Convex analysis applied to location theory

Antonio M. Rodríguez Chía

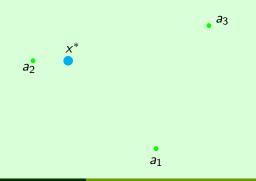
Universidad de Cádiz

Justo Puerto

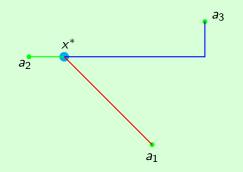
Universidad de Sevilla

Convex analysis applied to location theory

Convex analysis applied to location theory



Convex analysis applied to location theory



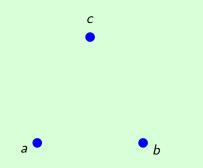
Convex analysis applied to location theory

Origen:

• Pierre Fermat (1601-1665):

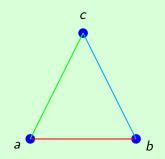
Origen:

• Pierre Fermat (1601-1665):



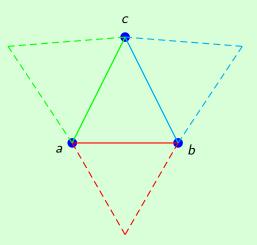
Origen:

• Pierre Fermat (1601-1665):



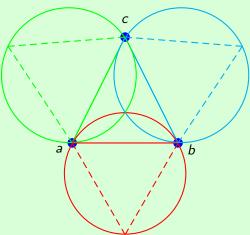
Origen:

• Pierre Fermat (1601-1665):



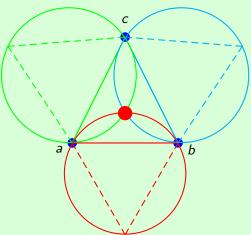
Origen:

• Pierre Fermat (1601-1665):



Origen:

• Pierre Fermat (1601-1665):



Elements of a location problem

Support space
 ● Continuous Spaces (ℝⁿ).
 ● Sphere

Networks

Discrete spaces

Elements of a location problem

Support space

- Continuous Spaces (\mathbb{R}^n)
 - Sphere
- Networks
- Discrete spaces

Elements of a location problem

- Support space
 Continuous Spaces (ℝⁿ).
 - Networks
 - Discrete spaces

Elements of a location problem

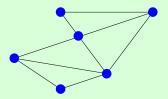
Support space

- Continuous Spaces (\mathbb{R}^n) .
 - Sphere
- Networks
- Discrete spaces

Elements of a location problem

Support space

- Continuous Spaces (\mathbb{R}^n) .
 - Sphere
- Networks

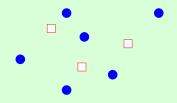


• Discrete spaces

Elements of a location problem

Support space

- Continuous Spaces (\mathbb{R}^n) .
 - Sphere
- Networks
- Discrete spaces



Objective Function

- Fermat-Weber Problem (Minisum)
- Center Problem (minimax)
- Cent-dian Problem
- o⊳*k*-centnum Problem
- Ordered Median Problem.
- Multiobjective Problem

 $\min\{F_1(x),\ldots,F_k(x)\}$

Objective Function

• Fermat-Weber Problem (Minisum)

$$\sum_{a\in A} w_a d_a(x,a) \quad \text{con} \quad i=1,\ldots,M$$

- Center Problem (minimax)
- Cent-dian Problem
- k-centrum Problem
- Ordered Median Problem
- Multiobjective Problem

 $\min\{F_1(x),\ldots,F_k(x)\}$

Objective Function

- Fermat-Weber Problem (Minisum)
- Center Problem (minimax)

$$\max_{a \in A} u_a d_a(x, a) \quad \text{con} \quad i = 1, \dots, M$$

- Cent-dian Problem
- k-centrum Problem
- Ordered Median Problem
- Multiobjective Problem

 $\min\{F_1(x),\ldots,F_k(x)\}$

Objective Function

- Fermat-Weber Problem (Minisum)
- Center Problem (minimax)
- Cent-dian Problem

$$\alpha \sum_{\mathbf{a} \in A} w_{\mathbf{a}} d_{\mathbf{a}}(x, \mathbf{a}) + (1 - \alpha) \max_{\mathbf{a} \in A} u_{\mathbf{a}} d_{\mathbf{a}}(x, \mathbf{a})$$

