
Bond University

DOCTORAL THESIS

A Collaboration Framework of Selecting Software Components Based on Behavioural
Compatibility with User Requirements.

Wang, Lei

Award date:
2006

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bond University Research Portal

https://core.ac.uk/display/196607507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.bond.edu.au/en/studentTheses/65d28d0a-2138-4601-8bb7-cb439ef27204

BOND UNIVERSITY

A Collaboration Framework of Selecting Software
Components based on Behavioural Compatibility with User

Requirements

by

Lei Wang (BE, MSc)

A Thesis Submitted

in Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Gold Coast, Queensland, Australia

November, 2006

Statement of Originality

This dissertation represents the author’s own work and contains no material which

has been previously submitted for a higher degree at this University or any other

institution, except where due acknowledgement is made.

Signature:

Date:

Abstract

A Collaboration Framework of Selecting Software

Components based on Behavioural Compatibility

with User Requirements

by

Lei Wang (BE, MSc)

Building software systems from previously existing components can save time and

effort while increasing productivity. The key to a successful Component-Based De-

velopment (CBD) is to get the required components. However, components obtained

from other developers often show different behaviours than what are required. Thus

adapting the components into the system being developed becomes an extra develop-

ment and maintenance cost. This cost often offsets the benefits of CBD. Our research

goal is to maximise the possibility of finding components that have the required be-

haviours, so that the component adaptation cost can be minimised.

Imprecise component specifications and user requirements are the main reasons

that cause the difficulty of finding the required components. Furthermore, there

is little support for component users and developers to collaborate and clear the

misunderstanding when selecting components, as CBD has two separate development

processes for them. In this thesis, we aim at building a framework in which component

users and developers can collaborate to select components with tools support, by

exchanging component and requirement specifications. These specifications should

be precise enough so that behavioural mismatches can be detected.

iv

We have defined Simple Component Interface Language (SCIL) as the commu-

nication and specification language to capture component behaviours. A combined

SCIL specification of component and requirement can be translated to various existing

modelling languages. Thus various properties that are supported by those languages

can be checked by the related model checking tools. If all the user-required proper-

ties are satisfied, then the component is compatible to the user requirement at the

behavioural level. Thus the component can be selected. Based on SCIL, we have

developed a prototype component selection system and used it in two case studies:

finding a spell checker component and searching for the components for a generic

e-commerce application.

The results of the case studies indicate that our approach can indeed find com-

ponents that have the required behaviours. Compared to the traditional way of

searching by keywords, our approach is able to get more relevant results, so the cost

of component adaptation can be reduced. Furthermore, with a collaborative selection

process this cost can be minimised. However, our approach has not achieved complete

automation due to the modelling inconsistency from different people. Some manual

work to adjust user requirements is needed when using our system. The future work

will focus on solving this remaining problem of inconsistent modelling, providing an

automatic trigger to select proper tools, etc.

Acknowledgements

First and foremost, I am indebted to my supervisor, Dr. Padmanabhan Krishnan. I

would never have accomplished this work without his continuous support and guid-

ance. He has always been available and patient to answer my questions, and commit-

ted himself to offering his assistance whenever needed. His enthusiasm and scholarly

insights made the process of pursuing my Ph.D. a joyful and fruitful journey.

I would also thank Dr. Michael Rees and Mrs. Stephanie Patching for their kind

support during my study at Bond. Michael has presented me with many opportuni-

ties to improve myself, while Stephanie has helped me with all the academic issues.

Without them I would never be able to focus on my research, and my life in Australia

would be harder.

I am grateful to Dr. Daniela Mehandjiska-Stavreva, who took me to Bond Uni-

versity to fulfil my dream. I respect her spirit of never giving up even when she is

fighting against serious illness. Her optimistic life attitude can never be learned from

books.

Thanks also go to Dr. Luca de Alfaro from UC Santa Cruz for discussing the use

of TICC and Mocha, and Xiaowan Huang from Stony Brook University for kindly

providing the source code of Mocha. I also want to say “you have done a great job!”

to the Alloy development group from MIT. Without these tools my research would

never be practical. Another important contribution to my research comes from Yahoo

Alloy discussion group, in which I have learned a lot from other Alloy users. They

are always willing to answer my questions no matter how naive they are.

I would like to thank the School of Information Technology, Business Faculty

for providing me with a four-year scholarship to complete my study, and offering

me opportunities to improve my teaching skills. I would also appreciate the finan-

cial support and training opportunities from BURCS (Bond University Research and

vi

Consultancy Services). I really enjoy the discussion with my friendly colleagues: Dr.

Zhaohao Sun, Dr. Jun Han, Ping and Tan. I appreciate them for creating such a

pleasant office atmosphere.

I would also like to thank those people whose names I have not mentioned, but

have spent time with me. Thanks all!

Special thanks to Pat’s family for their prayers and support both financially and

mentally. Even though Seattle is far away, I still can feel their care and love. Thanks

to Dr. Ningping Yu’s family for their friendship, which always makes my heart warm.

My mother and father and my wife have always been sources of great love and

encouragement. Their love shaped me into the person I am today. I am grateful

to all the rest of my family members, especially my sister, uncle, cousin, for their

unconditional support.

Finally, I want to thank Megumi Tanaka, a special person to me, and her whole

family, for their love and understanding.

Contents

Statement of Originality ii

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Programs xiv

1 Introduction 1

1.1 Motivation . 2

1.1.1 The Current Widely Applied Practice 2

1.1.2 Problem Statement . 3

1.1.3 Different Approaches . 4

1.2 The Proposed Solution . 7

1.2.1 A Collaboration Process . 7

1.2.2 The Technologies to Support the Process 10

1.3 Overview of the Methodology . 11

1.4 Thesis Outline . 13

viii

2 Related Works 14

2.1 Introduction . 14

2.2 Background Knowledge . 15

2.2.1 Software Component . 15

2.2.2 Concept of Interface and Contract 16

2.2.3 Component-Based Development Life Cycle Model 18

2.3 Specifying Component Interfaces . 26

2.3.1 Syntactic Level . 27

2.3.2 Semantic Level . 28

2.3.3 Protocol Level . 33

2.3.4 Specifying and Predicting Quality Properties 38

2.4 Component Storage and Retrieval . 39

2.4.1 Text-based Encoding and Retrieval 40

2.4.2 Lexical Descriptor-based Encoding and Retrieval 40

2.4.3 Formal Specification-based Encoding and Retrieval 41

2.5 Component Evaluation . 42

2.5.1 Evaluation Processes . 43

2.5.2 Particular Methods . 44

2.6 Existing Component Selection Systems 46

2.7 Component Trader’s Involvement . 48

2.8 Summary . 48

3 The Framework of Selecting Components based on Collaboration 50

3.1 Introduction . 50

3.2 The Proposed Framework . 51

3.3 The Collaboration Process . 53

3.3.1 Roles . 54

3.3.2 Artefacts . 54

3.3.3 Activities . 54

ix

3.3.4 Workflow . 56

3.4 The Specification Language and Matching Technique 60

3.5 The Tools and Formalism Support . 61

3.6 Summary . 62

4 Simple Component Interface Language 64

4.1 Introduction . 64

4.2 Design . 65

4.2.1 Syntax . 67

4.3 Writing Specifications in SCIL . 75

4.3.1 Writing Component Specifications 75

4.3.2 Writing Requirement Specifications 75

4.4 SCIL and Transition Systems . 76

4.5 Summary . 78

5 Implementations 80

5.1 Introduction . 80

5.2 Architecture . 80

5.3 The SCIL Translator . 82

5.3.1 The Compiler . 83

5.3.2 Developing Plug-ins . 84

5.4 Component Repository . 86

5.5 Web Interface . 86

5.6 Summary . 90

6 Case Studies 92

6.1 Introduction . 92

6.2 Case Study 1: Checking Behavioural Compatibility for the Auctioneer

Component . 94

6.3 Case Study 2: Search For A Spell Checker Component 97

x

6.3.1 Requirements for the Desired Component 97

6.3.2 Specifying Components . 101

6.3.3 Searching Components in the Repository 105

6.3.4 Translating and Model Checking 110

6.3.5 Results . 110

6.4 Case Study 3: Search COTS Components for a Generic e-Commerce

Application . 113

6.4.1 Search for the Authentication Component 114

6.4.2 Search for the Catalogue Component 119

6.4.3 Search for the Shopping-Cart Component 120

6.5 Discussion . 126

6.6 Summary . 129

7 Conclusion and Future Work 130

7.1 Main Contributions . 131

7.2 Future Work . 132

A Related Publications 134

B Simple Component Interface Language Grammar in SableCC 137

C Auctioneer Component Specification and Its User Requirement 148

C.1 The SCIL Specification of the Auctioneer Component 148

C.2 The SCIL Specification of the User Requirement for the Auctioneer

Component . 150

C.3 The RM Translation of the Combined Specification 152

C.4 The Alloy Translation of the Combined Specification 156

Bibliography 159

List of Figures

1.1 Adaptation Cost with/without Collaboration 10

1.2 Using SCIL as the Bridge to Checking Various Properties 11

2.1 Interfaces, Methods, Contracts and Specifications 17

2.2 Two Development Processes of CBD 19

2.3 The Concept Map of Component Selection 25

3.1 Structure of the Proposed Framework 51

3.2 The Workflow in the Collaboration Process 58

3.3 A Scenario of the Collaboration . 59

3.4 The Comparison of Two Component Searching Processes 63

4.1 Abstract Description of SCIL . 67

4.2 State Transitions in Auctioneer Component 77

5.1 The System Modules . 81

5.2 The SCIL Translator . 82

5.3 Compiler Implementation Layers . 84

5.4 The Use Cases through the Web Interface 87

5.5 Screen-shot: Search by Keywords . 88

5.6 Screen-shot: Search Results by Keywords 88

5.7 Screen-shot: View and Modify Specifications 89

5.8 Screen-shot: Name Mapping . 89

xii

5.9 Screen-shot: Compatibility Checking Result 91

5.10 The Flowchart of Using the System 91

6.1 Four Spell Checking Scenarios . 100

6.2 r.a.d.spell Component Use Case Diagram 102

6.3 r.a.d.spell Component State Transitions 104

6.4 The e-Commerce Application Architecture 114

6.5 Two Scenarios for the Shopping Cart Component 124

List of Tables

6.1 Component Distribution in the Sample Repository 93

List of Programs

2.1 Auctioneer Interface in IDL . 27

2.2 Code Fragment of Auctioneer Purchase Method in JML 29

2.3 Code Fragment of Auctioneer Purchase Method in OCL 31

2.4 Code Fragment of Auctioneer Purchase Method in Alloy 32

2.5 Code Fragment in Reactive Modules 35

4.1 Enumeration Type in SCIL . 68

4.2 Structured Type in SCIL . 69

4.3 Services of the Auctioneer Component 70

4.4 Protocol of the Auctioneer Component 72

4.5 A Required Scenario for the Auctioneer Component 73

4.6 Required Properties for the Auctioneer Component 74

4.7 User Environment for the Auctioneer Component 76

6.1 Type Translation . 94

6.2 Sell Service Translation . 95

6.3 Check best story Scenario in RM . 95

6.4 Check a Property in RM . 96

6.5 Requirement Specification for Spell Checker Component 98

6.6 Specification of r.a.d.spell Component 103

6.7 Specification of C1Spell component 106

6.8 Specification of ChadoSpellText Component 107

6.9 Translation of a Scenario to RM . 111

xv

6.10 Translation of Properties to RM and Alloy 112

6.11 Requirement for Authentication Component 115

6.12 Specification of an Authentication Component 117

6.13 Requirement Specification for Catalogue Component 121

6.14 Requirement Specification for Shopping-Cart Component 122

6.15 Specification of JavaCart Component 125

Chapter 1

Introduction

As size and complexity of software systems are dramatically growing, software com-

ponents have been proposed as the main technology to address this challenge. By

enabling reuse, components permit one to rely on the subsystems developed by other

developers to simplify system design and implementation. This reduces the time and

effort required to develop the entire system. That is to say, by using components the

building of complex systems can be simplified, so that productivity can be increased.

A typical Component-Based Development (CBD) has the steps including analysis of

requirement, selection of component, adaptation of component, composition with the

existing system, and verification and validation of the enlarged system.

The key to a successful CBD is to get the required components. As there are a

large variety of different components from different sources, users of components must

be able to identify and choose components that suit their needs. This is component

selection.

Component selection is crucial because the other development steps will depend

on it. A wrong selection of the components can cause the failure of the entire sys-

tem [128], as the wrongly selected components are not compatible to the target sys-

tem, thus they cannot work properly. If the incompatibilities are found at a later stage

than component selection, one needs to go back to find and select the components

1

2

again. As a consequence, the completion of the whole project will be delayed. Most

of the top risks in CBD projects mentioned in [20] come from the step of selecting

components.

In order to reduce the risks, component selection should be considered throughout

the entire life cycle of the CBD. Even in the very early stages of requirement analysis

and architecture design, the requirement engineers and system architects must be

aware of the availability of the components [45]. Thus they are able to adjust the

requirements accordingly. This would help system developers to easily locate the

required components in the later development stages.

1.1 Motivation

The motivation to conduct this research initially comes from the problem of the

current widely applied practice of selecting components.

1.1.1 The Current Widely Applied Practice

Of the current search engines for software components, whether a general search en-

gine such as Google, or a particular search engine for a component repository such as

the one for ComponentSource [42], only a free text-based search is supported. We con-

sider a free text-based search as the current practice of searching components because

these search engines are the most widely used. For example, ComponentSource [42]

is the most popular component repository in the world, providing a large variety of

components from different developers.

By this approach, component users first can receive a list of options by entering

free text in the search engine. However, in order to retrieve the one that suits their

requirements, users have to examine these components one by one.

The examination of each component normally follows these steps: first, one has

to look at the textual description of the component to see whether the component is

3

relevant to the requirement; if it is relevant, the user can download the component

manual to understand how to use the component; the user can also download the

trial version of the component and test it in the user’s working environment to check

whether it really can meet user requirement.

The results obtained by this approach have exposed its weaknesses. First, except

for the free text-based searching, most selection work is manual. For example, one

often receives a long list of candidate components, so it takes a lot of time to decide

their relevance. Testing components is also time-consuming. Second, even with so

much time spent, the component retrieved still may not meet the user requirement.

This is because manual work easily causes mistakes. If this happens, adapting the

component at a later stage would be more difficult.

1.1.2 Problem Statement

The idealised CBD process assumes that the components obtained from other de-

velopers are sufficiently close to the units identified when decomposing the system

that is being developed, so that the component adaptation requires less effort than

the unit implementations. However, this is rarely the case in reality, especially when

the components are not in-house developed, for example, Commercial Off-The-Shelf

(COTS) components. People often cannot get the required components. Thus adapt-

ing the components into the system becomes an extra development and maintenance

cost [2]. This additional cost may trade off the benefits of CBD. This is the problem

of component selection, especially when selecting from COTS components.

In the current practice of searching components by free text, component specifi-

cations and the user requirements for the components are imprecise. For example, in

ComponentSource, components are organised in categories, but presented in textual

descriptions. Thus it is difficult to get the user-required components with imprecise

specifications. Furthermore, this problem is difficult to solve due to the nature of

CBD, which involves two separate development processes: develop components and

4

use components. These two development processes do not have an obvious connec-

tion to each other. That is to say, even if the misunderstandings on components or

requirements exist, it is hard to get them clarified.

Meanwhile, there are a large variety of components, but these components are

not tailor made to the particular requirements. Thus in reality it is very rare that

component users can get an exactly wanted component without any adaptation when

integrating it into the system. However, if component developers can get involved

in component selection by customising their products based on user requirements,

the possibility of finding and retrieving the required components can be increased.

This requires an unambiguous understanding of components and user requirements,

as well as the collaboration of component users and developers, in which components

can be customised.

1.1.3 Different Approaches

Researchers have addressed the problem of component selection from different per-

spectives. Some focus on specification techniques because component retrieval based

on matching needs an understanding of component specification, which could be for-

mal or informal. Informal specification is easy to write and read, thus it is commonly

used in current practices, such as ComponentSource [42] and TopCoder [142]. How-

ever, the search based on informal specifications often has irrelevant results that can-

not be integrated into the targeting systems. This is because informal specifications

are ambiguous, and only contain syntactic characteristics of component interfaces;

they can match many related items.

Some work has been done to extend the syntactic approaches by adding invariants

and pre/post condition pairs to constrain component behaviours, such as JML [100],

Spec# [15]. Unified Modelling Language (UML) [21] is a semi-formal modelling lan-

guage, widely used in design and documentation. Integrated with Object Constraint

Language (OCL) [77], UML can also describe component behaviours using the ex-

5

isting notations. Combining such techniques with existing programming languages

often results in a fairly complicated and very detailed specification. One is then

unable to use such a specification to retrieve components for a particular situation.

Another problem of these approaches is that it is difficult to specify when an operation

should be invoked. When describing the interactions among components, the order

by which the operations of the components should be invoked is important. Thus a

complete component specification needs to include temporal properties of component

behaviour.

One can use formal descriptions to specify component behaviours, including se-

mantics and interaction rules of component interfaces at an abstract, but sufficiently

precise and complete level. Formal descriptions also enable the checking of consistency

and correctness of the interface models. While formal methods have been successful

for specifying behavioural properties, such as those described in [4, 7, 28, 52, 58,

91, 99, 104], and tools have been developed to check these properties, they are still

not popular with practitioners. The reason is that formal methods require a strong

background in mathematics. It is currently unrealistic to expect normal component

users and developers to have such a background. That is why we cannot find existing

component repositories providing formal specifications of components.

Other researchers focus only on detailed component storage and retrieval tech-

niques, assuming that components and requirements have been specified. In such

cases the focus involves component classification and matching.

Several classification schemes such as keywords [86], enumerated [62], faceted [130]

and hypertext [44] can facilitate the user’s search of components. However, compo-

nent users may find it difficult to take advantages of such classification schemes if

they do not know the vocabularies that are used to build the schemes [116]. One

way to overcome this limitation is to define a natural language user interface [137],

by which the users input queries in natural languages, such as English. The input

queries will be analysed and decomposed into the previously defined classification

6

vocabularies. Classification-based component retrieval techniques can help to filter

irrelevant components, but cannot guarantee that the components retrieved will have

the expected behaviours. This is because classification schemes do not specify the

behavioural properties of components. A further examination of the retrieved com-

ponents is needed.

With specifications, component matching is performed upon signatures [152] and

behaviours [153]. Signature matching is also mainly syntactic and thus it is hard

to receive expected results. Behaviour matching relies on semantics and interaction

protocol of the interface model, so it can enhance the possibility of the component

retrieved being integrated and working as expected in the target system.

After the components have been matched and retrieved, they need to be evalu-

ated in order to decide the best fit. Some researchers view component evaluation as

software engineering discipline, starting from requirement analysis, through a whole

system life cycle. Most research work in component evaluation focuses on the evalu-

ation processes [94, 105, 123] that are driven by models, which include the product

descriptions and evaluation criteria, and the particular methods such as multiple-

attribute utility [47] or component ranking [108]. The lessons learned from [122] have

told us that component evaluation is not easy. This is because component users lack

the visibility into the internal workings of components, thus it is difficult to form an

appropriate and comprehensive view on how to evaluate those components.

Some component developers can provide automatically customised components

based on particular user requirements using technologies such as software product

line [40], or software factories [74]. In this case, how component users express their

requirements unambiguously so that component developers will not misunderstand

becomes a major problem.

Iribarne et al[85] integrate a component trader into a spiral methodology for CBD

by using a series of XML-based templates to document components, services and

queries. This work, however, does not cover semantic trading. Select Perspective[6]

7

tries to establish a collaboration framework for providing and obtaining the right

COTS components, in which informal repository of ComponentSource[42] is inte-

grated. However, the framework does not address in detail how the collaboration can

contribute to component selection, and no particular methods of selecting components

are provided.

1.2 The Proposed Solution

In order to minimise the additional cost of component adaptation, such as writing

glue code, components need to be tailor made to user requirements. The research

performed in [2] has suggested that

writing glue code typically takes longer and requires more effort to com-

plete than tailoring. This may be because the intellectual effort required

to simply configure (or tailor) a given COTS product is usually less than

that required to create code around it that is not only new, but also highly

constrained – the situation that exists with glue code.

1.2.1 A Collaboration Process

Only the in-house developed components can be tailor made to user requirements.

Since the components are built by other internal developers, the component user can

get access to all the component documents, including the source code. The process of

selecting components becomes teamwork within the same organisation. These com-

ponents can be tailor made to the requirements. Even if the components cannot meet

user requirements, the developers can easily modify the component implementations

to suit user needs. This is because the communication within the same organisation

is easy.

If the components are built from external developers, the communication between

component users and developers becomes difficult. However, the teamwork still can

8

be done if two conditions are met: first, it should be in the interests of the external

developers in assisting component users to find and retrieve components; second, there

should be technologies and tools supporting the collaboration. These two conditions

are not necessary when components are tailor made to the user requirements.

Recently we conducted an informal survey of seven developers from different or-

ganisations that develop components. It showed that six of seven developers and their

organisations are willing to help by customising their products based on user require-

ments. For example, the developer from Keyoti [93] said, “Generally we prefer to

do free customisations when we feel they will improve the product and make it more

marketable”. Only one developer hesitated due to the high cost of maintenance for

different versions of components. However, the developer said, “If that’s something

that might be useful for other customers, then we definitely do it, so that others can

utilise the same feature, and we extend our customer base”.

For communication purposes, a common language is needed by both component

users and developers to exchange information. The information can be the specifica-

tions of user requirements and components. When determining whether components

satisfy user requirements, one should be able to use model checking tools to check

the specifications. These tools should be available for both sides of the collaboration.

Additionally, a search engine that is built on the checking tools allows component

users to match components by the specifications.

From the perspective of component developers, they are facing the dilemma of

generality and efficiency on component design. That is to say, the components must

be sufficiently general to cover the different aspects of their use, but meanwhile they

must be concrete and simple enough to serve a particular requirement efficiently [46].

According to Szyperski [139], developing a reusable component requires three to four

times more effort than developing a component that is for a particular purpose. It is

impossible for component developers to service all the user needs, because a diverse set

of user requirements exist. Thus some promising technologies can be used to facilitate

9

the component customisation, such as generative programming [49], software product

line [40] or software factories [74]. These technologies are based on modelling software

system families, and aim at providing highly customised and optimised intermediates

or end-products that can be automatically manufactured on demand from elementary,

reusable implementation components by means of configuration knowledge, given a

particular requirement specification [49].

The collaboration can be established when users are selecting components, but

the component selected cannot completely satisfy the user requirements. Then com-

ponent users may ask the component developers to customise the components for

their specific requirements. The collaboration process can take these steps: first, the

component user submits the requirement specification to the component developer;

then the developer can use the checking tools to find which user-required properties

are not met; finally, the component is modified (customised) so that all the required

properties can be satisfied. This customised component will be sent back to the user.

In traditional CBD approaches, because developing components and using com-

ponents are mostly separated, component developers and users do not have direct

connection. Thus the additional cost of adapting components is mainly paid by com-

ponent users (see Figure 1.1 – a). If components can be customised for different users,

component developers will put in more effort. However, the component customisa-

tion job for component developers is easier than the component adaptation job for

component users to do because the developers know the internal workings of their

products. Thus for the task of selecting and adapting one component, the overall

effort can be saved according to the data collected by [2] (see Figure 1.1 – b).

By allowing the exchange of requirements and component descriptions, the collab-

oration can help component users to make their requirements clearer, and can ensure

component developers deliver suitable components to users. The collaboration can

also solve the problem of being unable to find suitable components, because either

component users can adjust their requirements, or component developers can provide

10

component developer component developercomponent user component user

overall
effort

overall
effort

develop
component

select, adapt
component

develop
component

customise
component

select, adapt
component

(a) without collaboration (b) with collaboration

collaboration

Figure 1.1: Adaptation Cost with/without Collaboration

additional choices by customising their products.

1.2.2 The Technologies to Support the Process

In order to write an unambiguous component specification, one should include se-

mantics of the interface model and the interaction rules with its environment in the

specification. Using heavyweight formal methods can serve the purpose, but it is not

practical because there will not be many people who have good mathematical skills.

As a solution, we define Simple Component Interface Language (SCIL), a lightweight

formal approach to achieving both precision and practicality. That is to say, SCIL

has easy to understand syntax, but can precisely describe components.

It is unrealistic for a specification language to capture everything, including sig-

natures, behaviours and other details. Thus SCIL only focuses on the high-level

behaviours of components.

There exists a variety of modelling languages that rely on different formalism to

support specifying different behavioural properties. If these languages with their tools

are used as complements to each other, more behavioural properties can be checked.

11

SCIL

Translator

language 1
language 2

language 3

checking tools

property 1, 3
property 3

property 2

Figure 1.2: Using SCIL as the Bridge to Checking Various Properties

SCIL acts as a bridge to access these previously developed tools. For example, in

Figure 1.2 different languages can be used to check different properties. By translating

SCIL to a variety of modelling languages it is possible for SCIL users to access all the

properties that cannot be checked by a single tool. Furthermore, it allows users who

do not have a mathematical background to use such tools indirectly.

In the collaboration framework, SCIL is also used as the communication language.

If component users and component developers use different languages to describe

requirements and component products, communication would become difficult.

1.3 Overview of the Methodology

In this thesis, we focus on setting up a collaborative process of selecting components

performed by both component users and component developers, and providing com-

munication language with tools support. However, the collaboration is not forced in

our framework, but enabled directly for better selecting results. In other words, it is

up to users and developers to decide on the nature of collaboration. The main con-

tribution of the thesis is to provide tools and methods to support the collaboration.

12

Current tools and methods do not support this directly.

We design and use SCIL as the interface specification language to capture com-

ponent behaviours. SCIL views user requirements as components as well. Although

other languages, such as JML, can be possibly used in the framework, we use SCIL

as the communication language in the collaboration for the proof of concept purpose.

Based on SCIL, we have developed the translator to other existing languages and

a web-based component selection prototype system, in which components can be

matched by their behavioural compatibility with user requirements.

By applying the prototype system in three case studies, we can evaluate whether

the system can indeed find components based on behaviour without exposing formal

details. However, we are unable to conduct experiments on the collaboration process,

because it is difficult to get industry involvement. Instead we present a recommended

practice, which we believe can help in finding required components.

Component selection involves the activities of specifying components, matching

and retrieving components, and evaluating components. The tools need to aid all

these activities. However, we only focus on specifying and matching components.

Component evaluation is not the focus of this research, because it involves a lot of

details that do not belong to behavioural properties, such as implementation platform

or developer’s background, etc. We believe that when the behavioural properties are

satisfied, components can be accepted and customised by the collaboration. There-

fore, most evaluation work can be saved.

It needs to be noted that component customisation is also not forced in our col-

laboration framework. It is performed only when developers think it necessary and

worthwhile. Thus the tools support for the collaboration process is mainly for com-

ponent users, while the techniques of customising components used by component

developers are outside the scope of the thesis. Even if customisation is chosen, it is

still a manual process since there are no tools provided at the moment. SCIL does

not automate customising components, but only tells whether a component satisfies

13

user requirements or not and points out the shortcomings.

