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Classical single facility location problem : Given a finite set of
points in a real normed space X , the goal is to minimize some
function depending on the distances to those points (existing
facilities or demand points).
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Introduction

Facilities are represented by isolated points?
Introducing sets instead of points introduces important
differences in the mathematical analysis of these problems.
Our approach: minimization of expected distances

Application point of view:
1 Case of the stationing of rescue helicopters [Ehrgott 02].
2 Location of planes used to extinguish fires in reserves or

natural parks.
3 Locating a read/write head of a computer hard-disk to easily

access the stored data. [Vickson, Gerchak and Rotem 95] and
[Puerto and Rodŕıguez-Ch́ıa 03].
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Introduction

Facilities are represented by isolated points?
Introducing sets instead of points introduces important
differences in the mathematical analysis of these problems.
Our approach: minimization of expected distances

Our goal: Geometrical characterization of the solution set for
a single facility location model with sets as demand facilities
using average distances. Networks: [Hakimi64, Hooker91].
Continuous location problems: [Durier and Michelot 85,
Durier95, PF00, NPR03].

Basic model
General model
Discretization result.
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Basic tools and definitions

X is a real separable Banach space.
γ norm with unit ball B .
f : X → R ∪ {+∞} convex function.

p ∈ ∂f (x) ⊆ X ∗ iff f (y) ≥ f (x)+〈p, y −x〉 for each y ∈ X .

Conjugate function:
f ∗(p) = sup{〈p, x〉 − f (x) : x ∈ dom f } ∀p ∈ X ∗.
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Basic tools and definitions

X is a real separable Banach space.
γ norm with unit ball B .
f : X → R ∪ {+∞} convex function.

p ∈ ∂f (x) ⊆ X ∗ iff f (y) ≥ f (x)+〈p, y −x〉 for each y ∈ X .

Conjugate function:
f ∗(p) = sup{〈p, x〉 − f (x) : x ∈ dom f } ∀p ∈ X ∗.

Result: For a closed and proper convex function, [Barbu,
Precupanu 75]:

p ∈ ∂f (x), x ∈ X , p ∈ X ∗ iff x ∈ ∂f ∗(p).

Remarks:

∂γ(x) = {p ∈ Bo : γ(x) = 〈p, x〉}.
∂γ∗(p) = {x ∈ X : γ(x) = 〈p, x〉}.
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Optimality Conditions

The basic model

inf
x∈X

φ(x) :=

∫

T

ϕt(x) dµ(t), (Pφ(T ))

where ϕt(x) := γt(x − t), µ a σ-finite, positive measure.
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The basic model

inf
x∈X

φ(x) :=

∫

T

ϕt(x) dµ(t), (Pφ(T ))

where ϕt(x) := γt(x − t), µ a σ-finite, positive measure.

Result: φ is convex on X .
Result: F : G −→ L1(X , R) such that (F (x))(t) = ϕt(x).
If X is separable or T is countable, then φ is continuous at xo and

∂φ(xo) =

∫

T

∂ϕt(xo)µ(dt) =

∫

T

∂F (xo)µ(dt).
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The basic model

inf
x∈X

φ(x) :=

∫

T

ϕt(x) dµ(t), (Pφ(T ))

where ϕt(x) := γt(x − t), µ a σ-finite, positive measure.

Remark: µ is concentrated on a finite set of points, Pφ(T )
reduces to the classical Fermat-Weber problem.

Convex analysis applied to location theory



El problema de localización
The basic model

The extended model
Discretization

Optimality Conditions

The basic model

inf
x∈X

φ(x) :=

∫

T

ϕt(x) dµ(t), (Pφ(T ))

where ϕt(x) := γt(x − t), µ a σ-finite, positive measure.

Existence results: [Garkavi and Smatkov 74],

X is finite dimension and ϕt are lower-semicontinuous (l.s.) in
the t argument;
X is reflexive and ϕt are sequentially l.s. in the t argument for
the weak topology;
X is the dual space to a separable space and ϕt are
sequentially l.s. in the t argument for the weak topology
X is a dual space, ϕt are l.s. in the t argument for the weak∗

topology and T is µ-separable.
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The basic model

inf
x∈X

φ(x) :=

∫

T

ϕt(x) dµ(t), (Pφ(T ))

where ϕt(x) := γt(x − t), µ a σ-finite, positive measure.

