drug
particles after leaching [24]. Normalized porosity results, in which the initial mercury intrusion value
has been subtracted, have been represented in the same Figure 2B in order to study the pore network.
A more extensive pore network can be observed for the case of matrices with smaller particle size.
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Figure 2. Cumulative mercury intrusion of USAC tablets with different drug particle sizes, before
(A) and after drug release study (B), with normalized porosity values—without initial mercury
intrusion—represented at the bottom of the image.

As indicated in previous sections, the influence of drug particle size on the release profiles was
sparingly significant. This can be due to the existence of two opposite influences. On one hand,
the wider pores left by the coarser particles favor a faster diffusion through a reduction of the thickness
of the diffusion layer. On the other, the matrices containing finer particles are expected to have
a lower drug percolation threshold [25]. Therefore, they have a higher distance to the drug percolation
threshold and consequently, they are expected to contain a more extended drug network than the
coarser particles. The first one of these opposite phenomena is reflected in the absolute values of
mercury intrusion, and the second one in the behavior of the normalized porosity results (Figure 2B).

The elastic nature of the TPU was evidenced since the extrusion curves follow the same plotted
path as the intrusion curves (Figure 3). In contradistinction to non-elastic materials that show a typical
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pore retention hysteresis at extrusion process, TPU tablets seems to return to its original shape after
being elastically compressed at the highest pressures, expelling the mercury [14,26].Pharmaceutics 2019, 11, x FOR PEER REVIEW 7 of 11 
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Figure 3. Mercury intrusion and extrusion curves from TPU tablets (A) and leached tablets (B).

3.4. Measurement of Fractal Dimension

Fractal analysis, based on the concept of self-similarity, contributes to the knowledge of these
porous systems, assigning them a fractional number which provides information about their structural
complexity [27–29]. Volume fractal dimensions have been calculated for all matrices according to
equation 4. Table 2 shows the obtained Dv values, which are in the range of 2.88–2.95, similar to
previously reported values for sustained release matrices [20]. Higher Dv values have been obtained for
matrices after drug dissolution test. In our study, self-similarity, which is characterized by a constant
fractal dimension, was restricted to relatively narrow pore ranges: around 0.5 to 5, and around
10–100 micrometers for initial pores and pores formed after drug leaching, respectively (see Figure 4).
Comparing the values for the different theophylline particle sizes studied, higher fractal nature was
found when decreasing drug particle size, as observed by other researchers [20].
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Figure 4. Determination of the volume fractal dimension of TPU matrices containing three different
size fractions of theophylline, before (A) and after drug release study (B).

3.5. Scanning Electron Microscopy (SEM)

Microphotographs obtained by SEM contributed to analyze the behavior of the polymer in the
matrices. Images were taken before and after drug release studies, showing the continuum medium
created by the thermoplastic excipient with only 30% weight fraction (Figure 5). This continuum
medium of the polymer has been formed thanks to the ultrasounds applied by the upper
punch-sonotrode which lead to the movement of the powder particles increasing the friction and
collisions between them and rising the temperature of the system [2]. So, the boundaries between
particles become indistinguishable causing the sintering of the system. Some researchers have also
confirmed the sintering process obtained with USAC by SEM [5–7,30]. It can be highlighted that
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acicular drug particles tend to be distributed in parallel thus offering the lowest porosity previously
measured, and how TPU works binding these particles (Figure 5A,B). SEM images of matrices after
drug release study show the inert skeleton of TPU on which the fingerprints of theophylline particles
are patent (Figure 5D,E).Pharmaceutics 2019, 11, x FOR PEER REVIEW 8 of 11 
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3.6. Estimation of the Excipient Efficiency

Considering the current regulatory framework, which encourages the application of the
“Quality by Design” approach in pharmaceutical product development, we have estimated the
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parameter Excipient Efficiency (EE), in order to quantify the capability of TecoflexTM EG-72D for
controlling the drug release. The mean EE value for the studied elastic thermoplastic polyurethane
is 13.41 min1/2 ·mg−1·mL, according to the total porosity and the Higuchi’s release constant from the
inert matrices. The obtained value is higher than those previously reported for inert matrix forming
excipients as Ethocel® (9.54–9.89) or Eudragit® (5.59) [15]. This fact may be due to the compression
process since the sintering process caused by USAC has been reported to increase the EE [7].

The capability of TPU for controlling drug release has been estimated for theophylline, which is
slightly soluble in water. Obviously, in the case of lipophilic drugs, much lower release rates are
expected. Taking into account the biocompatibility of this polymer, it would be possible to develop
drug loaded implant devices using this technology.

4. Conclusions

Ultrasound-assisted compression (USAC) has demonstrated its ability to compress elastic
materials, overcoming the traditional limitations of these materials for compression. For the first
time, an elastic thermoplastic polymer has been successfully compressed by USAC, resulting in inert
matrices with a semi-continuum excipient structure formed by the sintering process of these elastic
TPU particles. This technology allows manufacturing matrices with low quantity of polymer (30%)
showing high excipient efficiency. A fractal nature has been found in the pore structure. Porosity
analysis has contributed to the understanding of the drug release behavior of TPU matrices, confirming
the robustness of the obtained USAC matrices for varying drug particle size fractions.
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