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Abstract

This work extends recent research in the development of a number of direct search methods

in nonlinear integer programming. The various algorithms use an extension of the

well-known FORTRAN MINOS code of Murtagh and Saunders [62] as a starting point.

MINOS is capable of solving quite large problems in which the objective function is
nonlinear and the constraints linear. The original MINOS code has been extended in various

ways by Murtagh, Saunders and co-workers since the original 1978 landmark paper [62].

Extensions have dealt with methods to handle both nonlinear constraints, most notably

MINOS/AUGMENTED[61] and integer requirements on a subsetof the variables (MINTO)

[58, 49]. The starting point for the present thesis is the MINTO code of Murtagh [58].

MINTO is a direct descendant of MINOS in that it extends the capabilities to general
nonlinear constraints and integer restrictions. The overriding goal for the work described

in this thesis is to obtain a good integer-feasible or near-integer-feasible solution to the

general NLIP problem while trying to avoid or at least minimize the use of the ubiquitous

branch-and-bound techniques. In general, we assume a small number of nonlinearities and

a small number of integer variables.

Some initial ideas motivating the present work are summarised in an invited paper [59]

presented by Murtagh at the 1989 CTAC (Computational Techniques and Applications)

conference in Brisbane, Australia. The approach discussed there was to start a direct search
procedure at the solution of the continuous relaxation of a nonlinear mixed-integer problem

by first removing integer variables from the simplex basis, then adjusting integer-infeasible

superbasic variables, and finally checking for local optimality by trial unit steps in the

integers. This may be followed by a reoptimization with the latest point as the starting point,

but integer variables held fixed.

We describe ideas for the further development of Murtagh’s direct search method [59]. Both

the old and new approaches aim to attain an integer-feasible solution from an initially relaxed

(continuous) solution. Techniques such as branch-and-bound or Scarf’s neighbourhood
search [84] may then be used to obtain a locally optimal solution. The present range of direct

search methods differs significantly to that described by Murtagh [59], both in heuristics

used and major and minor steps of the procedures. Chapter 5 summarizes Murtagh’s original
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approach while Chapter 6 describes the new methods in detail. A feature of the new approach

is that some degree of user-interaction (MINTO/INTERACTIVE) has been provided, so

that a skilled user can "drive" the solution towards optimality if this is desired. Alternatively

the code can still be run in "automatic" mode, where one of five available direct search
methods may be specified in the customary SPECS file.

A selection of nonlinear integer programming problems taken from the literature has been
solvedand the results are presentedhere in the latter chapters. Further, anewcommunications

network topology and allocation model devised by Berry and Sugden [2] has been

successfully solved by the direct search methods presented herein. The results are discussed

in Chapter 14, where the approach is compared with the branch-and-bound heuristic.
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Chapter 1

Introduction

Murtagh and Saunders give a concise definition of optimization:

Optimization is the process of obtaining the best possible result under the

circumstances.The result is measured in terms of an objective which is minimized

or maximized. The circumstances are defined by a set of equality and/or

inequality constraints. (emphasis ours)

Murtagh and Saunders [63]

For our purposes, we can sharpen this definition slightly by stating that some of the quantities

to be found are required to assume values which are whole numbers. Optimization problems

containing restrictions such as these are known as integer programs. The present work is

concerned with a class of algorithms for nonlinear integer programs, in which both the

objective (quantity to be optimized) and possibly the constraints (explicit or implicit

restrictions on the values that the variables may assume) are expressed in terms of nonlinear

functions of the problem variables. If all variables are required to assume integer values,

then we have a pure-integer program, else a mixed-integer program. It is customary to

formulate nonlinear optimization problems as minimizations, and this is the approach

adopted here.
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In essence then, we are trying to find the best value of a function of one or many variables,

usually under certain restrictions on the values of those variables. The overall "best" is

termed the global optimum, however finding such a point is normally too computationally

expensive and we must be content in most cases to settle for a point which is merely better
than its neighbours a so-called local optimum see however later comments on recent

methods for global minimization such as simulated annealing. Thus we are concerned here

with methods for searching for local minima for the general nonlinear mixed-integer

optimization problem.

Apart from being mathematically interesting, the study of optimization and development

of algorithms for solving the associated problems has many practical benefits from the

application standpoint. The literature of operations research abounds with examples of

practical problems from areas as diverse as flexible manufacturing systems [59], process
engineering [59], backboard wiring (Steinberg, [88]), electrical engineering (optimal power

flow [63]), and optimal communications network design [23] to financial portfolio

construction [63].

Many "real-world" problems tend to be large, non-linear, and require at least some of the

variables to be integers. Problems in this category are some of the hardest to solve, for

reasons which will be described in some detail in the chapters to follow. In particular, for

problems with nonlinear constraints it is difficult to characterize a feasible step from the

current solution vector to the next. For problems involving integer restrictions whether
linear or nonlinear the essentially combinatorial nature of the problem gives rise to

computation times which can be exponential in the problem size, eg the number of variables;

problems of such exponential complexity are known to be intrinsically hard. For large-scale

work, it is necessary to exploit the inherent sparsity of practical problems, and

state-of-the-art linear programming (LP) software or nonlinear programming (NLP)

software such as MINOS [62] takes advantage of sparsity techniques to allow users to tackle
quite large problems, yet still retains the flexibility of a general-purpose code.

1.1 Contributions of this work

The present work has made original contribution to the field of nonlinear integer
programming (NLIP) in the following ways:

2



1. It has sought to extend the set of available direct-search methods to solve large-scale

NLIP using Murtagh and Saunders’ concept of superbasic variables [62].

2. It is reported herein that such methods have successfully solved a new communications

network optimization model. This model seeks to simultaneously optimize network

topology and traffic allocation.

3. Improved optima and solution times have been obtained for several test problems in

the nonlinear integer programming literature.

1.2 Outline of thesis

Chapter 2 considers in detail the basic classes of optimization problems and gives a brief

summary of algorithms which been proposed for their solution. Comments are made as to

the relative reliability and robustness of each of the methods.

Chapter 3 gives a survey of NLIP literature.

Chapter 4 sets forth the basic background material for the MINOS code of Murtagh and

Saunders, including fundamental equations and the concept of superbasic variables.

Chapter 5 discusses Murtagh’s direct search method based on superbasic variables, while

Chapter 6 develops new modified and refined methods based on original ideas. This chapter

presents discussion, proposals and analysis of five new direct search procedures.

Chapter 7 contains information on the implementation of the new approach, including some

discussion and comments concerning the development methodology adopted, as well as

remarks on the suitability and quality of the software tools both used and developed.

The material from Chapter 8 Chapter 14 presents computational experience with the new

methods on a variety of problems from the NLIP literature, as well as a model proposed by
Berry and the present author to solve a problem in communications network optimization.

Finally Chapter 15 gives a brief summary of what the work has achieved.
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Chapter 2

Classes of optimization problems

There are many classes into which we may partition optimization problems, and also many

competing algorithms which have been developed for their solution. We outline the areas

of primary interest for the present work, with some brief contrasts to classes of problems

that we do not consider here. In the following brief discussion, we assume that the objective
function maps n-dimensional Euclidean space to .

2.1 Local and global optima

An unconstrained local minimum is a point such that there exists a neighbourhood

in which the objective at each other point is no better. For a smooth function, it can be

pictured geometrically as being at the bottom of a trough at which the gradient vector is

zero and the Hessian matrix is necessarily positive semi-definite. Such points are normally

not too hard to find using methods that make use of first and second derivative information,

typically methods of the Newton class. In a constrained problem, a local minimum may

occur at a point where the gradient is not zero, since a constraint boundary may have been
reached. In general there may be many local minima, and it is also of interest to find which

of the local minima is the "best". Such is global minimization, for which a number of

alternative methods exist see, for example Ratschek and Rokne [76]. In general, the task

of finding a global minimum is a much harder problem than the task of finding a local

minimum, primarily because it is much harder to verify that the claimed global minimum

is actually that.

Rnf R

x ∈ Rn
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2.2 Smoothness

Functions for which continuous derivatives of sufficiently high order exist are referred to

as smooth. For continuous optimization, we are usually interested in having continuous

derivatives up to and including second order. Minimization problems in which the objective

and constraint functions are of such type can make use of techniques of multivariable

differential calculus which are unavailable for non-smooth functions. We refer primarily to

the extensive set of methods which make use of gradient and curvature information to direct
an iterative search process toward a local minimum. Methods in this very broad class include

the Newton or quasi-Newton methods, good accounts of which may be found in the book

by Gill, Murray and Wright [24]. For functions which are not smooth, only function value

informationcan be used to direct the search process. Such techniques are referred to generally

as direct search. One early approach is the amœba or simplex method of Nelder and Mead

[67], which has recently found favour with researchers developing direct-search methods
for parallel machines; the more powerful of the gradient-related methods such as

quasi-Newton do not seem particularly suited to parallel implementations. Details of some

work of this nature may be found in two papers by Dennis and Torczon, and Torczon [15,

90]. Brent [4] has written an entire monograph devoted to the topic of minimization without

the use of derivatives, ie direct search methods. The conventional wisdom is to use reliable

gradient information whenever it is available and to avoid "function-value only" methods
unless there is no other choice. Gill, Murray and Wright give some useful advice on choice

of methods in a Questions and Answers appendix to their well-known book [24].

2.3 Constraints

Unconstrained optimization of a function of variables may be thought of as

a search (certainly from a computing point of view) in for a locally optimizing vector

constraints simply restrict the search space to some set , where . Thus for

constrained optimization, we seek to:

An unconstrained problem is one in which any point in the domain of (often the entire

space ) is an eligible solution point, ie a candidate for a local minimum. is the set of

all candidate points and is called the feasible set. Any point is called a feasible point

f : Rn → R n

Rn

x* F ⊆ RnF

minimize     f(x), x ∈ F

f

Rn F
x ∈ F
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or feasible vector. A constrained problem contains restrictions, in the form of equations or

inequalities that must be satisfied at any proposed solution point. We can regard constraints

as having the effect of shrinking or diminishing the available search space. A further type

of restriction, mentioned above, is the requirement that some or all variables must assume
integer values. Imposition of such conditions will also shrink the available search space,

but in a radically different manner to that of, for example, linear constraints. If a set of m

linearly-independent linear constraints is imposed on an originally unconstrained

n-dimensional problem, then we effectively remove m degrees of freedom (dimensions)

from the search space and then can operate in the reduced space of dimension n-m. On the

other hand, if integer conditions are imposed, the search space reduces to a lattice of discrete
points (in the case of a pure-integer problem). The search then becomes essentially a

combinatorial one and is in many practical cases fruitless because of the sheer number of

possibilities that must be separately examined.

2.4 Convexity

If the objective function is convex, equality constraints are linear, and inequality constraints

are of the form , ie concave, then it can be shown that a local optimum is also

global see, for example Gill, Murray and Wright [24, sec. 6.8.2.1] or Fletcher [18, chapter

9]. It is also worthy of note that many algorithms perform better on such problems, and it

is normally possible to tune an algorithm to take advantage of convexity if it is known in

advance that the problem in question has this desirable property (Gill, Murray and Wright
[24, sec. 6.8.2.1]).

2.5 Discrete optimization

We discuss integer programming (both linear and nonlinear) later in this thesis, however

the apparently more general problem of nonlinear optimization subject to general discrete

restrictions has also received some recent attention. Such problems require a (generally

nonlinear) objective to be minimized subject to nonlinear inequality constraints, with the

added requirement that certain or all of the structural variables must take values from

specified finite sets; the elements of these sets need not be integers. For a recent example

in which the classical penalty function approach (Sequential Unconstrained Minimization

ci(x) ≥ 0

6



Technique (SUMT) of Fiacco and McCormick [20]) is applied in order to satisfy both

nonlinear constraints and the discrete requirements, see the 1990 paper by Shin, Güerdal

and Griffin [87], in which applications to engineering truss design are considered.

2.6 Optimization examples

To gain some appreciation of the issues involved in NLIP, we consider a sequence of simple,

but progressively more difficult optimization problems, culminating in an admittedly small,

but illustrative quadratic NLIP problem.

2.6.1 Example 1 linear objective

Here we consider an unconstrained linear univariate example: the simplest possible kind of

problem. This is a trivial case, but illustrates some useful ideas which lead on to the next

example. We seek the minimum of the function .

Figure 1   Unconstrained linear optimization

If we consider the unconstrained minimum problem illustrated figure 1, there is no solution

since the objective function is unbounded, assuming that .

f(x) = ax + b

x

y

f(x) = ax+b

a ≠ 0

7



Imposition of a simple bound constraint on this problem, leads to a unique global

minimum at the constraint boundary , provided that see figure 2. This is typical

of linear optimization (LP) in multidimensions.

Figure 2   Constrained linear optimization

2.6.2 Example 2 quadratic objective; unconstrained

We seek the unconstrained minimum of the function

(1)

Case 1

Local and global minimum is at , and the value of the objective function is

(2)

Case 2

No local minimum; no global minimum; ie given any .

x ≥ L

x = L a > 0

x

y

f(x) = ax+b

L

f(x) = A(x − a) (x − b)

A > 0

x * = (a + b)/2

f(x *) =
−A(b − a)2

4

A < 0

M ; ∃ x : f(x) < M

8



Figure 3   Unconstrained quadratic  case 1

Figure 4   Unconstrained quadratic  case 2

2.6.3 Example 3 quadratic objective; simple bound constraints

Even in this simple case, many outcomes are possible. Once again our objective function

is

(3)

However we now impose the (simple bound) constraints

1 2 3 4 5 6

-4

-2

0

2

4

6

a b

1 2 3 4 5 6

-4

-2

0

2

4

6

a b

f(x) = A(x − a) (x − b)
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(4)

Case 1

Figure 5   Constrained quadratic  case 1

is a (local) minimum on the interval . Since is convex, is

also a global minimum on the interval.

Case 2

Figure 6   Constrained quadratic  case 2

is the global minimum.

L ≤ x ≤ U

A > 0; L < a < b < U

1 2 3 4 5 6

-4

-2

0

2

4

6

a b

L U

x * = (a + b)/2 x *L ≤ x ≤ U f

A > 0; L < a < (a + b)/2 < U < b

1 2 3 4 5 6

-4

-2

0

2

4

6

a b

L U

x * = U
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Case 3

Figure 7   Constrained quadratic  case 3

The global minimum here is , however this point is not a smooth local minimum.

From elementary calculus, the necessary conditions for a smooth local minimum are that

and that .

Sufficient conditions for smooth local minimum are and that .

Case 4

Figure 8   Constrained quadratic  case 4

We cannot get a local minimum since everywhere. However it is always

possible to get a global minimum, which then occurs at one of the endpoints, or .

A > 0; L < U < (a + b)/2

1 2 3 4 5 6

-4

-2

0

2

4

6

a b

L U

x * = L

f ′(x) = 0 f ′′(x) ≥ 0

f ′(x) = 0 f ′′(x) > 0

A < 0

1 2 3 4 5 6

-4

-2

0

2

4

6

a b

L U

f ′′(x) ≡ −2A

L U
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We see that even for simple univariate quadratic functions, we have many cases to consider.

We also note in passing that any reasonable computer algorithm to solve optimization

problems must be able to cater for these fundamental cases and their generalizations to

problems involving many variables.

2.6.4 Nonlinear integer problems

In order to illustrate some of the possible cases and difficulties for nonlinear integer problems

we present some general observations on the limitations of simple-minded direct search,

followed by two very small linearly-constrained quadratic integer programs (QIPs).

It will be seen that in some cases, simple rounding of the solution to the continuous relaxation

produces acceptable results, while in other cases, this process may even lead to infeasibility,
quite apart from any hope of local optimality.

The previous examples in this chapter have been concerned with univariate problems for
which conventional graphs of the form were used to illustrate constrained minima.

By contrast, in the following general illustration and two simple quadratic integer programs

(depicted in figures 9 11), we consider problems with two independent structural variables,

and the cartesian plane is used to show the lattice of feasible points for each problem.

Notwithstanding the usual caveats regarding the use of diagrams to prove a point, it should

be emphasized that, although this example is very simple, a very fundamental and important

stumbling-block for direct search methods for integer programming is here illustrated. The

diagram shows four lattice points: labelled 1, 2, 3, 4. Points 1 and 4 are infeasible as they
lie outside the linear constraints. It should be clear from the diagram that independent steps

ineach of twoorthogonal directionsare seen to be infeasible with respect to linearconstraints,

however a combined oblique step gives feasibility, and this point may even be locally

optimal. The search procedures presented in this work first spend a great deal of effort to

rid the simplex basis of integer variables. After this is done, any integer-infeasibilities must

of necessity be in the superbasic variables. The diagram under discussion here must be
interpreted in the light of small increments in superbasic variables in some reduced search

space. If independent steps fail in such a small example as this, then the situation can only

become worse as the dimensionality of the problem increases. We cannot avoid the
combinatorial barrier that is inherent in any kind of integer programming here it raises

its ugly head in the form of the choice that must be made if we are going to try steps in more

than one superbasic at a time. Figure 9 is but a simple example in which ’taking one at a

y = f(x)
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time’ is sometimes insufficient to achieve integer-feasibility, and further examples can easily

be constructed to show that taking two at a time can also fail. Here we have four lattice

points, and a fifth point, which represents the solution of the continuous relaxation.

Independent steps in either or will hit a constraint boundary, but a "diagonal" step
succeeds.

Figure 9   Independent versus combined steps

Quadratic integer example Q1

The problem considered here is

minimize

(5)

subject to

(6)

(7)

(8)

x y

cts soln

1 2

3 4

f(x1, x2) = (x1 − 3.4)2 + (x2 − 1.6)2

x1 − x2 ≥ 1

4x1 − x2 ≤ 16

0 ≤ x1 ≤ 5

13



(9)

(10)

In this example, we see that the continuous optimum is 0.0 at , and the

integer-feasible optimum is at , with objective 0.52. The integer optimum

can be obtained by heuristic rounding of the continuous solution. The feasible region is

illustrated in figure 10, where the asterisk indicates the continuous solution, and filled circles

indicate feasible lattice points. Note that there is also a second local optimum at

with the same objective value, 0.52.

Figure 10   Example Q1

Quadratic integer example Q2

The problem considered here is

minimize

(11)

0 ≤ x2 ≤ 4

x1, x2    integer

x0
* = (3.4,1.6)T

x1
* = (4,2)T

x2 = (3,1)T

0.0 1.0 2.0 3.0 4.0 5.0

1.0

2.0

3.0

4.0

x

x

1

2

f(x1, x2) = (x1 − 3.4)2 + (x2 − 1.6)2
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subject to

(12)

(13)

(14)

(15)

(16)

In this example, we see that the continuous optimum is once again 0.0 at ,

and the integer-feasible optima are and , as before (both have

objective 0.52). This problem is illustrated in figure 11, and it is worthy of note that, if we

wish to maintain feasibility with respect to the linear constraints, only the latter solution is
obtainable by independent steps in the variables, and even then we must step before .

Figure 11   Example Q2

4x1 − 3x2 ≥ 8

2x1 − x2 ≤ 6

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 4

x1, x2    integer

x0
* = (3.4,1.6)T

x1
* = (4,2)T x2

* = (3,1)T

x2 x1

0.0 1.0 2.0 3.0 4.0 5.0

1.0

2.0

3.0

4.0

x
1

x 2
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2.7 Global optimization

For a large class of practical problems, global minimization is, in general, an impossible

task,although in a numberof practical cases, such problemshavebeensolved in a satisfactory

manner see, for example, the book by Ratschek and Rokne [76]. Normally, "real-world"

optimization problems are global, constrained, mixture of discrete and continuous,

nonlinear, multivariate and nonconvex, ie the hardest possible mathematically! It’s not all

bad news, since much useful progress has been made by taking advantage of simplifying
models and special problem structure. In particular, the development of interval arithmetic

and interval analysis by Moore, Mohd, Ratschek, Rokne and others [54, 55, 76] has led to

significant algorithmic advances in the last few decades.

Interestingly, some of the more imaginative of recent attempts at optimization methods try

to mimic perceived processes of nature. One such approach is that of simulated annealing;

another is evolution via the class of so-called genetic algorithms.

The simulated annealing technique shows a lot of promise for global optimization problems.

In its early stages, the method allows local deterioration of objective (but with gradually

declining probability) in the hope that beyond local bumps may be deeper valleys. A good

encapsulated description of simulated annealing is given in Press, Flannery, Teukolsky and
Vetterling [75], where the old travelling salesman chestnut is discussed, and FORTRAN

and Pascal code given for the method. Simulated annealing has become quite a popular line

of research, and appears to be a particularly good heuristic for the quadratic assignment

problem (QAP). For a definition of QAP the reader is referred to Connolly [8] or

Mawengkang and Murtagh [49]. In particular, Connolly [8], Burkhard and Rendl [6], and

Wilhelm and Ward [95] report some improved optima for several of the largest problems
available in the literature. Although the annealing algorithm is "intrinsically of a sequential

nature" [91, chapter 8], parallel implementations do exist, as reported by van Laarhoven

and Aarts [91].

Other recent contenders for efficient solutionof a verygeneral classof optimization problems

are members of the class of methods known loosely as genetic algorithms. The basic ideas

are conventionally expressed in biological terms; thus a gene pool is maintained throughout

the execution of a typical method, during which mutations are generated from potential

solutions by crossbreeding (partial permutations). Resulting solutions at each generation
are ranked according to some measure of fitness; in the case of minimization, an obvious

class of criteria is that whose rules compute the objective corresponding to each contender,

and then favours those with better objective value. It is hoped that via this process of

simulated evolution, a population will gradually emerge which contains the seeds of the
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final solution. Some useful tutorial articles on the subject of genetic algorithms are Morrow

[56] and Wayner [94], while two recent monographs are Davis [14] and Goldberg [27]. A

specific genetic method has been applied by Michalewicz, Krawczyk, Kazemi and Janikow

[51] to optimal control problems; its performance in some cases comparing favourably with
that of the GAMS/MINOS code of Murtagh and Saunders [26].

2.8 Linear programming

Linear programming (LP) problems are linear in both objective and constraints. The special

nature of this class of problems makes possible a very elegant solution algorithm known as
the revised simplex method the classic reference is Dantzig [12], while a more modern

treatment from a large-scale computational viewpoint is contained in the monograph of

Murtagh [57].

The basic result of LP theory stems from the nature of the feasible set. The feasible set can

be characterised geometrically as a convex polytope (or simplex), which can be imagined

to be an -dimensional polyhedron, and if an optimal solution exists, then there is at least

one vertex of the feasible set that is optimal. Figure 12 illustrates a trivial LP in which the

interior of the shaded quadrilateral OPQR represents the feasible set. The fundamental result
tells us that if a finite optimal point exists, then (at least) one of the vertices O, P, Q, R

(corresponding to so-called basic feasible solutions) is optimal.

n
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Figure 12   Linear programming

2.8.1 The simplex solution method

Diagrams such as figure 12 are used to illustrate some fundamental concepts of LP, however

we cannotuse graphicalmethods for real-world problems. An algebraic approach is required,

suitable for implementation on a digital computer. The simplex algorithm systematically
moves from vertex to vertex of , the feasible set. Such vertices are termed basic feasible

solutions. Each iteration improves the value of the objective until no further improvement

is possible. It is a very elegant algorithm, which maintains feasibility of candidate solutions

(basic solutions) at every step.

The great early success of mathematical programming was the development of the simplex

method by George Dantzig and co-workers Orden and Wolfe [12, 13] for the solution of

LP problems. The method was originally developed for hand calculation but was easily

adapted for use on digital computers, for which the revised simplex method is normally used.
Since then, many extensions and refinements have been developed for the method. One of

the most important developments has been a class of techniques known in general terms as
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sparse matrix techniques. These methods take advantage of the fact that almost all large

LPs have very sparse constraint matrices, ie almost all zeros. Nowadays it is quite common

to solve LPs containing tens of thousands of constraints. If such a problem were solved

using only dense matrix methods, that is, by explicitly storing and processing all the zero
elements, we would be dealing with the storage of hundreds of millions of

coefficients amounting to storage in excess of one gigabyte for the constraints alone. Not

only is space wasted, but time also, since most of the processor’s time would be occupied

in doing multiplications by zero.

In recent years there have been alternative LP algorithms proposed, most notably that of

Karmarkar [40], but the revised simplex method and its close variants are still the most

popular. A good discussion of Karmarkar’s method is also given in Strang [89]. It is

interesting to observe that while the asymptotic complexity of the simplex method is
exponential in the number of constraints, and Karmarkar’s is only polynomial, the revised

simplex method performs very well in practice. Artificial problems which elicit the

worst-case exponential simplex behaviour have been constructed (see for example [69],

chapter 8.6, p169) but these do not seem to occur in practice. Karmarkar’s algorithm is an

example of an interior point method, and some very recent work by Marsten, Subramanian,

Saltzman, Lustig and Shanno [47] has interpreted interior point methods as a natural
combination of the previously-known techniques due to Newton, Lagrange, and Fiacco and

McCormick [20]. The claim is made that interior point methods are "the right way to solve

large linear programs", and results reported by Lustig, Mulvey and Carpenter [45] are cited

in which the OB1 code of Marsten et al [46] outperforms MINOS 5.3 [64] by a factor of

ten on problems which have ranging from 7,391 to 29,424.

In spite of all this, the simplex method is well worth studying, not only for the insight it

gives into the structure of LP problems, and also of course their solution, but for the useful

extensions to the method which can be used to solve NLP problems. Lucid treatments of
some of these extensions can be found in Gill, Murray and Wright [24], Murtagh and

Saunders [62], and Murtagh [57].

2.9 Integer linear programming

Integer linear programming problems (ILPs) are LP problems in which extra constraints
requiring some or all variables to be integer valued have been imposed. ILP is a very common

problem class where variables representing indivisible units, eg men, machines do not admit

m + n
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fractional solutions. Figure 13 shows the combinatorial nature of such problems by an

enumeration of the (finite) feasible set of lattice points, rather grossly depicted by the filled

squares.

Figure 13   Integer linear programming

2.9.1 Branch-and-bound for ILP

ILPs are much harder to solve than continuous LPs, because of their fundamentally

combinatorial nature. They are potentially exponential in computational complexity, even
after the continuous LP relaxation has been solved by, say, the revised simplex method.

The standard algorithm for solving ILP is the very simple-in-concept branch-and-bound.

