
Towards safer programming

language constructs

Theses of the doctoral dissertation

2018

Áron Baráth

baratharon@caesar.elte.hu

Thesis advisor: Dr. Zoltán Porkoláb, docent

Eötvös Loránd University, Faculty of Informatics,

1117 Budapest, Pázmány Péter sétány 1/C

ELTE IK Doctoral School

Doctoral program: Foundations and Methodologies of Informatics

Head of the doctoral school: Prof. Dr. Erzsébet Csuhaj-Varjú

Head of the doctoral program: Prof. Dr. Zoltán Horváth



1 Motivation

In 1953, John W. Backus working at IBM submitted a proposal to

develop a practical alternative to the then used assembly language for

programming the IBM 704 mainframe computer. The first documenta-

tion was finalized in late 1956 and half a year later the first operat-

ing FORTRAN compiler was in use. Although, the possibility to gener-

ate machine code from a high-level programming language was well

known, there was a great skepticism of the effectiveness of such a solu-

tion. Therefore, FORTRAN targeted to generate code with performance

comparable to that hand-coded assembly language. Safe language con-

structions were neither a goal nor well known at that time.

Modern programming languages are not just about higher abstrac-

tion level unlike old languages but aimed to be safer by giving numerous

validations. Language evolution is directing toward safer languages.

Obviously, a safer language requires more resources to compile in gen-

eral, but a lot of time can be spared during development as the strong

and strict type system saves the programmers from many semantic is-

sues. Nowadays the compilers are fast enough, and most of the pro-

grammers will not perceive the overhead of the extra work. However,

the user will experience the benefits of a stricter language, because

less run-time checks are necessary.

In this thesis we discuss the importance of these safe language con-

structs. In the document we will present examples from current main-

stream languages where either the syntax or the semantics allow con-

structs leading to possible mistakes. Many of these examples are based

on actual bugs happened in major companies. We analyze the root cause

of these issues and suggest solutions for the existing mainstream pro-

gramming languages – mainly for C++. As a proof-of-concept we de-

signed the Welltype language and we implemented as a prototype to

prove that the recommendations we made are usable.

1



2 Syntax

Current mainstream languages contain several problematic con-

structs which potentially lead to critical errors. Most of the errors came

from the loose syntax or not proper semantics. In my everyday work

and research I saw a lot of harmful codes, and I intend to give recom-

mendations to extend the coding style or to design a new programming

language in order to avoid malicious constructs.

A good example to present how important is a proper coding style is

the vulnerability introduced into operating system developed by Apple

Inc. [11]. The reason of the error is a mistakenly duplicated line con-

taining only the goto fail; statement – that is why this error is called

as goto fail.

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail; // XXX

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

Figure 1: The affected lines of the goto fail error.

As can be seen on Figure 1 the problem was a duplicated line. This

kind of errors can be prevented by applying a proper coding style – for

instance always use block statements. An alternative solution is to use

a programming language – e.g. Go – that require block statements and

reports error if the block statement is missing. Also, this recommenda-

tion or syntactical restriction will reveal other erroneous codes that can

be seen on Figure 2.

if(some_condition); {
do_something();

}

Figure 2: Erroneous if statement (extra semicolon breaks the code).

Furthermore, we examined the how the const-correctness affects a

language. We argue how convenient to use it: for example in C and C++

2



languages support the const keyword. It is also an argument in what

level the programming language should enforce the use of consts. In C

and C++, for example, it is possible to write code that compiles with or

without warnings, but will eventually crashes due to writing to a read-

only memory area. Thus, the const-correctness should be enforced.

We also examine how control-flow constructions affect the code and

its comprehension. Some solutions will increase the quality of the code,

others will decrease it. This statement is also true for operators. Finally,

we discuss the effects of the operator overloading, and how important

is to implement domain-specific languages.

We present our solution to the revealed issues we aimed in the

Welltype language. In Welltype we implemented the const-correctness

mechanism by automatically consider all function arguments as im-

mutable. When the programmer wants to modify an argument, actions

must be explicitly taken: the argument must be declared as mutable.

