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A general formalism for constructing configuration localized states for one-dimensional potentials is pre-
sented. It allows the evaluation of accurate approximations to the vibrational matrix elements of the momentum
operator and of arbitrary functions of the coordinate. The formalism is applied to three potentials of interest in
molecular physics: the harmonic oscillator, Morse, andddbTeller potentials. Quadratures specifically de-
signed for each potential are used. The infrared vibrational spectrddCHO is studied as a way to test the
results obtained for different potentials in connection with their ability to model the anharmonicity.

PACS numbds): 31.15~p, 03.65.Ca, 33.20.Tp, 33.20.Ea

[. INTRODUCTION tional molecular spectroscopy. An application to the study of
the carbon monoxide infrared vibrational spectrum is pre-
Traditional approaches to molecular vibrational spectrossented, where the model and the sensitivity of the data to the
copy rely on the harmonic approximation, though it is well analysis with different potentials are assessed.
known that a parabolic potential is a rather poor approxima- The paper is structured as follows. In Sec. Il, the general
tion to the interatomic interaction in a diatomic molecule formalism of configuration localized staté€LS’s) for a
(e.g., it does not allow dissociatiprOn one hand, when one one-dimensional potential well is presented. In Sec. Il this
explores a few states at the bottom of the potential well, thageneral formalism is applied to the harmonic oscillator,
approximation has been proven to be reasonable. On thdorse, and Pschl-Teller potentials. Section 1V is devoted to
other hand, the use of anharmonic potentials, which bettelesting the model in a realistic case, computing vibrational
represent the interatomic interaction, implies greater diffi-dipole moment matrix elements for the CO molecule and
culty. Consequently, the harmonic potential has been theomparing them with experimental results. Finally, a sum-
usual reference in molecular physics. However, in the lastary and conclusions are presented in Sec. V.
few years the improvement of experimental techniques has
!ed to the_ explorgtion of highe_r excitation ene_rgies in the Il. CONEIGURATION LOCALIZED STATES:
interatomic potential _V\(el[l]. This allows analysis of states GENERAL FORMALISM
where the anharmonicity may be a necessary ingredegt,
local modes[2,3]). Consequently, realistic anharmonic po- The starting point are thi bound eigenstates of a one-
tentials that could be a reference for the study of the anhadimensional potential. The cases considered are those in

monicity role should be investigated in detail. which the wave function can be written as
In this paper an approximate analytic method to treat vi- _
brational bound states of one-dimensional potentihks- wiv(x)=(x|j,v)=/\/j’vl’2F(y)73(U’)(y),
monic as well as anharmoniés presented. The method is
based on the introduction of a basis of states that are particu- v=0,12...,j-1, (1)

lar linear combinations of the eigenstates of the potential.

They have the property of localizing the system wave funcyynerey is an arbitrary function of (the physical coordinaje
tions in conf|gurat|on spac[a4], allowing thg derivation of \yall behaved in the region of interest (i, Xy, (continu-
closed analytic expressions for the matrix elements of a'bus, single valued, finite, and monotonically increasing or

relevant operators. In a previous pajpéf, the method was  yecreasing The values of at the extremes of this region are
presented for the particular case of the Morse potefifl é 12 ;

o~ : : ,Y1). N7 7“is a normalization constanE(y) is an arbi-
In the present paper the formalism is generalized. While th ryaoryyanctign ofy, andP{(y) is a polynomig)of ordev in
Morse potential is revisited, two other potentials of interest The labeli is associatve d with the potential depth
in molecular physics are worked out: the harmonic oscillator” Th thJ litv of the eigenf pt' ; I'p ih i
and the Pschl-Teller potentia[6]. In the Morse potential € orthogonality of the eigentunctions Implies tha
case the approach presented is somewhat different from that «
discussed in Ref4], although the main ideas are the same. f Maxdxw. (X) i, (X) =6, o )
Differences between the two cases will be discussed in the X e v o
following when appropriate. The formalism developed pro-
vides a tool to study in detail anharmonic behavior in vibra-which, changing variables, leads to

min
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Y1 ) .
fy dyo(y)PP PRy =N;, 8,1, &) () g P“)(y) 9 (NPPY) +a6(y)PL(y). ()
0
where These new polynomials are orthogonal with respect to the
) weight functionw(y) [8]:
()= [FY] w
)= "qyidx -

Y1

[ avotnQ Qi =iy 20
Consequently, the se{tP,(Jj)(y);v:O,l, ...j—1} is a °

family of j orthogonal polynomials in the intervaly<y TheseQ(s) (y) polynomials can be used, as shown in

