-

View metadata, citation and similar papers at core.ac.uk brought to you byj(: CORE

provided by Bond University Research Portal

Pure

Bond University

DOCTORAL THESIS

A Class of Direct Search Methods for Nonlinear Integer Programming

Sugden, Stephen

Award date:
1992

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. May. 2019

https://core.ac.uk/display/196607421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.bond.edu.au/en/studentTheses/0e30f1d8-1716-44e6-89e5-ff32ea0f1938

i

BOND UNIVERSITY
School of Information & Computing Sciences

A Class of Direct Search Methods for
Nonlinear Integer Programming

by
Stephen John Sugden

This thesis is submitted to Bond University in fulfilment of the
requirements for the degree of Doctor of Philosophy.

July, 1992

Declar ation

This thesis represents my own work and contains no material which has been previously
submitted for a degree or diploma at this University or any other institution, except where
due acknowledgement is made.

Signature

Witness

Date

Acknowledgement

It was the great English mathematician Godfrey Harold Hardy who wrote:

... there is no permanent place in the world for ugly mathematics.

Hardy [35]

| consider myself fortunate indeed to have had the opportunity to pursue research work
toward the PhD with Professor Bruce Murtagh. The mathematical foundations of Professor
Murtagh’s nonlinear programming work | have found both powerful and elegant. | am
convinced that | could not have maintained interest in the work without being profoundly
impressed by the inherent elegance and clarity of the underlying methods. | must also pay
tribute to the high quality of supervision given by Bruce Murtagh. | can remember many
timeswhen | felt discouraged and unsure of the intrinsic worth of my own work. It was he
who never failed to offer advice and encouragement.

| thank Bond University for the opportunity to pursue research in an environment, which
although hectic, provided first-class facilities and supervision for the work. In particular |
would liketothank my very good friend and colleague Dr Bernard Duszczyk for hissupport
throughout the work, for hiswillingnessto read the draft thesis, and for the many enjoyable
games of tennis that were so welcome in order to restore some balance to the distribution
of mental and physical activity for me. It is a great pity indeed that Bernard is no longer
with Bond University.

| wish to record my deep gratitude to my friend and former colleague, Professor Richard
Tweedie, Dean of the School of Information and Computing Sciences at Bond University
from 1988 to 1991. Apart from hisoffer of support to undertake the PhD at Bond University,
Richard was the person through whom | met my supervisor Professor Bruce Murtagh. |

thank Richard most sincerely for hisinitial confidence in my ability to pursue the PhD and
aso for his consistent encouragement throughout the all-too-short time of our association.
Heis sadly missed by all in the School.

Another colleague whose advice and support have been invaluablein the latter stages of the
PhD research programme is Professor Les Berry, Director of the Centre for
Telecommunication Network Research (CTNR) within the School of Information &
Computing Sciences at Bond University. | thank him sincerely for his help in devising the
network optimization model presented in thisthesis, and also for his continual willingness
to offer comments and suggestions despite the seemingly endless revisions to the model
and his own very busy schedule. | am grateful also to CTNR Deputy Director Dr Richard
Harrisfor his advice on the material of Chapter 14.

| would also like to thank my parents for their encouragement throughout my entire career,
andinparticular for their recent patience and encouragement when | visited themto complete
some of the latter portions of this work.

Finally, but by no means of least significance, | beg forgiveness from my dear wifelrisand
sons Benjamin and Stephen for the many lost hours of leisure time with them over the past
few years. We plan to make up for lost time and | believe that the end result has been worth
al the sacrifices made on both sides. | thank them for their tolerance and patience.

Dedication

| dedicate this thesis to my parents, John Ernest Sugden and Vama Lillian Mary Sugden,
whose love, unselfish support and example over many years laid the foundations for the
discipline and application necessary to complete this work.

Abstract

Thiswork extends recent research in the devel opment of anumber of direct search methods
in nonlinear integer programming. The various agorithms use an extension of the
well-known FORTRAN MINOS code of Murtagh and Saunders [62] as a starting point.
MINOS is capable of solving quite large problems in which the objective function is
nonlinear and the constraintslinear. The original MINOS code has been extended in various
ways by Murtagh, Saunders and co-workers since the original 1978 landmark paper [62].
Extensions have dealt with methods to handle both nonlinear constraints, most notably
MINOSAUGMENTED [61] andinteger requirementson asubset of thevariables(MINTO)
[58, 49]. The starting point for the present thesis is the MINTO code of Murtagh [58].
MINTO is a direct descendant of MINOS in that it extends the capabilities to general
nonlinear constraints and integer restrictions. The overriding goal for the work described
in this thesis is to obtain a good integer-feasible or near-integer-feasible solution to the
general NLIP problem while trying to avoid or at least minimize the use of the ubiquitous
branch-and-bound techniques. In general, we assume asmall number of nonlinearities and
asmall number of integer variables.

Some initial ideas motivating the present work are summarised in an invited paper [59]
presented by Murtagh at the 1989 CTAC (Computational Techniques and Applications)
conferencein Brisbane, Australia. The approach discussed there wasto start adirect search
procedure at the solution of the continuous rel axation of anonlinear mixed-integer problem
by first removing integer variablesfrom the simplex basis, then adjusting integer-infeasible
superbasic variables, and finally checking for local optimality by trial unit steps in the
integers. Thismay befollowed by areoptimization with the latest point asthe starting point,
but integer variables held fixed.

Wedescribeideasfor thefurther devel opment of Murtagh’ sdirect search method [59]. Both
theold and new approachesaimto attainaninteger-feasiblesolutionfromaninitially relaxed
(continuous) solution. Techniques such as branch-and-bound or Scarf’s neighbourhood
search [84] may then be used to obtain alocally optimal solution. The present range of direct
search methods differs significantly to that described by Murtagh [59], both in heuristics
used and major and minor stepsof theprocedures. Chapter 5 summarizesMurtagh’ soriginal

approachwhile Chapter 6 describesthe new methodsin detail. A feature of thenew approach
Is that some degree of user-interaction (MINTO/INTERACTIVE) has been provided, so
that askilled user can "drive" the solution towards optimality if thisisdesired. Alternatively
the code can still be run in "automatic" mode, where one of five available direct search
methods may be specified in the customary SPECSfile.

A selection of nonlinear integer programming problems taken from the literature has been
solved andtheresultsare presented hereinthelatter chapters. Further, anew communications
network topology and allocation model devised by Berry and Sugden [2] has been
successfully solved by the direct search methods presented herein. Theresults are discussed
in Chapter 14, where the approach is compared with the branch-and-bound heuristic.

Vi

Table of Contents

Chapter 1 INtrOQUCLIONcc.eiiiiiieiie et 1
1.1 Contributions Of thISWOIKcccceeiieiiiiiiiiee e 2
1.2 0UtliN@ Of TNESIScoeiiiiece e e 3

Chapter 2 Classes of optimization problems ... 4
2.1 Local and global Optima........cccoeeiiiiiiiiiseee e 4
2.2 SIMOOLNNESSoevieiieitie ettt ae e s se e s e snee s 5
2.3 CONSITAINTSeiieeieieeieeiee e siee e e e e seesseesseesneeeseeseeseesbeesaeesreesrenss 5
2.4 CONVEXITY eoiiiiiiieie ettt sttt et e et e be e ae e be e beenaeesaeesnen s 6
2.5 DISCrete OPtiMIZAEIONcceeiieiiiiiieie et nnee s 6
2.6 Optimization eXaMPIEScoiiieieceeee e 7

