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Abstract

Security protocols provide a communication architecture upon which security-sensitive distributed
applications are built. Flaws in security protocols can expose applications to exploitation and ma-
nipulation. A number of formal analysis techniques have been applied to security protocols, with the
ultimate goal of verifying whether or not a protocol fulfils its stated security requirements. These tools
are limited in a number of ways. They are not fully automated and require considerable effort and
expertise to operate. The specification languages often lack expressiveness. Furthermore the model
checkers often cannot handle large industrial scale protocols due to the enormous number of states
generated.

Current research is addressing many of the limitations of the older tools by using state-of-the-art
search optimisation and modelling techniques. This dissertation examines new ways in which indus-
trial protocols can be analysed and presents abstract communication channels; a method for explicitly
specifying assumptions made about the medium over which participants communicate.
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Chapter 1

Introduction

1.1 Security Protocols

The Internet is a communication platform. It is an architecture upon which a myriad of applications
are built. These applications are becoming more complex, more interconnected, and more security
sensitive. Gone are the days when the Internet was merely a toy. Consider the volume of corporate
communication via email, the increasing prevalence of voice-over-IP telephony, the importance of
commercial websites for advertising and the government’s increasing reliance on the Internet for infor-
mation dissemination. Now consider more modern applications like electronic banking, e-commerce,
online tax returns and even electronic voting. These applications have strong security requirements
which must be guaranteed. An important application such as electronic voting simply cannot tolerate
vulnerabilities.

Security protocols (or cryptographic protocols) describe the way in which distributed applications
communicate. They define the formats of messages, as well as the way in which messages are ex-
changed between the involved parties. There are many different aspects of application security, but in
the case of a distributed application the security protocol it relies upon is one of the most crucial. This
is because the Internet is an inherently insecure medium. Security properties must be crafted on top
of this medium using cryptographic techniques.

Vendors of distributed applications either develop their own communication protocols or base their
application on protocols which have been standardised by an industrial standardisation group. In
either case it can be extremely costly to repair software which has been deployed if a vulnerability is
discovered in an underlying security protocol. Security protocols should therefore be designed with
care and subjected to scrutiny by experts during their design. Unfortunately for vendors, the design
of security protocols is notoriously error-prone, and despite copious public scrutiny, flaws often go
undiscovered for many years. The most famous example of this is the Needham-Schroeder Public
Key Protocol [30], which contained a critical flaw that went undetected for many years before formal
methods were applied to the problem.

A security protocol is a protocol which provides a security property. The simplest and most com-
mon examples of security protocols provide authentication and secrecy properties. For example, the
Needham-Scroeder Public Key Authentication Protocol [30] provides an authentication property. The
term security protocol is becoming broader because security is now a key consideration in the design
of many protocols, particularly e-commerce protocols.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Alice-Bob Notation

A -> B: M1
B -> A: {M2}KeyA

Unfortunately, there have been a number of cases where security protocols have been flawed and have
not provided the security property claimed by their designers. Sometimes these flaws go undetected
for a long duration of time. Security protocols are difficult to design correctly due to the asymmet-
ric and concurrent nature of distributed applications. Flaws are sometimes very subtle and rely on
unexpected interactions between concurrent sessions.

When describing security protocols, there is a common notation which is used to show the flow of
messages between participants. It is not perfect, but is an easy way to give a description of a flow
of messages and can be understood almost immediately. This notation is called Alice-Bob notation.
Figure 1.1 shows a typical example of Alice-Bob notation.

The first message of the protocol is sent from A to B, and is M1. The second message of the protocol
is sent from B to A and is M2 encrypted with KeyA. There are a number of different styles used to
denote encryption, but this thesis will exclusively use the curly-brace style shown above.

The Clark Jacob Library of security protocols contains an introduction to the field of security protocols
[18]. It is highly recommended that a reader unfamiliar with the concepts behind security protocols
reads this introduction to the topic before reading beyond this chapter.

1.2 Formal Analysis of Security Protocols

Formal analysis has been used with some success to verify the correctness of security protocols. A
specification language is used to describe the protocol and its security requirements, and a model
checker is then used to verify that the security requirements of the protocol are met. This approach
is in some ways superior to human examination because it has the advantage of an exhaustive search
through all possible ways in which the protocol and the intruder can behave, and all the ways in which
concurrent sessions of a protocol can interact and interfere with each other.

A number of different formal techniques and logics have been applied to the domain of formal security
protocol analysis. Most commonly, state space exploration techniques have been used to explore all
possible paths through a state space defined by a model of the protocol under analysis. Some other
techniques which have been applied to the problem include the Burrows, Abadi and Needham (BAN)
logic [12], which is based on the beliefs of principals and inference rules related to these beliefs,
inductive theorem proving techniques [42], and the graph-theoretic strand space model [23]. [37]
provides a good summary of the current state of formal analysis of security protocols.

The tools used for analysing security protocols are quite varied. Some general purpose tools for
describing concurrent systems have been adapted to the purpose, while there are also a number of
tools specialised to the field of protocol analysis.
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Formal security protocol specification languages have previously been limited in a number of ways.
Expressiveness, scalability and ease of use have all been identified as limitations of the current gener-
ation of tools. This is changing as new analysis techniques and specification languages are developed.

The specification and analysis of very large complex protocols has been troublesome using the tools
currently available. Many of them are based on analysing the Clark-Jacob library [18] of security pro-
tocols. This library contains descriptions of a large number of protocols to illustrate their functionality
and faults; unfortunately most of the protocols are simple examples and not as complex as the proto-
cols currently being developed by and for industry. The current generation of tools being developed
attempts to go beyond the Clark-Jacob library to analyse larger more complex security protocols.

1.3 Limitations of the Currently Available Tools

The process of specifying a protocol can be a tedious, difficult and error-prone task. Improvements
in model checking techniques over recent years have made the formal analysis of industrial security
protocols more feasible. Advances such as partial order reduction, lazy evaluation, and symbolic
model checking [36, 10] have given model checking tools the power to analyse extremely complex
specifications quickly and efficiently. Modelling such protocols, however, is not so easy. Languages
such as TLA [29] are very general in terms of expressiveness, but require a high level of expertise
when it comes to modelling complex security protocols. This is primarily due to their general and
low-level nature.

The development of languages specialised to the analysis of security protocols has provided mod-
ellers with standard constructs with which to specify things like messages, keys, encryption, and
agents. These languages also enforce restrictions on modellers. Because they are specialised they
must provide support for everything a modeller will need. If this support is not provided, there is
usually no simple way to model the required functionality.

An example of this is arithmetic in the High Level Protocol Specification Language (HLPSL) [16,
5]. Arithmetic in HLPSL is difficult because natural numbers are supported, but only as symbols.
They have no meaning beyond an identifier for a constant. In order to model functionality similar to
counting, a function can be used to refer to the successor of a number, e.g, SUCC(1) could refer to
two, and SUCC(SUCC(1)) could refer to three. This approach is limited however, because functions
in HLPSL are one-way, and it is difficult to express subtraction. This simple example shows how high
level languages can be limiting to protocol modellers.

As the designers of high level languages strive to provide support for the features required by protocol
modellers, they must be cautious of the complexity a new feature might add to their language and to
the formal models generated by their specifications. It is pointless to add a new feature if the use of
this new feature produces a model which the appropriate model checker cannot handle.

The latest generation of protocol specification languages and model-checkers claim to be able to go
beyond the Clark-Jacob library of protocols to analyse more of the protocols being used and developed
by the industry. This is true to an extent; however they still suffer from some critical limitations. Both
HLPSL and muCAPSL [39] have restricted modellers to a single intruder model; the Dolev-Yao
intruder model. This is the most powerful intruder model, and is generally the type of intruder which
protocols are designed to be secure against. However communication mediums are becoming more
diverse and this model is no longer suitable in all cases. Two examples of when this intruder model
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is unsuitable are wireless communication, where the intruder may not necessarily be able to block
messages, and confidential communication between, for instance, a token and a token reader which
must be in contact to communicate.

The restriction to a single intruder model has provided modellers with a simple way to model com-
munication without having to specify all the actions the intruder might take. As security protocols
diversify, however, this restriction becomes limiting to protocol modellers.

The analysis of industrial protocols which make use of sub-protocols can be a tedious task. It involves
manually combining several protocol specifications into one by modelling the message exchanges
of the sub-protocols in the appropriate places in the main protocol. When a protocol makes use of
a number of sub-protocols, the specifications can become quite complex and there is a high chance
of errors occurring in the specification. Sometimes a protocol will make use of sub-protocols, but
not actually specify the protocols to use. In this case modellers (and vendors) must choose an ap-
propriate sub-protocol to model (or build) based on the assumptions the main protocol makes about
the sub-protocol. The modelling process can be simplified by a mechanism with which to model the
assumptions a protocol makes about a sub-protocol, instead of actually modelling the sub-protocol.

Specifying assumptions about sub-protocols is similar to specifying an intruder model. Both pro-
cesses affect the way in which messages are sent and received. This dissertation proposes a solution
which enables modellers to make use of alternative intruder models and to model a sub-protocol as an
assumption or a set of assumptions, rather than modelling the whole protocol.

1.4 Modelling Large Protocols

There is a large body of existing security protocols which provide well defined security properties to
applications. Recently, new protocols have been developed which make use of existing protocols as
sub-protocols. This makes sense as there are some security properties which are required by many
different applications. It is sensible to make use of existing code and designs, rather than creating
new protocols which accomplish the same thing as existing protocols. An example of this is mutual
authentication. The designers of a large protocol which needs to authenticate two parties to each other
may decide to leverage an existing protocol, and use it within their protocol as a sub-protocol.

Unfortunately, the increasing complexity and use of sub-protocols within larger protocols makes it
more and more difficult to model security protocols. Once a specification reaches a certain level of
complexity it becomes too difficult to comprehend at one time and the chance of an error increases.
As part of this research, extensive experimentation has been done using the state-of-the-art protocol
specification language HLPSL to model large and complex security protocols. The goal of these
experiments was to determine how capable the currently available tools were of modelling large,
complex protocols.

The experiments discovered that the HLPSL language was capable of expressing most authentication
and key exchange protocols, but also identified a number of limitations of the HLPSL language.

The HLPSL language only supported a single model of the intruder’s capabilities. This is limiting
as more and more protocols are being proposed for operating in different environments and over new
types of media. It should be possible to analyse these protocols, and even just parts of these protocols,
with respect to different models of an intruder’s capabilities.
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In addition to this limitation, the HLPSL language could not be used to model non-repudiation pro-
tocols or security protocols with non-repudiation requirements. The language provides no way to
specify which actions generate proof evidence, and thus there is no way to reason about an agent’s
ability to prove or deny its actions or the actions of other agents. Non-repudiation properties are an
important part of e-commerce protocols and exchange protocols and this lack of support significantly
reduces the applicability of the AVISPA tools.

It was also discovered that modelling large protocols that made use of sub-protocols was difficult
and time-consuming. Unfortunately there was no simple way to merge a pre-existing specification
of a protocol into a larger specification as a sub-protocol. The specifications had to be manually
combined into a single specification. This process was difficult and resulted in unnecessarily complex
specifications. These issues were identified as key limitations of the HLPSL language which inhibited
the scope of the AVISPA tools.

Note that these limitations are not flaws in the language, but characteristics of the language which
make it difficult to specify certain types of protocols. The HLPSL language has a number of limi-
tations other than those outlined above. Some examples are lack of support for arithmetic, fairness
constraints, and timestamps. The key limitations of the language which are focussed on by this thesis,
however, are the ability to model alternative intruder models, the ability to specify the requirements of
non-repudiation protocols, and the difficulty of specifying large, complex protocols in HLPSL. These
limitations are highlighted because they can all be solved using a single extension to the language.

Abstract communication channels are a modelling technique which can be used to describe properties
of a communication channel. They are used to model properties of a communication medium which
are beyond the scope of the analysis. The typical example is a Dolev-Yao channel [21], which models
communication over an insecure medium. The channel allows the modeller to specify properties of
the communication over this medium. These properties are at a lower level of abstraction than the
protocol specification and are thus abstractly expressed using a channel type. Abstract communica-
tion channels can be used to abstractly model properties of any part of a protocol which is considered
beyond the scope of the analysis. This is not restricted to properties of the physical layer of a protocol.
For example, a channel might provide the privacy security property to model a secure channel based
on SSL or a similar protocol. Taking this approach further, abstract communication channels can
be used when modelling larger application protocols which make use of several sub-protocols. The
sub-protocols can be modelled as communication channels which provide certain security properties.
Perhaps the high level protocol does not specify the sub-protocol to be used, in which case the prop-
erties of the channel must be extracted from the requirements placed on the sub-protocol by the high
level application protocol.

1.5 Goals of this Research

This research aims to investigate the effectiveness of the current generation of protocol analysis tools
for analysing industrial protocols. Furthermore this research introduces abstract communication chan-
nels and experiments with using them to model protocols using a top-down approach. Ultimately, the
efficacy of this new concept will be evaluated to determine whether or not abstract communication
channels should be integrated into the current generation of protocol analysis tools.
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1.6 Organisation of this Thesis

This thesis will be broken up into a number of chapters. Chapter 2 is a review of the literature related
to the analysis of security protocols. It provides preliminary information necessary for understanding
the rest of the thesis. Chapter 3 presents a new modelling construct; abstract communication chan-
nels. Chapter 4 describes three case studies performed to determine the applicability and usefulness
of abstract communication channels. Chapter 5 discusses the results of the experiments and future
directions related to this work.



Chapter 2

Literature Review

2.1 Modelling Security Protocols

Protocol specification languages have evolved from low-level generic languages such as TLT [20],
TLA [29], and PROMELA [26]. These languages are not specialised to security protocols, but can
be applied to many types of concurrent systems. They require the modeller to explicitly specify the
behaviour of channels, encryption, message composition and decomposition, and many other things
related to security protocols. Due to their generality they can be applied to any protocol, but they are
unsuitable for general use because of the time it takes to specify protocols, and also because they are
not optimised to handle protocol analysis. This creates complex models with enormous numbers of
states, and makes the analysis of large protocols with these tools difficult.

A number of different formal techniques and logics have been applied specifically to the domain of
formal security protocol analysis, and tools have been developed based on these logics. State space
exploration is a technique which can be used to explore all possible paths through a state space defined
by a model of the protocol under analysis. Another technique which has been applied to the analysis
of security protocols is the Burrows, Abadi and Needham (BAN) logic [12]. This logic is based on the
beliefs of principals and inference rules related to these beliefs, for example, if a principal A believes
that only B and itself know of a shared key K, and A receives a message encyrpted with K, then A will
believe the message was actually from B. BAN logic provides a very high-level view of a protocol. It
has been used successfully to identify a number of attacks, however, [41] claims that the BAN logic
is flawed and discusses two protocols which, when modelled correctly in BAN logic, were incorrectly
found to be secure. [47] counter-claims that the two protocols were modelled incorrectly, and that the
BAN logic is not flawed.

Inductive theorom proving techniques [42, 44] are based on sets of rules for extending sequences of
events. These rules represent the actions of both honest participants and of the intruder. Authentication
and secrecy goals are then expressed as properties of these sequences, and are proved using induction.
The general purpose theorom prover Isabelle [43] is used to make the theorom proving process more
automated, but these tools are still interactive and require a high level of expertise. Strand spaces [23]
are a graph-theoretic approach to representing security protocols. They are closely related to inductive
theorem proving techniques, but provide a simpler, more intuitive model and more precise results.

In recent years new specification languages have been developed which are specialised to the domain
of security protocols. They provide constructs which allow modellers to easily specify things like

7
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messages, send and receive actions, encryption, and a variety of other capabilities. Some examples of
these languages are: HLPSL1.0 [3], CAPSL [40], and Casper [31].

HLPSL1.0 and CAPSL are both languages based on the Alice-Bob notation described earlier. Both
languages are based on the idea of a high-level language which is translated into a lower level language
for analysis by a number of tools. CAPSL is designed to be a common specification language which
can be used by a number of tools. Unfortunately, the language is limited in some ways. For example, it
cannot express a situation where a principal receives a message which it cannot immediately decrypt,
and it is restricted to secrecy and authentication goals. The HLPSL1.0 language is limited in that it
cannot express branching. The Casper approach does not support non-atomic keys. More importantly,
Casper is geared towards finite state model checking, and requires restrictive assumptions to be made
about the system. For example, the maximum depth of messages must be specified.

These languages are advantageous because they simplify the specification process, and also because
the size of the models they generate is considerably smaller than those based on generic languages
because things such as send and receive actions are built into the tool and are handled in efficient
ways. This approach makes more sense than requiring the modeller to specify things over and over
again. These languages are simple, but have expressive limitations. Recently the trend has been to
move towards more complicated, yet expressive languages. [37] provides a good summary of the
current state of formal analysis of security protocols.