If the programmer forget to specify the mutable keyword in the code,

and a modifier operation is performed on the argument, it will result in a

compiler error. Enforcing const-correctness with this mechanism is triv-

ial. It is, however, neither easy nor trivial to ensure const-correctness

in C or C++.

Moreover, our solution to avoid potential errors derived from scat-

tered code fragments, and misleadingly overloaded operators are part

of the Welltype specification. These are long discussed in the thesis.

Thesis 1 I have examined the vulnerabilities related to the syntax

of various mainstream programming languages. I have identified (1)

the permissive syntax, (2) using variables as mutable memory areas

by default, (3) non-expressive control flow, and (4) inconsistent defini-

tion of operator overloading as major source of possible software bugs.

I suggested fixes and workarounds to the problems above for the cur-

rent programming languages, especially for C++. I specified the syntax

of the Welltype prototype programming language to demonstrate how

these problems could be avoided by applying carefully defined syntac-

3



tical rules.

3 Semantics

There are several approaches to the type-systems. One extreme ap-

proach is a completely dynamic type-system, where the source code

does not determine the type of an object. Such type-systems are com-

monly used in script languages and in some functional languages, for

example in Erlang [12]. The dynamic type-system is a new opportu-

nity for freedom, but understanding the code (i.e. static analysis) is

much harder. The opposite approach is the static type-system, which is

widespread in imperative- and object-oriented programming languages.

The static type-system is used to express the intended type for every

variable.

The origin of some problems is that the signed and unsigned inte-

gers have different domain, although the half of the domains overlap.

That is the reason why it works in most of the cases – but eventually it

will break in irregular cases, those are rarely covered by tests. There

are two solutions for this problem. For example, the Java programming

language does not introduced unsigned integers. Still the implicit casts

can ruin a Java program as well: the code can be seen in Figure 3 is

an implicit infinite loop. Another solutions is not to allow comparisons

between different types at all – our experimental language uses this

solution. Thus, the code snippet in Figure 3 causes a compile error.

// Java, C++, and C#
for(char ch=’\0’;ch<70000;++ch) { /* ... */ }

Figure 3: Infinite loop caused by implicit cast – compile error in Well-
type.

As demonstrated earlier the permissive syntax and semantics in

C++ [13, 14] can lead to harmful situations. Most of these constructs

can be compiled without any compiler warning message.

4



We introduced a working solution in C++ to eliminate implicit con-

versions [3]. Our approach uses a wrapper template class, and we can

precisely define what operations can be performed on a type. Thus, we

can detect unintended type conversions.

The C and C++ languages have value semantics [14, 15]. Objects

of C and C++ – either having built-in or user defined types – can exist

in the stack, in the static memory or in the heap. In all cases variables

identify the raw set of bits of objects without intermediate handlers.

When we apply assignment, we copy raw bits by default.

Since C++11 move semantics [13] can avoid unnecessary copy thus

may increase run time performance. However, it is hard to implement

move operations, and such mistakes lead to hard-to-detect performance

penalties. Our method [2] and prototype tool [10] is analyzing such is-

sues to detect unintentional copy operations. The backbone of the solu-

tion is the generalized attributes that are introduced in C++11. This

mechanism allows to place user-defined attributes to numerous ele-

ments, and these attributes can be processed. We introduced our at-

tributes that guide the method to detect copy-instead-of-move defects.

Thesis 2 I investigated the negative consequences related to the per-

missive type systems, especially the implicit conversions in the current

mainstream programming languages. I designed and implemented a

wrapper class based solution to solve the problem in C++. I specified

an algorithm which detects the possible misuse of C++11 move seman-

tics. I created and tested a prototype tool implementing the algorithm.

I specified the semantics of the Welltype language to avoid the men-

tioned issues and defined the data types with their expected behavior.

5



4 Compiling, linking, binary compatibility

and testing

Modern programming languages support modular development di-

viding the system into separate translation units and compile them in-

dividually. A linker is used then to assemble together these units ei-

ther statically or dynamically. This process, however, introduces implicit

dependencies between the translation units. When one or more units

are modified in inconsistent way binary incompatibility occurs and may

result in unexpected program behavior. Current mainstream program-

ming languages neither specify what are the binary compatibility rules

nor provide tools to check them.