- *k*-centrum Problem
- Ordered Median Problem
- Multiobjective Problem

$\min\{F_1(x),\ldots,F_k(x)\}$

Objective Function

- Fermat-Weber Problem (Minisum)
- Center Problem (minimax)
- Cent-dian Problem
- k-centrum Problem

$$\sum_{j=M-k}^{M} w_j d_{\sigma_j}(x, a_{\sigma_j})$$

where $d_{\sigma_1}(x, a_{\sigma_1}) \leq \ldots \leq d_{\sigma_M}(x, a_{\sigma_M})$

Ordered Median Problem

Multiobjective Problem

 $\min\{F_1(x),\ldots,F_k(x)\}$

Objective Function

- Fermat-Weber Problem (Minisum)
- Center Problem (minimax)
- Cent-dian Problem
- k-centrum Problem
- Ordered Median Problem

$$\sum_{j=1}^M \lambda_j d_{\sigma_j}(x, a_{\sigma_j})$$

donde $d_{\sigma_1}(x, a_{\sigma_1}) \leq \ldots \leq d_{\sigma_M}(x, a_{\sigma_M}).$

Multiobjective Problem

$$\min\{F_1(x),\ldots,F_k(x)\}$$

Objective Function

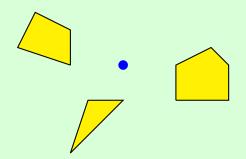
- Fermat-Weber Problem (Minisum)
- Center Problem (minimax)
- Cent-dian Problem
- k-centrum Problem
- Ordered Median Problem
- Multiobjective Problem

$$\min\{F_1(x),\ldots,F_k(x)\}$$

- Facilities are represented by isolated points?
- Introducing sets instead of points introduces important differences in the mathematical analysis of these problems.
- Our approach: minimization of expected distances

Introduction

• Facilities are represented by isolated points?



a Introducing sets instead of points introduces important

- Facilities are represented by isolated points?
- Introducing sets instead of points introduces important differences in the mathematical analysis of these problems.
- Our approach: minimization of expected distances

- Facilities are represented by isolated points?
- Introducing sets instead of points introduces important differences in the mathematical analysis of these problems.
- Our approach: minimization of expected distances
- Application point of view:
 - Q Case of the stationing of rescue helicopters [Ehrgott 02].
 - Location of planes used to extinguish fires in reserves or natural parks.
 - Locating a read/write head of a computer hard-disk to easily access the stored data. [Vickson, Gerchak and Rotem 95] and [Puerto and Rodríguez-Chía 03].

- Facilities are represented by isolated points?
- Introducing sets instead of points introduces important differences in the mathematical analysis of these problems.
- Our approach: minimization of expected distances
- Our goal: Geometrical characterization of the solution set for a single facility location model with sets as demand facilities using average distances. Networks: [Hakimi64, Hooker91]. Continuous location problems: [Durier and Michelot 85, Durier95, PF00, NPR03].
 - Basic model
 - General model
 - Discretization result.

Basic tools and definitions

- X is a real separable Banach space.
- γ norm with unit ball *B*.
- $f: X \to \mathbb{R} \cup \{+\infty\}$ convex function.

 $p \in \partial f(x) \subseteq X^* ext{ iff } f(y) \geq f(x) + \langle p, y - x \rangle \quad ext{ for each } y \in X.$

• Conjugate function:

 $f^*(p) = \sup\{\langle p, x \rangle - f(x) : x \in \text{dom } f\} \ \forall p \in X^*.$

Basic tools and definitions

- X is a real separable Banach space.
- γ norm with unit ball *B*.
- $f: X \to \mathbb{R} \cup \{+\infty\}$ convex function.

 $p\in\partial f(x)\subseteq X^* ext{ iff } f(y)\geq f(x)\!+\!\langle p,y\!-\!x
angle \quad ext{ for each } y\in X.$

• Conjugate function: $f^*(p) = \sup\{\langle p, x \rangle - f(x) : x \in \text{dom } f\} \forall p \in X^*.$

Result: For a closed and proper convex function, [Barbu, Precupanu 75]:

$$p \in \partial f(x), x \in X, p \in X^*$$
 iff $x \in \partial f^*(p)$.