In this approach, for which myriad variations exist, the LP relaxation is first solved. Then,

if all required variables are within a specified tolerance of an integer value, the process halts.

Otherwise the problem is split into two sub-problems at an infeasible integer variable. The

subproblems are then put on a master list of subproblems to be solved. The next step is to

select one subproblem from the list and repeat the above procedure. The whole process
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terminates when there are no subproblems left. At all stages, we keep track of the best

integer-feasible solution so far. Subproblems can be discarded entirely if it becomes clear

that their solutions are no better than the current "best" integer feasible solution. The

sequence of problems thus takes the form of a tree, from which it should be clear how the
exponential complexity arises. The main aims are to keep the branching to as few nodes as

possible, and the main drawback of the method is that unless special steps are taken, the

number of subproblems (branches) can grow exponentially.

For a thorough description of the basic branch-and-bound approach, any of a large number

of textbooks may be consulted; we cite Nemhauser and Wolsey [68] 355 367 (this work

appears to be the most comprehensive general treatment of integer programming extant),

Papadimitriou and Steiglitz [69] 433 448, Murtagh [57], 107 111, Minoux [52], 248 258

and Ravindran, Phillips and Solberg [77], 191 198.

It should be noted also that there exist ILPs which are intrinsically hard no matter what

branch-and-bound heuristic is used for fathoming the search tree. In fact it can be shown
that there are ILPs such that:

... regardless of the order for fixing variables, and regardless of the method for

choosing nodes, all the enumerative algorithms will have to develop at least a

number of nodes roughly equal to the square root of the number of nodes in the

entire search tree, hence a number of nodes exponential in the number of

variables.

Jeroslow [39]

In spite of these fundamental objections, nearly all commercial linear programming codes

use the branch-and-bound method for solving linear integer programming problems. The

approach can be easily adapted to nonlinear problems, and we give some details here.

Branch and bound for nonlinear problems

The original problem is solved as a continuous nonlinear program, ignoring the integrality
requirements. Suppose the solution is not completely integer-feasible. We set

(17)

where is the smallest integer not exceeding .

xj, j ∈ J

xj = [xj] + fj, 0 ≤ fj < 1

[xj] xj
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The approach is to generate two new subproblems, with additional bounds, respectively

(18)

and

(19)

for a particular variable . This process of splitting the problem is called branching.

As in the linear case, one of these new subproblems is now stored in a master list of problems

remaining to be solved, and the other solved as a continuous problem. This represents the

depth-first approach to branch-and-bound. Other strategies in which both incumbents are

"stacked" and some heuristic used to select which of the previously-generated problems on

the list to solve next. The process of branching and solving a sequence of continuous

problems is repeated for different integer variables, , and different integers . As
stated, the logical structure of the method is often represented as a tree. Each node of the

tree represents a subproblem solution. Branching at a given node will terminate if one of

the following three criteria is satisfied:

Termination criteria for branch-and-bound

1. The subproblem has no feasible solution.

2. Thesolution of the subproblem is no better than the currentbest knowninteger feasible

solution.

3. The solution is integer feasible (to within a pre-defined level of tolerance).

One benefit of the branch-and-bound approach is that both upper and lower bounds on the

best possible integer solution are automatically available. Assuming the objective is to be

minimized, the current best known integer feasible solution provides an upper bound, and

the best of the remaining partially-integer solutions on the master list of problems to be
solved provides a lower bound. It is usual to terminate the branch-and-bound procedure

when the difference between these two bounds is within some pre-defined relative tolerance.

In general, the rate of convergence of the procedure is sensitive to the choice of variable

,on which to branch. It is alsodependenton the choiceof the node to which backtracking

is done, once the branching from a particular node is discontinued.

lj ≤ xj ≤ [xj]

[xj] + 1 ≤ xj ≤ uj

j ∈ J

j ∈ J [xj]

j ∈ J
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For nonlinear integer programs, it must be implicitly assumed that the problem is locally

convex, at least in the neighbourhood of the original continuous solution which contains

integer feasible solutions. Otherwise, the bounds discussed above are inadequate. It would

not be valid to terminate the branching under the termination criterion 2 above, and it also
would not be valid to terminate the procedure when the difference between the two bounds

is sufficiently small.

2.9.2 Alternative methods for IP

In this section we discuss some alternatives to branch-and-bound which have been proposed
for the solution of IP problems.

Special-purpose algorithms

Much of the literature on even linear IP is devoted to the description of special-purpose

methods which have been developed to exploit the particular structure of the problem at
hand. A very good example of a case in which special problem structure has been used to

advantage is that of the airline crew scheduling problem reported by Ryan [80], where

200,000 0 1 (binary) variables are involved. The solution of an integer program of this

magnitude would be out of the question if general-purpose methods such as pure

branch-and-bound were used.

Nemhauser and Wolsey [68] devote a large amount of space to special-purpose algorithms

for IP, which can be used to attack otherwise intractable problems. They cite three major

reasons for motivating a search for special-purpose approaches:

(i) Prohibitive size of the problem formulation.

(ii) Weakness of bounds.
(iii) Slow speed of general-purpose methods, eg branch-and-bound.
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Group-theoretic methods

Group-theoretic methods based on original ideas of Gomory in a sequence of papers [28,

29, 30] are used for pure integer problems and implementations can be found in some

commercial codes. They are given only a cursory treatment in Nemhauser and Wolsey [68],

however the book by Salkin and Mathur [81] contains an extensive account of these

techniques, including much on computational experience. The reader seeking further details

is referred to this book [81].

Boolean-algebraic methods

These apply to 0 1 programs, however any NLIP can be written as polynomial involving

0 1 variables. Methods for such transformations are described in the work by Hammer and

Rudeanu [33]. A good summary of progress up to the late 1970s is given in the survey paper
[34] by Hansen, where in particular, he notes that any nonlinear 0 1 program is equivalent

to a 0 1 knapsack problem (IP with one constraint) in the same variables. From a

computational point of view however, this result is not as useful as it may sound, since it

may take at least as much time to find the single constraint as to solve the original problem

by some other means. The paper [34] by Hansen is a good starting point for those interested

in Boolean methods for IPs.

Implicit enumeration

Implicit enumeration is used on 0 1 problems, although it is in principle available for any

pure-integer or mixed-integer problem since integer variables with finite upper and lower

bounds may be converted to sets of 0 1 variables. By clever use of bounds, it may be
arranged for certain problems that not all feasible lattice points need be explicitly considered,

however it is with such methods that the exponential complexity of IP in general is laid

bare, and it is difficult to imagine much future success for implicit enumeration even on

practical problems of moderate size. This class of methods, related to branch-and-bound,

is well-summarized in the dissertation of Mawengkang [48].
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2.10 Approaches to unconstrained optimization

The general unconstrained nonlinear minimization problem can be stated in the form:

The quadratic objective function in variables is used as a model and very simple test

function for algorithms purporting to solve problems in this very broad class. Any algorithm

for unconstrained optimization must perform well on quadratics, since all smooth functions

are like quadratics in a sufficiently small neighbourhood of a local smooth optimum. Two

fundamental theorems for developmentof unconstrained minimization methods are Taylor’s

theorem:

(20)

and the mean value theorem:

(21)

in both of which we have

(22)

It is here assumed that is twice continuously differentiable with gradient vector and

Hessian matrix , the respective elements of which are given by:

(23)

(24)

To have any hope of a local minimum, we need the Hessian matrix to possess a property

called positive definiteness. In particular, for a quadratic function, the Hessian matrix is

constant.

For sufficiently smooth objective function, necessary conditions for a minimum for the

unconstrained problem are and .

minimize F(x)

x ∈ Rn

n

F(x + p) = F(x) + g(x)Tp +
1
2

pTH(x + θp)

g(x + p) = g(x) + H(x + θp)

0 < θ < 1

F g(x)
H(x)

gj(x) =
∂F(x)
∂xj

hij(x) =
∂2F(x)
∂xi∂xj

H

g(x*) = 0 H(x*) ≥ 0
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Sufficient conditions for a minimum are and .

The shorthand notation represents the condition positive definiteness for

the Hessian matrix of partial derivatives. It can be shown that the following conditions for

positive definiteness are all equivalent [24]:

Positive definiteness of Hessian

1.

2. has positive spectrum (set of eigenvalues).

3. (Cholesky) factors of exist with the diagonal elements of , .

4. All multipliers in Gaussian elimination without pivoting (row or column interchanges)
are positive.

5. All principal minors of are positive.

2.11 Approaches to constrained optimization the Kuhn-Tucker conditions

In this section we summarize some especially lucid material from Gill, Murray and Wright

[24]. In a classic 1951 paper [43], Kuhn and Tucker derived conditions for constrained
optimal points for a general nonlinear function . The so-called Kuhn-Tucker conditions are

presented for various classes of continuous constrained optimization problems.

The traditional technique of using so-called Lagrange multipliers to handle constraints is

still a very powerful, theoretically elegant and the most widely used approach in practice,

both for analytic and numerical methods.

2.11.1 Linear equality constraints

We define the linear equality-constrained problem LEP:

g(x*) = 0 H(x*) > 0

H(x*) > 0

xTHx > 0; ∀x ≠ 0.

H

LLT H L lii > 0

H

f

26



LEP

Optimality conditions

For each case to follow, the aim is to characterize a feasible step from the current iterate,

and then to deduce some necessary conditions, and then some sufficient conditions for a

local minimum. We begin with the simplest kind of constraints linear equality constraints.

Since any feasible step from to must satisfy , the step must be an element

of the nullspace (or kernel) of the matrix . Let a basis for the nullspace of be formed by
the columns of the matrix . Examination of the Taylor series about a proposed optimal

point reveals that we must have . The vector is called the projected

gradient at . Any point at which the projected gradient vanishes is termed a constrained

stationary point. Likewise, we define the projected Hessian matrix . At such a

point it is easy to show that the gradient vector must be a linear combination of the rows of

, ie there exists a vector such that

(25)

where is the vector of Lagrange multipliers. In a similar manner to the unconstrained

case, we can derive second-order optimality conditions.

Note that the conditions are analogous to the unconstrained case, except that the projected

gradient and projected Hessian are involved.

minimize F(x)

x ∈ Rn

subject to Âx = b̂

p x x + p Âp = 0 p

Â Â

Z

x* ZTg(x*) = 0 ZTg(x*)
x*

ZTG(x*)Z

λ*Â

g(x*) = ∑
i = 1

m

âiλ
* = ÂTλ*

λ*
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LEP necessary conditions for minimum

(26)

(27)

(28)

(29)

The second and third of these conditions are actually equivalent, and together the four

become sufficient if we strengthen the last to a sharp inequality, thus:

(30)

2.11.2 Linear inequality constraints

We define the linear inequality-constrained problem LIP:

LIP

We need to distinguish between constraints which hold exactly and those which do not. Let

us suppose that the point is feasible. The constraint is said to be active (or
binding) if , and inactive if . The constraint is said to be satisfied if it is

active or inactive. If , the constraint is said to be violated at .

Âx* = b̂

ZTg(x*) = 0

g(x*) = ÂTλ*

ZTG(x*)Z ≥ 0

ZTG(x*)Z > 0

minimize F(x)

x ∈ Rn

subject to Ax ≥ b

ai
Tx̂ ≥ bix̂

ai
Tx̂ = bi ai

Tx̂ > bi

ai
T x < bi x
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Active constraints have a special significance in that they restrict feasible perturbations

about a feasible point. We may define two categories of feasible perturbations with respect

to an active inequality constraint. Firstly, if

(31)

then the direction is termed a binding perturbation with respect to the constraint, since

this constraint remains active at all points . A move along a binding perturbation is

said to remain on the constraint.

Secondly, if

(32)

then is termed a non-binding perturbation with respect to the constraint. This is because

the constraint will become inactive at the perturbed point , assuming that . Such

a positive step along a non-binding perturbation is said to move off the constraint.

To determine if the feasible point is also optimal for LIP, we must identify the active

constraints. Let the rows of the matrix contain the coefficients of the constraints active
at , with a similar convention for the vector , so that . Once again let be a

matrix whose columns form a basis for the set of vectors orthogonal to the rows of .

By considering the Taylor series expansion for about along a binding perturbation

, we obtain

(33)

This is equivalent to

(34)

To ensure that non-binding perturbations do not allow a descent direction (a direction for

the objective function decreases), we need to impose the condition that all Lagrange

multipliers are nonnegative. Further, we obtain necessary second-order condition in a similar
manner to LEP, in which the projected Hessian must be positive semi-definite.

In summary, we have the necessary conditions:

ai
Tp = 0

p

x̂ +αp

ai
Tp > 0

p

x̂ +αp α > 0

x*

t Â

x* Âx* = b̂b̂ Z

Â

x*f

p = ZpZ

ZTg(x*) = 0

g(x*) = ÂTλ*

ZTG(x*)Z
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LIP necessary conditions for minimum

(35)

(36)

(37)

(38)

(39)

As for the equality-constrained case, the second and third of these conditions are actually

equivalent.

Algorithms for LIP are more complicated than those for LEP, since the set of constraints

which are active at the solution (possibly the empty set) is generally unknown.

Sufficient conditions can also be given for LIP, but the complication of zero Lagrange

multipliers means that we must explicitly formulate alternative sets of sufficient conditions.

LIP sufficient conditions for minimum

(40)

(41)

(42)

(43)

(44)

Ax* ≥ b  with  Âx* = b̂

ZTg(x*) = 0

g(x*) = ÂTλ*

λi
* ≥ 0, i = 1,…, t

ZTG(x*)Z ≥ 0

Ax* ≥ b  with  Âx* = b̂

ZTg(x*) = 0

g(x*) = ÂTλ*

λi
* > 0, i = 1,…, t

ZTG(x*)Z > 0
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Once again, the second and third of these conditions are equivalent.

When zero Lagrange multipliers are present, the sufficient conditions include extra

restrictions on the Hessian matrix to ensure that displays positive curvature along any

perturbation that is binding for all constraints with positive Lagrange multipliers, but may

be binding or non-binding for constraints with zero Lagrange multipliers. Let contain

the coefficients of the active constraints with positive Lagrange multipliers and let be a
matrix whose columns span the nullspace of . In this case, sufficient conditions for to

be a strong local minimum of LIP are as follows.

LIP alternative sufficient conditions for minimum

(45)

(46)

(47)

(48)

(49)

Once again, the second and third of these conditions are equivalent.

2.11.3 Nonlinear equality constraints

We define the nonlinear equality-constrained problem NEP:

F

Â+

Z+

x*Â+

Ax* ≥ b  with  Âx* = b̂

ZTg(x*) = 0

g(x*) = ÂTλ*

λi
* ≥ 0, i = 1,…, t

Z+
TG(x*)Z+ > 0
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NEP

In contrast to the LEP case, in which all constraints are of course linear, there is in general

no feasible direction such that for all sufficiently small . To retain

feasibility, we must move along an arc. Such an arc may be specified by the equation
with . Then, is the tangent to this arc at . The basic necessary condition

for optimality of is that

(50)

This is equivalent to

(51)

is the Jacobian matrix of the constraints, defined by

(52)

The vector being orthogonal to the rows of the Jacobian at is not a sufficient condition

for to be tangent to a feasible arc. To illustrate this idea, consider the two constraints

(53)

(54)

The origin is the only feasible point, so no feasible arc exists. But any vector of the form

satisfies the Jacobian orthogonality condition.

minimize F(x)

x ∈ Rn

subject to ĉ i(x) = 0, i = 1,…, t .

ĉ i(x* +αp) = 0p α

α(0) = x* x*x = α(θ) p
x*

Â i(x
*)T

p = 0, ∀i

ÂTp = 0

Â

aij =
∂ci

∂xj

x*p

p

ĉ 1(x) = (x1 − 1)2 + x2
2 − 1

ĉ 2(x) = (x1 + 1)2 + x2
2 − 1

p = (0, δ)T
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We need stronger conditions on the constraint functions to ensure that is tangent to a

feasible arc. Such further assumptions are termed constraint qualifications, and they can

take many forms. One practical constraint qualification is that the constraint gradients at
are linearly independent. This is equivalent to the statement that the matrix has full

row rank.

For to be optimal, must be stationary along a feasible arc:

(55)

where

(56)

If is a matrix whose columns form a basis for the nullspace of , ie the set of vectors

orthogonal to the rows of , then we have

(57)

This condition is analogous to the condition in the linearly constrained case, except that the

matrix is no longer constant. The vector is termed the projected gradient of

at . As before the condition that the projected gradient is zero at , is equivalent to the

condition that must be a linear combination of the rows of .

(58)

for some -vector of Lagrange multipliers.

Define the Lagrangian function as

(59)

Our necessary condition for optimality of then can be stated as is a stationary point of

the Lagrangian when .

For a second order necessary condition we define the Hessian of the Lagrangian

(60)

We need

(61)

p

x*

Â(x*)

x* F

∇F(α(θ)) |θ = 0 = 0

ÂTp = 0

Z(x*) Â

Â

Z(x*)T
g(x*) = 0

Z(x*)Tg(x*)Z

x* x*F

g(x*) Â(x*)

g(x*) = Â(x*)Tλ*

t

L(x,λ) = F(x) − λTĉ(x)

x* x*

λ = λ*

W(x,λ) ≡ G(x) − ∑
i = 1

t

λiĜ i(x)

pTW(x*, λ*)p ≥ 0
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which is equivalent to

(62)

This is the projected Hessian of the Lagrangian function.

NEP necessary conditions for minimum

(63)

(64)

(65)

(66)

Once again, the second and third of these conditions are equivalent, and sharpening the

inequality on the projected Hessian of the Lagrangian in the last equation leads us to
conditions which are sufficient for a constrained minimum:

(67)

2.11.4 Nonlinear inequality constraints

We define the problem:

Z(x*)T
W(x*, λ*)Z(x*) = 0

ĉ(x*) = 0

Z(x*)Tg(x*) = 0

g(x*) = Â(x*)Tλ*

Z(x*)T
W(x*, λ*)Z(x*) ≥ 0

Z(x*)T
W(x*, λ*)Z(x*) > 0
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NIP

As in the linear case (LIP), we need to identify the active constraints. Only these constraints

restrict feasible perturbations at . Again we assume constraint qualification holds. The

conditions are given below.

NIP necessary conditions for minimum

(68)

(69)

(70)

(71)

(72)

Zero Lagrange multipliers cause problems in stating sufficient conditions for NIP, just as
in the LIP case. We state first one set of sufficient conditions for NIP which avoids the

problem by assuming all Lagrange multipliers are positive:

minimize F(x)

x ∈ Rn

subject to ĉ i(x) ≥ 0, i = 1,…,m .

x*

c(x) > 0  with  ĉ(x*) = 0

Z(x*)Tg(x*) = 0

g(x*) = Â(x*)Tλ*

λi
* ≥ 0, i = 1,…, t

Z(x*)T
W(x*, λ*)Z(x*) ≥ 0
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NIP sufficient conditions for minimum

(73)

(74)

(75)

(76)

(77)

When zero Lagrange multipliers are present, the sufficient conditions include extra

restrictions on the Hessian matrix of the Lagrangian function to ensure that displays
positive curvature along any feasible arc that is binding for all constraints with positive

Lagrange multipliers, but may be binding or non-binding for constraints with zero Lagrange

multipliers. Let contain the coefficients of the active constraints with positive

Lagrange multipliers and let be a matrix whose columns span the nullspace of .

In this case, sufficient conditions for to be a strong local minimum of NIP are as follows.

c(x) > 0  with  ĉ(x*) = 0

Z(x*)Tg(x*) = 0

g(x*) = Â(x*)Tλ*

λi
* > 0, i = 1,…, t

Z(x*)T
W(x*, λ*)Z(x*) > 0

F

Â+(x*)
Z+(x*) Â+(x*)

x*
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NIP alternative sufficient conditions for minimum

(78)

(79)

(80)

(81)

(82)

2.12 Existing algorithms for continuous nonlinear optimization

Generally speaking, function comparison methods are a poor choice when compared with

methods making use of derivative information. They should be chosen only when derivatives
are very difficult to compute, unreliable or not available at all. For some problems, the

objective function is nonsmooth, and here function comparison methods may be the only

ones available. For some very useful practical advice in this regard, the book by Gill, Murray

and Wright [24] is recommended.

2.12.1 1-Dimensional methods

Some of the standard methods for minimization of a function of a single variable are

bisection, Brent’s method, Fibonacci search, golden section search, quadratic interpolation,

and Newton’s method [24, pp82 92]. Brent’s original work is collected in his monograph

[4] and source code for modern implementations in FORTRAN and Pascal can be found in

Press, Flannery, Teukolsky and Vetterling [75]. First and second derivative information
must be available to use Newton’s method, whereas other techniques mentioned use only

function values.

c(x) > 0  with  ĉ(x*) = 0

Z(x*)Tg(x*) = 0

g(x*) = Â(x*)Tλ*

λi
* ≥ 0, i = 1,…, t

Z+(x*)T
W(x*, λ*)Z+(x*) > 0
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2.12.2 A model descent algorithm schema (unconstrained)

We consider now a very general specification for a descent method for linearly-constrained

minimization which embodies the nullspace matrix and a line search subalgorithm. Figure

14 has the details.

feasible initial estimate;

converged:=

givingup:=false

while not (converged or givingup) do
compute (*search direction*)

compute such that

(*line search*)

(*update soln vector*)

givingup:=(k > maxiterations)

endwhile

Figure 14   Descent schema

Notes

1. Feasibility is preserved by this class of algorithms.

2. should be a descent direction, ie .

3. The objective function must sustain a sufficient decrease at each iteration to give some

hope of convergence in practice in a reasonable number of iterations. It is not sufficient

to merely require that . It is easy to devise examples where a decreasing

sequence is generated but converges too slowly to be of any practical computational
use. For further details, see eg Gill, Murray and Wright [24], pp100 102, 324 325.

The basic Newton method uses the quadratic model which is accurate for any smooth
function sufficiently close to a local minimum. This method has remarkable convergence

properties provided we are "sufficiently close". The best methods are variations on Newton’s

method, however to be effective the Hessian matrix needs to be positive definite.

Z

k : = 0;

x0: =
| f(x) |< ε

pz

pk: = Zpz

αk F(xk + αk pk) < F(xk)
xk + 1: = xk + αkpk

k : = k + 1

gk
TZpz < 0pk

F(xk + 1) < F(xk)
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Many alternative methods exist for choosing the descent direction . Some well-known

ones are steepest descent, Newton’s method, the class of quasi-Newton methods, and the

conjugate gradient method. We briefly discuss each of these in turn.

Steepest descent (1st derivative method)

The oldest method for minimization is that of steepest descent. At each iterate , we follow

the negative gradient vector which is guaranteed to be a descent direction unless we are

already at a stationary point. This method is much discussed in textbooks on multivariate

minimization but is really a very poor method for machine implementation. The first
published account is that of Cauchy, circa 1847 [7].

Conjugate gradient method (1st derivative method)

A generalization of the idea of an orthogonal basis for a vector space is used to generate a

sequence of non-interfering search directions . This method was originally developed as

a method for solving linear equations by Hestenes and Stiefel (1952) [36], and has the
property that any quadratic function of variables that has a minimum can be minimized

in n steps, one in each of the conjugate directions, and the order in which the directions are

applied does not matter. Its extension to nonlinear problems was the work of Fletcher and

Reeves (1964) [19]. The conjugate gradient method is used commonly for large-scale

problems when methods based on matrix factorizations are not possible because the matrix

is too large or dense. This is the approach adopted for MINOS [64].

Newton’s method (2nd derivative method)

Newton’s method is based on the simple quadratic model, viz. that any smooth function

looks like a quadratic with positive definite Hessian in the neighbourhood of a minimum.

The simple quadratic function

(83)

is used to model an arbitrary smooth function. It is easy to show that the quadratic is

minimized when satisfies

p

xk

pk

n

F(x + p) = F(x) + g(x)Tp +
1
2

pTG(x)p

p
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(84)

where is the gradient vector at the current iterate and is the corresponding Hessian

matrix.

A positive definite Hessian guarantees a unique solution , which is termed the Newton

direction. If the quadratic form is positive definite, ie the (constant) Hessian , then

exactly one iteration is required for the Newton direction to find the minimum.

If is not positive definite then there exist various strategies for modifying the computed

Hessian to find a direction to decrease . Such modified Newton techniques rely on matrix

factorizations to check the positive-definiteness of the Hessian.

The basic Newton method has very strong local convergence properties, provided we have

positive definiteness, and this should be clear from its behaviour on a quadratic function,
and the Taylor expression for near a minimum. It is a second derivative method, which

means that sufficient conditions for optimality can be checked. We need to be aware that it

can also fail in a rather spectacular manner since the quadratic model may not be accurate

away from the minimum.

A further variation of the basic Newton idea is to use finite differences of the gradient vector

to arrive at an approximate Hessian. Such methods are termed finite-difference Newton

methods. Proper adaptive implementations of such methods are generally as robust and

rapidly-convergent as Newton-type methods which use the full second derivative
information of the Hessian.

Quasi-Newton methods (2nd derivative methods)

These are based on the idea of building up curvature information as the iterations of a descent

method proceed, using function value and gradient vector. Newton’s method uses the exact

Hessian and obtains the curvature at a single point. Quasi-Newton methods are based on
the fact that an approximation to the curvature of a nonlinear function can be computed

without explicitly forming the Hessian matrix.

The two well-known rank-two updates to the sequence of matrices approximating the

Hessian are those of Davidon-Fletcher-Powell (DFP), and Broyden, Fletcher, Goldfarb,

Shanno (BFGS). Good descriptions can be found in Gill, Murray and Wright [24]. The

MINTO code of Murtagh, on which the present work is based, uses BFGS.

Gkpk = −gk

gk xk Gk

pk

G > 0

G

F

f
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Active set methods for the linearly constrained problem

The approach used by Murtagh and Saunders in MINOS [62] is based on the idea of

superbasic variables. At any given stage in the minimization, the number of superbasic

variables is a measure of dimensionality of the subspace formed by the intersection of

the active constraints. Superbasic variables correspond to degrees of freedom for the search,

ie to free variables which are currently neither basic (dependent) nor at their bounds (fixed).
Superbasic variables are free to vary between their simple bounds, subject to maintaining

feasibility of the current set of basic variables.