The Welltype language aimed to avoid binary incompatibilities: since

the Welltype dynamic loader recursively validates all imported ele-

ments, it is able to detect incompatibilities. The signature of the func-

tions are validated, including the name of the functions, number and

type of the arguments and the returned types, and the pure property.

Records are also recursively validated, which consists of name of the

record, and number, type and name of the fields.

As we seen above, binary compatibility is really an issue in long-term

development. The incompatibilities can cause the program to crash or,

even worse, miscalculations that break invariants. Thus, programmers

must take actions to avoid such incompatibilities. While in the cur-

rent mainstream programming languages only unofficial conventions

can get rid of binary incompatibilities, the Welltype language explicitly

and strictly specifies the binary compatibility.

Modern software development have to take testing into account to

ensure the reliability of the software product. Test-driven development

requires to specify the new features first by writing new test cases, and

after implement it to fulfill the test cases. This method provides clear

specification for the new features. Moreover, any reported bugs become

test cases, and the way of fixing it is the same. Finally, all written test

6



cases are part of the regression test.

Two major kind of tests are known: black-box and white-box test-

ing [16]. The black-box tests are focused on the input and the output:

for specific input, the specific output must be provided, and no matters

how. The white-box tests are dedicated to get as high code coverage as

possible by providing different inputs to execute distinct parts of the

code.

The unit tests can be handled different ways. The tests can be writ-

ten by hand as any regular program, and refer to the libraries which are

tested. This technique is too inflexible, because numerous additional

code is required to make detailed error messages.

The C++11 introduced the static_assert mechanism, thus the

programmers can write compile-time assertions. Furthermore, the

constexpr is introduced for optimization purposes, since the compiler

is entitled to evaluate all constexpr expressions.

Putting the static_assert and the constexpr together, we can

write tests which are evaluated at compile-time. The compile-time tests

are the aid for all problems which came from the third-party tools, be-

cause all actions are performed by the compiler. So, there is no ad-

ditional dependencies, and the C++ project is more portable. Using

compile-time tests results more reliability, because the source code will

not compile if one of the tests fail.

Using this technique, any test cases can be written inside the source

code, and the compiler will evaluate them during the compilation.

Thesis 3 I analyzed the problem of the binary compatibility for cur-

rent mainstream programming languages. I have identified that soft-

ware bugs can be introduced due to violating the API via binary in-

compatible components. I specified the rules of binary compatibility for

Welltype programming language in order to prevent binary incompati-

ble modules being loaded and linked. I implemented a prototype binary

loader application to test the developed method to detect binary incom-

patibility issues at link time. I presented a possible solution to improve

7



the unit testing in C++ by executing the unit tests during compilation.

The solution relies on new features in C++11.

5 A prototype proof-of-concept language

In the predecessor theses we described possible solutions to numer-

ous issues in current mainstream programming languages. In order to

prove that those design changes are viable, we implemented a proto-

type language that designed according our findings. Our language is

an imperative language with additional multi-paradigm language ele-

ments. We named this language Welltype, and it is available as an open

source project [9].

We found the language usable, because it operates with minimal

syntactical and compilation overhead. The language, however, has a

rich set of features which makes the language convenient to use. The

compiled programs do not suffer additional run time penalty, because

the language has a static type-system.

Relevant publications for theses

[1] [2] [3] [4] [5] [6] [7] [8]

Syntax X - - - - X X -

Semantics X X X X - X - -

Linking X - - - X X - X

6 Summary

Current mainstream programming languages suffer numerous

safety issues that originally introduced to be convenient and practical,

but later turned out these features can be harmful. Although, these pro-

gramming languages continuously evolving, they usually have a limita-

tion due to backward compatibility. New languages are being created

8



today to fix issues or introduce new paradigms.

In thesis 1 we describe various software issues related to language

syntax based on real industrial experiences. To avoid these problems we

suggest strict coding conventions for existing languages and rigorous

syntactical rules for new languages. Rules include to prefer immutable

memory as default function arguments, more expressive control flow

and better ways to define operators.

Current mainstream languages also suffer some semantical prob-

lems what we discuss in thesis 2. Implicit conversions usually allowed

in this languages but they may lead to unwanted behavior. To avoid

such cases in C++ we introduced a wrapper class based solution.