1.4 Thesis Outline

The rest of this thesis is structured as follows:

Chapter 2 briefly introduces the background knowledge of software component

technology, examines the current state of the art in component selection, and high-

lights the advantages and shortcomings of the various approaches.

Chapter 3 presents in detail our approach to selecting required components, in-

cluding the collaborative process, the common specification language and the tools

support.

Chapter 4 shows the design of our specification language – Simple Component

Interface Language (SCIL). And through an example, we demonstrate how SCIL can

be used to describe user requirements and specify components.

Chapter 5 gives the architecture and the implementation details of our tools. We

explain how these tools can work together to search for required components.

Chapter 6 elaborates on three case studies. The first continues the example from

Chapter 4 to illustrate the features of the tools we have used. The second shows

how a user can select a spell checker component by SCIL specifications. The third is

to find components for a generic e-commerce application. Some limitations and the

potential solutions are also discussed.

Finally, Chapter 7 summarises the thesis and examines how the work can be

taken further in the future.

Chapter 2

Related Works

2.1 Introduction

As early as 1968, software components was suggested by McIlorys [110] as a way

of tackling the software crisis. Yet only in the past decade or so was the idea of

Component-Based Development (CBD) proposed. Nowadays the component-based

approach has already shown considerable success in many application domains.

CBD focuses on building software systems by assembling previously existing soft-

ware components. Borrowing ideas from hardware components, software components

are written in such a way that they provide functions common to many different

systems. Allowing components to be reused, CBD has the potential to reduce de-

velopment time and cost while increasing development productivity. Meanwhile, it

becomes possible to replace parts (components) of software systems with newer and

functionality equivalent components. Thus component systems are flexible and easy

to maintain.

Recently there has been increasing interest of Commercial Off-The-Shelf (COTS)

components that embody a “buy, don’t build” [26] approach to constructing software

systems. Selecting the suitable components against user requirements is especially

difficult for such an approach, because the source code of COTS components cannot

14

15

be accessed by the users. Thus how to describe components precisely is especially

crucial in COTS component selection.

Technically, component selection involves the steps of specifying components and

requirements, matching and retrieving components, and evaluating components. Some

non-technical aspects, such as the component supplier’s reputation and market share,

sometimes also affect the selection of components.

This chapter first briefly gives the background knowledge of component technol-

ogy, and explains the key concepts of CBD that are related to component selection.

It then examines how the existing approaches have addressed the different problems

in component selection. We highlight the strengths and shortcomings of these ap-

proaches.

2.2 Background Knowledge

2.2.1 Software Component

According to Szyperski [139], a software component is defined as:

a unit of composition with contractually specified interfaces and explicit

context dependencies only. A component can be deployed independently

and is subject to composition by third parties.

According to this definition, a software component consists of a set of interfaces,

and the encapsulated implementations of these interfaces, which cannot be directly

accessed from its environment. The separation of interfaces and their implementations

makes it possible to either add new interfaces (with new implementations) without

changing existing implementations, or replace old implementations with new ones

without affecting their interfaces. A software component is produced to be composed

with other components and deployed in a container. This is done by any person other

than its developer through the component interfaces and the contracts attached to

16

these interfaces without the knowledge of the component’s internal workings.

In this thesis, any kind of reusable units with specified interfaces, such as classes

or libraries, can be regarded as components. The size of components is not important.

For example, an assembly, which is an aggregation of components that provides inte-

grated behavior, can be regarded as a component. A framework is also a component.

2.2.2 Concept of Interface and Contract

Interfaces are the means to using software components. An interface (see Figure 2.1)

may contain one or more methods or operations by which users interact with the com-

ponent. Methods are divided as inputs and outputs. Input methods receive requests

while output methods generate results. Abstractly, all input methods can be grouped

into required ports while all output methods can be grouped into provided ports. Both

required ports and provided ports are dependent on working environment. A possible

solution is to gather all the environment-dependencies of one component into one

location, so that the component can easily adapt to new environments without any

unexpected dependencies [12]. This is useful when quality properties are concerned.

This approach requires that interfaces and their implementations are completely in-

dependent, which in reality is difficult to achieve [12].

Using interfaces usually involves a number of tacit agreements between the com-

ponent and its users. For example, a component depends on another component to

provide a service. In return, the latter component may rely on the former to provide

data arguments within certain bounds, or to have properly initialised the component

service. These are called usage contracts [33]. In CBD, there exists another type of

contract, specifying the rules about how components should be implemented. These

are called realisation contracts [33]. Corresponding to these two types of contracts

(see Figure 2.1), we can write interface specifications and component model specifica-

tions.

However, in some literature component specification, interface specification and

17

component
implementation

Interface

output
methods

input
methods

Component Model
Specification

Component
Implementation

Interface
Specification

Component User

<<refines>>

realisation

usage

Figure 2.1: Interfaces, Methods, Contracts and Specifications

component model specification have been confusingly used. Interface specifications

explain how components can be used, while component specifications describe what

components can do. Interface specifications are simpler, but contain enough infor-

mation for determining how the underlying components are composed. Component

specifications do not make assumptions on their working environment. The detailed

discussion on the differences can be found in [53]. Despite the differences, in this

thesis sometimes we also use component specification to mean interface specification.

Component specification is also confusingly used in some literature to mean com-

ponent model specification, which consists of component model, support infrastruc-

ture, implementation framework, as well as packaging and deployment models. The

typical examples of component model specification include Microsoft’s Component

Object Model (COM) [43], Sun’s JavaBean [113], Enterprise JavaBean (EJB) [114],

and OMG’s CORBA Component Model (CCM) [75].

18

2.2.3 Component-Based Development Life Cycle Model

Compared to traditional software development, component-based software develop-

ment shifts development emphasis from programming systems to composing existing

components to build systems.

2.2.3.1 Development Process

CBD is characterised by two separate but parallel development processes throughout

the whole system life cycle. The first process is the component development under-

taken by component developers. This process can follow an arbitrary development

process model. As components are for reuse purposes, managing requirements is more

difficult. Meanwhile a precise component specification is always required.

The second process is the system development performed by system developers

(they are the component users). This process follows the steps of [47]: requirement

analysis, architectural design, component selection, component adaptation, system

integration, verification and validation, system maintenance (see Figure 2.2).

Requirement Analysis: This step is to analyse whether the requirements can be

fulfilled by available components. This means that requirement engineers must be

aware of the components that can be potentially reused. Since it is likely that no

appropriate components can be found, there is a risk that the components will have to

be implemented from scratch. In order to minimise this risk, system developers need

to keep negotiating and adjusting the requirements to be able to reuse the existing

components.

Architectural Design: This step should pay attention to architectural patterns,

key architectural design principles including abstraction and separation of concerns,

and system decomposition principles. A good decomposition satisfies the principle of

loose coupling between components.

19

requirement
analysis

architectural design

component
selection component adaptation

system integration

verification and
validation

system maintenance

find components evaluate components

component development

system development

Figure 2.2: Two Development Processes of CBD

This step is also tightly connected to the availability of the components. Com-

ponents are complying with a particular component model that requires a particular

architectural support infrastructure. Thus the component model directly has im-

pact on architectural designs. It is possible to use components that are implemented

following different component model specifications. Vienna Component Framework

(VCF) [121] is an approach to supporting the interoperability and composability of

components from different component models. The advantage of VCF is that sys-

tem developers do not have to understand the details of all the available component

models when selecting components, instead they focus on the tasks that components

can fulfil. However, at the moment VCF does not support converting the support

20

infrastructures of different component models, for example, transaction and security

services.

Software architecture includes abstraction, rationale (which is related to require-

ments and implementation), architectural style [135], constraints, multiple models,

multiple views [96], etc. Software architecture is increasing in importance as systems

are becoming larger and more complex. It has been widely agreed that software ar-

chitecture is the only way to guarantee quality attributes of the system that we try

to build [13]. This is especially true when the system is built from commercial com-

ponents of which the internal workings are completely invisible to component users.

However, when many system qualities are expected, some of these qualities may con-

flict, so that trade-offs have to be made taking into account the relative priorities of

these system qualities.

Component Selection: This step is to find components to fit into an underlying

architecture. Since software architecture puts the constraints on component selection

and the rationale for choosing a specific component in a given situation, one can

identify components from the system architecture, generating the requirements for

each potential component. Many methods and techniques of component identification

have been introduced in [146].

Patterns also can help in identifying potential components [124]. A pattern is a

recurring solution to a standard problem in a certain context [134]. Patterns enable

people to exchange architectural knowledge and design paradigm.

Components in the repository will then be matched against the user requirements

for the identified components. Several Architecture Description Languages (ADL) [41]

have been developed to describe such requirements, e.g., architectural roles that com-

ponents play. Components can be retrieved through a process of filling roles with the

components within the architecture. In one word, architectural decisions have a large

effect on the components selection [106].

21

The selection process should ensure that appropriate components have been se-

lected with respect to their functional and non-functional properties. Some guide-

lines [88] have been given to choose components that satisfy specific performance

metrics. This would require verification of the component specification, or testing of

some of the component’s properties that are important but not documented. Fur-

thermore, even if isolated components function correctly, an assembly of them may

fail, due to invisible dependencies and relationships between them [47]. This requires

that components integrated in assemblies are tested before being integrated into the

system.

Component Adaptation: This step is required to avoid architectural mismatches[65].

Since each component is developed targeting different requirements, making different

assumptions about the working environment, the purpose of adaptation is to ensure

that conflicts among components are minimised, or to ensure particular properties of

the components or the system. There are several known adaptation techniques: us-

ing parameterised interface makes it possible to change the component properties by

specifying parameters that are the parts of the component interface; writing wrappers

to encapsulate components and provide new interfaces that either restrict or extend

the original interfaces, or to ensure or add particular properties; writing adapters

to modify component interfaces to make it compatible with the interfaces of other

components. These different approaches depend on the accessibility of the internal

structure of a component.

System Integration: This step includes integration of standard infrastructure

components and the application components. The integration is done at two lev-

els: particular components and the entire system. The integration of a particular

component into the system is also called component deployment.

22

Verification and Validation: This step uses the standard test and verification

techniques [89]. Since components are black-box types and delivered from different

vendors, the errors are difficult to locate. Contractual interface specifications play an

important role in checking the proper input and output from components.

System Maintenance: This step is mainly about replacing old components by

new components or adding new components into the systems. The paradigm of the

maintenance process is similar to this for the development: find a proper component,

evaluate it, adapt it if necessary, and integrate it into the system.

2.2.3.2 Some Approaches to CBD

There have emerged some approaches that provide frameworks and best practices to

achieve CBD. Following the guidelines provided by these approaches, various methods

and tools can be used within these frameworks.

RUP (Rational Unified Process): RUP [97] is created by the Rational Software

Corporation, now a division of IBM. RUP is not a single concrete prescriptive process,

but rather an adaptable process framework. It follows an iterative and incremental

way to construct software systems.

When handling component-based software systems, RUP focuses on producing

the basic architecture in early iterations. This architecture then becomes a prototype

in the initial development cycle. The architecture evolves with each iteration to

become the final system architecture. RUP also asserts design rules and constraints

to capture architectural rules. By developing iteratively it is possible to gradually

identify components that can then be developed, bought or reused. These components

are often assembled within existing infrastructures such as CORBA [76], COM [43]

or J2EE [115].

RUP is characterised by a common use of Unified Modelling Language (UML) [21],

as well as object-oriented concepts and constructs. But RUP has not addressed in

23

detail how to select COTS components in CBD. Evolutionary Process for Integrated

COTS-Based Systems (EPIC) [5] extends RUP to accommodate COTS-based system

development. It provides a framework that redefines acquisition, management and

engineering practices to more effectively leverage the COTS marketplace and other

sources of previously existing components.

Catalysis: Catalysis [55] has been developed and applied in many fields since 1992.

It is a framework specially designed for component-based development. Catalysis

makes separate development cycles for component kit architecture, component de-

sign and component assembly, and a cycle for development of the component reposi-

tory. When creating a kit architecture, a domain model is built independent of any

component’s design. The domain model includes not only entities and relations, but

invariants and dynamic constraints as well.

When designing components, detailed specifications are required. Component

specifications can be formed by using UML plus Object Constraint Language (OCL) [77].

When a candidate implementation is presented, it should be tested against the spec-

ification model.

Connectors are defined separately from the components. Connectors are interfaces

that can encompass the ideas of dialogues, protocols and transactions. A variety of

techniques can be applied to defining connectors precisely. The central idea is the

post-conditions defined on abstract models of the components’ states.

However, Catalysis is specially suitable for using in-house developed components;

it has not given details on how to cope with the situation if the required component

specifications cannot be satisfied.

Select Perspective: Select Perspective [6], from Select Business Solutions, has

evolved over the past 10 years to become a component-based development process.

Select Perspective is unique in offering processes and techniques that fully support

the creation of service-oriented architectures.

24

The main theme behind the Select Perspective process is of three workflows: Sup-

ply, Consume and Manage. The Supply workflow presents the steps for delivering

components or services. The Consume workflow is an overall process for the activi-

ties that focus on the project-based delivery of the business solutions. In the Manage

workflow there are two distinct streams of activity. One stream is concerned with the

acquisition, certification and publication of components. The other stream focuses

on the location and retrieval of candidate components for reuse.

Select Perspective picks components through a community of component suppliers,

consumers, and the brokerage role between them. Searching ComponentSource [42]

repository has been integrated into the Select Perspective toolset. When candidate

components arrive, they undergo formal testing and certification. If the components

are certified, then after classification and storage in the component repository, they

are published ready for subsequent reuse. When component users have specified the

components or services required for their construction work, they then search the

component repository for matches to their requirements. Whenever candidates are

discovered they can be retrieved and examined for their suitability before they are

finally reused.

Selective Perspective supports building systems from COTS components. It pro-

vides a model of collaboration by component suppliers, consumers and brokers. How-

ever, it does not address how the collaboration can contribute to component selection.

2.2.3.3 Focusing on Component Selection

As we mentioned before, component selection is the key step when constructing sys-

tems from previously existing components. Researchers are interested in how to

effectively and efficiently find and retrieve the components that can satisfy user re-

quirements. This problem has been addressed from different perspectives. Thus many

concepts related to component selection have been introduced. We drew a concept

map (see Figure 2.3) to show how these concepts can support the selection of com-

25

ponents.

Among these concepts, we focus more on the existing techniques of specifying

component interfaces, storing and retrieving components, as well as evaluating com-

ponents.

Software
Architecture

Component
Certification

Component
Evaluation

Interface
Specification

Pattern/Framework

Assembly Prediction

Component
Retrieval

Software
Component

Component
Adaptation

helps
specifies

decides

helps

helps

helps

helps

relies on relies on

focus

Component
Identification

decides

relies on

Figure 2.3: The Concept Map of Component Selection

A typical component selecting process involves some roles, which will be referred

to throughout this thesis. We define them as below:

• A component user is a person or an organisation who selects and purchases the

component and uses it in the system development. We use the term component

purchaser to avoid confusing with system user. The synonyms to mean a com-

ponent user in some literature include component buyer, component evaluator,

component integrator or system developer.

26

• A component vendor is a person or an organisation who designs and implements

the component, then makes it available to be reused. Others may use different

terms to mean a component vendor, including component provider, component

supplier, component developer or component writer.

• A component broker is a middleman between users and vendors, bridging their

requirements and offerings. A component broker takes care of the trading place

and negotiates contracts of purchase and sale. ComponentSource [42] is a typical

online component broker.

2.3 Specifying Component Interfaces

Finding components needs an understanding of component interface specifications,

which explains how a component can be used. The result of component selection

depends on how precisely components can be specified. In general, three levels of

interface specification can be identified: the syntactic level, the semantic level and

the protocol level. Apart from that, the non-functional properties or quality attributes

of components may also be written into the interface specification [19].

27

2.3.1 Syntactic Level

Interface specifications at syntactic level express only the syntactic characteristics of

component interfaces, such as what services the component provides and the signa-

tures of these services. Conventional API (Application Programming Interface) based

on some programming languages, such as Java and IDL, is a typical approach at this

level.

2.3.1.1 Interface Definition Languages

Interface Definition Languages (IDL) were originally designed to express object in-

terfaces in client/server applications. When clients and servers are implemented in

different languages and do not share the common call syntax, for instance, Java and

Pascal have different ways of calling routines, IDLs are used to describe interfaces in

a language-independent way. Program 2.1 shows a CORBA IDL [75] fragment of the

auctioneer component interface.

Program 2.1 Auctioneer Interface in IDL

interface Auctioneer {

void login(in Bidder b);

void logout(in Bidder b);

boolean bid(in Item item, in float offerPrice);

string purchase(in Item item, in float finalPrice);

void sell(in Item item, in float minPrice, in float maxPrice);

}

However, when used to describe component interfaces, IDLs exhibit a number

of limitations [29]. The example (see Program 2.1) describes only the services the

auctioneer component provides, but not the services it requires to accomplish its

28

tasks. Operation descriptions are syntactic. The constraints on how and when the

operations may be invoked cannot be expressed.

2.3.2 Semantic Level

In order to overcome the limitations of Conventional API approaches, the idea of

Design by Contract (DBC) [112] is used to augment interface definitions with semantic

information. The semantic information includes the contract on interface operations,

viz., the obligations of both the consumer of an operation and the provider of the

operation.

In Design by Contract, the provider of the operation makes certain assumptions

(the pre-condition of the operation) about how the operation is called. In return for

the consumer meeting the terms of the pre-condition, the provider guarantees that

the operation will result in certain properties (the post-condition of the operation)

being met.

DBC also makes these contracts executable. The contracts are written attached

to program code in the programming language itself, and then are translated into

executable code by the compiler. Thus, any violation of the contracts that occur

while the program is running can be detected immediately. The typical approaches

following the DBC principle include Java Modelling Language (JML) [100], Spec# [15]

and OCL [77].

2.3.2.1 Java Modelling Language

Java Modelling Language (JML) is a behavioural interface specification language for

Java. JML combines the practicality of DBC language like Eiffel with the expres-

siveness and formality of model-oriented specification languages [100]. JML uses

Java’s expression syntax to write the predicates used in assertions, such as pre/post-

conditions and invariants. For example, in an auction system, when a bidder pays for

an item, the item has to be existing in the product repository, and also the buying

29

price should be greater than or at least equal to the minimal price set by the item

seller. Thus when specifying the auctioneer component in JML, the method pur-

chase would be written as in Program 2.2. If the pre-conditions are met (the requires

part), the method guarantees that the result string would be the name of the item

purchased.

Program 2.2 Code Fragment of Auctioneer Purchase Method in JML

/*@ public invariant !repository.isEmpty() &&

@ (\forall Item item; repository.contains(item);

@ item.minPrice >= 0 && item.minPrice <= item.maxPrice);

@*/

...

/*@ requires item != null && repository.contains(item)

@ && finalPrice >= item.minPrice;

@ ensures \result.equals(item.name);

@*/

public String purchase(Item item, double finalPrice) {

...

}

One can also write an invariant as in Program 2.2, specifying that the product

repository is always available, and for all the items in the repository the minimum

price should be greater than or equal to zero, but less than or equal to the maximum

price set by its seller. In JML, invariants are class invariants, viz., they should hold

for all instances of the class at any time. JML specifications are written in special

annotation comments , which start with an at-sign(@).

The advantage of using Java’s notation in assertions is that it is easier for pro-

grammers to learn and less intimidating than languages that use special purpose

mathematical notations. Meanwhile JML extends Java’s expressions with various

specification constructs, such as quantifiers [27]. JML speculations are more precise

than specifications in IDLs. However, JML cannot be used on non-Java code.

30

From the view of component selection, JML has two major problems. The first,

with the obvious development-centric focus, is that JML specifications depend heavily

on the internal elements of the component. Constraints are often expressed in terms

of a property that is internal to the component [66]. Thus when selecting components,

JML specifications are not always helpful.

In the second it is difficult to use JML to specify when a method should be

invoked. Temporal properties are especially important when the component interacts

with other components. For example, the purchase method is allowed to execute only

when the bidder has logged into the system, while the user authentication function is

delivered by another component. Moveover, verifying joint behaviour of components

expressed in Java and JML requires the use of sophisticated theorem provers [127].

2.3.2.2 Spec#

Spec# [15] is very similar to JML. The Spec# language extends C# with contract

specifications, analogous to the way JML extends Java. The Spec# compiler emits

run-time checks that enforce the contracts and the Spec# program verifier uses

theorem-proving technology to statically check the consistency between a program

and its contracts. One difference between Spec# and JML is that Spec# builds in

a new methodology for object invariants [14], trading restrictions on the kinds of

programs that can be written for a sound modular reasoning technique.

Using Spec# to write assertions is similar to using JML. Invariants and pre/post-

conditions are introduced with the keywords invariant, requires and ensures respec-

tively. However, Spec# can only be used on C# code.

Spec# shares the similar advantages and disadvantages with JML when used to

specify components for selection.

31

2.3.2.3 Object Constraint Language

Object Constraint Language (OCL) [77] is a declarative language for describing rules

that apply to Unified Modelling Language (UML) [21] models. OCL supplements

UML by specifying constraints on objects defined by UML.

OCL has the power of the Lower-order Predicate Calculus (LPC) plus simple set

theory. OCL statements are constructed in four parts: a context that defines the

limited situation in which the statement is valid, a property that represents some

characteristics of the context, an operation that manipulates or qualifies a property,

and keywords that are used to specify conditional expressions.

Four types of constraints can be specified by OCL. They are: invariants, pre/post-

conditions and guards. Guard is a constraint that must be true before a state tran-

sition fires.

Program 2.3 shows the code fragment of the purchase method and invariants

specified in OCL.

Program 2.3 Code Fragment of Auctioneer Purchase Method in OCL

context: Auctioneer

inv: repository->notEmpty

inv: forAll(item | repository->includes(item) implies (item.minPrice >= 0 and item.minPrice <=

item.maxPrice)

...

context: Auctioneer::purchase(item: Item, finalPrice: Real): String

pre: item <> null

pre: self.repository->includes(item)

pre: finalPrice >= item.minPrice

post: result = item.name

Similar to JML and Spec#, OCL provides expressions that have neither the ambi-

guities of natural language nor the inherent difficulty of using complex mathematics.

By only allowing assertions to use pure methods, JML and OCL have no side-effects,

32

because they describe what rather than how. Spec#, however, seeks to alter the un-

derlying programming language. For example, Spec# has introduced field initialisers

and expose blocks.

Different from JML and Spec#, OCL is language-independent. OCL is also a nav-

igation language for UML graph-based models. However, OCL is more complicated

and its presentation is not modular.

2.3.2.4 Alloy

Alloy [87] is a first-order declarative language based on sets and relations. It is

strongly typed and assumes a universe of atoms partitioned into subsets, each of which

is associated with a basic type. An Alloy specification is a sequence of paragraphs

of two types: signatures used for constructing new types, and a variety of formula

paragraphs used to record constraints.

One can use Alloy modules to specify component interfaces, in which fact state-

ments can be used to write invariants describing properties of states, and pre/post-

conditions can be expressed as states before/after state transitions. An example is

shown in Program 2.4: the pre-condition is that the bidder’s state changes to win,

and the product becomes engaged ; and the post-condition is the product is sold.

Program 2.4 Code Fragment of Auctioneer Purchase Method in Alloy

pred purchase (ps, ps’: ProductStatus, bs, bs’: BidderStatus) {

bs = win && ps = engaged => ps’ = sold && bs’ = bs

}

Compared to OCL, Alloy is more succinct and expressive. OCL supports complex

data types, but lacks tools support. Research tools such as USE [70] exist, but most

only support a subset of the full OCL language, while Alloy Analyser implements the

complete Alloy language. Alloy has structuring mechanisms to allow reuse of model

33

fragments, but OCL does not. Furthermore, Alloy has the power to specify temporal

properties of software systems by defining states.

The Alloy Analyser creates a boolean satisfaction formula from an Alloy model,

and assigns a scope to the formula as the first order logic is undecidable. The analysis

done by SAT solvers determines if an instance exists for the formula within the scope

(the number of elements in each domain set). If one does exist, then the Alloy model is

consistent. The tool can also be used to look for theorem (assertion) counterexamples

that indicate model inconsistency. Failing to find an instance of a formula does not

necessarily indicate that the model is inconsistent; it may simply have an instance at

a larger scope. Similarly, failing to find a counterexample to an assertion does not

mean that the assertion is consistent; a counterexample may exist at a larger scope.

2.3.2.5 The Other Approaches

Other formal specification techniques, including those based on general mathematical

syntax and semantics, such as Z [92], VDM [71] and Larch [39], are also able to

present a sufficiently precise and complete understanding of components. However,

these specification languages are too difficult for normal practitioners to use.

2.3.3 Protocol Level

Interface specifications at the protocol level specify the contracts on the interactions

among components, viz., the ordering between exchanged messages and blocking

conditions. Thus the temporal properties of component interfaces, which the semantic

level specifications cannot describe, need to be captured.

There have been a number of efforts in introducing temporal aspects into compo-

nent interface specifications. These approaches are based on Finite State Machines

(FSM) [36, 52, 120, 131, 150, 151], temporal logic [4, 11, 56, 79, 90, 98], process

algebras [8, 28], Message Sequence Chart (MSC) [58, 73], Petri-net [17], etc.

34

2.3.3.1 Finite State Machines

Using Finite State Machines (FSM) to model the protocol information has been sug-

gested by [120] and [151]. Protocol specifications can be used to generate adaptors

between components [150]. Cho [36] presents a specification technique that can iden-

tify component interactions and serve as the basis for automatically generating test

cases for the integration of components. In such an approach, one needs to write

two levels of specifications for one component: interface specification (semantics) and

protocol specification (interaction). The interface specification is based on OCL [77],

while the protocol specification is built on FSM. Thus how the other components

would interact with the component can be captured. Reussner [131] defines the in-

terface of a component as consisting of two protocols: the protocol defining the call

sequences to offered services and the protocol describing the call sequences to external

component services. These two protocols are defined by two different automata. The

main benefit of this enhancement is the relatively low complexity of algorithms for

checking the equivalence and substitutability, and for computing the adaptation [131].

Interface automata [52] is also able to capture both input assumptions about the

call sequences to offered services, and output guarantees about the call sequences

to external component services. The formalism supports automatic compatibility

checks between interface models, and thus constitutes a type system for component

interaction. Unlike the traditional uses of automata, interface automata is based on

an optimistic approach to composition, and on an alternating approach to design

refinement. CHIC [32] is a modular verifier for behavioural compatibility checking

built on interface automata.

Generally speaking, this type of approach writes a protocol specification as a

set of abstract states, and the execution of the component services is modelled as the

transitions among the states. Since the abstract states do not belong to the signatures

of any component interfaces, this style of specification is difficult to understand from

the user’s perspective. For the component developers, it is also impractical to ask

35

them to write full descriptions of the component interaction protocols [80].

2.3.3.2 Temporal Logic

Temporal Logic has been used to describe the temporal aspects of component be-

haviour. The languages [4, 98] based on temporal logic can specify both intra-

component and inter-component call ordering constraints. This allows one to combine

component properties and architectural properties to reason about the system. Some

constructs provided by these temporal logic languages can be used to organise spec-

ifications in a hierarchical way, which is more suitable for the reasoning. The proof

calculus associated with the languages allows people to prove properties effectively,

taking advantage of the structure of the specifications.