MuCAPSL [38, 39], HLPSL2.0 [5, 16] evolved from languages based on Alice-Bob notation. They
both have expressive power beyond their predecessors and aim to increase the scope of security pro-
tocol analysis tools to more complex, non-standard protocols. This approach is a reflection of the
increasing diversity of computer communication applications, and hence the increasing diversity of
security protocols themselves. Both HLPSL2.0 and MuCAPSL are based on separate specifications
of roles, which are interpreted as independent state machines. MuCAPSL is specifically targeted to-
wards multicast and group protocols, whereas HLPSL2.0 aims to be general purpose and flexible.
This thesis will refer to HLPSL2.0 as HLPSL from now on.

2.2 The Dolev-Yao Intruder

The Dolev-Yao intruder model [21] is the strongest possible model of the capabilities of an intruder
which preserves the properties of encryption. The model states that the intruder can read all messages
which are sent, block any message which is sent, and arbitrarily re-direct messages. The intruder
can store messages it receives indefinitely, and can arbitrarily re-order messages. Furthermore, the
intruder has the capability to decompose messages into their components and to compose messages
from other pieces of its knowledge. The intruder can encrypt and decrypt messages if it possesses the
appropriate key.

The only restriction that is placed on the Dolev-Yao intruder is that it cannot break encryption. If it
receives an encrypted message, it cannot learn the contents of the message unless it has knowledge of
the appropriate key.
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2.3 Fair Exchange Protocols

Fair exchange protocols are an example of a class of protocol that the tools currently available have
difficulty analysing. A number of distributed applications involve an electronic exchange of some
description. Data is exchanged between parties. In situations where the data is valuable it is desirable
for all honest parties to ensure that the exchange is atomic. Fair exchange refers to an exchange of
digital items which allows no participant to gain an advantage over another. This principle has been
applied to several applications.

Electronic contract signing is an application of fair exchange which allows parties to exchange sig-
natures on a pre-agreed text: the contract. Fair electronic contract signing ensures that no party can
obtain a signed contract from another without also signing a copy of the same contract and making it
available to the other participant(s). Without this guarantee it might be possible for malicious parties
to manipulate contract signing procedures and avoid signing the corresponding contract.

E-commerce applications also participate in electronic exchanges. Usually electronic payment is
exchanged for a receipt, and eventually delivery of a product. However it is becoming increasingly
common to purchase electronic items on-line, for example, digital music from an online store. In this
situation the exchange in completely electronic. The customer provides payment authorisation, and
the merchant provides the digital item. A guaranteed fair exchange will protect both parties from the
other. Consumers can be sure that they will receive the goods they pay for, and merchants can be sure
they will be paid. This reduces the level of trust required between both parties, and hopefully can
increase consumer acceptance of electronic payment systems.

Another application of fair exchange is certified email. Certified email ensures that the recipient
cannot receive an email without also providing proof that he has received it. This can make it difficult
to deny receiving an email. Although certified email is not as far-reaching as the other examples, it
illustrates how fair exchange can be applied to any domain which involves a digital exchange.

Fair exchange protocols, including certified email and electronic contract signing protocols, are de-
signed to meet requirements which are different from typical secure communication protocols. The
broad goal of all fair exchange protocols is to ensure that no party can take advantage of another.
Stemming from this goal are the concrete requirements of each protocol. Unfortunately, these re-
quirements are not standardised and differ from protocol to protocol. The tools currently available
have trouble analysing the requirements of fair exchange protocols and a number of experiments have
been done which apply the currently available tools to these protocols [25, 46, 24, 27, 13, 14, 45].
These experiments have had considerable success verifying the fairness properties of fair exchange
protocols, but have so far not attempted to analyse the non-repudiation properties of these protocols.
This analysis is, unfortunately, beyond the capabilities of the currently available tools.

2.4 The AVISPA Project

The AVISPA project is a European project which is developing a state-of-the-art set of tools for pro-
tocols analysis. The website for the AVISPA project (www.avispa-project.org) states that:

AVISPA aims at developing a push-button, industrial-strength technology for the
analysis of large-scale Internet security-sensitive protocols and applications. This tech-
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nology will speed up the development of the next generation of network protocols, im-
prove their security, and therefore increase the public acceptance of advanced, distributed
IT applications based on them.

We at AVISPA will achieve this by advancing specification and deduction technology
to the point where industry protocols can be specified and automatically analysed.A cen-
tral aim of the project is then to integrate this technology into a robust automated tool,
tuned on practical, large-scale problems, and migrated to standardisation bodies, whose
protocol designers are in dire need of such tools.

AVISPA is a shared-cost RTD (FET open) project, funded by the European Commis-
sion under the Information Society Technologies Programme operating within the Fifth
Framework Programme, started on January 1st, 2003.

2.4.1 The AVISPA tools

The AVISPA tools consist of a translator from the High Level Specification Language (HLSPL) into
the Intermediate Format (IF), and four back-ends with which to analyse the generated IF specification.
Each of the four back-ends may make use of a further translator in order to convert the IF file into
the tool’s individual specification language. The four back-ends are the On-the Fly Model Checker
(OFMC), SAT based model checker (SATMC), Constraint Logic Attack Searcher (CL-ATSE) and
Tree Automata based automatic approximations for the analysis of Security Protocols (TA4SP). All
four back-ends must be able to parse the generic IF file and must comply with a standard output
format. This makes automated test runs of all four tools over a large number of specifications simpler,
and will soon allow a graphical front-end to parse results for visual display.

2.4.2 The High Level Protocol Specification Language (HLSPL)

HLPSL [5, 17] is the protocol specification language of the AVISPA project. It was designed to be a
fast, easy to use protocol specification language which would be accessible to protocol engineers who
might not necessarily be well versed in formal methods.

HLPSL is based on some of the concepts of TLA [29]. The semantics of HLPSL are wholly defined
using TLA. HLPSL provides a flexible, theoretically sound protocol specification language which
is sufficiently high level to be accessible, yet expressive enough to be able to model most security
protocols.

The HLPSL language supports branching, non-determinism, multiple layers of encryption, functions,
sets, role composition, and even allows the intruder to participate in protocol sessions as a legitimate
player.

Each HLSPL specification is made up of basic roles and compositional roles. Basic roles define
the initial knowledge and the behaviour of each of the participants. Compositional roles are used to
instantiate the roles with values and to define protocol sessions.

Each basic role contains a parameter list which describes the initial knowledge it must be instantiated
with. A basic role also has a played_by parameter, which is used to instantiate the role with a player.
Each basic role also contains a list of local variables and an initialisation section, and finally, a list of
transitions. A basic role is used to define the behaviour of an honest participant. This is done using
a list of transitions. Each transition has a left hand side which describes what must be true for the
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Figure 2.1: Architecture of the AVISPA tool-set
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Figure 2.2: A HLSPL transition

1. State = 0 /\ RCV(Text) =|>
State’ = 1 /\ SND(Text)

transition to be enabled, and a right hand side which defines the consequences of that transition being
fired. An example of a HLPSL transition is in Figure 2.2.

In this example the transition is fired if the variable State is equal to 0 and the message Text is received
on the channel RCV. This transition is only triggered when the message received on the channel RCV
is equal to the value of the variable Text. If the transition is fired, the value of State is changed to 1.
The syntax State’ (spoken as “state-prime”) refers to the value of State immediately after the transition
is complete. This syntax for referring to the new value of a variable is taken from TLA. As well as
updating the value of State, a message containing the value of Text is sent on a channel called SND.

Note that the variables State, RCV, SND, and Text all need to be declared and given appropriate types.
The different types available in HLPSL are described in [5], but are not discussed here in depth. They
include support for messages, agents, keys, nonces, natural nonces, and Dolev-Yao channels.

Figure 2.3 is a more advanced example of a HLPSL transition. It demonstrates concatenation, encryp-
tion, nonce generation, and the binding of values received in messages to variables. Concatenation is
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Figure 2.3: A more advanced HLSPL transition

1. State = 1 /\ RCV({Text.Val’}KeyA) =|>
State’ = 2 /\ SND({Text.Nonce’}KeyA)

Figure 2.4: A HLSPL compositional role

role Session (
A,B : agent,
KeyAB : symmetric_key,
SND,RCV : channel (dy)

) def=

composition

Alice(A,B,KeyAB,SND,RCV)
/\ Bob(A,B,KeyAB,SND,RCV)

end role

expressed using the “.” operator. In this example the values of Text and Nonce are being concatenated
together for the SND action. Encryption is expressed using curly braces, i.e. “{” and “}”, followed
by the key to be used for encryption. In the send action of Figure 2.3 the values of Text and Nonce
are concatenated together then encrypted with the key KeyA. Nonce generation refers to the creation
of a new value which has not been used before. If a variable is of type text (fresh), then it can be
used as a nonce. The example shows the new value of Nonce being sent on the channel SND.

Receive actions can be used to both restrict the messages which will be accepted, and to bind the
values received to variables. For example, the receive action in the example will only accept messages
which are the value of Text concatenated with some other message, all encrypted with KeyA. After this
transition is completed, Val will be equal to the value of the component of the message it corresponds
to.

Compositional roles in HLPSL are used to instantiate the basic roles, or other compositional roles.
They declare variables, and pass them to the roles they instantiate. This is how shared initial knowl-
edge is specified. In addition to this, compositional roles are used to define the initial knowledge of
the intruder, and to specify which of the roles the intruder might be able to play legitimately. Fig-
ure 2.4 shows a typical compositional role named Session. Session takes a number of arguments,
which it passes onto the basic roles Alice and Bob when it instantiates them. The “/\” operator in
a composition section indicates parallel composition of the roles. That is, they will both be executed
simultaneously as independent state-machines.
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Figure 2.5: A HLSPL top level compositional role

role Environment () def=

const
a,b : agent,
keyAB,keyiB : symmetric_key,
snd,rcv : channel (dy)

knowledge(i) = {a,b,keyiB}

composition

Session(a,b,keyAB,snd,rcv)
/\ Session(i,b,keyiB,snd,rcv)

end role

Figure 2.6: HLPSL goals

goal
Bob authenticates Alice on Msg
Secrecy of Msg

end goal

Figure 2.5 shows another compositional role called Environment. This is the top-level role which
instantiates the Session role. Notice that it instantiates two Session roles, one between the honest
agents a and b, and another between the intruder (i), and b. This means that intruder has the ability
to play as a legitimate Alice, and has a pre-existing relationship with b, and even an established key
called keyiB.

The HLPSL language has been designed to support temporal logic style security goals; however the
AVISPA tools do not yet provide this support. Goals are currently specified as macros. There are three
types of goal macros available: secrecy, strong authentication, and weak authentication. These three
goals can be used to capture the requirements of many protocols, but are not sufficient to model many
others. The specification of goals is HLPSL is done in the goal section. Figure 2.6 is an example of
two HLPSL goals.

This section has described HLPSL in a manner which provides the reader with a basic understanding
of the way in which HLPSL works, without going into a great deal of depth.

The next section discusses IF, the lower level language that HLPSL specifications are translated into.
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Figure 2.7: The type symbols section of the standard IF prelude file

section typeSymbols:
agent, text, symmetric_key, public_key, function, table,
message, fact, nat, protocol_id

2.4.3 The Intermediate Format (IF)

The IF [6] language is a low-level tool-independent protocol specification language based on term-
rewriting. IF specifications describe a transition system in terms of an initial state, and a list of rules
which dictate the ways in which this state can change. IF specifications are broken up into two files.
The first file is called the prelude file, and is used to describe symbols, rules and equations which are
protocol independent. There is a standard IF prelude file which is used for all protocol specifications.
The IF prelude file itself is broken up into a number of sections: the type symbols section, the signature
section, the types section, the equations section, and the intruder section. The Type Symbols section
lists all of the types which will be used throughout the rest of the prelude file and the protocol specific
IF specificaitons. Figure 2.7 shows the type symbols section of the standard IF prelude file. It defines
all the types which are available for IF specifications.

The signature section of the IF prelude file performs two tasks. Firstly, it defines the type heirarchy
for the types which are listed. For instance, it specifies that text is a sub-type of type message. In
addition to this, the signature section also contains type signatures for all the facts which will be used
in IF specificaitons. Figure 2.8 shows the signature section of the standard IF prelude file.

The signatures displayed in the second part of Figure 2.8 show all of the standard IF functions and facts
which are used for representing and reasoning about security protocols. For example, the first entry
describes the pair function, which has two parameters of type message, and which returns a message.
The other functions are defined in the same manner. Pair is used for expressing tuples, crypt is used for
public key encryption, inv is used for the inverse function, scrypt is used for symmetric encryption, exp
is for exponentiation, xor is for exclusive or, apply is used for expressing the application of functions,
iknows is for knowledge of the intruder, contains is used for sets, and witness request, wrequest and
secret are used for augmenting specifications with facts used when expressing security requirements.
The signature for each of these facts specifies its arity, the types of its parameters, and the type of the
result of this function or fact.

The types section of the prelude file declares a number of symbols and the type of each of the symbols.
The equations section then uses these symbols to define algebraic properties of the functions defined
in the signatures section. Figure 2.9 shows the types and equations sections of the standard prelude
file. It defines the associativity of the pair functions, the self-inverse property of the inv function, the
commutativity of the exp function, and the associative, commutative and self-inverse properties of the
xor function. These properties are defined in terms of the symbols declared in the types section. For
example, inv(inv(PreludeM)) = PreludeM means that the inverse of the inverse of any message
is equal to that message.

The final section of the prelude file is the intruder section, which defines the capabilities of the intruder
in terms of the composition and decomposition of messages, and the generation of new fresh values.



2.4. THE AVISPA PROJECT 15

Figure 2.8: The signature section of the standard IF prelude file

section signature:
message > agent
message > nonce
message > symmetric_key
message > public_key
message > function
message > table
message > set
pair : message * message -> message
crypt : message * message -> message
inv : message -> message
scrypt : message * message -> message
exp : message * message -> message
xor : message * message -> message
apply : message * message -> message
iknows : message -> fact
contains : message * message -> fact
witness : agent * agent * protocol_id * message -> fact
request : agent * agent * protocol_id * message * nat -> fact
wrequest : agent * agent * protocol_id * message * nat -> fact
secret : message * agent -> fact

Figure 2.9: The types and equations sections of the standard IF prelude file

section types:
PreludeK,PreludeM,PreludeM1,PreludeM2,PreludeM3 : message

section equations
pair(PreludeM1,pair(PreludeM2,PreludeM3)) = pair(pair(PreludeM1,PreludeM2),PreludeM3)
inv(inv(PreludeM)) = PreludeM
exp(exp(PreludeM1,PreludeM2),PreludeM3) = exp(exp(PreludeM1,PreludeM2),PreludeM3)
exp(exp(PreludeM1,PreludeM2),inv(PreludeM2)) = PreludeM1
xor(PreludeM1,xor(PreludeM2,PreludeM3)) = xor(xor(PreludeM1,PreludeM2),PreludeM3)
xor(PreludeM1,PreludeM2) = xor(PreludeM2,PreludeM1)
xor(xor(PreludeM1,PreludeM1),PreludeM2) = PreludeM2
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Figure 2.10: The intruder section of the standard IF prelude file

section intruder:
% generate rules
step gen_pair (PreludeM1,PreludeM2) :=

iknows(PreludeM1).iknows(PreludeM2) => iknows(pair(PreludeM1,PreludeM2))
step gen_crypt (PreludeM1,PreludeM2) :=

iknows(PreludeM1).iknows(PreludeM2) => iknows(crypt(PreludeM1,PreludeM2))
step gen_scrypt (PreludeM1,PreludeM2) :=

iknows(PreludeM1).iknows(PreludeM2) => iknows(scrypt(PreludeM1,PreludeM2))
step gen_exp (PreludeM1,PreludeM2) :=

iknows(PreludeM1).iknows(PreludeM2) => iknows(exp(PreludeM1,PreludeM2))
step gen_xor (PreludeM1,PreludeM2) :=

iknows(PreludeM1).iknows(PreludeM2) => iknows(xor(PreludeM1,PreludeM2))
step gen_apply (PreludeM1,PreludeM2) :=

iknows(PreludeM1).iknows(PreludeM2) => iknows(apply(PreludeM1,PreludeM2))
% analysis rules

step ana_pair (PreludeM1,PreludeM2) :=
iknows(pair(PreludeM1,PreludeM2)) => iknows(PreludeM1).iknows(PreludeM2)

step ana_crypt (PreludeK,PreludeM) :=
iknows(crypt(PreludeK,PreludeM)).iknows(inv(PreludeK)) => iknows(PreludeM)

step ana_scrypt (PreludeK,PreludeM) :=
iknows(scrypt(PreludeK,PreludeM)).iknows(PreludeK) => iknows(PreludeM)

% Generating new constants of any type:
step generate (PreludeM) :=

=[exists PreludeM]=> iknows(PreludeM)

The knowledge of the intruder is treated in the same way as other facts and functions in IF, using the
iknows fact. The equations is Figure 2.10 use the iknows function to reason about the composition
and decomposition of messages. This is the final section of the IF prelude file. The capabilities of the
intruder are defined in a similar way to the properties of functions. This is because the knowledge of
the intruder is desribed using the iknows function. For example, the first entry in the intruder section
defines the ability of the intruder to generate a pair. If the intruder knows PreludeM1 and PreludeM2,
then he also knows pair(PreludeM1,PreludeM2).