<Yy, with respect to the weight function(y). If w(y) isthe  Ref.[8], to define quadratures for the integrals
weight function for a family of the tabulated orthogonal

polynomialsf,(y) (see, e.g., Ref7]) then the polynomials
PU(y) are justf,(y) up to a normalization constant. f dyw(y)F(y)= 2 FysWistR;, 11
Since we are treating orthogonal polynomials the Yo

Christoffel-Darboux formuld7] (p. 789 can be applied: where 7(y) is any function ofy andw;, are weight factors
-1 given by
2, N, Pe P Wis=[Q{V1(ys)] ™", (12

Kj—1 P]-(j)(y)P](i_)l(z)—Pj(j)(z)PJU_)l(y) In Eq.(11) R; is the residual, which is proportional to th¢ 2
- KN 1 y—2z - derivative of A(y).

With the help of theQ{®,(y) polynomials, configuration
S localized states in the configuration space can be defined as
wherek, is the coefficient of the term of order in the

, 172 (s)
explicit form of the polynomialP{")(y). It is worth noticing bis(X)=(X|CL;},8) = WisF(y)Qj21(y). (13

here that the polynomiaP{(y) will not be normalizable in  The name of these states comes from the fact that they are
general, but it is defined by its orthogonality with respect tostrongly localized aroungl=y. In addition, the wave func-
j polynomials of Ofde'] —1 can be defined dividin@®{’(y)  can be written in terms of the original eigenstates given in
by y—vys, whereyg (s=1, ..., j) are thej roots ofP(‘ (y). Eq.(1) as
These polynomials are constructed by makirgy |n Eq. -
(5): N .

- CLis)= 2 (iwlCLisliv), (14)

i- =

1 . .
Q=2 17— PPPY(Ys)
0

v= Ju

and the overlap factors can be computed from the definition

) POGPD. (v of the CLS’s and the polynomia®{®,(y), giving
-1 P; i71(Ys

(6) The CLS’s have the following properties.
Alternatively they can be expressed as (1) Orthogonality:
Q. (y)= M)H (y—vi). 7) < | =2
= Nij-1 Ji#s ' which stems directly from the orthogonality of t@®,(y)
o . polynomials.
The limit y=ys gives (2) Matrix elements ofy:
Q21(ys) =2 (CL;jslylCLsj, )= f dyo(y) Wi, (y)y Q" (y)
Ki—1 do(Ys) =Y - 17
7)(]) 2 8 sOs|
k./\/‘“ 1 gz(y )[ l(yS)] ( )

This can be proved by writing=(y—Yy) +Vs. Integration
wheregy(y) andg,(y) can be obtained from the differential of the factor {f —ys) cancels because it involves an integral
relation of the corresponding orthogonal polynontgse[ 7], of P}”(y) times a polynomial of order less than
Table 22.8, for tabulated polynomials (3) Matrix elements of an arbitrary function gf
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(CL;j,s|G(y)|CL;j,1) dQ{¥,(y) ki—1P® 1 (ys)
yi dy y: Nij-1 A =)
=], dye(y)wiwi Q1 (y)G(y)Q, (y) !

_ Qv Pays)
Yi=Ys PWo(y)

~G(Ys) 8+ R;. (18 (22)

This result can be obtained by using integration by quadragybstituting this last expression in EQ1) the stated result
tures (11) noticing that the CLS$;5(x) vanishes at all the jy Eq. (19) is obtained.

points of the quadrature exceptyatys. The residuaRr; is
proportional to the P derivative of the function
Q1 (y)G(y)Q{"” 1(y), which depends on the second deriva-
tive of the functionG(y).
(4) Matrix elements of the momentum In this section the formalism presented in the preceding
section is applied to three potentials of relevance in molecu-

lll. CLS’s FOR ONE-DIMENSIONAL POTENTIALS
OF RELEVANCE IN MOLECULAR PHYSICS

. . in 1 W, 7’,(131(Y|) dy lar physics.
(CLIsIPICLLD =5 o= Va0 o | dx
Ys™Yi is Pi=1(Ys) Vs A. Truncated harmonic oscillator
w.pd L(ys) [dy By a truncated harmonic oscillator we mean a truncation
\/i’.—s<—> (190  of the model space to a finite number of the lowest harmonic
wji P, (yy) | dx Y, oscillator states. In this case the starting point is the first
states of a harmonic oscillator with Hamiltonian
for s#1. )
The diagonal matrix elements in the CLS basis vanish. H=— }d_+ Exz (23)
This is the case for any basis of wave functions that are real 2dx2 2