Reactive modules [11] is a formal model for concurrent systems. The model rep-

resents synchronous and asynchronous components in a uniform framework that sup-

ports compositional (assume/guarantee) and hierarchical (stepwise refinement) design

and verification. The abstraction operator, which may turn an asynchronous system

into a synchronous one by collapsing consecutive steps into a single step, allows one to

describe systems at various levels of temporal detail. The given below is the example

showing that the method purchase should be called after the method bid is called

and the bidder wins the bidding (see Program 2.5).

Program 2.5 Code Fragment in Reactive Modules

...

update

[] bs = logged in & ps = available & bid? -> bs’ := win; ps’ := engaged

[] bs = win & ps = engaged & purchase? -> ps’ := sold

...

In [79, 90], temporal operators, such as before, until, etc., are defined to specify

36

constraints on component interactions. In these approaches, the temporal operators

are about timing relationship of actions, rather than truth relationship of tempo-

ral logic formulas. In order to reduce the difficulty of using formal specification

languages, the specification patterns [56] are introduced to enable the transfer of ex-

perience between practitioners by providing a set of commonly occurring properties

and examples of how these properties map into specific specification languages. The

temporal operators are used in writing these specification patterns.

2.3.3.3 Process Algebras

Another class of approaches bases the specification of component interaction pro-

tocols on the use of Process Algebras, such as Communicating Sequential Processes

(CSP) and π-calculus. Canal et al. [28] propose the use of the π-calculus for the

specification of software architectures. This permits the analysis of the specifications

for bisimilarity, deadlock and other interesting properties. Canal et al. [29] also ex-

tend CORBA IDL with π-calculus for describing object service protocols, aimed at

the automated checking of protocol interoperability between CORBA objects. Thus

formal specifications in π-calculus are incorporated into the component descriptions.

However, the π-calculus is a low-level notation. When specifying large systems, it

would be difficult to use.

Some Architectural Description Languages (ADL) include the descriptions of the

protocols that determine access to the components. The protocol descriptions derive

from process algebras. For example, Allen and Garlan define architectural connectors

as explicit semantic entities in Wright [8]. These formal connectors are specified as a

collection of protocols that characterise each of the participant roles in an interaction

and how these roles interact. The underlying formal semantics based on CSP makes

it possible to check architectural compatibility in a way analogous to checking types

in programming languages.

37

2.3.3.4 Message Sequence Chart

Message Sequence Chart (MSC) has become popular in software development by

its visual representation, depicting the involved processes as vertical lines, and each

message as an arrow between the source and the target processes, according to their

occurrence order. MSCs can also serve as a specification and reasoning technique for

the composition of systems from components. In [58], MSCs express global coordi-

nation properties as well as requirements on individual components for their correct

participation in an interaction pattern. The paper defines a decompositional proof

rule based on MSCs, and it suggests a composition operator for MSC specifications

of the retrieved components that are designed independently of each other. In the

paper [73], the MSC connector concept is introduced. The MSC connector concept

makes it possible to model component-based systems by means of MSCs, in which

the MSC connector concept has been applied to a protocol specification. However,

one needs to separately study the expressiveness of MSC languages, and adapt the

validation algorithms [67].

2.3.3.5 The Other Approaches

Bastide et al. [17] use Petri Nets to specify the behaviour of CORBA objects, pro-

viding full operational semantics. However, since the semantics of the behavior of

operations and the interaction protocols are defined altogether, the specification does

not distinguish the internal semantics and the external behaviour of the component,

thus it is difficult for the user to understand how the component will interact with

others.

Plasil and Visnovsky write component behavioural protocols using a notation

similar to regular expressions [126] that is easy to read. Based on such a protocol def-

inition, the introduction of bounded component behaviour and protocol conformance

relation makes it possible to verify the adherence of a component’s implementation

to its specification at run time, while the correctness of refining the specification can

38

be verified at design time.

One can also use UML collaboration, sequence and state diagrams [21] to semi-

formally describe the component interactions. However, collaboration and sequence

diagrams can describe only traces of execution, they cannot be used for a complex

description of component behaviour. Although state diagrams have the same expres-

sive power as regular expressions, there is no support in UML for combining state

diagrams. Moreover, UML lacks tools support to check consistency of interaction

models.

Using ADLs is another way to specify component interactions [41], and ADLs are

normally easy to understand and use. However, ADLs have been mainly focusing on

early stages of development, they are not suitable for specifying components, even

though they share some of the component concepts and their scope is complimentary

to component models [47]. ADLs differ from the above approaches by their explicit

focus on connectors and architectural configurations. When describing component

interactions, ADLs cannot specify the protocol by which those operations must be

invoked, thus some extension work is needed [8, 28] to overcome this difficulty.

2.3.4 Specifying and Predicting Quality Properties

Quality property is also called Quality of Service (QoS) or non-functional property.

ISO reference model for QoS [60] defines the concepts of QoS characteristics, QoS

contracts and QoS capabilities, as well as a basic architecture that are basic elements

of QoS specification.

Examples of QoS-enabled modeling languages have QoS Modelling Language (QML)

[63] and Component Quality Modeling Language (CQML) [1]. These languages sup-

port describing user-defined QoS categories and characteristics, quality contracts and

quality bindings. But they do not provide support to optimise the resource allocation,

or evaluate the levels of quality provided.

Some work has extended IDL to support QoS, such as Contract Description Lan-

39

guage (CDL) and Quality Interface Description Language (QIDL) [103]. CDL and

QIDL can be used for the automatic generation of stubs and skeletons that support

the management of some basic QoS functions and specification of QoS attributes.

However, they do not provide support for the description of user-guided QoS at-

tributes.

Recent research interest in assembly prediction focuses on predicting quality prop-

erties of component assemblies prior to actually acquiring the components. Some work

has been done on performance [34], latency [84], reliability [136], etc.

The prediction has two prerequisites: first, all the components integrated in the

assembly should be certified by trusted agents or organisations [145] using some tech-

niques to generate component trustworthiness. The motivation for component cer-

tification is that there is a causal link between a component’s properties and the

properties of the assembly including the component [48]. If enough is known about

the components selected for assembly then it may be possible to predict the properties

of the final assembled system.

Second, a reasoning framework is required to make a determination if the assembly

of those components is well formed with respect to the rules dictated by the reasoning

framework. If the assembly is well formed, then the reasoning framework generates a

prediction.

2.4 Component Storage and Retrieval

As the complexity of components and the size of component repositories increase, a

clear classification scheme of components and a well-designed structure of component

repositories can make components easier to locate and retrieve. Therefore, efficient

component retrieval depends on the way in which components are classified, spec-

ified and stored. Mili et al. divide component-retrieval methods into three major

categories [116]: text-based, lexical descriptor-based, and formal specification-based

40

encoding and retrieval.

2.4.1 Text-based Encoding and Retrieval

Systems applying the text-based encoding and retrieval method [61] describe the

functionality of components in a natural language. The retrieval is based on the

words or strings appearing in the description, which usually do not carry much se-

mantic information. As indicated in [116], the text-based method is easy to use, but

imprecise.

2.4.2 Lexical Descriptor-based Encoding and Retrieval

Retrieval systems based on lexical descriptor encoding assign a set of previously de-

fined key phrases (lexical descriptors) to classify software components. Domain anal-

ysis must be performed first to identify and to determine the key phrases [129]. Some

classification techniques that have been used include enumerated [62], keyword [86],

faceted [51, 111, 130, 144] and hypertext [44].

An enumerated classification scheme generates a hierarchical structure of software

components, while a faceted scheme uses several facets, and each facet contains a

keyword to describe a software component. The faceted scheme, drawn from library

science, can describe the attributes of a component more precisely and more flexibly

than the enumerated scheme. Hypertext provides a means to link together all of the

related work products, such as design models, source code, tests, manual and other

documentation, into a conceptual entity [44]. This link provides ready access to all

work products within the entity, as well as to related or similar entities. Multiple

classification schemes are supported to provide a number of different ways to browse

and search through a repository. The main problem of the lexical descriptor-based

encoding and retrieval method, however, is that an agreed vocabulary has to be

developed and component users have to be familiar with this vocabulary [116].

41

One way to overcome this limitation is to define a natural language user inter-

face [68, 137], by which both user queries and software component descriptions can be

expressed in a natural language, such as English. Then both user queries and software

component descriptions can be analysed and formalised into the internal representa-

tion, in canonical forms. Then the matching is based on computing the closeness of

the query and the software component description, which is the distance of the two

canonical forms. A public domain lexicon or domain ontology is used to get lexical

information for both the query classification and the component classifications.

The retrieval techniques based on similarity analysis can provide good retrieval

effectiveness through partial matching of descriptions, processing of synonyms, gen-

eralisations and specialisations of terms and considering the syntactic and semantic

information available in the descriptors of software artefacts [69]. One can retrieve

components by applying fuzzy logic to compute proximity between a user query and

a component specification, which are tree-structured models constructed from their

respective XML files [107].

However, the component semantics provided by these approaches does not contain

precise behavioural properties of components. A further examination of the retrieved

components is needed.

2.4.3 Formal Specification-based Encoding and Retrieval

In order to obtain more precise component-retrieval results, component behaviour

must be considered. The behaviours of components are described by both semantic

and protocol aspects of interface specifications. Hence, formal methods are used to

capture not only the terms appearing in the interface operation signatures [152], but

the meanings of these operations and the orders of these operations being invoked.

Any desired relations between a user-expected component and a previously existing

component in the repository, such as refinement and matching, is expressed by a

logical formula composed from the behaviour specifications of both [59]. Component

42

retrieval becomes possible by checking the validity of the formula by an automated

theorem prover, and only if the prover succeeds, the relation is considered to be

established.

The majority of such work uses first-order logic [35, 117, 125, 153] as the underlying

formal notation to write the specifications of component interfaces and user queries.

The matching is presented on the basis of interface operations, checking how exactly

the pre-conditions and post-conditions of the operations and queries must match.

The matching criteria can range from exact match to relaxed match [125, 153]. For

relaxed matches, it may be possible to identify the type of adaptation necessary for

retrieved components as is the case in the REBOUND project [125].

Modules are specified by grouping individual operations and a query matches a

module if all query requirements are matched against the module specification [82,

153]. When modules are specified by state transitions, the matching algorithm has

been given by [81].

The limitation of formal specification-based encoding and retrieval is that one

has to write formal specifications that are difficult for normal users who do not have

good mathematical knowledge, and will become much more difficult as the size and

complexity of components increase.

2.5 Component Evaluation

After the components have been matched and retrieved, they need to be evaluated

in order to decide the best fit. Thus, component evaluation is a decision aid. Some

researchers view component evaluation as software engineering discipline that starts

from requirement analysis and is driven by models that include the product descrip-

tions and evaluation criteria, while others focus on the particular methods used to

make decisions, such as multiple-attribute utility [47] or component rank [108].

43

2.5.1 Evaluation Processes

Evaluating components needs to follow a process that at the most abstract level

involves three large-scale tasks:

1. Plan the evaluation: define the problem, define the outcomes of the evalua-

tion, assess the decision risk, identify the decision-maker, identify resources,

identify the stakeholders, identify the alternatives, and assess the nature of the

evaluation context.

2. Design the evaluation instrument: specify the evaluation criteria, build a prior-

ity structure, define the assessment approach, select an aggregation technique,

and select assessment techniques.

3. Apply the evaluation instrument: obtain products, build a measurement infras-

tructure, perform assessment, aggregate data and form recommendations.

Most existing approaches, such as [37, 94, 105, 118, 123], follow the above pro-

cess. Meanwhile the process is driven by different models: OTSO [94] builds the model

with definition of evaluation criteria from various sources, such as initial requirements,

analysis report, architectural design, etc., and the evaluation is performed upon these

criteria. CAP [123] by Siemens has a similar model. In IusWare [118], an evaluation

model is formalised to facilitate verification and validation activities by checking the

consistency of the model and its components. When applying the evaluation model,

attributes of products are measured. These measures are transformed into values on

criteria, and these values are then aggregated to form a recommendation. PORE [105]

defines three models (requirement, product and compliance) to achieve a compromise

between customer requirements and product features. Similarly, CARE [37] intro-

duces the world model (describing the environment), the system model (representing

the system capabilities: functional and nonfunctional), and the interface model (map-

ping system goals and requirements to component goals and specifications). Based

on these three models, component evaluation is conducted.

44

All the above evaluation approaches set requirement analysis as the starting point,

and with the identification of components, the system requirements and architecture

are refined. For example, OTSO [94] is conducted during the requirements specifi-

cation phase; PORE [105] particularly emphasises the iterative and parallel process

of requirement acquisition and component evaluation. CARE project [38] uses com-

ponent searching and matching process to support the reciprocal refinements of the

stakeholders requirements.

Despite the similarities, the above approaches also have their own different fea-

tures. PORE [105] and CARE [37] stress that the requirement should be “component-

aware”, that is to say, requirement specifications must be sufficient to enable effective

product selection rather than complete with respect to the user’s needs. IusWare [118]

adds more formalism flavor to check different evaluation models created with more

freedom in various situations. CAP [123] packages all data that evolved from per-

forming the CAP activities into a repository for reuse purposes in future projects.

CARE [37] is designed as a knowledge-based approach, in which agents (either hu-

man or software) are created to fulfil different sub-goals, based on which final goal

can be achieved. Another agent-based component evaluation method [147] models

different players as either cooperating or competing expert agents. The administra-

tor agent collects and combines the knowledge and decisions from those expert agents

in different areas to support component selection.

2.5.2 Particular Methods

The particular methods for evaluating components can help to identify alternatives

among discrete choices based on some criteria. Multiple-attribute utility is a kind of

multiple-criteria evaluation method [47]. It is based on a preference structure that

includes the factors that govern the decision and judgements about these factors.

Meanwhile it uses an aggregation technique to generate interpretation of a classifying

or ranking model.

45

Analytic Hierarchy Process (AHP) is a multiple-criteria decision-making method

that uses hierarchic or network structures to represent a decision problem and then

develops priorities for the alternatives [133]. AHP attempts to resolve conflicts and

analyse judgements through a process of determining the relative importance of a set

of criteria. BAREMO [141] is a typical application of the AHP model to help software

engineers choose the appropriate components for a project. However, AHP assumes

that criteria are independent. This will result in compensations in scores and getting

unworkable combinations of values, such as .NET with Linux. If considering criteria

dependencies to be important, one may look to the field of Artificial Intelligence for

applicable techniques, for example, fuzzy logic [50, 109].

From a non-technical perspective, components are evaluated based on such criteria

as user’s familiarity, vendor’s reputation, project budget, etc. In this case, component

selection can be viewed as general product selection that is driven by non-technical

models, for example, microeconomic model [25]. These models are often calculated

relying on some intelligent techniques [24], such as data mining, knowledge discovery,

etc.

Sun [138] discusses how Case-Based Reasoning (CBR) can support electronic com-

merce product selection in his Ph.D. thesis. CBR is an artificial intelligence technol-

ogy that uses past occurrences to locate problem solutions. In CBR, the primary

knowledge source is not generalised rules, but a memory of stored cases recording

specific prior episodes. Product selection using CBR also needs dialogue, retrieve,

customisation and product representation for four phases [18]. Another example of

applying CBR in finding the best case is WordNet [72], in which UML class diagrams

are retrieved. Chung [38] proposed to use a hybrid of CBR and AHP in order to gain

advantages from both techniques: AHP is good for prioritising the importance of

the components within each of the component sets, CBR is useful for clustering the

various evaluation criteria and similarity measures collectively for each component

set.

46

In the component ranking model [108], a collection of software components are

represented as a weighted directed graph, in which nodes correspond to the compo-

nents and edges correspond to the usage relations. By analysing actual use relations

among the components and propagating the significance through the use relations,

component ranks can be calculated. According to the authors, high ranks are given

to those generic components that are used by most applications.

Components can also be ranked by some non-functional properties, such as per-

formance. A systematic approach to find the feasible combinations of alternatives

and to rank them based on predicted performance is described in [16]. The paper

defines components in layered queuing models for software performance.

2.6 Existing Component Selection Systems

Some component selection systems have been implemented for public use. For exam-

ple, ComponentSource [42] and Topcoder [142] provide component repositories and

search engines. However, as mentioned before, both of them only support searching

by free text. Thus the results received often contain many irrelevant items.

RetrievalJ is a Javabean component-retrieval system based on Directed Replace-

ability Distance (DRD) theory [148]. When retrieving components, three types of

similarities are compared: structure, behaviour and granuality. However, the be-

haviour in DRD is expressed by the return value of method, type of value changed and

readable properties. Since it does not put constraints on the methods, components

retrieved may still contain the behaviour that is incompatible to user requirement.

RetrievalJ only supports searching Javabean components.

Knowledge Based Automated Component Ensemble Evaluation (K-BACEE) is

an expert system for component selection, which uses keyword search from manifest

criteria to yield working set components to form ensembles [22]. K-BACEE is built

on the belief that systems are not built from individual components, but compo-

47

nent ensembles. A component ensemble [83] is a set of technologies, products and

components that interact to provide some useful behavior. In K-BACEE, ensemble

evaluation is supported by the cooperation of component specifications, integration

rules and patterns. The user inputs a manifest (SRS, System Requirements Specifi-

cation) and obtains an ensembles list with ranked value. K-BACEE is implemented

towards EJB only, and the authors think that it would be expensive to make it fully

support all types of components due to the difficulty of extending its knowledge base.

IBM has built a Reusable Asset Specification (RAS) repository for workgroups [23].

The repository supports searching and browsing of assets using the RAS standard

repository service interface. A variety of ways of retrieving information about the

assets can be used, including viewing of the documentation, viewing of feedback and

importation of the complete asset. Meanwhile the asset authors can publish assets,

create and organise the logical view of the assets in the repository. Reusable Asset

Specification is now an open standard that can be used to package any reusable soft-

ware assets. RAS describes assets as part of asset-based development (ABD), which

complements the Model Driven Architecture (MDA) by describing asset production,

asset consumption and asset management. A RAS of an asset may contain the fol-

lowing parts [78]: the overview part contains a collection of human-readable artefacts

such as documents describing the problem that the asset solves as well as the intent

and motivation; the classification part contains metatags (or descriptors, or qualifiers)

that describe the assets as a unit. They are used to group, store, search and retrieve

assets as units. This section also has a description of the Context(s) in which, or

for which, the asset may be applied; the usage part contains key information about

how to apply the asset, such as the problem context (the reuse intention) for which

the asset was created and the variability points through which the asset can be cus-

tomised for a particular reuse situation; the solution part contains the artefacts that

make up the solution. These artefacts include requirements, designs, models, code,

tests, deployment scripts, and so on. Finally, the structure of the asset is defined

48

using UML within a separate UML description section. However, using RAS cannot

yet precisely specify component behaviour, so the users have to test the components

retrieved from the repository by themselves.

2.7 Component Trader’s Involvement

Recently researchers realise that selecting components is not only the component

user’s business, but also involves other roles such as component developers and bro-

kers. As one of the mainstream CBD frameworks, Select Perspective [6] has created

a collaborative model to select COTS components.

ComponentXchange [143], a web-based software component exchange, acts as an

online broker between component users and component developers, allowing compo-

nent storage and retrieval through a licensing service. The limitation of this approach

is that components should be licence-aware, and developers have to be involved in the

transaction. Iribarne et al. [85] integrate a component trader into a spiral methodol-

ogy for CBSD by using a series of XML-based templates to document components,

services and queries. This work, however, does not cover semantic trading.

2.8 Summary

Most literature on component selection is written from a user’s perspective. There-

fore, even though components and user requirements can be precisely specified, it

is likely that users cannot find any suitable components if the components are from

external sources.

Meanwhile, for component selection, even though people have understood the

importance of the collaboration between the users and the developers, the recent ap-

proaches have only presented general frameworks with an informal way to establish

the communication. Thus the misunderstandings on components and user require-

49

ments remain existing. Moreover, there are no tools to support the collaboration

process.

In the next chapter, our approach is proposed mainly towards overcoming these

two problems.

Chapter 3

The Framework of Selecting

Components based on

Collaboration

3.1 Introduction

In Component-Based Development (CBD), component selection is a critical activity

that should be started from the phase of requirement analysis and continue through-

out the whole system development life cycle. The software process for users to identify,

match, retrieve, evaluate and finally choose components is driven by the models that

include component descriptions and user requirements for the components.

However, many lessons learned from [122] have told us that component selection

is still hard. Although there are many different developers providing a large variety

of different types of components, it is difficult to identify the required one simply

based on the information the developers provide. This is because the descriptions of

components are mostly imprecise, while the internal workings of the components are

invisible to the users. On the other side, the user requirements are also expressed

ambiguously and changeably. The gap between the components provided and the

50

51

Tools Support
(including translator,

model checking tools,
repository, etc.)

Specification Technique
(easy to write and understand;

describe behaviours)

Matching and Retrieval
(based on checking

behavioural compatibility)

Collaboration Process

Previously Developed Formalisms Partial Plug-in
Theory

Figure 3.1: Structure of the Proposed Framework

components required almost always exists when the components from external sources

are targeted. This gap is difficult to reduce due to the nature of CBD, which has

two separate processes of developing components and systems. However, there is

little connection between these two processes. This increases the misunderstanding

between component users and component developers.

Enhancing the communication between component users and developers can re-

duce the gap and remove the misunderstanding, so that the required components can

be found effectively. This is the purpose of building our collaboration framework.

This chapter first overviews the proposed framework, then it explains in detail

each module of the framework.

3.2 The Proposed Framework

The structure of the proposed framework can be depicted as shown in Figure 3.1.

In the framework, for collaboration purposes, a common language is used to specify

52

both components and the user requirements for the components. Thus component

users and developers can communicate with each other by exchanging requirement

and component specifications. One can use formal methods to specify components

and user requirements at an abstract, but sufficiently precise and complete level.

However, it is currently unrealistic to expect normal component users to write formal

specifications directly, especially when components are becoming larger and more

complex.

Thus we need to keep the specifications easy to write and understand. Since

component behaviour is the most important aspect when considering to use the com-

ponent in the target system, our specification language should be able to describe

component behaviours rather than interface syntax. Meanwhile there is underly-

ing formalism to make the specifications precise, and this formalism is hidden from

normal component users. In our solution, we reuse those previously developed for-

malisms from other research projects to check component behavioural compatibility.

The advantages of doing this is their accompanying tools can be reused as well in our

implementation. We only need to build a bridge from our specification language to

those formalisms.

Furthermore, we have developed the theory of component partial plug-in based

on Interface Automata [52]. This formalism allows the components to be selected

even when they only partially fulfil the user requirements. The situation when a

component can completely satisfy user requirement can be regarded as a special case

of the theory. However, it is not included in our implementation due to the absence of

its model checking tools. The detailed elaboration of the component partial plug-in

theory can be found in [95].

If an agreement on how to use the component can be made between the user and

the component developer, the component is regarded as meeting the requirements

and can be selected. Tools are provided to make the selecting process easy and

automatic. Since user requirements are also viewed as components in our approach,

53

the component selection is to check the component behavioural compatibility with

user requirement by using those previously developed model checking tools. Other

necessary tools include the translator, the organised repository, the user interface,

etc.

Evaluating the retrieved components is not the emphasis of our solution, even

though it is a necessary step in practice. This is because component evaluation needs

to consider many non-technical aspects that are not the focus of our research.

3.3 The Collaboration Process

As there exist misunderstandings about the component descriptions and user require-

ments for the components, a collaboration between component users and developers

is required to clarify the misunderstandings. Moreover, the collaboration can help

users to get the required components if developers agree to customise their compo-

nents for particular user requirements. It is easier for component developers to do

that because they have direct knowledge about the internal workings of the compo-

nents. Some promising technologies can be used on the developer’s side to facilitate

this customisation, such as software product line [40]. It is in the developer’s interest

to assist in the process of component selection.

As an effective software development process should describe who does what, how

and when [57], borrowing the terms from RUP [97], our collaboration process has the

same key concepts:

• Roles: The who

• Artefacts: The what

• Activities: The how

• Workflow: The when

54

3.3.1 Roles

The collaboration involves two roles: component user and component developer.

A component user is the system developer, who selects components from different

sources to build the system. A component developer implements the component that

can be used by a component user.

3.3.2 Artefacts

The artefacts used in the collaboration process include user requirement specifica-

tion, which is divided into required behaviour specification and required interface

signatures, component specification, which is also divided into component behaviour

specification and component interface signatures, as well as other documents. The

specifications of user requirements and components can be revised in order to reach

an agreement between component users and developers. The revised requirement

specifications and component specifications are also artefacts in the collaboration

process.

The reason why component behaviours have been separately specified from the

interface signatures is that we only focus on matching components by their behaviours.

Interface signatures are not important in our approach, however, we include them in

the process in order to provide a complete solution of selecting the user-required

components.

If component users and developers need more information to make decisions in

the collaboration, other documents may be required from each other, such as design

document, user manual, etc.

3.3.3 Activities

In the collaboration, component users can perform such activities as searching com-

ponents, checking behavioural compatibility, requesting modification on component

55

behaviour, requesting modification on interface signatures, testing components to see

whether they satisfy the requirements, and adjusting requirements if necessary.

• Searching Components can be done by keywords, or free text. Thus a list of

options can be received. The purpose of this activity is to initially screen the

components from the repository.

• Checking Behavioural Compatibility is to check whether the component be-

haviour specification meets the user requirement on component behaviour. This

can be done by some model checking tools. The purpose of this activity is to

further reduce the number of candidate components. Thus those components

having the required behaviour can be selected to use in the targeting system.

• Requesting Modification on Component Behaviour is to ask the developer to

change the component behaviour based on the user requirement. The user will

submit the required component behaviour specification to developers. This ac-

tivity is to ensure that the component selected will have the required behaviour.

• Requesting Modification on Interface Signatures is to ask the developer to change

the component interface signatures based on the user requirement. The user

will submit the required component interface signatures to developers. This

activity is to ensure that the component selected can be directly used in the

user system, given that it has already had the required behaviour.

• Testing Components checks whether the revised components can satisfy the

user requirements. The user may check component behavioural compatibility

again with the user requirement, or try to integrate the component into the user

system. This activity is to ensure that the component selected can be truly used

in the targeting system.

• Adjusting Requirements is to modify user requirements so that some particular

components can be selected.

56

Developers can agree to modify components to satisfy the user requests on com-

ponent behaviour or interface signatures, or both.

• Modifying Component Behaviour is to make sure that the component can have

user-required behaviour after the modification. The developer will give the user

a new behavioural specification of the component.

• Modifying Interface Signatures is to make sure that the component can have

user-required interface syntax after the modification. The developer will give

the user a new interface syntactic specification of the component, such as an

API (Application Programming Interface) document.

3.3.4 Workflow

The workflow describes groups of activities performed by component users and de-

velopers together to select the components that can satisfy both syntactical and

behavioural requirements. The workflow in the collaboration process (see Figure 3.2)

can be described by the following steps:

1. A user starts the selection of a specific component after the requirement for

this components has been formed. The user may first search the component

from the repository by keywords, and receive a list of candidates from different

developers.

2. For each candidate component, the user checks if they have the required be-

haviour.

3. If a candidate component can completely meet the requirement, viz., it has both

required behaviour and required interface syntax, it is the best choice.

4. If a candidate component has required behaviour but different interface syntax

(signatures), the user will negotiate with the developer on modifying the syntax

57

of the component interface (see Figure 3.2 – a). In this case, the user can send

the required interface signatures to the developer for customisation. Thus this

component can be used with some modifications.