Individual IF specifications are generated from HLPSL specifications using the tool hlpsl2if. Each
IF specification is broken up into a number of sections in a similar way to the IF prelude file: the
signature section, the types section, the inits section, the rules section and the goals section. The
signature section of an IF specificaiton is similar to the signature section for the IF prelude file, except
that it contains fact signatures whcih are used to describe the state of honest agents. The types section
contains type declarations of all the symbols which will be used throughout the specification. These
symbols correspond to the variables and constants declared in the HLPSL specification. The inits
section is used to describe the intial state of the system. It states the initial knowledge of the intruder,
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Figure 2.11: An IF Rule

step step_0 (C,S,K_CS,MD5,Hello,Success,Ts,Dummy_Timestamp,Timestamp,SID) :=
state_Client(C,S,K_CS,MD5,Hello,Success,Ts,0,Dummy_Timestamp,SID).
iknows(pair(Hello,Timestamp))
=>
state_Client(C,S,K_CS,MD5,Hello,Success,Ts,1,Timestamp,SID).
iknows(pair(C,apply(MD5,pair(Timestamp,K_CS)))).

Figure 2.12: An example of an IF goals section

section goals:
goal authenticate_Timestamp (C,S,Timestamp,SID) :=
request(S,C,timestamp,Timestamp,SID) &
not(witness(C,S,timestamp,Timestamp)) &
not(equal(C,i))

as well as the state of the honest agents. The rules section contains a list of IF rules which correspond
to the transitions of the HLPSL specification. Each rule describes how the state of the system can
change. Figure 2.11 shows an example of an IF rule. Note that all of the symbols in rules such as
Figure 2.11 must be defined and intialised at the beginning of the IF file.

Attack states are defined in the goals of an IF file. Each goal describes a state which must never be
reached. Figure 2.12 shows an example of a goals section.

When a model checker processes an IF file, it must search through the state space created by the inital
state and the different rules listed in the rules section of the IF file. The model checker searches for
attack states which are defined in the goals section of the IF file. If an attack state is reached, the
transition path from the intial state to the attack state is displayed. This path describes how the attack
occurred. The name of the goal which was violated is also displayed. If no attack states are reached,
then the model-checker displays a message indicating that no attacks were found.

This chapter has discussed different techniques of formally modelling and analysing security proto-
cols, as well as introduced the reader to AVISPA tools. The next chapter will describe a new technique
for specifying large and complex security protocols. This new technique is a modelling construct
which allows modellers to specify the assumptions they would like to make about a communication
between parties. It has been implemented as an extension to the AVISPA tools, which is why this
chapter provided an introduction to the HLSPL and IF languages.
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Chapter 3

Modelling Large and Complex Protocols

The previous chapter concluded with a discussion of some of the limitations of the current generation
of protocol specification and analysis tools, including the difficulty of modelling complex protocols
and the lack of support for alternative intruder models. This chapter present abstract communication
channels as a solution to these limitations. Section one explains why abstract communication channels
are a suitable solution to the problems discussed in the previous chapter. Section two describes exactly
what abstract communication channels are, and the functionality they provide. Section three describes
how abstract communication channels have been implemented; including how they are specified, and
how the tools implement the required functionality of each channel.

3.1 Why Abstract Communication Channels

Abstract Communication Channels allow protocol modellers to explicitly state assumptions they
would like to make about a communication medium. They can be used to specify any property of
a communication medium which is below the level of abstraction which the modeller wishes to use;
either physical properties of the medium, or properties of a sub-protocol which is being used. Abstract
communication channels allow modellers to build large protocols based on the security properties of
sub-protocols which they have already verified, or which they assume to be correct. This disserta-
tion presents abstract communication channels as a new protocol modelling technique which both
simplifies the specification process and increases the expressiveness of high level protocol specifi-
cation languages. Abstract communication channels not only allow analysts to specify alternative
intruder models, they can also be used to simplify the specification of large protocols which make
use of sub-protocols. Additionally, abstract communication channels can be used to reason about
non-repudiation properties of security protocols. This section explains why abstract communication
channels are an appropriate and useful extension to protocol modelling languages, and why they are
a suitable mechanism with which to increase the expressiveness of high level protocol specification
languages.

The key advantage to a channel-based approach for specifying assumptions about communication is
that channels provide a high level of flexibility. By creating a number of different named channels,
each of a different type, it is possible to model situations where some messages are sent using one
communication model and others are sent using different models of communication. This capability
is extremely important for some of the protocols under development. For example [19] and [8] both

19
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discuss a scenario where a user wishes to confidentially send a document to a public printer from
a PDA. A physical connection is used to establish a keyed link between the PDA and the printer,
negating the need for a Public Key Infrastructure. This situation is impossible to model without the
ability to specify different intruder models for different parts of a protocol (i.e, channels).

Another advantage to the channel approach is extensibility. Each unique set of assumptions made
about some communication is represented as a different channel type. This makes it easy to add new
intruder models to the language without having to modify the grammar beyond a new keyword with
which to describe the new type of channel. The behaviour of this new channel is then described
by an appropriate translation of send and receive actions into the lower level term-rewriting system.
Therefore, as new intruder models are envisaged, they can be added with ease, and without the need
to teach modellers about changes to the language.

The AVISPA tools aim to develop tools which are so fast and easy to use that they can be used for
experimentation during the design phase of a protocol. Allowing modellers to specify sub-protocols
gives protocol designers an easy way to experiment with a large protocol like SET. There is no need
to specify how the assumed sub-protocol works or what it is, only the security properties it supplies.
This enables a top-down approach to protocol design and analysis, where a protocol designer first
specifies their needs, and can then incrementally instantiate a protocol with a concrete realisation of
those needs. Alternatively, after specifying the needs of a sub-protocol, the designers may search
for a protocol they can use which provides the properties they require, and perhaps even analyse this
protocol separately.

The ability to include protocol analysis in the design phase of a protocol will lead to clearer security
goals and more secure protocols. Using channels to model sub-protocols makes this more feasible
and also allows a top-down approach to the analysis of design.

Finally, abstract communication channels provide a convenient way for modellers to compose specifi-
cations together. The ability to abstractly specify the properties of a sub-protocol means that modellers
can keep specification of a main protocol and its sub-protocol separate. There is no need to include
the messages and data of each sub-protocol in the main protocol. Instead, the sub-protocol can be
modelled and analysed separately, its relevant security properties verified and extracted and the main
protocol can simply us an appropriate channel type. This has the advantage of keeping specifications
smaller, which makes them easier to write, easier to understand, and also easier to analyse because of
the reduced amount of states. It also means that once a protocol has been modelled and its security
properties analysed, there is no need to model it again and again each time it is used as a sub-protocol.
The mapping between security goals and an appropriate channel type is a manual task and is restricted
to the channel types available. If a protocol provides a property not captured by an existing channel
type then it might be useful to add this type of channel to the tool.

Abstract communication channels are a simple, flexible, and extensible construct which allows mod-
ellers to specify alternative intruder models, as well as security properties provided by sub-protocols.
Both of the capabilities are important to modeller as protocols are developed for more diverse envi-
ronments and as they begin to rely more and more on sub-protocols.

3.2 Abstract Communication Channels

Abstract communication channels are a modelling construct which allow modellers to make assump-
tions about a communication medium. For example, if a modeller wants to specify that a message is
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Figure 3.1: The behaviour of Dolev-Yao channels
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sent privately, the modeller can use an abstract communication channel to send the message.

A channel is a named communication medium. Messages can be sent to channels and received from
channels. Exactly what happens when a message is sent or received on a channel is dependent on the
type of the channel. This defines the properties of the channel.

The HLPSL language supports channels, however the only channel type available is a Dolev-Yao
channel. This channel type is used to specify communication over a medium which is controlled by the
Dolev-Yao intruder model. Because the Dolev-Yao intruder model gives the intruder complete control
over the network, there has been no need to separate the channel from the intruder. All messages are
sent to the intruder, and all messages are received from the intruder. Figure 3.1 illustrates the behaviour
of a Dolev-Yao channel.

In the receive action of a Dolev-Yao channel the intruder sends the value X. This indicates that the
intruder can send any value here, including M. It is important to remember that the value which the
intruder sends must be acceptable by the recipient. For example, if the recipient is expecting to receive
the name of an agent and a predefined message constant, both encrypted with its own public key, then
it will only accept a message of this form. If the intruder is capable of constructing a message of this
form, then this message will be X.

Abstract communication channels are channels that behave differently from Dolev-Yao channels. In
some cases messages are not sent to the intruder and the channel itself is used to store messages. In
other cases receive will be triggered by the channel instead of the intruder. Some channels generate
special proof facts which can be used when specifying the channel requirements. A summary of the
new types of communication channels is provided in this section.

3.2.1 Named Channels

Prior to the extensions made to the AVISPA tools as part of this research, channel names were super-
fluous information. Send and receive actions of Dolev-Yao channels never actually sent information
to a channel. Abstract communication channels sometimes lead to a situation where agents must have
access to the same channel in order to communicate over it. This is part of the semantics of abstract
communication channels. It should be noted to modellers familiar with the AVISPA tools that they
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Figure 3.2: The behaviour of over-the-air channels
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will now need to ensure that agents are given access to the same channels if they wish to commu-
nicate using the new channel types. This should be done when instantiating the various roles from
compositional roles. The process is discussed in Section 3.3.1.

3.2.2 Over-the-air Channels

Over-the-air channels deliver the message to the intruder at the same time as they deliver the message
to the recipient. This is used to model a wireless communication medium in which it is difficult for the
intruder to intercept messages on-the-fly. When an agent sends a message on an over-the-air channel;
it is received by the intruder at the same time as it is received by the intended recipient. It is possible for
the intruder to send messages over an over-the-air channel, however the intruder’s ability to manipulate
a protocol on-the-fly, such as in man-in-the-middle attacks is limited by this communication model.
Figure 3.2 illustrates the behaviour of over-the-air channels. Notice that there are two possible receive
actions, one in which the message is received from the channel by the recipient and the intruder, and
another where the intruder tricks the recipient into accepting another message. The other message, X,
could be identical to M, but is named differently because it might be different.

Some models of over-the-air communication stipulate that the intruder cannot block messages, and
thus all messages are eventually delivered to the recipient. The IF language cannot support fairness
constraints such as “eventually”, and so this functionality is not included. Other tools which might
make use of abstract communication channels should consider including this in their model of over-
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the-air communication. Section 5.3.1 discusses some other channel types which could be supported
by tools with the ability to express fairness constraints.

3.2.3 Authentic Channels

A common requirement of a security protocol is authentication. In fact, there is a whole class of
security protocols commonly referred to as authentication protocols. In a simple example scenario
where Alice sends message to Bob, one can say that Bob wishes to authenticate Alice on message.
This means that Bob wants to be absolutely certain that message was sent by Alice.

As well as being a common type of security protocol, authentication protocols are commonly used as
sub-protocols for more complex protocols. Therefore an authentic communication channel has been
introduced. An authentic channel allows messages to be sent and received on it. When a message
is sent over an authentic channel the knowledge of the channel is updated with the message and the
knowledge of the intruder is updated. When an agent receives a message on an authentic channel,
it specifies the expected sender of the message. If an appropriate message hasn’t been sent by the
specified action then no message can be received.

It is important to remember that all actions in HLPSL are actually reactions. They must be triggered
by an event, usually a receive event. Once a receive event is triggered, the result usually contains a
send action. In order for a reaction to be triggered, it must first be enabled. In a situation where an
agent is ready to receive a message on an authentic channel, but an appropriate message has not been
sent by the expected agent, the receive action is not enabled.

Figure 3.3 shows the behaviour of an authentic channel. Notice that the channel can now receive and
send messages instead of just the intruder as with the previous model on communication.

Channels behave in a similar way to the intruder. Messages sent to a channel are remembered forever,
and may be sent on at an arbitrary time, or not at all. The model-checking tools will explore every
possible way in which message could be delivered and ordered.

There are two commonly used classes of authentication: Strong authentication and weak authentica-
tion. The channel presented here provides weak authentication. Strong authentication requires that
the message sent by Alice is never received by Bob more than once. This is referred to as replay
protection.

3.2.4 Confidential Channels

Confidential channels are another commonly used sub-protocol. The main protocol assumes that
the involved parties have established a secure channel with which they can communicate privately.
Confidentiality does not ensure authenticity, as it might be possible for the intruder to inject messages
into the channel. When sending on a confidential channel, the knowledge of the intruder is not updated
whilst the knowledge of the channel is. A receive event on a confidential channel is enabled if an
appropriate message has been sent on the channel, or if the intruder has knowledge of an appropriate
message. It is important to realise that the intruder may be able to construct a message that the receiver
will accept, even though he does not receive the messages being sent. Figure 3.4 and illustrates the
send and receive actions on a confidential channel.
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Figure 3.3: The behaviour of authentic channels
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Figure 3.4: The behaviour of confidential channels
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Figure 3.5: The behaviour of a non-repudiation of origin channel
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Note that both confidential and authentic channels can be used to model sub-protocols or to model
assumptions about physical properties of the communication medium. This applies to Abstract Com-
munication Channels in general.

3.2.5 Non-repudiation of Origin Channels

A number of protocols, particularly e-commerce protocols, have requirements involving non-repudiation
properties. These properties involve an agent’s ability to prove that certain messages were sent or re-
ceived by other agents. The latest generation of model checking tools do not have support for the
specification of non-repudiation security requirements. In fact, this is an area of ongoing research.
Abstract communication Channels can be used to indicate which messages generate which types of
proofs. Security requirements can then express non-repudiation properties based on the proofs gener-
ated by these channels.

The non-repudiation of origin property states that an agent may not deny sending a particular message.
In other words, the recipient can prove that the sender sent the message. A non-repudiation of origin
channel is identical to an authentication channel except that upon receipt of a message over a non-
repudiation of origin channel, the recipient is given the ability to prove that the sender really sent the
message. Figure 3.5 illustrates send and receive actions on a non-repudiation of origin channel.

3.2.6 Non-repudiation of Receipt Channels

Non-repudiation of Receipt means that the recipient of a message cannot deny receiving it. Alterna-
tively, the sender of a message can prove that the recipient did receive a particular message. Non-
repudiation of receipt is usually achieved using a series of messages which make up a non-repudiation
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Figure 3.6: The behaviour of a non-repudiation of receipt channel
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protocol. However, Abstract Communication Channels allow modellers to specify this property with-
out worrying about the details of the sub-protocol. A non-repudiation of receipt channel is an authen-
tic channel that generates a proof when messages are received on the channel. This proof allows the
sender to prove that the recipient did receive the message. Figure 3.6 demonstrates the behaviour of a
non-repudiation of receipt channel.

3.2.7 Non-repudiation of Origin and Receipt Channels

Some protocols provide both non-repudiation of origin and non-repudiation of receipt. To allow
modellers to easily specify these properties for a sub-protocol, a channel type has been created which
provides a proof that the sender sent the message to the recipient, and a proof that the recipient received
the message to the sender. Figure 3.7 illustrates send and receive events over non-repudiation of origin
and receipt channels.

All channels which provide a non-repudiation property are also authentic channels. This is for the
following reason: if an agent is to be provided with proof that a certain message was sent or received
by another agent, then the message must have actually been sent or received by that agent. It does
not make sense to have a non-repudiation of origin channel that generates proofs that an agent sent a
message, if the message wasn’t actually sent.

The proofs generated by non-repudiation channels are meaningless on their own. However, they give
a modeller the ability to specify security requirements involving proofs. For instance, the modeller
may wish to specify that at the conclusion of a protocol, Alice must be able to prove that Bob received
a certain message.
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Figure 3.7: The behaviour of a non-repudiation of origin and receipt channel
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3.3 Implementing Abstract Communication Channels

In order to experiment with the proposed extension, abstract communication channels were added
to the AVISPA tools. To implement the functionality described in the previous section a number of
changes needed to be made to the tools. The HLPSL specification language was modified to allow
modellers to declare abstract communication channels and to express send and receive actions over
them, and the hlpsl2if tool which translates HLPSL specifications into IF specifications was modified
to support these new constructs. In addition the IF prelude file was extended with new facts used to
reason about abstract communication channels.