Remarks:

•
$$\partial \gamma(x) = \{ p \in B^o : \gamma(x) = \langle p, x \rangle \}.$$

• $\partial \gamma^*(p) = \{ x \in X : \gamma(x) = \langle p, x \rangle \}.$

Optimality Conditions

The basic model

$$\inf_{x \in X} \phi(x) := \int_{\mathcal{T}} \varphi_t(x) \ d\mu(t), \qquad (P_{\phi}(\mathcal{T}))$$

where $\varphi_t(x) := \gamma_t(x - t)$, μ a σ -finite, positive measure.

Optimality Conditions

The basic model

$$\inf_{\mathbf{x}\in X}\phi(\mathbf{x}) := \int_{\mathcal{T}}\varphi_t(\mathbf{x}) \ d\mu(t), \qquad (P_\phi(\mathcal{T}))$$

where $\varphi_t(x) := \gamma_t(x - t)$, μ a σ -finite, positive measure.

Result: ϕ is convex on X. **Result:** $F : G \longrightarrow L^1(X, \mathbb{R})$ such that $(F(x))(t) = \varphi_t(x)$. If X is separable or T is countable, then ϕ is continuous at x_o and

$$\partial \phi(\mathbf{x}_o) = \int_{\mathcal{T}} \partial \varphi_t(\mathbf{x}_o) \mu(dt) = \int_{\mathcal{T}} \partial F(\mathbf{x}_o) \mu(dt).$$

Optimality Conditions

The basic model

$$\inf_{\mathbf{x}\in X}\phi(\mathbf{x}) := \int_{\mathcal{T}}\varphi_t(\mathbf{x}) \ d\mu(t), \qquad (P_\phi(\mathcal{T}))$$

where $\varphi_t(x) := \gamma_t(x - t)$, μ a σ -finite, positive measure.

Remark: μ is concentrated on a finite set of points, $P_{\phi}(T)$ reduces to the classical Fermat-Weber problem.

Optimality Conditions

The basic model

$$\inf_{\mathbf{x}\in X}\phi(\mathbf{x}) := \int_{\mathcal{T}}\varphi_t(\mathbf{x}) \ d\mu(t), \qquad (P_\phi(\mathcal{T}))$$

where $\varphi_t(x) := \gamma_t(x - t)$, μ a σ -finite, positive measure.

Existence results: [Garkavi and Smatkov 74],

- X is finite dimension and φ_t are lower-semicontinuous (l.s.) in the t argument;
- X is reflexive and φ_t are sequentially l.s. in the t argument for the weak topology;
- X is the dual space to a separable space and φ_t are sequentially l.s. in the t argument for the weak topology
- X is a dual space, φ_t are l.s. in the t argument for the weak* topology and T is μ-separable.

Optimality Conditions

The basic model

$$\inf_{\mathbf{x}\in X}\phi(\mathbf{x}) := \int_{\mathcal{T}}\varphi_t(\mathbf{x}) \ d\mu(t), \qquad (P_\phi(\mathcal{T}))$$

where $\varphi_t(x) := \gamma_t(x - t)$, μ a σ -finite, positive measure.

Uniqueness results: [Garkavi and Smatkov 74]

- μ(T) < +∞ and X is a strictly normed space. P_φ(T) has a unique solution iff T does not contain two nonintersecting subsets T₁ and T₂ such that μ(T₁) = μ(T₂) = μ(T)/2, being T₁ and T₂ enclosed in nonintersecting rays ℓ₁ and ℓ₂, respectively and lying in the same straight line.
- $\mu(T)$ is not finite.

Let dim $(X) \ge 2$. If γ_t are strict norms and μ is absolutely continuous with respect to any measure that assigns null measure to any subspace of dimension less than or equal to 1 then the considered problem has a unique optimal solution.