in configuration space. To derive this formula we use the fact
that the matrix elementCL;j,s|p|CL;j,|) can be expressed The dimensionless variable=(r—r.)/a, is introduced,

as whereay= V#/nw is the oscillator lengthr is the physical
coordinate, and, is the equilibrium position. The solutions
(CL;j,s|p|CL;j,1) for the one-dimensiondlLD) harmonic oscillator are
XMax X2
= f  dXdjs(x)pyi(x) wj,,(x)=/\/j,,1’2exp( - 5) H,(x); v=0,...j—1,
. 24
i [ *max d¢j|(x) dd)js(x) ( )
=5 dx ¢JS(X) d - d)jl(x d ) . . . .
2 Jxmin X X whereH ,(x) are the Hermite polynomials. This setjofave

(20) functions has the form required to apply the described pro-

cedure to form the CLS’s. This case is particularly simple
sincey=x. In Table | the relevant information to build the

. . . McLS's for the truncated harmonic oscillator is shown under

and mtegrateq by parts. Itis clear that the d'?gona' Malthe label HO. In Fig. 1 the CLS states for a truncated har-
elements vanish. From now on, only the casl is consid- monic oscillator withj =10 are shown. They are distributed

ered. Expressing the int(_egral an_d the derivative in terms ogymmetrically with respect to the origin and each CLS wave
the variabley and evaluating the integral by quadratures, thefunction is concentrated around a pojitys, vanishing for

following expression is obtained: the rest of the roots dfi(y).

For the harmonic oscillator the vibrational matrix ele-
Jwj (dy dQEQ1(y) ments of the coordinateand the momenturp calculated by
W_js dx dy using the corresponding CLS are exact due to the quadrature
y used. This has been checked by comparing the CLS results

/W_jS dy (dQJ(s)l(y)) with numerical ones obtained by integration with harmonic
) W_"(_)y yl.
|

_ _ i
(CLijslplCLijh~—

Ys

oscillator wave functions.
dx dy

|
(22) B. Morse potential
This case was presented previously in Réfl using a
This expression will be exact dy/dx is a linear function of  different quadrature. Here the CLS’s for a Morse potential

y. Using the definition of th€ polynomials from Eq(7) and  are reconstructed following the formalism presented above.
computing the corresponding derivatives we obtain The Morse potential can be written as

042504-3



F. PEREZ-BERNAL et al.

PHYSICAL REVIEW A 61 042504

TABLE I. Relevant information to construct CLS’s for harmonic oscilla¢elO), Morse, and Pschl-
Teller (P-T) potentials.

HO Morse P-T
y X (2j+1)" explu) sinhpr)
(yO‘yl) (7m1oo) (O’OC) (7wloc)
v (2j—v)! (2j—v)!
N V2! 2] —20)0! (-0l
p(_y_z = p(_i
F(y) 2 YR Ty (1+y?) 2
PIy) H, () T M(y) RP(y)
A H;(y) roots Inverse oL ;(y) roots' R (y) roots
Do j(j+1) j(j+1)
ki Kj_1 21,2171 1L.=—— 1-——>—
92(y) 1 y LiZa(1) Ly
90(y) 2] T L, (1) Y
_2j_1exp<_1-) .
o(y) exp(-y?) Y y (1+y?) 0432
Hi—1(ys) H;(y) (+1)T Vi(ys) T Py) - R I(y)
(s) i-1 i ] ] 10 IS ERLES
Q1) Jr2i(j—1)1 Y= Ys 2 Y=Vs RiZays) Y=Vs
V2l (j—1)! , v Ly .
is —F—|Hi_ )] Js ZIm1 IS 0] -2 2 2 (lj s -2
w T U S CNTRUARCLE (1+Y2IRP (y5))
®These are the roots &f{')(y).
V(x)=D{[1-exp —xw)]*—1}, (25 1 26
P 51y

where —D is the value of the potential at its minimum and

xw=pB(r—r¢) is related to the separation from the equilib- where the parametex, is the oscillator length for a parabolic
rium position (). The parametep is the inverse of the approximation to the Morse potential. The coordingjecan

range of the potential,

2

be written in terms of the harmonic oscillator coordinates

Xy = (1] + 1/2)x.

ten as
Z\ . )
\Irjv(z)zf\/j‘vlfzex;:{—E)zJ—UL,(fl‘Z")(z), 27

where N, is a normalization constant, z=(2j
+1)exp(xy) is the Morse variable, antl{”(z) are the
generalized Laguerre polynomials of degseand orderp.

wave function in terms of a new variabje=1/z as

) 1 :
Wi, (y)=N;, My Tex —E)y%,&z“z”(lly). (28)

-6 -4 2

FIG. 1. Configuration localized statds;,(x) for a j=10 trun-

cated harmonic oscillator.