2.6.1 Example 1—Ilinear ODJECHIVEccoocveieiiieeeeeeeee e 7
2.6.2 Example 2— quadratic objective; unconstrainedccccceveenneene 8
2.6.3 Example 3— quadratic objective; ssmple bound constraints 9
2.6.4 Nonlinear integer ProblEMScoceeiieiiniin e 12
2.7 Global OptiMIZalioNccceiiiiiiceee e 16
2.8 Linear ProgramiMingccceeceeseeseeseeseeserssessesssesssesssesssesssesssesssesssesssenss 17
2.8.1 The simplex solution Method ... 18
2.9 Integer linear ProgramiMingcocceeeeeeeeeeieeeseeesiesseesseeesseesseeseeesseesseessessseess 19
2.9.1 Branch-and-bound fOr ILP ... 20
2.9.2 Alternative methodS fOr [Pccoocv i 23
Special-purpose agorithmscccevienirniene s 23
Group-theoretic MEthOdScceviriieiiere s 24
Boolean-algebraic methodsccooeiieniiiinne e 24
IMPLICIt BNUMENELIONooveeiiieiiecee e 24
2.10 Approaches to unconstrained OptimiZationccceveeneeneeniensienseeneens 25
2.11 Approaches to constrained optimization— the Kuhn-Tucker conditions
.. 26
2.11.1 Linear equality CONSIIAINLSccceveeieeieeiie e e see e 26
2.11.2 Linear inequality CONSIFAINEScccoeerieriniiniie e 28
2.11.3 Nonlinear equality CONSIIAINEScceieerierriereenee e 31
2.11.4 Nonlinear inequality CONSITAINSccoceeiiriirnienie e 34
2.12 Existing algorithms for continuous nonlinear optimizationccc..c... 37
2.12.1 1-Dimensional Methodscccoveiiiiiiiiniieieee e 37
2.12.2 A model descent algorithm schema (unconstrained)ccoeeeeee. 38

Chapter 3NLIP LITEIAIUIEcoveieieeee et e 42
B L GENENAl ..o e sae e 43
3.2 The outer approximation algorithm of Duran and Grossmann 43
3.3 The method of Mawengkang and Murtaghcccoeovviniiniincenie e 45
3.4 Other pPrOACNESoiiiiiieeiie e 45
3.5 Existing NLIP software—a necessarily brief surveyccccovvevviiennen, 46

Chapter 4 MINOS and itS descendantscocueveviiinienienieesieesies e 48
4.1 Fundamental equations for MINOS ... 50
4.2 Steps of the MINOS algorithmccoceeieiiiiieeee e 53
4.3 MINOSAUGMENTEDooiiiiitiesiienie ettt 56
|V 1 N O I S 59

vii

Chapter 5 Murtagh' s direct search heUristicccoeviieiie i 60

5.1 Structure of the problemM ... 60
5.2 CYCLEl1—remove integer variablesfrom the basiscccccoevvrveiiiennnens 64
5.3 CYCLEZ2 Pass 1—adjust integer-infeasible superbasicscccoceveenne 69
5.4 CYCLEZ2 Pass 2— adjust integer feasible superbasicscccoccvvvriiennnens 72
5.5 Analysis and counterexamples for Murtagh’salgorithmcccccoeeni 73
551 EXAMPIE L ..o e 76
552 EXAMPIE 2 ..o s 78
55 3EXAMPIE 3 ..o s 80
5.5.4 Summary of exampleresultsfor CYCLELcccoovvinvinnvncieeeeee, 82
5.5.5 CONCIUSIONSooiuiiiiiiiieieesiee ettt 84
Chapter 6 Proposals for new direct search methodscccceeveeciicec e, 85
6.1 Alternative approaches for CY CLEL (remove integers from basis) 86
6.2 Alternative approaches for CY CLE2 (superbasic Steps)ccoeevveereernenne 88
6.3 The NeW MELNOASooeiiiec s 89
(TS 00 I |V 1 1 oo I S 90
B.3. 2 MENOU 2 ...ttt 90
B.3.3MELNOU 3 ... 91
RSV 1 1 oo I SRR 93
B.3.5MEINOU D ... 94
6.4 Some theoretical properties of the new methodsccccoeevveiieiiiecnen 96
Chapter 7 Implementation of the new direct search methodscccceeveeenee. 99
7.1 SPECS OPLIONS ...coiiiiiiiiiie sttt sttt ne e ne s 99
7.2 Some 0bStacl S eNCOUNLEIEdccoccveriieriierieee e 100
7.3 Interactive display Programcceeeeenieniesieeieese e s 101
7.4 Functions available in MINTO/INTERACTIVE ... 102
7.5 Sample screens from MINTO/INTERACTIVE ..o 106
7.6 The FORTRAN WOrKNOISE FOULINESoocviiiieiieieeieeie e 115
7.7 ULHITY PrOgramsScoieeiiiiieiie et sie st e e sses e s sse s sne s 120
T.7. L MPS QENEIBIONeeieieieiiee ettt n e s e b e s s 120
T.7.2 QIP QENEIELONooieieeiieeeeee ettt a e b s ne e 121
7.7.3 1OPB QENEIELONeeiiieiiieieiiee ettt see e sb e s sre e e neeeneeeas 121
7.8 SOME FORTRAN raSccveiiieieiee ettt 121
7.9 1deaSTOr fULUrE WOTKooeiiiieieie ettt 124
Chapter 8 Computational experience |— Results for counterexamples................ 126
<00 R g (o 11 1o o PR RUPRPRPRPR 126
8.2 Example 1—general COMMENLScccoceriieriieiniinsieesee e s 126
8.2.1 Objective function/gradient routine CALCFGcccccvvvvvvinvennnen. 127
oA |V Y 11 = S ORRS 127
8.2.3 CONLINUOUS SOIULIONccveiiiiiiieeie ettt s 128
8.2.4 Output for method O (branch-and-bound) ..., 129
8.2.5 Output fFOr MEthOd 1coooiviiiieiiesie s 129
8.2.6 Output for methodsS2 and 3cooceviiiiinie e 129
8.2.7 Output fTOr MEtNOT 4ooeiieiee s 130
8.3 ResUltSTOr eXample 2 ... 130
8.4 Resultsfor example 3 ... 131
Chapter 9 Computational experience Il— An example from Ravindran et al 132
Chapter 10 Computational experience [11—A plant upgrade problem 134

viii

Chapter 11 Computational experience IV —A heat exchange network

OptimMIZation Problem ... 138

Chapter 12 Computational experience V—Two examples from Myers 144
12.1 Myers problemM Loooeieeeeeee e 144
12.2 Myers proble@mM H2ooveieeeeeeee e 148

Chapter 13 Computational experience VI—A loading and dispatching problem
in arandom flexible manufacturing Systemcccccevieeienieeicnnienne 153

Chapter 14 Computational experience VII—A large-scale nonlinear integer
programming model for joint optimization of communications network topol ogy

and capacitated traffic alOCationccocviiiriiie e 160
14.1 Complete graphooveeeeeeee 163
14.2 DEfiNItIoN Of TEBIMS ..ooviiiieciece e 167
14.3 Results and comments for the Berry—Sugden modelccceveeieennne. 172

Chapter 15 CONCIUSIONScocueiiiiiiecie e 177

REFEIEINCES ...ttt b e re e re e 179

Table of Figures

Unconstrained linear OptimiZationccooceeviirirniienie e 7
Constrained [inear OPtiMIZELIONccceviieiiiieiieeeee e 8
Unconstrained qUadraliC CaSE 1cccerierrerriieiie e 9
Unconstrained qQUadraliC CaSE 2cccerieeieerieesieesee et 9
Constrained QUAdraliC CASE 1coveereeiieiie ettt sree e 10
Constrained QUAdIaliC CASE 2c.eeieerieeiie ettt re e sree e 10
Constrained QUAdraliC CASE 3coiiiiierie et 11
Constrained QUAdIaliC CASE 4eoieiiieiie ettt bbb sre e 11
Independent versus CoOmMbINEd SLEPScoveriiiiieiierie e 13
EXAMPIE QL ..t r e re e 14
EXAMPIE Q2 ...t r e re e 15
LiN@ar ProgramiMiNgccceeueeueesieesieesieesieeseeesieessessseesseesssessseseessessseesseessesssesssessns 18
Integer 1iNear Programimingccocceeceereeneesee e see e seesee s ee e ees 20
DESCENE SCNEIMA ...ttt re e 38
A projected Lagrangian MEthodcooceieeiiiiiiiinnieieee e 57
Index sets for extended SImplex partitionccoceveneeneene s 63
MINTO/INTERACTIVE displays continuous solution for small QIP 107
Integer-feasible solution for small QIPoocviiii i 108
Help screen #1 for MINTO/INTERACTIVE ..o 109
Help screen #2 for MINTO/INTERACTIVE ..o 110
Help screen #3 for MINTO/INTERACTIVE ..o 111
Help screen #4 for MINTO/INTERACTIVE ..o 112
Help screen #5 for MINTO/INTERACTIVE ..o 113
Debug screen for MINTO/INTERACTIVE ..o 114
Ravindran example optimal solution obtained using M4ccceceevieecieevneee, 133