The scope of the changes made to the tools was deliberately limited to the translation process. The
HLPSL language, and the hlpsl2if translator have been extended to support the declaration of the new
channel types through the channel attribute construct. They have also been extended to support mes-
sage parameters, which are used when sending and receiving messages on abstract communication
channels. Finally, the translator has been modified so that send and receive actions on these channels
are translated into appropriate IF rules. The IF specifications generated by the new version of the
translator are valid IF files and no changes need to be made to the model-checkers. This is an advan-
tage as there are four model-checkers which are independently developed. Making modifications to
the input language of all four tools would break the compatibility between the hlpsl2if translator and
the back-ends.

The translation of send and receive actions on abstract communication channels from HLPSL into
IF specifications makes use of a number of new IF fact types. These facts are used to describe the
knowledge of channels, as well as to describe the ability of agents to prove who has sent and received
certain messages. Although it is possible to declare these facts in the signature section of each IF file,
it makes more sense to add them to the IF prelude file, which is used to describe protocol independent
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functions and facts.

Unfortunately, because the model-checkers are still in development, some of them do not yet parse
the prelude file, and instead assume that the standard prelude file is in use. This is unfortunate as
they cannot be extended with new facts, however when this support is provided, they will be able to
handle the generated IF specifications without modification. The SATMC model-checker, however,
does parse the prelude file and requires no changes to handle the IF specifications generated by the
new translator. Hopefully the three other model-checkers will provide support for the prelude file in
the future, as allowing new fact types to be specified in the prelude file is an important part of the IF
language.

3.3.1 Abstract Communication Channels and the HLPSL Language

As part of this research the HLPSL language has been extended to include two new concepts: the new
channel types, and message parameters. These extensions allow modellers to make use of abstract
communication channels. This section describes the changes made to the HLPSL language to enable
modellers to use abstract communication channels in their specifications. The new HLPSL grammar
can be found in appendix A.1.

Abstract communication channels are declared as constants in the same way as other “shared” infor-
mation is declared. Each channel is given a name and is of type channel, but must additionally be
given a channel type attribute which defines its semantics. Table 3.1 shows the appropriate channel
type attribute for each abstract communication channel.

Table 3.1: Channel type attributes

Channel Type Attribute
Dolev-Yao dy

Over-the-air ota
Authentic authentic

Confidential confidential
Non-repudiation of Origin nro
Non-repudiation of Receipt nrr

Non-repudiation of Receipt and Origin nro_nrr

Figure 3.8 shows an example of how to declare an abstract communication channel:

Figure 3.8: Declaring channel constants

const auth_chan_AB: channel (authentic)
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This creates an authentic channel named auth_chan_AB which can be used for sending and receiv-
ing messages. Channel constants are declared in compositional roles which are used to instantiate
instances of basic roles. When this is done the channel constants are passed to each basic role as
arguments. This is how roles are given shared knowledge in HLPSL. Channels are treated in the same
way. A typical compositional role will instantiate several basic roles and pass them as arguments
such as agent names, shared keys, common functions, and any other information which the roles are
assumed to share. Figure 3.9 shows a typical composition role in HLPSL. Note that this role declares
an authentic channel constant and passes this channel to the instantiation of both Alice and Bob.

Figure 3.9: Declaring channels in a compositional role

role Session () def=

const
a,b : agent,
auth_chan_AB : channel (authentic)
composition

Alice(a,b,auth_chan_AB)
/\ Bob(a,b,auth_chan_AB)

A basic role must specify the parameters it requires when instantiated. If the basic role requires the use
of an abstract communication channel, then this will appear in the parameter list of the role. Figure
3.10 displays an example of a parameter list for a basic role. Note that it includes an authentic called
auth_chan_AB.

Figure 3.10: Specifying channels as parameters of basic roles

role Alice (
Auth_chan_AB : channel (authentic),
A,B : agent

) def =

When the role Alice in figure 3.10 is instantiated by a compositional role its parameters will be given
the values passed to it as arguments from the compositional role. This is how the same channel is
shared between multiple roles. They are simply instantiated with the same channel constant.

In order to make use of an abstract communication channel, a basic role must use it for sending or
receiving messages. This is done in a similar way to the traditional send and receive actions which
are used for Dolev-Yao channels. Figure 3.11 shows an example of a receive action over a Dolev-Yao
channel named Channel_1.
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Figure 3.11: A receive action over a Dolev-Yao channel

State = 0 /\ Channel_1(Msg’) =|>
...

Figure 3.12 shows an example of a send action over a Dolev-Yao channel named Channel_2.

Figure 3.12: A send action over a Dolev-Yao channel

... =|>
State’ = 1 /\ Channel_2(Msg)

If a channel event occurs on the left hand side of a transition, then it is a receive action. If it is on the
right hand side of a transition, then it is a send action.

If one of the new channel types is being used then additional information is required from the modeller.
The concept of “message parameters" is introduced. Message parameters specify a to address and a
from address for each message. When sending a message, the from field specifies the agent sending
the message, and the to field specifies the agent which is the intended recipient of the message. When
receiving a message, the from field is the expected send, and the to field is the agent receiving the
message. This information is used by the abstract communication channels to reason about the source
and destination of messages. For example, when a message is sent on a confidential channel, it can
only be received by the agent specified in the to field of the message. Figure 3.13 shows an example
of a receive action on an authentic channel named Auth_Chan_AB.

Figure 3.13: A receive action on an authentic channel

State = 0 /\ Auth_Chan_AB(A,B;Msg’) =|>
...

This receive action specifies that the receiving agent believes that the message was sent from A to B.
This information alone imposes no restrictions on the messages which can be received, but because
this is an authentic channel, the receive event will only be enabled if an appropriate message was sent
by A. A send action on an authentic channel is demonstrated in Figure 3.14. The example shows Msg
being sent from A to B. Whether or not it will reach B is dependent on the channel and the intruder.
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Figure 3.14: A send action on an authentic channel

... =|>
State’ = 1 /\ Auth_Chan_AB(A,B;Msg)

It is important to note that in HLPSL each role is given knowledge of the other agents. This is required
when inserting goal related facts such as witness and request. Modellers should be careful not to base
the protocol specification on receiving this type of information but should instead create different
variables with which to model agent identifiers.

All send and receive actions over the new channel types must specify message parameters as described
above. The only channel type which doesn’t require message parameters is the Dolev-Yao channel
type. This is for backwards compatibility reasons.

3.3.2 Translating Abstract Communication Channels into IF

The precise semantics of the HLPSL language can be defined in two ways. During the design of the
language its semantics were defined using TLA [29]. TLA provides a precise but theoretical definition
of the HLPSL language. In practice, the semantics of the HLPSL language can also be considered in
terms of the lower level term-rewriting language IF. IF is the language which HLPSL specifications
are translated into for verification by the back-ends.

This sections presents the semantics of each of the new channel types in IF. It explains how send and
receive actions on abstract communication channels are translated into IF term-rewriting rules by the
extensions made to the hlpsl2if translator tool.

Additions to the IF Prelude File

In order to adequately express the required functionality of the new channel types in IF, it was neces-
sary to add some new facts to the IF language. The IF language itself has not been modified, but these
new facts have been added by declaring them in the signature section of the prelude file.

The new facts provide the IF language with the ability to specify who has sent what messages over
which channels using the sent fact. The sent fact takes the following form: sent: agent *
message * channel -> fact. When a message is over an abstract communication channel, a sent
fact is generated which specifies the agent that sent the message, the message which was sent, and the
channel on which this message was sent.

In addition to specifying who sent what, the new channel types require the ability to express who can
prove what. In order to accommodate this, the canprovesent and canprovereceived facts were
introduced. The canprovesent fact has the following form: canprovesent: agent * agent *
message -> fact. It is generated whenever an agent gains the ability to prove that another agent sent
a certain message. The first parameter of the fact specifies the agent which has the ability to prove the
fact, the second parameter specifies the agent which sent the message, and the third parameter specifies
the message which was sent. The canprovereceived fact was also added to the prelude file. It is
used to express an agent’s ability to prove that another agent received a message and has the following
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form: canprovereceived: agent * agent * message -> fact. The canprovereceived fact
is interpreted as: the agent specified in the first parameter can prove that the agent in the second
parameter received the message in the third parameter.

In addition to the new facts, the channel type was added to the type symbols section of the prelude
file. This was required because channels are now declared and used as symbols, instead of being
completely replaced by IKNOWS facts. A copy of the new IF prelude file is available in appendix A.2.

The form of the proof facts canprovesent and canprovereceived is not ideal. A more general
solution is described in [28]. It uses a canprove fact of the following form: canprove: agent
* fact -> fact. This canprove fact can then be used to express an agent’s ability to prove facts
such as: sent: agent * message -> fact and received: agent * message -> fact. This
approach is more suitable as it is more flexible. It allows agents to prove arbitrary facts instead of just
sent and received facts. This solution has not been adopted at this point because the SATMC model
checker will not parse IF files which contain nested facts. In the future this is expected to change and
the more flexible solution will be adopted.

Dolev-Yao Channels

Dolev-Yao channels were already supported in HLPSL, but are included here for completeness. When
messages are sent on a Dolev-Yao channel, they are simply redirected to the intruder. A receive action
on a Dolev-Yao channel is enabled if the intruder has knowledge of an acceptable message to be
received. Therefore, all send and receive actions on Dolev-Yao channels are expressed using the
iknows fact, which describes the knowledge of the intruder. The iknows fact is of the form iknows:
message -> fact. When a message is sent on a Dolev-Yao channel, the result in IF is the generation
of an iknows fact. Conversely, a receive action on a Dolev-Yao channel is enabled if the intruder has
knowledge of an appropriate message, and is expressed in IF by placing an iknows fact in the left
hand side of the transition. Recall that the left hand side of an IF transition expresses facts which
must be true for the transition to be enabled and the right hand side of an IF transition expresses the
consequences of the transition should it be triggered.

Over-the-air Channels

Over-the-air channels deliver the message to the intruder at the same time as they deliver the message
to the recipient. A send action on an over-the-air channel will send the message to the channel, but
not to the intruder. A receive action on an over-the-air channel is enabled if either the channel or the
intruder has knowledge of a message which the recipient will accept. Additionally, if a receive action
is triggered by the channel, then the knowledge of the intruder will be updated as an after-effect.

The translation of send and receive actions on over-the-air channels into IF is more complicated
than for Dolev-Yao channels. When a message is sent on an over-the-air channel, a sent fact is
generated. For example, a send action on an over-the-air channel would generate a fact similar to:
sent(A,Msg,Channel_1). This means that A sent Msg on the channel Channel_1.

Receive facts on over-the-air channels are enabled if an appropriate sent fact exists or if there is an
appropriate iknows fact. This “or” behaviour requires two identical IF transitions to be generated
from a single HLPSL transition. One IF transition will contain an iknows fact on the left hand side of
the transition. This transition is used to specify what happens when the intruder has knowledge of a
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message which would be accepted by the recipient at this point. The other IF transition contains a sent
fact on the left hand side, and expresses a transition which is triggered by the channel. Additionally,
this second transition contains an iknows fact on the right hand side of the transition. This means that
if the transition is triggered by the channel, then the knowledge of the intruder is updated with the
message which was received.

Authentic Channels

Authentic channels ensure recipients that the message they are receiving was, in fact, sent by the
agent the recipient expects to have sent the message. A send action on an authentic channel sends the
message to the intruder and to the channel. A receive action on an authentic channel is only enabled if
the channel has knowledge of a matching message. A send action on an authentic channel is translated
by adding two facts to the right hand side of the IF transition: an iknows fact and a sent fact. In other
words, the message is sent to both the intruder and to the channel. The sent fact is of the same form
as the sent fact used for over-the-air channels. In fact, sent facts of this form are used by many of the
abstract communication channels described in this chapter. A receive action on an authentic channel
is translated into IF by including the sent fact in the left hand side of the transition. This means that
a receive action on an authentic channel is only enabled if an appropriate message has been sent by
the expected agent on the channel.

Confidential Channels

Confidential channels provide the sender of a message with a guarantee that the message will only be
delivered to the intended recipient. A send action on a confidential channel will need the message to
the channel and not to the intruder. A receive action on a confidential channel is enabled when either
the intruder or the channel has knowledge of an appropriate message.

Send actions on a confidential channel do not generate an iknows fact. Instead they generate a sent
fact as described previously. Receive actions on confidential channels are translated in a similar way
to those of over-the-air channels. Two IF transitions are generated, one with an iknows fact in the
left hand side of the transition, and one with a sent fact in the left hand side of the transition. Unlike
over-the-air channels, receive actions on confidential channels do not generate iknows facts.

Non-repudiation of Origin Channels

Non-repudiation of origin channels generate a proof which the recipient of a message can use to
prove that the sender of a message actually sent the message. All non-repudiation channels are also
authentic channels. When a message is sent on a non-repudiation of origin channel it is sent to the
intruder and to the channel. A receive event on a non-repudiation of origin channel is enabled if the
channel possesses knowledge of a matching message. Upon receipt of a message on a non-repudiation
of origin channel a proof fact is generated for the recipient.

Non-repudiation of origin channels are translated into IF in the same way as authentic channels, except
that receive actions on non-repudiation of origin channels generate an additional canprovesent fact
on the right hand side of the IF transition.
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Non-repudiation of Receipt Channels

Non-repudiation of receipt channels provide the sender of a message with proof that the recipient
received the message. This proof is generated upon receipt of the message by the recipient. Non-
repudiation of receipt channels are identical to non-repudiation of origin channels except that they
generate a canprovereceived fact upon receipt of messages.

Non-repudiation of Origin and Receipt Channels

Non-repudiation of origin and receipt channels provide a proof to the recipient that the sender sent
the message, and a proof to the sender that the recipient received the message. They are translated
as authentic channels, except that they generate two extra facts upon the receipt of messages on the
channel. They generate both canprovesent and canprovereceived facts.



Chapter 4

Case Study

The previous chapter presented an extension to protocol specification languages which allows mod-
ellers to specify assumptions they would like to make about communication mediums. It described
the advantages of the approach chosen, the details of the proposed solution, and how the solution was
implemented.

This chapter will justify the claims made in Chapter 3. It is an experiment in the application of ab-
stract communication channels and attempts to determine how useful these concepts are to protocol
modellers. It will present three examples of how to model complex protocols using abstract commu-
nication channels. These examples will demonstrate how abstract communication channels can make
life easier for protocol modellers, and how they can increase the expressive capabilities of protocol
specification languages. Each of the three examples is a real protocol which is difficult to model with
the tools available today.

Section one presents the first example; the Purpose Built Keys Framework [9]. Section two presents
the Asokan-Shoup-Waidner Contract Signing Protocol [4], and section three presents the Internet
Open Trading Protocol [11].

4.1 The Purpose Built Keys Framework

The Purpose Built Keys framework (PBK) is described in [9]. It is an unorthodox protocol because
it makes an unusual assumption about the environment. The protocol assumes that the first message
of the protocol is authentic. In other words, the protocol is only secure if the first message is re-
ceived without being modified during transmission. The point of the PBK protocol is obviously not
to provide infallible security, but rather to provide improved security in a situation where there is no
existing relationship between the participants. The PBK protocol provides a security property known
as “sender invariance” [7]. Sender invariance means that the source of a message is guaranteed to be
consistent. If the first message is received unmodified, then sender invariance can be modelled as an
authentication property.

The PBK Protocol is used when Alice and Bob have no pre-existing keys with which to authenticate
each other, and when there is no Public Key Infrastructure available or suitable. The protocol es-
tablishes a public and private key for Alice, which can be used by Bob to determine whether or not
messages have actually been sent by Alice. The protocol only authenticates Alice if the first message
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Figure 4.1: The Purpose Built Keys Protocol

A -> B: A, PK_A, hash(PK_A)
A -> B: {Msg}inv(PK_A), hash(PK_A)
B -> A: Nonce
A -> B: {Nonce}inv(PK_A)

Figure 4.2: Expressing authentication in HLPSL

goal
Bob authenticates Alice on Msg

end goal

is received by Bob intact. Another way of looking at this is to say that Bob cannot actually authenticate
Alice, but Bob is guaranteed that the source of the messages is consistent.

The PBK framework is intended to be used by either an application level protocol, or in an on-demand
manner by applications. It is described as a framework, rather than a protocol, because the specifi-
cation doesn’t contain enough details for independent implementations to interact. This is left up to
vendors. The framework does provide, however, adequate information for a formal analysis.

The protocol is initiated by Alice when she sends an identifier, an arbitrary public key, and a hash of
the public key to Bob. This is the message which must be received by Bob intact. Once this message
has been received, Alice can communicate with Bob by signing messages using her public key. Figure
4.1 shows the flow of messages in the PBK framework. Note that this version of the protocol is only
one way in which the specification can be concretely instantiated. There are several other ways the
messages could be exchanged, but the differences are minor and unimportant.

In order to model this protocol, it is necessary to express either sender invariance, or authentication as
a security goal. Fortunately, authentication is easily expressed using a HLPSL goal macro. Figure 4.2
shows how this can be done.