The C++11 move semantics may reduce copy operations when imple-

mented properly. We specified an algorithm and implemented a proto-

type tool to detect possible misuse of the move semantics.

It is well-known that the costs of software development is only the

fragment of its all maintenance cycle. In order to reduce maintenance

costs, we may demand various services from the programming lan-

guages. We analyze such features in thesis 3. As an example, main-

stream languages give no support for handle the binary compatibility

issues among different library versions. Compile time testing is also

rarely supported. We suggest solutions for these problems.

In order to prove that the design decisions we proposed in the ear-

lier theses viable, we implemented Welltype, a prototype programming

language that designed according our findings. Our language, is imper-

ative with additional multi-paradigm language elements and available

as open source with a full development tool-chain.

References

[1] Á. Baráth and Z. Porkoláb, “Towards safer programming lan-

guage constructs,” Studia Universitatis Babes-Bolyai, Informat-

9



ica, vol. 60, no. 1, pp. 19–34, 2015. http://www.cs.ubbcluj.ro/

~studia-i/contents/2015-1/02-BarathPorkolab.pdf.

[2] Á. Baráth and Z. Porkoláb, “Automatic checking of the usage of the

C++ 11 move semantics.,” Acta Cybernetica, vol. 22, no. 1, pp. 5–

20, 2015. https://doi.org/10.14232/actacyb.22.1.2015.2.

[3] Á. Baráth and Z. Porkoláb, “Life without implicit casts: safe type

system in C++,” in Proceedings of the 7th Balkan Conference on

Informatics Conference, p. 6, ACM, 2015. https://doi.org/10.

1145/2801081.2801114.

[4] Á. Baráth and Z. Porkoláb, “Attribute-based checking of C++ move

semantics,” in Proceedings of the 3rd Workshop on Software Qual-

ity Analysis, Monitoring, Improvement and Applications (SQAMIA)

2014, Lovran, Croatia, September 19-22, 2014., pp. 9–14, 2014.

http://ceur-ws.org/Vol-1266/SQAMIA2014_Paper2.pdf.

[5] Á. Baráth and Z. Porkoláb, “Compile-time unit testing,” in Fourth

Workshop on Software Quality Analysis, Monitoring, Improve-

ment, and Applications SQAMIA 2015, pp. 1–7, 2015. http:

//ceur-ws.org/Vol-1375/SQAMIA2015_Paper1.pdf.

[6] Á. Baráth and Z. Porkoláb, “Welltype: Language elements for mul-

tiparadigm programming,” in Position Papers of the 2017 Feder-

ated Conference on Computer Science and Information Systems,

pp. 91–101, 2017. http://dx.doi.org/10.15439/2017F546.

[7] Á. Baráth and Z. Porkoláb, “Domain-specific languages with cus-

tom operators,” in proceedings of The 9th International Confer-

ence on Applied Informatics, 2014.

[8] Á. Baráth and Z. Porkoláb, “Detecting binary incompatible soft-

ware components using dynamic loader,” Studia Universitatis

Babes-Bolyai, Informatica, vol. 63, no. 1, pp. 51–63, 2018. https:

//doi.org/10.24193/subbi.2018.1.04.

10



[9] Á. Baráth, “Welltype project web page.” http://repo.hu/

projects/welltype, 2018.

[10] Á. Baráth, “Move semantics checker.” http://baratharon.web.

elte.hu/movesem/, 2014.

[11] “Vulnerability summary for cve-2014-1266..” http://web.nvd.

nist.gov/view/vuln/detail?vulnId=CVE-2014-1266, 2014.

[12] S. S. Laurent, Introducing Erlang: Getting Started in Functional

Programming. " O’Reilly Media, Inc.", 2017.

[13] B. Stroustrup, The C++ programming language, 4th Edition.

Addison-Wesley, 2013.

[14] M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Man-

ual. Addison-Wesley, 1990.

[15] B. Stroustrup, Design and Evolution of C++. Addison-Wesley,

1994.

[16] S. R. Schach, Object-oriented and classical software engineering,

vol. 6. McGraw-Hill New York, 2002.

11