Optimality Conditions

The basic model

$$\inf_{x \in X} \phi(x) := \int_{T} \varphi_t(x) \ d\mu(t), \qquad (P_{\phi}(T))$$

where $\varphi_t(x) := \gamma_t(x - t)$, μ a σ -finite, positive measure.

Result: $\varphi_t(x) = \gamma(x-t) \ \forall t \in T$. The closure of co(T) contains at least an optimal solution of Problem $P_{\phi}(T)$ if dim(X) = 2 or γ is a norm derived from an inner product when $dim(X) \ge 3$.

Optimality Conditions

The basic model

$$\inf_{x \in X} \phi(x) := \int_{T} \varphi_t(x) \ d\mu(t), \qquad (P_{\phi}(T))$$

where $\varphi_t(x) := \gamma_t(x - t)$, μ a σ -finite, positive measure.

Result: $\varphi_t(x) = \gamma(x-t) \ \forall t \in T$. The closure of co(T) contains at least an optimal solution of Problem $P_{\phi}(T)$ if dim(X) = 2 or γ is a norm derived from an inner product when $dim(X) \ge 3$.

Remark: These results extend some results proved in [Carrizosa et al. 95] for 2-dimensional spaces and in [Durier85] for finite set of points in \mathbb{R}^n .

Optimality Conditions:

Result: Let X be a separable Banach space, then:

If $M_{\phi}(T) \neq \emptyset$, $\exists q \in L^{1}(X, X^{*})$ such that $\int_{T'} q(t)\mu(dt) = 0$ and $M_{\phi}(T) = \bigcap_{t \in T} \partial \varphi_{t}^{*}(q(t)) = \bigcap_{t \in T} (t + N_{t}(q(t))) := C_{q}(T).$ If $\exists q \in L^{1}(X, X^{*})$, such that $\int_{T} q(t)\mu(dt) = 0$ and $\bigcap_{t \in T'} \partial \varphi_{t}^{*}(q(t)) \neq \emptyset$ then $M_{\phi}(T) = \bigcap_{t \in T'} \partial \varphi_{t}^{*}(q(t)) = \bigcap_{t \in T'} (t + N_{t}(q(t))).$

Optimality Conditions:

Result: Let X be a separable Banach space, then:

If $M_{\phi}(T) \neq \emptyset$, $\exists q \in L^{1}(X, X^{*})$ such that $\int_{T'} q(t)\mu(dt) = 0$ and $M_{\phi}(T) = \bigcap_{t \in T} \partial \varphi_{t}^{*}(q(t)) = \bigcap_{t \in T} (t + N_{t}(q(t))) := C_{q}(T).$

If $\exists q \in L^1(X, X^*)$, such that

 $\int_{\mathcal{T}} q(t)\mu(dt) = 0 \text{ and } \bigcap_{\substack{t \in \mathcal{T}' \\ M_{\phi}(\mathcal{T}) = \bigcap_{t \in \mathcal{T}} \partial \varphi_t^*(q(t)) = \bigcap_{t \in \mathcal{T}} (t + N_t(q(t)))}$

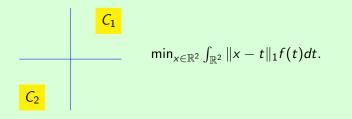
Optimality Conditions:

Result: Let X be a separable Banach space, then:

- $\textbf{ o If } M_{\phi}(T) \neq \emptyset, \ \exists q \in L^1(X,X^*) \text{ such that } \int_{T'} q(t) \mu(dt) = 0$ and $M_{\phi}(T) = \bigcap \partial \varphi_t^*(q(t)) = \bigcap (t + N_t(q(t))) := \mathcal{C}_q(T).$ t∈T t∈T **②** If $\exists q \in L^1(X, X^*)$, such that $\int_{T} q(t)\mu(dt) = 0 \text{ and } \bigcap_{t \in T'} \partial \varphi_t^*(q(t)) \neq \emptyset \text{ then}$ $M_{\phi}(T) = \bigcap_{t \in T} \partial \varphi_t^*(q(t)) = \bigcap_{t \in T} (t + N_t(q(t))).$

Optimality Conditions

Example: $X = \mathbb{R}^2$, ℓ_1 -norm and $f(t) = 1/2\delta_{C_1}(t) + 1/2\delta_{C_2}(t)$,