There are two approaches to modelling the PBK protocol. The first approach involves providing
both party’s with cryptographic keys and actually modelling the first message being sent in a secure
manner. Alice and Bob are assumed to share a secret key. The first message is encrypted by Alice
using this secret key. When Bob receives the first message, he ensures that it was encrypted with the
appropriate key. This is how to model the assumption that the first message is unmodified, however
this approach adds complexity to the specification as well as forcing the modeller to invent a way in
which the first message can be made authentic; the secret key does not really exist!

The second approach is to explicitly model the assumptions made by the protocol using an abstract
communication channel. An authentic channel is a suitable solution, as it provides the exact prop-
erty that is assumed about the first message: the message sent from Alice is received unmodified by
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Figure 4.3: The Environment role of the PBK specification

role Environment() def=

const
a,b : agent,
snd,rcv : channel (dy),
snd_s : channel (authentic),
hash : function,
msg_id : protocol_id,
ip_a : text,

knowledge(i) = {a,b,hash,ip_a}

composition

Session(a,b,snd,rcv,snd_s,hash,msg_id,ip_a)
/\ Session(a,b,snd,rcv,snd_s,hash,msg_id,ip_a)
/\ Session(i,b,snd,rcv,snd_s,hash,msg_id,ip_a)

end role

Bob. This approach is desirable because it removes the imaginary shared key and encryption / decryp-
tion actions from the protocol specification, and instead captures the assumption using an authentic
channel.

In order to make use of an authentication channel, it must be declared as a constant in the top level
role and passed to each role as an argument. Figure 4.3 shows the HLPSL code for the top level role
Environment.

Each role can send or receive on this channel using the standard syntax for sending and receiving
on abstract communication channels. Figure 4.4 contains the HLPSL code for the role Alice, which
demonstrates the send action over the authentic channel.

Note how the first message is sent over the authentic channel SND_S. All other messages are sent and
received over the Dolev-Yao channels. This means that Bob is assured that the first message received
from B is authentic, while the rest of the messages can potentially be modified or even created by the
intruder. This behaviour appropriately captures the assumption of the PBK protocol. The complete
specification of the PBK framework is available in Appendix B.1.

In this example an Abstract Communication Channel has been used to specify an assumption made
by the PBK framework: that the first message is received intact. Upon applying the SATMC model-
checker to the model generated, it appears that the PBK framework does guarantee the authenticity of
Msg if the first message of the protocol is received intact.
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Figure 4.4: The Alice role of the PBK specification

role Alice (
A,B : agent,
SND,RCV : channel(dy),
SND_S : channel(authentic),
Hash : function,
Msg_Id : protocol_id,
IP_A : text,
Shared_Key : symmetric_key

) played_by A def =

local
State : nat,
PK_A : public_key,
Msg : text (fresh),
Nonce : text

init
State = 0

transition

1. State = 0 /\ RCV(start) =|>
State’ = 2 /\ SND_S({IP_A.PK_A’.Hash(PK_A’)}Shared_Key)

2. State = 2 /\ RCV(start) =|>
State’ = 4 /\ SND({Msg’}inv(PK_A).Hash(PK_A))

/\ witness(A,B,Msg_Id,Msg’)

3. State = 4 /\ RCV(Nonce’) =|>
State’ = 6 /\ SND({Nonce’}inv(PK_A))

end role
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Figure 4.5: The ASW exchange sub-protocol

O -> R: me1 = {Ko.Kr.T.Text.H(No)}inv(Ko)
R -> O: me2 = {me1.H(Nr)}inv(Kr)
O -> R: me3 = No
R -> O: me4 = Nr

Figure 4.6: The ASW abort sub-protocol

O -> T: ma1 = {ABORTED.me1}inv(Ko)
T -> O: ma2 = {me1.me2}inv(Kt)
T -> O: ma2 = {ABORTED.ma1}inv(Kt)

4.2 The Asokan-Shoup-Waidner Fair Exchange Protocol

The Asokan-Shoup-Waidner contract signing protocol [4] (ASW), is a fair exchange protocol which
attempts to allow two parties to fairly exchange digital signatures on a pre-agreed text. The ASW
protocol is an optimistic fair exchange protocol, which means that it makes use of a trusted third
party, but only if something goes wrong with the exchange. The ASW protocol presents a challenge
to modellers because of its requirements. Fairness is not a standard security property and it is only
recently that it has been successfully specified [27, 46]. In addition to fairness, the ASW protocol has
a non-repudiation security property: non-repudiation of origin and receipt for both the originator and
the recipient. Non-repudiation security properties cannot be modelled using HLPSL, as there is no
way to reason about what an agent can or cannot prove.

The ASW protocol is broken up into three sub-protocols, the exchange sub-protocol, the abort sub-
protocol, and the resolve sub-protocol. If all goes according to plan and neither party backs out of
the exchange, the exchange sub-protocol is the only one executed. Figure 4.5 shows the exchange
protocol.

O is the originator of the protocol and R is the responder. T is the trusted third party, but is not involved
in the exchange protocol. Both O and R are assumed to have knowledge of a pre-agreed text which
they will sign. An ASW contract can take two forms. The first type is me1.No.me2.Nr. The second
type of ASW contract is {me1.me2}sig_T.

To begin with, O sends his commitment to the exchange. This includes the hash of a nonce which he
keeps secret for now. R responds with his own commitment to the exchange. He also sends the hash
of a nonce and keeps the value of the nonce to himself. To complete the exchange of valid signatures,
each party then sends the value of his privately generated nonce, No and Nr. Each party is now in
possession of a valid contract. In this situation the protocol terminates successfully.

The originator has the power to abort the protocol. An honest originator will only do this if no
response is received from the responder within a certain period of time. Figure 4.6 shows the abort
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Figure 4.7: The ASW resolve sub-protocol

O -> T: mr1 = {me1.me2}inv(Ko)
T -> O: mr2 = {ABORTED.ma1}inv(Kt)
T -> O: mr2 = {me1.me2}inv(Kt)
OR:
R -> T: mr1 = {me1.me2}inv(Kr)
T -> R: mr2 = {ABORTED.ma1}inv(Kt)
T -> R: mr2 = {me1.me2}inv(Kt)

sub-protocol. The originator sends a signed abort request to the trusted third party which contains a
copy of the first message of the protocol, me1. When this message is received by the trusted third
party it will check that it has not previously resolved this exchange, and if it hasn’t will issue an abort
token to the originator. The abort token is a commitment to the originator that the trusted third party
will not resolve the exchange.

Either party may attempt to resolve the protocol once they have received the other participant’s com-
mitment to the exchange. This involves sending the first and second messages of the exchange proto-
col to the trusted third party as evidence of the other parties commitment to the exchange. Once the
trusted third party receives a resolve request it checks to see if it has already aborted this protocol run.
If so, it responds with an abort token, otherwise it responds by signing me1 and me2. This message
constitutes a valid contract as it contains both party’s commitments to the exchange, and it is signed
by the trusted third party. Figure 4.7 shows the resolve sub-protocol of the ASW protocol.

The non-repudiation property of the ASW protocol is defined in [4] as

After an effective exchange, (i.e. P has received iQ at the end of the exchange) , P
will be able to prove that iQ originated from Q, and that Q received iP

This definition is one-way. It only refers to P’s security properties. A similar requirement holds for
the other party.

Specifying the non-repudiation requirements of the ASW protocol can be done by using non-repudiation
of origin and receipt channels and by augmenting the HLPSL specification with custom facts which
can be used to reason about who has received what. The custom facts used are of the formreceived:
agent * message * message -> fact.

A received fact means that the specified agent has received the first message in exchange for the second
message. There is another custom fact used in the ASW specification, but this is just a workaround
that is required because the hlpsl2if translator does not yet support the HLPSL accept statement. The
HLPSL accept statement is supposed to be used to specify when an agent has reached a successful
final state of the protocol run. It is not yet supported by the translator as it is a component of the
sequential composition features of HLPSL, which are also not yet supported. The second custom
fact is of the form: accepted: agent -> fact. This simply means that the specified agent has
finished its protocol run.
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Figure 4.8: The Non-Repudiation Requirements of the ASW Protocol

goal nro_1(O,Me1,No,Nr,R,Me2) :=
accepted(O).
accepted(R).
received(O,pair(Me1,pair(No,pair(Me2,Nr))),pair(Me1,pair(No,pair(Me2,Nr)))).
received(R,pair(Me1,pair(No,pair(Me2,Nr))),pair(Me1,pair(No,pair(Me2,Nr)))).
not(canprovesent(O,R,Me2)

goal nro_2(O,Me1,No,Nr,R,Me2) :=
accepted(O).
accepted(R).
received(O,pair(Me1,pair(No,pair(Me2,Nr))),pair(Me1,pair(No,pair(Me2,Nr)))).
received(R,pair(Me1,pair(No,pair(Me2,Nr))),pair(Me1,pair(No,pair(Me2,Nr)))).
not(canprovesent(O,R,Nr)

goal nrr_1(O,Me1,No,Nr,R,Me2) :=
accepted(O).
accepted(R).
received(O,pair(Me1,pair(No,pair(Me2,Nr))),pair(Me1,pair(No,pair(Me2,Nr)))).
received(R,pair(Me1,pair(No,pair(Me2,Nr))),pair(Me1,pair(No,pair(Me2,Nr)))).
not(canprovereceived(O,R,Me1)

goal nrr_2(O,Me1,No,Nr,R,Me2) :=
accepted(O).
accepted(R).
received(O,pair(Me1,pair(No,pair(Me2,Nr))),pair(Me1,pair(No,pair(Me2,Nr)))).
received(R,pair(Me1,pair(No,pair(Me2,Nr))),pair(Me1,pair(No,pair(Me2,Nr)))).
not(canprovesent(O,R,No)

The custom facts used in the ASW specification are copied directly into the IF specification. They
have no semantics in terms of HLPSL, and are simply copied from their location in a HLPSL transition
to the corresponding location in the corresponding IF rule.

The non-repudiation requirements of the ASW protocol are shown in Figure 4.8:

These requirements are specified in IF, rather than HLSPL. This is because HLPSL goals are currently
restricted to authentication and secrecy macros. This is a restriction of the tools. In the future the
HLPSL language will allow modellers to specify goals as temporal logic style expressions, but for
now, only high level secrecy and authentication macro constructs are supported. For now, goals other
than secrecy and authentication must be specified at the IF level. It is necessary to translate the HLPSL
specification into IF, then append a goal section to the IF file. The goal must be written in IF.

The non-repudiation requirement in Figure 4.8 specifies a set of attack states. If any of the rules is
ever true, then the security requirement is violated. The first requirement can be read as follows: if
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both O and R have finished, and both O and R have received a valid contract, and O cannot prove
that R sent me2, then the goal nro_1 is violated. Each of the other three goals is interpreted in a
similar way. The HLPSL specification of the ASW protocol makes use of non-repudiation of origin
and receipt channels for communication between the originator and the recipient. This is because all
the messages between those participants are digitally signed.

The full specification of the ASW protocol is available in appendix B.2. It makes use of a number of
non-repudiation channels, and also uses two custom facts: received and accepted. These facts can be
arbitrarily inserted into HLSPL specifications and will be copied verbatim into the generated IF file.
They do not change the behaviour of the protocol, but allow IF goals to be written which make use of
the custom facts

4.3 The Internet Open Trading Protocol

The Internet Open Trading Protocol (IOTP) [11] provides an interoperable framework for Internet
commerce. IOTP provides Internet-based commerce models which mirror the way in which business
in conducted offline. It provides frameworks for the negotiation of transactions, value exchanges,
payment, delivery of goods, and receipts. All of these frameworks are designed to operate in ways
familiar to the real world.

IOTP is designed to be a framework which provides global interoperability between e-commerce
protocols. It is designed in a general way which makes it easy for most e-commerce protocols to
conform to the IOTP standards. For instance, it encapsulates payment systems such as SET [32, 33,
34, 35], CyberCash [22], Mondex [1], DigiCash [15], and GeldKarte [2].

The IOTP protocol itself is made up of a number of exchanges which can be combined in certain ways
to create transactions. Each transaction represents a traditional trading process. The transactions
provided by the IOTP protocol are purchase, refund, value exchange, authentication, withdrawal,
deposit, inquiry, and ping. This case study analyses an IOTP purchase transaction.

The purchase transaction consists of three exchanges: an authentication exchange, an offer exchange,
and a payment exchange. Figure 4.9 shows an Alice-Bob description of the IOTP purchase transaction.

The IOTP exchanges make use of sub-protocols. The protocol is really just an encapsulating transport
protocol for the e-commerce protocols which comply with it. In order to model such a protocol it
is usually necessary to model specific sub-protocols as well as the main protocol. For example, the
Extensible Authentication Protocol (EAP) provides a common authentication framework which can
be used with a large number of authentication mechanisms. When modelling EAP one must decide
which authentication mechanisms to model. Using abstract communication channels, however, the
modeller can specify the EAP protocol itself, and simply make assumptions about the underlying
authentication protocol. This is the approach taken to model the IOTP purchase transaction.

The purchase transaction has been modelled using an abstract communication channel. An authen-
tic channel is used when sending the Auth_Response message in the authentication exchange. This
models the assumption that the merchant and client are using an authentication protocol which au-
thenticates the client on this message. The assumptions of the payment exchange sub-protocol are not
modelled, as the payment exchange makes no security assumptions about the sub-protocol. Figure
4.10 shows the HLPSL specification for the customer role.
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Figure 4.9: The IOTP Protocol

Authentication Exchange
C -> M: Offer
M -> C: Algorithm.Challenge.Trading_Role_Info_Request
C -> M: Auth_Response.C
M -> C: Status

Offer Exchange
C -> M: Offer
M -> C: {C.M.P.Order.Payment}inv(KeyM)

Payment Exchange
C -> M: Offer
M -> C: BrandList
C -> M: Selection
M -> C: {Payment.M.P}inv(KeyM)
C -> P: {Status.{Payment.M.P}inv(KeyM)}inv(KeyC)
C <> P: ...
P -> C: Status.{Pay_Receipt.{Payment.M.P}inv(KeyM)}inv(KeyP)

If signatures are being used, IOTP requires the payment handler to verify that a payment action is actu-
ally authorised. This can be modelled as authentication of the Payment message from the customer to
the payment handler. In HLPSL this is expressed as: Payment_Handler authenticates Customer
on Payment. Upon analysis, the IOTP protocol was determined to satisfy its authentication goal. The
full specification of the protocol is available in appendix B.3.
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Figure 4.10: The IOTP Customer Role in HLPSL

role Customer (
C,M,P : agent,
Offer : message,
Status : message,
Trading_Role_Info_Request : message,
KeyC,KeyM,KeyP : public_key,
SND,RCV : channel (dy),
SND_A : channel (authentic)

) played_by C def =

local
State : nat,
Challenge : text,
Algorithm : text,
Order : text,
Payment : text,
BrandList : text,
Pay_Receipt : text,
Auth_Response : text (fresh),
Selection : text (fresh)

init
State = 0

knowledge(C) = {inv(KeyC)}

transition

1. State = 0 /\ RCV(start) =|>
State’ = 1 /\ SND(Offer)

2. State = 1 /\ RCV(Algorithm’.Challenge’.Trading_Role_Info_Request) =|>
State’ = 2 /\ SND_A(C,M;Auth_Response’.C)

3. State = 2 /\ RCV(Status) =|>
State’ = 3 /\ SND(Offer)

4. State = 3 /\ RCV({C.M.P.Order’.Payment’}__inv(KeyM)) =|>
State’ = 4 /\ SND(Offer)

5. State = 4 /\ RCV(BrandList’) =|>
State’ = 5 /\ SND(Selection’)

6. State = 5 /\ RCV({Payment.M.P}__inv(KeyM)) =|>
State’ = 6 /\ SND(Status.{Payment.M.P}__inv(KeyM)) %% to P

/\ witness(C,P,payment1,Payment)

7. State = 6 /\ RCV(Status.Pay_Receipt’.{Payment.M.P}__inv(KeyM)) =|>
State’ = 7

end role
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Conclusions

5.1 Results

This research conducted experiments in modelling large and complicated security protocols using
the state-of-the-art specification language HLPSL. The goal of these experiments was to evaluate the
scope of protocols that HLPSL could express. Since HLPSL and the AVISPA tools aim to integrate
protocol analysis into the design phase of protocols it is important that the language can be used to
express the types of protocols currently being developed by industrial bodies.