Table of Tables

(N[0= S Lol = o PP 68

FORTRAN SUBIOULINES PaIt A ..ottt s 116
FORTRAN SUDIOULINES Part Bc.coiiiiiiiiicieeieeie e s 117
FORTRAN SUBrOULINES Part Ccccovieiiiiiesieeie et 118
FORTRAN SUDIOULINES Part Dcccoiiiiiiiiesiecieeie e 119
Plant upgrade model Minor Parametersccoeveeierieeieeree e 136
Plant upgrade model resultS SUMMAIYcccooiiiieniieeieeee e 137
Heat exchange model Minor PArameLersScccocvvceeieeieeneese e 141
Heat exchange model resultS SUMMEIY 2cccoveeiienienieenie e 142
Myers problem 1 minor PAraMELEN'Sccoveerieiirnie e 146
Myers problem 1 SUMMEIY 2ccociiiiereeiiesieesie e see et 147
Myers problem 2 minor PAramMELEN'Sccoveereriienie e 150
Myers problem 2 SUMMEIYccoiiirieeieeieeee e 151
Shanker & Tzen model MiNor PAraMELENSoooveiieieeiee e 157
Shanker model resultS SUMMEANY 2cooiiiiiiiniie e 158
Berry model resultS SUMMEIY 1c.oooiiiiiiierienie e 175
Berry model resultS SUMMEAIY 2oooeiiiiiieriesierie e 176

Xi

Chapter 1

| ntroduction

Murtagh and Saunders give a concise definition of optimization:

Optimization is the process of obtaining the best possible result under the
circumstances. Theresultismeasured intermsof an objectivewhichisminimized
or maximized. The circumstances are defined by a set of equality and/or
inequality constraints. (emphasisours)

Murtagh and Saunders [63]

For our purposes, we can sharpen thisdefinition slightly by stating that some of thequantities
to befound arerequired to assume values which are whole numbers. Optimization problems
containing restrictions such as these are known as integer programs. The present work is
concerned with a class of algorithms for nonlinear integer programs, in which both the
objective (quantity to be optimized) and possibly the constraints (explicit or implicit
restrictionson the valuesthat the variables may assume) are expressed in termsof nonlinear
functions of the problem variables. If all variables are required to assume integer values,
then we have a pure-integer program, else a mixed-integer program. It is customary to
formulate nonlinear optimization problems as minimizations, and this is the approach
adopted here.

In essence then, we aretrying to find the best value of afunction of one or many variables,
usually under certain restrictions on the values of those variables. The overall "best" is
termed the global optimum, however finding such apoint isnormally too computationally
expensive and we must be content in most cases to settle for a point which is merely better
than its neighbours—a so-called local optimum— see however later comments on recent
methods for global minimization such as simulated annealing. Thus we are concerned here
with methods for searching for local minima for the general nonlinear mixed-integer
optimization problem.

Apart from being mathematically interesting, the study of optimization and devel opment
of algorithms for solving the associated problems has many practical benefits from the
application standpoint. The literature of operations research abounds with examples of
practical problems from areas as diverse as flexible manufacturing systems [59], process
engineering [59], backboard wiring (Steinberg, [88]), el ectrical engineering (optimal power
flow [63]), and optimal communications network design [23] to financial portfolio
construction [63].

Many "real-world" problems tend to be large, non-linear, and require at least some of the
variables to be integers. Problems in this category are some of the hardest to solve, for
reasons which will be described in some detail in the chaptersto follow. In particular, for
problems with nonlinear constraints it is difficult to characterize a feasible step from the
current solution vector to the next. For problems involving integer restrictions— whether
linear or nonlinear—the essentially combinatorial nature of the problem gives rise to
computationtimeswhich can be exponential inthe problem size, eg the number of variables,
problemsof such exponential complexity areknowntobeintrinsically hard. For large-scale
work, it is necessary to exploit the inherent sparsity of practical problems, and
state-of-the-art linear programming (LP) software or nonlinear programming (NLP)
softwaresuch asMINOS|[62] takes advantage of sparsity techniquesto allow userstotackle
quite large problems, yet still retains the flexibility of a general-purpose code.

1.1 Contributions of thiswork

The present work has made original contribution to the field of nonlinear integer
programming (NLIP) in the following ways:

1. It hassought to extend the set of available direct-search methodsto solve large-scale
NLIP using Murtagh and Saunders concept of superbasic variables[62].

2. Itisreported hereinthat such methods have successfully solved anew communications
network optimization model. This model seeks to simultaneously optimize network
topology and traffic allocation.

3. Improved optima and solution times have been obtained for several test problemsin
the nonlinear integer programming literature.

1.2 Outline of thesis

Chapter 2 considers in detail the basic classes of optimization problems and gives a brief
summary of algorithms which been proposed for their solution. Comments are made as to
the relative reliability and robustness of each of the methods.

Chapter 3 givesasurvey of NLIP literature.

Chapter 4 sets forth the basic background material for the MINOS code of Murtagh and
Saunders, including fundamental equations and the concept of superbasic variables.

Chapter 5 discusses Murtagh’ s direct search method based on superbasic variables, while
Chapter 6 devel ops new modified and refined methods based on original ideas. Thischapter
presents discussion, proposals and analysis of five new direct search procedures.

Chapter 7 containsinformation on theimplementation of the new approach, including some
discussion and comments concerning the development methodology adopted, as well as
remarks on the suitability and quality of the software tools both used and devel oped.

The material from Chapter 8—Chapter 14 presents computational experience with the new
methods on avariety of problems from the NLIP literature, aswell asamodel proposed by
Berry and the present author to solve a problem in communications network optimization.

Finally Chapter 15 gives a brief summary of what the work has achieved.

Chapter 2

Classes of optimization problems

There are many classes into which we may partition optimization problems, and a so many
competing algorithms which have been developed for their solution. We outline the areas
of primary interest for the present work, with some brief contrasts to classes of problems
that we do not consider here. Inthefollowing brief discussion, we assume that the objective
function f maps n-dimensional Euclidean space R" to R.

2.1 Local and global optima

An unconstrained local minimum isapoint x € R" such that there exists a neighbourhood

in which the objective at each other point is no better. For a smooth function, it can be
pictured geometrically as being at the bottom of a trough at which the gradient vector is
zero and the Hessian matrix is necessarily positive semi-definite. Such pointsare normally
not too hard to find using methods that make use of first and second derivative information,
typically methods of the Newton class. In a constrained problem, a local minimum may
occur at a point where the gradient is not zero, since a constraint boundary may have been
reached. In general there may be many local minima, and it isalso of interest to find which
of the local minima is the "best". Such is global minimization, for which a number of
aternative methods exist— see, for example Ratschek and Rokne [76]. In general, the task
of finding a global minimum is a much harder problem than the task of finding a local
minimum, primarily because it is much harder to verify that the claimed global minimum
isactually that.