The search may be viewed as having two interwoven components: the problem of finding

the right set of active constraints, and the problem of minimizing on that active set. Details

are given in Chapter 4.

nS
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Chapter 3

NLIP Literature

NLIP is an intrinsically hard problem. When embarking on a research project for nonlinear

integer programming, it is of little comfort to read statements such as the following from

Scarf:

In the language of complexity theory, integer programming is what is known as

an NP-complete problem: If there is a polynomial algorithm for integer

programming, then virtually every problem we can think of is easy to solve a

quite unlikely possibility.

Scarf [82]

Note that the statement just cited from Scarf refers to linear integer programming! NLIP is

certainly harder than integer LP.

Conventional methods of solving NLIP are based on various sequential linearizations of the

problem and some variations on the basic branch and bound strategy, however in some

cases, special advantage may be taken of structure in the problem under consideration.

Indeed, there are reported instances where problems with hundreds of thousands of integer
variables have been solved. One such example is that of Ryan [80] who reports the solution

of an airline crew scheduling problem involving 200,000 binary variables on a

microcomputer.
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Thegeneral problem of nonlinear integer programming (NLIP), especially large-scale NLIP,

is widely recognized as a "tough nut to crack". As with most domains of mathematics,

nonlinear problems are often solved by generating a sequence of solutions to linear problems

which in some sense approximate the original nonlinear problem. This is certainly the case
with NLIP. In the following sections, we outline some of the most recent research into

algorithms for the general NLIP problem.

3.1 General

A good starting point for NLIP is linear integer programming, and the best modern reference
for integer and combinatorial optimization is the excellent monograph of Nemhauser and

Wolsey [68]. This book is a comprehensive treatise of the subject, and while the authors

admit that "it does not come close to covering all the literature" [op cit (vii)], it is nevertheless

a weighty tome, and an indispensable reference for researchers in the field. In this work,

the authors develop among other topics, the theory of valid inequalities, which are used to

characterize the feasible set of an optimization problem; in particular those of most interest
are the ones which are active at the final solution. The theory of valid inequalities was

founded by Gomory in the late 1950s and early 1960s, and Nemhauser and Wolsey present

in this book algorithms for generating all valid inequalities for a given problem. They also

give a thorough discussion of cutting-plane algorithms (the systematic addition of linear

constraints which "slice off" portions of the feasible set not containing integer-feasible

points), also pioneered by Gomory. The book is replete with examples and useful exercises;
in fact it is a goldmine of information on the state-of-the-art of integer and combinatorial

optimization in the late 1980s, although notably absent is any treatment of NLIP.

3.2 The outer approximation algorithm of Duran and Grossmann

In 1986, Duran and Grossmann [17] published details of an outer approximation algorithm
to solve MINLP. The approach involves the construction and solution of an alternating

sequence of integer linear programming master problems, and inner nonlinear programming

subproblems. The current subproblem is solved with the integer variables held fixed, and

the master problem is formed by linearizing the functions at the solution of the subproblem.
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The Duran and Grossmann method uses decomposition principles to exploit problem

structure, which is assumed to be of the following form: linear in the integer variables and

convex in the nonlinearportionsof the objective and constraint functions (whichonly involve

the so-called nonlinear variables). The general form of the class of problems addressed by
this method is

The nonlinear function and the vector functions are required to

be continuously differentiable and convex on appropriate compact domains. As is

conventional, the domain of the integer variables is assumed to be some finite discrete

set; most commonly the unit hypercube .

The main ideas of the method as summarized in the original paper by Duran and Grossmann

are as follows. The linearity of the discrete variables allows independent characterization

of the continuous and discrete feasible search spaces of the problem. The continuous space

may be expressed as an intersection of a finite collection of compact convex regions, each

of which is parametrized by distinct values of the discrete variables. Outer-approximation
of the convex sets by intersection of supporting half-spaces is used to define a master

mixed-integer LP. The authors compare their method with the generalized Benders

decomposition method and note that while both techniques make use of the mathematical

tools of projection, outer-approximation and relaxation, their method tended to produce

better lower bounds on the optimal objective value.

Early test results reported by Duran and Grossmann show promise for the method, which

the authors indicate should particularly suit problems in which the NLP subproblems are

expensive to solve. Fletcher, Leyffer and co-workers [44] at the University of Dundee are
presently working on similar ideas to those presented by Duran and Grossmann [17].

minimize

cT y + f(x)

subject to

g(x) + By ≤ 0

x ∈ X ⊆ Rn

y ∈ U ⊆ R+
m

f : Rn → R g : Rn → R p

U

Y = {0,1}m
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3.3 The method of Mawengkang and Murtagh

Somerecentwork (1985/6)by Mawengkangand Murtagh[49] and Murtagh[59] has allowed

progress to be made on a rather general and commonly-occurring class of NLIPs, namely

those in which the proportions of integer variables and nonlinear variables are both small.

In a 1986 paper [49], the authors describe experience in applying the MINOS (see [64, 62])

code to large nonlinear (both nonlinear objective and nonlinear constraints) integer

programming problems. Their work was based on an extension of the constrained search
approach used in MINOS, and the application areas considered were an instance of the

quadratic assignment problem (QAP) and a natural gas pipeline network design problem.

Since QAPs of order greater than about 10 or 15 are notoriously expensive to solve using

approaches such as branch-and-bound, the authors adopted a direct search approach which

treats a subset of the integer variables in a similar fashion to the superbasic variables of the

MINOS algorithm. Just as the superbasic variables in MINOS allow the extra degrees of
freedom needed for a nonlinear problem, certain of the integer variables were allowed to

vary only in discrete steps during the search, thus maintaining integer feasibility. In fact,

the present thesis involves an extension of the approach used by Mawengkang and Murtagh,

and the reader is referred in particular to Chapter 5 and Chapter 6.

The paper [60] by Murtagh extends the work described in the previous paragraph, and also

forms the starting point for the present dissertation. Murtagh’s approach, as given in [60],

is elaborated and analysed in the present Chapter 5.

3.4 Other approaches

Linearization techniques have been known for many years. Any IP can be reformulated as

a0 1 problem (see for exampleNemhauser and Wolsey [68]). If the objective and constraints

are polynomials then the problem can be reformulated as a linear integer program (Garfinkel

and Nemhauser (1972) [21]. Such techniques introduce many new 0 1 variables and many
new constraints. Extra constraints are not normally a problem, however each extra 0 1

variable has, broadly speaking, the potential to double computation time.

Twoalternative well-knownmethods for NLIP problemare Benders’ decomposition method

and Bellman’s dynamic programming. These approaches are well-documented in the
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literature and it serves little purpose to repeat them here. The interested reader may wish to

consult for example Nemhauser and Wolsey [68] for modern treatments of either of these

topics.

The thesis of Myers (1984) [66] also considers comparative branch-and-bound strategies,

in conjunction with the design of Lagrangian relaxation and subgradient optimization

strategies for linearly-constrained mixed-integer NLIPs. One of the major conclusions of
this work was to favour a branching strategy which maximized the product of

integer-infeasibility and component of the objective gradient vector, taken across all integer

variables which are not currently integer-feasible.

Gupta & Ravindran (1985) [32] considered separate heuristics for branch and bound

approaches to solving convex nonlinear integer programs. Their computational experience

indicated that branching on the variable with greatest integer-infeasibility seemed to be best,

but since their largest problem had only eight integer variables, one feels that such results
are inconclusive at best.

In 1984, Balas and Mazzola [1] published an influential paper proposing a linearization
approach involving the replacement of general nonlinear functions of binary 0 1 variables

appearing in inequality constraints with a family of equivalent linear inequalities. This

technique has the advantage of linearization without introducing additional variables.

Hansen’s 1979 survey paper [34] gives a good summary of methods for 0 1 NLIP at that

time, as well as examples of applications and an extensive bibliography. He concluded in

particular that only a small proportion of the many algorithms that had been proposed up

to that time had actually been implemented and tested; that network flow algorithms are

useful for certain classes of quadratic 0 1 programs; a standard set of test problems would
allow meaningful benchmark tests to be applied; and that Boolean formulations of 0 1

NLIPs can be useful for suggesting algorithms or proof techniques.

Several other approaches have been described in the literature, and good reviews of work

prior to 1981 are found in Gupta and Ravindran [31] and Cooper [9].

3.5 Existing NLIP software a necessarily brief survey

Many optimization packages have been written, but very few indeed for NLIP. The MINOS
code of Murtagh and Saunders [64] provides nonlinear objective as well as linear constraints

33 = 27
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capability, and MINOS/AUGMENTED adds nonlinear constraints capability, but, as noted

above, the landscape is much more sparse when we examine available software for

general-purpose nonlinear integer optimization until recently the only general-purpose

large-scale nonlinear integer package known to the present author is Murtagh’s MINTO
[58]. However, some recent work by Viswanathan and Grossmann [92] has resulted in the

development of software for the solution of MINLP problems. The implementation of the

new algorithm, which is an extension of the outer-approximation algorithm reported by

Duran and Grossmann [17], has been done for several hardware platforms, and within the

framework of the GAMS [5] system (the nonlinear step is done by MINOS 5.2 [65]). Also

recently brought to the author’s attention is the work of Paules and Floudas [72], which also
uses GAMS as a base to allow expression and solution of MINLP problems. It works to

"provide exact syntactic statement of algorithmic solution procedures" and caters for

"completely general automated implementation of many well known algorithms including

Generalized Benders Decomposition, the Outer Approximation / Equality Relaxation and

Dantzig-Wolfe Decomposition". The APROS system specializes in catering for algorithms

which involve some kind of decomposition technique and which require extensive
communication of data between various subproblems which may be generated during the

solution process.

In recent years, microcomputers have become so powerful that many mainframe software

systems have been ported to personal computer platforms. The paper [93] by Wasil, Golden

and Liu gives a reasonably up-to-date comparison of six PC-based packages which handle

nonlinear optimization problems, although notably, none has integer capability.

The MINTO code of Murtagh [62] extends MINOS to add integer capability. MINTO is a

powerful general-purpose mixed-integer optimizer which caters for nonlinear objective

and/or constraints. It uses the MINOS or MINOS/AUGMENTED algorithm to arrive at a

locally optimal point with respect to the continuous relaxation, and then switches to the
branch-and-bound technique in order to ultimately satisfy the integer requirements. The

MINOS engine is then reused to recursively solve the newly-generated subproblems arising

from the branch-and-bound process. By contrast, the present work uses the MINTO

algorithm as a starting point, and allows direct search for integer feasibility and local

optimality once the continuous relaxation has been solved by the MINOS engine.

Branch-and-bound may then be used as a last resort if one of the direct search mechanisms
fails to achieve integer feasibility. MINOS, MINOS/AUGMENTED and MINTO are

discussed in greater detail in Chapter 4, and the new direct-search methods in Chapter 6.
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Chapter 4

MINOS1 and its descendants

MINOS is a FORTRAN code designed to solve large optimization problems in which the

objective may be nonlinear and the constraints linear, in addition to simple bounds.

In this chapter we present a summary of the fundamental ideas and equations underlying

the steps of the MINOS algorithm of Murtagh and Saunders, as reported in their seminal

1978paperLarge-Scale LinearlyConstrained Optimization [62]. This is the principal source

for the reader requiring further details of both the theory and implementation of the original
MINOS. As outlined in an earlier chapter, the algorithm has been extended by the original

authors and co-workers to handle both nonlinear constraints (see chapter 4.3) and integer

restrictions on the variables. The paper [61] by Murtagh and Saunders is the original

published account of the nonlinear constraints development, while an excellent encapsulated

summary of inner workings of the extended MINOS (with nonlinear constraints capability)

can be found in Gill, Murray, Saunders and Wright [26].

Problem to be solved by MINOS

MINOS is a particular implementation of the reduced-gradient algorithm of Wolfe [96].

The class of problems solved by MINOS is the following:

minimize

(85)F(x) = f(xN) + cTx

1 Modular In-core Nonlinear Optimization System
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subject to

(86)

(87)

The matrix is with . It contains the columns of the identity matrix

as a submatrix, corresponding to the problem formulation containing a full set of slack

variables.

Such problems contain constraint matrices which are typically highly-sparse and many

also are only slightly nonlinear, in the sense that the variables occurring nonlinearly in the

objective, denoted above, form only a small percentage of the total variables.

The approach used by MINOS is an extension of the revised simplex method for linear

programming (see for example Dantzig [12], Murtagh [57] or Gill, Murray and Wright

[24]), and as such draws on a vast body of refinements that have been made over two or

three decades since the original work of Dantzig [12]. Such advancements include upper
and lower bounds on all variables and stable recurrences for update of a sparse factorization

of the basis matrix.

The fundamental result on which the revised simplex method for linear programming (LP)

is based is of course not true for nonlinear programming (NLP). For LP we know that at an

optimal solution, at least variables are at a bound. Geometrically, we are at an extreme

point, or boundary, of the feasible set. Even for constrained NLP, a locally-optimal point

can easily be an interior point. An excellent discussion of necessary and sufficient conditions

for constrained optimization (the so-called Kuhn-Tucker conditions) divided into the four
categories of linear/nonlinear and equality/inequality is given in Gill, Murray and Wright

[24, chapters 3.3 and 3.4], although here we shall discuss linear constraints only. The

conditions have been summarized in the present section 2.11.

Nevertheless, for such a powerful and theoretically elegant technique as the revised simplex

method, it is possible to extend its usefulness to nonlinear problems by redefining the simplex

partition. Since the number of variables at bound (nonbasic) at a locally optimal point is not

known, we introduce a third element of the partition, namely the superbasic variables (the

terminology is that of Murtagh and Saunders [62]). In other words, in addition to the
conventional revised simplex partition into columns corresponding to the so-called basic

and nonbasic variables, MINOS employs a third component of the partition that which

Ax = b

l ≤ x ≤ u

A m × n m ≤ n m × m Im

A

xN

n − m
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corresponds to the superbasic variables. Superbasics are essentially free variables and their

number gives the dimension of the current search space. They are free to vary between

simple bounds subject to maintaining feasibility of basics which are dependent on them.

As clearly pointed out by Murtagh and Saunders [62], an important advantage of the concept

of basic solutions is the emphasis given to upper and lower bounds. The constraint matrix

is assumed to contain columns corresponding to the identity matrix, which in turn
correspond to a full set of slack variables. Inequality constraints are easily accommodated

in this manner, as is the problem of finding an initial feasible solution; this is just the

conventional phase one of the revised simplex method. It should be noted that the so-called

artificial variables used in phase one of the revised simplex method are simply slacks with

upper and lower bounds of zero. They are of no special significance computationally,

however it will be seen later that their presence in the basis causes problems for certain of
the direct search techniques of Chapter 6.

4.1 Fundamental equations for MINOS

Assuming then we have the partition into basics, superbasics and nonbasic, the general linear

constraints take the form:

(88)

It is assumed that the nonlinear portion of the objective, ie is sufficiently smooth so

that a Taylor series representation can be written:

(89)

where and is the Hessian matrix of second partial derivatives evaluated

at some point between and .

Given the partition into basic, superbasic and nonbasic variables, and assuming that

is a quadratic form, we have the following equations which must hold for a constrained

stationary point.

A

Ax = [B S N]




xB

xS

xN





= b

f(xN)

f(x +∆x) = f(x) + g(x)T∆x +
1
2
∆xTG(x + γ∆x)∆x

0 ≤ γ ≤ 1 G(x + γ∆x)

x x +∆x

f(x)
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(90)

ie the step remains on the surface given by the intersection of the active constraints

(91)

From these we derive

(92)

and

(93)

Gill and Murray have defined a class of algorithms in which the search direction along the

surface of active constraints is characterized as being in the range space of a matrix which

is orthogonal to the current matrix of linearized constraint normals. If is the

current set of active constraints, then is an matrix such that . The

only further requirement on is that it have full column rank; thus severaldegrees of freedom

are still available for the choice of . The form used by the MINOS procedure corresponds
to the extended simplex partition in which the superbasic variables form a new component

of the partition. This leads to the choice of given by (93). The reader interested in further

details may consult the paper by Murtagh & Saunders [62].

Premultiplication of (93) by the matrix




B S N
0 0 I









∆xB

∆xS

∆xN





= 0





gB

gS

gN





+ G




∆xB

∆xS

∆xN





=




BT 0

ST 0

NT I








π
λ




∆xN = 0

∆xB = −W∆xS

W = B−1S

∆x =





−W
I
0






∆xS = Z ∆xS

Z

Ax = b

n − s Z n × s AZ = 0

Z

Z

Z
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(94)

leads to some useful relationships. We can estimate the Lagrange multipliers for the general

constraints from the first row partition:

(95)

When is stationary, ie , we obtain

(96)

Thus is analogous to the pricing vector in the revised simplex algorithm.

The third row partition yields:

(97)

which when leads to:

(98)

which is our vector of reduced costs in LP.

From the second row partition we get an expression for :

(99)

in which

(100)






I 0 0

− WT I 0
0 0 I






BTπ = g + [I 0 0] G





−W
I
0





∆xS

x ∆xS = 0

BTπ = gB

π

λ = gN − NTπ + [0 0 I] G





−W
I
0





∆xS

∆xS = 0

λ = gN − NTπ

∆xS

[−WT I 0] G





−W
I
0





∆xS = −h

h = [−WT I 0] g = gS − WTgB = gs − STπ
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4.2 Steps of the MINOS algorithm

The following gives a broad summary of the major computational steps of MINOS, and is

summarized from Murtagh and Saunders’ 1978 paper [63]. For step 0, no activity is actually
stated, merely that certain quantities are precomputed, and enter the method as initial values.

Step 0: Initial conditions.

We assume that the following quantities are available:

(a) a feasible vector x satisfying and

(b) the corresponding function value and gradient vector

(c) the number of superbasic variables,

(d) a factorization, of the basis matrix

(e) a factorization of a quasi-Newton approximation to the reduced Hessian

matrix .

(f) a pricing vector , being the solution of

(g) the reduced gradient vector

(h) convergence tolerances TOLRG and TOLDJ

Step 1: Test for convergence in the current subspace.

If then go to step 3.

Step 2: Price, ie estimate Lagrange multipliers, add one superbasic.

(a) calculate

[B S N]x = b l ≤ x ≤ u

g(x) = [gB gS gN]Tf(x)

s , (0 ≤ s ≤ n − m)

LU m × m B

RTR s × s

ZTGZ

BTπ = gBπ

h = gS − STπ

| h | > TOLRG

λ = gN − NTπ
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(b) select , the largest elements of corresponding to variables at their

lower (upper) bound. If none, STOP, the Kuhn-Tucker necessary conditions for an

optimal solution are satisfied.

(c) otherwise

(i) choose or corresponding to

(ii) add as a new column of S

(iii) add as a new element of

(iv) add a suitable new column to R

(d) increment

Step 3: Compute the direction of search,

(a) solve

(b) solve

(c) set

Step 4: ratio test (CHUZR)

(a) find , the greatest value for which is feasible

(b) if then go to step 7

Step 5

(a) find , an approximation to , where

(b) change to and set and to their values at the new .

λq1
< −TOLDJ λ

q = q1 q = q2 | λq | = max(| λq1
|, | λq2

|)

aq

λq h

s

p = ZpS

RTRpS = −h

LUpB = −SpS

p = [pB pS pN]T

αmax ≥ 0 α x +αp

αmax = 0

α*α

f(x +α*p) = min
0 ≤ θ ≤ αmax

f(x + θp)

x x +αp f g α
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Step 6: Compute the reduced gradient vector

(a) solve

(b) compute new reduced gradient .

(c) modify in accordance with a quasi-Newton recursion on using and the

change in the reduced gradient .

(d) set .

(e) if then go to step 1. No new constraint was encountered so we remain in the

current subspace.

Step 7: Change basis if necessary; delete one superbasic.

We assert that and for some , a variable corresponding to the th

column of has reached a simple bound.

(a) if a basic variable hit is bound then

(i) swap the pth and qth columns of B and S respectively, and correspondingly,

the components of and . The column of S with index q must be such that

the new B is nonsingular.1

(ii) modify to reflect this change in B.

(iii) compute the new reduced gradient, .

(iv) go to (c)

(b) otherwise, a superbasic variable hit its bound . Define

(c) make the qth variable in S nonbasic at the appropriate bound, ie

(i) delete qth columns of S and R, and correspondingly, the qth components of

and .

h = ZTg

UTLT = gB

h = gS − STπ

RTRR α,pS

h − h

h = h

α < αmax

α = αmax p(0 ≤ p ≤ m + s) p

[B S]

(0 < p ≤ m)

xB xS

L ,U ,R , π

h = gS − STπ

(m < p ≤ m + s) q = p − m .

xS

h

1 This is also required for the direct search methods of chapter 6 in which a    pivot is done.B ↔ S
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(ii) restore R to triangular form.

(d) decrement s and return to step 1.

4.3 MINOS/AUGMENTED

This section summarizes the major features and capabilities of the MINOS/AUGMENTED
code of Murtagh and Saunders [61]. This system uses a projected Lagrangian algorithm to

extend the MINOS capabilities to handle nonlinear constraints. The system is specifically

designed for large-sparse constraint sets, which in most instances, contain a large subset of

purely-linear constraints.

A projected Lagrangian method for the nonlinearly constrained problem

Consider the problem:

minimize

(101)

subject to

(102)

(103)

To solve this problem, we can solve a sequence of linearly constrained problems in which

a linear approximation is used in place of the nonlinear constraints and higher-order
terms are adjoined to the objective function to form a Lagrangian function. The problem

then becomes

minimize

(104)

subject to

f 0(x)

f(x) = 0

l ≤ x ≤ u

f(x) = 0

L(x,xk, λk) = f(x) − λk
T(f − f̃)
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(105)

(106)

where is the linear approximation to at , ie

(107)

where and are respectively the constraint vector and Jacobian matrix of , both

evaluated at .

The algorithmic details may be summarised as indicated in Figure 15.

initial estimate

initial estimate
positive penalty parameter

repeat
solve the linearly constrained problem

minimize

 

subject to

to obtain and

if not converged then
relinearize constraints at

endif
until converged

Figure 15   A projected Lagrangian method

For the ensuing discussion, and following Murtagh and Saunders [61], we assume that the

nonlinearly constrained problem as defined by equations (101) (103) can be expressed in

the following form, in which the linear components are explicitly shown:

f̃ = 0

l ≤ x ≤ u

f̃ f xk

f̃(x,xk) = fk + Jk(x − xk)

fk Jk f

x = xk

k : = 0
x:=
λ0: =
ρ: =

L(x,xk, λk, ρ) = f 0(x) − λk
T(f − f̃) + 1

2
ρ(f − f̃)T (f − f̃)

f̃ = 0  and  l ≤ x ≤ u
xk + 1 λk + 1

xk

k : = k + 1
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(108)

The solution method of MINOS/AUGMENTED consists of a sequence of major iterations,

each of which involves a linearization of the nonlinear constraints at some point ,

corresponding to a first-order Taylor series approximation:

(109)

Defining

(110)

we then have

(111)

At the kth major iteration of the algorithm, the following linearly constrained problem is

solved:

(112)

subject to

(113)

(114)

(115)

(116)

minimize    
[xy]T ∈ Rn

f 0(x) + cTx + dTy

subject to    f(x) + A1y = b1 (m1 rows)

A2x + A3y = b2 (m2 rows)

l ≤ x ≤ u (m = m1 + m2)

xk

f i(x) = f i(xk) + gi(xk)
T + O(| x − xk |

2)

f̃ = fk + Jk(x − xk)

f − f̃ = (f − fk) − Jk(x − xk)

minimize

L(x,y,xk, λk, ρ) = f 0(x) + cTx + dTy − λk
T(f − f̃) +

1
2
ρ(f − f̃)T (f − f̃)

[x y]T ∈ Rn

f̃ + A1y = b1

A2x + A3y = b2

l ≤ x ≤ u (m = m1 + m2)
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4.4 MINTO

MINTO is an extension of MINOS/AUGMENTED to handle integer restrictions on some

or all of the variables. The present work use the basic framework of MINTO as a starting

point. Published details of MINTO are scant, however some information can be found in

recent publications by Murtagh [58, 59] and the forthcoming monograph by Murtagh and

Saunders [63].
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Chapter 5

Murtagh’s direct search heuristic

This chapter will describe in detail a direct-search algorithm for NLIP proposed by Murtagh

[59]. In the sections to follow we analyse his method and propose an extension. It will be

claimed that this modified approach will allow more flexibility and reliability in rapidly

arriving at an integer-feasible solution which may then be used to start the branch-and-bound
process, or in some cases to circumvent branch-and-bound entirely.

It shouldbe notedalso that after someextensive discussion withMurtaghand further research
by the present author, a number of relatively minor points have been cleared up and some

parts of the original algorithm refined slightly. In the interests of both maximum clarity and

suitability for subsequent coding, the present notation is also slightly different to that of

Murtagh [59], however no confusion should result. These minor changes are to be seen as

quite distinct from the new direct search procedures given in Chapter 6.

5.1 Structure of the problem

The general form of the NLIP problem to be solved by the methods introduced in this thesis

is given by the set of requirements labelled (117) below, and following Murtagh, we assume

that a bounded feasible solution exists to the problem. The present formulation is that of

Murtagh [57], p105, which is only slightly different to that given in Murtagh [59].
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(117)

There are variables and constraints, .

Some (assumed small) proportion of the variables are assumed to be nonlinear in either

the objective function and/or the constraints, and some (also assumed small) proportion of

the variables are required to be integer-valued. We refer to a variable as nonlinear if it

appears nonlinearly in the problem formulation in either the objective function or the
constraints.

The same structure without the integer requirements forms the basis of the MINOS
large-scale nonlinear programming code (Murtagh and Saunders (1982, 1987)) [61, 64].

This involves a sequence of major iterations, in which the first-order Taylor series

approximation terms replace the nonlinear constraint functions to form a set of linear

constraints, and the higher order terms are adjoined to the objective function with Lagrange

multiplier estimates.