Uniqueness results: [Garkavi and Smatkov 74]

µ(T ) < +∞ and X is a strictly normed space. Pφ(T ) has a
unique solution iff T does not contain two nonintersecting
subsets T1 and T2 such that µ(T1) = µ(T2) = µ(T )/2, being
T1 and T2 enclosed in nonintersecting rays ℓ1 and ℓ2,
respectively and lying in the same straight line.
µ(T ) is not finite.
Let dim(X )≥ 2. If γt are strict norms and µ is absolutely
continuous with respect to any measure that assigns null
measure to any subspace of dimension less than or equal to 1
then the considered problem has a unique optimal solution.

Convex analysis applied to location theory
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The basic model

inf
x∈X

φ(x) :=

∫

T

ϕt(x) dµ(t), (Pφ(T ))

where ϕt(x) := γt(x − t), µ a σ-finite, positive measure.

Result: ϕt(x) = γ(x − t) ∀t ∈ T . The closure of co(T ) contains
at least an optimal solution of Problem Pφ(T ) if dim(X ) = 2 or γ
is a norm derived from an inner product when dim(X ) ≥ 3.
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The basic model

inf
x∈X

φ(x) :=

∫

T

ϕt(x) dµ(t), (Pφ(T ))

where ϕt(x) := γt(x − t), µ a σ-finite, positive measure.

Result: ϕt(x) = γ(x − t) ∀t ∈ T . The closure of co(T ) contains
at least an optimal solution of Problem Pφ(T ) if dim(X ) = 2 or γ
is a norm derived from an inner product when dim(X ) ≥ 3.

Remark: These results extend some results proved in [Carrizosa et
al. 95] for 2-dimensional spaces and in [Durier85] for finite set of
points in R

n.
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Optimality Conditions:

Result: Let X be a separable Banach space, then:

1 If Mφ(T ) 6= ∅, ∃q ∈ L1(X ,X ∗) such that

∫

T ′

q(t)µ(dt) = 0

and Mφ(T ) =
⋂

t∈T

∂ϕ∗

t (q(t)) =
⋂

t∈T

(t + Nt(q(t))) := Cq(T ).

2 If ∃q ∈ L1(X ,X ∗), such that
∫

T

q(t)µ(dt) = 0 and
⋂

t∈T ′

∂ϕ∗

t (q(t)) 6= ∅ then

Mφ(T ) =
⋂

t∈T ∂ϕ∗

t (q(t)) =
⋂

t∈T (t + Nt(q(t))).
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Optimality Conditions

Example: X = R
2, ℓ1-norm and f (t) = 1/2δC1

(t) + 1/2δC2
(t),

C1

C2

minx∈R2

∫

R2 ‖x − t‖1f (t)dt.

For

q(t) =







(−1,−1) if t ∈ C1

(1, 1) if t ∈ C2

(0, 0) if t 6∈ C1 ∪ C2

.
∫

R2 q(t)f (t)dt = (0, 0).

Moreover, t + NB0(q(t)) =

{

t − R
2
+ if t ∈ C1

t + R
2
+ if t ∈ C2

; and thus
⋂

t∈C1∪C2

(t + NB0(q(t)) = conv{(−1,−1), (−1, 1), (1,−1), (1, 1)}.
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The polyhedral planar case

Extended model

Φ(·) which is a monotone norm on R
M .

µi σ-finite, positive measures and T ⊆ X .
d̄i (x) :=

∫

T
ϕt(x)µi (dt), where ϕt(x) = γt(x − t).

inf
x∈X

F (x) := Φ((d̄1(x), . . . , d̄M(x))), (PΦ(Υ))

Convex analysis applied to location theory
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The polyhedral planar case

Extended model

Φ(·) which is a monotone norm on R
M .

µi σ-finite, positive measures and T ⊆ X .
d̄i (x) :=

∫

T
ϕt(x)µi (dt), where ϕt(x) = γt(x − t).

inf
x∈X

F (x) := Φ((d̄1(x), . . . , d̄M(x))), (PΦ(Υ))

Properties:

Particular instances: center, cent-dian, k-centrum, etc.
F = Φ ◦ D is convex on R

M .
Existence and uniqueness results are still valid.

Convex analysis applied to location theory
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The polyhedral planar case

Result: Let x ∈ X be such that D(x) 6= 0 ∈ R
M .

β ∈ ∂F (x) iff ∃pi ∈ ∂d̄i (x),∀i and δ ∈ ∂Φ(D(x)), such that,β =

M
∑

i=1

δipi .
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The polyhedral planar case

Result: Let x ∈ X be such that D(x) 6= 0 ∈ R
M .