X

A set of orthogonal polynomials{Tﬁj)(y);v=0,1, ced
—1} in the variabley=1/z=(2j + 1) texp(,) is defined as
T P(y)=y'LE2(1ly). (29
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2 . . TABLE Il. Matrix elements of the operator,, in a Morse po-
tential with j=5. Successive entries correspond to the exact calcu-
lation integrating with the Morse eigenfunctioffgst line), an ap-
proximate calculation using CLS’s defined in Rief] (second ling,

and the approximate calculation using the CLS’s defined in this
paper(third line).

= v\v’ 0 1 2 3 4
eﬁ 0 0.1461 0.3143 -—-0.0722 0.0275 —-0.0129
0.1461 0.3146 —0.0730 0.0290 -0.0146
0r 0.1469 0.3116 —0.0662 0.0181 -0.0030
1 0.4934 0.4666 —0.1361 0.0582
0.4920 0.4706 —0.1440 0.0683
0.5031 0.4437 —0.0979 0.0157
2 0.9596 0.6000 —0.2004
-1 _5 5 1‘5 2'5 0.9468 0.6299 —0.2453
X 1.0176 0.4933 —-0.0691
3 1.6513 0.7127
FIG. 2. Configuration localized statds;(x) for aj=10 Morse 1.5646 0.8886
oscillator. 18785  0.3731
. . . 4 2.9251
The fact that they are polynomials incan be seen easily 22608
sinceL{?"2")(1/y) is a polynomial of ordew in 1/ and 3.6559

multiplying this byy” gives a polynomial of ordev iny.
The coefficients of this polynomial are those of
LZI=2)(1ly) but in reversed ordefe.g., the coefficient of [4] and in this paper is in order here. The quadrature pre-
the term of ordemn in 7 {)(y) is the coefficient of ordev  sented in Ref[4] is such that it provides the exact result for
—n in L 2)(y)]. The properties of polynomial® {’(y)  the matrix elements of the functian=exp(—xy) while the
are discussed in Appendix A. In terms of these polynomialsgquadrature presented in this work gives the exact values of
the Morse wave functions are written as the matrix elements of the functign= exp(x). The fact that
the quadrature of Ref4] provides a better approximation
() for the matrix elements oXy, indicates simply thaky(z)
T;°(y), (30 = —log(2) is better expanded by a polynomial expression
than xy(y)=log(y) in the region where the Morse wave

which have the form required to construct the CLS's. Infunctions are relevant. However, for realisticl: V?Iuesj ar
Table | the relevant information to build the CLS's for the Molecular physicsfor instance,j =81 for the 2C**0 mol-
Morse oscillator is shown under the label Morse. In Fig. 28cule treated in the next sectiohoth quadratures are ex-
the CLS states for a Morse oscillator with= 10 are shown. rémely accurate.

They are distributed asymmetrically with respect to the ori-

gin as expected. Each wave functigns(y) is concentrated C. Paschl-Teller potential

at specific values of =y, and vanishes for the rest of the
inverse of the roots of (y).

It is remarkable that the nature of the quadrature pre-
sentedas well as the quadrature of Rgd]) is such that the V(x)=—-D————,
matrix elements of the momentum operator are exact. This is cost[Xpt]
because the derivative of the varialylevith respect to the
coordinatedy/dxy, is a linear function ofy. The agreement where—D is the value of the potential at its minimum. The
between the CLS’s and numerical results has been checkedariablexpt=a(r —r,) is related to the separation from the
This is not the case for the coordinatg, a nonlinear func-  equilibrium position ¢.). The parametew is the inverse of
tion of y, even though the results obtained by using CLS'sthe range of the potentialy=1/\/j + 1/2 a,, wherea, is the
provide a good approximation to the numerical results. Inoscillator length for the harmonic approximation to the
Table Il numerical results for the matrix elementsxgf are  Pgschl-Teller potential. Then, as in the Morse case, the co-
compared with the results obtained by the present quadratutgdinatexp can be written in terms of the harmonic oscil-
and that of Ref[4] for the casej=5. Even for this very |ator coordinatex as
unfavorable case the approximation is correct and the main
differences are concentrated in the least bound state. In both 1
cases the approximation improves with increaging com- Xp= X.
ment on the differences between the quadratures used in Ref. Vj+1/2

PP 1
\I,jv(y):val/Zy ]eX _2_y

The Pachl-Teller potential can be written as

(31)

(32

042504-5
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2 . . . TABLE Ill. Matrix elements of the operatgyin units ofiz« in

a Pwchl-Teller potential witj =5. The exact calculation, integrat-
ing with the Pschl-Teller eigenfunctions, and the approximate cal-
culation using CLS’s defined in this paper are presented. Parity
conservation implies thatv has to be odd for the matrix elements
of any odd parity operator.