2.2 Smoothness

Functions for which continuous derivatives of sufficiently high order exist are referred to
as smooth. For continuous optimization, we are usually interested in having continuous
derivativesup to and including second order. Minimization problemsin which the objective
and constraint functions are of such type can make use of techniques of multivariable
differential calculuswhich are unavailable for non-smooth functions. Werefer primarily to
the extensive set of methodswhich make use of gradient and curvatureinformation to direct
aniterativesearch processtoward alocal minimum. Methodsinthisvery broad classinclude
the Newton or quasi-Newton methods, good accounts of which may be found in the book
by Gill, Murray and Wright [24]. For functions which are not smooth, only function value
information can beusedto direct thesearch process. Suchtechniquesarereferredtogenerally
asdirect search. One early approach is the amadba or simplex method of Nelder and Mead
[67], which has recently found favour with researchers developing direct-search methods
for paralledl machines;, the more powerful of the gradient-related methods such as
guasi-Newton do not seem particularly suited to parallel implementations. Details of some
work of this nature may be found in two papers by Dennis and Torczon, and Torczon [15,
90]. Brent [4] haswritten an entire monograph devoted to the topic of minimization without
theuseof derivatives, iedir ect sear ch methods. The conventional wisdomistousereliable
gradient information whenever it is available and to avoid "function-value only" methods
unlessthereisno other choice. Gill, Murray and Wright give some useful advice on choice
of methods in a Questions and Answer s appendix to their well-known book [24].

2.3 Constraints

Unconstrained optimization of afunction f: R" — R of n variables may be thought of as

a search (certainly from a computing point of view) in R" for alocally optimizing vector
X — constraints simply restrict the search space to some set F, where F c R". Thus for
constrained optimization, we seek to:

minimize f(x), xeF

An unconstrained problem is one in which any point in the domain of f (often the entire

space R") isan eligible solution point, ie a candidate for a local minimum. F is the set of
al candidate points and is called the feasible set. Any point x € F is called afeasible point

or feasible vector. A constrained problem contains restrictions, in the form of equations or
inequalitiesthat must be satisfied at any proposed solution point. We can regard constraints
as having the effect of shrinking or diminishing the available search space. A further type
of restriction, mentioned above, is the requirement that some or all variables must assume
integer values. Imposition of such conditions will also shrink the available search space,
but in aradically different manner to that of, for example, linear constraints. If a set of m
linearly-independent linear constraints is imposed on an originally unconstrained
n-dimensional problem, then we effectively remove m degrees of freedom (dimensions)
from the search space and then can operate in the reduced space of dimension n-m. On the
other hand, if integer conditions areimposed, the search spacereducesto alattice of discrete
points (in the case of a pure-integer problem). The search then becomes essentialy a
combinatorial one and isin many practical cases fruitless because of the sheer number of
possibilities that must be separately examined.

2.4 Convexity

If the objectivefunctionisconvex, equality constraintsarelinear, and inequality constraints
are of the form ¢;(x) >0, ie concave, then it can be shown that a local optimum is also
global — see, for example Gill, Murray and Wright [24, sec. 6.8.2.1] or Fletcher [18, chapter
9]. It is also worthy of note that many agorithms perform better on such problems, and it
Isnormally possible to tune an algorithm to take advantage of convexity if it isknownin
advance that the problem in question has this desirable property (Gill, Murray and Wright
[24, sec. 6.8.2.1]).

2.5 Discrete optimization

We discuss integer programming (both linear and nonlinear) later in this thesis, however
the apparently more general problem of nonlinear optimization subject to general discrete
restrictions has also received some recent attention. Such problems require a (generally
nonlinear) objective to be minimized subject to nonlinear inequality constraints, with the
added requirement that certain or all of the structural variables must take values from
specified finite sets; the elements of these sets need not be integers. For arecent example
in which the classical penalty function approach (Sequential Unconstrained Minimization

Technique (SUMT) of Fiacco and McCormick [20]) is applied in order to satisfy both
nonlinear constraints and the discrete requirements, see the 1990 paper by Shin, Glerdal
and Griffin [87], in which applications to engineering truss design are considered.

2.6 Optimization examples

To gain some appreciation of theissuesinvolved in NLIP, we consider asequenceof ssmple,
but progressively more difficult optimization problems, culminating in an admittedly small,
but illustrative quadratic NLIP problem.

2.6.1 Example 1—linear objective

Herewe consider an unconstrained linear univariate example: the simplest possible kind of
problem. Thisisatrivial case, but illustrates some useful ideas which lead on to the next
example. We seek the minimum of the function f(x) = ax+Db.

f(x) = ax+b

X

Figurel Unconstrained linear optimization

If we consider the unconstrained minimum problem illustrated figure 1, thereis no solution
since the objective function is unbounded, assuming that a # 0.

Imposition of a simple bound constraint x > L on this problem, leads to a unique global

minimum at the constraint boundary x = L, providedthata > 0—seefigure2. Thisistypical
of linear optimization (LP) in multidimensions.

f(x) = ax+b

L X

Figure2 Constrained linear optimization

2.6.2 Example 2—quadratic objective; unconstrained

We seek the unconstrained minimum of the function

f(x) = A(x—a)(x-b) 1)

Casel A>0
Local and global minimum isat x” = (a +b)/2, and the value of the objective function is

~A(b—a)? (2

f(x) 2

Case2 A<O

No local minimum; no global minimum; ie givenany M; dx : f(X)<M.

Figure3 Unconstrained quadratic — case 1

Figure4 Unconstrained quadratic — case 2

2.6.3 Example 3—quadratic objective; ssmple bound constraints

Even in this simple case, many outcomes are possible. Once again our objective function
IS
f(x) = A(x—a)(Xx-b) ©)

However we now impose the (ssimple bound) constraints

L < x £ U (4)

Casel A>0; L<a<b<U

Figure5 Constrained quadratic — case 1

X = (a+b)/2 isa(loca) minimumontheinterval L <x <U. Sincef isconvex, X is
also aglobal minimum on the interval.

Case2 A>0; L<a<(a+b)2<U<b

6 —

0
E 3 4 5 6
a b
2k
U

L

IS

N

Figure6 Constrained quadratic — case 2

X" = U isthegloba minimum.

10

Cae3 A>0; L<U<(a+b)2

61—

-

Figure7 Constrained quadratic — case 3

Thegloba minimumhereis x° = L, however thispoint isnot asmooth local minimum.

From elementary calculus, the necessary conditions for a smooth local minimum are that
f'’x) = 0 andthat f”(x) > O.

Sufficient conditions for smooth local minimum are f'(x) = 0 andthat f”(x) > O.

Case4 A<O

e

Figure8 Constrained quadratic — case4

We cannot get alocal minimum since f”(x) = -2A everywhere. However it isaways
possible to get a global minimum, which then occurs at one of the endpoints, L or U.

11

We seethat even for simple univariate quadratic functions, we have many casesto consider.
We also note in passing that any reasonable computer algorithm to solve optimization
problems must be able to cater for these fundamental cases and their generalizations to
problems involving many variables.

2.6.4 Nonlinear integer problems

Inorder toillustrate someof the possible casesand difficultiesfor nonlinear integer problems
we present some genera observations on the limitations of ssmple-minded direct search,
followed by two very small linearly-constrained quadr atic integer programs (QIPs).

It will beseenthat in some cases, simplerounding of the solution to the continuousrel axation
produces acceptableresults, whilein other cases, thisprocessmay even lead to infeasibility,
quite apart from any hope of local optimality.

The previous examples in this chapter have been concerned with univariate problems for
which conventional graphs of theform y = f(x) were used to illustrate constrained minima.
By contrast, inthe following general illustration and two simple quadratic integer programs
(depictedinfigures9-11), we consider problemswith two independent structural variables,
and the cartesian plane is used to show the | attice of feasible points for each problem.