β ∈ ∂F (x) iff ∃pi ∈ ∂d̄i (x),∀i and δ ∈ ∂Φ(D(x)), such that,β =
M

∑

i=1

δipi .

Definition: p = (p1, . . . , pM) ∈ (X ∗)M and I ⊆ {1, . . . ,M}.

C I (p) :=
⋂

i∈I

∂d̄∗

i (pi ).

For any δ = (δ1, . . . , δM) ≥ 0

D I (δ) := {x :
∑

i∈I

δi d̄i(x) = F (x)}.
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Result: Let x ∈ X be such that D(x) 6= 0 ∈ R
M .

β ∈ ∂F (x) iff ∃pi ∈ ∂d̄i (x),∀i and δ ∈ ∂Φ(D(x)), such that,β =
M

∑

i=1

δipi .

Definition: p = (p1, . . . , pM) ∈ (X ∗)M and I ⊆ {1, . . . ,M}.

C I (p) :=
⋂

i∈I

∂d̄∗

i (pi ),

For any δ = (δ1, . . . , δM) ≥ 0

D I (δ) := {x :
∑

i∈I

δi d̄i(x) = F (x)}.

Definition: (I , δ, p) is a suitable triplet if
1 I 6= ∅, I ⊆ {1, . . . ,M},
2 δ = (δ1, . . . , δM); δi > 0 (i ∈ I ), and δi = 0 (i /∈ I ); Φo(δ) = 1
3 p = (p1, . . . , pM) such that pi ∈ ∂d̄i (x) ∀i and for some

x ∈ X , with
∑M

i=1 δipi = 0

Convex analysis applied to location theory
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The polyhedral planar case

Result:

1 If MΦ(Υ) 6= ∅, ∃(I , δ, p) such that MΦ(Υ) = C I (p) ∩ D I (δ).

2 (I , δ, p) s.t. with C I (p)∩D I (δ) 6= ∅, MΦ(Υ) = C I (p)∩D I (δ).

Remark:

We only need to find a suitable triplet (I , δ, p) such that
C I (p) ∩ D I (δ) 6= ∅.

From an application point of view, in the case of total
polyhedrality this result is specially adequate.
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The polyhedral planar case

Result: There exists a finite partition of R
2 such that d̄(x ,T ) has

a common closed form expression on each element of the partition
(linear or quadratic).
Example:

T

R1

R2

R4

R5

R6

R7

R8

B

B0

Figura: Partition of R
2 generated by the norm γ.
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The polyhedral planar case

T

R1

R2

R4

R5

R6

R7

R8

B

B0

µ is a uniform probability density on T .

d̄(x ,T ) =

∫

T

γ(x − t)µ(dt) =
1

µ(T )

∫

T

γ(x − t) dt.
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T

R1

R2

R4

R5

R6

R7

R8

B

B0

x ∈ R1: γ(x − t) = 〈(0,−1), (t1 − x1, t2 − x2)〉.

d̄(x ,T ) =
1

8

∫

T

γ(x − t) dt = x2.
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T

R1

R2

R4

R5

R6

R7

R8

B

B0

x ∈ R2: γ(x − t) = 〈(1,−0,5), (t1 − x1, t2 − x2)〉.

d̄(x ,T ) =
1

8

∫

T

γ(x − t) dt = −x1 +
x2

2
.
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T

R1

R2

R4

R5

R6

R7

R8

B

B0

x ∈ R8: γ(x − t) =






〈(1, 0,5), (x1 − t1, x2 − t2)〉 if t ∈ T and t1 ≤ t2+2x1−x2
2

〈(0, 1), (x1 − t1, x2 − t2)〉 if t ∈ T and t2+2x1−x2
2 ≤t1≤

−t2+2x1+x2
2

〈(−1, 0,5), (x1 − t1, x2 − t2)〉 if t ∈ T and t1 ≥ −t2+2x1+x2
2 .

Thus,

d̄(x ,T ) =
1

8

∫

T

γ(x − t) dt = 2
(

x1 +
x2

2

)(

x1 −
x2

2
− 2

)

−
15

2
.
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Complexity analysis:

O(Mgkmax) lines, the overall complexity of finding the
arrangementis O((Mgkmax)

2). [Eldel87].