5. If a candidate component does not have the complete required behaviour, the

user will negotiate with the developer on modifying the component behaviour

(see Figure 3.2 – b). The developer may agree to do so depending on the cost

caused by the customisation. If not, the user may need to consider adjusting

the requirement.

6. If no components can be retrieved, the user now should think of adjusting

the requirements for the component. The related developers can help this by

providing some design documents of the components.

7. Receiving the revised component from the developer, the user will test the

component in the targeting system to check whether the component can really

be used.

The collaboration on selecting components can be further discussed through an

example scenario (see Figure 3.3): a user specifies the requirements for a particular

component assembly in which four components interact with each other. The user

searches for these components and has found a few candidates for the required compo-

nents. Component a exactly matches the user requirement 1 because it is developed

by an internal developer. Thus it can be used without modification. Component b

has the required behaviour as specified in requirement 2, however, its interface sig-

natures are not matching with the requirement. This component still can be used

because behaviourally it is matched. Then the user sends the developer the request of

customising the component with user-specified interface syntax. It would be easy for

the developer to do that since the main business logic remains unchanged. Thus com-

ponent b still can be used with customisation by its developer. The user cannot find

any suitable components for requirement 3, however, component c is probably the

58

search
components

check
behavioural
compatibility

request
modification
on interface
signatures

required
behaviour

specification

required
interface

signatures

modified
interface

signatures

modify interface
signatures

test
components

user

developer

(a)

artefact activity
role

*

component
behaviour

specification

*

*

repeated
activity

*

search
components

check
behavioural
compatibility

request
modification

on component
behaviour

required
behaviour

specification

modified
behaviour

specification

modify
behaviour

specification

test
components

user

developer

(b)

*

component
behaviour

specification

*

*

adjust
requirement

*

optional activity

component
interface

signatures

*

*

Figure 3.2: The Workflow in the Collaboration Process

59

1 2

3 4

b

a

d
c

exactly matched
behavioural matched

syntactical mismatched

behavioural mismatched
syntactical mismatched

?

components from developers

user requirements for the components

Figure 3.3: A Scenario of the Collaboration

closest one, because it has most of the required behaviour. The developer is asked to

change both its internal behaviour and interface signatures. However, the developer

may refuse to do that because it is difficult and costly. Thus the user may need to

consider changing requirement 3 according to the available components. Component

c may be used. This depends on the negotiation between the user and the devel-

oper. Component d interacts with component c. If requirement 3 needs changing,

requirement 4 may need changing as well, or glue code should be written between

them in order to keep requirement 4 unchanged. In this situation, developers of the

candidate components can help the user to make decisions by getting involved in the

user’s project. It is helpful since the developers have a lot of knowledge and experience

about the same type of components. For example, if the user needs to write glue code

for component c, its developer can help the user by providing detailed information

on the internal workings of the component.

60

A new search will be performed if the requirement for the component has been

changed. The same workflow will be followed until the required component is found.

Thus the collaboration is an iterative and incremental process.

The collaboration process provides a framework of selecting required components.

Thus a variety of different methods and tools can be used in this framework. In

order to prove the concept we develop our own method and tools to support the

collaboration.

3.4 The Specification Language and Matching Tech-

nique

A common language is used as the means of communication for component users

and developers. Both components and user requirements for the components can

be described by this language. Such a language should have familiar programming

language constructs, with easy to understand semantics. We developed Simple Com-

ponent Interface Language (SCIL) for proof of the concept purpose. SCIL is derived

from formal descriptions such as Interface Automata [52]. It can also be viewed as

a cut-down version of a normal programming language that aims to support formal

specification of component interfaces and requirements. SCIL only focuses on the

high-level behaviours of components; it cannot give detailed information on compo-

nent interface signatures.

Matching components against the user requirement is to check the behavioural

compatibility between them, so component SCIL specifications are first retrieved from

the repository. That is to say, in our approach, if a component SCIL specification is

checked compatible with the SCIL specification of user requirement, the component

is regarded as matched and having required behaviour. Then the detailed component

information, such as a trial version of the component with API document, can be

retrieved from the repository for further evaluation.

61

The behavioural compatibility checking is performed thus: SCIL specifications

are translated to a variety of models that can be checked by their supporting tools.

These models are written by different modelling languages that are the inputs to

those tools. Therefore, SCIL and its translator will allow the users to gain access to

a number of tools based on formal methods. At the moment, SCIL only supports

complete component plug-in, but it has the potential to support partial plug-in as

long as there are a formal language and its tool that can compute partial component

plug-in model [95]. The advantage of such an approach is that it becomes possible to

use a couple of formal tools together to solve one problem.

3.5 The Tools and Formalism Support

The tools that can support the collaborative process of selecting required components

include a general search engine by which users can narrow the search for candidate

components by keywords, a SCIL translator that translates SCIL to existing modelling

languages, a web platform through which users interact with the component selection

system, a component repository with a specific classification scheme, and the existing

model checking tools.

We reuse and integrate those previously developed model checking tools in our

framework. These tools are built based on different formalisms that can be employed

for checking different properties, but hidden from users by a single and uniform pre-

sentation, such as SCIL in our implementation. These supporting formalisms may

rely on different mathematical theories, such as finite state machine (FSM), set the-

ory, temporal logic, etc. Thus they provide different ways to check the compatibility

of two components. For example, two FSMs can be combined to check whether there

are unreachable states in the combined FSM. If no such states exist, the two modules

are compatible. If two components are specified in temporal logic, the compatibility

check is to see whether there exists any temporal conflict of calling methods. In gen-

62

eral, if a formalism can be translated from SCIL, and there is a tool implemented for

checking the formalism, this formalism can be reused in our framework.

3.6 Summary

We compare our approach of searching components by behavioural specifications with

the traditional approach of searching by keywords. The comparison of two processes

is shown in Figure 3.4.

Although searching by keywords is easy to use, results often contain many ir-

relevant items. The traditional way is completely manual. Users have to examine

candidate components one by one, getting rid of the obvious irrelevant ones. Then

users need to download the user manual documents or the trial versions of those

remaining candidates, and try one by one.

Reading SCIL specifications is faster because SCIL specifications describe high-

level behaviour of the component. SCIL specification matching is semi-automatically

done (as can be seen in the case study, it involves some manual work to make the

requirement specification consistent with the component specifications). The compo-

nents found by our approach can be ensured that they will have the required behaviour

that is compatible to the user-targeting environment. This is due to the collaboration

from developers who are willing to customise their components according to specific

user requirements.

A disadvantage of our approach is that the developer needs to write a specification

corresponding to the component. However, if the specification can be the cut-down

version of the component itself, this is not an major overhead, especially given the

above benefits.

63

Start

search by
keywords

get rid of
irrelevant

results

download &
try trial

versions

can be
used?

No

get the best
component

Yes

Stop

Start

search by
keywords

get rid of
irrelevant

results

upload
requirement
SCIL spec.

OK?

No

get the best
component

Yes

Stop

get
component
SCIL spec.

combine,
translate,

check

traditional approach our approach

*

* This step involves the collaboration from the component developers,
 thus the component specifications obtained may have been revised.

Figure 3.4: The Comparison of Two Component Searching Processes

Chapter 4

Simple Component Interface

Language

4.1 Introduction

As described in the previous chapter, our framework for selecting components needs

an intermediate language that can be used to specify both components and user

requirements for the components. Thus this language can be used by both component

users and developers to communicate when exchanging requirements and components.

Furthermore, this intermediate language should be able to describe component

behaviours through interfaces. In our framework, in order to check behavioural com-

patibility of components with their requirements, this intermediate language needs

to be translated to other previously existing formal languages at first. Thus how to

build the mapping between the two languages needs to be considered when designing

such an intermediate language.

In order to let those who are not mathematical professionals use this intermediate

language, the language should have an easy-to-understand syntax while hide formal

details of specifications written by the language.

In this thesis, Simple Component Interface Language (SCIL) is such an interme-

64

65

diate language, developed as the proof of the concept.

4.2 Design

Based on the design purpose and goal, the principles for designing SCIL are as follows:

• SCIL needs to be precise, as it is used for communication purposes.

• SCIL needs to be simple, and easy to understand, as it is used by normal users.

• SCIL needs to be able to describe component behaviours, as components in our

framework are retrieved by behavioural properties.

• SCIL needs to express constraints and define properties, since it acts as the

bridge to formal modelling languages for checking purposes.

• SCIL descriptions need to be composed when checking components against user

requirements.

Since we are providing a framework, it is possible to use some other existing Be-

havioural Interface Specification Languages (BISL) [149] in the framework, such as

JML [101] and Spec# [15], as long as the corresponding translators are provided.

JML and Spec# are much richer languages, but verifying joint behaviour of com-

ponents requires the use of sophisticated theorem provers [15, 127]. One may use

Interface Definition Language (IDL) with temporal logic to describe component be-

haviours [90]. However, the component specifications written in IDL are concrete

at the interface signature level. One cannot retrieve these components with differ-

ent signature requirements, even though the components actually have the required

behaviours.

We aim to write more abstract specifications about component interfaces. SCIL

does not focus on interface signatures, but on the abstraction of business logic of

components, i.e., how and when to invoke component services. The advantage of such

66

an approach is that even when the interface signatures of a component fail matching

with user requirement, it is still possible to choose this component if the component’s

behaviour that is ruled by the invariants and constraints meets the user requirement.

In order to finally integrate the component into the user’s system, the component user

can negotiate with the component developer on adjusting the interface signatures.

Next we are going to introduce SCIL through an example. We draw the auctioneer

component from [90] (originally from [29]) with adaptation to show how to use SCIL

to write specifications for components and user requirements.

In an auction system, there are three types of components: sellers, bidders and

the auctioneer component standing between them. The auction system works follow-

ing this way: sellers first notify the system what products are available to sell, then

bidders can log into the system and bid for the products. If a user wins a bidding, the

user should pay for the product. After the user logs out of the system, the transaction

is terminated. Thus for the auctioneer component, the statuses of bidders and prod-

ucts should be remembered. For products, it can have these states: when a product is

not available for auction, its state is not available; after a seller makes it available, the

product’s state becomes available; later on, the state can be engaged if the auction is

won by someone; after the winner pays for the product, the product’s state further

becomes sold. As for the state of a bidder, it becomes logged in or logged out after

the bidder logs into or logs out of the auction system; the bidder’s state becomes win

or not win if the bidder wins or does not win the auction respectively.

The auctioneer component provides interfaces for login, logout, bid, purchase and

sell services. Service login and logout let the bidder log into or log out of the system

respectively. Service bid allows the bidder to bid for a product. If the bidder wins the

bidding, service purchase will be called when the bidder is paying for the product.

Service sell is only used by the seller to make the product available for the auction.

67

SCIL ::= TYPE VARIABLE SERVICE PROTOCOL SCENARIO PROPERTY

COMPONENT ::= TYPE VARIABLE SERVICE PROTOCOL

REQUIREMENT ::= TYPE VARIABLE ENVIRONMENT_COMPONENT REQUIRED_PROPERTIES

ENVIRONMENT_COMPONENT ::= SERVICE|run PROTOCOL

REQUIRED_PROPERTIES ::= SCENARIO PROPERTY

COMPOSITION ::= ENVIRONMENT_COMPONENT|COMPONENT connects COMPONENT

TYPE ::= int | bool | enumeration | structure | user_defined | deferred

user_defined ::= identifier is TYPE;

VARIABLE ::= identifier as TYPE

SERVICE ::= INPUT OUTPUT

assumption(INPUT, OUTPUT) -> guarantee(OUTPUT)

PROTOCOL ::= unary_temporal_operator SERVICE |

SERVICE binary_temporal_operator SERVICE

SCENARIO ::= {[step] expressions}+

PROPERTY ::= property_pattern

Figure 4.1: Abstract Description of SCIL

4.2.1 Syntax

SCIL can be viewed as a cut-down version of a normal programming language, such

as Visual Basic. A typical SCIL file consists of these basic definitions (see Fig-

ure 4.1): TYPE, VARIABLE, SERVICE, PROTOCOL, SCENARIO and PROPERTY. TYPE defines

data types, and VARIABLE in SCIL must have a data type. SERVICE defines what a

component can do, and PROTOCOL defines the order that the component services can

be invoked. SERVICE and PROTOCOL are used for specifying components. SCENARIO

presents a sequence of execution steps. PROPERTY defines the properties that users

require a component to have. Thus SCENARIO and PROPERTY are used for specifying

user requirements for the components.

68

Next we introduce these syntactic constructs of SCIL in detail.

4.2.1.1 Data Types and Variables

SCIL supports primitive data types: bool and int. However, for the model checking

purpose, the int type needs to be specified within a range, such as from 0 to 5. This

is because all the model checking tools can only handle finite states.

Moreover, in order to support describing state transition systems, SCIL has enu-

meration type that can be used to list state values. For example, the auctioneer

component uses two enumeration types to describe statuses of products and bidders

(ProductStatus and BidderStatus in Program 4.1).

Program 4.1 Enumeration Type in SCIL

type:

ProductStatus is {not available, available, engaged, sold};

BidderStatus is {logged in, logged out, win, not win};

One may use structure type to define a class like data type when the type has

more than one attribute. The structure type in SCIL is similar to a struct definition

in C language. For example, a shopping cart can have two attributes (SCart in

Program 4.2): the capacity and the message that the cart can receive. In the example,

the maximum number of items that the cart can contain is assumed as 5. If the

payment for the shopping cart is completed successfully, the succeed message will be

received by the cart, otherwise the fail message will be received.

In SCIL a user can define an identifier that represents an existing data type. The

user-defined datatype identifier can later be used to declare variables.

Only services can be declared as type deferred. The deferred services are not

defined in the current component, but will be defined later in other components.

This is necessary when describing that a component invokes the services from another

69

Program 4.2 Structured Type in SCIL

type:

SCart is {

Capacity is (0..5);

RMessage is {succeed, fail};

};

component.

Every variable used in the specification should be declared to the compiler. The

declaration does two things: tells the compiler the variable name, and specifies what

type of data the variable will hold.

4.2.1.2 Services and Rules

Service definitions tell what a component can provide. A service in SCIL corresponds

to low-level methods in programming languages such as Java. That is, in the actual

component, a service may be implemented by a collection of methods. Such service

descriptions can be obtained from use case diagrams when designing the component.

For each service, one can define input and output variables, as well as the rules

that govern the behaviour of these variables. Variables can be defined as input or

output within a service by the keywords input or output.

Services have rules that define how a component can perform its services. These

rules are similar to pre/post-conditions [112] (or assumptions/guarantees [52]). That

is to say, only when the assumptions are satisfied, the guarantees can be executed.

In such rules, assumptions are made by inputs and outputs, and guarantees are rep-

resented as a set of assignment statements if the assumptions are satisfied.

In the auctioneer component, take sell service as an example. Sellers invoke

this service to notify the auction system that their products have become available

70

(Program 4.3). There are no assumptions on this service. For the bid service, the as-

sumptions are that the bidder has already logged in, and the product is still available.

If both are met, the bid service provides two possibilities: the bidding is successful

(win), or the bidding is not successful (not win). If the bidding is successful, the prod-

uct status changes from available to engaged. Even though the bidder does not win

the bidding, the product status is still changed to engaged, because another bidder

has won the bidding (Program 4.3). The two rules of the bid service have the same

assumptions, but will lead to two different results. This is called non-determinism.

Program 4.3 Services of the Auctioneer Component

// ps: the product’s status

// bs: the bidder’s status

sell {

// product becomes available

rule: true -> ps = available;

}

bid {

rule:

// the bidder wins the bidding

bs = logged in && ps = available -> bs = win && ps = engaged;

// the bidder does not win the bidding

bs = logged in && ps = available -> bs = not win && ps = engaged;

}

4.2.1.3 Protocol

Besides service rules, there are global (in terms of the component) temporal con-

straints on the component interface. These constraints define the order by which

71

services should be invoked. These interaction constraints are named protocols [90]

between the component and its users.

The reason to include protocol definitions in SCIL is that one needs to specify

not only how a component performs its services, but also when these services can be

called. Thus the specification of component behaviour can be more complete.

The protocol in SCIL has two usages. The first allows users to specify temporal

properties of services by using temporal operators [90], such as initially, precedes,

once, etc. In SCIL, initially defines the service be called first, while precedes defines

the service be called before another. And once requires that the service can only be

called once.

The second uses protocols to find inconsistencies in service rules. For example,

service definition indicates that service A relies on another service B’s outputs, but

the protocol specifies “A precedes B”. This is clearly a conflict between these two

definitions.

In the auctioneer example, for one product, the component developer allows the

sell service to occur only once, because one product cannot sell twice. And sell must

go before all the other services. This is because bidding for a product can only happen

after someone wants to sell the product. Service bid must be invoked before purchase,

since paying for the product is after the bidding is finished. Finally, Service logout

must be used to end the business with the bidder. All these constraints are specified in

the protocol part of the SCIL specification via the temporal operators (Program 4.4).

4.2.1.4 Scenarios

Sometimes it is unrealistic and unnecessary to check all the properties of components

exhaustively. One may be more interested in checking whether some expected sce-

narios can be satisfied. Thus scenario-based checking is one of the ways to determine

if the selected component meets user requirement.

72

Program 4.4 Protocol of the Auctioneer Component

protocol :

once sell;

initially sell;

bid precedes purchase;

eventually logout;

Scenario definitions in SCIL are similar to sequence diagrams or flow of events in

use-case diagrams, viz., sequence of state transitions. In one requirement specifica-

tion, users can have more than one scenario definition to check.

In the requirement specification for auctioneer component, a scenario named

best story is defined to show the state transition to a successful bidding. In the

Program 4.5, r bs and r ps are the variables having enumeration types that respec-

tively represent the statuses of the bidder and the product. The best story scenario

has six steps of state transition (Program 4.5):

1. the bidder has not logged into the system, and the product is still unavailable.

2. the bidder has not logged into the system, but the product becomes available.

3. the bidder now logs into the system, starts to bid for the available product.

4. the bidder wins the bidding, the product is engaged to the bidder.

5. the bidder pays for the product, so the product is sold.

6. the bidder logs out the system, the auction for this product is ended.

4.2.1.5 Properties

Another way to check whether a component is compatible to the user’s system is to

check various properties of the composed system by the component and the user’s

73

Program 4.5 A Required Scenario for the Auctioneer Component

scenario:

best story {

// step 1

r bs = logged out && r ps = not available;

// step 2

r bs = logged out && r ps = available;

// step 3

r bs = logged in && r ps = available;

// step 4

r bs = win && r ps = engaged;

// step 5

r bs = win && r ps = sold;

// step 6

r bs = logged out && r ps = sold;

}

working environment. Component users can write properties as assertions or temporal

logic expressions, in which state values are the basic units. In SCIL, users write

properties using patterns defined in [56]. In the same paper [56], how to map these

patterns to temporal logic expressions is also presented. For example, if users write:

always (P = false)

the expression will be translated to Linear Temporal Logic (LTL) as:

[](!P)

74

Then component users can use the model checking tools that support LTL to

check the property. Users can also use the keyword deadlockfreeness to require that

the system is deadlock free. This property can only be checked by some specific tools,

such as [54].

Given below are examples using the always, between, precedes and after operators

and also specifying a property that denotes the absence of deadlock (Program 4.6).

Program 4.6 Required Properties for the Auctioneer Component

property :

p1 {

// property 1

always !(r bs = logged in && r ps = not available);

// property 2

(r bs = win || r bs = not win) between (r bs = logged in)

and (r bs = logged out);

// property 3

((r ps = engaged) precedes (r ps = sold)) after (r ps = available);

}

p2 {

// the absence of deadlock

deadlockfreeness;

}

In Program 4.6, Property 1 checks that bidders should not log into the system if

the product is not available, and Property 2 makes sure that bidders can only bid

after they have logged in but before they log out of the system. It is specified in

Property 3 that the product can be purchased after the bidder has won the bidding.

75

4.3 Writing Specifications in SCIL

With SCIL, one can specify both components and user requirements.

4.3.1 Writing Component Specifications

A software component can be regarded as a piece of software that provides a set

of services. Thus a component specification should include SERVICE definitions as

well as the PROTOCOL part, which adds constraints on the services the component

provides. A complete specification of the auctioneer component can be found in the

Appendix C.

4.3.2 Writing Requirement Specifications

The user requirement specification in SCIL has two parts: user environment compo-

nents and the required properties of joint behaviour by the integrated component and

the user environment components. Scenarios can be regarded as special properties of

the composed system.

User environment components are those components users have already had in

their system, representing the user’s working environment. Users may specify environ-

ment components by the keyword environment. Generally speaking, the description

of an environment component has the same syntax as the one of a normal component

except that the environment component only has one service, viz., run that is defined

as a keyword. The run service defines how this environment component will interact

with the integrated component.

In SCIL, the keyword connects is used to compose the components retrieved from

the repository with the user environment components.

In the example of the auctioneer component, the user environment contains two

types of components: bidders and sellers. The user defines their run services in order

to connect to the integrated auctioneer component (Program 4.7).

76

Program 4.7 User Environment for the Auctioneer Component

environment component bidder connects auctioneer {

run {

...

// if the bidder has won the bidding and the product has been engaged to the bidder,

// then the bidder can purchase the product

b bs = win && b ps = engaged -> purchase;

}

}

environment component seller connects auctioneer {

run {

true -> sell;

}

}

In the run service of bidder components, services of the auctioneer component are

called if the pre-conditions are satisfied. For example, if a bidder has won the bidding

and the product has been engaged to the bidder, the bidder can purchase the product,

so that the purchase service from the auctioneer component can be called. For seller

components, they only need to notify the system that they want to sell products, so

there are no pre-conditions required for the run service. A complete specification of

the user requirement for the auctioneer component can be found in the Appendix C.

4.4 SCIL and Transition Systems

SCIL is derived from Interface Automata [52]. Formally, a typical SCIL specification

describes a transition system along with requirements specified using a mix of tem-

poral logic and the other transition systems. Formal definition of transition systems

77

not_available/logged_out

available/logged_out
sell

available/logged_inlogin

logout engaged/win

engaged/not_win
bid

bid

sold/win

sold/logged_out

purchase

logout

not_available/logged_inlogin

Figure 4.2: State Transitions in Auctioneer Component

can be found in [52].

In SCIL, component behaviour is the transition of interface states of the compo-

nent. Interface states are represented by input and output variables. Service invoca-

tions result in the changes of those states. In the auctioneer example, sell service

causes the product status to change from not_available to available. And bid

service can cause two possible state transitions (see Figure 4.2).

The protocol can change the traces of the state transitions. For example, the

protocol “eventually logout” forces logged_out to be the last state of the bidder’s

status.

Abstractly a scenario is just another transition system and ideally must be deriv-

able from the original specification (e.g. the scenario best_story is denoted by solid

lines with arrows in Figure 4.2). When checking user specified properties, model

checking tools think those unreachable states are errors. In our example, the state

“not available/logged in” (see Figure 4.2) is an unreachable state for using the auc-

tioneer component.

78

4.5 Summary

Overall, using SCIL we can describe both component specifications and user re-

quirement specifications. Component developers use SCIL to specify the services

that components offer and the rules by which the components can function properly.

Component users use SCIL to specify their working environment and the properties

(including scenarios) they require the joint system to have.

The key syntactic constructs in SCIL (or other similar languages that can be used

in our framework) should include the following:

• Named code fragments that are called services describe the high-level behav-

ior of the component. The code fragments allow the designer to associate a

transition system with the interface names.

• Constraints defined by rules and the protocol on how the various services can

be combined.

• The ability to compose SCIL descriptions.

• Scenarios that describe the desired behaviour and a specification on what joint

behaviour should achieve.

However, the expressiveness of SCIL is still limited since we try to keep interface

model simple. For example, only parallel component composition is supported. Other

composition styles may depend on the implementations of different formalism plug-

ins. But no semantics of these compositions are defined in SCIL.

In conclusion, SCIL is not designed to describe interface signatures but describe

a transition system along with requirements specified using a mix of temporal logic

and the other transition systems, viz., user specified components and scenarios.

A combined SCIL description of components and requirements are translated to

some existing modelling languages. Then these models are checked by various tools.

79

In the next chapter, we will present the architecture of our component selecting system

and how we implement it.

Chapter 5

Implementations

5.1 Introduction

This chapter provides an architectural view and the implementation of the component

selecting system that is based on checking behavioural compatibility.

The system implementation aims at providing a concrete realisation of our frame-

work of selecting components. In the implementation, we build a web-based compo-

nent search engine through which users can search required components by abstract

behavioural properties instead of traditional keywords.

This chapter first presents an architectural view of the implementation, then shows

how we design and implement the SCIL translator, the component repository and the

web interface.

5.2 Architecture

Our prototype system implementation consists of four modules (see Figure 5.1): the

web interface, the component repository database, the SCIL translator, and the model

checkers (currently only jMocha [9] and Alloy Analyser [87] are supported).

The user interacts with the system through the web interface. A typical use of

80

81

Component
Repository

SCIL Translator

Web Interface

Model Checkers

requirement spec.

combined spec.formal models

result

Figure 5.1: The System Modules

the system can be described as follows:

1. The user searches components by using keywords, and gets a list of candidate

components that are described by the keywords.

2. The system allows the user to view the specifications of the candidate compo-

nents and modify the requirement specification accordingly.

3. The user uploads the requirement specification to the component repository.

The system will combine the requirement specification with each candidate

component specification, and call the SCIL translator to translate the combined

SCIL specification to the models in some existing formal languages.

4. The system will call the relevant model checking tools to check if the candidate

component has required behaviour.

In our prototype system, the SCIL translator is implemented in Java. The web

interface is implemented by JSP running on the Tomcat server. MySQL is used to

build the sample component repository.

82

Figure 5.2: The SCIL Translator

5.3 The SCIL Translator

The SCIL Translator works in such a way: the SCIL compiler is fed with SCIL

specifications. With the help from various language plug-ins, the compiler translates

the SCIL specifications to those existing formal languages, such as Reactive Module

(RM) [11], Alloy [87], Interface Automata (IA) [52], etc. The translated formal models

will be input to their accompanying checking tools, for example, jMocha [10] for RM,

Alloy Analyser [87], and CHIC [32] using IA. Figure 5.2 shows such a workflow.

Such a design has the following advantages:

• Model checking tools can be, in principle, used to check component compati-

bility. Although different tools provide different checking facilities, users have

flexibility without having to write different specifications. A single SCIL spec-

ification is sufficient and can be reused with a variety of tools. If a new, more

powerful tool becomes available, one only needs to write a code generator to

use it within our framework.

• Component users and developers can exchange components and requirements

descriptions in SCIL without worrying about which checking tools that they are

are using.

83

Our prototype translator is built with plug-ins to support Reactive Module and

Alloy at the moment. In order to prove the applicability of our approach, we select

these two tools to demonstrate the viability of our architecture. These two tools are

quite different; jMocha [10] does a temporal analysis based on state machines, while

Alloy Analyser [87] checks that an assertion holds by trying to find a counterexample.

5.3.1 The Compiler

The SCIL compiler is implemented using an open architecture. It permits different

language modules to plug into the compiler. This enables the compiler to translate

SCIL to the different languages without recompiling the compiler’s source code.