Notwithstanding the usual caveats regarding the use of diagramsto prove apoint, it should
be emphasized that, although thisexampleisvery smple, avery fundamental and important
stumbling-block for direct search methods for integer programming is hereillustrated. The
diagram shows four lattice points: labelled 1, 2, 3, 4. Points 1 and 4 are infeasible as they
lie outside the linear constraints. It should be clear from the diagram that independent steps
ineach of two orthogonal directionsareseento beinfeasiblewithrespecttolinear constraints,
however a combined oblique step gives feasibility, and this point may even be locally
optimal. The search procedures presented in this work first spend a great deal of effort to
rid the smplex basis of integer variables. After thisisdone, any integer-infeasibilities must
of necessity be in the superbasic variables. The diagram under discussion here must be
interpreted in the light of small increments in superbasic variablesin some reduced search
space. If independent stepsfail in such asmall example asthis, then the situation can only
become worse as the dimensionality of the problem increases. We cannot avoid the
combinatorial barrier thatisinherent in any kind of integer programming— hereit raises
itsugly head in the form of the choice that must be madeif we are going to try stepsin more
than one superbasic at atime. Figure 9 is but a simple example in which "taking one at a

12

time’ issometimesinsufficient to achieveinteger-feasibility, and further examplescaneasily
be constructed to show that taking two at a time can aso fail. Here we have four lattice
points, and a fifth point, which represents the solution of the continuous relaxation.
Independent steps in either x or y will hit a constraint boundary, but a "diagonal" step

succeeds.

cts soln

4 O

Figure9 Independent versuscombined steps

Quadratic integer example Q1
The problem considered hereis
minimize
fxpX%) = X, — 34° + (X, — 16y

subject to

IA

X, - X 16

13

Q)

(6)
(7)
(8)

0 < % < 4 (9)
X, X, integer (10)

In this example, we see that the continuous optimumis 0.0 a x, = (3.4,1.6)", andthe

integer-feasible optimum isat x; = (4,2)", with objective 0.52. The integer optimum
can be obtained by heuristic rounding of the continuous solution. The feasible region is
illustrated infigure 10, wheretheasterisk indicatesthe continuous solution, andfilled circles
indicate feasible lattice points. Note that there is also a second local optimum at
X, = (3,1)" with the same objective value, 0.52.

Figure10 ExampleQl

Quadratic integer example Q2
The problem considered hereis
minimize

fx,X) = (X, — 34° + (X, — 16)° (11)

14

subject to

4, — 3% = 8
2X, — X, < 6
0 < x £ 5
0 < x, < 4

X, X, integer

(12)
(13)
(14)
(15

(16)

In this example, we see that the continuous optimum isonceagain 0.0 at x,=(3.4,1.6)",

and the integer-feasible optima are x;=(4,2)" and

X,=(3,1)", as before (both have

objective 0.52). Thisproblemisillustrated in figure 11, and it isworthy of note that, if we
wish to maintain feasibility with respect to the linear constraints, only the latter solutionis
obtainable by independent stepsin the variables, and even then we must step x, before x,.

0.0 1.0

2.0 3.0

Figure1l Example Q2

15

4.0

5.0

2.7 Global optimization

For alarge class of practical problems, global minimization is, in general, an impossible
task, althoughinanumber of practical cases, such problemshavebeen solvedinasatisfactory
manner— see, for example, the book by Ratschek and Rokne [76]. Normally, "real-world"
optimization problems are global, constrained, mixture of discrete and continuous,
nonlinear, multivariate and nonconvey, ie the hardest possible mathematically! 1t’snot all
bad news, since much useful progress has been made by taking advantage of simplifying
models and special problem structure. In particular, the development of interval arithmetic
and interval analysis by Moore, Mohd, Ratschek, Rokne and others [54, 55, 76] has led to
significant algorithmic advancesin the last few decades.

Interestingly, some of the more imaginative of recent attempts at optimization methods try
to mimic perceived processes of nature. One such approach isthat of simulated annealing;
another is evolution viathe class of so-called genetic algorithms.

Thesimulated annealing technique showsalot of promisefor global optimization problems.
In its early stages, the method allows local deterioration of objective (but with gradually
declining probability) in the hope that beyond local bumps may be deeper valleys. A good
encapsul ated description of simulated annealing isgivenin Press, Flannery, Teukolsky and
Vetterling [75], where the old travelling salesman chestnut is discussed, and FORTRAN
and Pascal code given for the method. Simulated annealing has become quite apopular line
of research, and appears to be a particularly good heuristic for the quadratic assignment
problem (QAP). For a definition of QAP the reader is referred to Connolly [8] or
Mawengkang and Murtagh [49]. In particular, Connolly [8], Burkhard and Rendl [6], and
Wilhelm and Ward [95] report some improved optima for several of the largest problems
availablein the literature. Although the annealing algorithmis"intrinsically of a sequential
nature" [91, chapter 8], parallel implementations do exist, as reported by van Laarhoven
and Aarts[91].

Other recent contendersfor efficient solution of avery general classof optimization problems
are members of the class of methods known loosely as genetic algorithms. The basic ideas
are conventionally expressed in biological terms; thusagene pool is maintained throughout
the execution of a typical method, during which mutations are generated from potential
solutions by crossbreeding (partial permutations). Resulting solutions at each generation
are ranked according to some measure of fitness; in the case of minimization, an obvious
class of criteriaisthat whose rules compute the objective corresponding to each contender,
and then favours those with better objective value. It is hoped that via this process of
simulated evolution, a population will gradually emerge which contains the seeds of the

16

final solution. Some useful tutorial articles on the subject of genetic algorithms are Morrow
[56] and Wayner [94], while two recent monographs are Davis [14] and Goldberg [27]. A
specific genetic method has been applied by Michalewicz, Krawczyk, Kazemi and Janikow
[51] to optimal control problems; its performancein some cases comparing favourably with
that of the GAMS/MINOS code of Murtagh and Saunders [26].

2.8 Linear programming

Linear programming (L P) problemsarelinear in both objective and constraints. The special
nature of this class of problems makes possible avery elegant solution algorithm known as
the revised simplex method—the classic reference is Dantzig [12], while a more modern
treatment from a large-scale computational viewpoint is contained in the monograph of

Murtagh [57].

The basic result of LP theory stemsfrom the nature of the feasible set. The feasible set can
be characterised geometrically as a convex polytope (or simplex), which can be imagined
to be an n-dimensional polyhedron, and if an optimal solution exists, then there is at |east
one vertex of the feasible set that isoptimal. Figure 12 illustrates atrivial LP in which the
interior of the shaded quadrilateral OPQR representsthefeasible set. Thefundamental result
tells us that if a finite optimal point exists, then (at least) one of the vertices O, P, Q, R
(corresponding to so-called basic feasible solutions) is optimal.

17

Figure12 Linear programming

2.8.1 The simplex solution method

Diagramssuch asfigure 12 are used toillustrate some fundamental conceptsof L P, however
wecannot usegraphica methodsfor real -world problems. Analgebraic approachisrequired,
suitable for implementation on a digital computer. The simplex algorithm systematically
moves from vertex to vertex of F, the feasible set. Such vertices are termed basic feasible
solutions. Each iteration improves the value of the objective until no further improvement
iIspossible. Itisavery elegant algorithm, which maintains feasibility of candidate solutions
(basic solutions) at every step.

Thegreat early success of mathematical programming was the development of the simplex
method by George Dantzig and co-workers Orden and Wolfe [12, 13] for the solution of
LP problems. The method was originally developed for hand calculation but was easily
adapted for useon digital computers, for which therevised simplex method isnormally used.
Since then, many extensions and refinements have been devel oped for the method. One of
the most important devel opments has been a class of techniques known in general terms as

18

gparse matrix techniques. These methods take advantage of the fact that ailmost al large
LPshave very sparse constraint matrices, ie almost all zeros. Nowadaysit is quite common
to solve LPs containing tens of thousands of constraints. If such a problem were solved
using only dense matrix methods, that is, by explicitly storing and processing all the zero
elements, we would be dealing with the storage of hundreds of millions of
coefficients— amounting to storage in excess of one gigabyte for the constraints alone. Not
only is space wasted, but time also, since most of the processor’ s time would be occupied
in doing multiplications by zero.