Rj0 with j0 ∈ J, the upper envelope defining Φ has a
complexity of at most O(λ4(r

0)).

Subpartition {R′

j}j∈J′ ∩Rj0 has O(λ4(r
0)) elements.

The number of elements in the partition induced by the family
C I (p) ∩ D I (δ) is O((Mgkmax)

2λ4(r
0)). Moreover, it can be

computed in O((Mgkmax)
2λ4(r

0) log(r0)).

Remark:

λs(n) is the maximum length of a Davenport-Schinzel
sequence of order s on n symbols. [Sharir and Agarwal].

λ1(n) = O(n), λ2(n) = O(n), λ3(n) = θ(nα(n)), and
λ4(n) = θ(n2α(n)), where α(n) is the inverse of the
Ackermann function.
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Example:

Φ1(D(x)) =
4

∑

i=1

d̄i(x)

T1

T3

T4

T2

Figura: Minisum problem.

Taking I = {1, 2, 3, 4}, δ = (1, 1, 1, 1), p1 = (1,−1),
p2 = (−1,−1), p3 = (1, 1), p4 = (−1, 1), (I , δ, p) is a suitable
triplet. D I (δ) = R

2.
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Example:

Φ3(D(x)) = max
i=1,...,4

d̄i (x)

T1

T3

T4

T2

R(4)

R(2)

R(3)

R(1)

Taking I = {1, 4}, δ = (1
2 , 0, 0, 1

2), p1 = (1,−1),
p4 = (−1, 1); (I , δ, p) is a suitable triplet.
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Example:
Φ4(D(x)) =

4
∑

i=3

d̄(i)(x)

d(i)(x) = dσi
(x) with σ a permutation of {1, . . . , 4}, such that,

dσ1(x) ≤ . . . ≤ dσ4(x).

R(2,4)

R(1,2)

R(1,3)

R(3,4)

R(1,4)

T1

T3

T4

T2

Taking I = {1, 4}, δ = (1, 0, 0, 1), p1 = (1,−1), p4 = (−1, 1);
C I (p) is the rectangle defined by the closest vertices of T1

and T4.
Convex analysis applied to location theory
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Discretization

Result:

1 ∀ε > 0 there exist countable sets A ⊆ T , {wa ≥ 0}a∈A, such
that, the solutions of F ∗

W (A) are ε-solution set of Pφ(T ), with

F ∗

W (A) = min
x∈X

FW ,A(x) :=
∑

a∈A

waγa(x − a)

2 ∀ε > 0 there exist a countable set A ⊆ T , Wi = {wi ,a}a∈A ∀i ,
such that, the solutions of

min
x∈X

Φ(FW1,A(x), . . . ,FWM ,A(x)), (PΦ(A))

are ε-solution set of Problem PΦ(Υ).
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Discretization

Result:

1 ∀ε > 0 there exist countable sets A ⊆ T , {wa ≥ 0}a∈A, such
that, the solutions of F ∗

W (A) are ε-solution set of Pφ(T ), with

F ∗

W (A) = min
x∈X

FW ,A(x) :=
∑

a∈A

waγa(x − a)

2 ∀ε > 0 there exist a countable set A ⊆ T , Wi = {wi ,a}a∈A ∀i ,
such that, the solutions of

min
x∈X

Φ(FW1,A(x), . . . ,FWM ,A(x)), (PΦ(A))

are ε-solution set of Problem PΦ(Υ).

Proof: (X , γ) separable Banach space has a de Possel net.[Ioffe72]

Ea ∩ Ea′ = ∅, a 6= a′, and
⋃

a∈A Ea = X ;
int(Ea) 6= ∅, Ea ⊂ cl(int(Ea)), a ∈ A;
supa∈A diam (Ea) < ε/(2µ(T )).
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Discretization

Result:

1 ∀ε > 0 there exist countable sets A ⊆ T , {wa ≥ 0}a∈A, such
that, the solutions of F ∗

W (A) are ε-solution set of Pφ(T ), with

F ∗

W (A) = min
x∈X

FW ,A(x) :=
∑

a∈A

waγa(x − a)

2 ∀ε > 0 there exist a countable set A ⊆ T , Wi = {wi ,a}a∈A ∀i ,
such that, the solutions of

min
x∈X

Φ(FW1,A(x), . . . ,FWM ,A(x)), (PΦ(A))

are ε-solution set of Problem PΦ(Υ).

Remark: If T were a compact set, |A| < ∞.
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