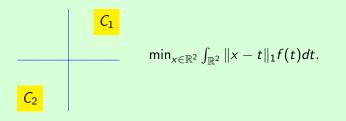
For

$$q(t) = \begin{cases} (-1, -1) & \text{if } t \in C_1 \\ (1, 1) & \text{if } t \in C_2 \\ (0, 0) & \text{if } t \notin C_1 \cup C_2 \end{cases} \cdot \int_{\mathbb{R}^2} q(t)f(t)dt = (0, 0).$$

Moreover, $t + N_{B^0}(q(t)) = \begin{cases} t - \mathbb{R}^2_+ & \text{if } t \in C_1 \\ t + \mathbb{R}^2_+ & \text{if } t \in C_2 \end{cases}$; and thus
$$\bigcap_{t \in C_1 \cup C_2} (t + N_{B^0}(q(t)) = conv\{(-1, -1), (-1, 1), (1, -1), (1, 1)\}.$$

Optimality Conditions

Example: $X = \mathbb{R}^2$, ℓ_1 -norm and $f(t) = 1/2\delta_{C_1}(t) + 1/2\delta_{C_2}(t)$,



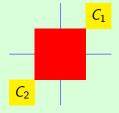
For

$$q(t) = \begin{cases} (-1,-1) & \text{if } t \in C_1 \\ (1,1) & \text{if } t \in C_2 \\ (0,0) & \text{if } t \notin C_1 \cup C_2 \end{cases} \cdot \int_{\mathbb{R}^2} q(t)f(t)dt = (0,0).$$

Moreover, $t + N_{B^0}(q(t)) = \begin{cases} t - \mathbb{R}^2_+ & \text{if } t \in C_1 \\ t + \mathbb{R}^2_+ & \text{if } t \in C_2 \end{cases}$; and thus
$$\bigcap_{t \in C_1 \cup C_2} (t + N_{B^0}(q(t)) = conv\{(-1,-1),(-1,1),(1,-1),(1,1)\}.$$

Optimality Conditions

Example: $X = \mathbb{R}^2$, ℓ_1 -norm and $f(t) = 1/2\delta_{C_1}(t) + 1/2\delta_{C_2}(t)$,



$$\min_{x\in\mathbb{R}^2}\int_{\mathbb{R}^2} \|x-t\|_1 f(t) dt$$

For

$$\begin{aligned} q(t) &= \begin{cases} (-1,-1) & \text{if } t \in C_1 \\ (1,1) & \text{if } t \in C_2 \\ (0,0) & \text{if } t \notin C_1 \cup C_2 \end{cases} & \int_{\mathbb{R}^2} q(t)f(t)dt = (0,0). \end{aligned}$$

$$\begin{aligned} \text{Moreover, } t + N_{B^0}(q(t)) &= \begin{cases} t - \mathbb{R}^2_+ & \text{if } t \in C_1 \\ t + \mathbb{R}^2_+ & \text{if } t \in C_2 \end{cases}; \text{ and thus} \\ &\bigcap_{t \in C_1 \cup C_2} (t + N_{B^0}(q(t))) = \text{conv}\{(-1,-1),(-1,1),(1,-1),(1,1)\}. \end{aligned}$$

The polyhedral planar case

Extended model

- $\Phi(\cdot)$ which is a monotone norm on \mathbb{R}^M .
- $\mu_i \sigma$ -finite, positive measures and $T \subseteq X$.
- $\bar{d}_i(x) := \int_T \varphi_t(x) \mu_i(dt)$, where $\varphi_t(x) = \gamma_t(x-t)$.

$$\inf_{x \in X} F(x) := \Phi((\bar{d}_1(x), \dots, \bar{d}_M(x))), \qquad (P_{\Phi}(\Upsilon))$$

Extended model

- $\Phi(\cdot)$ which is a monotone norm on \mathbb{R}^M .
- $\mu_i \sigma$ -finite, positive measures and $T \subseteq X$.
- $\bar{d}_i(x) := \int_T \varphi_t(x) \mu_i(dt)$, where $\varphi_t(x) = \gamma_t(x-t)$.

$$\inf_{x \in X} F(x) := \Phi((\bar{d}_1(x), \dots, \bar{d}_M(x))), \qquad (P_{\Phi}(\Upsilon))$$

Properties:

- Particular instances: center, cent-dian, k-centrum, etc.
- $F = \Phi \circ \overline{D}$ is convex on \mathbb{R}^M .
- Existence and uniqueness results are still valid.