The implementation has been done in layers (see Figure 5.3). At the bottom, the

parser is generated by SableCC [64] to handle syntax of SCIL. And the class that

performs grammar checking needs to follow the framework SableCC has generated.

In our case, a combined specification may contain three parts: normal components,

environment components (specified by an “environment” keyword) and user require-

ments (including scenarios and properties). Because different grammar rules apply

for different parts, we use separate classes to handle grammar checking and generate

separate tables for each part. The tables include symbol tables and rule tables. A

symbol table is a common data structure used by a compiler or interpreter, where

each symbol in the source code is associated with information such as type and scope

level. A hash table implementation of a symbol table is used as standard and the

symbol tables are maintained throughout all phases of translation. A rule table in our

implementation stores the rules (state transitions) associated with different services

the component provides.

On the top of grammar checking there exists a common translation layer. Its

main task is to recognise the different parts of the specification, and assign a relevant

grammar-checking module to that part. Finally, a list of symbol tables and rule tables

are formed. This corresponds to the standard compilation process. As our framework

84

Figure 5.3: Compiler Implementation Layers

supports a number of code generators, the compiler calls the plug-in manager to load

a plug-in class (for example, rm.jar for RM) that takes those intermediate tables as

inputs and generates the translation for the plug-in language.

5.3.2 Developing Plug-ins

Enabling plug-ins has given users flexibility to deal with a variety of modelling lan-

guages. When developing plug-ins for the SCIL compiler, the following steps are

followed:

1. Extending the common translation layer class to generate the intermediate sym-

bol tables and rule tables. The tables are the same for all available plug-ins.

2. Defining the mapping from those tables to the language that the plug-in sup-

ports.

85

3. Writing a plug-in property file so that the PluginManager class can locate and

load the plug-in at run time.

Thus it is possible to add support to various languages as long as the corresponding

plug-ins are implemented. However, before picking up a language, some issues need to

be considered, such as: whether the language supports describing transition systems;

whether there exists a matching theory for using this language to check component

compatibility, such as the specification matching from [153]. After the language is

selected, the main task is to define the mapping from SCIL to that language.

We have implemented the plug-ins for RM and Alloy. Both of them can be used to

describe transition systems, although Alloy needs to import the extra linear ordering

module. For both tools, checking component compatibility is to check whether the

composition of the two components have any illegal behaviours. RM directly supports

component composition by stating component 1 || component 2, while Alloy does

not explicitly support composing components, but is able to describe the overall

transitions of the composition. Their formal details of checking theory can be found

in their related papers.

A transition system in SCIL is decided by the rules of the services that can be

described as: service s: a -> b (if a is satisfied, then b is guaranteed). Translating

to RM, a rule is an update statement: [] a -> b (if a is satisfied, then b is executed).

For Alloy, a rule is translated to a predicate: s && a => b (if s is true and a is true,

then b is true).

In SCIL, input ports are read-only, but output ports can be modified. RM has

a similar policy on the interface ports, thus the translation from SCIL to RM is

straightforward. Alloy does not have the concept of ports, assuming all the variables

are writable. Thus in Alloy, there is no need to declare variables as input or output.

For the protocol definitions, the temporal operator once can be translated by

introducing a variable controlling the number of the service invocations. The operator

initially will make sure that the service is called before the others by adding its

86

rules to the initialisation code in RM or the initialisation predicate in Alloy. The

operator eventually uses a boolean type to make the service the last one invoked.

However, not all the protocol definitions can be translated to RM or Alloy, because

some temporal operators are not supported by both languages, such as causedby and

precedes.

One can define either scenarios and properties to be checked in the requirement

specification. Scenarios can only be translated to RM because RM supports mon-

itor automata that can execute in parallel with the component. Properties can be

translated to various assertions that are supported by both RM and Alloy.

5.4 Component Repository

The component repository contains two databases. One is the user database that

has all the information about the registered users of the repository, such as their

usernames, passwords, contact details, etc.. The users are categorised as component

users and component developers.

The other database stores the information of components, including the compo-

nent name, its category, the keywords used to describe the component, SCIL specifi-

cation, etc. Each component is also connected with a component developer.

5.5 Web Interface

For component developers and component users, different user interfaces are imple-

mented. Through the web interface, the system allows developers to add components,

including specifying components in SCIL. Meanwhile the system allows users to up-

load requirements and match components based on the requirement specification.

Figure 5.4 displays what users and developers can do through the web interface.

A user starts searching for components by using keywords to reduce the number of

87

Developer

User

add component

modify component

modify profile

search component by
keywords

search component by
SCIL specification

<includes>

Figure 5.4: The Use Cases through the Web Interface

candidate components (see Figure 5.5 and Figure 5.6). Since all the components are

described by keywords, the components that contain some of the user’s required key-

words will be retrieved as candidate components for further behavioural specification

matching.

The user can view candidate component specifications and modify the requirement

specification if needed (see Figure 5.7).

Before the requirement specification is combined with each candidate component

specification, both specifications are syntactically checked. The SCIL compiler parses

the candidate component specification and the requirement specification, and re-

trieves all the names of types, enumerate values, variables, services, etc. from two

specifications. The user is asked to map the names between two specifications given

the number of the names is the same. If no parsing errors are found, the user will be

led to the page where name mapping can be done (see Figure 5.8).

If the requirement specification has been changed according to the component

88

Figure 5.5: Screen-shot: Search by Keywords

Figure 5.6: Screen-shot: Search Results by Keywords

89

Figure 5.7: Screen-shot: View and Modify Specifications

Figure 5.8: Screen-shot: Name Mapping

90

specification, it may not be necessary to do the name mapping. However, the name-

mapping module as least can check the syntax of both specifications. Then the

requirement specification will be combined with each candidate component specifica-

tion.

The system decides which language (RM or Alloy) it should be translated to

by testing if there are scenarios defined. If so, the combined specification will be

translated to RM. But if there are also properties defined in the specification, it will

be translated to both RM and Alloy. If translating to Alloy, the scenario definition

part is simply ignored. The properties that are not supported by both tools will be

also ignored by the translator.

The system will run the model checkers in the background. Thus the model

checking is transparent to the component user. In order to achieve that, SLang

scripts for checking RM models are generated. For Alloy, the command interface of

Alloy Analyser is invoked.

The system will display whether a candidate component has required behaviour by

the results from the model checkers (see Figure 5.9). For scenarios, the component is

acceptable if jMocha can find the trace of the transition defined. For properties, both

jMocha and Alloy Analyser should have the same checking results if the properties

can be handled by both tools.

The use of the system by component users can be depicted as Figure 5.10.

5.6 Summary

This chapter presents the architecture and detailed implementation of our prototype

component selecting system based on checking behavioural compatibility. At the

moment it only supports translating to RM and Alloy, and some manual work of

adjusting requirement specifications is involved. The future work includes adding

more tools support, such as Ticc [3], and automatic tool selection becomes an issue.

91

Figure 5.9: Screen-shot: Compatibility Checking Result

login

search by keywords

view candidate
components

upload requirements

need modification?

modify requirements

Yes

No

combine specifications

call model checkers

display results

Figure 5.10: The Flowchart of Using the System

Chapter 6

Case Studies

6.1 Introduction

This chapter provides feasibility studies of our approach to selecting commercial com-

ponents from the real-life component marketplace.

The first example briefly discusses how to check the behavioural compatibility of

the auctioneer component with the user-specified requirement by using the tools that

we developed. However, this example is not a full case study but a continuation of

the example from Chapter 4 in order to illustrate the features of the tools we have

used.

The other two case studies aim at identifying the advantages and disadvantages of

our approach by comparing it with the traditional approach of searching by keywords.

The comparison is conducted mainly based on the effort and the precision of retrieving

required components.

The task in the second case study is to find a component that can spell check the

texts user’s input through a user interface, while the task in the third case study is

to search for a group of components that support online shopping.

Our sample repository contains totally 132 components. All these components are

mainly taken from the real-life component sources: ComponentSource [42] and Top-

92

93

Category Description Quantity

3D Modelling Adding 3D graphics to applications 3

Addressing and Postcode Managing people’s contacts 3

Business Rules Building a business framework 4

Calendar/Schedule Creating calendars that support schedul-

ing

3

Charting and Graphing Creating charts/graphs based on user in-

put data

7

Credit Card Authorisation Verifying the validity of credit cards 3

Data Validation Validating input data against criteria 3

Database Reporting Creating reports for databases 3

Drawing Adding 2D graphics to applications 7

e-Commerce Handling e-business activities, such as on-

line shopping, etc.

28

Email Providing email functions to applications 3

Financial Providing functions related to banks 4

Imaging Processing images for applications 5

Maths and Stats Providing maths or statistics functions 5

PDF Creating PDF files in applications 4

Reporting Generating reports for applications 4

Security and Administration Checking security issues 9

Spelling Providing spell checking to applications 7

Spreadsheet Providing spreadsheet functions 7

Toolbar Creating toolbars for applications 7

User Interface Creating general user interface elements 7

Zip and Compression Compressing and uncompressing files 6

Table 6.1: Component Distribution in the Sample Repository

94

Coder [142]. ComponentSource is the world’s largest marketplace and community for

reusable components, and it provides a large repository for all kinds of software com-

ponents. TopCoder has its own component repository built by its members all over

the world. However, both ComponentSource and TopCoder only support searching

components by keywords.

The distribution of these 132 components to different categories is displayed in

Table 6.1. The category names are taken from the website of ComponentSource. The

brief explanations of these categories are also given in Table 6.1.

For Case Study 2 and 3, we first outline the user requirements for the desired com-

ponents, and then give SCIL specifications for some existing candidate components.

The details of searching in the repository, translating and checking RM and Alloy

models are also presented. Finally, we will discuss the results and our experiences.

6.2 Case Study 1: Checking Behavioural Compat-

ibility for the Auctioneer Component

Program 6.1 Type Translation

RM:

type BidderStatus is {logged in, logged out, win, not win}

type ProductStatus is {not available, available, engaged, sold}

Alloy:

abstract sig BidderStatus { }

one sig logged in, logged out, win, not win extends BidderStatus {}

abstract sig ProductStatus { }

one sig not available, available, engaged, sold extends ProductStatus {}

95

Program 6.2 Sell Service Translation

RM:

[] true & bs = logged out & ps = not available & sell num < 1 & sell? ->

ps’ := available; sell num ’ := inc sell num by 1

Alloy:

pred sell (bs, bs’: BidderStatus, ps, ps’: ProductStatus) {

ps’ = available && bs’ = bs

}

Program 6.3 Check best story Scenario in RM

module matching best story is auctioneer sys || best story

predicate pred best story is (final best story = true)

judgment J best story is matching best story |= pred best story

In Chapter 4 we have specified the auctioneer component and the user requirement

for such a component. The complete SCIL specifications can be found in Appendix C.

In order to check behavioural compatibility of the component with the user require-

ment, two specifications are combined and then translated to both RM and Alloy.

RM directly supports enumeration type, but Alloy does not. In Alloy we introduce

a signature and then extend it with the appropriate elements. The translation of the

BidderStatus and ProductStatus is shown in Program 6.1.

A service is translated to an update statement in RM. In Alloy, a service is ex-

pressed as a predicate function. The different translations are shown in Program 6.2.

Checking behavioral compatibility is handled differently by the different tools.

For instance, the tool jMocha checks whether the composition of auctioneer, bidder

and seller components will reach some undesirable states by performing a temporal

analysis. The composition is done by using renaming and parallel composition in

96

Program 6.4 Check a Property in RM

RM:

predicate pred p10 is (bs = logged in & ps = not available)

judgment J p10 is auctioneer sys |= pred p10

Alloy:

assert p1 {

all s: State | ! (s.bs = logged in && s.ps = not available)

}

check p1 for 8 State

RM. These undesirable situations can be identified by the user requirements. For

example, it is not allowed that when a bidder wins the auction, the product is still

not available. This is obviously an undesirable state that should be avoided.

A monitor [11] technique introduced in RM can be used to in checking of scenarios.

A monitor can only observe but not interfere with the behavior of the composition.

The user describes the expected state transitions in the monitor module and the

translation of the scenarios is similar to that of services.

The composite system is described as a parallel composition of the system and

the scenario. If the composite system can complete the scenario the user is sure that

the component is acceptable as it meets the specified requirements. In order to check

this, we use a predicate that is set to true on completion of the scenario. The RM

specification to check one scenario best_story is shown as Program 6.3.

The Alloy Analyzer allows the user to specify state transitions. So the checking of

reachability of undesirable states is similar to that of RM. Both Alloy and RM sup-

port checking properties specified using predicates (see Program 6.4). The complete

translations of the combined auctioneer specification to RM and Alloy can be found

in Appendix C.

97

6.3 Case Study 2: Search For A Spell Checker

Component

In this case study, we will find a spell checker component based on the user require-

ments. We first describe the user requirements using SCIL.

6.3.1 Requirements for the Desired Component

The basic functions of a spell checker component required by the user are:

1. The component can provide spell checking for single words, phrases and para-

graphs, and text documents.

2. The component can provide spell checking as the user types.

3. The component can locate misspelled words.

4. Each spelling error should be returned with suggested modifications if sugges-

tions are needed by the user.

5. Misspelled words can be ignored, and unknown words can be added to the

dictionary.

In order to let the potential spell checker component work in the user’s environ-

ment, more details about the above basic functions and the user’s environment need to

be specified. Program 6.5 is the complete SCIL specification of the user requirements.

In this requirement specification, SpellCheckStatus is defined to describe the

status of spell checking text: ready means that the text is ready to be checked;

if the word is misspelled, the checking status becomes incorrect; if modification

suggestions are given to the misspelled word, the checking status becomes suggested;

and if the misspelled word is ignored or added to the dictionary, the checking status

will become ignored or added respectively.

98

Program 6.5 Requirement Specification for Spell Checker Component

/*
 * Component required
 */
component UNKNOWN {
 // type definitions
 type:
 SpellCheckStatus is {ready, incorrect, suggested,
 ignored, added};
 ResultDisplay is {no_error, highlighted, underlined,
 suggestion_displayed, add_new_word_displayed};

 // global variables
 variable:
 scs as SpellCheckStatus;
 rd as ResultDisplay;
 check_as_typing as bool;
 need_suggestion as bool;

 // required services from this component
 service:
 CheckSpellAsTyping {
 }
 CheckSpellInWindow {
 }
 HaveSuggestions {
 }
 CorrectBySuggestion {
 }
 AddtoCustomDictionary {
 }
 IgnoreWords {
 }
}

/*
 * User's environment component - the user interface UI
 */
environment component UI connects UNKNOWN {
 // special service for an environment component
 service:
 run {
 scs = ready && check_as_typing = true
 -> CheckSpellAsTyping;
 scs = ready && check_as_typing = false
 -> CheckSpellInWindow;
 scs = incorrect && need_suggestion = true
 -> HaveSuggestions;
 scs = suggested -> CorrectBySuggestion;
 scs = incorrect -> IgnoreWords;
 scs = incorrect -> AddtoDictionary;
 scs = suggested -> IgnoreWords;
 scs = suggested -> AddtoDictionary;
 scs = ignored && check_as_typing = true
 -> CheckSpellAsTyping;
 scs = ignored && check_as_typing = false
 -> CheckSpellInWindow;

scs = added && check_as_typing = true
 -> CheckSpellAsTyping;
 scs = added && check_as_typing = false
 -> CheckSpellInWindow;
 }
}

/*
 * Scenarios and properties
 */
requirement spell_checker checks UNKNOWN, UI {
 // scenario definitions
 scenario:
 check_as_type_with_suggestion {
 scs = ready && rd = no_error &&
 check_as_typing = true;
 scs = incorrect && rd = underlined &&
 need_suggestion = true;
 scs = suggested && rd = suggestion_displayed;
 scs = ready && rd = no_error;
 }
 check_as_type_ignored {
 scs = ready && rd = no_error &&
 check_as_typing = true;
 scs = incorrect && rd = underlined;
 scs = ignored;
 scs = ready && rd = no_error;
 }
 check_in_window_with_suggestion_ignored {
 scs = ready && rd = no_error &&
 check_as_typing = false;
 scs = incorrect && rd = highlighted &&
 need_suggestion = true;
 scs = suggested && rd = suggestion_displayed;
 scs = ignored;
 scs = incorrect && rd = highlighted;
 }
 check_in_window_add_new_words {
 scs = ready && rd = no_error &&
 check_as_typing = false;
 scs = incorrect && rd = highlighted;
 scs = added && rd = add_new_word_displaye;
 scs = ready && rd = no_error;
 }

 // property definitions
 property:
 p1 {
 always !(scs = incorrect && td = no_error);
 always !(scs = ready && td != no_error);
 }
 p2 {
 always (scs = incorrect) precedes (ts = ignored);
 always (scs = incorrect) precedes (ts = added);
 }
}

99

Another type ResultDisplay is used to describe the display changes on the user

interface: if the word is misspelled, it will be highlighted or underlined with red

colour depending on the checking mode. Otherwise, it shows no errors found (denoted

by no_error). If suggestions are required for the misspelled word, a list of suggestions

will be displayed (denoted by suggestion_displayed). When a new word is being

added to the dictionary, we denote the display change as add_new_word_displayed.

There are two different checking modes required by the user. If the variable

check_as_typing is true, the spelling will be checked as the user types, so the service

CheckSpellAsTyping is called. If a word is misspelled, it will be underlined with red

colour. If the variable check_as_typing is false, spell checking is performed only

after words are completed in the window. Thus the service CheckSpellInWindow is

required, and it will highlight the misspelled word.

If the variable need_suggestion is true, modification suggestions are needed when

a word is misspelled. The user may call the service CorrectBySuggestion to cor-

rect the misspelled word by one of the suggestions, or ignore the spelling error by

IgnoreWords. The user also has an option to add the “misspelled” word to the dic-

tionary. Even if suggestions have been given for the misspelled word, the user still

has the chance to ignore this word or add this word to the dictionary. After the mis-

spelled word is ignored or added to the dictionary, the user may call spell checking

services again.

Four spell checking scenarios are displayed in Figure 6.1. The first scenario (a)

shows that when spell checking as the user types, a misspelled word is corrected by

the suggestion, while in the second scenario (b) the misspelled word is simply ignored.

The third scenario (c) shows checking spelling in the window, and the misspelled word

being ignored even though the suggestions have been given. But if being checked

again, the ignored word will still be marked as incorrect. And the fourth scenario (d)

shows the “misspelled” word being added to the dictionary.

100

no_error/ready

underlined/incorrect

check_as_typing = true

need_suggestion = true

no_error/ready

highlighted/incorrect suggestion_displayed/suggested

ignored

check_as_typing = false

need_suggestion = true

no_error/ready

underlined/incorrect

check_as_typing = true

(a) (c)

(b) (d)

no_error/ready

highlighted/incorrect add_new_word_displaye/added

check_as_typing = false

ignored

suggestion_displayed/suggested

Figure 6.1: Four Spell Checking Scenarios

101

Two situations are prohibited by the first two property definitions: 1. a word

is misspelled, but the spell checker component shows no errors found; 2. a word is

correctly spelled, but it is highlighted or underlined. The third and forth properties

check the order of state changes: always after spotting a word is misspelled, the user

can ignore this misspelling, or add the new word to the dictionary.

6.3.2 Specifying Components

In this section, we give the SCIL specifications of some previously built components

taken from our sample repository.

6.3.2.1 Telerik r.a.d.spell Component

Telerik [140] r.a.d.spell component enables users to add multilingual spell checking

capabilities to their applications. From its user manual, we can develop a use case

diagram as in Figure 6.2.

The services of the r.a.d.spell component can be identified from the use case

diagram (see Figure 6.2). The business logic of each service can also be decided by the

component’s user manual. Since we are only concerned about high-level key behaviour

of the component, the use cases such as choose dictionary, customise appearance and

choose suggestion generating algorithm can be ignored. Based on the types we have

defined, we can draw a state transition diagram of the component (see Figure 6.3).

We can specify the component in SCIL as shown in Program 6.6.

According to the component specification, when spell checking text the user can

only get two results: spelled correctly (denoted by ok) or misspelled. If a word is

misspelled, the incorrect word will be underlined with red colour when the “Check

Spelling as You Type” mode is selected (denoted by check_as_typing = true). Oth-

erwise, the incorrect word will be highlighted. If a word is misspelled, and the user

needs suggestions (denoted by need_suggestion = true), the component will dis-

play a list of suggestions for the misspelled word (denoted by suggestion_list). The

102

Caller

Choose
Dictionary

Choose
Appearance

Choose
Algorithm

Spell Check
Text

<extends>

Generate
Suggestions

Add Words

<extends>

Ignore
Words

<extends>

Spell Check
Text as User

Types

<extends>

key behaviour

Figure 6.2: r.a.d.spell Component Use Case Diagram

103

Program 6.6 Specification of r.a.d.spell Component

 component telerik {
 // type definitions
 type:
 TextStatus is {ok, misspelled, suggesting,
 ignored, adding};
 TextDisplay is {normal, highlighted, underlined,
 suggestion_list, add_word_box};

 // variables
 variable:
 ts as TextStatus;
 td as TextDisplay;
 check_as_typing as bool;
 need_suggestion as bool;

 // service definitions
 service:
 init {
 output: ts, td
 rule:
 true -> ts = ok && td = normal;
 }

 SpellCheckTextAsTyping {
 input: ts, check_as_typing
 output: ts, td
 rule:
 ts = ok && check_as_typing = true ->
 ts = misspelled && td = underlined;
 ts = ok && check_as_typing = true ->
 ts = ok && td = normal;
 ts = ignored -> ts = ok && td = normal;
 ts = adding -> ts = ok && td = normal;
 }

 SpellCheckText {
 input: ts, check_as_typing
 output: ts, td
 rule:
 ts = ok && check_as_typing = false ->
 ts = misspelled && td = highlighted;
 ts = ok && check_as_typing = false ->
 ts = ok && td = normal;
 ts = ignored -> ts = misspelled
 && td = highlighted;
 ts = adding -> ts = ok && td = normal;
 }

 GenerateSuggestions {
 input: ts, need_suggestion
 output: ts, td
 rule:
 ts = misspelled && need_suggestion = true ->
 ts = suggesting && td = suggestion_list;
 }

 ChangeBySuggestion {
 input: ts
 output: ts, td
 rule:
 ts = suggesting -> ts = ok && td = normal;
 }

 AddNewWords {
 input: ts
 output: ts, td
 rule:
 ts = misspelled -> ts = adding
 && td = add_word_box;
 ts = suggesting -> ts = adding
 && td = add_word_box;
 }

 IgnoreWords {
 input: ts
 output: ts, td
 rule:
 ts = misspelled -> ts = ignored;
 ts = suggesting -> ts = ignored;
 }

 // protocol definitions
 protocol:
 GenerateSuggestions precedes
 ChangeBySuggestion;
 }

104

ok

misspelled

SpellCheckText/
SpellCheckTextAsTyping

GenerateSuggestions

SpellCheckText/SpellCheckTextAsTyping

suggesting

ignored

adding

ChangeBySuggestion

IgnoreWords

IgnoreWords

AddNewWords

AddNewWords

Figure 6.3: r.a.d.spell Component State Transitions

user can correct the misspelled word by using one of the suggestions. The component

also allows the user to ignore the checking error even after the suggestions are given

for the misspelled word. The ignored word is displayed as if no errors are found when

being spell checked as the user types. However, with the “Check Spelling as You

Type” option turned off, the ignored word will still be marked as incorrect (and be

highlighted in this case). The component also allows users to add new words to the

dictionary. After being added, these new words will be considered as correctly spelled

words.

In the specification we need to make sure that GenerateSuggestions service

should be called before ChangeBySuggestion. That is to say, a misspelled word can

be corrected by a suggested modification only when there exist suggestions for the

misspelled word.

105

6.3.2.2 ComponentOne C1Spell Component

Another candidate component is C1Spell from ComponentOne [102]. By the same

way we can develop its specification in SCIL as shown in Program 6.7.

According to the specification, five actions are defined for the component. If

a word is correctly spelled, the variable if_correct is true, and there is no ac-

tion the component will do. If the word is misspelled, the component will send a

type_error_action event to the user’s environment. If modification suggestions for

the misspelled word are needed (denoted by auto_correct = true), the component

will send suggesting action. If the user wants to add the new word to the dictionary,

the action adding is sent. Finally, the user can ignore the misspelled word by the

action ignoring.

The spell checking behaviour of the C1Spell component is similar to the r.a.d.spell

component. However, there exist some differences. We are going to talk about the

differences in Section 6.3.3.

6.3.2.3 ChadoSpellText Component

ChadoSpellText component is provided by Chado Software [31]. It has a specification

as Program 6.8.

This component provides only basic spell checking functions. It cannot check

spelling as the user types, and it cannot generate modification suggestions for the

misspelled words either.

6.3.3 Searching Components in the Repository

The user first searches in the repository by keywords to reduce the number of candi-

dates to 12. In this case study, the keywords are spell spelling check checking.

These 12 components, including r.a.d.spell, C1Spell and ChadoSpellText, have been

specified in SCIL. At the second step, the user is able to upload the requirement

106

Program 6.7 Specification of C1Spell component

component C1Spell {
 // type definitions
 type:
 SpellCheckAction is {no_action, type_error_action,
 suggesting, ignoring, adding};

 // variables
 variable:
 sca as SpellCheckAction;
 auto_correct as bool;
 if_correct as bool;
 check_as_typing as bool;

 // service definitions
 service:
 init {
 output: sca, if_correct
 rule:
 true -> if_correct = true && sca = no_action;
 }

 CheckTyping {
 input: check_as_typing, sca
 output: if_correct, sca
 rule:
 check_as_typing = true ->
 if_correct = true && sca = no_action;
 check_as_typing = true ->
 if_correct = false && sca = type_error_action;
 sca = ignoring && check_as_typing = true ->
 if_correct = false && sca = no_action;
 sca = adding && check_as_typing = true ->
 if_correct = true && sca = no_action;
 }

 CheckString {
 input: check_as_typing, sca
 output: if_correct, sca
 rule:
 check_as_typing = false ->
 if_correct = true && sca = no_action;
 check_as_typing = false ->
 if_correct = false && sca = type_error_action;
 sca = ignoring && check_as_typing = false ->
 if_correct = false && sca = type_error_action;
 sca = adding && check_as_typing = false ->
 if_correct = true && sca = no_action;
 }

 BuildSuggestions {
 input: if_correct, auto_correct
 output: sca
 rule:
 if_correct = false && auto_correct = true ->
 sca = suggesting;
 }

 CorrectBySuggestion {
 input: sca
 output: sca, if_correct
 rule:
 sca = suggesting -> if_correct = true
 && sca = no_action;
 }

 AddNewWords {
 input: if_correct
 output: sca
 rule:
 if_correct = false -> sca = adding;
 sca = suggesting -> sca = adding;
 }

 IgnoreWords {
 input: if_correct
 output: sca
 rule:
 if_correct = false -> sca = ignoring;
 sca = suggesting -> sca = ignoring;
 }
 }

107

Program 6.8 Specification of ChadoSpellText Component

 component ChadoSpellText {
 type:
 SpellCheckStatus is {ready, incorrect, ignored, adding};
 ResultDisplay is {no_error, highlighted, add_new_word_displayed};

 variable:
 scs as SpellCheckStatus;
 rd as ResultDisplay;

 service:
 init {
 output: scs, rd
 rule:
 true -> scs = ready && rd = no_error;
 }

 CheckString {
 input: scs
 output: scs, rd
 rule:
 scs = ready -> scs = incorrect && rd = highlighted;
 scs = ready -> scs = ready && rd = no_error;
 scs = ignored -> scs = incorrect && rd = highlighted;
 scs = adding -> scs = ready && rd = no_error;
 }

 AddWordsToCustom {
 input: scs
 output: scs, rd
 rule:
 scs = incorrect -> scs = adding &&
 rd = add_new_word_displayed;
 }

 IgnoreAll {
 input: scs
 output: scs, rd
 rule:
 scs = incorrect -> scs = ignored;
 }
 }

108

specification in SCIL to the selection system.