The experiments discovered that the HLPSL language was capable of expressing most authentication
and key exchange protocols, but that it was difficult to specify some other types of protocols in HLPSL.
The HLPSL language only supported a single model of the intruder’s capabilities. This is limiting
as more and more protocols are being proposed for operating in different environments and over
new types of media. It should be possible to analyse these protocols, and even just parts of these
protocols, with respect to different models of an intruder’s capabilities. In addition to this limitation,
the HLPSL language could not be used to model non-repudiation protocols or security protocols with
non-repudiation requirements. The language provides no way to specify which actions generate proof
evidence, and thus there is no way to reason about an agent’s ability to prove or deny its actions or the
actions of other agents. Non-repudiation properties are an important part of e-commerce protocols and
exchange protocols and this lack of support significantly reduces the applicability of the AVISPA tools.
It was also discovered that modelling large protocols that made use of sub-protocols was difficult
and time-consuming. Unfortunately there was no simple way to merge a pre-existing specification
of a protocol into a larger specification as a sub-protocol. The specifications had to be manually
combined into a single specification. This process was difficult and resulted in unnecessarily complex
specifications. These issues were identified as key limitations of the HLPSL language which inhibited
the scope of the AVISPA tools.

The next part of the research project consisted of the conceptualisation and formulation of a mech-
anism with which to overcome the limitations of the HLPSL language which were discovered in
the experimentation phase of the project. A new modelling construct was proposed called abstract
communication channels. These channels were designed to allow modellers to explicitly specify the
assumptions they would like to make about messages sent and received on particular channels. The
goal was to use these channels to allow modellers to overcome the limitations discovered in the ex-
perimentation phase of the project, and thus to increase the scope of the AVISPA tools.
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A number of new channel types were defined which allowed modellers to specify alternative intruder
models, to make assumptions about properties provided by sub-protocols, and also to express the
proofs certain actions would generate. The HLPSL language was extended with declarations of these
new channel types, and with message parameters that were used to specify the source and destination
addresses of messages.

The semantics of each of the new channel types was defined in the IF term-rewriting language, and the
tool used to translate HLSPL specifications into IF specifications was modified to capture the required
behaviour of each channel. In order to accomplish this, a number of new fact types were added to the
IF prelude file. These new facts were used to reason about the knowledge of a channel, the source of
messages, and agent’s abilities to prove things. Send and receive actions on the channels were then
translated into appropriate IF rules based on these facts.

The result was a selection of channel types which allowed modellers to easily make assumptions about
the properties of a communication medium. These assumptions could be related to the capabilities of
an intruder, to the physical properties of a medium, or to properties provided by a sub-protocol which
was being abstracted into a channel. The assumptions could also be used to specify that messages sent
or received on a certain channel would generate proofs that could be used by agents as evidence that
messages were sent or received.

The next stage of the project was a case study which aimed to evaluate the value of the extensions.
Three protocols were chosen from among those that had presented modelling difficulties in the exper-
imentation phase of the research. Each protocol provided an opportunity to experiment with abstract
communication channels. The three protocols chosen for the case study were the Purpose Built Keys
Framework (PBK), the Asokan-Shoup-Waidner Fair Exchange Protocol (ASW), and the Internet Open
Trading Protocol (IOTP).

The case studies were an experiment in using abstract communication channels. On a practical level
they aimed to determine if the new versions of the tools worked and whether or not the models gen-
erated were consistent with the required semantics of the new channel types. On a more fundamental
level the case studies hoped to evaluate the worth of the new channel types.

The PBK framework made an assumption: that the first message of the protocol was received intact.
Prior to abstract communication channels this was modelled by giving each party a shared key and
encrypting the message. This approach is awkward and may not even be a correct. Using abstract
communication channels the assumption was modelled by sending the first message over an authentic
channel. The channel behaved as expected and the specification was simplified by removing the
artifacts associated with the imaginary shared key.

The ASW protocol presented a challenge because it had non-repudiation requirements. This had
previously been modelled, but the non-repudiation properties of the protocol were not checked. By
sending messages which would generate proofs over non-repudiation channels it was possible to spec-
ify which actions would generate evidence. The non-repudiation properties of the ASW protocol were
then specified in terms of the proof facts generated by the channels and the non-repudiation proper-
ties of the protocol were verified. This result was not possible using HLPSL prior to the addition of
abstract communication channels.

The IOTP protocol provides a framework into which sub-protocols are incorporated. The purchase
transaction of the IOTP protocol was specified using abstract communication channels to model the
authentication sub-protocol. This allows modellers to concentrate on the IOTP protocol itself, rather
than spending time choosing a particular sub-protocol and modelling it as part of the main protocol.
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The IOTP purchase transaction was successfully analysed using an authentic channel to model the
authentication sub-protocol.

5.2 Evaluation of the Results

At this point the evaluation of extensions is only at an initial stage. The experiments have been
conducted by a single person who has experience with both the old version of the tools and the new
version. More detailed evaluation results will be obtained when the new versions of the tools are
merged back into the AVISPA project and a large number of modellers begin to experiment with the
new channel types.

The key evaluation criteria with which to assess the overall results of the research project were iden-
tified as correctness, usefulness, applicability, ease of use, interoperability, and extensibility.

5.2.1 Correctness

Are send and receive actions correctly translated into IF rules?

For each of the new channel types, test scenarios were created which would verify whether or not
the channel was acting in the appropriate manner. For example, a protocol was modelled where an
agent sent a message in clear text over a confidential channel. If the secrecy of the message was
violated, or the IF file generated was invalid, then the channel was clearly not operating properly.
The SATMC back-end was used for this validation process. In addition, the IF files generated were
manually examined to ensure the translation was correct. In all cases, the bugs found were corrected.
The successful analysis of the three case studies suggests that the final implementation is correct.

5.2.2 Usefulness

Did the new channel types overcome the limitations identified during the experimentation phase of the
project?

In each of the case studies the use of abstract communication channels improved the specification
process. For the PBK protocol, abstract communication channels allowed the assumption on the first
message to be explicitly modelled, instead of by adding artificial additions to the specification, abstract
communication channels allowed the ASW protocol’s non-repudiation requirements to be expressed
in terms of the proof facts generated by the channels, and the specification of IOTP protocol was
simplified by modelling the authentication sub-protocol as an authentic channel. It is clear that abstract
communication channels improved the specification process for the protocols in the case study and
were therefore useful for modelling those protocols.

5.2.3 Applicability

Are the new channel types useful for a wide range of protocols? How much was the scope of the
AVISPA tools increased?
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The protocols in the case study were hand-picked because they provided opportunities to experiment
with abstract communication channels. The applicability of abstract communication channels ques-
tions whether or not they will be useful for other protocols. It is expected that abstract communication
channels will be useful for a large proportion of protocols which might be modelled, particularly real-
world protocols which are often large and make use of sub-protocols, however further untargeted
experimentation is required before this theory can be verified.

5.2.4 Ease-of-use

Were the changes to the HLPSL language minimised? Do they complicate the specification process?

The changes to the HLPSL language are minimal. They require the modeller to declare the channel in
the same way as before, but with a different type attribute. In addition, message parameters must be
specified when sending and receiving messages over the new channel types. This is a simple process
and does not significantly complicate the HLPSL language.

The specification process itself has been simplified. If a protocol does not require the use of abstract
communication channels, it can be modelled in the same way as before. If the protocol makes an
assumption, or if it makes use of sub-protocols, then the specification process can be simplified by
using abstract communication channels. The time saving is dependant on the protocol and its sub-
protocols. If a protocol makes use of a single sub-protocol, then the time saving is equivalent to the
amount of time it would take to model the sub-protocol. The sub-protocols in question are usually not
very large protocols. The time saving per sub-protocol can roughly be estimated as half a working
day for small and simple sub-protocols, and a number of working days for more complicated sub-
protocols.

5.2.5 Interoperability

Did the changes made to the HLPSL language invalidate old specifications? Do the back-ends need
to be modified?

Old HLPSL specifications are still valid in the new version of the language. Dolev-Yao channels are
declared in the same manner as before, and send and receive actions over Dolev-Yao channels do not
require any message parameters. This means that the changes to the HLPSL language only effect
modellers who would like to make use of abstract communication channels.

The channels were implemented in the translation from HLPSL to IF. The IF files generated are valid
IF specifications, and the model checkers should not need to be modified. This holds for the SATMC
model checker, however the other model checkers (OFMC, CL-Atse, and TA4SP) do not yet fully
support the IF language, and will need to provide more complete support before they will handle the
IF specifications generated when using abstract communication channels. This is a limitation of the
back-ends; full support for the IF language should eventually be built into the model-checkers anyway.

5.2.6 Extensibility

Were the channels added in a way that would allow more channel types to be easily added?
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In terms of the HLPSL language itself, the channels have been implemented in an extensible man-
ner. New channel types can be added to the language via the channel type attribute when declaring
them. However it is necessary to manually implement the required behaviour of new channel types
by modifying the hlpsl2if translator. A more extensible approach would be for modellers to define the
semantics of each new channel types in the IF prelude file. It is unclear if this is feasible at this point.
A format for specifying the consequences of send and receive actions would need to be devised, and
the hlpsl2if translator modified to parse the IF prelude file. The approach taken is extensible, but not
easily extensible.

5.3 Future Directions

5.3.1 Other types of channels

There are a number of channel types which would be useful to modellers but which were not added
to the AVISPA tools because the IF language does not have support for fairness constraints. Fair-
ness constraints allow analysts to specify that something must eventually happen. Some specification
languages do support fairness constraints and could make use of channels such as resilient channels,
which guarantee to eventually deliver any messages sent on them to the appropriate recipient.

There are some other channel types which could be useful to modellers. In fact, there are innumerable
properties and combinations of properties which could be supplied to the modeller. For example
confidential Authentic channels, strong authentic channels, confidential NRO channels, and authentic
over-the-air channels.

It is impossible to provide a priori support for every possible type of communication channel, but as
new channel types are required, they can be added to the tools. This is expected to occur as protocols
diversify and are applied to different application areas. Unfortunately this process requires a developer
to manually implement the channels in the hlpsl2if translator. A useful topic of future research may
be to investigate a way of adding arbitrary channel types using the IF prelude file to define their
semantics.

5.3.2 Composability of Protocol Specifications

The composition of simple protocol specifications into larger protocols is a current topic of interest
to researchers. The principle is similar to object oriented programming. Different parts of a spec-
ification should be written separately so that they can be re-used. Furthermore, once a protocol is
modelled other protocols may make use of it as a sub-protocol. The composition of roles, which
HLPSL currently supports, allows modellers to specify that roles can be composed sequentially, or in
parallel. In most cases, this does not allow specified protocols to be easily inserted into other proto-
col specifications. This is because when a protocol is used as a sub-protocol, it is not usually done
in a sequential way, and certainly not in a parallel way. The relationship between a protocol and its
assumed sub-protocol or sub-protocols is more complex. It typically involves some messages of one
protocol being used in another, or values established and exchanged in the sub-protocol being used
in the main protocol. It is difficult to define the relationship between a protocol specification and the
specification of its sub-protocol in terms of HLPSL, however, it is possible to examine the security
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properties provided by a sub-protocol, and then model the sub-protocol as an abstract communication
channel.

When a specification is written for a security protocol, the analyst includes the security requirements
of the protocol. A model checker of some description is then used to check that these requirements
are met. If they are, then the protocol can be abstracted as an exchange of messages and a security
property or security properties which apply to these messages.

A larger protocol that makes use of this sub-protocol can include the full sub-protocol as additional
exchanges of messages. However in some cases it is possible to abstract a whole protocol into a simple
channel that provides a certain property. An apt example of this is a protocol that authenticates Alice
to Bob on a certain message or messages. A larger protocol does not need to model this protocol
as a sub-protocol; it can merely use an authentic channel between Alice and Bob for sending the
appropriate messages.

In some situations it may be more difficult to establish the appropriate channel type to represent a
sub-protocol, especially if the various channel types are restricted in some way. However the types
of available channels do not need to be limited. There are an endless variety of properties that a
security protocol might provide and in order to generate channel types based on the requirements of
sub-protocols an extensible channel type mechanism is required. For now this does not exist and new
channel types must be programmed into the tools manually.

The biggest difficulty with this approach is automatically generating a channel type from the spec-
ification. In fact, it may not be possible to do so when the requirements are specified as temporal
formulae. However when macro constructs with clear meanings are used, the process is indeed vi-
able. An example is the standard authentication goal used in the HLPSL language. E.g,

Bob authenticates Alice on Msg

It is also important to note that the modeller may not wish to specify the sub-protocol, or even to
choose a sub-protocol. Some protocols merely specify the required properties of a sub-protocol, and
leave the actual choice of protocol to the implementer. A protocol developer may wish to experiment
with a protocol without having to model the specifics of sub-protocols, merely their properties. In all
these cases abstract communication channels can be used to model the properties of the sub-protocol
and any necessary messages exchanged by this sub-protocol.
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Appendix A

Additions to the AVISPA Tool

This appendix contains the new HLPSL grammar with support for declaring channel types and using
parameters in send and receive actions. It also contains the modified IF prelude file, which contains
the fact signatures used by the new channel types.

A.1 The new HLPSL Grammar

%--------------------------------------------------
% Grammar of the HLPSL
%--------------------------------------------------
% General conventions:
% * variables (var_ident) start with a capital letter
% * constants (const_ident) are integers or start with lowercase
% * comments (%...) will be intercepted by the lexical analysis
% * Grammatical elements whose names start with "Maybe_" are optional
SpecHLPSL ::=

Role_definitions
Maybe_goal_declaration
% Call of the main role (ex: Environment() )
var_ident "(" ")"

Role_definitions ::=
Role_definition

| Role_definition Role_definitions

% Roles may be either basic or compositional.
Role_definition ::=

Basic_role
| Composition_role

% Basic roles must include a player definition and generally
% contain a transition declaration section.
Basic_role ::=
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"role"
Role_header Player Role_declarations
Maybe_transition_declaration
"end role"

% Composition roles have no transition section, but rather
% a composition section in which they instantiate other roles.
Composition_role ::=

"role"
Role_header Role_declarations
Maybe_composition_declaration
"end role"

% A role header consists of the keywork "role", the role name
% and a list of formal argument, if any
Role_header ::=

var_ident "(" Maybe_formal_arguments ")"

% A role’s declarations include:
% * the "def=" keyword
% * (optionally) declaration of local variables
% * (optionally) declaration of any owned variables
% * (optionally) declaration of constants
% * (optionally) initalisation of variables
% * (optionally) definition of accepting states
% * (optionally) knowledge declaration(s)
Role_declarations ::=

"def="
Maybe_local_declaration
Maybe_owns_declaration
Maybe_const_declaration
Maybe_init_declaration
Maybe_accept_declaration
Maybe_knowledge_declaration

% Definition of the arguments of a role.
Maybe_formal_arguments ::=

Formal_arguments
|

Formal_arguments ::=
| Variable_declaration
| Variable_declaration "," Formal_arguments

% Used to bind the role and the identifier of the agent playing the role.
Player ::=

"played_by" var_ident
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% Declaration of local variables.
Maybe_local_declaration ::=

"local" Variables_declaration_list
|

% owns -- That a variable is "owned" by a role means that the value of
% this variable can only be changed as specified by this role.
% Subroles instantiated by the owning role may change the variable but
% may not own it themselves.
Maybe_owns_declaration ::=

"owns" Variables_list
|

% Declaration of constants.
Maybe_const_declaration ::=

"const" Constants_declaration_list
|

Maybe_init_declaration ::=
"init" Init_declarations

|

Init_declarations ::=
Init_declaration

| Init_declaration "/\" Init_declarations

Init_declaration ::=
Stutter_expression "=" Stutter_expression
% Initialisation of all the elements of a set/ list/ partial function

| "/\" "_" "{" Parameters_instance "}" Init_declaration

% Acceptance is used for sequential composition to mark the stop states
% after which the following instantiation may begin.
Maybe_accept_declaration ::=

"accept" Predicates
|

% Declaration of required knowledge
Maybe_knowledge_declaration ::=

Knowledge_declaration Maybe_knowledge_declaration
|

Knowledge_declaration ::=
"knowledge" "(" Variable_or_constant ")" "=" "{" Stutter_expressions_list "}"

% Definition of the transition section (for basic roles)
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Maybe_transition_declaration ::=
"transition" Transitions_list

| "transition"

% Definition of the composition section (for composed roles)
Maybe_composition_declaration ::=

"composition" Compositions_list
| "composition"

Maybe_goal_declaration ::=
Goal_declaration

|

% Goal_declaration defines the goals section
Goal_declaration ::=

"goal" Goal_formulas_list "end goal"

Goal_formulas_list ::=
Goal_formula

| Goal_formula Goal_formulas_list

Goal_formula ::=
% Secrecy goals
"secrecy_of" Stutter_expressions_list

% var_ident here are only basic roles identifiers
% "authenticates" is a shortcut for the LTL formula:
% request (A,B,C,D) -> <-> witness(A,B,C,D)

| var_ident "authenticates" var_ident "on" Stutter_expressions_list

% Weak authentication
| var_ident "weakly" "authenticates" var_ident "on" Stutter_expressions_list