The set of linear constraints (excluding bounds) is then written in the form:

(118)

B is and non-singular, are "non-basic" variables which are held at one or other of

their bounds. and are referred to as basic and superbasic variables respectively, and

in order to maintain feasibility during the next step they must satisfy the equation

(119)

or, since the basis is non-singular, we may write

(120)

minimize    
x ∈ Rn

f 0(xN) + cTxL

subject to    f(xN) + A1x
L = b1 (m1 rows)

A2x
N + A3x

L = b2 (m2 rows)

l ≤ x ≤ u (m = m1 + m2)

xj integer, j ∈ JI

n m m < n

x

Ax = [B S N]




xB

xS

xN





= b

m × m xN

xB xS

B∆xB + S∆xS = 0

∆xB = −B−1S∆xS
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Apart from the choice involved in deciding which nonbasic to slide up or down toward its

other bound in order to improve the objective function, we have freedom to alter the

superbasics. A step to the interior of the feasible set is possible since the superbasics need

not be at a bound and are normally between bounds.

Because of equation (120), the superbasics are seen as the driving force, since the step

determines the whole step . The key to the success of the algorithm in MINOS (Murtagh

and Saunders [62]) is the assumption that the dimension of remains small. According

to computational experience reported by Murtagh [59], this can be assured if the proportion

of nonlinear variables is small, but also in many instances in practice even when all the

variables are nonlinear.

Similar assumptions will be made about the structure of nonlinear integer programs. It will

be assumed that the proportion of integer variables in the problem is small.

Murtagh’s approach to obtaining a (suboptimal) integer-feasible solution is via a direct

search procedure using his concept of superbasic variables. Applications discussed in his

CTAC ’89 invited paper (Murtagh [59]) include optimal power flow (1200 constraints, 1500
variables all nonlinear), manufacturing and process engineering. His work is an extension

of ideas initially presented by Mawengkang and Murtagh (1986) [49], where the application

considered was a quadratic assignment problem.

The first four sets of figure 16 partition the full index set , ie

and . The set of indices

corresponding to integer variables is assumed to be of small cardinality, and

.

The approach assumes that the continuous problem is solved, and seeks an integer-feasible

solution in the close neighbourhood of the continuous solution. The general philosophy is

to leave non-basic integer variables at their respective bounds (and therefore integer valued)
and conduct a search in the restricted space of basics, superbasics, and nonbasic continuous

variables, .

Murtagh’s method may be broadly summarized as follows:

1. Obtain solution of the continuous relaxation (using the MINOS/MINTO code)

2. CYCLE1: remove integer variables from the basis by moving a suitable nonbasic away

from its bound. The hope is to drive an infeasible integer basic variable to an integer
value, and then to pivot it into the superbasic set; the previous nonbasic replacing it

in the basis.

∆xS

∆x
xS

{1,2, ..,n}
JB ∪ JS ∪ JL ∪ JU = {1,2, ..,n} Jα∩ Jβ = ∅, α ≠ β JI

m + nS + nL + nU = n

j ∉ JI
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Some notation is first needed. We define the required index sets in figure 16.

Name Meaning Cardinality

set of indices for basic variables

set of indices for superbasic variables

set of indices for nonbasic variables at their lower

bounds

set of indices for nonbasic variables at their upper

bounds

set of indices for integer variables

Figure 16   Index sets for extended simplex partition

3. CYCLE2, pass1: adjust integer-infeasible superbasics by fractional steps to reach

complete integer-feasibility.

4. CYCLE2, pass2: adjust integer feasible superbasics. This phase aims to conduct a

highly-localized neighbourhood search see Scarf [83] to verify local optimality.

It should be noted that the designations CYCLE1, CYCLE2 etc do not appear in the CTAC

’89 paper (Murtagh [59]), however they were presented in the lecture (Murtagh [60]), so

we shall use the terminology here.

We consider the detailed steps of CYCLE1, CYCLE2 Pass1, CYCLE2 Pass2 and then

investigate the performance of Murtagh’s algorithm via some simple examples in the
sections immediately following.

The method is imbedded in a branch-and-bound procedure in which branching to further
subproblems will terminate if one of the following three criteria is satisfied:

1. The subproblem has no feasible solution.

2. Thesolution of the subproblem is no better than the currentbest knowninteger feasible

solution.

JB | JB | = m

JS | JS | = nS

JL | JL | = nL

JU | JU | = nU

JI | JI | = nI
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3. The solution is integer feasible (to within a pre-defined level of tolerance).

Since the procedure of Murtagh determines a locally-optimal solution in the neighbourhood

of the original continuous solution, there may be some merit in seeking the assurance of a

branch-and-bound procedure for fathoming all possible integer solutions. There would be

little cost in this, as the solution obtained by the above procedure should provide a tight

bound which will serve to curtail the branching process very rapidly under criterion 2 above.

In the following chapters, we analyze the algorithm of Murtagh [60] presented here and

then compare it with a modified version in which alternative direct search methods are used.

5.2 CYCLE1 remove integer variables from the basis

It is necessary to impose some preconditions or assumptions on the problem data before

CYCLE1 can be expected to succeed.

We suppose that at the continuous solution an integer variable is basic at a non-integer value

(121)

Further, we suppose that a chosen non-basic non-integer variable is being released from

its lower bound.

The assumption that the proportion of integer variables is small becomes a key issue in

ensuring that the interchange operations can take place; fortunately many practical problems

have this characteristic. Note also that it is assumed there is a full set of slack variables

present.

The work of Mawengkang and Murtagh [49] suggests a preferred choice for given by:

(122)

xi ′ = xi ′ + fi ′, 0 < fi ′ < 1

x
j*

i ′

min(fi ′,1 − fi ′) ≤ min(fi,1 − fi) i ∈ JI
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This choice of is motivated by the desire for minimal change in the objective function,

and clearly corresponds to the integer basic with smallest integer-infeasibility. We observe

however that this approach only makes sense if the components of the reduced gradient
vector are comparable in magnitude.

Also, in choosing the non-basic (continuous) for the steps of CYCLE1, Murtagh suggests

the preferred criterion to be the value of for which (in the present notation):

(123)

occurs, where is the jth component of nonbasic partition of the reduced gradient vector

or reduced costs vector , and is the column of corresponding to

the non-basic .

In fact, since we have gone to the trouble of finding the integer basic with smallest

integer-infeasibility, it won’t make much sense to choose a nonbasic which forces our chosen

basic to go in the wrong direction when the nonbasic is moved. It is easy to create

counterexamples which illustrate this problem. Thus we need to refine our heuristic for the

choice of . Such refinements are discussed at length in Chapter 6.

Comparison of the Murtagh & Saunders [62] MINOS paper with CTAC ’89 paper [59]

shows that instead of (CTAC notation); in the notation of the MINOS paper, the numerator
is , "analogous to reduced costs of LP" see equation 15 of that paper.

In fact

(124)

and

(125)

see Murtagh and Saunders [62], eqs 13, 15.

The reasoning behind this criterion is that it measures the deterioration of the objective

function value per unit change in the basic variable .

i ′

j *

j

min
j ∈ (JL ∪JU) − JI | αi ′j ≠ 0





λj

αi′j





λj

αi ′j = (B−1aj)i ′λN aj A

xj

j *

j *

dj

λj

λ = gN − NTπ

π = (BT)−1
gB

xi ′
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The terms are calculated by firstly producing a vector (this is row of

), and then calculating the inner product . Once a particular is chosen,

the full vector is calculated for the ratio tests in equations (126) (128).

As our chosen nonbasic moves toward its other bound, four possible events may occur

as follows.

Event 1. A basic variable hits its lower bound first.

Event 2. A basic variable hits its upper bound first.

Event 3. An integer basic variable becomes integer-feasible.

Event 4. The non-basic hits its other bound first.

Notes

1. The possibility is excluded from event 1 and is excluded from

event 2 above since the cases where hits a bound are included in event 3, where
the possibility arises. The desired outcome is clearly event 3.

2. An integer variable at a bound is necessarily integer-feasible.

Corresponding to each of the four possible events, we compute the following quantities:

(126)

(127)

zT = ei ′
TB−1αi ′j i ′

B−1 αi ′j = zTaj j *

α
j* = B−1a

j*

x
j*

xi1
, i1 ≠ i ′

xi2
, i2 ≠ i ′

xi3
, i3 ∈ JB ∩ JI

x
j*

i1 = i ′ i2 = i ′

xi ′

i3 = i ′

θ1 = min
i ∈ JB − {i′} | α

ij*
> 0





xi − li

α
ij*





θ2 = min
i ∈ JB − {i′} | α

ij*
< 0





ui − xi

−α
ij*




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(128)

(129)

where

(130)

and is the column of corresponding to the non-basic .

Therefore we have

(131)

If the basic variable becomes non-basic at and replaces it in . stays basic

with a new value (non-integer).

If then becomes non-basic at and replaces it in as above.

If then is made superbasic at an integer value and replaces it in .

If then remains non-basic, but now at its upper bound, and stays basic with a

new value (non-integer).

Similar ratios can be calculated for the case of being released from its upper bound. In

general, we can capture both possibilities (release from lower or upper bound) and avoid

code duplication by defining the direction indicator for CYCLE1, , as follows. If is

released from its lower bound ( ) then . If released from upper bound ( )

then . Thus, , where is the step in the nonbasic

.

Both cases are summarized in the following table.

θ3 = min




min
i ∈ JI ∩JB | α

ij*
< 0

1 − fi

−α
ij*

, min
i ∈ JI ∩JB | α

ij*
> 0

fi

α
ij*





θ4 = u
j* − l

j*

αij = (B−1aj)i

aj A xj

θ* = min(θ1, θ2, θ3, θ4)

θ* = θ1 xi1
li1

x
j* B xi ′

θ* = θ2 xi2
ui2

x
j* B

θ* = θ3 xi3
x

j* B

θ* = θ4 x
j* xi ′

x
j*

σ1 x
j*

j ∈ JL σ1 = 1 j ∈ JU

σ1 = −1 σ1 = signum(∆x
j*) ∆x

j*

x
j*, j * ∈ (JL ∪ JU) − JI
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σ 1

α ij
*
>
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−

l i
σ 1

α ij
*
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Notes on CYCLE 1

1. and is the column of corresponding to the nonbasic

2. The maximum nonbasic step

Note that for CYCLE1, some s may not exist, since the set of indices for which eg

may be empty. Note that always exists and always exists provided that

the basis contains at least one integer variable. There is no doubt that the basis will
always contain at least one integer variable throughout CYCLE1 since the principal

termination condition for CYCLE1 is precisely that there be no integer variables left

in the basis. A secondary guard is the customary iteration limit.

3. When coding the CYCLE1 algorithm, if two or more events occur simultaneously,

we must always choose event 3 if possible, not just eg the first or last one to happen

in some battery of IF statements. The ultimate aim of CYCLE1 is to force as many as

possible of the infeasible integer variables to become non-basic or superbasic. Clearly

then, event 3 is the most desirable outcome in each iteration of CYCLE1.

4. If we fail to achieve event 3 for our chosen and , we may choose to explore the

use of multiple pricing to try to choose alternative s for which event 3 may happen.
This is elaborated in one of the proposed new methods of Chapter 6.

5.3 CYCLE2 Pass 1 adjust integer-infeasible superbasics

Step 1.

Choose the superbasic with the smallest integer-infeasibility, i.e. we seek as the

value of for which

(132)

occurs. is the index set for the superbasics. A forward step will be taken if

and a backward step is taken otherwise. We do this in the following way.

αij = (B−1aj)i aj A (xN)j

θ* = min (θ1, θ2, θ3, θ4)

θ
α

ij* > 0 θ4 θ3

j *i ′

j *

j ′ ∈ JS

j

ζ0 = min
j ∈ JS

min (fj, 1 − fj)

JS 1 − fj ′ ≤ fj ′
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Define as the index of the superbasic variable with the smallest fractional component.

Thus

(133)

Similarly, define as the index of the superbasic variable with the largest fractional

component. Thus

(134)

Clearly the values of and may not be unique. At present we choose to resolve ties

arbitrarily. Perhaps later the method could be refined eg resolve ambiguity by selecting

one from those corresponding to superbasic variables with least reduced cost.

The minimum integer-infeasibility is given by

(135)

and it will occur at if else at if .

Also note that a full step to integer feasibility in may not be possible since a simple bound

on a basic may be hit. This is summarized in equations (136) and (137). The limiting

backward step, is given by:

(136)

The limiting forward step, is given by

(137)

In the interests of avoiding code duplication, the computations implied by (136) and (137)

may be described in a more compact form as follows.

We define the direction indicator for CYCLE2, :

j1

fj1
= min

j ∈ JS

fj

j2

fj2
= max

j ∈ JS

fj

j1 j2

ζ0 = min (fj1
, 1 − fj2

)

j = j1 fj1
< 1 − fj2

j = j2 fj1
> 1 − fj2

xj ′

∆xj ′ < 0

∆xj ′ = −min




fj ′, min
i ∈ JB | αij ′ < 0





(xB)i − li

−αij′




, min

i ∈ JB | αij ′ > 0





ui − (xB)i

αij′









∆xj ′ > 0

∆xj ′ = min



1 − fj ′, min

i ∈ JB | αij ′ > 0





(xB)i − li

αij′




, min

i ∈ JB | αij ′ < 0





ui − (xB)i

−αij′









σ2
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(138)

is just the sign of our desired step , and the limits to our step imposed by the simple

bounds are given by

(139)

(140)

Step 2.

Now see if we can make a fractional step (forward or backward) to make integral. We

must check to see that all basics remain feasible. In this part of the algorithm, the basis
remains unchanged, ie there are no pivots, since we are making fractional adjustments to

the superbasic integers which are presently integer-infeasible. The new values of the basics

must of course follow because of their linear dependence on the superbasics and (fixed)

nonbasics.

If a full step forward or backward ie to the nearest integer is possible for

superbasic then we take it, but if not then we step as far as possible without violating a

simple bound on a basic.

Thus we define as the value of for which the minimum in (139) occurs; as the value

of for which the minimum in (140) occurs; provided the respective index sets are not empty
(in which case one or other of may not exist). Our step 2 of CYCLE2 can now be recast

as:

(141)

σ2 =


−1;    fj1
< 1 − fj2

+1;    fj1
> 1 − fj2



σ2 ∆xj ′

ζl = min
i ∈ JB | σ2αij ′ > 0





xi − li

σ2αij′





ζu = min
i ∈ JB | σ2αij ′ < 0





ui − xi

−σ2αij′





x
j ′

| ∆x | = ζ
j ′

il i iu

i

iu, il

∆xj ′ = σ2 min (ζ0, ζl, ζu)
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Is it possible for our step to be zero? The answer to this question is no, since this would

mean that a basic is already at a bound, ie that the current set of constraints is degenerate.

This situation is ruled out by our assumption of non-degeneracy.

In determining we must be very careful. For example, if integer-infeasibility = 0.5 then

which way do we step? In example 3 of section 5.5.3 this is crucial since if we choose the
wrong direction then our permissible step is 0.

5.4 CYCLE2 Pass 2 adjust integer feasible superbasics

The superbasics can be varied at will, subject to preserving the feasibility of the basic

variables. Thus a search through the neighbourhood system, as defined by Scarf (1986) [83],
will verify the (local) optimality of the integer-feasible solution obtained.

Step 1

This is basically a one-dimensional steepest descent.

Choose . The criterion for selecting will be that of maximum reduced cost .

Step 2

Calculate . Also determine direction of move check sign of , and adjust the unit tests

in step 3 in light of this.

Step 3

Check that a unit move is possible:

(142)

(143)

∆xj ′

σ2

(σ2 = +1)

j ′ ∈ JI j ′ λj

αj ′ λj′

ui − xi

+αij′
≥ 1 ∀i | i ∈ JB | αij′ > 0

xi − li

−αij′
≥ 1 ∀i | i ∈ JB | αij′ < 0

72



Step 4

Move by 1 unit; check that objective improves, ie search in neighbourhood system as defined

by Scarf [83, 84].

5.5 Analysis and counterexamples for Murtagh’s algorithm

Status information

The following information is required for CYCLE1 to commence:

1. The problem data, ie definition of objective function, the coefficients for the linear

constraints, the lower and upper bounds, the set of integer variables.

2. Extended definition of the partition which differentiates between nonbasics at lower

bound and nonbasics at upper bound; this can be defined by Murtagh’s index vector
hb, and status vector hs as follows:

Define to be the natural index of the jth variable of the partition, where .

Consider the th natural variable. Then we define the status indicator as follows

(144)

The index range for the basic variables is , and for the superbasic variables is

.

The partition may be illustrated as follows

B S NL NU

Note: the nonbasics are not indexed directly since, being at one or other of their bounds,

their values are implicitly known.

hbj 1 < j < m + nS

j hsj

hsj =







0;       if nonbasic at lower bound
1;       if nonbasic at upper bound
2;       if superbasic       
3;       if basic            







1 ≤ j ≤ m

m + 1 ≤ j ≤ m + nS

1 ≤ j ≤ m m + 1 ≤ j ≤ m + nS
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3. Current values of the superbasic variables

4. Some tolerances

CYCLE1 then has enough information to proceed.

We now consider the class of linearly constrained mixed-integer quadratic programs defined

by the requirements (145) (149).

Counterexample general form

minimize

(145)

subject to

(146)

(147)

(148)

(149)

The parameters and the simple bounds will be specified to illustrate

some potential problems with CYCLE1 of the algorithm proposed by Murtagh [60].

Introducing slacks into the general form, and setting all and

, we have:

f = ∑
i = 1

3

γi(xi − τi)
2

1x1 + 0x2 + ω1x3 ≤ b1

0x1 + 1x2 + ω2x3 ≤ b2

l ≤ x ≤ u

x2    integer

γi, τi,ω1,ω2,b1,b2 l, u

x4, x5 γi = 1.0

τ1 = 1.2, τ2 = 2.5, τ3 = 0.0
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Counterexample general form with slacks

minimize

(150)

subject to

(151)

(152)

(153)

(154)

Relaxed and integer-feasible optima

The continuous unconstrained optimum for our chosen objective function is clearly

.

It is also clear that the point satisfies the general (linear) constraints,

simple bounds, and is integer feasible. For the simple quadratic objective, it is easy to see

that it is therefore a local optimum for the originally posed problem.

General tableau equations

If is the vector of basic variables and , then the current tableau may be

expressed as

(155)

If in the present notation then we may write

f = ∑
i = 1

3

γi(xi − τi)
2

1x1 + 0x2 + ω1x3 + 1x4 + 0x5 ≤ b1

0x1 + 1x2 + ω2x3 + 0x4 + 1x5 ≤ b2

l ≤ x ≤ u

x2    integer

x = τ = (1.2,2.5,0,0,0)T

x = (1.2,2,0,0,0.5)T

αj = (B−1N)jxB

xB = β − ∑
j ∈ JL

αjlj − ∑
j ∈ JU

αjuj − ∑
j ∈ JS

αjxj

i ∈ JB
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(156)

Counterexamples general

To examine the method proposed by Murtagh [59], we now consider a number of simple

examples based on the preceding class of problems. For the first two examples, we suppose

that the continuous optimum for this problem has basic, nonbasic, and

superbasic. At this point the tableau equations will read

(157)

(158)

5.5.1 Example 1

Now it may happen that the interval is so narrow that hits its upper bound before

events 1, 2 or 3 of CYCLE1 can occur. This can clearly be contrived by making small

enough. Since is the only nonbasic we see that CYCLE1 will not terminate ( will oscillate

between its bounds). To illustrate this we consider example 1, whose definition follows.

xi = βi − ∑
j ∈ JL

αijlj − ∑
j ∈ JU

αijuj − ∑
j ∈ JS

αijxj

x1, x2 x3 x4, x5

x1 = b1 − ω1x3 − x4

x2 = b2 − ω2x3 − x5

[l3,u3] x3

u3 − l3

x3 x3
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Definition of example 1

minimize

(159)

subject to

(160)

(161)

(162)

(163)

Continuous solution vector and partition:

(164)

(165)

(166)

(167)

(168)

Results for example 1

We have the tableau equations:

(169)

(170)

Now increase  from 0.0 toward its upper bound 1.0. Both basics remain feasible all the

way and further, the only integer variable, , does not become integer feasible.

f = (x1 − 1.2)2 + (x2 − 2.5)2 + x3
2

1.0x1 + 0.0x2 − 1.0x3 + 1.0x4 + 0.0x5 = 1.2

0.0x1 + 1.0x2 + 0.1x3 + 0.0x4 + 1.0x5 = 2.5

(0,0,0,0,0)T ≤ x ≤ (5,5,1,100,100)T

x2   integer,  ie   JI = {2}

x* = (1.2, 2.5, 0.0, 0.0, 0.0)T

JB = {1,2}

JS = {4,5}

JL = {3}

JU = ∅

x1 = 1.2 + 1.0x3 − 1.0x4

x2 = 2.5 − 0.1x3 − 1.0x5

x3

x2
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Event 4 occurs ie . Since it is the only nonbasic, the next iteration of CYCLE1

will see  revert to its lower bound once again. It is clear that this sequence of events

will be repeated ad infinitum.

5.5.2 Example 2

Another possible difficulty is that an initially basic variable may cycle in and out of the

basis. To see this, suppose that hits its upper bound as is increased from . Thus we

must choose . Select small enough so that neither becomes integer-feasible nor
hits its bound.

Assigning values to parameters to illustrate this phenomenon, we have example 2, which
is identical to example 1, except that the upper bound on has been widened:

x3 → u3

x3

x1 x3 l3

ω1 < 0 ω2 x2

x3
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Definition of example 2

minimize

(171)

subject to

(172)

(173)

(174)

(175)

Continuous solution vector and partition:

(176)

(177)

(178)

(179)

(180)

Results for example 2

We have the tableau equations:

(181)

(182)

f = (x1 − 1.2)2 + (x2 − 2.5)2 + x3
2

1.0x1 + 0.0x2 − 1.0x3 + 1.0x4 + 0.0x5 = 1.2

0.0x1 + 1.0x2 + 0.1x3 + 0.0x4 + 1.0x5 = 2.5

(0,0,0,0,0)T ≤ x ≤ (5,5,5,100,100)T

x2   integer,  ie   JI = {2}

x* = (1.2, 2.5, 0.0, 0.0, 0.0)T

JB = {1,2}

JS = {4,5}

JL = {3}

JU = ∅

x1 = 1.2 + 1.0x3 − 1.0x4

x2 = 2.5 − 0.1x3 − 1.0x5
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is nonbasic at . Now we allow to increase. It can be seen that would become

integer-feasible at if reached 5, however hits its upper bound before this

at .

Thus

A pivot operation gives the new tableau equations:

(183)

(184)

Since , we have and .

Now release from its upper bound 5, since it is the only (non-integer) nonbasic. It should

be clear that we get cycling using this process since as decreases from 5, will hit

when but will not become integer-feasible. We have no other choice since is
the only nonbasic.

5.5.3 Example 3

Example 3 has the same structure as examples 1 and 2 respectively except that a different

starting partition is used.

x3 l3 = 0 x3 x2

x2 = 2 x3 x1 u1 = 5

x3 = 3.8

x1 → nonbasic at  u1 = 5

x3 → basic (at 3.8)

x3 = −1.2 + x1 + x4

x2 = 2.62 − 0.1x1 − 0.1x4 − x5

x1 = 5 x2 = 2.12 x3 = 3.8

x1

x1 x3 l3 = 0

x1 = 1.2 x2 x1
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Definition of example 3

minimize

(185)

subject to

(186)

(187)

(188)

(189)

Continuous solution vector and partition:

(190)

(191)

(192)

(193)

(194)

Results for example 3

Once again we have the tableau equations:

(195)

(196)

f = (x1 − 1.2)2 + (x2 − 2.5)2 + x3
2

1.0x1 + 0.0x2 − 1.0x3 + 1.0x4 + 0.0x5 = 1.2

0.0x1 + 1.0x2 + 0.1x3 + 0.0x4 + 1.0x5 = 2.5

(0,0,0,0,0)T ≤ x ≤ (5,5,1,100,100)T

x2   integer,  ie   JI = {2}

x* = (1.2, 2.5, 0.0, 0.0, 0.0)T

JB = {1,2}

JS = {3}

JL = {4,5}

JU = ∅

x1 = 1.2 + 1.0x3 − 1.0x4

x2 = 2.5 − 0.1x3 − 1.0x5
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in which and are nonbasic at 0. We have since is the only basic integer variable

and therefore is the only candidate for . Similarly, applying the heuristic for

determining , we find that is the only candidate for ( is not eligible since
).

Due to being in NL, it was easy for Murtagh’s CYCLE1 to remove the integer variable

from the basis. Contrasting this with example 1, we see that termination of Murtagh’s

CYCLE1 depends crucially on the initial partition. Modifications to his method will be

described in Chapter 6.

5.5.4 Summary of example results for CYCLE1

These are organized into table 2 overleaf.

x4 x5 i ′ = 2 x2

i = 2 i ′
j * j *j = 5 j = 4

α24 = 0

x5

x2
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5.5.5 Conclusions

1. What implications do the counterexamples have for CYCLE1 of Murtagh’s direct

search algorithm? It is clear from the foregoing examples that at least 2 types of

"cycling" are possible in CYCLE1 (unfortunate choice of words!).

Firstly, we have seen that the extreme case of only one eligible continuous nonbasic

with very narrow bounds may result in the cycle , followed by

indefinitely. There is no change of basis in this type of cycling (example 1). Secondly,

cyclic basis changes occur as a fixed sequence of nonbasics enter and leave the basis

with period 2 or more. This phenomenon, which occurs in example 2, may also occur
even in purely linear (MILP) problems, and is discussed further in the following

chapter.

2. We need to ensure that CYCLE1 will always terminate. It has not yet been established

that this is always possible. Certainly in the case where there are no integer variables

in the basis to begin with, CYCLE1 must be skipped. In fact, we see from (1) above

that CYCLE1 does not terminate in general.

3. For the present CYCLE1 of Murtagh, it is clear that at each iteration, one of events

1-4 must occur. However, there would seem to be no guarantee that event 3 will ever

occur! This is obvious from examples 1 and 2 above. We need to consider ways in

which CYCLE1 could be modified to ensure termination, ie no integer variables left
in the basis. Until this occurs, no progress in the class of direct search methods based

on Murtagh’s concept of superbasic variables can be made. Thesematters are discussed

at length in Chapter 6,where we consider modifications to Murtagh’s CYCLE1.

4. It should be noted that this set of very simple examples was devised long before the

interactive implementation of the methods of Chapter 6. It was therefore of some

considerable interest to check the behaviour of the methods on the present small QIPs.

This is discussed in Chapter 8.