< v+1 v+3
G'i v\v’ Exact CLS approx. Exact CLS approx.
0k 0 1.4948 1.4944 —0.1744 —0.1701
1 1.8493 1.8529 —0.3032 —0.3229
2 1.8724 1.8557
3 1.5605 1.6170
-20 -10 0 10 20 The quadrature presented is such that the matrix elements
X of the momentum operator are not exact, simbgdxp
FIG. 3. Configuration localized state®;(x) for a j=10 =14y~ is not a linear function of, but it gives a good
Poschl-Teller oscillator. approximation. In Table 11l numerically computed matrix el-

ements ofp, in units ofif«, are compared with the results
The bound eigenstates of thedebl-Teller Hamiltonian are obtained by using the CLS’s presented here in the cage of
written as =5. In the case of the coordinatg, the results obtained
_ by using CLS’s are a good approximation to the numerical
¥, (2)=N;,"PU7 (), (33)  results too. In Table IV numerically computed matrix ele-
ments ofxpt are compared with the results obtained by using
where Vj, is a normalization constang=tanh&p), and the quadrature presented here for the gasé. Again, even
pgp)(y) are the associated Legendre functions. These staté@r this very unfavorable case, the approximation is good and

do not have the form required to define CLEE. (1)] butit ~ the main differences are concentrated in the least bound
can be achieved by defining a new variable, state. As for the Morse potential, the approximation becomes
better ag increases.

y=sinhixp7) 1—72 (34) IV. APPLICATION TO THE DIATOMIC MOLECULE CO
In a previous papef4] the Morse potential CLS’s were

used to compute infrared transition matrix elements for the
diatomic species HF and DF. In that reference was shown the
possibility of computing the intensities once the dipole mo-
ment function was known in terms of the internuclear dis-

i o () ) tance. In this section, vibrational dipole matrix elements of
In Appendix B it is demonstrated th& ’(y) arej polyno-  the carbon monoxide CO diatomic molecule, in particular, of
mials of ordew (v=0,1, ... j—1) inthe variabley thatare  the isotopomer®C'®0, are computed, assuming different in-

orthogonal with respect to the weight function (1 teratomic potentials. It is shown that the experimental data
+y?)~0*Y2) The values ofV;, andk; are also calculated

With this variable a new class of orthogonal polynomials
R U(y) can be defined by

PI=9)(z)=(1+y?) PR W(y). (35

there_. With these new polynomials the debl-Teller wave TABLE IV. Matrix elements of the operatotpy in a Paschi-
functions can be written as Teller potential withj=5. The exact calculation, integrating with
—1/2 2 —il2 (J) the Pwchl-Teller eigenfunctions, and the approximate calculation
‘I’jv(Y):va (1+y9)™! R(Y)- (36) using CLS’s defined in this paper are presented. Parity conservation

implies thatAv has to be odd for the matrix elements of any odd
These states now have the appropriate form to define thgarity operator.
CLS's. In Table | the relevant information to build the CLS’s
for the Pachl-Teller oscillator is shown under the label P-T. v+1 v+3

In this tableP;(y) are the Legendre polynomials aRr{f"(y)

the associated Legendre functisee Appendix B In Fig. 3 """ Exact  CLSapprox.  Exact  CLS approx.
the CLS's for a Pechl-Teller potential withj=10 are 0 —0.3322 -0.3312 0.0166 0.0124
shown. They are distributed symmetrically with respect to 1 —0.5284 —0.5386 0.0404 0.0656
the origin and each wave function is concentrated around a 2 —0.7490 —0.6865