In recent years there have been alternative LP algorithms proposed, most notably that of
Karmarkar [40], but the revised simplex method and its close variants are still the most
popular. A good discussion of Karmarkar's method is aso given in Strang [89]. It is
interesting to observe that while the asymptotic complexity of the simplex method is
exponential in the number of constraints, and Karmarkar’sis only polynomial, the revised
simplex method performs very well in practice. Artificial problems which €licit the
worst-case exponential ssimplex behaviour have been constructed (see for example [69],
chapter 8.6, p169) but these do not seem to occur in practice. Karmarkar’ s algorithm isan
exampleof aninterior point method, and somevery recent work by Marsten, Subramanian,
Saltzman, Lustig and Shanno [47] has interpreted interior point methods as a natural
combination of the previously-known techniques due to Newton, Lagrange, and Fiacco and
McCormick [20]. The claim is made that interior point methods are "the right way to solve
large linear programs’, and results reported by Lustig, Mulvey and Carpenter [45] arecited
in which the OB1 code of Marsten et al [46] outperforms MINOS 5.3 [64] by a factor of
ten on problems which have m +n ranging from 7,391 to 29,424.

In spite of al this, the smplex method is well worth studying, not only for the insight it
givesinto the structure of LP problems, and also of course their solution, but for the useful
extensions to the method which can be used to solve NLP problems. Lucid treatments of
some of these extensions can be found in Gill, Murray and Wright [24], Murtagh and
Saunders [62], and Murtagh [57].

2.9 Integer linear programming

Integer linear programming problems (ILPs) are LP problems in which extra constraints
requiringsomeor all variablesto beinteger valued havebeenimposed. ILPisavery common
problem classwherevariablesrepresenting indivisible units, eg men, machinesdo not admit

19

fractional solutions. Figure 13 shows the combinatorial nature of such problems by an
enumeration of the (finite) feasible set of lattice points, rather grossly depicted by thefilled
sguares.

—
x1

Figure 13 Integer linear programming

2.9.1 Branch-and-bound for ILP

ILPs are much harder to solve than continuous LPs, because of their fundamentally
combinatorial nature. They are potentially exponential in computational complexity, even
after the continuous L P relaxation has been solved by, say, the revised simplex method.

The standard algorithm for solving ILP is the very simple-in-concept branch-and-bound.
In this approach, for which myriad variations exist, the LP relaxation isfirst solved. Then,
if all required variablesare withinaspecified tolerance of aninteger value, the process halts.
Otherwise the problem is split into two sub-problems at an infeasible integer variable. The
subproblems are then put on a master list of subproblems to be solved. The next step isto
select one subproblem from the list and repeat the above procedure. The whole process

20

terminates when there are no subproblems left. At all stages, we keep track of the best
integer-feasible solution so far. Subproblems can be discarded entirely if it becomes clear
that their solutions are no better than the current "best" integer feasible solution. The
sequence of problems thus takes the form of atree, from which it should be clear how the
exponential complexity arises. The main ams are to keep the branching to as few nodes as
possible, and the main drawback of the method is that unless special steps are taken, the
number of subproblems (branches) can grow exponentially.

For athorough description of the basic branch-and-bound approach, any of alarge number
of textbooks may be consulted; we cite Nemhauser and Wolsey [68] 355-367 (this work
appears to be the most comprehensive general treatment of integer programming extant),
Papadimitriou and Steiglitz [69] 433-448, Murtagh [57], 107—-111, Minoux [52], 248-258
and Ravindran, Phillips and Solberg [77], 191-198.

It should be noted also that there exist ILPs which are intrinsically hard no matter what
branch-and-bound heuristic is used for fathoming the search tree. In fact it can be shown
that there are | LPs such that:

... regardless of the order for fixing variables, and regardless of the method for
choosing nodes, all the enumerative algorithms will have to develop at least a
number of nodes roughly equal to the square root of the number of nodesin the
entire search tree, hence a number of nodes exponential in the number of
variables.

Jeroslow [39]

In spite of these fundamental objections, nearly all commercial linear programming codes
use the branch-and-bound method for solving linear integer programming problems. The
approach can be easily adapted to nonlinear problems, and we give some details here.

Branch and bound for nonlinear problems

Theoriginal problem is solved as a continuous nonlinear program, ignoring the integrality
requirements. Suppose the solution x;, j € J isnot completely integer-feasible. We set

0 < f < 1 (17)

X = [x] + f J

I I 12

where [x] isthe smallest integer not exceeding X;.

21

The approach is to generate two new subproblems, with additional bounds, respectively

I < x < [x] (18)

J I I

and

[x]+1 < x < uy (19)

I J

for a particular variable j € J. This process of splitting the problem is called branching.
Asinthelinear case, oneof these new subproblemsisnow stored inamaster list of problems
remaining to be solved, and the other solved as a continuous problem. This represents the
depth-first approach to branch-and-bound. Other strategies in which both incumbents are
"stacked" and some heuristic used to select which of the previously-generated problemson
the list to solve next. The process of branching and solving a sequence of continuous
problems is repeated for different integer variables, j € J, and different integers [x;]. As
stated, the logical structure of the method is often represented as a tree. Each node of the
tree represents a subproblem solution. Branching at a given node will terminate if one of
the following three criteriais satisfied:

Termination criteriafor branch-and-bound
1. The subproblem has no feasible solution.

2. Thesolution of thesubproblemisno better thanthecurrent best knowninteger feasible
solution.

3. Thesolution isinteger feasible (to within a pre-defined level of tolerance).

One benefit of the branch-and-bound approach is that both upper and lower bounds on the
best possible integer solution are automatically available. Assuming the objective is to be
minimized, the current best known integer feasible solution provides an upper bound, and
the best of the remaining partially-integer solutions on the master list of problems to be
solved provides a lower bound. It is usua to terminate the branch-and-bound procedure
when the difference between these two boundsiswithin some pre-defined rel ativetol erance.

In general, the rate of convergence of the procedure is sensitive to the choice of variable
] € J,onwhichtobranch. Itisal sodependent onthechoiceof thenodetowhich backtracking
Is done, once the branching from a particular node is discontinued.

22

For nonlinear integer programs, it must be implicitly assumed that the problem is locally
convex, at least in the neighbourhood of the original continuous solution which contains
integer feasible solutions. Otherwise, the bounds discussed above are inadequate. It would
not be valid to terminate the branching under the termination criterion 2 above, and it also
would not be valid to terminate the procedure when the difference between the two bounds
Is sufficiently small.

2.9.2 Alternative methodsfor IP

I n this section we discuss some alternativesto branch-and-bound which have been proposed
for the solution of IP problems.

Special-purpose algorithms

Much of the literature on even linear IP is devoted to the description of special-purpose
methods which have been developed to exploit the particular structure of the problem at
hand. A very good example of a case in which specia problem structure has been used to
advantage is that of the airline crew scheduling problem reported by Ryan [80], where
200,000 0-1 (binary) variables are involved. The solution of an integer program of this
magnitude would be out of the question if genera-purpose methods such as pure
branch-and-bound were used.

Nemhauser and Wolsey [68] devote alarge amount of space to special-purpose algorithms
for IP, which can be used to attack otherwise intractable problems. They cite three major
reasons for motivating a search for special-purpose approaches:

(i) Prohibitive size of the problem formulation.
(i) Weakness of bounds.
(iti) Slow speed of general-purpose methods, eg branch-and-bound.

23

Group-theor etic methods

Group-theoretic methods based on original ideas of Gomory in a sequence of papers [28,
29, 30] are used for pure integer problems and implementations can be found in some
commercial codes. They are given only acursory treatment in Nemhauser and Wolsey [68],
however the book by Salkin and Mathur [81] contains an extensive account of these
techniques, including much on computational experience. Thereader seeking further details
isreferred to this book [81].