5. Murtagh’s original approach has been successful in solving a number of NLIPs. He

assumed a small proportion of integer variables, and a small proportion of

nonlinearities. We next seek alternative methods which extend his ideas, so that
progress can be made on a somewhat wider class of problems.

xj xj → uj lj ← xj
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Chapter 6

Proposals for new direct search methods

Problems with Murtagh’s CYCLE1

In the previous chapter we considered Murtagh’s heuristic for direct search. For CYCLE1

of Murtagh’s algorithm (an attempt to remove all integer variables from the basis), it is

supposed that a chosen non-basic non-integer variable was being released from its lower

bound. From the problems brought to light by the class of constrained integer quadratic

examples of the previous section, it is clear that we need to modify Murtagh’s method as

presented in Chapter 5 and the paper [60].

Two cycling possibilities emerged: a nonbasic could oscillate between its bounds without

change of basis and without event 3 (a basic integer variable becoming integer-feasible)

occurring, and secondly, a sequence of variables cycling between the basic and nonbasic

partitions without making progress toward emptying the basis of integer variables. In either
case, Murtagh’s CYCLE1 iterates indefinitely since the termination condition

is never met. To have any hope of forcing a modified CYCLE1 to terminate,

it is clear that we must have access to the superbasic variables. This is the case even for

linear (MILP) problems, in which there are zero superbasics at the solution of the continuous

relaxation. However, new degrees of freedom can be opened up for linear problems by the

simple device of changing the status of a nonbasic variable to superbasic, but with no
movement away from its bound.

x
j*

JB ∩ JI = ∅
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6.1 Alternative approaches for CYCLE1 (remove integers from basis)

If all nonbasics are integer variables and CYCLE1 still hasn’t terminated (eg basis is all-slack

except for one integer variable and one slack is superbasic), then we may select a superbasic

non-integer variable for rather than a nonbasic. Since we want to remove all integer

variables from the basis, it is reasonable to require that we have access to all other variables

(ie superbasic as well as nonbasic) in order to do this. In essence, we are saying that we

really should allow superbasics to vary without pivot just as nonbasics do. This extra degree
of freedom may just be enough to get integer feasibility in a basic integer variable it

certainly is in the quadratic counterexamples considered earlier.

If non-termination of any proposed new CYCLE1 is detected, eg with iteration counter

(difficulties getting our chosen basic integer variable to be coaxed to integer-feasibility),

then we could just pivot an integer variable with a superbasic anyway even if it isn’t integer

feasible. Such a superbasic must correspond to a column of the current linearized general

constraint matrix that will not cause the new basis to be singular (or near-singular).

Another approach for a modified CYCLE1 would be to start as in Murtagh’s approach, ie

try to get integers out of the basis by sliding selected continuous nonbasics to their other

bounds. Do this for as long as possible a condition for detection of termination of this
process is required, and herein lies the difficulty. It was decided for the present research not

to proceed with this approach, primarily because clean detection of non-termination in this

case can be awkward and a simple iteration limit is crude and really avoids the structure of

the problem.

If integers are still basic and no suitable nonbasic can be found to precipitate event 3, we

may try a MINOS step 7a (see Murtagh and Saunders [62], p50). This involves a redefinition

of the partition so that a continuous superbasic is interchanged with an integer basic, and it

must be ensured that the basis remains non-singular. The Sherman-Morrison identity (see,
for example Murtagh’s Advanced Linear Programming [57]) can be used as a basis for

checking a proposed new basis column, or simply that row of the current basis inverse

must not be (nearly) orthogonal to the proposed new column. Now choose a nonbasic to

become superbasic (expand search space) and repeat the steps above. The nonbasic to be

chosen must correspond to a continuous variable, and a suitable heuristic would be to go

for one with a large and wide bounds in the hope that subsequent movement of this

variable when superbasics are altered in CYCLE2 will produce integer feasibility in (in

j *

i ′
j *

α
i ′j*

xi ′
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fact, for the methods actually implemented, we just choose the first suitable nonbasic in

natural order). Note that since will be immediately selected for pivot, the heuristic

for should be extended to require the nonsingular basis invariant.

Another idea is to pivot as many basic integers with suitable superbasic continuous variables

as possible, since there will be no movement from continuous solution, just a redefinition

of the partition. If, as mentioned in one paper by Mawengkang and Murtagh [49], there were

only 2 or 3 superbasics at a continuous solution even though the problem has more than

1000 integer variables, then we may need to promote selected continuous nonbasics to be

superbasic status in order to give us enough superbasics to pivot the integers out of the basis.
Then the modified CYCLE1 can proceed as defined just above. This should be done in any

case where there are integer-feasible basics present at the continuous solution, and is also

the basis of method M2, to be discussed in section 6.3.2.

x
j* B ↔ S

j *
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6.2 Alternative approaches for CYCLE2 (superbasic steps)

For Murtagh’s CYCLE2, it may be worthwhile to put more emphasis on getting a full step

to integer feasibility than just blindly looking for the superbasic with minimum

integer-infeasibility and then trying a full step on that one, but being content with a partial

step if we hit a bound on a basic. For example, superbasic #1 may have integer-infeasibility

= 0.3 and superbasic #2 may have integer-infeasibility = 0.4; however a full step to integer

feasibility may be possible with #2 but not with #1. It seems reasonable to prefer a full step
with #2 instead of a partial step with #1 provided the objective does not worsen too much.

Once is chosen and the corresponding is calculated we can do as much work as we

like with it the real computational burden is in choosing and calculating , so all

possible steps may be calculated once is chosen. Therefore, it would not be unreasonable

to choose a few (perhaps 3 5) "likely prospects" for (integer-infeasible superbasic to be

stepped) and evaluate for all of them. This is somewhat akin to "multiple pricing" in

ordinary LP, and is also in keeping with the idea of the number of integer variables being
small. In this manner, if no step is possible with current , then another could be tried. The

linearized general constraints are automatically satisfied for any step away from the current

feasible point, however the simple bounds on the basics will limit our step. Since all integer

variables were removed from the basis in CYCLE 1, the only barrier to complete feasibility

of the current solution is presented by the integer-infeasible superbasics (nonbasic integer

variables are at a bound and are therefore integer-valued).

j ′ αj ′

j ′ αj ′

j ′
j ′

αj ′

j ′
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6.3 The new methods

After CYCLE1 terminates, we may either apply some form of Murtagh’s CYCLE2 as

defined in the CTAC 89 invited lecture [60], or we could fix the integer-feasible integer

variables and solve the resulting continuous problem.

Based on the somewhat disjointed batch of ideas presented in the previous two sections, we

wish to propose several new direct search methods for NLIP. In the presentation, some

simplifications have been made in order to give pseudocode which is reasonably readable.

For example, code which controls the abortion of loops in the case of detected errors has

been omitted for reasons of simplicity. Calls to subroutines in the actual code have been
replaced with short, descriptive statements of the basic functions of the routines concerned.

It is hoped in this way to convey a fairly clear statement of the processes involved without

undue and distracting detail.

Some abbreviations/identifiers used in the pseudocode for the methods are as follows:

numbasinf number of basis integer-infeasibilities
maxits maximum iterations (constant)
jstar nonbasic selected to move away from bound
thetastar largest permissible step for nonbasic jstar
ierrcode error code

its iteration counter
searching Boolean flag to control search for nonbasic jstar
stilllooking as above
jmin initial value for of j for jstar search
n number of columns (variables) in problem
event3count number of event 3 occurrences, ie basic goes IF

jstarstar superbasic for B <--> S pivot
jns nonbasic to be promoted to superbasic

One further comment is in order: throughout the remaining chapters, reference is made to

Method 0. This is simply branch-and-bound as implemented in Murtagh’s MINTO code

[58]. The method is well-described by several authors, and also briefly summarized in the

present section 2.9.1.
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6.3.1 Method 1

Method 1 is essentially CYCLE1 of the procedure described by Murtagh in [59], however

the first significant operation on each traversal of the loop is the detection and pivoting of

integer-feasible basics to the superbasic set. This operation involves the selection of a

suitable superbasic variable to be pivoted into the basis. The corresponding column of the

linearized constraint set must be such that the new basis is non-singular. Pseudocode for

M1 is given in figure 17.

its := 0
do while (numbasinf>0) & (ierrcode=NOERROR) & (its<maxits)

inc(its)

pivot any integer-feasible basics with suitable superbasics
compute jstar1

compute minimum ratio thetastar
do nonbasic step
recompute number of basic integer-infeasibilities

enddo

Figure 17   Pseudocode for M1

6.3.2 Method 2

The idea for this method was to take immediate advantage of any superbasics available at

the continuous solution to pivot out as many basic integers as possible, after each such pivot

attempting a step to integer-feasibility before the next pivot. Initially, those basics already

feasible would be pivoted with suitable superbasics, as in M1 above. The motivation behind

M2 is that we have more control over an integer variable if it is superbasic than if it is basic.
Also, a pivot operation does not alter the solution vector, merely the extended partition

definition, so that the objective does not change either. From the standpoint of algorithmic

taxonomy, it can be considered a greedy strategy (see, for example, McMahon [50]), since

we try to postpone any deterioration in objective for as long as possible. Pseudocode for

M2 is given in figure 18.

1 Nonbasic to move away from bound.
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its := 0

pivot any integer-feasible basics with suitable superbasics
do while (numbasinf>0) & (ierrcode=NOERROR) & (its<maxits)

inc(its)
compute jstarstar1

do B<-->S pivot2

recompute basics, objective and gradients

recompute number of basic integer-infeasibilities
enddo

do while ((numbasinf>0) & (ierrcode=NOERROR) & (its<maxits))

inc(its)
compute jstar3

compute minimum ratio thetastar
do nonbasic step
recompute number of basic integer-infeasibilities

enddo

try to step each infeasible integer superbasic to nearest integer

Figure 18   Pseudocode for M2

6.3.3 Method 3

The aim in this method is to insist on event 3 (our chosen basic integer variable goes

integer-feasible) for the nonbasic step if possible. This involves a multiple-pricing operation

since we do not give up in our search for a suitable nonbasic to precipitate event 3 until no

suitable ones are left. Clearly, artificials are not considered, since they cannot move. Note

also that M3 invokes M4 at the very end in case further progress can be made. Pseudocode

for M3 is given in figure 19.

1 Superbasic for  pivot.

2 Pivot basic    with superbasic  .

3 Nonbasic to move away from bound.

B ↔ S

j**i ′
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pivot any integer-feasible basics with suitable superbasics

jmin := 0
searching := true
event3count := 0
its := 0
do while searching

jmin := jmin + 1

j := jmin
jstar := 0
stilllooking := (j <= n)
do while stilllooking

if column j is nonbasic & not artificial then
check if column j corresponds to integer variable

if column j does not correspond to integer variable then
jstar := j
jmin := j + 1

endif
endif
inc(j)

stilllooking := (jstar = 0) & (j < n)
enddo
compute minimum ratio thetastar
if event = 3 then

do nonbasic step
recompute number of basic integer-infeasibilities

pivot any integer-feasible basics with suitable superbasics
increment event3count

endif
searching := (numbasinf > 0) & (its <= maxits)
if jmin >= n then

jmin := 0

if event3count = 0 then
searching := false

else
event3count := 0

endif
endif

enddo
invoke M4

Figure 19   Pseudocode for M3
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6.3.4 Method 4

This strategy was developed in an attempt to combine the best of the earlier methods which

were tried and found wanting. It has been found to be generally the best, although, and this

is typical for methods which have at least some heuristic component, it is certainly not the

best on all problems. Support for this statement can be seen by inspection of the

computational experience chapters of this work.

Method 4 is sometimes successful in removing all integer variables from the basis. It is

identical to M5 except that access to fixed or artificial variables to be considered for 1 is

denied. In general, it is advisable to avoid artificials if possible since their presence in the
basis can mean that no movement of superbasic or nonbasics is possible. This definitely

"cramps the style" of later steps involving movement of superbasic variables, since we have

effectively "backed ourselves into a corner" and cannot move. Having said that, we must

also note that there exist problems for which the termination of M4 requires use of artificials

for pivot. This is the precise reason for the existence of M5, described in the next

section. Pseudocode for M4 is given in figure 20.

jNS

B ↔ S

1  is the index of a nonbasic column suitable for change of status to superbasic, and subsequent pivot with the
integer basic .
jNS

i ′
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its := 0

pivot any integer-feasible basics with suitable superbasics
do while (numbasinf>0) & (ierrcode=NOERROR) & (its<maxits)

increment iteration count
try to step each infeasible superbasic feasibility1

recompute number of basic integer-infeasibilities
compute jstar2

compute minimum ratio thetastar
if event = 3 then

do nonbasic step
else

seek jstarstar3

if jstarstar can’t be found then

seek nonbasic, jns4, suitable to go superbasic then basic
endif
if suitable nonbasic jns found then

change status of column jns to superbasic
label new superbasic column jstarstar
do B<-->S pivot5

else
ierrcode := CANTFINDAJSTARSTAR

endif
endif
recompute number of basic integer-infeasibilities
pivot any integer-feasible basics with suitable superbasics

enddo

Figure 20   Pseudocode for M4

6.3.5 Method 5

Method 5 is one which guarantees to remove all integer variables from the basis since we

have access to all superbasic and all nonbasic continuous variables including artificials.

As mentioned in the previous section, M5 is identical to M4 except that M5 is allowed to

consider artificials as candidates for changing status to superbasic for subsequent pivot with

1 This tries, in turn, to step each of the superbasic integer variables which is currently infeasible with respect to the
integer requirements to the nearest integer.

2 Nonbasic to move away from bound.

3 Superbasic for    pivot.

4 Must be linearly independent of all current basic columns except possibly iprime; fixed and artificial variables are
not considered.

5 Pivot basic    with superbasic  .

B ↔ S

j**i ′
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an integer basic, whereas M4 is denied such freedom. It has been found that problems exist,

eg Berry Sugden (see the present Chapter 14) or Shanker Tzen (see the present Chapter

13), for which access to artificials is necessary for M5, to terminate. The termination of M5

is guaranteed and is the subject of a theorem in section 6.4. Pseudocode for M5 is given in
figure 21.

its := 0
pivot any integer-feasible basics with suitable superbasics
do while (numbasinf>0) & (ierrcode=NOERROR) & (its<maxits)

increment iteration count

try to step each infeasible superbasic feasibility1

recompute number of basic integer-infeasibilities
compute jstar2

compute minimum ratio thetastar
if event = 3 then

do nonbasic step

else
seek jstarstar3

if jstarstar can’t be found then
seek nonbasic, jns4, suitable to go superbasic then basic

endif
if suitable nonbasic jns found then

change status of column jns to superbasic
label new superbasic column jstarstar
do B<-->S pivot5

else
ierrcode := CANTFINDAJSTARSTAR

endif

endif
recompute number of basic integer-infeasibilities
pivot any integer-feasible basics with suitable superbasics

enddo

Figure 21   Pseudocode for M5

1 This tries, in turn, to step each of the superbasic integer variables which is currently infeasible with respect to the
integer requirements to the nearest integer.

2 Nonbasic to move away from bound.

3 Superbasic for    pivot.

4 Must be linearly independent of all current basic columns except possibly .  Fixed and artificial variables are
considered.

5 Pivot basic    with superbasic  .

B ↔ S

i ′

j**i ′
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6.4 Some theoretical properties of the new methods

It was noted in Chapter 5 that there maybe no non-integer nonbasics for Murtagh’s CYCLE1.

This means that does not exist and CYCLE1 cannot proceed. We are led therefore to

consider allowing superbasic variables to be considered for direct pivot with basics in the

hope that the number of integer-infeasibilities in the basis may be decreased.

Before deriving sufficient conditions for direct-search method M5 to terminate with no

integer variables in the basis, we examine briefly two negative results. Lemmas 1 and 2 are

presented in order to show that certain conditions are not sufficient for the termination of

M5. For each of the following results, we assume the standard form of MINOS;
corresponding to major iteration of MINTO, in which relinearization of constraints is made

at the commencement of each major iteration. A full set of slack variables is present, ie the

constraint matrix contains the identity as a submatrix. We assume that the continuous

relaxation has been solved with local optimum at .

Lemma 1

There exists a NLIP in which the linearized constraint matrix contains a full set

of slacks (ie is a submatrix of ) for which Murtagh’s cycle 1 fails to terminate

except in the event of an error condition or iteration limit being reached.

Proof

Consider either counterexample 1 or counterexample 2 of Chapter 5.

Lemma 2

Consider the method M4. Then there exists a NLIP for which M4 fails to

terminate except in the eventof an error condition or iteration limit being reached.

Proof

All that is required here is a single example, and the problem reported by Shanker

& Tzen [86] and discussed in the present Chapter 13 fills the bill.

j *
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Remarks

1. We note in all test problems that M5 terminates with zero integer-infeasibilities in the

basis. This is no coincidence, and we next prove that, because we have access to a full

set of slacks, some of which may be artificials, and we are permitted to use all slacks

if necessary for pivot operations, that M5 always terminates.

2. From the two preceding lemmas, we see that M4 is not sufficient for cycle 1 to

terminate, ie to remove all integer variables from the basis. We now show that M5 is

sufficient for all problems. It should be noted also that, for certain problems, it is not
necessary to invoke M5 to remove all integers from the basis, since, in particular,

counterexample 1 of Chapter 5 terminated using the MINTO starting partition and

invoking M3.

Theorem 1

Consider the class of problems defined in section 5.1, with the further assumption
that a bounded, feasible solution exists. Then for any such problem there exists

a basis containing no integer variables and this basis is attainable starting from

the continuous solution and applying method M5.

Proof

Define , the number of basic integer variables.

The first observation that needs to be made is that the number of basic
integer-infeasibilities must decrease by at least one on each iteration of the main

do while loop of M5. Stated another way, we need to establish the loop invariant

that decreases by at least one on each traversal of the loop. The result will

then follow by induction on .

The only steps which can alter the number of basic integer variables are

(i) do nonbasic step

(ii) do pivot

(iii) pivot any integer-feasible basics with suitable superbasics

mIB = | JB ∩ JI |

mIB

mIB

B ↔ S
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Each of these is designed to pivot out integer-feasible basic variables. The worst

case is that event 3 never occurs. Then either or must be found. Since the

basis is already nonsingular, we show that we can always find one, provided that

, ie that there is at least one integer variable still basic. Then, on each
iteration, must decrease by at least one, and thus M5 terminates.

Now to complete the proof, we note the preconditions for the loop:

(i) (this must be so, else the loop has already terminated).

(ii) basis is nonsingular

Let there be slack/artificial basic columns, where . These

are elementary vectors (columns of the identity ). Then we have

remaining columns of which are either superbasic or nonbasic, and
. Suppose none of these is suitable to pivot with column of

the current basis. But is a basis for , so that with column removed

consists of linearly independent vectors, and is thus a basis for . The

remaining columns of along with slack/artificial superbasic or

nonbasic columns span , since they contain all columns of . Thus we have

a basis for . This is a contradiction, and the proof is complete.

Note on Theorem 1

The result just proved holds even for a mixed-integer linear program (MILP), however there

is no guarantee that the integer-free basis so obtained corresponds to an integer-feasible

point. In general, there will still be integer-infeasibilities in the superbasic variables, which

may now be present even in a linear problem. Superbasics were introduced by Murtagh and
Saunders [62] in order to cater for nonlinearities; they are being used here to also help in

the quest for integer-feasibility, and so are applicable even to MILPs.

j ** jNS

mIB ≥ 1
mIB

mIB ≥ 1

mA 0 ≤ mA ≤ m − 1

Im m − mA

Im
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Chapter 7

Implementation of the new direct search
methods

Both Murtagh’s direct search method [59] and the proposed new methods were implemented

initially as Pascal prototypes due to the superior algorithmic expressive capabilities of Pascal

over FORTRAN, and also due to the superior high-quality development and debugging

tools available on PCs in products such as Borland’s Turbo Pascal. The development
machines were 80386/80387-based IBM or compatibles running PC-DOS 3.3 and MS-DOS

5.0. The Pascal compilers used were versions 5.0, 5.5 and 6.0 of Borland’s Turbo Pascal,

all of which have excellent program preparation and debugging facilities.

Once a working prototype algorithm was fully developed and debugged, it was naïvely

believed that a fairly simple, mechanical process would be required to hand-translate to

FORTRAN and imbed the resulting code in Murtagh’s MINTO NLIP optimizer. For various

reasons, some of which are described in section 7.8, this was in fact not the case.

7.1 SPECS options

Two options were added to Murtagh’s SPECS file, namely DIRECT SEARCH METHOD

and FIX INTEGERS. These operate as follows.

DIRECT SEARCH METHOD n
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The user may select any of five direct search methods M1 M5 or branch-and-bound

(M0 this is the default), or interactive (99).

n Effect

0 Branch-and-bound

1 Method 1 (Murtagh’s heuristic)

2 Method 2

3 Method 3

4 Method 4

5 Method 5
99 Interactive

FIX INTEGERS YES
FIX INTEGERS NO

This option controls whether the integer-feasible variables at the termination of any of the

direct search methods are held fixed for subsequent continuous reoptimization, followed by
branch-and-bound if required. Default is YES.

7.2 Some obstacles encountered

It must be admitted that early versions of the direct search methods were rather primitive.

A variety of test problems gave ample opportunity to hone these methods to the point where

it could be reasonably claimed that they work moderately well on a wide variety of MINLPs.

Some difficulties were encountered when running the Shanker-Tzen problem described in

Chapter 13. In particular, since the Shanker-Tzen problem is linear, there are no superbasic

variables present at the continuous solution. Also, it is a highly-degenerate 0-1 problem,

and has 6 feasible basics at the continuous solution. When this problem was encountered,

the first approach was to change the status of a suitable nonbasic variable to superbasic and

then pivot feasible integer basics out ( ). This works up to a point, however we end

up with a lot of artificial variables in the basis, and when we try to do a nonbasic step later,

no movement is possible. For example, in the Shanker-Tzen problem, a point is reached

B ↔ S
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where 4 integers are basic, compared with 18 at the continuous solution. Unfortunately,

artificials prevent any movement since they are fixed at zero. Originally, the search for

(nonbasic to be promoted to superbasic) did not consider artificial nonbasics, but this did

not get very far the supply of nonbasics was exhausted after the first two

operations and no nonbasic could be found to become superbasic since all rows of the

current basis inverse were orthogonal to all continuous nonbasic columns. For a number of

problems M4 is very successful, but the above-mentioned difficulties first observed with

the Shanker-Tzen model made it clear that M4 would not be adequate for some problems.

Thus M5 was born.

7.3 Interactive display program

A special program was written in Borland Turbo C to allow the user to direct the progress

of the direct search algorithm. Some experience with it enabled various proposed methods

to be tested and subsequently "hard-wired" into the direct search FORTRAN subroutine.

The display program follows a spreadsheet paradigm in that updated values of the solution

vector, objective, reduced gradient vector and other problem parameters are redisplayed

after each step, which typically takes of the order of a second or less on a 20 MHz
80386/80387 machine with problem size 168 rows and 316 columns, of which 84 are integer

(this is the Berry Sugden model of Chapter 14).

The user can select from a menu, one option of which is to instruct MINTO/INTERACTIVE

to proceed in the conventional "automatic" mode to the solution, without further intervention

from the user. All functions available within the MINTO/INTERACTIVE system are

described in the next section.

The C program was written in order to provide some interactive control of the direct search

methods by the user. The user receives immediate feedback on the success or failure of an

operation. For example, one may wish to manually select a nonbasic and see the result

of computing each minimum ratio for that particular . If suitable (normally one is seeking
event 3), then the user would opt to execute the step, thus removing an integer from the

basis while simultaneously achieving integer-feasibility in that variable (see Chapter 5 and

Chapter 6). The C code does considerable local checking, such as simple bound violations

on proposed steps in superbasic variables, but for complex checks, control is passed back

to the MINTO engine which for example, will check a proposed superbasic move for possible

jns

N → S

jns

j *

j *θ
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simple bound violations on the basic variables. If such a violation occurs, an appropriate

error status is returned to the C program and the user is then informed of the error with a

descriptive message.

Apart from simple, atomic operations such as computing the minimum ratio s, entire direct

search methods may be invoked directly from the C program. As the iterations of the search
proceed, updated information such as number of integer-infeasibilities, number of

superbasic variables, etc is displayed as progress information for the user. It is indeed

instructive to observe the progress of the various search strategies in this manner.

7.4 Functions available in MINTO/INTERACTIVE

The following keystrokes are used to control the operation of the interactive displayprogram.

A brief description of the effect of each is given.

The (horizontal tabulation) key is used to toggle the display mode from

E to F format. In particular, this facility is useful to inspect the integer

variables and quickly see the level of integer-infeasibility. For example, if

the representation 39.02195 is displayed rather than the representation
0.3902195E+02, the integer-infeasibility 0.02195 (approximately) is much

more easily discerned. On the other hand, very small values such as

are usually more conveniently displayed in scientific or engineering form

as 0.1E-10 or 1.0E-11 or perhaps 10.0E-12.

The escape key is used to request recalculation of the current solution.

Control is transferred back to the MINTO engine which then recomputes

the solution vector, gradient vector and objective function.

This control switches automatic recalculation mode on or off. It is similar

in function to the corresponding feature in a conventional electronic

spreadsheet such as Lotus 1-2-3.

θ

10−11

Esc

A
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This keystroke produces a pop-up screen which allows the user to switch

each of sixteen debugging flags on or off. This facility is useful for testing

new portions of code and to a certain extent, overcame the poor debugging

facilities available for development of the MINTO/INTERACTIVE

system (not easy to debug because of mixed-language programming).

Refresh screen. This function allows the user to rewrite the display screen,

perhaps after some operation has overwritten part of the display, because

of poor formatting.

Quit to MINTO; continue in automatic mode. This terminates the

interactive display program and MINTO proper regains control. The

problem will then solve to completion using branch-and-bound if required,
ie if any integer-infeasibilities remain.

Move cursor up one row on the display similar to spreadsheet.

Move cursor down one row on the display similar to spreadsheet.

Move cursor to top of arrays.

Move cursor to end of arrays.

Scroll up one screenful.

Scroll down one screenful.

Increase superbasic by the current value of . The cursor must be

positioned on a row corresponding to a superbasic variable, and the

operation is disallowed if this is not the case. Feasibility with respect to

the general linearized constraint set is automatically checked and the
operation denied if the move would violate a constraint. If acceptable, the

move is made and the recomputed objective and solution redisplayed.