specific value ofy=y vanishing for the rest of the roots of 3 —1.0403 —1.3244

RI(y).
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are well reproduced by modeling the interatomic interaction 2
with a Morse potential, while major discrepancies are ob-
tained by using harmonic oscillator andgebl-Teller poten-
tials. This is not surprising, but the main goal is to provide an
example of how CLS’s can be a useful tool to study the
relevance of different interatomic potentials to describe the® 1|
anharmonicity in a particular problem. =
The CO molecule is of great spectroscopic and astro- E
physical interest. The rovibrational intensities of this mol- 2
ecule have received considerable attention and much work i@
devoted to their calculatiofp—12). In particular, the experi-
mental data set used in this section is taken from R&f.
The purpose of this work is far from competing with those
extensive rovibronic calculations, but, focusing our attention
on the purely vibrational problem, we aim to check the
CLS’s formalism presented and show its applicability.  _, . ‘ ‘ .
Within the Born-Oppenheimer approximation the vibrational 0.5 1 1.5 2 25 3
transition intensities for the electronic ground state band are r (Angstrom)
defined by the matrix elements

ipo

a L
a 0

FIG. 4. Phenomenological dipole moment for tH€%0 mol-
ecule from Ref[13] .

Rv—v')=(W,| x|V, )= f:‘lf:(r)ﬂ(r)\lfvr(r)rzdr,
37

whereW (r) are the vibrational wave functions apdr) is  thus the spectroscopic parametersand wex. are
the expectation value of the dipole moment for internuclear

E,=2143.407 cm!, E,=4260.279 cm?'; (39

distancer and electronic ground state functions. E,= we(v +1/2) — we Xe(v +1/2)?,
It is assumed, as in Ref4], that the vibrational wave
functions can be approximated as the eigenfunctions of a 1D we=2169.94 cm?,
potential (with j bound statgsand that the dipole moment
function is a well behaved function of the internuclear sepa- 0 Xo=13.2675 cm®. (40)

ration. Using the orthogonality of CLS’s and E@.8), Eq.

37) can be rewritten as . .
S From these spectroscopic data the correspondpagameter

j can be obtainef4]:
Rw—v")~ 2 (j.0]CLij,8)u(ro(CLij slj,v").
(38 2j+1=

=163.55. (41

We Xe

It is worth noting that the evaluation of this expression is
simple, requiring solely the knowledge of the dipole momentThus, the valug =81 has been used to compute the CLS’s
function at certain internuclear distances determined by théor the different potentials. Calculations have been carried
zeros of the appropriate orthogonal polynomial and the overout for truncated harmonic oscillator, Morse, andsétd-
lap factors defined in Eq15). Teller potentials. First, the dipole moment function froh3]

There are several references that tackle the problem dfas to be evaluated at the points corresponding to roots of the
computing the dipole moment function of the CO molecule,polynomials linked to the CLS’s for the different potentials.
either with a phenomenological approgds] or as anab  These values are included in E8) together with the cor-
initio calculation[14,15. In the present work an analytical responding overlap factors to compute the vibrational matrix
dipole moment function taken from the literatide] is em-  elements of the dipole function.
ployed. With this input the vibrational matrix elements of the ~ For the Morse oscillator the relation betwegy and the
dipole moment are computed using the CLS'’s formalism forphysical coordinate ixy=8(r—r.) and Eq.(26) can be
the different potentials presented. The corresponding resultssed to estimate thg value, with the resulB=2.327 A~1.
for each potential are then compared with the experimentaDnce thew(r,) values are computed, E(38) allows us to
ones. obtain the full spectrum. The comparison between computed

The form of the dipole moment function is shown in Fig. and experimentdl9] values of the square of the dipole mo-
4, where the equilibrium valuer{=1.1279 A) has been ment matrix elementsR?, is shown in Fig. 5. The different
marked. The CO molecule static dipole moment is small butpanels present transitions changing the number of quanta by
as the figure shows, its first derivative is large. This is one oD, 1, 2, and 3 units. Good agreement between the experimen-
the reasons why the CO spectrum is so widely known. Theal and Morse CLS’s dipole matrix elements is obtained, the
energies for the fundamental and first overtone[af# largest discrepancies arising for sothe=0 transitions.
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FIG. 5. Experimental and CLS results for the square of the . FIG. 7. Statistical errorg, .,) (see textfor the square of the
; . . . dipole moment matrix elements for carbon monoxide. The theoret-

carbon monoxide dipole moment matrix elemems, expressed in . S . . .