The polyhedral planar case

Result: Let $x \in X$ be such that $\overline{D}(x) \neq 0 \in \mathbb{R}^M$.

 $\beta \in \partial F(x)$ iff $\exists p_i \in \partial \overline{d}_i(x), \forall i \text{ and } \delta \in \partial \Phi(\overline{D}(x))$, such that, $\beta = \sum_{i=1}^M \delta_i p_i$

The polyhedral planar case

Result: Let $x \in X$ be such that $\overline{D}(x) \neq 0 \in \mathbb{R}^M$.

 $\beta \in \partial F(x)$ iff $\exists p_i \in \partial \overline{d}_i(x), \forall i \text{ and } \delta \in \partial \Phi(\overline{D}(x))$, such that, $\beta = \sum_{i=1} \delta_i p_i$

Definition:
$$p = (p_1, \dots, p_M) \in (X^*)^M$$
 and $I \subseteq \{1, \dots, M\}$.
 $\overline{C}_I(p) := \bigcap_{i \in I} \partial \overline{d}_i^*(p_i).$

For any $\delta = (\delta_1, \dots, \delta_M) \ge 0$ $\overline{D}_I(\delta) := \{x : \sum_{i \in I} \delta_i \overline{d}_i(x) = F(x)\}.$

The polyhedral planar case

Result: Let $x \in X$ be such that $\overline{D}(x) \neq 0 \in \mathbb{R}^M$.

 $\beta \in \partial F(x)$ iff $\exists p_i \in \partial \overline{d}_i(x), \forall i \text{ and } \delta \in \partial \Phi(\overline{D}(x))$, such that, $\beta = \sum_{i=1} \delta_i p_i$

Definition:
$$p = (p_1, \dots, p_M) \in (X^*)^M$$
 and $I \subseteq \{1, \dots, M\}$.
 $\overline{C}_I(p) := \bigcap_{i \in I} \partial \overline{d}_i^*(p_i),$

For any $\delta = (\delta_1, \dots, \delta_M) \ge 0$ $\overline{D}_I(\delta) := \{x : \sum_{i \in I} \delta_i \overline{d}_i(x) = F(x)\}.$

Definition: (I, δ, p) is a suitable triplet if

Result:

- If $M_{\Phi}(\Upsilon) \neq \emptyset$, ∃(I, δ, p) such that $M_{\Phi}(\Upsilon) = \overline{C}_{I}(p) \cap \overline{D}_{I}(\delta)$.
- $(I, \delta, p) \text{ s.t. with } \overline{C}_I(p) \cap \overline{D}_I(\delta) \neq \emptyset, \ M_{\Phi}(\Upsilon) = \overline{C}_I(p) \cap \overline{D}_I(\delta).$

Remark:

- We only need to find a suitable triplet (I, δ, p) such that $\overline{C}_I(p) \cap \overline{D}_I(\delta) \neq \emptyset$.
- From an application point of view, in the case of total polyhedrality this result is specially adequate.

Result:

- $If M_{\Phi}(\Upsilon) \neq \emptyset, \ \exists (I, \delta, p) \text{ such that } M_{\Phi}(\Upsilon) = \overline{C}_{I}(p) \cap \overline{D}_{I}(\delta).$
- $(I, \delta, p) \text{ s.t. with } \overline{C}_I(p) \cap \overline{D}_I(\delta) \neq \emptyset, \ M_{\Phi}(\Upsilon) = \overline{C}_I(p) \cap \overline{D}_I(\delta).$

Remark:

- We only need to find a suitable triplet (I, δ, p) such that $\overline{C}_I(p) \cap \overline{D}_I(\delta) \neq \emptyset$.
- From an application point of view, in the case of total polyhedrality this result is specially adequate.