Decrease superbasic by the current value of . See comments above for

increase superbasic.

D

R

Q

Home

End

PgUp

PgDn

> ∆x

< ∆x
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Entry to on-line help system. The initial help screen will pop up, and the

user may page down to further help screens. See figures 24 28 for

snapshots of the help screens.

Changes the status of the current nonbasic to superbasic. The cursor must

be positioned on a row corresponding to a nonbasic variable.

Uses the refined CTAC ’89 heuristic [59] to search for a suitable for a

nonbasic move.

Pivots the currently-selected superbasic with the currently-selected

integer basic .

Calculates the minimum ratio for a nonbasic move.

Execute nonbasic move after calculated.

Set the value of for a subsequent superbasic move.

Calculate superbasic index for basic/superbasic pivot.

Automatically calculate nonbasic using heuristic to become superbasic and

select as for subsequent basic/superbasic pivot. This nonbasic column

must be linearly independent of the current basis columns, with the

exception of the basic column . Equivalently, the basis nonsingularity
invariant must be preserved after the proposed pivot operation.

Changes the status of the current superbasic to nonbasic. The cursor must

be positioned on a row corresponding to a superbasic variable. This

function is essentially the inverse of that described above for the keystroke

F2, however it is more complex and has not yet been fully implemented.

Selects/deselects the current basic or nonbasic as respectively.

When a row is selected, the background colour on the screen will change

to reflect the new status. Likewise, when deselected, the background colour

will revert to the default.

F1

F2

F3 j *

F4 j **

i ′

F5 θ*

F6 θ*

F7 ∆x

F8 j **

F9

j **

i ′

F10

Ins i ′, j *
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As above but for the selection.

Cancel all selections, ie deselect all rows.

Try to automatically pivot all integer-feasible basics into the superbasic

set. This operation is necessary before the direct various search methods

may commence, and in fact, is built-in to all Mn.

Tries to achieve a decrease in the number of superbasic

integer-infeasibilities by selecting superbasics in pairs to be stepped to

integer-feasibility.

Force the current superbasic variable to the user-supplied value. The cursor

must be positioned on a row corresponding to a superbasic variable, and

the operation is disallowed if this is not the case. Any bound violations are

displayed as flashing values after the operation, and an error message may

be displayed.

Step current superbasic to next integer. The cursor must be positioned on

a row corresponding to a superbasic variable, and the operation is

disallowed if this is not the case. This operation is convenient to check for

feasibility of a proposed superbasic step. It will be disallowed if any

constraint violation occurs.

Step current superbasic to previous integer. See comments above.

Toggle screen display 25/28/43 line modes. For VGA screens, this option

allows many more data rows for the problem to be displayed as a single

screenful (28 rows in 43-line mode).

Clear iteration count. If an attempted method has become stuck in a loop

and used up all its iterations, this option allows the user to reset the counter

and try another method without having to restart the program.

Fix current integer-feasible variable at its current value.

Shift-Ins j **

Del

Shift-F4

Shift-F5

Shift-F7

Gray-+

Gray--

Gray-*

C

I
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Automatically run method M1.

Automatically run method M2.

Automatically run method M3.

Automatically run method M4.

Automatically run method M5.

7.5 Sample screens from MINTO/INTERACTIVE

This section presents some screen snapshots of the MINTO/INTERACTIVE system.

1

2

3

4

5
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Figure 22   MINTO/INTERACTIVE displays continuous solution for a small QIP

   i  hbinv hs     bl            x             bu        gradient       red g 

♦   1   4   3          0        40.91594          80    -2.86e-07        1e-14
♦   2   2   3          0        39.65044          79    -1.82e-07    -2.62e-15
♦   3   3   3          0        40.55087          80    -1.13e-06    -2.13e-15
♦   4   1   3          0        39.02059          79     7.19e-07    -9.43e-15
♦   5   5   3          0        40.47456          80    -6.01e-07       -0.115
    6   7   2          0        40.00000          80    -2.93e-07            0
    7   6   2          0        40.00000          80    -1.46e-07            0
    8   8   2          0        40.00000          80     7.06e-08            0
    9       0          0         0.00000          40     3.82e-07            0
   10       0          0         0.00000          40            0            0

newx           0 #Binf    5 j*       0 i1      0 j**     0 m     5 imn       0
dx           0.1 #Bfeas   0 j*shrt   0 i2      0 σ1      0 n    31 icsr      0
obj   6.3318e-13 #Sinf    0 j*long   0 i3      0 jmin    1 ns    4 imx       9
θ1             0 #Sfeas   0           event   0 j’’     0 nl   22 pgsz     10
θ2             0 auto   OFF art?    N i’0     1 jsup    0 nu    0 csr       4
θ3             0 opcode  32           i’1     5 jns     0 ni    5            
θ4             0 errcode  0 its      0 i’      1 σ’     -1                   

 F1 -Help     F2 -N-->S    F3 -Calcj*   F4 -BSpiv    F5 -Calcθ    F6 -NStep     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
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Figure 23   MINTO/INTERACTIVE displays integer-feasible solution for a small
QIP

   i  hbinv hs     bl            x             bu        gradient       red g 

♦   1   8   2          0        41.00000          80         2.83        -10.8
♦   2  12   2          0        40.00000          79            0         5.25
♦   3  11   2          0        40.00000          80        -9.42           74
♦   4  10   2          0        39.00000          79        0.667           12
♦   5  13   2          0        40.00000          80         2.75        -7.27
    6   7   2          0        40.00000          80    -2.93e-07        -55.5
    7   6   2          0        40.00000          80    -1.46e-07        -11.4
    8   3   3          0        35.29167          80        0.168        -43.7
    9       0          0         0.00000          40     3.82e-07            0
   10       0          0         0.00000          40      -0.0412            0

newx           0 #Binf    0 j*       0 i1      5 j**     8 m     5 imn       0
dx      0.074409 #Bfeas   0 j*shrt  13 i2      2 σ1      1 n    31 icsr      4
obj       26.835 #Sinf    0 j*long   0 i3      3 jmin    1 ns    8 imx       9
θ1        10.069 #Sfeas   5           event   0 j’’     0 nl   18 pgsz     10
θ2        4.2462 auto   OFF art?    N i’0     0 jsup   13 nu    0 csr       8
θ3       0.33333 opcode  23           i’1     0 jns     0 ni    5            
θ4            40 errcode  0 its      5 i’      0 σ’      0                   

 F1 -Help     F2 -N-->S    F3 -Calcj*   F4 -BSpiv    F5 -Calcθ    F6 -NStep     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
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Figure 24   Help screen #1 for MINTO/INTERACTIVE

   i  hbinv hs     bl            x             bu        gradient       red g 

♦   1    HELP FOR MINTO/INTERACTIVE  Page 1/5    -10.8
♦   2  1                                                                 5.25
♦   3  1  MINTO/INTERACTIVE is a nonlinear integer optimizer.              74
♦   4  1                                                                   12
♦   5  1  The interactive display program allows the user to direct     -7.27
    6    the progress of the direct search algorithm of Murtagh &      -55.5
    7    Sugden. The user may request elementary operations such as    -11.4
    8    autocalc of minimum ratio θ*, or simply ask that predefined    -43.7
    9    heuristics designed to achieve integer-feasibility be run.        0
   10    Local optimality with respect to the superbasic variables         0

 may also be checked automatically or manually.             
newx     Variables are displayed in natural, not partition, order,         0
dx       and diamonds indicate integer variables.                   r      0
obj                                                                        9
θ1       Elements of the partition are colour coded as follows:     z     10
θ2                                                                         4
θ3        lower    upper    super    basic                      
θ4       PgDn         

 F1 -Help     F2 -N-->S    F3 -Calcj*   F4 -BSpiv    F5 -Calcθ    F6 -NStep     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
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Figure 25   Help screen #2 for MINTO/INTERACTIVE

   i  hbinv hs     bl            x             bu        gradient       red g 

♦   1    HELP FOR MINTO/INTERACTIVE  Page 2/5    -10.8
♦   2  1                                                                 5.25
♦   3  1  TAB     Toggle display mode (E or F format)                      74
♦   4  1  ESC     Recalculate current solution (back to MINTO)             12
♦   5  1  A       Toggle autocalc mode                                  -7.27
    6    D       Toggle debug switches                                 -55.5
    7    R       Refresh screen                                        -11.4
    8    Q       Quit to MINTO; continue in automatic mode             -43.7
    9    S       Toggle silent mode (error buzz ON/OFF)                    0
   10    ↑       Move cursor up                                            0

 ↓       Move cursor down                                   
newx     HOME    Move cursor to top of arrays                              0
dx       END     Move cursor to end of arrays                       r      0
obj      PgUp    Scroll up one screenful                                   9
θ1       PgDn    Scroll down one screenful                          z     10
θ2        >      Increase superbasic by deltax                             4
θ3        <      Decrease superbasic by deltax                              
θ4       PgUp/PgDn         

 F1 -Help     F2 -N-->S    F3 -Calcj*   F4 -BSpiv    F5 -Calcθ    F6 -NStep     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
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Figure 26   Help screen #3 for MINTO/INTERACTIVE

   i  hbinv hs     bl            x             bu        gradient       red g 

♦   1    HELP FOR MINTO/INTERACTIVE  Page 3/5    -10.8
♦   2  1                                                                 5.25
♦   3  1  F1        Entry to on-line help system                           74
♦   4  1  F2        Current nonbasic goes superbasic                       12
♦   5  1  F3        Calculate j* for nonbasic move                      -7.27
    6    F4        Basic <--> Superbasic pivot                         -55.5
    7    F5        Calculate θ* for nonbasic move                      -11.4
    8    F6        Do nonbasic move                                    -43.7
    9    F7        Define deltax for super move                            0
   10    F8        Calculate nonbasic index j** for move                   0

 F9        Autocalc Nonbasic --> Superbasic                 
newx     F10       Superbasic to nonbasic lower                            0
dx       F11       Fix integers at current values                   r      0
obj      F12       QUIT! - Return to DIRSCH + shutdown                     9
θ1       Ins       Toggle basic/super/nonbasic selection            z     10
θ2       ShiftIns  Toggle j** selection                                    4
θ3       Del       Cancel all selections                                    
θ4       PgUp/PgDn         

 F1 -Help     F2 -N-->S    F3 -Calcj*   F4 -BSpiv    F5 -Calcθ    F6 -NStep     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
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Figure 27   Help screen #4 for MINTO/INTERACTIVE

   i  hbinv hs     bl            x             bu        gradient       red g 

♦   1    HELP FOR MINTO/INTERACTIVE  Page 4/5 6.47e-09
♦   2  1                                                             1.57e-08
♦   3    ShiftF4   - Auto pivot IF basics to superbasic             9.56e-09
♦   4  1  ShiftF5   - Step superbasics in pairs                      .48e-323
♦   5    ShiftF7   - Set value for current superbasic                      0
♦   6    GreyPlus  - Step current superbasic to next integer               0
♦   7    GreyMinus - Step current superbasic to previous integer           0
♦   8    Grey *    - Toggle screen display 25/28/43 line modes             0
♦   9    C         - Clear iteration count                                 0
♦  10  1  F         - Toggle Fixed/Artificial variables for jns             0

 I         - Fix current integer-feasible variable          
newx     1         - Invoke direct search method M1                        0
dx       2         - Invoke direct search method M2                 r      0
obj      3         - Invoke direct search method M3                        9
θ1       4         - Invoke direct search method M4                 z     10
θ2       5         - Invoke direct search method M5                        4
θ3                                                                          
θ4       PgUp/PgDn         

 F1 -Help     F2 -N-->S    F3 -Calcj*   F4 -BSpiv    F5 -Calcθ    F6 -NStep     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
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Figure 28   Help screen #5 for MINTO/INTERACTIVE

   i  hbinv hs     bl            x             bu        gradient       red g 

♦   1    HELP FOR MINTO/INTERACTIVE  Page 5/5    -10.8
♦   2  1                                                                 5.25
♦   3  1  Display Headings                                                 74
♦   4  1                                                                   12
♦   5  1  i        - natural index of current variable x[i]             -7.27
    6    hbinv    - partition index of current natural variable        -55.5
    7    hs       - partition indicator:  0=NL; 1=NU; 2=S; 3=B         -11.4
    8    bl       - lower bound of current natural variable            -43.7
    9    x        - value of current natural variable                      0
   10    bu       - upper bound of current natural variable                0

 gradient - component of gradient vector                    
newx     red g    - component of reduced gradient vector                   0
dx                                                                  r      0
obj                                                                        9
θ1                                                                  z     10
θ2                                                                         4
θ3                                                                          
θ4       PgUp         

 F1 -Help     F2 -N-->S    F3 -Calcj*   F4 -BSpiv    F5 -Calcθ    F6 -NStep     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
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Figure 29   Debug screen for MINTO/INTERACTIVE

   i  hbinv hs     bl            x             bu        gradient       red g 
 TOGGLE DEBUG SWITCHES 

♦   1                                                                  -10.8
♦   2  1  √ 0 Solution vector in natural order                           5.25
♦   3  1    1 Partition index vectors                                      74
♦   4  1    2 Soln vec, grad, red grad in ptn order                        12
♦   5  1  √ 3 IOPB (input/output parameter block                        -7.27
    6      4 Checkpoints in super basic move check                     -55.5
    7      5 Generated alpha columns                                   -11.4
    8      6 Computed basics for super move check                      -43.7
    9      7 Predicted basic for C1P2                                      0
   10    √ 8 Parameters from calc theta routine                            0

   9 Parameters from calc z tranpose routine                
newx       A CALCG parameters                                              0
dx         B UPDATEXFGH major checkpoints                           r      0
obj      √ C CALCJS parameters                                             9
θ1         D Alpha sub jstar in CALCTHETA                           z     10
θ2       √ E Results of super move check                                   4
θ3         F Progress of IF basics to super pivot                           
θ4                                                                          

   <del> - cancel all dumps      <ins> - select all dumps   
 F1 -Help Step     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
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7.6 The FORTRAN workhorse routines

This section gives a very brief overview of the major FORTRAN subroutines which form

the building-blocks for implementation of the various direct search methods.
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Name Purpose

ASSERT A very short but effective routine which simply checks that a claimed

predicate is in fact true. If so then control returns to the caller,

otherwise execution is aborted with a caller-supplied diagnostic

message. Sample call:

call assert(iprime .gt. 0,’CALCJNS:: iprime <= 0’)

C1P1STEP Pivot the current basic integer variable with a chosen superbasic

variable .

C1P2STEP The abbreviation is for CYCLE 1, PHASE 2 step. A nonbasic step

causes one of four possible outcomes. We seek integer-feasibility for

our selected basic (event #3). If a change of basis occurs (events 1 3)

then MODLU is called to update the sparse basis factorization.

C2P1 The abbreviation is for CYCLE 2 PHASE 1. This involves a step for

an integer-infeasible superbasicvariable to achieve integer feasibility.

CALCINF Compute many parameters relating to integer-infeasibilities: calculate

min/max integer-infeasibilities: scan all basics and superbasics and

compile indices of min/max integer-infeasibilities for both basics and
superbasics separately. Also detect (super)basic integers which are in

fact integer-feasible. Count the number of integer-feasible integer

variables, both basic and superbasic.

CALCJNS Find a nonbasic suitable for becoming superbasic and ultimately to

be pivoted into the basis. The corresponding column of the linearized

constraint matrix must not be (nearly) orthogonal to row of the

basis inverse, where is the integer basic variable to be pivoted.

CALCJS Calculate a nonbasic which prima facie has the best chance of

forcing our basic to integer-feasibility while not worsening the

objective too much.

Table 3   The FORTRAN subroutines Part A

i ′
j **

A i ′
i ′

j *
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CALCJSS Calculate a superbasic which, when pivoted into the basis, the

basis remains nonsingular.

CALCTH The "minimum ratio test". Computes the four thetas, corresponding

to limits imposed on the move of a nonbasic by basics reaching

bounds, basics going integer-feasible, or nonbasic reaching the other
end of its range.

CALCZT Compute row of the basis inverse, where is the current basic

selected for step to integer-feasibility.

CHUZQI Choose a column corresponding to a continuous superbasic variable

which will become (see entry for CALCJSS above).

DIRSCH This is the main control routine for the direct search methods and

subfunctions which may be invoked from the interactive display

program. It contains the command interpretation loop and calls to

many of the routines listed in this section.

DUMPCOL4 These are utility routines useful for debugging they write

DUMPCOL8 floating-point or integer columns (vectors) to the output file.

DUMPICOL

DUMPIOPB Writes the contents of the IOPB (input/output parameter block)

common block to the output file.This block is used for communication

with the interactive display program, which is written in C.

DUMPPTN Writes the current extendedsimplexpartition information to the output

file.

DUMPXNAT Writes the current solution vector in natural order to the output file.

Table 4   The FORTRAN subroutines Part B

j **

i ′ i ′

q

j **
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ERRMSG Definition of parametrized error messages common to FORTRAN

and C routines.

ERRS Definition of parametrized error codes common to FORTRAN and

C routines.

FIXINTS Redefine bounds on all integer-feasible integer variables so as to fix

them at the current value. Used when exiting from the direct search

routine with no integer-infeasibilities so that a continuous resolve will

not alter the integer values obtained at so much effort.

ICHKNAT See if ith NATURAL variable is an integer.

ICHKPTN See if ith PARTITION variable is an integer.

IFBTOS Pivot integer feasible basics to superbasic. Needed in particular for

Berry model, in which 9 basics are integer-feasible at the continuous

solution. Precondition: CALCINF has been called or is otherwise

up-to-date (eg by manual selection in disp.c).

INITIOPB Initialize the IOPB common block structure.

IOPB Definition of the IOPB (include file). This file automatically generated

by the OPGEN program (see section 7.7).

NATTOPAR Returns the partition index of natural variable i, ie inverts Murtagh’s

hb index.

NTOS Change status of nonbasic jns (optionally automatically selected by

this routine to be suitable for subsequent basis pivot see
CHUZQNS/CALCJNS above) to superbasic. Also select as for

subsequent pivoting into basis with basic .

OPMSG Definition of parametrized operation messages common to

FORTRAN and C routines.

OPS Definition of parametrized operation codes common to FORTRAN

and C routines.

Table 5   The FORTRAN subroutines Part C

i ′

j **

i ′
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SMOV2 Assuming that all attempts to separately step integer superbasic

variables have failed, this routine tries simultaneous moves (four

possibilities) for two currently-chosen superbasic variables. Deltax1

and deltax2 are the POSITIVE forward steps separately required for
integer feasibility in the superbasics jsuper1, jsuper2. Precondition:

no integers in basis.

SPMOVCHK Check if proposed step in superbasic variable x[iopb.jsuper] in

PARTITION order is feasible.

SUPERADJ Tries to step each integer-infeasible superbasic integer variable to

feasibility, checking after each one if by chance any basics have

become feasible this actually happens in some highly-degenerate

0-1 problems such as Shanker, Berry. The present routine is called

during method loops M4, M5 in particular. NB This routine is NOT

the same in function as C2P1 or C2P2.

SUPERMOV Moves superbasic jsuper by deltax (positive or negative) and updates

x, f, g but first checks for constraint or simple bound violations by
calling SUPERMOVECHK.

UPDATXFG Returns latest function value gradient, and reduced gradient. Also
updates pricing vector and reduced gradient norm.

Table 6   The FORTRAN subroutines Part D
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7.7 Utility programs

During the development process, some simple but useful software tools were written. The

fundamental computing principle of having a single defining occurrence for each object

that a computer is going to eventually process, coupled with suitable tools for converting

such objects to the various forms required by existing software, was the overriding objective.

The present writer has a particular aversion to the reinvention of specific, well-known

wheels.

Accordingly, many tools were written the primary ones being a FORTRAN dump code

generator, an MPS generator, a QIP generatorand a generator for iopb common block include
file, error codes and error messages strings. Since mixed language programming was used,

it was very awkward to keep a single point of definition for parameters: operation codes,

error codes, messages etc so as to have consistency between the FORTRAN and C routines.

Pascal programs were written to automatically generate the C and FORTRAN source files

from a single definition of these parameters. Each utility program is described in further

detail below.

7.7.1 MPS generator

At an intermediate stage of the development and testing for the direct search techniques, it

was realised that a utility which would accept an algebraic description of a MILP and then

write a corresponding MPS file would be of great benefit. MPS files are not noted for their
ease of comprehension by human readers, but are deliberately designed to be a suitable input

format for MP problems. A simple linear expression parser and detection of simple bounds

plus building of symbol table were the main requirements, so that this program was

developed relatively quickly using Borland’s Turbo Pascal, version 6.0.

Once this tool was available, problems could be expressed succinctly in normal algebraic

notation, and then the generator invoked to produce the MPS file. Since the original problem

was available in algebraic form, it could then be included in the present document in the

knowledge that no corruption of data had occurred, because of re-keying or other
unnecessary and error-prone duplication of effort.
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7.7.2 QIP generator

For initial testing of the direct search methods, some small linearly-constrained QIPs were

very useful. These were provided by a special purpose program, GENQIP, written in Turbo

Pascal.

7.7.3 IOPB generator

Another program was written in Turbo Pascal to read several definition files containing

error codes, error message strings, operation codes, operation code descriptions, definition

of scalar parameters which would ultimately become elements of a FORTRAN COMMON

BLOCK iopb (input/output parameter block), and correspondingly, a C structure. This

approach ensured that communication between the C and FORTRAN code was based on a

consistent, single point of definition for all objects involved. Since only the starting address
of the FORTRAN common block is passed to the C routines, much stack overhead could

be avoided (only one pointer rather some 50 parameters was passed), to say nothing of

increased code readability and maintainability. As with most efforts toward code

improvement and generalization, this approach involved some considerable work initially,

but paid handsome dividends as the development work proceeded.

Nevertheless, many frustrating hours were spent trying to debug very simple errors which,

while not detected in FORTRAN until run-time or link-time, would not have even got past

the compiler if a more modern language such as MODULA-2 had been used. Some further
comments on the limitations of FORTRAN appear in section 7.8.

7.8 Some FORTRAN traps

The decline and fall of the Roman number system provides an interesting case

study on the importance of codes and representations. It shows that a long time

is needed to overthrow established systems, even when the alternatives are far

superior. A modern example of this is the QWERTY keyboard, which is used on

almost every typewriter and terminal. It is known that alternative layouts can

improve productivity by more than 30 percent, but who will make the effort to
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change? What other examples of this phenomenon can you think of? What about

computer character codes or programming languages. (emphasis ours) Hext

[37].

The following paragraphs contain some brief observations from an experienced FORTRAN

programmer who prefers to avoid the language wherever possible. Despite the excellent

quality of the Lahey FORTRAN77 compiler (with useful extensions), the fundamentally

primitive nature of the FORTRAN language caused a very considerable amount of wasted
time when developing and debugging the MINTO/INTERACTIVE system. It should be

noted that the FORTRAN language only supports independent compilation as distinct from

separate compilation, which is a feature of modern languages such as MODULA-2, Ada,

or evenTurboPascal (versions 4.0ff).Fordefinitions of these terms, the readermayconsult,

for example the excellent book by Booch [3].

It is worthy of note that when the United States Department of Defense requested

submissionsfor the designof a newlanguage for all embeddedsystems software development

(culminating in Ada), all five shortlisted designs were based on Pascal, a true
block-structured language unlike FORTRAN or C.

Problems experienced

1. It was necessary to be very careful when using array indexing. If INTEGER*2 instead

of INTEGER*4 wereused, the resultswere essentially unpredictable, certainly without

delving into low-level details. It shouldnot be necessary for an application programmer
in the 1990s to have to resolve such issues such menial tasks can be performed with

ease by the programming language compiler if the language definition is sufficiently

precise.

2. It is rather inconvenient to have to pass several dozen parameters, with resulting

problems with line-length just to get variable array dimensioning. It is indeed ironic

in a language which does not permit long identifiers that problems of this kind are

encountered.

3. Debugging facilities were rather primitive, although any debugger is better than none.

The loose type-checking and implicit typing inherent in FORTRAN are the root causes

of so many unnecessary (from the point of view of programming-language design)
debugging problems that they simply do not bear mentioning. One example only:

122



forgetting to include a required include file fails to elicit an error diagnostic from either

compiler or linker when an undeclared object is referenced, because of the archaic

FORTRAN system of implicit typing.

4. Poor subprogram interface checking only at run-time can this be done in FORTRAN

unless one has access to a language-sensitive linker which is aware of the independent

compilation of FORTRAN, C and related languages unlike languages such as Ada
and MODULA-2.

5. FORTRAN is so woeful when it comes to I/O, especially screen I/O that it was decided
to write the interactive display program in C (another detestable language, however

the Lahey F77 compiler used had no link to the preferred languages Pascal or

MODULA-2). The FORTRAN C interface means that even less type-checking and

interface checking than usual in FORTRAN can be done. As noted elsewhere, a special

program was written in Pascal to read files containing definitions of operation codes,

error codes, parameter block and generate FORTRAN and C code to be included at
compile time.

6. IMPLICIT NONE could not be switched on (to get maximum possible compile-time
checking) because of existing large volume of code.

7. Run-time errors such as non-existent subroutine simply hang the system, whereas with
a modern language such as MODULA-2 it would not even get past the compiler or

linker!

Include files

Many include files were used during development. The prime advantage with this approach

when writing in disparate languages is to ensure a single point of definition for parameters
and common-block variables. It would be possible of course to write automatic checkers or

source-code generators (as outlined above), but surely this highlights the fundamental

limitations of the hopelessly dated approach of FORTRAN even FORTRAN77 to basic

issues such as type-checking and declaration of all objects before use.
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7.9 Ideas for future work

As the algorithmic development work proceeded, the rate at which new ideas for search

procedures were being created far outstripped the rate at which such ideas could be
implemented and tested. This is certainly not a new phenomenon, and is to be expected,

given the current poor collection of high-level languages available for the rapid development

of easily-maintainable mathematical programming software. Thus, at the time of writing,

we still have several strategies which are as yet untested. A brief summary of those which

seem to hold promise is given in this section.

Much time was spent on development work, both FORTRAN "workhorse" routines, and

also the C interactive code. Some further work simply exercising this code would be most

valuable since the basic tools are there for skilled user (ie optimization researcher) to
experiment with various approaches based on Murtagh and Saunders’ fundamental ideas of

superbasic variables and search in the reduced space.