. . . ical calculation is performed assuming a harmonic oscillator poten-
units of C?. CLS results are obtained by assuming a Morse type. . o - . .
. s . . o tial as interatomic interaction and using the CLS formalism.
interatomic interaction. Different panels present transitions chang-
ing the number of quanta by @op left panel, 1 (top right pane), 2 .
(bottom left panel and 3(bottom right panglunits. Symbols rep- t?‘r ofdthe rrr:easure_mer;t. Thust,) the eXpe”memgl ‘?rTor as-
resent the experimental data as taken from R&#f.full lines give signed to the matrix element between stageand v’ Is

the CLS results. related to the experimental error of the transition 0 by

In order to reflect the quality of the results obtained in (00") = 0af 0—1) Rexp(v—0") 43
Fig. 5, Fig. 6 shows the corresponding errors. The quantity Texpt UV )= Texp V R»2 :
' ; Rexp 0—1)
plotted isy, ., defined as

In addition, it has been assumed arbitrariithough this

_ Rieo(v—v") ~Rgpv—0’) affects onlyy, ., on a global scalethat ge,,{0—1) is 5%

e , 42 / 2 ; . -~
Xv—v Texp(v—D") 42 of the _exper_|mentz_al vaIuReXpl(Oﬁ 1). With this definition
Xv_p IS @ dimensionless quantity.
whereoep{v—v') is an estimation of the experimental er- In order to analyze the sensitivity of the results to the

ror of the data that takes into account the Poissonian chara@ssumed interatomic potential, similar calculations have been
done employing CLS's for the truncated harmonic oscillator

2 ; ; and anharmonic Behl-Teller potentials.
= - m Av=0 In the harmonic case the relation between the physical
coO ¥ Av=1 coordinate and is the usual one given in Sec. lll, and thus
@ Av=2
= ® Av=3 x=21.0041—r,), (44)
u
1 L 4
] vy wherer is given in A andr is the equilibrium position. The
< . vyvY statistical errorsy,_., for this calculation are presented in
T vv?Y v Fig. 7. Be aware of the different scaling on the ordinate axis
3 v’ o® compared to Fig. 6. The errors are considerably larger, espe-
= vv?Y [ ] .
-~ v o® ** | cially for Av=0,2. It should be noted that some values for
orvy¥ $e o o
388800983000 Av=0 are out of scale.
For the Pschl-Teller case the relation with the physical
Morse coordinate is given by Eq32),
» . ‘ Xp1=2.321r—r,), (45)
0 L 20

with r assumed to be expressed in A. The statistical errors
FIG. 6. Statistical errorg(, ., (see textfor the square of the for 'th|s case are shown. in Fig. 8, where again one should

dipole moment matrix elements for carbon monoxide. The theorethotice the different scaling with respect to the Morse case

ical calculation corresponds to that presented in Fig. 5 and is perand the large discrepancies that arise in some cases, espe-

formed assuming a Morse potential as interatomic interaction angially again forAv=0,2. Some values fakv =0 are out of

using the CLS approach. scale too.
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20 - ' ‘ points where the wave functions are evaluated. In particular,
1216 B Av=0 the Morse oscillator CLS’s could provide for these calcula-
¢"o ¥ Av=1 tions a very interesting alternative to the harmonic approach,
® Av=2 as the momentum matrix elements are exact due to the
04 *Av=3 ] quadrature employed.
| |
X
- ‘0’,.00000“”” ACKNOWLEDGMENTS
> *
; 0 _'x:$'VVVvvvvvvvvvvva ] This work was supported in part by the Spanish DGICYT
= 'o. under Project No. PB98-1111. We acknowledge useful dis-
'.. cussions with F. lachello, A. Frank, R. Lemus, and V. Szocs.
10l L 1 This paper uses data provided by D. Goorvitch in Reéf.as
o . .
°e distributed by the Astronomical Data Center at NASA God-
P_T L o dard Space Flight Center.
°
°
! L Q
20 0 10 y 20 APPENDIX A

In this appendix we show that the polynomiais{’(y)
FIG. 8. Same as Fig. 7 but assuming &€&td-Teller potential as  introduced in Eq(29) are in fact orthogonal polynomials and

interatomic interaction. their standardization and differential relations are deduced.