The polyhedral planar case

Result: There exists a finite partition of \mathbb{R}^2 such that $\overline{d}(x, T)$ has a common closed form expression on each element of the partition (linear or quadratic).

Example:

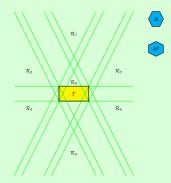
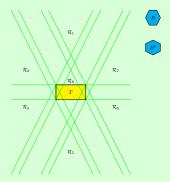


Figura: Partition of \mathbb{R}^2 generated by the norm γ .

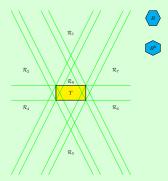
The polyhedral planar case



 μ is a uniform probability density on T.

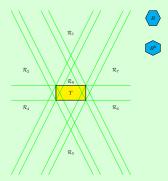
$$\overline{d}(x,T) = \int_T \gamma(x-t)\mu(dt) = \frac{1}{\mu(T)}\int_T \gamma(x-t)\,dt.$$

The polyhedral planar case



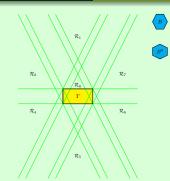
$$egin{aligned} &x\in\mathcal{R}_1:\ \gamma(x-t)=\langle(0,-1),(t_1-x_1,t_2-x_2)
angle.\ &ar{d}(x,T)=rac{1}{8}\int_T\gamma(x-t)\ dt=x_2. \end{aligned}$$

The polyhedral planar case



$$egin{aligned} &x\in \mathcal{R}_2: \ \gamma(x-t) = \langle (1,-0,5), (t_1-x_1,t_2-x_2)
angle. \ &ar{d}(x,T) = rac{1}{8} \int_T \gamma(x-t) \ dt = -x_1 + rac{x_2}{2} \end{aligned}$$

The polyhedral planar case



$$\begin{array}{ll} x \in \mathcal{R}_8: \ \gamma(x-t) = \\ \left\{ \begin{array}{ll} \langle (1,0,5), (x_1-t_1, x_2-t_2) \rangle & \text{ if } t \in T \text{ and } t_1 \leq \frac{t_2+2x_1-x_2}{2} \\ \langle (0,1), (x_1-t_1, x_2-t_2) \rangle & \text{ if } t \in T \text{ and } \frac{t_2+2x_1-x_2}{2} \leq t_1 \leq \frac{-t_2+2x_1+x_2}{2} \\ \langle (-1,0,5), (x_1-t_1, x_2-t_2) \rangle & \text{ if } t \in T \text{ and } t_1 \geq \frac{-t_2+2x_1+x_2}{2}. \end{array} \right. \\ \text{Thus,} \end{array}$$

$$\bar{d}(x,T) = \frac{1}{8} \int_{T} \gamma(x-t) \, dt = 2\left(x_1 + \frac{x_2}{2}\right) \left(x_1 - \frac{x_2}{2} - 2\right) - \frac{15}{2}$$

Complexity analysis:

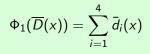
- $O(Mgk_{max})$ lines, the overall complexity of finding the arrangementis $O((Mgk_{max})^2)$. [Eldel87].
- *R_{j₀}* with *j₀* ∈ *J*, the upper envelope defining Φ has a complexity of at most *O*(*λ*₄(*r*⁰)).
- Subpartition $\{\mathcal{R}'_j\}_{j\in J'}\cap \mathcal{R}_{j_0}$ has $O(\lambda_4(r^0))$ elements.
- The number of elements in the partition induced by the family $\overline{C}_I(p) \cap \overline{D}_I(\delta)$ is $O((Mgk_{max})^2\lambda_4(r^0))$. Moreover, it can be computed in $O((Mgk_{max})^2\lambda_4(r^0)\log(r^0))$.