An idea inspired by the Shanker & Tzen problem of Chapter 13 is that, for the heuristic,

we may also need to relax the requirement of "short step". In fact, the development code

has been altered to compute two ’s, viz one corresponding to a "short" step to integer

feasibility for the chosen basic variable, and one corresponding to a "long" step. We prefer

the short step, since this is more likely to stay closer to the continuous solution, or
alternatively, suffer a smaller deterioration in objective. However, if no suitable can be

found for the short step, we may choose to take the long step. In fact, this has actually been

implemented in the latest version of the code.

Concerning CYCLE1, ie movement of selected nonbasics in order to achieve integer

feasibility in a chosen basic variable. A pre-condition of this part of the search is that we

start at the continuous solution, even if some pivot operations have already been

done. An implication of this fact is that on the first iteration, the reduced gradients are zero

(we are at a constrained continuous optimum). Thus, on the first iteration, we cannot estimate
the change in objective on the basis of first-order information, nor can we choose on the

basis of "steepest descent". The reduced Hessian will in general give information adequate

to find a nonbasic giving smallest increase of objective.

On subsequent iterations we wish to choose a nonbasic to give steepest descent for

objective and integer feasibility on an independently-chosen integer basic variable . This

will of course not be possible in general, but it would be a shame to miss it if the chance
came up. Therefore it is proposed that we should detect it, but degrade to another choice

for (see later) when it doesn’t happen (most of the time) it should not be too expensive

j *

j *

j *

B ↔ S

j *

x
j*

xi ′

j *
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to compute. We also must of course maintain feasibility of other basics. We may therefore

speak of a "feasible j" to get integer feasibility for our chosen basic which is hopefully a

descent, but in general is chosen to minimize any increase in objective.

Since , a first order estimate of is known immediately for each eligible

nonbasic. Scan such nonbasics and keep track of the best feasible , ie such that is smallest

(most negative). The best feasible will often give (in fact this must be so initially).

Further, there may be no feasible j at all, ie "event 3" doesn’t happen this time around.

If this is the case then we accept one of the other outcomes as defined in Murtagh’s paper

[59]. Having already chosen , on every iteration we need to ask the question, "is the

current nonbasic a feasible descent candidate, ie is

where tolrg is the reduced gradient tolerance. Also, is it going to take us in the correct

direction to get the basic feasible? We could easily go the wrong way and waste any

benefit of having computed the basic with least integer-infeasibility. It is clear that there is

some room for refinement of these heuristics.

∆f = λ
j* ∆x

j* ∆f

j ∆f

j ∆f > 0

xBi ′

xj

λj signum(∆xj) < −tolrg ?

xi ′
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Chapter 8

Computational experience I Results for
counterexamples

8.1 Introduction

The observations made in Chapter 5 were confirmed by running the counterexamples and

using old and new methods. We present details only for the first of the examples below,

since the others give no further insight.

8.2 Example 1 general comments

Running example 1 of Chapter 5 using MINTO/INTERACTIVE confirmed the

non-termination of CYCLE1 of Murtagh’s direct-search approach (the present M1). As

diagnosed in Chapter5, the methodfailsbecause there isnot enough"freedomof movement".

In particular, the presence of only one nonbasic at the continuous solution, for which

is small does not allow our target integer variable to move to integer feasibility before

our solitary nonbasic hits its other bound.

Invocation of the present M4 followed by a simple superbasic step gives the (globally)

optimal solution to this problem.

It is interesting to note also that our contrived continuous partition for this problem is not

so different from the actual partition at the continuous MINTO solution. Our partition has

basic; superbasic and nonbasic at lower bound 0; whereas the continuous

MINTO solution has the same basis, but no superbasics ( are all nonbasic at 0).

j * α
2j*

x2

x1, x2 x4, x5 x3

x3, x4, x5
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Nevertheless, application of Murtagh’s procedure (the present M1) to this latter MINTO

solution yields with objective value 1.25, which is locally optimal

with respect to the integer restriction but clearly inferior to the global optimum

with objective value 0.25 obtained by the present M4.

It should be noted however that continuous reoptimization after Murtagh’s heuristic with

fixed then gives the same result as M4. The final partition for M1 has basic;
superbasic; nonbasic at upper bound 1; nonbasic at lower bound 0, whereas that for

M4, while having the same basis, has superbasic, and nonbasic at lower bound 0.

As stated in Chapter 5 (table 2), it is clear that we need access to the superbasics even for

CYCLE1 and even for simple linearly-constrained QIPs to achieve global optimality, or

even to achieve integer-feasibility. Thus we conclude that there exist problems for which

M1 is unsuitable, and in particular, does not terminate, except if the customary iteration

limit guard is imposed. This result confirms the observations made in Chapter 5.

8.2.1 Objective function/gradient routine CALCFG

SUBROUTINE CALCFG( MODE,N,X,F,G,NSTATE,NPROB )

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 X(N),G(N)
COMMON /IOCOMM/ IREAD,IPRINT

**
** counterexample 1
**

f = (x(1)-1.2)**2 + (x(2)-2.5)**2 + x(3)**2
g(1) = 2.0*(x(1) - 1.2)
g(2) = 2.0*(x(2) - 2.5)
g(3) = 2.0*x(3)
g(4) = 0.0
g(5) = 0.0

RETURN
END

8.2.2 MPS file

BEGIN SPECS FILE FOR counter1
MINIMIZE
ROWS 200

COLUMNS 400

x = (2.2,2,1.0,0.0,0.4)T

x = (1.2,2,0.0,0.0,0.5)T

x2 x1, x5 x2

x3 x4

x2, x4 x3
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ELEMENTS 2600

INTEGER VARIABLES 5
NONLINEAR VARIABLES 25
PRIORITY NO
LIST LIMIT 200
DIRECT SEARCH METHOD 99
FIX INTEGERS YES

END SPECS FILE FOR counter1
*
*
*
NAME random
ROWS

E ROW1
E ROW2
COLUMNS

x1 ROW1 1.0000
*

MARKER INTORG

x2 ROW2 1.0000
MARKER INTEND

*
x3 ROW1 -1.000
x3 ROW2 0.100

*

x4 ROW1 1.0000
*

x5 ROW2 1.0000
*
RHS

B ROW1 1.2

B ROW2 2.5
BOUNDS
LO BD x1 0.0000
UP BD x1 5.0000
LO BD x2 0.0000
UP BD x2 5.0000

LO BD x3 0.0000
UP BD x3 1.0000
LO BD x4 0.0000
UP BD x4 100.00
LO BD x5 0.0000
UP BD x5 100.00

ENDATA

8.2.3 Continuous solution

PROBLEM NAME counter1 OBJECTIVE VALUE 0.0000000000E+00

SECTION 2 - COLUMNS
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NUMBER .COLUMN. AT ...ACTIVITY...

1 x1 BS 1.20000
2 x2 BS 2.50000

A 3 x3 LL 0.00000

A 4 x4 LL 0.00000
A 5 x5 LL 0.00000
A 6 B EQ -1.00000

8.2.4 Output for method 0 (branch-and-bound)

PROBLEM NAME counter1 OBJECTIVE VALUE 2.5000000000E-01

SECTION 2 - COLUMNS

NUMBER .COLUMN. AT ...ACTIVITY...

1 x1 BS 1.20000
2 x2 IV 2.00000

A 3 x3 LL 0.00000
A 4 x4 LL 0.00000

5 x5 BS 0.50000
A 6 B EQ -1.00000

8.2.5 Output for method 1

PROBLEM NAME counter1 OBJECTIVE VALUE 2.5000000000E-01

SECTION 2 - COLUMNS

NUMBER .COLUMN. AT ...ACTIVITY...

1 x1 BS 1.20000

2 x2 IV 2.00000
A 3 x3 LL 0.00000
A 4 x4 LL 0.00000

5 x5 BS 0.50000
A 6 B EQ -1.00000

8.2.6 Output for methods 2 and 3

PROBLEM NAME counter1 OBJECTIVE VALUE 2.5000000000E-01

SECTION 2 - COLUMNS

NUMBER .COLUMN. AT ...ACTIVITY...
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1 x1 BS 1.20000

2 x2 IV 2.00000
A 3 x3 LL 0.00000
A 4 x4 LL 0.00000

5 x5 BS 0.50000
A 6 B EQ -1.00000

Notes

1. It is interesting to observe that both M2 and M3 arrive at the correct global optimum

on their own! However M2 does this with our starting partition and M3 with the

MINTO starting partition.

2. For M2, starting with our partition (2 superbasics), the number of superbasics remains

at 2. For M3, starting with MINTO partition (0 superbasics), the number of superbasics
at the integer solution is 1.

8.2.7 Output for method 4

PROBLEM NAME counter1 OBJECTIVE VALUE 2.5000000000E-01

SECTION 2 - COLUMNS

NUMBER .COLUMN. AT ...ACTIVITY...

1 x1 BS 1.20000
2 x2 IV 2.00000

A 3 x3 LL 0.00000

D 4 x4 SBS 0.00000
5 x5 BS 0.50000

A 6 B EQ -1.00000

8.3 Results for example 2

These were identical to those for example 1.
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8.4 Results for example 3

For this example, M1 works as expected (no superbasic step after termination of the method

was required. M2 and M3 both fail to remove integers from the basis, while M4 succeeds

on its own (no superbasic step required).
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Chapter 9

Computational experience II An example
from Ravindran et al1

This section reports computational experience with a very small quadratic integer problem

from Ravindran [77], 472ff. It is recognized that this problem is rather trivial, however we

include it because of a notable comparison between certain of the new methods and the

branch-and-bound integerizing procedure of Murtagh’s MINTO code.

Description of the problem

maximize

(197)

subject to

(198)

(199)

(200)

All integer.

13x1 − 5x2
2 + 30.2x2 − x1

2 + 10x3 − 2.5x3
2

2x1 + 4x2 + 5x3 ≤ 10

x1 + x2 + x3 ≤ 5

x1, x2, x3 ≥ 0

xj

1 Ravindran, Phillips and Solberg.
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A screen snapshot of the solution parameters after invocation of M4 is given in figure 30.

 

Figure 30    Ravindran example optimal solution obtained using M4

Notes

1. The published optimal solution in Ravindran et al [77] is , with

objective value 55.2. The continuous solution objective is 56.268.

2. MINTO using branch-and-bound with default node selection and branching options

arrives at a suboptimal solution , with objective 52.4.

3. Using any of the present methods M2, M4 or M5 yields the published optimal solution

without branch-and-bound being required at all. Further, no superbasic steps are
required after termination of the Mn the solution is integer feasible and optimal.

   i  hbinv hs     bl            x             bu        gradient       red g 

♦   1   4   2          0         3.00000     2.5e+04            0        -20.2
♦   2   3   2          0         1.00000     2.5e+04            0           -7
♦   3       0          0         0.00000     2.5e+04        -20.2            0
    4       0         -1        -1.00000          -1           -7            0
    5   1   3          0         0.00000       1e+20            0            0
    6   2   3          0         1.00000       1e+20            0            0
                                                                              
                                                                              
                                                                              
                                                                              

newx           0 #Binf    0 j*       0 i1      0 j**     0 m     2 imn       0
dx      -0.34444 #Bfeas   0 j*shrt   5 i2      0 σ1      1 n     6 icsr      0
obj        -55.2 #Sinf    0 j*long   0 i3      1 jmin    1 ns    2 imx       5
θ1         1e+20 #Sfeas   2           event   0 j’’     0 nl    2 pgsz     10
θ2         1e+20 auto   OFF art?    N i’0     0 jsup    4 nu    0 csr       4
θ3             0 opcode  32           i’1     0 jns     0 ni    3            
θ4         1e+20 errcode  0 its      1 i’      0 σ’      0                   

 F1 -Help     F2 -N-->S    F3 -Calcj*   F4 -BSpiv    F5 -Calcθ    F6 -NStep     
 F7 -Setdx    F8 -Calcj**  F9 -AutoNS   F10-S-->NL   F11-FixInts  F12-Quit!     
                                                                                

x* = (3,1,0)T

x* = (1,2,0)T
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Chapter 10

Computational experience III A plant
upgrade problem

This problem is taken from Daellenbach, George and McNickle [11] and is cited in

Mawengkang [48] where he solves it using the earlier direct search method of Mawengkang

and Murtagh [48, 49].

Introductory description of problem

An electrical manufacturer wishes to upgrade its machinery as running costs are increasing

as machines begin to wear out or become obsolete. The present plant cannot meet a recent

increased demand. Two types of wire are produced by the manufacturer: bare wire and

insulated wire. The problem ultimately reduces to the determination of the configuration of

the new plant such that production costs are minimized while ensuring that demand is met.
A more detailed description may be found in Daellenbach, George and McNickle [11].

Mathematical statement of the problem

Let be the number of machines of options , and be the proportion of annual machine

time on machines of options to produce wire size , ( and ). The linear
objective function is the total running cost, represented by , and the problem is:

yi i xij

i j i = 1,…,5 j = 1,2
P

134



minimize

(201)

subject to

(202)

(203)

(204)

(205)

(206)

(207)

(208)

(209)

(210)

(211)

(212)

(213)

(214)

(215)

Results

Results are tabulated overleaf and agree with the published values fromDaellenbach, George

and McNickle. Solution vectors and objective were identical in all cases.

P = 30y1 + 33.6x11 + 32.88x12 + 50y2 + 47.4x21 + 47.04x32 + 80y3 + 58.8x31

+57x32 + 100y4 + 62.4x41 + 54.7x42 + 140y5 + 86.4x51 + 82.8x52

5880x11 + 8820x21 − 7200x31 − 9600x41 ≥ 3000

4704x12 + 8232x22 − 6000x32 − 7800x42 ≥ 2000

6984x31 + 9312x41 + 9312x51 ≥ 14000

5820x32 + 7566x42 + 6984x52 ≥ 10000

y1 ≥ x11 + x12

y2 ≥ x21 + x22

y3 ≥ x31 + x32

y4 ≥ x41 + x42

y5 ≥ x51 + x52

y1 ≤ 2

y3 + y4 ≤ 1

xij ≥ 0, i = 1,…,5; j = 1,2

yi ≥ 0,     and integer, i = 1,…,5.
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Chapter 11

Computational experience IV A heat
exchange network optimization problem

This problem is taken from Papoulias and Grossmann (1983) [70] and is cited in

Mawengkang [48] where it is solved using the earlier direct search method of Mawengkang

and Murtagh [49]. The problem is a mixed-integer linear program. In a chemical processing

system, the heat exchanger network must integrate the hot and cold streams in a process so
that the amount of heating and cooling utilities required is minimized. A more detailed

description of this example may be found in the original paper by Papoulias and Grossmann

[70].

Mathematical statement of problem

minimize

YAA01+YAB01+YAC01+YAD01+YAE01+YBA01+YBB01+

YBC01+YBD01+YBE01+YCA01+YCB01+YCC01+YCD01+
YCE01+YDA01+YDB01+YDC01+YDE01

subject to

QAD01 = 120.0

QAD01 + RA01 = 600.0
QAD02 + QBD02 = 240.0

QAD02 - RA01 + RA02 = 300.0

138



QBD02 + RB02 = 60.0

QAC03 + QBC03 + QCC03 = 160.0

QAD03 + QBD03 + QCD03 = 600.0

QAC03 + QAD03 - RA02 + RA03 = 750.0
QBC03 + QBD03 - RB02 + RB03 = 120.0

QCC03 + QCD03 + RC03 = 320.0

QAA04 + QBA04 + QCA04 + QDA04 = 200.0

QAB04 + QBB04 + QCB04 + QDB04 = 300.0

QAC04 + QBC04 + QCC04 + QDC04 = 320.0

QAA04 + QAB04 + QAC04 - RA03 + RA04 = 600.0
QBA04 + QBB04 + QBC04 - RB03 + RB04 = 0.0

QCA04 + QCB04 + QCC04 - RC03 + RC04 = 0.0

QDA04 + QDB04 + QDC04 + RD04 = 360.0

QAA05 + QBA05 + QCA05 + QDA05 = 400.0

QAE05 + QBE05 + QCE05 + QDE05 = 1179.9999

QAA05 + QAE05 - RA04 + RA05 = 150.0
QBA05 + QBE05 - RB04 + RB05 = 0.0

QCA05 + QCE05 - RC04 + RC05 = 0.0

QDA05 + QDE05 - RD04 + RD05 = 360.0

QAA06 + QBA06 + QCA06 + QDA06 = 100.0

QAA06 - RA05 ≤ 0.0

QBA06 - RB05 = 0.0
QCA06 - RC05 = 0.0

QDA06 - RD05 = 0.0

QAA04 + QAA05 + QAA06 - 700YAA01 ≤ 0.0

QAB04 - 300YAB01 ≤ 0.0

QAC03 + QAC04 - 480YAC01 ≤ 0.0

QAD01 + QAD02 + QAD03 - 960YAD01 ≤ 0.0
QAE05 - 1179.9999YAE01 ≤ 0.0

QBA04 + QBA05 + QBA06 - 180YBA01 ≤ 0.0

QBB04 - 180YBB01 ≤ 0.0

QBC03 + QBC04 - 180YBC01 ≤ 0.0

QBD02 + QBD03 - 180YBD01 ≤ 0.0

QBE05 - 180YBE01 ≤ 0.0
QCA04 + QCA05 + QCA06 - 320YCA01 ≤ 0.0

QCB04 - 300YCB01 ≤ 0.0

QCC03 + QCC04 - 320YCC01 ≤ 0.0

QCD03 - 320YCD01 ≤ 0.0
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QCE05 - 320YCE01 ≤ 0.0

QDA04 + QDA05 + QDA06 - 700YDA01 ≤ 0.0

QDB04 - 300YDB01 ≤ 0.0

QDC04 - 480YDC01 ≤ 0.0
QDE05 - 720YDE01 ≤ 0.0

and also subject to

YAA01, YAB01, YAC01, YAD01, YAE01, YBA01, YBB01,

YBC01, YBD01, YBE01, YCA01, YCB01, YCC01, YCD01,
YCE01, YDA01, YDB01, YDC01, YDE01 ∈ {0,1}

Results

Results for this problem are summarized in the tables overleaf.
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Notes

1. This problem was solved successfully using the new direct search methods which

yielded a minimum of 8.0, in agreement with the previously published minimum of

Papoulis and Grossmann [70], whouse the LINDO [85] code to obtain it. The minimum

obtained by Mawengkang [48] for the same problem was 9.0 (this seems to be a

typographical error on the part of Mawengkang).

2. For this problem, the heuristic of Murtagh (essentially the present M1) has problems

with cycling. One benefit of MINTO/INTERACTIVE is that such cycling usually is

obvious from the on-screen behaviour as updated parameters are displayed on each
traversal of the search loop.

3. We observe that the present direct search methods (followed by a short
branch-and-bound) achieve integer feasibility and indeed local optimality for this

problem, in a much shorter time than branch-and-bound alone.
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Chapter 12

Computational experience V Two
examples from Myers1

A recent contribution to linearly-constrained NLIP by Myers (1984) [66] examines several

strategies for improving the efficiency of branch-and-bound and the use of Lagrangian

relaxation for linearly-constrained mixed-integer problems. The twenty test problems he

presents are all purely integer, linearly-constrained, and with separable nonlinear objective.

We have solved several of the test problems listed in Myers’ dissertation, in some cases

obtaining much-improved optima. Due to limitations of space, computational experience is
reported with only the first two of Myers’ problems here.

12.1 Myers problem #1

The Myers problem #1 is defined as follows

1 PhD dissertation of D.C. Myers.
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minimize

(216)

subject to

(217)

(218)

(219)

(220)

(221)

(222)

(223)

(224)

All integer and nonnegative.

f = 4.0 exp(x1) + 5.0 exp(−0.4x2) − 2.0x3

+ x4
3 + 3.0x4

2 + 0.1x5
6 + x6

2

− ln(2.0x7 + 1.0) − ln(x8 + 3.0) + x9
2

− 4.0x9 + x10
3 + √x2 + 4.0

−3x1 − 2x2 + 2x4 − 5x5 + 3x6 − x7 − 2x9 ≥ −26.6

−2x2 − 5x3 + 4x5 − 2x6 + 2x9 + 2x10 ≥ 6.6

7x1 + 3x2 + 3x3 − 2x4 + 6x7 + x9 + 2x10 ≥ 57.7

−3x1 − 2x2 − 3x3 + 3x4 − 4x5 − x6 + 4x7 − 3x8 − 3x9 + 2x10 ≥ −5.8

x1 + 2x2 + 2x3 − 3x4 − 3x5 − 2x6 − x8 + 6x9 − 3x10 ≥ −10.5

2x1 + x2 − 2x3 + x4 + 3x5 + 2x7 + 3x9 − 4x10 ≥ 7.5

−2x1 + 5x3 − 3x4 − x5 + x6 − x7 − x10 ≥ −20.5

5x1 + 2x2 + x3 − x4 + 4x5 − x6 − 2x7 + 3x8 + 3x10 ≥ 35.1

xj
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Notes

1. The results of running the various methods for the present problem from Myers’

dissertation are given in tables 11 and 12. With respect to Myers’ published result

[66], some improved optima were obtained using the direct search methods M1 M4,

although, notably, none was able to obtain the MINTO’s branch-and-bound (M0)

solution having objective 2.04 (M3 did come reasonably close in a much shorter time
than M0). Of course, the price paid for this improved minimum is extra computation

time.

2. The minimum claimed by Myers for this problem is 98.33 at ,

but on evaluation of the objective at this point, the result is 94.33. In view of the lexical

similarity of the two values, it would seem that 98.33 is a simple typographical error,

and the correct value is in fact 94.33.

3. Only M2 fails to improve on the minimum found by Myers.

12.2 Myers problem #2

The Myers problem #2 is defined as follows

minimize

(225)

subject to

(226)

(227)

(228)

(229)

(2,3,0,1,1,0,5,5,1,4)T

f = −2.0 ln(x1 + 1.5) + 3.0x2 + exp(0.4x3)

− ln(3x4 + 2) − 4.0x4 + x5
3 + x6

4

+ 2.0x6
3 − 5.0x6 + 4.0x7

2 + 3.0 exp(−x8)

+ x8 + 4.0x9
2 − 3.0√x10

−3x1 − 2x2 + 2x4 − 5x5 + 3x6 − x7 − 2x9 ≥ −26.6

−2x2 − 5x3 + 4x5 − 2x6 + 2x9 + 2x10 ≥ 6.6

7x1 + 3x2 + 3x3 − 2x4 + 6x7 + x9 + 2x10 ≥ 57.7

−3x1 − 2x2 − 3x3 + 3x4 − 4x5 − x6 + 4x7 − 3x8 − 3x9 + 2x10 ≥ −5.8

148



(230)

(231)

(232)

(233)

All integer and nonnegative.

x1 + 2x2 + 2x3 − 3x4 − 3x5 − 2x6 − x8 + 6x9 − 3x10 ≥ −10.5

2x1 + x2 − 2x3 + x4 + 3x5 + 2x7 + 3x9 − 4x10 ≥ 7.5

−2x1 + 5x3 − 3x4 − x5 + x6 − x7 − x10 ≥ −20.5

5x1 + 2x2 + x3 − x4 + 4x5 − x6 − 2x7 + 3x8 + 3x10 ≥ 35.1

xj
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Notes

1. The results of running the various methods for the present problem from Myers’

dissertation are given in tables 13 and 14. Once again, with respect to Myers’ published

results [66], some improved optima were obtained using the direct search methods

M1 M4. In fact, all Mn but M3 improved on Myers’ published value of 28.55.

2. Our M0, ie branch-and-bound, achieves an objective of 23.38 which is superior to

Myers’ published value of 28.55.

3. M4 and M5 achieve integer-feasibility with no need for branch-and-bound. This

much-reduced computation time is of course at the expense of a suboptimal solution.

However, the solution obtained in this way is still superior to Myers’ published
solution.
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Chapter 13

Computational experience VI A loading
and dispatching problem in a random
flexible manufacturing system

In this chapter we report computational experience in solving an example of a well-known

class of problems being increasingly reported in the optimization literature. We refer to the

class of loading and dispatching problems in a random flexible manufacturing system, and

the example considered in this chapter was reported by Shanker and Tzen (1985) [86].

Detailed accounts of this problem are given in the original paper by Shanker and Tzen [86],

and also in the dissertation of Mawengkang [48], who solved it using a similar approach to
one of the present direct search direct techniques. Mawengkang also presents a useful

summary of previous attacks on this class of problems, including variations on the ubiquitous

branch-and-bound approach. Accordingly, only a brief description and algebraic

formulation will be given here. In a nutshell, the problem is in fact a mixed-integer linear

program (MILP) involving 41 binary variables, 8 continuous variables and 29 constraints.

An original formulation contained one nonlinear constraint, but this is easily transformed
out of the problem. Both formulations are given in Shanker and Tzen [86], and we consider

here the linear formulation only.
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Brief description of the problem.

The following gives only the essential variables involved in the example being considered.

For full details of the general model, the reader may consult the paper by Shanker and Tzen

[86]. The objective is designed for workload balancing and minimization of late jobs.