The system retrieves all the naming from both component and requirement speci-

fications, and then asks the user to map the naming between two specifications. This

is necessary because users and developers use different names of types, variables and

services in their specifications. However, this method can only handle simple naming

differences. It requires that the number of the names mapped from two specifications

should be the same, and two different names mapped should have the same type

or the same meaning. Thus among the 12 candidate components, only telerik [140]

r.a.d.spell component can directly use the name-mapping method with the user re-

quirement specification, because it is modelled in a similar way as the one for the

requirement specification.

The other 11 components have different styles of definitions on types, variables and

services than the user requirement specification, so the name-mapping method can-

not be used directly for those components. Take C1Spell component as an example.

Its service names can be directly mapped with the ones specified in the user require-

ment specification, such as: CheckTyping to CheckSpellAsTyping, CheckString to

CheckSpellInWindow, BuildSuggestions to HaveSuggestions, etc. However, the

types and variables are not the case, because they have been defined differently in

the two specifications. In the requirement specification, the type SpellCheckStatus

is used to describe the states of spell checking text. And for each state, there is also a

result displaying. For example, when a word is found misspelled, the word will be dis-

played as underlined with red colour. While in the C1Spell component specification,

the spell checking states are described by the different actions (or events) the com-

ponent sends. Modelling the same thing inconsistently often happens between users

and developers. This is the place that the simple name-mapping method cannot be

used.

Therefore we have to modify the selecting component process: for each candidate

component (those filtered by the keywords), before mapping names, we have to view

109

the component specification. In this case study, there are 12 components to be viewed.

We also have to modify the requirement specification according to the component

specification, making sure they are modelled consistently. For the C1Spell component,

we modify the user requirement specification in this way:

run {

check_as_typing = true -> CheckTyping;

check_as_typing = false -> CheckString;

if_correct = false && auto_correct = true -> BuildSuggestions;

sca = suggesting -> CorrectBySuggestion;

if_correct = false -> IgnoreWords;

if_correct = false -> AddNewWords;

}

The different names can be changed during the modification of the requirement

specification, in this case, name mapping of the two specifications can be skipped.

The modified specification of the user’s environment actually does the same thing as

before, but is presented differently. Similarly, the scenario definitions and the required

properties are also modified accordingly. This is the modified spell checking scenario

check_as_type_with_suggestion:

if_correct = true && sca = no_action && check_as_typing = true;

if_correct = false && sca = type_error_action && auto_correct = true;

sca = suggesting;

if_correct = true && sca = no_action;

Comparing with the original requirement specification, the modified version is

different on displaying the misspelled words. The user requires that under different

checking modes, the misspelled word is marked differently: underlined with red colour

or highlighted. However, for C1Spell component, a type_error_action will be sent

if a word is checked misspelled regardless of checking modes.

110

Sometimes it is not possible to modify the requirement specification according

to the component specification, otherwise the user requirements would be greatly

changed. For example, the RichTextBox component from [132] is a WYSIWYG

(What Your See Is What You Get), rich-text content editor. It also has keywords

spell checking, because it provides spell checking to the text edited in the text

control. But obviously this is not the component we are looking for. Thus it is not

possible for the user to modify the requirement specification based on an actually

irrelevant component. We can just ignore this component. In this case study, there

are five of 12 components that are not spell checker components, but their descriptions

contain some of the keywords.

If the component specification and the requirement specification are modelled in

a consistent manner, the system combines two specifications.

6.3.4 Translating and Model Checking

In this case study, two model checking tools are used: jMocha and Alloy Analyser.

JMocha supports checking both scenarios and properties, while Alloy Analyser only

supports properties check.

Program 6.9 is the translation of the scenario check_as_type_with_suggestion

for the r.a.d.spell component. The check on this scenario is also automatically gen-

erated. The translations of the other components are similar.

Both Alloy and RM support checking properties specified using predicates. The

translations of the first two properties in RM and Alloy are as Program 6.10.

However, neither RM nor Alloy supports temporal operators such as precedes.

Thus the judgements that contain those temporal operators are not translated.

6.3.5 Results

There are three components that pass the checking on the user-specified scenarios and

properties by both jMocha and Alloy Analyser. These components include r.a.d.spell

111

Program 6.9 Translation of a Scenario to RM

 module check_as_type_with_suggestion is
 interface alert_check_as_type_with_suggestion_: (0..4);
 final_check_as_type_with_suggestion_: bool
 external need_suggestion: bool; check_as_typing: bool;
 td: TextDisplay; ts: TextStatus;
 lazy atom main controls alert_check_as_type_with_suggestion_,
 final_check_as_type_with_suggestion_
 reads alert_check_as_type_with_suggestion_,
 need_suggestion, check_as_typing, td, ts

 init
 [] true -> alert_check_as_type_with_suggestion_' := 0;
 final_check_as_type_with_suggestion_' := true
 update

 [] alert_check_as_type_with_suggestion_ = 0 & ts = ok
 & td = normal & check_as_typing = true ->
 alert_check_as_type_with_suggestion_' := 1;
 final_check_as_type_with_suggestion_' := true
 [] alert_check_as_type_with_suggestion_ = 1 & ts = misspelled
 & td = underlined & need_suggestion = true ->
 alert_check_as_type_with_suggestion_' := 2;
 final_check_as_type_with_suggestion_' := true
 [] alert_check_as_type_with_suggestion_ = 2 & ts = suggesting
 & td = suggestion_list ->
 alert_check_as_type_with_suggestion_' := 3;
 final_check_as_type_with_suggestion_' := true
 [] alert_check_as_type_with_suggestion_ = 3 & ts = ok
 & td = normal ->
 alert_check_as_type_with_suggestion_' := 4;
 final_check_as_type_with_suggestion_' := nondet

 module matching_check_as_type_with_suggestion_ is
 spell_checker || check_as_type_with_suggestion

 predicate pred_check_as_type_with_suggestion_ is
 (final_check_as_type_with_suggestion_ = true)

 judgment J_check_as_type_with_suggestion_ is
 matching_check_as_type_with_suggestion_ |=
 pred_check_as_type_with_suggestion_

112

Program 6.10 Translation of Properties to RM and Alloy

RM:

predicate pred p10 is (ts = misspelled & td = normal)

judgment J p10 is spell checker |= pred p10

predicate pred p11 is (ts = ok & td = normal)

judgment J p11 is spell checker |= pred p11

Alloy:

assert as p10 {

no s: State | s.ts = misspelled && s.td = normal

}

assert as p11 {

no s: State | s.ts = ok && s.td != normal

}

and C1Spell.

For the C1Spell component, although it does not specify the particular display for

the misspelled words, the type_error_action action can be customised by the user

to show different results. For example, the user can use it to beep and underline the

misspelled words, or use it to highlight the misspelled word. The component leaves

this flexibility to the user. Thus we accept that, with some glue code, the C1Spell

component has the required behaviours.

For ChadoSpellText component, two properties are satisfied, and only one scenario

check_in_window_add_new_words can be achieved. However, the other scenarios

cannot be agreed by jMocha. This is because the component lacks some functions

113

that the user requires. Thus, this component does not have the required behaviour,

and is rejected.

The discussion on this case study can be found at Section 6.5.

6.4 Case Study 3: Search COTS Components for

a Generic e-Commerce Application

The project in this case study is from the Software Engineering subject offered by IT

School, Bond University. The project is to build a generic e-commerce platform with

common online shopping capabilities. The project initially focuses on each stage

involved in component-based development. The “Catalysis” [55] method has been

applied to the project. In the original project plan, all the components identified are

built by students in order to minimise cost and gain a learning experience. In this

case study, we will search and use those COTS components.

The e-commerce application mainly consists of three components: authentication,

catalogue and shopping cart. Users interact with these three components through the

web-based user interface (web component). After the user checks out the shopping

cart, if the products purchased are available, the application will invoke the credit card

verifier component to verify the user’s credit card; or if the products are not available,

they will be registered in the message centre, so that the user will be notified when

the products become available. This architecture is highlighted in Figure 6.4.

Since the operations of the other components are based on user authentication, we

first search for the authentication component. Then based on the retrieval of the au-

thentication component, we can search for catalogue and shopping-cart components.

The shopping cart is also connected to the credit card verifier component and the

mobile message centre (a separate system developed by the students that can send

messages to mobile devices).

114

catalogue

authentication shopping cart

credit card mobile message centre

Server

web component

Figure 6.4: The e-Commerce Application Architecture

6.4.1 Search for the Authentication Component

We first describe the user requirements in SCIL.

6.4.1.1 The Requirement Specification

We require the authentication component to have these basic functions:

• Users can log in and out to the system.

• New users are able to sign up to the system by filling in the necessary details

and creating a unique username and password pair to allow login.

• Users are able to access their own profiles.

• System administrators can manage all the users’ records.

Given below (Program 6.11) is the complete SCIL specification of the requirements

for the authentication component.

The type UserLogStatus is the user’s status to the system: new represents a new

user; logged_in is used when the user has logged into the system, while logged_out

is used when the user has logged out of the system; if the system administrator has

logged into the system, the status will become admin_logged_in.

The type UserRecStatus is the status of the user’s profile: after a new user has

signed up, a new profile is added; also the user’s profile can be modified after the

115

Program 6.11 Requirement for Authentication Component

/*
 * Component required
 */
component UNKNOWN {
 type:
 UserLogStatus is {new, logged_in, logged_out,
 admin_logged_in};
 UserRecStatus is {na, added, modified, managed};

 variable:
 uls as UserLogStatus;
 urs as UserRecStatus;
 user_type as bool;

 service:
 Login {
 }
 SignUp {
 }
 Logout {
 }
 ChangeProfile {
 }
 ManageUsers {
 }
}

environment component web_UI connects UNKNOWN
{
 service:
 run {
 uls = logged_out -> Login;
 uls = logged_in -> Logout;
 uls = admin_logged_in -> Logout;
 uls = new -> SignUp;
 uls = logged_in -> ChangeProfile;
 uls = admin_logged_in -> ManageUsers;
 }
}

requirement authentication_requirement checks
 UNKNOWN, web_UI
{
 scenario:
 new_user_signup_change {
 uls = new;
 urs = added && uls = logged_in;
 urs = modified && uls = logged_in;
 urs = na && uls = logged_out;
 }

 admin_manage_users {
 urs = na && uls = logged_out;
 uls = admin_logged_in;
 uls = admin_logged_in && urs = managed;
 urs = na && uls = logged_out;
 }

 property:
 p1 {
 always !(uls = logged_out &&
 (urs = added || urs = modified));
 always !(urs = managed && uls = logged_in);
 }
}

116

user logging in; managed is generally used when the system administrator has updated

(including add, delete, modify) the profiles of users. Finally, na means not applicable

or no changes to the users’ profiles.

Two scenarios are expected. The first shows such a situation: a new user suc-

cessfully signs up to the system, so that the user’s profile is added. Now the user is

able to log in to the system, and then updates the individual profile. After it is done,

the user logs out. The second scenario shows the process of the system administrator

managing users’ records.

The first property checks that when a new user is being added or the user’s profile

is being modified, the user has to be logged in to the system. The second property

requires that only the administrator can manage all the users’ records.

6.4.1.2 The Component Specifications

The way we specify components is similar as presented in case study 2. Program 6.12

is the specification of one candidate from the TopCoder component repository.

This component can authenticate users by checking the pair of username and

password. The component also allows users to create a new account (identity), and

modify the account. But only the system administrator has the privilege to delete an

account.

6.4.1.3 Searching in the Repository

At the first step of searching by keywords authentication authenticate, we get 19

components. This number is big because many components having security features

are also described by these keywords. But most of them are irrelevant to our require-

ments, such as RSA BSAFE Cert-C (certificate handling software library) and Rebex

Secure FTP (secure file transfer component). It is not practical to view and modify

a big number of specifications during the search. Thus we have to reduce the number

of candidates by adding one more keyword password, then we get five components.

117

Program 6.12 Specification of an Authentication Component

component tc_authentication {
 type:
 UserStatus is {new, logged_in, logged_out};
 UserType is {normal, admin};
 SysStatus is {na, inserted, modified, deleted};

 variable:
 us as UserStatus;
 ss as SysStatus;
 ut as UserType;

 service:
 init {
 output: ss, us
 rule:
 true -> ss = na && us = new;
 }

 Authenticate {
 input: us
 output: us, ut
 rule:
 us = logged_out -> us = logged_in && ut = normal;
 us = logged_out -> us = logged_in && ut = admin;
 }

 InsertIdentity {
 input: us
 output: us, ss
 rule:
 us = new -> ss = inserted && us = logged_in;
 }

 EndSession {
 input: us
 output: us, ss
 rule:
 us = logged_in -> us = logged_out && ss = na;
 }

 ModifyIdentity {
 input: us
 output: ss
 rule:
 us = logged_in -> ss = modified;
 }

 DeleteIdentity {
 input: us, ut
 output: ss
 rule:
 us = logged_in && ut = admin -> ss = deleted;
 }
 }

118

The searching process is similar as described in case study 2. We need to modify the

requirement specification to ensure the consistent modelling of two specifications.

Since the tc_authentication component does not use the boolean type to decide

administrator or normal user, we need to modify the user requirement specification

for the component tc_authentication:

environment component web_UI connects UNKNOWN

{

service:

run {

us = logged_out -> Authenticate;

us = logged_in -> EndSession;

us = new -> InsertIdentity;

us = logged_in -> ModifyIdentity;

us = logged_in && ut = admin -> DeleteIdentity;

}

}

requirement authentication_requirement checks UNKNOWN, web_UI

{

scenario:

new_user_signup_change {

us = new;

ss = inserted && us = logged_in;

ss = modified && us = logged_in;

ss = na && us = logged_out;

}

admin_manage_users {

ss = na && us = logged_out;

ut = admin && us = logged_in;

ut = admin && us = logged_in && ss = deleted;

119

ss = na && us = logged_out;

}

property:

p1 {

always !(us = logged_out && (ss = inserted || ss = modified));

always !(ss = deleted && us = logged_in && ut = normal);

}

}

Please note that in the modified requirement specification, admin_logged_in is

replaced by us = logged_in && ut = admin to describe the state when the system

administrator has been logged in to the system.

6.4.1.4 Result

Both jMocha and Alloy Analyser advise that three components have expected be-

haviour, including tc_authentication.

6.4.2 Search for the Catalogue Component

The operations of the catalogue component include adding/removing product groups,

adding/removing products, users browsing catalogue. Since browsing product cata-

logue does not cause state changes (not key behaviour), we will not put it into our

requirement specification.

Since the authentication component has been retrieved, it should be included

in the user’s environment this time. The only interface between the authentication

component and the catalogue component is the user’s logged-in status. We import

the UserLogStatus type from the authentication component.

The operations of the catalogue component can only be performed by the system

120

administrator in the logged-in status. Thus the pre-condition for all the services of

catalogue component is: uls = admin_logged_in.

Program 6.13 is the complete requirement specification for the catalogue compo-

nent.

The requirement only checks the fact that when the administrator adds/removes

groups or products, their numbers cannot exceed the maximum numbers allowed, and

also the numbers cannot be less than zero.

There are not many COTS catalogue components available for use. When search-

ing our repository by keywords catalog catalogue, we only get two candidates.

One component only provides a catalogue presentation from the catalogue database

while adding/removing records needs separate operations on the database. We cannot

adjust our requirements for such a component.

The other candidate component, .NETCatalog, can pass the model checking by

both Alloy Analyser and jMocha. However, it offers more functions that we do not

need, such as creating rules, calculating discount price, etc.

6.4.3 Search for the Shopping-Cart Component

The shopping-cart component also requires users to log in to the system first. Mean-

while it connects to the credit card verifier component and the mobile message centre

that also should be specified in our requirement specification.

6.4.3.1 The Requirement Specification

The complete requirement description in SCIL for the shopping-cart component is

given in Program 6.14.

The type Quantity represents the number of items that have already been put in

the shopping cart, and capacity is the maximum number allowed. We give capacity

a value of 5 as an example in this case study. ProductStatus denotes the status

of a product, it could be in stock (available), or out of stock (not_available).

121

Program 6.13 Requirement Specification for Catalogue Component

component UNKNOWN {
 constant:
 gn_capacity = 5;
 pn_capacity = 5;

 type:
 UserLogStatus is {new, logged_in, logged_out, admin_logged_in};
 GroupNumber is (0..gn_capacity);
 ProductNumber is (0..pn_capacity);

 variable:
 uls as UserLogStatus;
 gn as GroupNumber;
 pn as ProductNumber;

 service:
 CreateGroup {
 }
 DeleteGroup {
 }
 AddProduct {
 }
 RemoveProduct {
 }
}

environment component web_UI connects UNKNOWN {
 service:
 run {
 uls = admin_logged_in -> CreateGroup;
 uls = admin_logged_in -> DeleteGroup;
 uls = admin_logged_in -> AddProduct;
 uls = admin_logged_in -> RemoveProduct;
 }
}

requirement catelog_req checks UNKNOWN, web_UI {
 property:
 p1 {
 always !(gn < 0 || gn > gn_capacity);
 always !(pn < 0 || pn > pn_capacity);
 }
 p2 {
 always uls = admin_logged_in;
 }
}

122

Program 6.14 Requirement Specification for Shopping-Cart Component

component UNKNOWN connects user_env {
 constant:
 capacity = 5;

 type:
 Quantity is (0..capacity);
 UserLogStatus is {new, logged_in,
 admin_logged_in, logged_out};
 ProductStatus is {not_available, available};
 ReturnMsg is {na, succeed, fail, registered};

 variable:
 q as Quantity;
 uls as UserLogStatus;
 ps as ProductStatus;
 rm as ReturnMsg;
 CC_Verify as deferred;
 MC_Register as deferred;

 service:
 AddItem {
 }
 RemoveItem {
 }
 Clear {
 }
 Checkout {
 }
}

component user_env connects UNKNOWN {
 service:
 init {
 output: rm, uls
 rule:
 true -> rm = na && uls = logged_in;
 }

 CC_Verify {
 input: rm
 output: rm
 rule:
 rm = na -> rm = succeed;
 rm = na -> rm = fail;
 }

 MC_Register {
 input: rm
 output: rm
 rule:
 rm = na -> rm = registered;
 }
}

requirement webshop checks UNKNOWN, user_env {
 scenario:
 successful_story {
 q = 0;
 q = 1;
 q = 2;
 q = 3;
 q = 0;
 q = 1 && ps = available;
 rm = succeed && q = 0;
 }

 need_notification {
 q = 0;
 q = 1 && ps = not_available;
 rm = registered;
 }

 property:
 p1 {
 // invariants on the number of
 // items in the shopping cart
 always !(q < 0 || q > capacity);
 // the user has to be logged in
 always uls = logged_in;
 }
 p2 {
 always !(rm = registered && q = 0);
 }
}

123

ReturnMsg is the list of possible messages sent by the credit card verifier and the

mobile message centre components: succeed means the credit card is verified correct,

fail means failing in verifying the credit card, registered is sent when the out-of-

stock product has been registered in the mobile message centre, and na simply means

no messages or not applicable.

This time the user’s environment includes the authentication, the catalogue, the

credit card verifier and the mobile message centre. Still we import the UserLogStatus

type as the interface of the authentication component. Since browsing catalogue does

not need to be specified and catalogue operations are only allowed by the system

administrator, there are no interfaces that need to be specified between the catalogue

component and the shopping-cart component. In order to describe the interface for

the shopping cart to access the other two components, we need to specify the services

that these two components provide in the user’s environment: CC_Verify is the

service provided by the credit card verifier component, checking the validity of credit

cards, and sending a message indicating operation success or failure; MC_Register

is provided by the mobile message centre component, to notify its caller that the

product information has been registered.

The first scenario (see Figure 6.5 – a) shows: the user first puts an item into the

shopping cart, then adds another two items. But the user probably has made some

mistakes, so the shopping cart is emptied. Finally, the user puts one product item

in the cart, and then checks out by credit card. Since the product is available, the

credit card is verified. After the transaction is finished, the cart is emptied.

The second scenario (see Figure 6.5 – b) shows that the user adds one item and

then checks out. But the product is not available at the moment, so the mobile

message centre registers the product.

Two properties of the joint system by the user’s environment and the potential

shopping-cart component are required. The first property is to ensure the number

of the items put in the shopping cart can never be less than zero, or exceed the

124

q=0

q=1
AddItem

AddItem

q=0 registered/q=1

AddItem

Checkout

(a) (b)

na/q=0

q=2

q=3

succeed/q=1

q=0

q=1

AddItem

Clear

AddItem

Checkout

Checkout

q=1 q=1

Checkout

Figure 6.5: Two Scenarios for the Shopping Cart Component

maximum number allowed, which is 5 in our case. The second property is to check

the fact that the shopping cart will not be cleared if the product is not available, and

has been registered with the mobile message centre. The number of items in the cart

remains the same, but cannot be zero.

6.4.3.2 The Component Specifications

Program 6.15 below is the specification of the component JavaCart taken from Top-

Coder.

It is obvious that this component does not have the interface to the mobile message

centre component.

6.4.3.3 Searching in the Repository and Result

The first search by keywords shopping cart ecommerce has found five candidates,

but none of them can be totally passed by both jMocha and Alloy Analyser. This

is because no COTS shopping-cart components have an interface to our mobile mes-

sage centre. For example, the JavaCart component can achieve successful_story

125

Program 6.15 Specification of JavaCart Component

component JavaCart connects credit_card_component {
 constant:
 capacity = 5;

 type:
 Quantity is (0..capacity);
 UserLogStatus is {new, logged_in, admin_logged_in, logged_out};
 ReturnMsg is {na, succeed, fail};

 variable:
 q as Quantity;
 uls as UserLogStatus;
 rm as ReturnMsg;
 CC_Verify as deferred;

 service:
 init {
 output: q
 rule:
 true -> q = 0;
 }

 AddItem {
 input: uls, q
 output: q
 rule:
 uls = logged_in && q < 5 -> q = q + 1;
 }

 RemoveItem {
 input: uls, q
 output: q
 rule:
 uls = logged_in && q > 0 -> q = q - 1;
 }

 Clear {
 input: uls
 output: q
 rule:
 uls = logged_in -> q = 0;
 }

 Checkout {
 input: uls, q, rm
 output: q
 rule:
 uls = logged_in && q > 0 -> CC_Verify;
 rm = succeed -> q = 0;
 }

 protocol:
 once Checkout;
 eventually Checkout;
}

126

scenario, but fail at checking need_notification scenario. Both jMocha and Alloy

Analyser pass the first property check, but give a counterexample when checking the

second property.

The shopping-cart component .netCART [119] supports an unlimited number of

items. This would remove the constraint that the number of items should be within

the range. Another candidate CartWIZ [30] is actually a combination of the catalogue

and shopping-cart components. It provides much richer functions than we required.

In order to use such a component in our application, glue code is needed [95].

6.5 Discussion

Compared with the traditional keywords-based searching method, our approach can

save system development time by following a semi-automatic process with tools sup-

port. The only effort is to write the SCIL specifications. We record that approxi-

mately it takes a person one hour to write the SCIL specification for a shopping-cart

component. This does not include the time on reading the component’s user man-

ual or other documents, because we assume that the person who develops the SCIL

specification should be the person who develops the component, thus has enough

knowledge about the component. It takes about half an hour to specify the user

requirements in SCIL. Searching by keywords is fast. For our sample repository, it

normally takes less than 20 seconds. However, it takes a much longer time to review

candidate component specifications and modify the requirement specification. On

average 15 minutes for each modification is necessary in this case study, given the

component specification is fully commented (we discuss this later in this section).

Thus in order to make the component selection faster, we need to reduce the number

of candidate components filtered by keywords. Thus picking appropriate keywords is

important. We think that it is impractical for users to have more than 15 components

to view and modify their requirement specifications accordingly.

127

Although searching by keywords is easy to use, results often contain many irrele-

vant items. In the first case study, we get five of 12 components (nearly 50%) that are

irrelevant to spell checking. Thus, results need to be refined. The traditional way is

completely manual. Users have to examine candidate components one by one, getting

rid of the obvious irrelevant ones. Then users need to download the user manual files

or the trial versions of those left candidates, and try one by one. For each compo-

nent, we estimate based on some tests, in order to understand what it provides and

how it works, it takes one person nearly one day (eight hours) approximately. It is

even more time-consuming when selecting several components at the same time while

these components are also connected to each other, because users need to not only try

each single component, but also the assemblies of the connecting components. If each

component has a few candidates, in order to pick the best group the possibilities of

combining those components can consume a large amount of time and effort if doing

manually.

SCIL specification matching is done semi-automatically, because it involves some

manual work to make the requirement specification consistent with the component

specification. But the components that combined with the user requirements, if

passed by the model checking tools, can be ensured to have required behaviour that

is compatible to the user’s environment.

As we mentioned before, the major difficulty of our approach we found in these case

studies is how to ensure the consistent modelling between requirement specification

and component specification that are written separately by users and developers. In

order to overcome this difficulty, we propose three solutions:

1. Map names between specifications developed by users and developers. This

method can only handle simple naming differences, and the precondition is

that the number of the mapping names from two specifications should be the

same, and two different mapping names should have the same type and same

meaning. We have implemented this in our prototype system. But sometimes

128

this method is too strict to get satisfactory results. In this case study, it causes

two acceptable components to be rejected.

2. Adjust the user requirement specification manually. By informal explanations

attached with the component specification, this method can increase the possi-

bilities of getting the required components. We have used this method in this

case study, combined with the name-mapping method. We believe that at the

moment this combination can get the best results. However, some manual work

is needed, and since it is not completely automatic, the selecting process takes

a longer time.

3. Formally define how to transform from one model (a transition system) to an-

other. Thus more automation can be achieved. However, this method needs

future exploration on how to use it in our framework.

One cannot easily tell the difference between SCIL specifications, thus comments

for SCIL code fragments are needed. Here are example comments on the type

SpellCheckAction:

//@ SpellCheckAction is a set of actions the component

// sends when spell checking text:

// @@ no_action = no actions sent

// @@ type_error_action = the action sent when a word is misspelled

// @@ suggesting = the action sent when suggestions are given

// @@ ignoring = the action sent when the misspelled word is ignored

// @@ adding = the action sent when the new word is added to the dictionary

SpellCheckAction is {no_action, type_error_action,

suggesting, ignoring, adding};

We often get the components that have more or less functions (interfaces) than

we required. Assuming a component has the exact behaviour as described in the user

129

requirement specification, if this component now has been added more functions,

when adjusting the requirement specification, normally we do not need to introduce

new types (or new states), and it is likely that the model checking tools (jMocha and

Alloy Analyser) still can pass the scenario and property check. This component is

acceptable. In order to use such a component, glue code is required when integrating

the component into our application [95].