Remark:

- λ_s(n) is the maximum length of a Davenport-Schinzel sequence of order s on n symbols. [Sharir and Agarwal].
- $\lambda_1(n) = O(n), \ \lambda_2(n) = O(n), \ \lambda_3(n) = \theta(n\alpha(n)), \ \text{and} \ \lambda_4(n) = \theta(n2^{\alpha(n)}), \ \text{where } \alpha(n) \ \text{is the inverse of the Ackermann function.}$

The polyhedral planar case

Example:



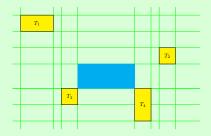
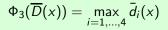


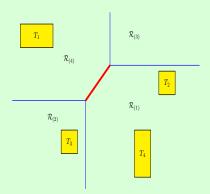
Figura: Minisum problem.

• Taking $I = \{1, 2, 3, 4\}$, $\delta = (1, 1, 1, 1)$, $p_1 = (1, -1)$, $p_2 = (-1, -1)$, $p_3 = (1, 1)$, $p_4 = (-1, 1)$, (I, δ, p) is a suitable triplet. $\overline{D}_I(\delta) = \mathbb{R}^2$.

The polyhedral planar case

Example:





• Taking $I = \{1, 4\}$, $\delta = (\frac{1}{2}, 0, 0, \frac{1}{2})$, $p_1 = (1, -1)$, $p_4 = (-1, 1)$; (I, δ, p) is a suitable triplet.

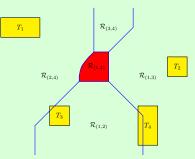
The polyhedral planar case

Example:

$$\Phi_4(\overline{D}(x)) = \sum_{i=3}^{4} \overline{d}_{(i)}(x)$$

Л

 $d_{(i)}(x) = d_{\sigma_i}(x)$ with σ a permutation of $\{1, \ldots, 4\}$, such that, $d_{\sigma_1}(x) \leq \ldots \leq d_{\sigma_4}(x)$.



• Taking $I = \{1,4\}$, $\delta = (1,0,0,1)$, $p_1 = (1,-1)$, $p_4 = (-1,1)$; $\overline{C}_I(p)$ is the rectangle defined by the closest vertices of T_1 and T_4 .

Discretization Result:

∀ε > 0 there exist countable sets A ⊆ T, {w_a ≥ 0}_{a∈A}, such that, the solutions of F^{*}_W(A) are ε-solution set of P_φ(T), with

$$F_W^*(A) = \min_{x \in X} F_{W,A}(x) := \sum_{a \in A} w_a \gamma_a(x - a)$$

$$\min_{x\in X} \Phi(F_{W_1,A}(x),\ldots,F_{W_M,A}(x)), \qquad (P_{\Phi}(A))$$

are ε -solution set of Problem $P_{\Phi}(\Upsilon)$.

Discretization Result:

 ∀ε > 0 there exist countable sets A ⊆ T, {w_a ≥ 0}_{a∈A}, such that, the solutions of F^{*}_W(A) are ε-solution set of P_φ(T), with

$$F_W^*(A) = \min_{x \in X} F_{W,A}(x) := \sum_{a \in A} w_a \gamma_a(x - a)$$

$$\min_{x \in X} \Phi(F_{W_1,A}(x), \dots, F_{W_M,A}(x)), \qquad (P_{\Phi}(A))$$

are ε -solution set of Problem $P_{\Phi}(\Upsilon)$.

Proof: (X, γ) separable Banach space has a de Possel net.[loffe72]

- $E_a \cap E_{a'} = \emptyset$, $a \neq a'$, and $\bigcup_{a \in A} E_a = X$;
- $int(E_a) \neq \emptyset$, $E_a \subset cl(int(E_a))$, $a \in A$;
- $\sup_{a \in A} diam(E_a) < \varepsilon/(2\mu(T)).$

Discretization Result:

 ∀ε > 0 there exist countable sets A ⊆ T, {w_a ≥ 0}_{a∈A}, such that, the solutions of F^{*}_W(A) are ε-solution set of P_φ(T), with

$$F^*_W(A) = \min_{x \in X} F_{W,A}(x) := \sum_{a \in A} w_a \gamma_a(x-a)$$

$$\min_{x\in X} \Phi(F_{W_1,A}(x),\ldots,F_{W_M,A}(x)), \qquad (P_{\Phi}(A))$$

are ε -solution set of Problem $P_{\Phi}(\Upsilon)$.

Remark: If T were a compact set, $|A| < \infty$.