The starting point is Eq(30) for the Morse eigenfunctions

As expected, the best results are obtained for the Mors@ith the redefined variablg=exp,)/(2j+1), bounded be-

calculations, as this potential is closer to a realistic moleculatween zero and infinity, and the polynomials

interatomic interaction for a diatomic molecule than the _ _

other two cases examined. However, this might not be the T P(y)=y'LA 72 (1ly). (A1)

case when dealing with polyatomic molecules. For instance, ) ) .

it has been suggested that the bending mode in a triatomié is worth noting that the polynomial§” ¥(y) have the

molecule is better represented by asBlu-Teller potential same coefficients as the Laguetr~*)(y) but in reversed

[16]. The CLS formalism could help in clarifying which kind order; thus the independent termliff’ ~*)(y) corresponds

of anharmonicity is more relevant. It can be concluded thato the powery® in Tfj’(y). From the orthonormality of the

the CLS formalism allows one to obtain analytical formulaswave function(30) the following orthogonality relation for

that ease the calculations, and it is sufficiently accurate tehe 7 ()(y) polynomials can be derived:

discriminate between harmonicity and anharmonicity as well

as between different types of anharmonicifyiorse and * i1 ; i
Paschl-Telle). g M fo dyy 37 te W7 D(y)T D(y)=N;,68,, . (A2)
V. SUMMARY AND CONCLUSIONS Thus theT 51)(y) are orthogonal polynomials in the interval

. , . ~ [0.¢] with weight functionw(y)=y~ 2 ~te~'¥ and normal-
In this paper the general formalism for building configu- ization A}, . The values ok; andk; ; can be derived in a

ration localized states is pres_ented. Their properties are andrajightforward way from the information on Laguerre poly-
lyzed and analytical expressions for the matrix elements Oﬁomials[?]

the operators of interest, including the momentprand a

generic function of the coordinatg(x), are computed. ki=1, (A3)
The CLS states are the eigenfunctions of a certain func-

tion of the coordinate in the basis formed by the bound states iG+21)

of the appropriate one-dimensional potential. They provide a j-17 7 o (A4)

simple and numerically appropriate tool to face the problem
of molecular vibrations and allow one to reach analyticalThe differential relation of theZ () polynomials can be
expressions even for anharmonic wells. shown to be

The CLS formalism is worked out for three potentials of g
interest in molecular physics, providing the necessary ele- i _ i i
ments to build the CLS’s in each case. Finally, we have 92(y) @T J(J)(y)_gl(y)TJ(J)(y)J“gO(y)T1(]—)1(3’)'
applied the formalism presented to a real case, the analysis of (A5)
the 2C%0 vibrational intensity spectrum. The results ob-
tained through comparison of the calculations carried ouwvith

with the three examples presented show the sensitivity of the -1 . )

formalism, at the same time reducing the numerical com- G(y)=y> (—1)i+i-1 =1 ! y

plexity of the problem and providing a valuable tool for 2 =0 i (=)

these problems. In addition, the CLS’s may help in some ) _—

numerically extensive calculations that make use of a grid of =(j -1yl (1), (A6)
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i-1 ji—1 i _ which shows tha®R {/)(y) is a polynomial of ordeo in the
y)—JE (—1)*ti- 1( i )(_l—_l)|yl variabley. Straightforward computation of the integral of
: ' two of these polynomials with weight functioa(y)=(1
=jjty L@ (1), A7) +y) U gives
j 1 _ i 0 . ) )
=2, (- l(J i )(j——i];1>| y | ey R PR Dy )dy=6,,
| ' (85)
=ity L2y (1). (A8)

where N, =(2j—v)!/(j—v)v!. It is worth noting that the
APPENDIX B ponnomlaIR“)(y) is orthogonal to all the others even if it
In this appendix it is shown that the functio®{(y) canr]10t1 be nc?fﬂ“a"md The coefficientsydfin R () and
introduced in Eq(35) are in fact orthogonal polynomials and n()j/ Eq. Eré;)z ~1(y) are easily obtained by using E(4)
their standardization and differential relations are deduceda
The starting point is E¢(35),

R (y)=(1+y?)2pi~0)(). (B1)
j(j+1
We use the definition of the associated Legendre function, Ki—1=—P{(1)=— 10 5 ) . (B7)
(i-v) i-o(1_g2yi-ed_Pi@ |
P " (2)=(-1)""(1-2°) IR (B2)  Direct computation gives the differential relation of tRe!

polynomials,
whereP;(z) is the Legendre polynomial which can be writ-

ten as d . : .
- 6o(Y) gy R N =91 R P+ Go(NR Pa(y),
j2
Pj(z):ngo cizi—2n, (B3) B8)
with
Taking the corresponding derivatives and using the rela-
. : 2\2/(1+ 2 _
ggnrgvitr\i/;/ti?‘rzgndy variablesz“=y</(1+y*), Eq.(B1) can ga(y)=1+Yy2, (B9)
[v/2] N I ( ): iy, (BlO)
RPy=(-1 3 Cﬂ)%y” (1 4y2)n, GlyI=y
(B4) Jo(y)=—1. (B11)
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