Decision variables

(234)

(235)

(236)

(237)

where

(238)

(239)

(240)

Problem statement

Objective

minimize

(241)

subject to the following:

xi =




1;    if job i  selected
0;    otherwise





xijk =




1;    if operation k  of job i  is assigned on machine j
0;    otherwise





Oj = overload on machine  j

Uj = underload on machine  j

i = 1,…,m

k = 1,…, yi

j = 1,…,n

O1 + O2 + O3 + O4 + U1 + U2 + U3 + U4 − 500x1 − 0.0007x2

−0.0013x3 − 500x4 − 0.0015x5 − 0.0014x6 − 0.0006x7 − 0.0005x8
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Tool slot constraints

(242)

(243)

(244)

(245)

(246)

(247)

Unique job routing constraints

(248)

(249)

(250)

(251)

(252)

(253)

(254)

(255)

(256)

Non-splitting of jobs constraints

(257)

(258)

(259)

(260)

x211 + 2x311 + x631 + x721 + x811 + 3x831 + x821 ≤ 5

x113 + 3x323 + x413 + 2x513 + x623 + x713 + x723 + x813 ≤ 5

x224 + x214 + 2x314 + x424 + x614 + x624 + 3x734 + x714 ≤ 5

x232 + 2x512 + x522 + x632 + x622 + x722 + x712 + x822 + x812 − x25 ≤ 5

x232 + x522 − x25 ≤ 1

−x232 − x522 + 2x25 ≤ 0

x211 + x214 ≤ 1

x314 + x311 ≤ 1

x512 + x513 ≤ 1

x624 + x622 + x623 ≤ 1

x632 + x631 ≤ 1

x713 + x712 + x714 ≤ 1

x722 + x723 + x721 ≤ 1

x811 + x812 + x813 ≤ 1

x822 + x821 ≤ 1

x113 − x1 = 0

x211 + x214 + x224 + x232 − 3x2 = 0

x314 + x311 + x323 − 2x3 = 0

x413 + x424 − 2x4 = 0
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(261)

(262)

(263)

(264)

Machine capacity constraints

(265)

(266)

(267)

(268)

Integer requirements

All and all .

x512 + x513 + x522 − 2x5 = 0

x614 + x624 + x622 + x623 + x632 + x631 − 3x6 = 0

x713 + x712 + x714 + x722 + x723 + x721 + x734 − 3x7 = 0

x811 + x812 + x813 + x822 + x821 + x831 − 3x8 = 0

225x211 + 338x311 + 210x631 + 156x721 + 325x811

+312x831 + 091x821 + U1 − O1 = 480

198x232 + 198x512 + 225x522 + 210x632 + 070x622 + 156x722

+228x712 + 091x822 + 325x812 + U2 − O2 = 480

144x113 + 143x323 + 084x413 + 198x513 + 070x623 + 228x713

+156x723 + 325x813 + U3 − O3 = 480

216x224 + 225x214 + 338x314 + 114x424 + 160x614

+070x624 + 276x734 + 228x714 + U4 − O4 = 480

xi xijk ∈ {0,1}
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Discussion of results

1. As stated by Mawengkang [48], the continuous solution to this problem contains 30

feasible binary integers out of 41. His process for achieving integer-feasibility was

successful and the result of total system unbalance = 370 is superior to that obtained

by any of the present Mn, which is somewhat incongruous, since his direct search is

essentially the present M1.

2. It can be seen from table 16 that, while suboptimal, the present method M5 achieves

a respectable result in terms of total system unbalance. The unbalance (507) is not as
good as that obtained by branch-and-bound (122), but superior to the Shanker and

Tzen loading policy #5, which leads to a total system unbalance = 761. Note also that

the run time on a 20Mhz 80386 PC with floating-point coprocessor for the present M5

is only 15 seconds, whereas branch-and-bound (M0) takes 306 seconds.
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Chapter 14

Computational experience VII A
large-scale nonlinear integer programming
model for joint optimization of
communications network topology and
capacitated traffic allocation

Introduction

This chapter is concerned with a NLIP model for the optimization of communications

network topology and traffic allocation which has been proposed by Berry and Sugden [2].

Classification of network optimization problems

In Chapter 5.5 of his work Queueing Systems, Volume 2: Computer Applications [41],
Kleinrock presents a taxonomy of network design optimization problems in which four

broad classes are defined. In each case, the objective to be minimized is the average message

delay, which will not be defined here. The reader seeking further details is referred to

Kleinrock’s book [op cit]. The four problem classes are as follows:

(i) The capacity assignment (CA) problem, in which the network flows and topology are

given, and one seeks to determine the channel capacities.
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(ii) The flow assignment (FA) problem, in which the network capacities and topology are

given, and one seeks to determine the channel flows.

(iii) The capacity and flow assignment (CFA) problem, in which the only the network

topology is given, and one seeks to determine the channel capacities and flows.

(iv) The topology, capacity and flow assignment (TCFA) problem, in which nothing is

given, and one seeks to determine the topology, channel capacities and flows.

In an obvious extension of Kleinrock’s taxonomy, we may classify the problem discussed

in this chapter as a topology and flow assignment (TFA) problem, in which link capacities

are specified and we seek to minimize total network cost with respect to topology and link

flows.

Literature

The following paragraphs contain a very brief survey of literature in the general field of

network optimization, but specialized to those papers concerned with simultaneous

consideration of both topology and allocation (routing).

In a recent paper [23], Gersht and Weihmayer describe an algorithm to simultaneously

generate communications network topologies and allocate line capacities while optimizing

the total network cost. Most prior network optimization work has been concerned with the

separate optimization of topology and capacity allocation.

In a very recent research report, Gavish [22] has summarized some of the most promising

approaches to the problem of topological design and capacity expansion of
telecommunication networks. Such problems are characterized by the intrinsic complexity

of network topology design and enormous dimensionality of the corresponding

mathematical programming models. In general these models are extremely large

NLIPs even for moderately-sized networks, eg 20 nodes or less.

In his survey [op cit], Gavish has considered the design of efficient exact and heuristic

procedures for solving the topological design and capacity allocation/expansion planning

problem for large-scale telecommunication networks. Apart from the usual creativity

involved in taking advantage of special problem structure, the approaches have been based
on Lagrangianand surrogateconstraint decompositions, and variousglobal searchstrategies.
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To give some idea of the general state-of-the-art, Gavish notes that:

.... Despite the practical importance of the problem, only a handful of

investigations have been reported so far.....

.... A mathematical formulation of moderate size networks consists of tens of

millions of variables and hundreds of thousands of constraints.

Gavish [22]

Even if there were no integer restrictions and all constraints and objective were linear, this

would still be a formidable problem even with modern large-scale LP technology see for
example Murtagh [57]. When it is remembered that the class of network optimization

problems being considered here almost invariably involves large numbers of integer
variables with the accompanying insurmountable combinatorial barriers, then it may be at

least dimly appreciated how fundamentally intractable such problems are.

Gavish gives a general statement of the quantities involved in the expansion of network

topology and capacity, based on a multi-period dynamic expansion approach as follows:

Given

• number of possible switches and their locations

• traffic requirement matrix for each period

• cost structures as a function of time

Minimize

net present worth of total cost

with respect to

• when and where to install conduits (network topology expansion)

• when and where to expand line capacities (network capacity

expansion)

• how to route network traffic (routing decisions)

subject to

• reliability constraints

• grade of service constraints or loss or delay constraints
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• flow conservation constraints

• capacity constraints

• other types of side constraints that are application-dependent

Gavish [22]

The present chapter considers application of the direct-search techniques developed in this

thesis to a very small example of a network optimization problem. Our formulation is a very

simple one which is static with respect to time, however it serves to illustrate the benefits

of the direct-search techniques developed herein. The model is proposed by Berry and

Sugden [2] for network synthesis and capacitated traffic allocation and is described below.
It is a linearly-constrained quadratic mixed-integer program. Before stating the problem,

we recall some elementary definitions from graph theory in the section to follow.

For further background on the graph-theoretical concepts involved, written from a

computational viewpoint, the reader may consult the excellent books by Nemhauser and

Wolsey [68], Papadimitriou and Steiglitz [69], or Reingold, Nievergelt and Deo [78].

For the reader interested in extra details from the standpoint of application to large-scale

telecommunication networks, a wealth of references is to be found in the Gavish survey

paper cited [op cit], from which we select the following (pertaining to network topology

and capacity expansion): Zadeh [97], Christofides and Brooker [10], Doulliez and Rao [16],

Minoux [53], and Parrish, Cox, Kühner and Qiu [71].

14.1 Complete graph

Given a positive integer , representing the number of vertices (also called nodes) in the

network to be considered, we first construct (conceptually) the complete graph . In this

simple undirected graph, each vertex is connected to all other vertices by a single edge. We

label the vertices of simply 1, 2, ..., . The vertex set is thus . Since

the graph is undirected, the edges of correspond to the 2 element subsets of (rather

than ordered pairs), so that the edge set of is given by

n0

Κn0

Κn0
n0 V = {1,2,…,n0}

Κn0
V

Κn0
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(269)

The cardinality of the edge-set of is therefore given by

(270)

Example

We consider . Here we have , , and

(271)

E = { {p ,q} : p ,q ∈ V}

Κn0

| E | = N =



n0

2





=
n0(n0 − 1)

2

Κ7 V = {1,2,3,4,5,6,7} N = 21

E = { {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {1,7},

{2,3}, {2,4}, {2,5}, {2,6}, {2,7},

{3,4}, {3,5}, {3,6}, {3,7},

{4,5}, {4,6}, {4,7},

{5,6}, {5,7},

{6,7} }
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Figure 31    A representation of the complete graph  .

Paths in

A path of length l from vertex to vertex is defined to be an edge sequence of the form

, where and . Note that elements of the

sequence are doubleton sets, each representing an edge in the graph.

Since is simple, ie no multiple edges or self-loops, we can equally well define a path as

a vertex sequence. Suppose once again that and are vertices. Then a path of length l

from vertex to vertex is defined to be the vertex sequence , where

and , the other being vertices of the graph, with none repeated. Of course,

paths may also be defined inductively, ie recursively. For such a definition, the reader may
consult almost any elementary text on graph theory or discrete mathematics; for definiteness,

we cite Ross and Wright [79]. The vertex is referred to as the origin vertex and

as the destination vertex; thus is an origin-destination pair, or

OD pair. It may be argued that an origin-destination pair (OD pair) should be an ordered

pair of nodes specifying an edge in a digraph, however we take the view that, in spite

of the "direction" implied by the term origin-destination, we need only consider undirected
paths.

1

2

3

4

5

6

7

Κ7

Κn0

p q

({v0, v1}, {v1, v2}, …, {vl − 1, vl}) v0 = p vl = q

Κn0

p q

p q (v0, v1, v2,…, vl − 1, vl)
v0 = p vl = q vi

v0 = p

vl = q (v0, vl) = (p ,q)

(k1, k2)
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Enumerating the OD pairs

For , the number of OD pairs is given by the expression

(272)

Consider now the th OD pair in some enumeration (eg lexicographic order of vertex

suffixes). We have , being the costs of the four cheapest paths from to . If

is the length of such a path, then (a vertex may not be revisited). Note: links

(edges) may also be numbered using the same scheme since there is a 1 1 correspondence

between OD pairs and edges.

Consider also the set of all paths of maximal length ( ) from p to q. How many

such paths are there? Since a vertex may not be revisited, there is a 1 1 correspondence

between such paths and the permutations of the elements of the set . Thus, the

number of paths of length is given by the expression , and all such paths

may be enumerated by any algorithm which lists the permutations of the elements of a given

set.

Consider now paths of length . These may be enumerated by considering each subset

of cardinality of , and for each one, computing all the permutations of

vertices.

Proceeding in this manner, we find that for , the number of paths of length between

any pair of vertices is given by the expression

(273)

This expression represents the number of permutations of objects chosen from a set

of objects.

Κn0




n0

2





=
n0(n0 − 1)

2

i

ci1, ci2, ci3, ci4 p q

l 1 ≤ l ≤ n0 − 1

P l = n0 − 1

V \ {p ,q}
l = n0 − 1 (n0 − 2)!

n0 − 2

n0 − 3 V \ {p ,q}

Κn0
l




n0 − 2

l − 1




(l − 1)! = (n0 − 2) (n0 − 3)…(n0 − l − 1)

l − 1

n0 − 2
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14.2 Definition of terms

We define the variables and constant parameters involved in the Berry Sugden NLIP

network model. For further semantic details on the terms defined, and notation used (which

is essentially standard), the reader is referred to the 1972 monograph of Potts and Oliver

[74].

The last-defined quantity , is known as the link-chain incidence matrix.

For the present model we look at the four cheapest routes and choose precisely two routes

for each OD pair. This seemingly arbitrary requirement does in fact have a rational basis.
The robustness of a network may be defined as the ability to carry traffic on more than one

route for a given OD pair. One advantage of this property is that a measure of redundancy

i =  OD-pair number,  1 ≤ i ≤ N

λ =  link (edge) number,  1 ≤ λ ≤ N

j =  route (chain) number,  1 ≤ j ≤ 4

cpq
0 =  cost for link from vertex p  to vertex q  per unit traffic

tpq
0 =  traffic between vertex p  and vertex q

cij =  cost for OD-pair i  on route j  per unit traffic

ti =  total traffic carried for OD-pair i

hij =  chain flow, ie traffic carried for OD-pair i  on route j

αij =  proportion of total traffic on j th route for OD-pair i

fλ =  actual total traffic (flow) on link  λ

ℵλ =  maximum total traffic (flow) on link  λ

xij =




1;  if j th route is chosen for OD-pair i
0;  otherwise





aλj
i =





1;  if j th route for OD-pair i  uses link λ
0;  otherwise





aλj
i
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is obtained, so that in the event of failure of any link (edge) in a route (thus rendering that

route unavailable), at least one other is available to carry at least some of the traffic. Since

we are modelling a fixed capacity constraint for each link (edge), it is certainly possible that

the entire volume of planned traffic for a given OD pair cannot be supported if one of the
allocated routes goes down because of a link failure. Teletraffic researchers also speak of

network link diversity or node diversity, which are concepts related to our robustness.

MP formulation for the Berry Sugden model

minimize

(274)

subject to

(275)

(276)

(277)

(278)

(279)

(280)

Notes

1. The objective function is the total network cost, requiring choice of exactly two routes

for each OD pair.

2. The R category constraints specify that precisely two routes must be allocated for each

OD pair. This is to ensure robustness, as defined above.

∑
i = 1

N

ti ∑
j = 1

4

cijαijxij

(R) ∑
j = 1

4

xij = 2, i = 1,…,N

(S) ∑
j = 1

4

αij = 1, i = 1,…,N

(T) ∑
i = 1

N

ti ∑
j = 1

4

aλj
i αij ≤ ℵλ, λ = 1,…,N

(U) xij − αij ≥ 0, i = 1,…,N ; j = 1,…,4

(V) αij ≥ 0, i = 1,…,N ; j = 1,…,4

(W) xij ∈ {0,1}, i = 1,…,N ; j = 1,…,4
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3. The S category constraints specify that the sum of fractional allocations for a given

OD pair is unity. This follows directly from the definition of .

4. From the foregoing definitions and constraints, we see that the traffic (also termed

chain flow) on route j for OD pair i is given by the expression . Summing

traffic over all four routes for a given OD pair i yields the relationship:

The T constraints place upper bounds on the total traffic carried by each link

(edge) of the network.

5. We wish to have imply . It is a logical contradiction to allocate nonzero

traffic ( ) to an unselected route ( ). Also, there is no point in selecting a

route, but then allocating zero traffic, however this is a harmless situation. The U

category of constraints will force the former condition at the cost of introducing a
considerable number of (linear) constraints.

6. After the NLIP model is solved, the outcomes of interest are:

(i) Which links (edges) are used from ?

(ii) For a given OD pair, what is the chain-flow pattern? ie how is the flow

distributed among the four possible routes?

(iii) For each link, what is the total flow? Actually, when this information is

available, the answer to (i) is clear, since only those links from the complete

graph which have been used will have nonzero flows. For link , the total flow
is given by the expression

(281)

Size of QIP

It may be noted that even a moderate number of nodes in the network gives rise to quite

a large QIP. In general, if we count the numbers of rows and columns for the corresponding

QIP, we obtain:

αij

hij

hij = αijti

∑
j = 1

4

hij = ∑
j = 1

4

αijti = ti ∑
j = 1

4

αij = ti

αij > 0 xij = 1

αij > 0 xij = 0

Kn0

λ
fλ

fλ = ∑
i = 1

N

ti ∑
j = 1

4

αijaλj
i

n0
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(a) continuous variables

(b) integer variables

(d) category R constraints
(e) category S constraints

(f) category T constraints

(c) category U constraints

Therefore, in toto we have rows and columns. When

slacks and right-hand-side are included (as they will be in MINTO) we have

columns.

Example

We consider a problem in which , thus leading to 168 structural variables and 147

constraints. This leads to an effective (168 structural + 147 slack + 1 rhs) and of

course . This is indeed a large QIP for such a small network .

Traffic and cost matrices

The traffic and cost matrices, and respectively, for this example are as follows:

(282)

4N

4N

N

N

N

4N

7N = 7n0(n0 − 1)/2 8N = 4n0(n0 − 1)

n = 15N + 1 = 15n0(n0 − 1)/2 + 1

n0 = 7

n = 316

m = 147 (n0 = 7)

T 0 C 0

T 0 = [tij
0] =











0 7 9 5 3 4 2
7 0 6 5 2 1 3
9 6 0 8 9 2 3
5 5 8 0 2 7 6
3 2 9 2 0 5 2
4 1 2 7 5 0 4
2 3 3 6 2 4 0










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(283)

A special-purpose program was written to generate the four best paths for each of the 21

OD pairs, and then to generate the required MPS file and CALCFG FORTRAN subroutine.

The generated vector and matrix follow.

(284)

(285)

The traffic capacities for each link are given by the vector :

C 0 = [cij
0] =











0 5 12 8 6 4 1
5 0 6 8 15 6 4
12 6 0 5 4 7 7
8 8 5 0 2 7 6
6 15 4 2 0 5 2
4 6 7 7 5 0 4
1 4 7 6 2 4 0











t C

t = [ti] = (7,9,5,3,4,2,6,5,2,1,3,8,9,2,3,2,7,6,5,2,4)T

C = [cij] =






























5 5 12 10
8 11 11 10
8 7 11 8
6 9 3 10
4 11 11 5
1 9 8 8
6 11 13 13
8 10 11 12
6 8 10 10
6 9 10 8
4 6 12 10
5 13 12 6
4 9 12 7
7 9 11 10
7 6 10 9
2 8 11 9
7 10 7 8
6 9 4 11
5 10 9 6
2 7 8 9
4 5 10 7






























ℵ
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The elements of the traffic vector are obtained simply by listing the elements in

lexicographic order of vertex pairs , ie

The numbers are just the elements of the upper triangle of (excluding main diagonal),

and enumerated row-wise.

As stated earlier, the elements were computed by a special program written for the task;

this job being to find among all possible paths in from each OD pair , the four

cheapest ones. Thus, is a matrix of dimension .

14.3 Results and comments for the Berry Sugden model

1. Several hurdles had to be overcome while solving the Berry Sugden model using the
direct search methods. The size of the Berry Sugden executable module (640kb) and

the usualDOS 640kbmemory limitations required a bare-bones DOS 5.0 configuration

with no device drivers or other resident programs. This was most inconvenient for

development work. Also, some patching of routines to update factorizations of basis

and Hessian was needed in order to allocate enough memory for the generation of

many new superbasic variables.

2. A relatively large number of integer-feasible basics at the continuous solution required

a procedure to automatically pivot these variables from the basis to the superbasic set.

3. For post-processing, a special-purpose program READCOLS was written to read the

MPS output from MINTO and then construct network quantities of interest. In
particular the link-flow for each of the 21 links was computed by simple summation,

and links having zero flow were then easily noted. Such links are then unused from

ℵ = [ℵi] = (15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15)T

tij
0ti t

ij

t12
0 , t13

0 , t14
0 , t15

0 , t16
0 , t17

0 , t23
0 , t24

0 , t25
0 , t26

0 , t27
0 ,

t34
0 , t35

0 , t36
0 , t37

0 , t45
0 , t46

0 , t47
0 , t56

0 , t57
0 , t67

0

T 0

cij

Κn0
{p ,q}

C 0 n0(n0 − 1)/2 × 4
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the complete graph . The READCOLS program also flagged traffic allocation

warnings if a route is selected but no traffic allocated, ie but . As noted

above, this situation is not really a problem, so the program prints a simple warning

message. The alternative condition for which constraints were formulated to explicitly
exclude is but . A feasible solution was obtained so one expects that no

such conditionwill occur, however it is veryeasy to check in the READCOLS program,

and therefore serves as simple confirmation that the requirement has been modelled

correctly.

4. The READCOLS program was extended to also implement a greedy allocation

heuristic, so that some comparison could be made with the direct search results. The

greedy strategy simply processes each OD pair in lexicographic sequence and tries

to allocate as much traffic as possible to the cheapest route, then if necessary to the
remaining three routes in strict order of increasing cost. It should be noted that this

strategy need not lead to a feasible solution, let alone an optimal solution. However,

for the present example, the greedy allocation method just described arrived rapidly

at a (necessarily feasible) suboptimal solution with objective 531.0. It was not required

to satisfy allocation of exactly two routes for each OD pair for this approach.

5. In summary, for the example presented, it was found that, for most of the methods Mn

used, 4 links from a total of 21 from the complete graph were not used, ie no route

eventually selected to carry at least part of the traffic for the 21 OD pairs actually
used those 4 links. For example, in the case of M3N, the unused links are those joining

vertices (1,3), (1,5), (2,5) and (4,6). It was also found that of the 42 routes allocated,

19 had zero traffic.

6. Variation of the upper bound on the link flows produced expected behaviour from

the model. As the bounds were decreased, further spread (robustness) in allocation

was in evidence.

7. Another interesting test case which could be considered is to force the model to select

a minimal spanning tree for the topology + allocation problem by making certain routes

prohibitively expensive. In fact, the model would need to be reformulated in order to
achieve this, since at present we insist on the selection of exactly two routes for each

OD pair.

8. A 0 1 problem such as that described by the Berry-Sugden model must of necessity

be highly-degenerate (many basics at a bound) if there are considerable numbers of

integer variables present in the basis at the optimal solution. A 0 1 variable cannot

but be at a bound if it is integer-feasible.

Κ7

xij ≠ 0 αij = 0

αij > 0 xij = 0

Κ7

ℵi
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9. Some cycling problems were noted. Branch-and-bound had trouble with a subproblem

and the iteration limit expired because of cycling. M2 also had cycling problems.

10. The remaining methods M1, M3, M4, M5 produced results close to the (possibly

suboptimal) result achieved by the aborted branch-and-bound process. M1, M3, M4

actually produced the same objective as branch-and-bound when integers were not

fixed after the respective direct search procedure.

11. M5 fared better on an earlier version of the present MINLP model, in that it terminated

with only two of the 84 integer variables infeasible and superbasic (from approximately
65 at the continuous solution). Note thatM5always terminates withno integervariables

basic. Thepresent modelhas approximately 50 integer-infeasibilitiesat the termination

of M5 (all necessarily superbasic), and this may be directly attributed to the imposition

of 21 extra link capacity constraints (the T set of constraints). Intuitively, it may be

imagined that M5 had much less "room to move" in its attempt to evict integers from

the basis. Consequently, the pivot operation (which does not decrease the total
integer infeasibilities) would seem to have been invoked more often than the nonbasic

step (which always decreases integer infeasibilities by at least one) than was previously

the case.

12. Post-processing or even simple inspection of the MPS output solution indicated that

the constraints have had the desired effect the limited link traffic capacities and

"encouragement" of diverse allocation have allowed some non-trivial assignments to

be made. In this, we refer to assignments which perhaps might otherwise be made by

a greedy allocation algorithm, which would be expected to allocate all traffic for a
given OD pair to the cheapest route if this were possible (see comment #4 above).

13. Since the numerical results for the Berry Sugden model are quite voluminous, no
output is included here, however post-processing of the MPS output file by the

READCOLS program is included along with summary information in the tables

overleaf.

B ↔ S
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Chapter 15

Conclusions

This work has presented a number of direct search strategies for achieving integer-feasibility

for a class of mixed-integer nonlinear programming problems in a relatively short time. It

has improved on the previous direct search approaches of Murtagh [59], and Mawengkang

and Murtagh [48], also based on the superbasic variables and active constraint method of
Murtagh and Saunders [62]. It was found that the method described by Mawengkang

sometimes had trouble terminating because of one or two cycling phenomena, at least on

certain problems. Alternative direct-search methods have been proposed and tested. The

results appear to be quite encouraging. The present methods have solved instances of a new

network optimization model proposed by Berry and Sugden [2] and done so in very

reasonable time on an 80386 PC.

The new direct search methods have been shown to be successful on a range of problems,

while not always able to achieve global optimality, generally achieve integer-feasibility
(perhaps with some aid from branch-and-bound) in a much shorter time than

branch-and-bound alone. In in a significant number of cases the suboptimal point so obtained

is acceptable, since the exponential complexity of integer programming in general precludes

branch-and-bound except on small to medium problems unless one is very lucky and tight

bounds are obtained early in the branching process.

The fifth of the new direct search methods is herein proven to always terminate with no

integer variables in the simplex basis. Since such termination is a precondition for further

development of the method along the lines of trial fractional, then integer steps in the
superbasic integer variables, a foundation has been established for this further work.

McMahon [50] defines greedy algorithms as
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... those non-backtracking algorithms in which irrevocable decisions of global

significance are made on the basis of local information.

McMahon [50]

The direct search methods of the present work certainly fall into this category, and it is

recognized that the use of such methods normally implies suboptimal solutions.

Nevertheless, it must be remembered that published methods also fall into this category,

and global optimality, or even guaranteed local optimality for the general MINLP problem

is a goal which is in many practical instances, simply out of reach. A useful avenue of further

research would be aimed at obtaining tight upper and lower bounds for the objective function
at a nearby locally optimal point for a solution obtained by the proposed new direct search

methods.

The new methods have been implemented in conjunction with an interactive module which

allows a skilled user to "drive" the NLIP solver engine. Alternatively, if desired, the system

may be run entirely in the conventional "batch" mode, in which any of the direct search

strategies may be automatically invoked. The use may assume interactive control of the

search process at the point where the solution of the continuous relaxation has just been

found. From this point a variety of operations designed to give information about progress
toward both integer-feasibility and improvement of objective may be selected from a menu.

Full error-checking is provided so that the current solution vector remains feasible at all

times. For example, a trial step in a superbasic variable (either discrete or continuous) may

be attempted, but will not be allowed if it would violate any of the current set of linearized

constraints; in fact, in this situation, the first basic variable to be violated is indicated in the

on-screen error message to the user. In a significant number of such cases, it becomes clear
that no further progress is possible because the current search strategy has led us to an

impasse.

If small steps are too tedious, then the user may select to any of the five direct search

procedures to be executed at any time and observe the progress toward integer-feasibility

as the solution parameters are dynamically updated on the screen. The display follows a

pseudo-spreadsheet paradigm in which rows may be selected for subsequent operation by

simply moving the cursor. Valuable insight into the internal mechanisms and run-time

behaviour of the direct search process has already been obtained by observing the progress
on-screen. It is hoped that more experience with a larger class of MINLP problems will lead

to further refinement of the search procedures described in this work.
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