But if now some functions have been removed from this component (in this case,

the requirement has more states than the component has), when adjusting the re-

quirement specification, normally we have to remove some types (or states). We still

can map the types and variables, however, it is unlikely that the model checking tools

(jMocha and Alloy Analyser) still can pass the scenario and property check. Thus

this component is not acceptable according to the user requirements.

6.6 Summary

In this chapter we have presented one small case study of using our tools to check

component behavioural compatibility and two full case studies of selecting commercial

components from our sample repository. The first case study is the continuous work on

the example from Chapter 4. The second case study is selecting a single component,

while the third is searching for a group of connecting components. By experiments

and comparison, we think our approach can decrease the system development time

but increase the precision of component selection.

Chapter 7

Conclusion and Future Work

In this thesis, we focus on how to select components that have user-required behaviour,

since component selection is a key to a component-based development (CBD). We

have proposed a framework in which a collaborative process is conducted by compo-

nent users and component developers to select the required components. In order to

support the process, tools are provided for both users and developers. For proof of

the concept purpose, we have designed Simple Component Interface Language (SCIL)

as the communication and specification language to capture component behaviours.

Therefore a component can be selected if it is checked behaviourally compatible with

user requirement. Based on SCIL, we have developed a prototype component selection

system and used it in three case studies: checking the compatibility of an auctioneer

component, finding a spell checker component and searching for the components for

a generic e-commerce application.

The structure of the whole thesis can be concluded as follows: In Chapter 1 we

provided an introduction to the problem and an overview of the solution in our ap-

proach. In Chapter 2 we described the related work and showed that previous work

is not sufficient to address our problems. In Chapter 3 we elaborated on the detailed

solution framework by presenting a collaborative process to select components and

the potential tools support. In Chapter 4 we introduced the syntax of SCIL lan-

130

131

guage and how to use SCIL to write component specifications and user requirement

specifications. In Chapter 5 we showed the architecture of our prototype component

selection system, and the way we designed and implemented it. In Chapter 6 we

used three case studies to illustrate the applicability and accuracy of our approach in

different applications. However, some difficulties have also been identified.

7.1 Main Contributions

The goal of our research is to maximise the possibility of finding components that have

the required behaviours, so that the component adaptation cost can be minimised.

The results of the case studies indicate that our approach can indeed find components

that have the required behaviours. Compared to the traditional way of searching by

free text, our approach can ensure the users to get more relevant results. Furthermore,

with a collaborative selection process, it becomes possible for the users to receive

components that exactly meet both syntactical and semantical requirements.

The main contributions of this thesis can be summarised as follows:

• We have divided the process of selecting components into two activities: first,

match components by the required behaviour; second, select components by

the required interface syntax. The first activity is the prerequisite of the second

one. And both activities may need component developers’ involvement.

• We have developed a collaborative process to select components that is dif-

ferent from other approaches, such as Select Perspective [6]. Our process for

collaboration sets the base on a common specification language that is able to

capture component behaviour. Concrete tools are provided to support such a

collaborative process.

• We have designed SCIL as the bridge to other formal modelling languages, so

it becomes possible to formally analyse the compatibility of components with

132

user requirements. While SCIL has simple, easy to understand syntax, normal

users can use it without knowing the formal details.

• We have reused the model checking tools developed by other research groups

in our framework. Therefore, through SCIL and its translator, one can check

various behavioural properties supported by various previously existing tools.

• We have used three case studies to illustrate the applicability and accuracy of

our approach. The case studies are related to different applications. We have

specified user requirements and candidate components, given the translation of

the combined specification, and finally shown the model checking results.

7.2 Future Work

Our future work can be carried out in the following four directions:

• Since our approach has not achieved complete automation due to the mod-

elling inconsistency from different people, some manual work to adjust user

requirements is needed when using our prototype system. We will try to solve

this problem by defining a formal transformation from one model (a transition

system) to another. Based on this definition, all the models can be unified.

• As the number of the model checking tools used in our framework increases,

it is necessary to implement a trigger that is able to automatically select the

proper tools for checking component behavioural compatibility, since different

tools have different features and support checking different properties.

• Another focus will be put on the component developer’s side, i.e., how to facili-

tate customising components. Component customisation requires investigating

the technologies that are based on modelling software system families and aim at

providing highly customised and optimised intermediates. An approach to this

133

goal is to extend SCIL to be able to specify component families. Such a specifi-

cation can be parameterised, and it can be instantiated to a concrete component

specification based on the particular user requirement. Different from domain

specific languages, SCIL is for general purpose. Because difficulties would occur

when deciding parameters for a product family, component developers should

have a way to collect all the related requirements and generate the common

part.

system implementation can be improved by adding the function of analysing the

outputs of model checking tools, thus the services that cause the failure can be

identified. When developers customising their components, SCIL specifications

can provide a guide.

• Also there is a need to integrate SCIL specification and its verification into the

component development process, so that any changes to component source code

will cause the changes to its specification automatically, and vice versa. This

needs to build a mapping from SCIL to some programming languages, such as

Java.

Appendix A

Related Publications

The publications that are related to this research project are described as below:

1. Lei Wang and Padmanabhan Krishnan, An Approach to Provisioning E-Commerce

Applications with Commercial Components, In IEEE International Conference

on e-Business Engineering, pp. 323-330 (IEEE, 2006).

Abstract: Component-based development is a trend towards building e-commerce

applications. However, commercial components are rarely used during the de-

velopment. The reason is that existing approaches to selecting and composing

components suffer from the problem that the components retrieved usually do

not exactly fit with other components in the system being developed. While

formal methods can be used to describe and check semantic characteristics to

better match components, there are practical limitations which restrict their

adoption.

We have proposed a framework to support a semantic description and selec-

tion of components. We used Simple Component Interface Language (SCIL) to

describe user requirements and pre-built components from the current compo-

nent sources. Specifications in SCIL can be translated to a variety of models

including those that have a formal basis.

134

135

In this paper, we preform a case study of searching commercial components

for a generic e-commerce application. We specify the commercial components

in SCIL and use two specific tools: jMocha and Alloy Analyser to identify the

correct components that suit a particular task.

2. Lei Wang and Padmanabhan Krishnan, A Framework for Checking Behavioral

Compatibility for Component Selection, In Australian Software Engineering

Conference, ASWEC 2006, pp. 4960 (IEEE, 2006).

Abstract: Component selection and composition are the main issues in Component-

Based Development (CBD). Existing approaches suffer from the problem that

the components retrieved usually do not exactly fit with other components in

the system being developed. While formal methods can be used to describe and

check semantic characteristics to better match components, there are practical

limitations which restrict their adoption.

In this paper, we propose a framework to support a semantic description and

selection of components. Towards this we first introduce a Simple Component

Interface Language (SCIL). SCIL files can be translated to a variety of models

including those that have a formal basis. We report our experience with two

specific tools, viz., Reactive Modules and Alloy with a view to using tools based

on formal methods but without exposing the details of the tools.

3. Padmanabhan Krishnan and Lei Wang, Supporting Partial Component Match-

ing, In Distributed Computing and Internet Technology: First International

Conference, ICDCIT 2004, volume 3347 of LNCS, pp. 294303 (Springer Verlag,

2004).

Abstract: In this paper we define a formal framework for describing components

and gaps or holes (where components can be plugged in). This is based on the

theory of interface automata. The main focus is to define a component partially

satisfying the requirements of a hole. A partial plug-in of a hole will result in

136

other holes. The definition of a partial plug-in does not result in a unique set

of holes, i.e., the resulting holes can have different properties. We define an

software engineering process which uses the formal framework to complete the

component selection and insertion process. The process is defined in terms of

the possible interactions between a component vendor and a customer seeking

a component.

4. Lei Wang and Daniela Mehandjiska-Stavreva, An Initial Framework for Col-

laboration Based Component Selection, In Software Engineering Research and

Practice, SERP 04, pp. 799806 (CSREA, 2004).

Abstract: Selecting high quality components is the key to component-based

system development. There is no lack of literature about evaluating and se-

lecting components. However, most of the proposed methods only focus on the

component user side, neglecting what component vendors should contribute to

the selection process. This paper provides a more comprehensive component

selection process based on a collaboration between component users and ven-

dors. A new semi-formal approach to describing software components has been

devised to support the collaboration. The proposed and implemented Software

Component Description (SCD) tree provides a vocabulary for specifying com-

ponents by users and vendors in a collaboration repository. SCD can be used

as a meta-level description of components at most component marketplaces.

Appendix B

Simple Component Interface

Language Grammar in SableCC

/* *

* Simple Component Interface Language (SCIL) Grammar *

* for describing software component interfaces *

* Version 3.0 *

* *

* Author: Lei Wang (Kevin) *

* Faculty of Information Technology, Bond University *

* Gold Coast, QLD 4229, Australia *

* *

* 13/09/2005 *

* */

Package edu.bond.it.scil;

Helpers

ascii_small = [’a’..’z’];

ascii_caps = [’A’..’Z’];

letter = ascii_small | ascii_caps | ’_’;

137

138

zero = ’0’;

digit = [’0’..’9’];

nonzero_digit = [’1’..’9’];

any_character = [0..0xffff];

tab = 9;

lf = 10;

cr = 13;

space = 32;

line_terminator = lf | cr | cr lf;

input_character = [any_character - [’"’ + [cr + lf]]];

not_star = [input_character - ’*’] | line_terminator;

not_star_not_slash = [input_character - [’*’ + ’/’]] | line_terminator;

Tokens

/* Keywords */

component = ’component’;

requirement = ’requirement’;

environment = ’environment’;

connects = ’connects’;

checks = ’checks’;

constant = ’constant’;

type = ’type’;

variable = ’variable’;

service = ’service’;

init = ’init’;

run = ’run’;

protocol = ’protocol’;

scenario = ’scenario’;

property = ’property’;

input = ’input’;

output = ’output’;

rule = ’rule’;

bool = ’bool’;

int = ’int’;

139

true = ’true’;

false = ’false’;

is = ’is’;

as = ’as’;

deferred = ’deferred’;

/* Temporal Operators */

deadlockfreeness = ’deadlockfreeness’;

always = ’always’;

initially = ’initially’;

eventually = ’eventually’;

precedes = ’precedes’;

causedby = ’causedby’; /* immediate effect */

alternate = ’alternate’;

once = ’once’;

before = ’before’;

after = ’after’;

until = ’until’;

between = ’between’;

be_and = ’and’;

/* Additional tokens */

l_parenthesis = ’(’;

r_parenthesis = ’)’;

l_brace = ’’;

r_brace = ’’;

l_bracket = ’[’;

r_bracket = ’]’;

semicolon = ’;’;

comma = ’,’;

colon = ’:’;

dot = ’.’;

range_dots = ’..’;

less_than = ’<’;

140

less_than_equal = ’<=’;

greater_than = ’>’;

greater_than_equal = ’>=’;

equal = ’=’;

not_equal = ’!=’;

not = ’!’;

and = ’&&’;

or = ’||’;

plus = ’+’;

minus = ’-’;

mult = ’*’;

div = ’/’;

mod = ’%’;

becomes = ’:=’;

leadsto = ’->’;

/* Combinations */

identifier = letter (letter | digit)*;

number_literal = nonzero_digit digit* | zero;

blank = (space | line_terminator | tab)+;

end_of_line_comment = ’//’ input_character* line_terminator?;

traditional_comment = ’/*’ not_star+ ’*’+ (not_star_not_slash not_star* ’*’+)* ’/’;

documentation_comment = ’/**’ ’*’* (not_star_not_slash not_star* ’*’+)* ’/’;

Ignored Tokens

blank,

end_of_line_comment,

traditional_comment,

documentation_comment;

Productions

specification =

component_spec+

requirement_spec*;

141

component_spec =

environment? component identifier connecting_comp?

l_brace

constants_dcl?

types_dcl?

variables_dcl?

services_dcl

protocols_dcl?

r_brace;

connecting_comp =

connects identifier;

requirement_spec =

requirement identifier checking_comp

l_brace

constants_dcl?

types_dcl?

variables_dcl?

scenarios_dcl?

properties_dcl

r_brace;

checking_comp =

checks component_list;

component_list =

single identifier |

multiple component_list comma identifier;

/* Constants */

constants_dcl =

constant colon constant_dcl+;

constant_dcl =

identifier equal number_literal semicolon;

/* Types */

types_dcl =

142

type colon type_dcl+;

type_dcl =

original identifier is type_def semicolon |

defined [id]:identifier is [dtype]:identifier semicolon;

type_def =

basic_type basic_type |

compound_type compound_type;

basic_type =

bool bool |

int int;

compound_type =

enum_type enum_type |

range_type range_type |

struct_type struct_type;

array_type =

l_bracket number_literal r_bracket;

enum_type =

l_brace nonempty_enum_val_list r_brace;

nonempty_enum_val_list =

multiple nonempty_enum_val_list comma identifier |

single identifier;

range_type =

l_parenthesis [start]:range_start_end range_dots

[end]:range_start_end r_parenthesis;

range_start_end =

numbers number_literal |

identifiers identifier;

struct_type =

l_brace type_dcl+ r_brace;

/* Variables */

variables_dcl =

variable colon variable_dcl+;

variable_dcl =

143

basic_types identifier as basic_type array_type? semicolon |

defined [var_id]:identifier as

[type_id]:identifier array_type? semicolon |

deferred identifier as deferred semicolon;

/* Service */

services_dcl =

service colon service_dcl;

service_dcl =

normal init_service? normal_service+ |

env run_service;

init_service =

init l_brace inputs_dcl? outputs_dcl rules_dcl r_brace;

normal_service =

identifier l_brace inputs_dcl? outputs_dcl? rules_dcl? r_brace;

run_service =

run l_brace run_rule_dcl+ r_brace;

inputs_dcl =

input colon para_dcl_list;

outputs_dcl =

output colon para_dcl_list;

para_dcl =

identifier identifier |

basic_types identifier as basic_type |

defined [para_id]:identifier as [type_id]:identifier;

para_dcl_list =

single para_dcl |

multiple para_dcl_list comma para_dcl;

rules_dcl =

rule colon rule_dcl+;

rule_dcl =

[assumption]:or_expression leadsto

[guarantee]:or_expression semicolon;

run_rule_dcl =

144

or_expression leadsto service_name_list semicolon;

/* Protocols */

protocols_dcl =

protocol colon protocol_dcl+;

protocol_dcl =

temporal_expression semicolon;

/* Scenarios */

scenarios_dcl =

scenario colon scenario_dcl+;

scenario_dcl =

identifier l_brace step_dcl+ r_brace;

step_dcl =

or_expression semicolon;

/* Properties */

properties_dcl =

property colon property_dcl+;

property_dcl =

identifier l_brace predicate_dcl+ r_brace;

predicate_dcl =

property_pattern property_pattern semicolon |

deadlockfreeness deadlockfreeness semicolon;

/* Arithmetic Expressions */

unary_expression =

plus plus unary_expression |

minus minus unary_expression |

not not unary_expression |

literal literal |

parenthese l_parenthesis or_expression r_parenthesis |

name name;

multiplicative_expression =

145

unary_expression unary_expression |

multi multiplicative_expression mult unary_expression |

div multiplicative_expression div unary_expression |

mod multiplicative_expression mod unary_expression;

additive_expression =

multiplicative_expression multiplicative_expression |

plus additive_expression plus multiplicative_expression |

minus additive_expression minus multiplicative_expression;

relational_expression =

additive_expression additive_expression |

less_than relational_expression less_than additive_expression |

greater_than relational_expression greater_than additive_expression |

less_than_equal relational_expression less_than_equal additive_expression |

greater_than_equal relational_expression greater_than_equal additive_expression;

equality_expression =

relational_expression relational_expression |

equal equality_expression equal relational_expression |

not_equal equality_expression not_equal relational_expression;

and_expression =

equality_expression equality_expression |

and_expression and_expression and equality_expression;

or_expression =

and_expression and_expression |

or_expression or_expression or and_expression;

expression =

or_expression or_expression |

becomes name becomes or_expression;

/* Temporal Expressions */

unary_temporal_operator =

always always |

once once |

initially initially |

eventually eventually;

146

binary_temporal_operator =

causedby causedby |

precedes precedes |

alternate alternate |

until until;

temporal_expression =

unary_temporal_exp unary_temporal_operator service_name_list |

binary_temporal_exp [left]:service_name_list

binary_temporal_operator [right]:service_name_list;

service_name_list =

identifier identifier |

service_name_list service_name_list comma identifier;

property_pattern =

always always p_statement |

before [left]:p_statement before [right]:p_statement |

after [left]:p_statement after [right]:p_statement |

between_and [left]:p_statement between [right1]:p_statement be_and

[right2]:p_statement |

after_until [left]:p_statement after [right1]:p_statement until

[right2]:p_statement;

p_statement =

unary expression |

precedes [left]:expression_list precedes [right]:expression_list |

causedby [left]:expression_list causedby [right]:expression_list;

expression_list =

single expression |

multiple expression_list comma expression;

/* Literals */

literal =

number_literal number_literal |

bool_literal bool_literal;

bool_literal =

true true |

147

false false;

name =

simple_name simple_name |

qualified_name qualified_name;

simple_name =

identifier array_type?;

qualified_name =

name dot identifier;

Appendix C

Auctioneer Component

Specification and Its User

Requirement

C.1 The SCIL Specification of the Auctioneer Com-

ponent

component auctioneer

{

// type definitions

type:

BidderStatus is {logged_in, logged_out, win, not_win};

ProductStatus is {not_available, available, engaged, sold};

// global variables

variable:

bs as BidderStatus;

ps as ProductStatus;

148

149

// service definitions

service:

init {

output: bs, ps

rule:

true -> bs = logged_out && ps = not_available;

}

sell {

output: ps

rule:

true -> ps = available;

}

login {

input: bs, ps

output: bs

rule:

ps != not_available && bs = logged_out -> bs = logged_in;

}

logout {

input: bs

output: bs

rule:

bs != logged_out -> bs = logged_out;

}

purchase {

input: bs, ps

output: bs, ps

rule:

bs = win && ps = engaged -> ps = sold;

}

bid {

input: bs, ps

output: bs, ps

rule:

150

bs = logged_in && ps = available -> bs = win && ps = engaged;

bs = logged_in && ps = available -> bs = not_win && ps = engaged;

}

// protocol definitions

protocol:

initially sell;

once sell;

bid precedes purchase;

eventually logout;

}

C.2 The SCIL Specification of the User Require-

ment for the Auctioneer Component

/*

* Environment component bidder

*/

environment component bidder connects auctioneer

{

variable:

b_bs as BidderStatus;

b_ps as ProductStatus;

// special service for an environment component

service:

run {

b_bs = logged_out && b_ps != not_available -> login;

b_bs = logged_in && b_ps = available -> bid || logout;

b_bs = win && b_ps = engaged -> purchase;

151

b_bs = win && b_ps = sold -> logout;

b_bs = not_win && b_ps = engaged -> logout;

b_bs = logged_in && (b_ps = engaged || b_ps = sold) -> logout;

}

}

/*

* Environment component seller

*/

environment component seller connects auctioneer

{

service:

run {

true -> sell;

}

}

requirement auctioneer checks auctioneer, bidder, seller

{

variable:

r_bs as BidderStatus;

r_ps as ProductStatus;

// scenario definitions

scenario:

best_story {

r_bs = logged_out && r_ps = not_available;

r_bs = logged_out && r_ps = available;

r_bs = logged_in && r_ps = available;

r_bs = win && r_ps = engaged;

r_bs = win && r_ps = sold;

r_bs = logged_out && r_ps = sold;

}

another_story {

152

r_bs = logged_out && r_ps = not_available;

r_bs = logged_out && r_ps = available;

r_bs = logged_in && r_ps = available;

r_bs = not_win && r_ps = engaged;

r_bs = logged_out && r_ps = engaged;

}

// property definitions

property:

p1 {

// user won’t login if the product is not available

always !(r_bs = logged_in && r_ps = not_available);

// user can bid only after they have logged in and before finally log out

(r_bs = win || r_bs = not_win) between (r_bs = logged_in)

and (r_bs = logged_out);

// product can be purchased after it has been won by someone

(r_ps = engaged) precedes (r_ps = sold) after (r_ps = available);

// user eventually logout

(r_bs = logged_out) after (r_ps = sold || r_ps = engaged);

}

p2 {

deadlockfreeness;

}

}

C.3 The RM Translation of the Combined Speci-

fication

type BidderStatus is logged_in, logged_out, win, not_win

type ProductStatus is not_available, available, engaged, sold

153

module auctioneer is

interface ps: ProductStatus; bs: BidderStatus

external sell, bid, logout, purchase, login: event

private sell_num_: (0..1)

lazy atom main controls ps, bs, sell_num_

reads ps, bs, sell, bid, logout, purchase, login, sell_num_

awaits sell, bid, logout, purchase, login

init

[] true -> bs’ := logged_out; ps’ := not_available; sell_num_’ := 0

update

[] bs = logged_in & ps = available & bid? -> bs’ := win; ps’ := engaged

[] bs = win & ps = engaged & purchase? -> ps’ := sold

[] bs ~= logged_out & logout? -> bs’ := logged_out

[] bs = logged_in & ps = available & bid? -> bs’ := not_win; ps’ := engaged

[] ps ~= not_available & bs = logged_out & login? -> bs’ := logged_in

[] true & sell? & sell_num_ < 1 & bs = logged_out & ps = not_available ->

ps’ := available; sell_num_’ := inc sell_num_ by 1

module bidder is

interface purchase: event; logout: event; bid: event; login: event

external ps: ProductStatus; bs: BidderStatus;

lazy atom main controls purchase, logout, bid, login

reads purchase, logout, bid, login, ps, bs

initupdate

[] bs = logged_in & ps = available -> bid!

[] bs = logged_in & ps = available -> logout!

[] bs = win & ps = sold -> logout!

[] bs = logged_in & (ps = engaged | ps = sold) -> logout!

[] bs = logged_out & ps ~= not_available -> login!

154

[] bs = win & ps = engaged -> purchase!

[] bs = not_win & ps = engaged -> logout!

module seller is

interface sell: event

lazy atom main controls sell

reads sell

initupdate

[] true -> sell!

module auctioneer_sys is auctioneer || bidder || seller

module another_story is

interface alert_another_story_: (0..5); final_another_story_: bool

external ps: ProductStatus; bs: BidderStatus;

lazy atom main controls alert_another_story_, final_another_story_

reads alert_another_story_, ps, bs

init

[] true -> alert_another_story_’ := 0; final_another_story_’ := true

update

[] alert_another_story_ = 0 & bs = logged_out & ps = not_available ->

alert_another_story_’ := 1; final_another_story_’ := true

[] alert_another_story_ = 1 & bs = logged_out & ps = available ->

alert_another_story_’ := 2; final_another_story_’ := true

[] alert_another_story_ = 2 & bs = logged_in & ps = available ->

alert_another_story_’ := 3; final_another_story_’ := true

[] alert_another_story_ = 3 & bs = not_win & ps = engaged ->

alert_another_story_’ := 4; final_another_story_’ := true

[] alert_another_story_ = 4 & bs = logged_out & ps = engaged ->

alert_another_story_’ := 5; final_another_story_’ := nondet

155

module matching_another_story_ is auctioneer_sys || another_story

predicate pred_another_story_ is (final_another_story_ = true)

judgment J_another_story_ is matching_another_story_ |= pred_another_story_

module best_story is

interface alert_best_story_: (0..6); final_best_story_: bool

external ps: ProductStatus; bs: BidderStatus;

lazy atom main controls alert_best_story_, final_best_story_

reads alert_best_story_, ps, bs

init

[] true -> alert_best_story_’ := 0; final_best_story_’ := true

update

[] alert_best_story_ = 0 & bs = logged_out & ps = not_available ->

alert_best_story_’ := 1; final_best_story_’ := true

[] alert_best_story_ = 1 & bs = logged_out & ps = available ->

alert_best_story_’ := 2; final_best_story_’ := true

[] alert_best_story_ = 2 & bs = logged_in & ps = available ->

alert_best_story_’ := 3; final_best_story_’ := true

[] alert_best_story_ = 3 & bs = win & ps = engaged ->

alert_best_story_’ := 4; final_best_story_’ := true

[] alert_best_story_ = 4 & bs = win & ps = sold ->

alert_best_story_’ := 5; final_best_story_’ := true

[] alert_best_story_ = 5 & bs = logged_out & ps = sold ->

alert_best_story_’ := 6; final_best_story_’ := nondet

module matching_best_story_ is auctioneer_sys || best_story

predicate pred_best_story_ is (final_best_story_ = true)

judgment J_best_story_ is matching_best_story_ |= pred_best_story_

predicate pred_p10_ is ~ (bs = logged_in & ps = not_available)

judgment J_p10_ is auctioneer_sys |= pred_p10_

156

C.4 The Alloy Translation of the Combined Spec-

ification

module auctioneer

open util/ordering[State] as ord

abstract sig ProductStatus

one sig not_available, available, engaged, sold extends ProductStatus

abstract sig BidderStatus

one sig logged_in, logged_out, win, not_win extends BidderStatus

sig State

ps: ProductStatus,

bs: BidderStatus

pred logout (ps, ps’: ProductStatus, bs, bs’: BidderStatus)

bs != logged_out => bs’ = logged_out && ps’ = ps

pred bid (ps, ps’: ProductStatus, bs, bs’: BidderStatus)

bs = logged_in && ps = available => bs’ = not_win && ps’ = engaged

pred purchase (ps, ps’: ProductStatus, bs, bs’: BidderStatus)

bs = win && ps = engaged => ps’ = sold && bs’ = bs

157

pred bid0 (ps, ps’: ProductStatus, bs, bs’: BidderStatus)

bs = logged_in && ps = available => bs’ = win && ps’ = engaged

pred login (ps, ps’: ProductStatus, bs, bs’: BidderStatus)

ps != not_available && bs = logged_out => bs’ = logged_in && ps’ = ps

pred sell (ps, ps’: ProductStatus, bs, bs’: BidderStatus)

ps’ = available && bs’ = bs

pred Initialisation (s: State)

s.bs = logged_out && s.ps = not_available

pred Transition (s, s’: State)

s.bs != logged_out => logout(s.ps, s’.ps, s.bs, s’.bs)

s.bs = logged_in && s.ps = available => bid(s.ps, s’.ps, s.bs, s’.bs)

s.bs = win && s.ps = engaged => purchase(s.ps, s’.ps, s.bs, s’.bs)

s.bs = logged_in && s.ps = available => bid0(s.ps, s’.ps, s.bs, s’.bs)

s.ps != not_available && s.bs = logged_out => login(s.ps, s’.ps, s.bs, s’.bs)

sell(s.ps, s’.ps, s.bs, s’.bs)

fact Execution

Initialisation (ord/first())

all s: State - ord/last() | let s’ = ord/next(s) | Transition (s, s’)

assert p1

all s: State | ! (s.bs = logged_in && s.ps = not_available)

158

check p1 for 8 State

Bibliography

[1] J. Aagedal and E. F. Ecklund. Modelling QoS: Towards a UML Profile. In

the 5th International Conference on Unified Modeling Language (UML 2002),

volume 2460/2002, pages 275–289. Springer Berlin / Heidelberg, 2002.