Boolean-algebraic methods

These apply to 0-1 programs, however any NLIP can be written as polynomial involving
0-1 variables. Methodsfor such transformations are described in the work by Hammer and
Rudeanu[33]. A good summary of progressup to thelate 1970sisgiven inthe survey paper
[34] by Hansen, wherein particular, he notes that any nonlinear O—1 program is equivalent
to a 0-1 knapsack problem (IP with one constraint) in the same variables. From a
computational point of view however, this result is not as useful as it may sound, since it
may take at least as much timeto find the single constraint as to solve the original problem
by some other means. The paper [34] by Hansen isagood starting point for those interested
in Boolean methods for 1Ps.

Implicit enumeration

Implicit enumeration is used on 0—1 problems, although it isin principle available for any
pure-integer or mixed-integer problem since integer variables with finite upper and lower
bounds may be converted to sets of 0-1 variables. By clever use of bounds, it may be
arrangedfor certain problemsthat not all feasi blelattice pointsneed beexplicitly considered,
however it is with such methods that the exponential complexity of IP in genera is laid
bare, and it is difficult to imagine much future success for implicit enumeration even on
practical problems of moderate size. This class of methods, related to branch-and-bound,
Iswell-summarized in the dissertation of Mawengkang [48].

24

2.10 Approachesto unconstrained optimization

The general unconstrained nonlinear minimization problem can be stated in the form:
minimize F(x)

xe R"

The quadratic objective function in n variables is used as a model and very simple test
function for algorithms purporting to solve problemsin thisvery broad class. Any algorithm
for unconstrained optimization must perform well on quadratics, since all smooth functions
are like quadratics in a sufficiently small neighbourhood of alocal smooth optimum. Two
fundamental theoremsfor devel opment of unconstrained minimization methodsareTaylor’'s
theorem:

Foxep) = FO) + g’ + SpHOX+6p) &
and the mean value theorem:
gx+p) = 9gx) + H(Xx+6p) (21)
in both of which we have
0 < 6 < 1 (22)

Itis here assumed that F istwice continuously differentiable with gradient vector g(x) and
Hessian matrix H(x), the respective elements of which are given by:

oF () (23)
(X = —=
g;(X) o
_PF(X) (24)

To have any hope of alocal minimum, we need the Hessian matrix to possess a property
called positive definiteness. In particular, for a quadratic function, the Hessian matrix H is
constant.

For sufficiently smooth objective function, necessary conditions for a minimum for the
unconstrained problemare g(x) = 0 and H(x) > 0.

25

Sufficient conditions for aminimumare g(x) = 0 and H(x) > 0.

The shorthand notation H(x) > O represents the condition positive definiteness for

the Hessian matrix of partial derivatives. It can be shown that the following conditions for
positive definiteness are all equivalent [24]:

Positive definiteness of Hessian
1. Xx'Hx > O Vx #0.
2. H has positive spectrum (set of eigenvalues).

3. LL" (Cholesky) factors of H exist with the diagonal elementsof L, I, > O.

4. All multipliersin Gaussian elimination without pivoting (row or column interchanges)
are positive.

5. All principal minorsof H are positive.

2.11 Approachesto constrained optimization—the Kuhn-Tucker conditions

In this section we summarize some especially lucid material from Gill, Murray and Wright
[24]. In a classic 1951 paper [43], Kuhn and Tucker derived conditions for constrained
optimal pointsfor ageneral nonlinear function f. The so-called Kuhn-Tucker conditionsare
presented for various classes of continuous constrained optimization problems.

The traditional technique of using so-called Lagrange multipliers to handle constraints is
still avery powerful, theoretically elegant and the most widely used approach in practice,
both for analytic and numerical methods.

2.11.1 Linear equality constraints

We define the linear equality-constrained problem LEP:

26

LEP

minimize F(x)

Xxe R

subjectto Ax = b

Optimality conditions

For each case to follow, the aim is to characterize a feasible step from the current iterate,
and then to deduce some necessary conditions, and then some sufficient conditions for a
local minimum. Webeginwith thesimplest kind of constraints— linear equality constraints.

Since any feasible step p from x to x + p must satisfy Ap = 0, the step p must be an element
of the nullspace (or kernel) of the matrix A. Let abasisfor the nullspace of A be formed by
the columns of the matrix Z. Examination of the Taylor series about a proposed optimal
point X reveals that we must have Z'g(x") =0. The vector Z'g(x") is called the projected
gradient at x". Any point at which the projected gradient vanishesis termed a constrained
stationary point. Likewise, we define the projected Hessian matrix Z'G(x)Z. At such a
point it iseasy to show that the gradient vector must be alinear combination of the rows of
A, iethere existsavector A" such that

. mo. o, Nk 25
gx) = 3 a&ar = A (25)
i=1

where A" is the vector of Lagrange multipliers. In a similar manner to the unconstrained
case, we can derive second-order optimality conditions.

Note that the conditions are analogous to the unconstrained case, except that the projected
gradient and projected Hessian are involved.

27

LEP — necessary conditions for minimum

AX = b (26)
Z'gx) = O (27)
gx) = AW (28)
Z'G(x)Z = 0 (29)

The second and third of these conditions are actually equivalent, and together the four
become sufficient if we strengthen the last to a sharp inequality, thus:

Z2'G(x)Z > 0 (30)

2.11.2 Linear inequality constraints

We define the linear inequality-constrained problem LIP:

LIP

minimize F(x)
xe R"

subject to Ax = Db

We need to distinguish between constraints which hold exactly and those which do not. L et
us suppose that the point X is feasible. The constraint a'X > b, is said to be active (or
binding) if a'X =D, and inactiveif a'X > b;,. The constraint is said to be satisfied if it is

active or inactive. If a X < by, the constraint is said to be violated at X.

28

Active constraints have a special significance in that they restrict feasible perturbations
about afeasible point. We may define two categories of feasible perturbations with respect
to an active inequality constraint. Firstly, if

aiTp =0 (31)

then the direction p is termed a binding perturbation with respect to the constraint, since

this constraint remains active at all points X+ op. A move aong a binding perturbation is
said to remain on the constraint.

Secondly, if

ap > 0 (32)

then p is termed a non-binding perturbation with respect to the constraint. Thisis because

the constraint will becomeinactive at the perturbed point X + op, assuming that oo > 0. Such
apositive step along a non-binding perturbation is said to move off the constraint.

To determine if the feasible point x™ is also optimal for LIP, we must identify the active

constraints. Let the t rows of the matrix A contain the coefficients of the constraints active
a x', with asimilar convention for the vector b, sothat Ax" =b. Once again let Z be a
matrix whose columns form a basis for the set of vectors orthogonal to the rows of A.

By considering the Taylor series expansion for f about x” along a binding perturbation
p=Z2p, weobtain
Z'gx) = 0 (33)

Thisis equivalent to

gx) = AW (34)

To ensure that non-binding perturbations do not allow a descent direction (a direction for
the objective function decreases), we need to impose the condition that all Lagrange
multipliersarenonnegative. Further, weobtai n necessary second-order conditioninasimilar
manner to LEP, in which the projected Hessian Z'G(x')Z must be positive semi-definite.
In summary, we have the necessary conditions:

29

LIP — necessary conditionsfor minimum

AX >b with AX = b (35)
Z'g(x)=0 (36)
gx) = AT\ (37)
A 20, i=1,..,t (38)
Z2'G(x)Z = 0 (39)

Asfor the equality-constrained case, the second and third of these conditions are actually
equivalent.

Algorithms for LIP are more complicated than those for LEP, since the set of constraints
which are active at the solution (possibly the empty set) is generally unknown.

Sufficient conditions can also be given for LIP, but the complication of zero Lagrange
multipliers means that we must explicitly formulate alternative setsof sufficient conditions.

LIP — sufficient conditionsfor minimum

Ax >b with AX = b (40)
Z'g(x)=0 (41)
gx) = AT\ (42)
A >0, i=1,..,t (43)
Z'G(x)Z > 0 (44)

30

Once again, the second and third of these conditions are equivalent.