% General LTL formulae
| LTL_formula

Compositions_list ::=
Composition

| Composition "/\" Bracketed_par_compositions_list
| Composition ";" Bracketed_seq_compositions_list
| "(" Compositions_list ")"

Composition ::=
| "/\" "_" "{" Parameters_instance "}" Bracketed_compositions_list
| Role_instance

Bracketed_par_compositions_list ::=
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Composition
| Composition "/\" Bracketed_par_compositions_list
| "(" Compositions_list ")"

Bracketed_seq_compositions_list ::=
Composition

| Composition ";" Bracketed_seq_compositions_list
| "(" Compositions_list ")"

Bracketed_compositions_list ::=
Composition

| "(" Compositions_list ")"

Role_instance ::=
Role_instantiation
% Loops: not translated yet.

| "LOOP" Role_instantiation
| "LOOP" "(" Role_instantiation ")"

Role_instantiation ::=
var_ident "(" Maybe_effective_arguments ")"

Variables_declaration_list ::=
Variable_declaration

| Variable_declaration "," Variables_declaration_list

Variable_declaration ::=
Variables_list ":" Type_of Maybe_type_attribute

Constants_declaration_list ::=
Constant_declaration

| Constant_declaration "," Constants_declaration_list

Constant_declaration ::=
Constants_list ":" Simple_type_of Maybe_type_attribute

% attributes qualifying certain types of variables
Maybe_type_attribute:

% for declaring a variable that will have a newly generated value
"(" "fresh" ")"
% Dolev-Yao channels

| (" "dy" ")"
% Over-the-Air channels

| (" "ota" ")"
% Authentic channels

| (" "authentic" ")"
% Confidential channels
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| (" "confidential" ")"
% Non-repudiation of Origin channels

| (" "nro" ")"
% Non-repudiation of Receipt channels

| (" "nrr" ")"
% Non-repudiation of Origin and Receipt channels

| (" "nro_nrr" ")"
|

Type_of ::=
Subtype_of

| Subtype_of "->" Type_of

Subtype_of ::=
Simple_type

| "(" Subtype_of ")"
| Compound_type

Compound_type ::=
Subtype_of "." Subtype_of

| Subtype_of "list"
| Subtype_of "set"
| "{" Subtype_of "}" "_" Bracketed_subtype_of
%| "function" "(" Subtype_of ")" % not implemented yet
| "inv" "(" Subtype_of ")"

Bracketed_subtype_of ::=
Simple_type

| "(" Subtype_of ")"

Simple_type_of ::=
Simple_subtype_of

| Simple_subtype_of "->" Simple_type_of

Simple_subtype_of ::=
Simple_type

| "(" Simple_types_list ")"

Simple_types_list ::=
Simple_subtype_of

| Simple_subtype_of "." Simple_types_list

Simple_type ::=
"agent"

| "channel"
| "public_key"
| "symmetric_key"
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| "text"
| "message"
| "protocol_id"
| "nat"
| "bool"
% hash is synonymous for function
| "function" | "hash"
| "{" Constants_or_nat_list "}"

Constants_or_nat_list ::=
const_ident

| nat_ident
| const_ident "," Constants_or_nat_list
| nat_ident "," Constants_or_nat_list

Transitions_list ::=
Transition

| Transition Transitions_list

Transition ::=
% Spontaneous actions are enabled when the state predicates on the
% LHS are true.
Label "." Predicates "--|>" Actions

% Immediate reactions fire immediately whenever the non stutter
% events on the LHS are true.

| Label "." Events "=|>" Reactions

Predicates ::=
Predicate

| Predicate "/\" Predicates

Predicate ::=
Stutter_formula

| Variable_or_constant "(" ")"
| Variable_or_constant "(" Stutter_expressions_list ")"
| Variable_or_constant "(" Variable_or_constant "," Variable_or_constant ";" Stutter_expressions_list ")"

% Dummy start message for Dolev-Yao models.
| "start" "(" ")"

Events ::=
Predicate

| Event
| Predicate "/\" Events
| Event "/\" Events

Event ::=
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Non_stutter_formula
| Variable_or_constant "(" Non_stutter_expressions_list ")"

% Dummy start message for Dolev-Yao models.
| var_ident "(" "start" ")"

Stutter_formula ::=
Stutter_expression "=" Stutter_expression

| Stutter_expression "<=" Stutter_expression
| "in" "(" Stutter_expression "," Stutter_expression ")"
| "in" "(" Non_stutter_expression "," Stutter_expression ")"
| "not" "(" Stutter_expression "=" Stutter_expression ")"
| "not" "(" Stutter_expression "<=" Stutter_expression ")"
| "not" "(" "in" "(" Stutter_expression "," Stutter_expression ")" ")"
| "not" "(" "in" "(" Non_stutter_expression "," Stutter_expression ")" ")"

% Syntactic sugar for inequality
| Stutter_expression "/=" Stutter_expression
| "(" Stutter_formula ")"

Non_stutter_formula ::=
Non_stutter_expression "=" Stutter_expression

| Stutter_expression "=" Non_stutter_expression
| Non_stutter_expression "=" Non_stutter_expression
| Non_stutter_expression "<=" Stutter_expression
| Stutter_expression "<=" Non_stutter_expression
| Non_stutter_expression "<=" Non_stutter_expression
| "in" "(" Non_stutter_expression "," Non_stutter_expression ")"
| "in" "(" Stutter_expression "," Non_stutter_expression ")"
| "not" "(" Non_stutter_expression "=" Stutter_expression ")"
| "not" "(" Stutter_expression "=" Non_stutter_expression ")"
| "not" "(" Non_stutter_expression "=" Non_stutter_expression ")"
| "not" "(" Non_stutter_expression "<=" Stutter_expression ")"
| "not" "(" Stutter_expression "<=" Non_stutter_expression ")"
| "not" "(" Non_stutter_expression "<=" Non_stutter_expression ")"
| "not" "(" "in" "(" Non_stutter_expression "," Non_stutter_expression ")" ")"
| "not" "(" "in" "(" Stutter_expression "," Non_stutter_expression ")" ")"

% Syntactic sugar for inequality
| Non_stutter_expression "/=" Stutter_expression
| Stutter_expression "/=" Non_stutter_expression
| Non_stutter_expression "/=" Non_stutter_expression
| "(" Non_stutter_formula ")"

Stutter_expressions_list ::=
Stutter_expression

| Stutter_expression "," Stutter_expressions_list

Non_stutter_expressions_list ::=
Non_stutter_expression
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| Non_stutter_expression "," Expressions_list
| Stutter_expression "," Non_stutter_expressions_list

Expressions_list ::=
Expression

| Expression "," Expressions_list

Actions ::=
Action

| Action "/\" Actions

Reactions ::=
Actions

Action ::=
var_ident "’" "=" Expression

% For updating flexible functions: (not implemented yet)
%| var_ident "’" "(" Expressions_list ")" "=" Expression
| Variable_or_constant "(" ")"
| Variable_or_constant "(" Expressions_list ")"
| Variable_or_constant "(" Variable_or_constant "," Variable_or_constant ";" Expressions_list ")"

Parameters_instance ::=
Concatenated_variables_list

| "in" "(" Concatenated_variables_list "," Stutter_expression ")"

Concatenated_variables_list ::=
Concatenated_variables

| "(" Concatenated_variables ")"

Concatenated_Variables ::=
var_ident Var_param

| var_ident Var_param "." Concatenated_Variables

Variables_list ::=
var_ident Var_param

| var_ident Var_param "," Variables_list

Constants_list ::=
const_ident

| const_ident "," Constants_list

Var_param ::=
"(" var_ident ")"

|

% We allow composed messages as effective arguments
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Maybe_effective_arguments ::=
Expressions_list

|

Variable_or_constant ::=
var_ident

| const_ident

Variable_or_constant_or_nat ::=
var_ident

| const_ident
| nat_ident

Stutter_expression ::=
"(" Stutter_expression ")"

| Variable_or_constant_or_nat
| "inv" "(" Stutter_expression ")"

% Concatenation, right-associative
| Stutter_expression "." Stutter_expression

% List
| "[" "]"
| "[" Stutter_expressions_list "]"

% Function application
| Variable_or_constant "(" Stutter_expressions_list ")"

% Set
| "{" "}"
| "{" Stutter_expressions_list "}"

% Encryption
| "{" Stutter_expression "}" "_" Bracketed_stutter_expression

Non_stutter_expression ::=
"(" Non_stutter_expression ")"

| var_ident "’"
| "inv" "(" Non_stutter_expression ")"

% Concatenation, right-associative
| Non_stutter_expression "." Stutter_expression
| Stutter_expression "." Non_stutter_expression
| Non_stutter_expression "." Non_stutter_expression

% List
| "[" Non_stutter_expressions_list "]"

% Function application
| Variable_or_constant "(" Non_stutter_expression_list ")"

% Operator for insertion into a set or concatenation at the head of a list
| "cons" "(" Expression "," Expression ")"

% Set
| "{" Non_stutter_expressions_list "}"

% Encryption
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| "{" Non_stutter_expression "}" "_" Bracketed_expression
| "{" Stutter_expression "}" "_" Bracketed_non_stutter_expression

Expression ::=
Stutter_expression

| Non_stutter_expression

Bracketed_stutter_expression ::=
"inv" "(" Stutter_expression ")"

| Variable_or_constant "(" Stutter_expressions_list ")"
| Variable_or_constant_or_nat
| "(" Stutter_expression ")"

Bracketed_non_stutter_expression ::=
var_ident "’"

| "inv" "(" Non_stutter_expression ")"
| Variable_or_constant "(" Non_stutter_expressions_list ")"
| "(" Non_stutter_expression ")"

Bracketed_expression ::=
Bracketed_stutter_expression

| Bracketed_non_stutter_expression

Label ::=
const_ident

| nat_ident

% The syntax for general LTL goals is not yet fully agreed upon
LTL_formula ::=

string

%end of grammar

%% Lexical entities:
var_ident: [A-Z][A-Za-z0-9_]*
const_ident: [a-z][A-Za-z0-9_]*
nat_ident: [0-9]+
string: \"[a-zA-Z0-9_=><-,.{}()\[\]\n\t ]+\"

%% Ignored:
comments: %[^\n]*
spaces: [\n\t ]

%end
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A.2 The New IF Prelude File

section typeSymbols:

agent, text, symmetric_key, public_key, function, table,
message, fact, nat, protocol_id, channel

section signature:

message > agent
message > nonce
message > symmetric_key
message > public_key
message > function
message > table
message > set

pair : message * message -> message
crypt : message * message -> message
inv : message -> message
scrypt : message * message -> message
exp : message * message -> message
xor : message * message -> message
apply : message * message -> message
func : public_key * nonce -> nonce

iknows : message -> fact
contains : message * message -> fact
witness : agent * agent * protocol_id * message -> fact
request : agent * agent * protocol_id * message * nat -> fact
wrequest : agent * agent * protocol_id * message * nat -> fact
secret : message * agent -> fact

sent : agent * message * channel -> fact
canprovesent : agent * agent * message -> fact
canprovereceived : agent * agent * message -> fact

section types:

PreludeK,PreludeM,PreludeM1,PreludeM2,PreludeM3 : message

section equations:

pair(PreludeM1,pair(PreludeM2,PreludeM3)) =
pair(pair(PreludeM1,PreludeM2),PreludeM3)

inv(inv(PreludeM)) = PreludeM
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exp(exp(PreludeM1,PreludeM2),PreludeM3) = exp(exp(PreludeM1,PreludeM2),PreludeM3)
exp(exp(PreludeM1,PreludeM2),inv(PreludeM2)) = PreludeM1

xor(PreludeM1,xor(PreludeM2,PreludeM3)) = xor(xor(PreludeM1,PreludeM2),PreludeM3)
xor(PreludeM1,PreludeM2) = xor(PreludeM2,PreludeM1)
xor(xor(PreludeM1,PreludeM1),PreludeM2) = PreludeM2

section intruder:

% generate rules

step gen_pair (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) => iknows(pair(PreludeM1,PreludeM2))

step gen_crypt (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) => iknows(crypt(PreludeM1,PreludeM2))

step gen_scrypt (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) => iknows(scrypt(PreludeM1,PreludeM2))

step gen_exp (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) => iknows(exp(PreludeM1,PreludeM2))

step gen_xor (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) => iknows(xor(PreludeM1,PreludeM2))

step gen_apply (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) => iknows(apply(PreludeM1,PreludeM2))

% analysis rules

step ana_pair (PreludeM1,PreludeM2) :=
iknows(pair(PreludeM1,PreludeM2)) => iknows(PreludeM1).iknows(PreludeM2)

step ana_crypt (PreludeK,PreludeM) :=
iknows(crypt(PreludeK,PreludeM)).iknows(inv(PreludeK)) => iknows(PreludeM)

step ana_scrypt (PreludeK,PreludeM) :=
iknows(scrypt(PreludeK,PreludeM)).iknows(PreludeK) => iknows(PreludeM)

% Generating new constants of any type:

step generate (PreludeM) :=
=[exists PreludeM]=> iknows(PreludeM)
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Appendix B

Protocol Specifications

B.1 The Purpose Built Keys Protocol (PBK)

%---------------------------------------------------------------%
% Purpose Built Key Framework
%---------------------------------------------------------------%
%
% A -> B: A, PK_A, hash(PK_A)
% A -> B: {Msg}inv(PK_A), hash(PK_A)
% B -> A: Nonce
% A -> B: {Nonce}inv(PK_A)
%
%---------------------------------------------------------------%
%
% - The first message is assumed to be un-modified.
% - B authenticates A on Msg
%
%---------------------------------------------------------------%

role Alice (
A,B : agent,
SND,RCV : channel(dy),
SND_S : channel(authentic),
Hash : function,
Msg_Id : protocol_id,
IP_A : text

) played_by A def =

local
State : nat,
PK_A : public_key,
Msg : text (fresh),
Nonce : text

69
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init
State = 0

transition

1. State = 0 /\ RCV(start) =|>
State’ = 2 /\ SND_S(A,B;IP_A.PK_A’.Hash(PK_A’))

2. State = 2 /\ RCV(start) =|>
State’ = 4 /\ SND({Msg’}_inv(PK_A).Hash(PK_A))

/\ witness(A,B,Msg_Id,Msg’)

3. State = 4 /\ RCV(Nonce’) =|>
State’ = 6 /\ SND({Nonce’}_inv(PK_A))

end role

%---------------------------------------------------------------%

role Bob (
B,A : agent,
SND,RCV : channel(dy),
RCV_S : channel (authentic),
Hash : function,
Msg_Id : protocol_id

) played_by B def =

local
State : nat,
Nonce : text (fresh),
Msg : text,
PK_A : public_key,
IP_A : text

init
State = 1

transition

1. State = 1 /\ RCV_S(A,B;IP_A’.PK_A’.Hash(PK_A’)) =|>
State’ = 3

2. State = 3 /\ RCV({Msg’}_inv(PK_A).Hash(PK_A)) =|>
State’ = 5 /\ SND(Nonce’)

3. State = 5 /\ RCV({Nonce}_inv(PK_A)) =|>
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State’ = 7
/\ request(B,A,Msg_Id,Msg)

end role

%---------------------------------------------------------------%

role Session(
A,B : agent,
SND,RCV : channel (dy),
SND_S,RCV_S : channel (authentic),
Hash : function,
Msg_Id : protocol_id,
IP_A : text

) def=

composition
Alice(A,B,SND,RCV,SND_S,Hash,Msg_Id,IP_A)

/\ Bob(B,A,SND,RCV,RCV_S,Hash,Msg_Id)

end role
%---------------------------------------------------------------%

role Environment() def=

const
a,b : agent,
snd,rcv : channel (dy),
snd_s : channel (authentic),
rcv_s : channel (authentic),
hash : function,
msg_id : protocol_id,
ip_a : text

knowledge(i) = {a,b,hash,ip_a}

composition
Session(a,b,snd,rcv,snd_s,rcv_s,hash,msg_id,ip_a)

/\ Session(a,b,snd,rcv,snd_s,rcv_s,hash,msg_id,ip_a)
/\ Session(i,b,snd,rcv,snd_s,rcv_s,hash,msg_id,ip_a)
/\ Session(a,i,snd,rcv,snd_s,rcv_s,hash,msg_id,ip_a)

end role

%---------------------------------------------------------------%

goal
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Bob authenticates Alice on Msg

end goal

%---------------------------------------------------------------%

Environment()

%---------------------------------------------------------------%
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B.2 The Asokan-Shoup-Waidner Contract Signing Protocol (ASW)