[2] C. Abst, B. Boehm, and E.B. Clark. Empirical Observations on COTS Software

Integration Effort Based on the Initial COCOTS Calibration Database. In the

22nd International Conference on on Software Engineering (ICSE 2000) COTS

Workshop, Limerick, Ireland, 2000.

[3] B. Thomas Adler, L. de Alfaro, L. Dias Da Silva, M. Faella, A. Legay, V. Ra-

man, and P. Roy. Ticc: A Tool for interface Compatibility and Composition.

Technical report, School of Engineering, University of California, Santa Cruz,

2006.

[4] N. Aguirre and T. Maibaum. A Temporal Logic Approach to Component-Based

System Specification and Reasoning. In the 5th ICSE Workshop on Component-

Based Software Engineering: Benchmarks for Predictable Assembly, Orlando,

Florida, 2002.

[5] C. Albert and L. Brownsword. Evolutionary Process for Integrating COTS-

Based Systems (epic): An Overview. Technical Report CMU/SEI-2002-TR-009,

Software Engineering Institute, Carnegie Mellon University, 2002.

159

160

[6] P. Allen. Component-Based Development for Enterprise Systems : Applying

the Select Perspective. Cambridge University Press, 1998.

[7] R. Allen, R. Douence, and D. Garlan. Specifying Dynamism in Software Ar-

chitectures. In Foundations of Component-Based Systems Workshop, Zurich,

Switzerland, 1997.

[8] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM

Transactions on Software Engineering and Methodology (TOSEM), 6(3):213–

249, 1997.

[9] R. Alur, L. de Alfaro, R. Grosuz, T.A. Henzinger, M. Kangy, R. Majumdar,

F. Mang, C.M. Kirsch, and B.Y. Wangy. Mocha Manual. Computer Science

Department, Stony Brook University, 2000.

[10] R. Alur, L. de Alfaro, R. Grosuz, T.A. Henzinger, M. Kangy, R. Majumdar,

F. Mang, C.M. Kirsch, and B.Y. Wangy. jMocha: A Model Checking Tool that

Exploits Design Structure. In the 23rd IEEE/ACM International Conference

on Software Engineering (ICSE 2001), pages 835–836, Toronto, Canada, 2001.

[11] R. Alur and T. A. Henzinger. Reactive Modules. Formal Methods in System

Design, 15:7–48, 1999.

[12] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert,

R. Seacord, and K. Wallnau. Volume II: Technical Concepts of Components-

Based Software Engineering, 2nd Edition. Technical Report CMU/SEI-2000-

TR-008, Software Engineering Institute, Carnegie Mellon University, 2000.

[13] F. Bachmann and G. Chastek L. Bass. The Architecture Based Design Method.

Technical report, Software Engineering Institute, Carnegie Mellon University,

2000.

161

[14] M. Barnett, R. DeLine, M. Fahndrich, KRM Leino, and W. Schulte. Verification

of Object-oriented Programs with Invariants. Journal of Object Technology,

3:27–56, 2004.

[15] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:

An Overview. In Construction and Analysis of Safe, Secure and Interoperable

Smart devices (CASSIS 2004), volume 3362 of LNCS, Marseille, France, 2004.

Springer.

[16] N. Barthwal and M. Woodside. Efficient Evaluation of Alternatives for As-

sembly of Services. In the 19th IEEE International Parallel and Distributed

Processing Symposium (IPDPS’05), page 275.1, Washington DC, USA, 2005.

IEEE.

[17] R. Bastide, O. Sy, and P. Palanque. Formal Specification and Prototyping of

CORBA Systems. In the 13th European Conference on Object-Oriented Pro-

gramming, pages 474–494, London, UK, 1999. Springer-Verlag.

[18] R. Bergmann, S. Schmitt, and A. Stahl. Intelligent Customer Support for

Product Selection with Case-Based Reasoning. E-Commerce and Intelligent

Methods, 105:322–341, 2002.

[19] A. Beugnard, J. Jezequel, N. Plouzeau, and D. Watkins. Making components

contract aware. Computer, 32(7):38–45, 1999.

[20] B. W. Boehm, D. Port, Y. Yang, and J. Bhuta. Not All CBS Are Created

Equally: COTS-Intensive Project Types. In the 2nd International Conference

on COTS-Based Software Systems (ICCBSS ’03), pages 36–50, London, UK,

2003. Springer-Verlag.

[21] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User

Guide. Addison-Wesley, 1999.

162

[22] S. Boonsiri, R. C. Seacord, and R. Bunting. Automated Component Ensemble

Evaluation. International Journal of Information Technology, 8(1), 2002.

[23] N. Boyette. Reusable asset specification repository for workgroups : Overview.

IBM alphaWorks, 2005.

[24] T. Brijs, B. Goethals, G. Swinnen, K. Vanhoof, and G. Wets. A Data Mining

Framework for Optimal Product Selection in Retail Supermarket Data: the

Generalized profset Model. In KDD ’00: Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 300–

304. ACM Press, New York, NY, USA, 2000.

[25] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using Association Rules

for Product Assortment Decisions: A Case Study. In the 5th ACM SIGKDD

International Conference on Knowledge Discovery and Data mining (KDD ’99),

pages 254–260, New York, NY, USA, 1999. ACM Press.

[26] F. Brooks. No silver bullet: Essence and accidents of software engineering.

Computer, 20(4):10–19, 1987.

[27] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M.

Leino, and E. Poll. An Overview of JML Tools and Applications. International

Journal on Software Tools for Technology Transfer, 7(3):212–232, 2005.

[28] C. Canal, E. Pimentel, and J. M. Troya. On the Composition and Extension of

Software Components. In Foundations of Component-Based Systems Workshop,

Zurich, Switzerland, 1997.

[29] C. Canal, E. Pimentel, J. M. Troya, and A. Vallecillo. Extending CORBA

Interfaces with Protocols. The Computer Journal,, 44(5):448–462, 2001.

[30] CartWIZ. http://www.cartwiz.com/. 2005-2006.

[31] ChadoSoftware. http://www.chado-software.com. 2006.

163

[32] A. Chakrabarti. CHIC: Checker for Interface Compatibility. Department

of Electrical Engineering and Computer Sciences, University of California at

Berkeley, 2003.

[33] J. Cheesman and J. Daniels. UML Components: A Simple Process for Specifying

Component-Based Software. Addison-Wesley, Boston, MA, 2001.

[34] S. Chen, I. Gorton, A. Liu, and Y. Liu. Performance Prediction of COTS

Component-based Enterprise Applications. In the 5th ICSE Workshop on

Component-Based Software Engineering: Benchmarks for Predictable Assem-

bly, Orlando, Florida USA, 2002.

[35] Y. Chen and H. C. Cheng. A Semantic Foundation for Specification Matching.

In G. Leavens and M. Sitaraman, editors, Foundations of Component-Based

Systems, pages 91–109. Cambridge University Press, 2000.

[36] I. Cho. A Framework for the Specification and Testing of the Interoperation

Aspect of Components. In ECOOP Workshop on Object Interoperability, pages

53–64, Sophia Antipolis, France, 2000.

[37] L. Chung and K. Cooper. A Knowledge-based COTS-aware Requirements En-

gineering Approach. In the 14th International Conference on Software Engi-

neering and Knowledge Engineering, pages 175–182, Ischia, Italy, 2002.

[38] L. Chung, W. Ma, and K. Cooper. Requirements Elicitation through Model-

Driven Evaluation of Software Components. In the 5th International Conference

on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS 2006),

page 10, Orlando, Florida USA, 2006.

[39] P. Ciancarini and S. Cimato. Specifying Component-based Software Architec-

tures. In Foundations of Component-Based Systems Workshop, pages 60–70,

Zurich, Switzerland, 1997.

164

[40] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.

Addison-Wesley, Boston, MA.

[41] P. C. Clements. A Survey of Architecture Description Languages. In the 8th

International Workshop on Software Specification and Design, pages 16–25,

Schloss Velen, Germany, 1996.

[42] ComponentSource. http://www.componentsource.com. 1996-2006.

[43] Microsoft Corporation. The Component Object Model Specification, 1995.

[44] Michael L. Creech, Dennis F. Freeze, and Martin L. Griss. Using Hypertext in

Selecting Reusable Software Components. In the 3rd Annual ACM Conference

on Hypertext, San Antonio, TX USA, 1991.

[45] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based Development

Process and Component Lifecycle. In International Conference on Software

Engineering Advances (ICSEA’06), Tahiti, French Polynesia, October 2006.

IEEE.

[46] I. Crnkovic and M. Larssom. Challenges of Component-Based Development.

Journal of Systems and Software, 61(3):201–212, 2002.

[47] I. Crnkovic and M. Larsson, editors. Building Reliable Component-based Soft-

ware Systems. Artech House Publishers, 2002.

[48] I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau. Component Certifica-

tion and System Predication. In the 4th ICSE Workshop on Component-Based

Software Engineering, page 97, Toronto, Canada, 2001.

[49] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,

and Applications. Addison-Wesley, 2000.

165

[50] E. Damiani and M. G. Fugini. Automatic Thesaurus Construction Supporting

Fuzzy Retrieval of Reusable Components. In the ACM Symposium on Applied

Computing, pages 542–547, Tennessee, US, 1995.

[51] E. Damiani, M. G. Fugini, and C. Bellettini. A Hierarchy-Aware Approach to

Faceted Classification of Objected-Oriented Components. ACM Transactions

on Software Engineering and Methodology, 8(3):215–262, 1999.

[52] L. de Alfaro and T. A. Henzinger. Interface Automata. In the 9th Annual Sym-

posium on Foundations of Software Engineering, pages 109–120. ACM Press,

2001.

[53] L. de Alfaro and T. A. Henzinger. Interface Theories for Component-Based

Design. Lecture Notes in Computer Science, 2211:148–165, 2001.

[54] C. Demartini, R. Sisto, and R. Iosif. A Concurrency Analysis Tool for Java

Programs. Technical report, System and Computer Engineering Department,

Polytechnic of Turin, 1997.

[55] D. F. DSouza and A. C. Wills. Objects, Components, and Frameworks with

UML: The Catalysis Approach. Addison-Wesley Professional, 1998.

[56] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification Pat-

terns for Finite-State Verification. In the 2nd workshop on Formal Methods in

Software Practice (FMSP ’98), pages 7–15, New York, NY, USA, 1998. ACM

Press.

[57] P. Eeles, K. A. Houston, and W. Kozaczynski. Building J2EE Applications with

the Rational Unified Process. Addison Wesley Professional, 2002.

[58] B. Finkbeiner and I. Kruger. Using Message Sequence Charts for Component-

Based Formal Verification. In OOPSLA 2001 Workshop on Specification and

Verification of ComponentBased Systems, Tampa, FL, USA, 2001.

166

[59] B. Fischer. Specification-Based Browsing of Software Component Libraries.

Journal of Automated Software Engineering, 7:179–200, 2000.

[60] International Organization for Standardization. Information Technology: Open

Distributed Processing - Reference Model - Quality of Service, ISO Document

ISO/IEC JTC1/SC7 N1996, 1998.

[61] W. B. Frakes and T. P. Pole. Proteus: A Software Reuse Library System that

Supports Multiple Representation Methods. ACM SIGIR Forum, 24:43–55,

1990.

[62] William B Frakes and Thomas P Pole. An Empirical Study of Representation

Methods for Reusable Software Components. IEEE Transactions on Software

Engineering, 20:617–631, 1994.

[63] S. Frolund and J. Koistinen. Quality of Service Specification in Distributed

Object Systems. Distributed Systems Engineering Journal, 5(4):179–202, 1998.

[64] Etienne Gagnon. SableCC, an Object-Oriented Compiler Framework. Master

thesis, McGill University, Montreal, 1998.

[65] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch or, Why it’s

hard to build systems out of existing parts. IEEE Software, 12(6):17–26, 1995.

[66] CJM Geisterfer and S. Ghosh. Software Component Specification: A Study in

Perspective of Component Selection and Reuse. In International Conference

on Commercial-off-the-Shelf (COTS)-Based Software Systems, volume 0, pages

100–108, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[67] B. Genest and A. Muscholl. Message Sequence Charts: A Survey. In the

5th International Conference on Application of Concurrency to System Design

(ACSD 2005), pages 2–4, St. Malo, France, 2005.

167

[68] M. R. Girardi and B. Ibrahim. A Software Reuse System Based on Natural

Language Specifications. In the Fifth International Conference on Computing

and Information (ICCI ’93), pages 507–511, Washington, DC, USA, 1993. IEEE

Computer Society.

[69] M.R. Girardi and B. Ibrahim. A Similarity Measure for Retrieving Software

Artifacts. In the 6th International Conference on Software Engineering and

Knowledge Engineering (SEKE’94), pages 478–485, Jurmala, Latvia, 1994.

[70] M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL Models

in USE by Automatic Snapshot Generation. Journal on Software and System

Modelling, 4:386–398, 2005.

[71] S.J. Goldsack, K. Lano, and E. Der. Invariants as Design Templates in Object-

based Systems. In Foundations of Component-Based Systems Workshop, Zurich,

Switzerland, 1997.

[72] P. Gomes, F. Pereira, P. Paiva, N. Seco, P. Carreiro, F. Ferreira, and C. Bento.

Using WorldNet for Case-Based Retrieval of UML Methods. AI Communica-

tions, 17:1323, 2004.

[73] P. Graubmann, E. Rudolph, and J. Grabowski. Component Interface Descrip-

tion Using HyperMSCs and Connectors. In Symposium on Human Centric

Computing Languages and Environments (HCC’01), volume 0, page 96, Los

Alamitos, CA, USA, 2001. IEEE Computer Society.

[74] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories. Wiley, 2004.

[75] Object Management Group. CORBA Components, Version 3.0, 2002.

[76] Object Management Group. CORBA Specification 3.0, 2002.

[77] Object Management Group. UML 2.0 OCL Specification, 2003.

168

[78] Object Management Group. Reusable Asset Specification, Version 2.2, 2005.

[79] J. Han. Temporal Logic-based Specifications of Component Interaction Proto-

cols. In ECOOP Workshop on Object Interoperability, 2000.

[80] J. Han and K. K. Ker. Ensuring Compatible Interactions within Component-

based Software Systems. In the 10th Asia-Pacific Software Engineering Con-

ference, volume 00, page 436, Los Alamitos, CA, USA, 2003. IEEE Computer

Society.

[81] D. Hemer. Specification Matching of State-Based Modular Components. In the

10th Asia-Pacific Software Engineering Conference Software Engineering Con-

ference (APSEC ’03), page 446, Washington, DC, USA, 2003. IEEE Computer

Society.

[82] D. Hemer and P. Lindsay. Specification-Based Retrieval Strategies for Module

Reuse. In D. Grant and L. Stirling, editors, Australian Software Engineering

Conference (ASWEC 2001), pages 235–243, Canberra, Australia, 2001. IEEE

Computer Society.

[83] S. Hissam, R. Seacord, and K. Wallnau. Building Systems from Commercial

Components. Addison Wesley Professional, 2001.

[84] S. A. Hissam, G. A. Moreno, J. Stafford, and K. C. Wallnau. Packaging pre-

dictable assembly with prediction-enabled component technology. Technical

Report CMU/SEI-2001-TR-024, Software Engineering Institute, Carnegie Mel-

lon University, 2001.

[85] L. Iribarne, J. M. Troya, and A. Vallecillo. A Trading Service for COTS Com-

ponents. The Computer Journal, 47:342–357, 2003.

[86] T. Isakowitz and R. J. Kauffman. Supporting Search for Reusable Software

Objects. IEEE Transactions on Software Engineering, 22:407–423, 1996.

169

[87] D. Jackson. Alloy 3.0 Reference Manual, 2004.

[88] H. Jain, N. Chalimeda, N. Ivaturi, and B. Reddy. Business Component Iden-

tification - A Formal Approach. In the 5th IEEE International Conference on

Enterprise Distributed Object Computing, pages 183–187, Seattle, WA USA,

2001. IEEE Computer Society.

[89] Y. Jin. Compositional Verification of Component-Based Heterogeneous Systems.

PhD thesis, School of Computer Science, the University of Adelaide, 2004.

[90] Y. Jin and J. Han. Specifying Interaction Constraints of Software Components

for Better Understandability and Interoperability. In the 4th International Con-

ference on COTS-Based Software Systems (ICCBSS 2005), pages 54–64, Bilbao,

Spain, 2005.

[91] Y. Jin, C. Lakos, and R. Esser. Component-based Design and Analysis: A Case

Study. In the International Conference on Software Engineering and Formal

Methods, Brisbane, Australia, 2003. IEEE Computer Society Press.

[92] D. R. Johnson and H. Kilov. An Approach to an RM-ODP Toolkit in Z.

In Foundations of Component-Based Systems Workshop, Zurich, Switzerland,

1997.

[93] Keyoti. http://www.keyoti.com/. 2002-2006.

[94] J. Kontio, G. Galdiera, and V. R. Basili. Defining Factors, Goals and Criteria

for Reusable Component Evaluation. In the 1996 conference of the Centre for

Advanced Studies on Collaborative research (CASCON ’96), Toronto, Canada,

1996.

[95] P. Krishnan and L. Wang. Supporting Partial Component Matching. In the 1st

International Conference on Distributed Computing and Internet Technology

(ICDCIT 2004), pages 294–303, Bhubaneswar, India, 2004.

170

[96] P. Kruchten. Architectural Blueprints - The ”4+1” View Model of Software

Architecture. IEEE Software, 12:42–50, 1995.

[97] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley

Professional, 2000.

[98] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, 2003.

[99] K. K. Lau and M. Ornaghi. Logic for Component-based Software Development,

pages 347–373. Computational Logic: Logic Programming and Beyond, Lecture

Notes in Artificial Intelligence 2407. Springer-Verlag, 2002.

[100] G. Leavens and Y. Cheon. Design by Contract with JML, 2003.

[101] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of

JML: A Behavioral Interface Specification Language for Java. Technical report,

Department of Computer Science, Iowa State University, 1999.

[102] ComponentOne LLC. http://www.componentone.com/. 1987-2006.

[103] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Specifying and Mea-

suring Quality of Service in Distributed Object Systems. In Object-Oriented

Real-Time Distributed Computing Proceedings, pages 43–52, Kyoto, Japan,

1998.

[104] M. Lumpe, J. G. Schneider, O. Nierstrasz, and F. Achermann. Towards A

Formal Composition Language. In Foundations of Component-Based Systems

Workshop, Zurich, Switzerland, 1997.

[105] N. A. Maiden and C. Ncube. Acquiring COTS Software Selection Requirements.

IEEE Software, 15(2):46–56, 1998.

171

[106] E. Mancebo and A. Andrews. A Strategy for Selecting Multiple Components.

In the 2005 ACM Symposium on Applied Computing, pages 1505–1510, New

York, USA, 2005. ACM Press.

[107] G. Martin, R. Seepold, T. Zhang, L. Benini, and G. De Micheli. Component

Selection and Matching for IP-based Design. In the conference on Design,

Automation and Test in Europe (DATE ’01), pages 40–46, Piscataway, NJ,

USA, 2001. IEEE.

[108] M. Matsushita. Ranking Significance of Software Components Based on Use

Relations. IEEE Transactions on Software Engineering, 31(3):213–225, 2005.

Member-Katsuro Inoue and Member-Reishi Yokomori and Member-Tetsuo Ya-

mamoto and Member-Shinji Kusumoto.

[109] V. Maxville, J. Armarego, and C. P. Lam. Intelligent Component Selection. In

the 28th Annual International Computer Software and Applications Conference

(COMPSAC’04), pages 244–249, Washington, DC, USA, 2004. IEEE.

[110] M.D. McIlroys. Mass-produced software components. In P. Naur and B. Ran-

dell, editors, Software Engineering, pages 138–155. Scientific Affairs Division,

NATO, 1968.

[111] R. Meling, E. J. Montgomery, P. S. Ponnusamy, E. B. Wong, and D. Mehand-

jiska. Storing and Retrieving Software Components: A Component Description

Manager. In Australian Software Engineering Conference, Gold Coast, Queens-

land, Australia, 2000.

[112] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall Inter-

national, London, UK, 2nd edition, 1997.

[113] Sun Microsystems. JavaBeans API Specification, Version 1.01, 1997.

[114] Sun Microsystems. Enterprise JavaBeans Specification, Version 2.1, 2002.

172

[115] Sun Microsystems. J2EE Platform Specification 1.4, 2003.

[116] Af. Mili, F. Mili, and Al. Mili. Reusing Software: Issues and Research Direc-

tions. IEEE Transactions on Software Engineering, 21(6):528–562, 1995.

[117] R. Mili, A. Mili, and R. T. Mittermeir. Storing and Retrieving Software Com-

ponents: A Refinement Based System. IEEE Transactions on Software Engi-

neering, 23:445–460, 1997.

[118] M. Morisio and A. Tsoukias. Iusware: A Methodology for the Evaluation and

Selection of Software Products. IEE Proceedings Software Engineering, 144:162–

174, 1997.

[119] .netECOMMERCE. http://www.dotnetecommerce.com/. 2001-2006.

[120] O. Nierstrasz. Regular Types for Active Objects. In the 8th annual confer-

ence on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA ’93), pages 1–15, New York, NY, USA, 1993. ACM Press.

[121] J. Oberleitner, T. Gschwind, and M. Jazayeri. The Vienna Component Frame-

work: Enabling Composition across Component Models. In the 25th Inter-

national Conference on Software Engineering (ICSE), Portland, Oregon USA,

2003. IEEE Press.

[122] P. Oberndorf, L. Brownsword, E. Morris, and C. Sledge. Workshop on COTS-

Based Systems. Technical report, Software Engineering Institute, Carnegie Mel-

lon University, Nov. 1997.

[123] M. Ochs, D. Pfahl, and G. Chrobok-Diening. A COTS Acquisition Process:

Definition and Application Experience. In the 11th ESCOM Conference, pages

335–343, Shaker, Maastricht, 2000.

173

[124] M. Paludo, R. Burnett, and S. Reinehr. Applying Pattern Techniques to Lever-

age Component-based Development. In Advances in Computer Science and

Technology, 2006.

[125] J. Penix and P. Alexander. Rebound: A framework for automated component

adaptation. In Component-Based Software Engineering: Case Studies, chap-

ter 10. World Scientific, 2004.

[126] F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. IEEE

Transactions on Software Engineering, 28(11):1056–1076, 2002.

[127] E. Poll, J. van den Berg, and B. Jacobs. Specification of the JavaCard API in

JML. In D. Chan and A. Watson, editors, the 4th Smart Card Research and

Advanced Application Conference (CARDIS), pages 135–154. Kluwer Academic

Press, 2000.

[128] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic. Error Propagation in

the Reliability Analysis of Component Based Systems. In the 16th IEEE In-

ternational Symposium on Software Reliability Engineering (ISSRE’05), pages

53–62, Chicago, Illinois, USA, 2005. IEEE Computer Society.

[129] R. Prieto-Diaz. Domain Analysis for Reusability. In IEEE Computer Software

and Applications Conference, Los Alamitos, CA USA, 1987.

[130] Ruben Prieto-Diaz. Implementing Faceted Classification for Software Reuse.

Communications of the ACM, 34(5):89–97, 1991.

[131] R. Reussner. Enhanced Component Interfaces to Support Dynamic Adaption

and Extension. In the 34th Annual Hawaii International Conference on System

Sciences (HICSS ’01), volume 9, page 9043, Washington, DC, USA, 2001. IEEE

Computer Society.

[132] RicherComponents. http://www.rickercomponents.com. 2004-2005.

174

[133] T. L. Saaty. Decision Making for Leaders: The Analytic Hierarchy Process for

Decisions in a Complex World. RWS Publications, 1999.

[134] D. C. Schmidt, R. E. Johnson, and M. Fayad. Software Patterns. Communica-

tions of the ACM, 39:37–39, 1996.

[135] M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging

discipline. Prentice Hall, 1996.

[136] J. Stafford and J. D. McGregor. Issues in Predicting the Reliability of Com-

posed Components. In the 5th ICSE Workshop on Component-Based Software

Engineering: Benchmarks for Predictable Assembly, Orlando, Florida, USA,

2002.

[137] V. Sugumaran and V. C. Storey. A Semantic-Based Approach to Component

Retrieval. SIGMIS Database, 34(3):8–24, 2003.

[138] Z. Sun. Case-Based Reasoning in Electronic Commerce. PhD thesis, School of

Information Technology, Bond University, 2003.

[139] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-

Oriented Programming. Addison-Wesley, 2002.

[140] telerik. http://www.telerik.com/. 2002-2006.

[141] A. L. Tello and A. Gómez-Pérez. BAREMO: how to choose the appropriate

software component using the analytic hierarchy process. In the 14th Interna-

tional Conference on Software Engineering and Knowledge Engineering, pages

781–788, Ischia, Italy, 2002.

[142] TopCoder. http://software.topcoder.com/. 2000-2003.

[143] S. Varadarajan, A. Kumar, D. Gupta, and P. Jalote. ComponentXchange:

An E-exchange for Software Components. In IADIS International Conference

WWW/Internet 2002 Proceeding, Lisbon, Portugal, 2002.

175

[144] Padmal Vitharana, Fatemeh ”Mariam” Zahedi, and Hemant Jain. Knowledge-

Based Repository Scheme for Storing and Retrieving Business Components: A

Theoretical Design and an Empirical Analysis. IEEE Transactions on Software

Engineering, 29(7):649–664, 2003.

[145] J. Voas. Software Certification Laboratories: To be or not to be liable?

Crosstalk, 11:21–23, 1998.

[146] Z. Wang, X. Xu, and D. Zhan. A Survey of Business Component Identifica-

tion Methods and Related Techniques. International Journal of Information

Technology, 2(4):229–238, 2005.

[147] T. Wanyama and B. H. Far. Agent-Based Commercial Off-The-Shelf Software

Components Evaluation Method. In the 1st International Conference on Agent

Based Technologies and Systems, pages 133–141, University of Calgary, Canada,

2003.

[148] H. Washizaki and Y. Fukazawa. A Retrieval Technique for Software Components

Using Directed Replaceability Similarity. In the 8th International Conference

on Object-Oriented Information Systems (OOIS’02), volume LNCS 2425, pages

298–310, London, UK, 2002. Springer-Verlag.

[149] Jeannette M. Wing. Writing Larch Interface Language Specifications. ACM

Transactions on Programming Languages and Systems, 9:1–24, 1987.

[150] D. M. Yellin and R. E. Strom. Protocol Specifications and Component Adap-

tors. ACM Transactions on Programming Languages and Systems, 19(2):292–

333, 1997.

[151] D.l M. Yellin and R. E. Strom. Interfaces, Protocols, and the Semi-automatic

Construction of Software Adaptors. In the 9th Annual Conference on Object-

oriented Programming Systems, Language, and Applications (OOPSLA ’94),

pages 176–190, New York, NY, USA, 1994. ACM Press.

176

[152] A. M. Zaremski and J. M. Wing. Signature Matching: a Tool for Using Software

Libraries. ACM Transactions on Software Engineering and Methodology, 4:146–

170, 1995.

[153] A. M. Zaremski and J. M. Wing. Specification Matching of Software Compo-

nents. ACM Transactions on Software Engineering and Methodology, 6(4):333–

369, 1997.