%-----------------------------------------------------------%
% ASW as presented by Shmatikov and Mitchell 11/6/04
%-----------------------------------------------------------%
% O and R are assumed to know text,T,Ko,Kr,Kt,ABORTED
% T knows ABORTED,T
% i knows O,R,T,Ko,Kr,Kt,H,ABORTED
%-----------------------------------------------------------%
% O -> R: me1 = {Ko.Kr.T.Text.H(No)}inv(Ko) % exchange:
% R -> O: me2 = {me1.H(Nr)}inv(Kr)
% O -> R: me3 = No
% R -> O: me4 = Nr
%-----------------------------------------------------------%
% O -> T: ma1 = {ABORTED.me1}inv(Ko) % abort:
% T -> O: ma2 = {me1.me2}inv(Kt) % resolved?
% T -> O: ma2 = {ABORTED.ma1}inv(Kt) % aborted.
%-----------------------------------------------------------%
% O -> T: mr1 = {me1.me2}inv(Ko) % resolve:
% T -> O: mr2 = {ABORTED.ma1}inv(Kt) % aborted?
% T -> O: mr2 = {me1.me2}inv(Kt) % resolved.
%
% OR:
%
% R -> T: mr1 = {me1.me2}inv(Kr) % resolve:
% T -> R: mr2 = {ABORTED.ma1}inv(Kt) % aborted?
% T -> R: mr2 = {me1.me2}inv(Kt) % resolved.
%-----------------------------------------------------------%
%
% Non-repudiation goals are added to the IF specification
% at this point, but strong fairness has been added as a
% HLPSL goal macro.
%
%-----------------------------------------------------------%

role Originator (
O,R,T : agent,
Ko,Kr,Kt : public_key,
Text : message,
ABORTED : message,
H : function,
SND,RCV : channel (dy),
SND_P,RCV_P : channel (nro),
Abort,Resolve : message

) played_by O def =

local
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No : text (fresh),
Nr : text,
H_Nr : message,
Me1 : message,
Ma1,Me2 : message,
State : nat

init
State = 0

transition

1. State = 0 /\ RCV(start) =|>
State’ = 2 /\ SND_P(O,R;{Ko.Kr.T.Text.H(No’)}_inv(Ko))

/\ Me1’ = {Ko.Kr.T.Text.H(No’)}_inv(Ko)

2. State = 2 /\ RCV_P(R,O;{Me1.H(Nr’)}_inv(Kr)) =|>
State’ = 4 /\ SND_P(O,R;No)

/\ Me2’ = {Me1.H(Nr’)}_inv(Kr)

3. State = 4 /\ RCV_P(R,O;Nr) =|>
State’ = 6

/\ received(O,Me1.No.Me2.Nr,Me1.No.Me2.Nr)
/\ accepted(O)

4. State = 2 /\ RCV(Abort) =|> % Abort:
State’ = 8 /\ SND({ABORTED.Me1}_inv(Ko))

/\ Ma1’ = {ABORTED.Me1}_inv(Ko)

6. State = 8 /\ RCV({Me1.{Me1.H(Nr)}_inv(Kr)}_inv(Kt)) =|> % Resolved.
State’ = 10

/\ received(O,Me1.No.Me2.Nr,Me1.No.Me2.Nr)
/\ accepted(O)

7. State = 8 /\ RCV({ABORTED.Ma1}_inv(Kt)) =|> % Aborted.
State’ = 100

/\ accepted(O)

8. State = 4 /\ RCV(Resolve) =|> % Resolve:
State’ = 12 /\ SND({Me1.Me2}_inv(Ko))

9. State = 6 /\ RCV(Resolve) =|> % Resolve:
State’ = 12 /\ SND({Me1.Me2}_inv(Ko))

10. State = 12 /\ RCV({ABORTED.Ma1}_inv(Kt)) =|> % Aborted.
State’ = 14

/\ accepted(O)
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11. State = 12 /\ RCV({Me1.Me2}_inv(Kt)) =|> % Resolved.
State’ = 16
/\ received(O,Me1.No.Me2.Nr,Me1.No.Me2.Nr)

/\ accepted(O)

end role

%-----------------------------------------------------------%

role Responder (
O,R,T : agent,
Ko,Kr,Kt : public_key,
Text : message,
ABORTED : message,
H : function,
SND,RCV : channel (dy),
SND_P,RCV_P : channel (nro),
Abort,Resolve: message

) played_by R def =

local
No : text,
Nr : text (fresh),
Me1,Me2,Ma1 : message,
State : nat

init
State = 1

transition

1. State = 1 /\ RCV_P(O,R;{Ko.Kr.T.Text.H(No’)}_inv(Ko)) =|>
State’ = 3 /\ SND_P(R,O;{{Ko.Kr.T.Text.H(No’)}_inv(Ko).H(Nr’)}_inv(Kr))

/\ Me1’ = {Ko.Kr.T.Text.H(No’)}_inv(Ko)
/\ Me2’ = {{Ko.Kr.T.Text.H(No’)}_inv(Ko).H(Nr’)}_inv(Kr)

2. State = 3 /\ RCV_P(O,R;No) =|>
State’ = 5 /\ SND_P(R,O;Nr)

/\ received(R,Me1.No.Me2.Nr,Me1.No.Me2.Nr)
/\ accepted(R)

9. State = 3 /\ RCV(Resolve) =|> % Resolve:
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State’ = 7 /\ SND({Me1.Me2}_inv(Kr))

9. State = 5 /\ RCV(Resolve) =|> % Resolve:
State’ = 7 /\ SND({Me1.Me2}_inv(Kr))

10. State = 7 /\ RCV({ABORTED.Ma1}_inv(Kt)) =|> % Aborted.
State’ = 9

/\ accepted(R)

11. State = 7 /\ RCV({Me1.Me2}_inv(Kt)) =|> % Resolved.
State’ = 11

/\ accepted(R)
/\ received(R,Me1.No.Me2.Nr,Me1.No.Me2.Nr)

end role

%-----------------------------------------------------------%

role TrustedThirdParty (
T : agent,
Kt : public_key,
ABORTED : message,
H : function,
A_List : message set,
R_List : message set,
SND,RCV : channel (dy),
SND_P,RCV_P : channel (nro),
Abort,Resolve: message

) played_by T def =

local
Me1,Me2,Ma1 : message,
State : nat,
K : public_key,
Count : nat

init
State = 10

/\ Count = 0

transition

% O -> T: ma1 = {ABORTED.me1}_inv(Ko) % abort:
% T -> O: ma2 = {me1.me2}_inv(Kt) % resolved?
% T -> O: ma2 = {ABORTED.ma1}_inv(Kt) % aborted.
%
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% O -> T: mr1 = {me1.me2}_inv(Ko) % resolve:
% T -> O: mr2 = {ABORTED.ma1}_inv(Kt) % aborted?
% T -> O: mr2 = {me1.me2}_inv(Kt) % resolved.
%
% OR:
%
% R -> T: mr1 = {me1.me2}_inv(Kr) % resolve:
% T -> R: mr2 = {ABORTED.ma1}_inv(Kt) % aborted?
% T -> R: mr2 = {me1.me2}_inv(Kt) % resolved.

1. State = 10 /\ RCV({ABORTED.Me1’}_inv(K’)) /\ in(Me1’,R_List) =|>
State’ = 11 /\ SND({Me1’.Me2}_inv(Kt))
/\ R_List’ = cons(Me1’,R_List)

2. State = 10 /\ not(in(Me1’,R_List)) /\ RCV({ABORTED.Me1’}_inv(K’)) =|>
State’ = 11 /\ SND({ABORTED.{ABORTED.Me1’}_inv(K’)}_inv(Kt))

/\ A_List’ = cons(Me1’,A_List)

3. State = 10 /\ RCV({Me1’.Me2’}_inv(K’)) /\ in(Me1’,A_List) =|>
State’ = 11 /\ SND({ABORTED.Ma1}_inv(Kt))

4. State = 10 /\ RCV({Me1’.Me2’}_inv(K’)) /\ not(in(Me1’,A_List)) =|>
State’ = 11 /\ SND({Me1’.Me2’}_inv(Kt))
/\ R_List’ = cons(Me1’,R_List)

5. State = 11 /\ RCV({ABORTED.Me1’}_inv(K’)) /\ in(Me1’,R_List) =|>
State’ = 12 /\ SND({Me1’.Me2}_inv(Kt))
/\ R_List’ = cons(Me1’,R_List)

6. State = 11 /\ RCV({ABORTED.Me1’}_inv(K’)) /\ not(in(Me1’,R_List)) =|>
State’ = 12 /\ SND({ABORTED.{ABORTED.Me1’}_inv(K’)}_inv(Kt))

/\ A_List’ = cons(Me1’,A_List)

7. State = 11 /\ RCV({Me1’.Me2’}_inv(K’)) /\ in(Me1’,A_List) =|>
State’ = 12 /\ SND({ABORTED.Ma1}_inv(Kt))

8. State = 11 /\ RCV({Me1’.Me2’}_inv(K’)) /\ not(in(Me1’,A_List)) =|>
State’ = 12 /\ SND({Me1’.Me2’}_inv(Kt))
/\ R_List’ = cons(Me1’,R_List)

end role

%-----------------------------------------------------------%
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role Session (
O,R,T : agent,
Ko,Kr,Kt : public_key,
Text : message,
ABORTED : message,
H : function,
A_List : message set,
R_List : message set,
SND,RCV : channel (dy),
SND_P,RCV_P : channel (nro),
Abort, Resolve: message

) def =

composition
Originator(O,R,T,Ko,Kr,Kt,Text,ABORTED,H,SND,RCV,

SND_P,RCV_P,Abort,Resolve)
/\ Responder(O,R,T,Ko,Kr,Kt,Text,ABORTED,H,SND,RCV,

SND_P,RCV_P,Abort,Resolve)
/\ TrustedThirdParty(T,Kt,ABORTED,H,A_List,R_List,SND,

RCV,SND_P,RCV_P,Abort,Resolve)

end role

%-----------------------------------------------------------%

role Environment() def =

const
o,r,t : agent,
ko,kr,kt : public_key,
the_text : message,
aborted : message,
h : function,
snd,rcv : channel (dy),
snd_p,rcv_p : channel (nro),
abort : message,
resolve : message

knowledge(i) = {i,r,t,ko,kr,kt,aborted,h,abort,resolve}

composition
Session(o,r,t,ko,kr,kt,the_text,aborted,h,a_list,

r_list,snd,rcv,snd_p,rcv_p,abort,resolve)

end role

%-----------------------------------------------------------%
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goal

strong fairness Originator, Me1.No.Me2.Nr, Responder, Me1.No.Me2.Nr

end goal

%-----------------------------------------------------------%

Environment()

%-----------------------------------------------------------%
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B.3 The Internet Open Trading Protocol (IOTP)

%-----------------------------------------------------------%
% IOTP Protocol - Purchase Transaction 18/10/04
%-----------------------------------------------------------%
% Scenario:
%
% Authenticion exchange
% Offer exchange
% Payment exchange
%-----------------------------------------------------------%
% Authentication Exchange
%
% C -> M: Offer
% M -> C: Algorithm.Challenge.Trading_Role_Info_Request
% C => M: Auth_Response.C
% M -> C: Status
%-----------------------------------------------------------%
% Offer Exchange
%
% C -> M: Offer
% M -> C: {C.M.P.Order.Payment}_inv(KeyM)
%-----------------------------------------------------------%
% Payment Exchange
%
% C -> M: Offer
% M -> C: BrandList
% C -> M: Selection
% M -> C: {Payment.M.P}_inv(KeyM)
% C -> P: {Status.{Payment.M.P}_inv(KeyM)}_inv(KeyC)
% C <> P: ...
% P -> C: Status.{Pay_Receipt.{Payment.M.P}_inv(KeyM)}_inv(KeyP)
%-----------------------------------------------------------%
% Notes
%
% - Offer is a request message. E.g. HTTP
% - PKI is modelled as all roles possessing the other roles
% public keys
%-----------------------------------------------------------%
% Goals
%
% P authenticates C on Payment
%
%-----------------------------------------------------------%

role Customer (
C,M,P : agent,
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Offer : message,
Status : message,
Trading_Role_Info_Request : message,
KeyC,KeyM,KeyP : public_key,
SND,RCV : channel (dy),
SND_A : channel (authentic)

) played_by C def =

local
State : nat,
Challenge : text,
Algorithm : text,
Order : text,
Payment : text,
BrandList : text,
Pay_Receipt : text,
Auth_Response : text (fresh),
Selection : text (fresh)

init
State = 0

knowledge(C) = {inv(KeyC)}

transition

1. State = 0 /\ RCV(start) =|>
State’ = 1 /\ SND(Offer)

2. State = 1 /\ RCV(Algorithm’.Challenge’.Trading_Role_Info_Request) =|>
State’ = 2 /\ SND_A(C,M;Auth_Response’.C)

3. State = 2 /\ RCV(Status) =|>
State’ = 3 /\ SND(Offer)

4. State = 3 /\ RCV({C.M.P.Order’.Payment’}__inv(KeyM)) =|>
State’ = 4 /\ SND(Offer)

5. State = 4 /\ RCV(BrandList’) =|>
State’ = 5 /\ SND(Selection’)

6. State = 5 /\ RCV({Payment.M.P}__inv(KeyM)) =|>
State’ = 6 /\ SND(Status.{Payment.M.P}__inv(KeyM)) %% to P

/\ witness(C,P,payment1,Payment)

7. State = 6 /\ RCV(Status.Pay_Receipt’.{Payment.M.P}__inv(KeyM)) =|>
State’ = 7
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end role

%-----------------------------------------------------------%

role Merchant (
C,M,P : agent,
Offer : message,
Status : message,
Trading_Role_Info_Request : message,
KeyC,KeyM,KeyP : public_key,
SND,RCV : channel (dy),
RCV_A : channel (authentic)

) played_by M def =

local
State : nat,
Challenge : text (fresh),
Algorithm : text (fresh),
Order : text (fresh),
Payment : text (fresh),
BrandList : text (fresh),
Auth_Response : text,
Selection : text

init
State = 0

knowledge(M) = {inv(KeyM)}

transition

1. State = 0 /\ RCV(Offer) =|>
State’ = 1 /\ SND(Algorithm’.Challenge’.Trading_Role_Info_Request)

2. State = 1 /\ RCV_A(C,M;Auth_Response’.C) =|>
State’ = 2 /\ SND(Status)

3. State = 2 /\ RCV(Offer) =|>
State’ = 3 /\ SND({C.M.P.Order’.Payment’}__inv(KeyM))

4. State = 3 /\ RCV(Offer) =|>
State’ = 4 /\ SND(BrandList’)

5. State = 4 /\ RCV(Selection’) =|>
State’ = 5 /\ SND({Payment.M.P}__inv(KeyM))
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end role

%-----------------------------------------------------------%

role Payment_Handler (
C,M,P : agent,
Offer : message,
Status : message,
KeyC,KeyM,KeyP : public_key,
SND,RCV : channel (dy)

) played_by P def =

local
State : nat,
Payment : text,
Pay_Receipt : text (fresh)

init
State = 0

knowledge(P) = {inv(KeyP)}

transition

1. State = 0 /\ RCV(Status.{Payment’.M.P}__inv(KeyM)) =|>
State’ = 1 /\ SND(Status.{Pay_Receipt’.{Payment’.M.P}__inv(KeyM)}__inv(KeyP))

/\ request(C,P,payment1,Payment’)

2. State = 1 /\ RCV(Status.{Payment’.M.P}__inv(KeyM)) =|>
State’ = 2 /\ SND(P,C;Status.Pay_Receipt’.{Payment’.M.P}__inv(KeyM))

/\ request(C,P,payment1,Payment’)

end role

%-----------------------------------------------------------%

role Session (
C,M,P : agent,
Offer : message,
Status : message,
Trading_Role_Info_Request : message,
KeyC,KeyM,KeyP : public_key,
SND,RCV : channel (dy),
SND_A : channel (authentic),
RCV_A : channel (authentic)

) def =
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composition
Customer(C,M,P,Offer,Status,Trading_Role_Info_Request,KeyC,KeyM,KeyP,SND,RCV,SND_A)

/\ Merchant(C,M,P,Offer,Status,Trading_Role_Info_Request,KeyC,KeyM,KeyP,SND,RCV,RCV_A)
/\ Payment_Handler(C,M,P,Offer,Status,KeyC,KeyM,KeyP,SND,RCV)

end role

%-----------------------------------------------------------%

role Environment() def =

const
c,m,p : agent,
offer,status : message,
trading_role_info_request : message,
keyC,keyM,keyP : public_key,
snd,rcv : channel (dy),
snd_a,rcv_a : channel (authentic)

knowledge(i) = {i,c,m,p,offer,status,trading_role_info_request,keyC,keyM,keyP,snd,rcv,snd_a,rcv_a}

composition
Session(c,m,p,offer,status,trading_role_info_request,keyC,keyM,keyP,snd,rcv,snd_a,rcv_a)

end role

%-----------------------------------------------------------%

goal

Payment_Handler authenticates Customer on Payment

end goal

%-----------------------------------------------------------%

Environment()

%-----------------------------------------------------------%