When zero Lagrange multipliers are present, the sufficient conditions include extra
restrictions on the Hessian matrix to ensure that F displays positive curvature along any
perturbation that is binding for al constraints with positive Lagrange multipliers, but may
be binding or non-binding for constraints with zero Lagrange multipliers. Let A, contain
the coefficients of the active constraints with positive Lagrange multipliersand let Z, be a
matrix whose columns span the nullspace of A.. In this case, sufficient conditions for X" to
be a strong local minimum of LIP are as follows.

LIP — alternative sufficient conditions for minimum

Ax >b with AX = b (45)
Z'g(x)=0 (46)
gx)=AT\ (47)
A0, i=1 ..t (48)
Z2'Gix)Z, > 0 (49)

Once again, the second and third of these conditions are equivalent.

2.11.3 Nonlinear equality constraints

We define the nonlinear equality-constrained problem NEP:

31

NEP

minimize F(x)
xe R"

subject to cx) = 0, I=1..,t.

In contrast to the LEP case, in which all constraints are of course linear, thereisin general
no feasible direction p such that &(X +ap) =0 for all sufficiently small o. To retain
feasibility, we must move along an arc. Such an arc may be specified by the equation
x = ou0) with ou(0) = x". Then, pisthetangent tothisarcat x”. The basi c necessary condition
for optimality of x™ isthat

AcH'p = 0, Vi (50)

Thisis equivalent to
Ap = 0 (51)
A is the Jacobian matrix of the constraints, defined by

o &
& = X,

The vector p being orthogonal to the rows of the Jacobian at X" is not asufficient condition
for p to betangent to afeasible arc. Toillustrate thisidea, consider the two constraints

EX) = (-1 + XX - 1 (53)

&X) = (x+1°® + XX - 1 (54

The origin is the only feasible point, so no feasible arc exists. But any vector of the form
p = (0,8)" satisfies the Jacobian orthogonality condition.

32

We need stronger conditions on the constraint functions to ensure that p is tangent to a

feasible arc. Such further assumptions are termed constraint qualifications, and they can
take many forms. One practical constraint qualification isthat the constraint gradientsat x’
are linearly independent. This is equivalent to the statement that the matrix A(x") has full
row rank.

For X" to be optimal, F must be stationary along afeasible arc:

VE((0)) oo = O (55)
where
Ap = 0 (56)

If Z(x") isamatrix whose columns form abasis for the nullspace of A, ie the set of vectors
orthogonal to the rows of A, then we have

Zx)gx) = 0 (57)

Thiscondition is analogousto the condition in the linearly constrained case, except that the
matrix Z isno longer constant. The vector Z(x*)Tg(x*) Is termed the projected gradient of
F at x'. Asbefore the condition that the projected gradient is zero at X, is equivalent to the
condition that g(x") must be alinear combination of the rows of A(X).

gx) = AX)N 8)
for some t-vector of Lagrange multipliers.
Define the Lagrangian function as
L(xA) = Fx)-Aex) (59)

Our necessary condition for optimality of X then can be stated asx” is a stationary point of
the Lagrangian when A = A,

For a second order necessary condition we define the Hessian of the Lagrangian
W) = G- X A4G6X) (60)

We need
PWO,A)p = 0 (61)

33

whichisequivaent to

Z6) WK, A)Z(K) = 0 (62)

Thisisthe projected Hessian of the Lagrangian function.

NEP — necessary conditionsfor minimum

ex) = 0 (63)
Z)'gx) = 0 (64)
gx) = AN (65)
ZOO)W,A)ZK) = 0 (66)

Once again, the second and third of these conditions are equivalent, and sharpening the
inequality on the projected Hessian of the Lagrangian in the last equation leads us to
conditions which are sufficient for a constrained minimum:

ZOO)'WX,A)ZK) > 0 (67)

2.11.4 Nonlinear inequality constraints

We define the problem:

NIP

minimize F(x)
xe R"

subject to cx) = 0, I=1,...,m.

Asinthelinear case (LIP), weneed to identify the active constraints. Only these constraints
restrict feasible perturbations at x'. Again we assume constraint qualification holds. The
conditions are given below.

NIP — necessary conditionsfor minimum

cx)>0 with &x) = 0 (68)
Z6H)'g) = 0 (69)
gx) = AGH'W (70)
A =0 i=1...t (71)
ZOO)'WX,AHZK) = 0 (72)

Zero Lagrange multipliers cause problems in stating sufficient conditions for NIP, just as
in the LIP case. We state first one set of sufficient conditions for NIP which avoids the
problem by assuming all Lagrange multipliers are positive:

35

NIP — sufficient conditions for minimum

cx)>0 with &x) = 0 (73)
Z(6H)'g) = 0 (74)
gx) = AGOH'W (75)
AN>0, i=1,..t (76)
ZoO)'WX,A)ZK) > 0 (77)

When zero Lagrange multipliers are present, the sufficient conditions include extra
restrictions on the Hessian matrix of the Lagrangian function to ensure that F displays
positive curvature along any feasible arc that is binding for all constraints with positive
Lagrange multipliers, but may be binding or non-binding for constraintswith zero Lagrange
multipliers. Let A,(x") contain the coefficients of the active constraints with positive
Lagrangemultipliersand let Z,(x") beamatrix whose columns span the nullspace of A, (X").
In this case, sufficient conditionsfor x™ to be astrong local minimum of NIP are asfollows.

36

NIP — alter native sufficient conditions for minimum

cx)>0 with &x) = 0 (78)
Zx)'gx) = 0 (79)
gx) = A)'W (80)
A 20, i=1,...t (81)
Z()' W, A)ZX) > 0 (82)

2.12 Existing algorithmsfor continuous nonlinear optimization

Generally speaking, function comparison methods are a poor choice when compared with
methods making useof derivativeinformation. They should bechosenonly when derivatives
are very difficult to compute, unreliable or not available at all. For some problems, the
objective function is nonsmooth, and here function comparison methods may be the only
onesavailable. For somevery useful practical adviceinthisregard, thebook by Gill, Murray
and Wright [24] is recommended.

2.12.1 1-Dimensional methods

Some of the standard methods for minimization of a function of a single variable are
bisection, Brent’ s method, Fibonacci search, golden section search, quadratic interpolation,
and Newton’'s method [24, pp82—-92]. Brent’ s original work is collected in his monograph
[4] and source code for modern implementationsin FORTRAN and Pascal can befound in
Press, Flannery, Teukolsky and Vetterling [75]. First and second derivative information
must be available to use Newton's method, whereas other techniques mentioned use only
function values.

37

2.12.2 A model descent algorithm schema (unconstrained)

We consider now avery general specification for adescent method for linearly-constrained
minimization which embodiesthe nullspace matrix Z and aline search subal gorithm. Figure
14 has the details.

k:=0;

X,. = feasibleinitial estimate;

converged:=| f(x) |<e

givingup:=false

while not (converged or givingup) do
compute p, (*search direction*)
P =2p,
compute oy, such that F(x, + oy pe) < F(X,)
Xi+ 1. = X + 04 Pk (*line search*)
ki=k+1 (*update soln vector*)
givingup:=(k > maxiterations)

endwhile

Figure 14 Descent schema

Notes

1. Feashility is preserved by this class of agorithms.

p, should be a descent direction, ie g,Zp, <O.

3. Theobjectivefunction must sustain asufficient decrease at each iteration to give some
hope of convergencein practicein areasonable number of iterations. It isnot sufficient
tomerely requirethat F(x.,) < F(x). Itiseasy to deviseexampleswhereadecreasing
sequence is generated but converges too slowly to be of any practical computational
use. For further details, see eg Gill, Murray and Wright [24], pp100-102, 324—-325.

N

The basic Newton method uses the quadratic model which is accurate for any smooth
function sufficiently close to alocal minimum. This method has remarkable convergence
propertiesprovided weare" sufficiently close". Thebest methodsarevariationson Newton’s
method, however to be effective the Hessian matrix needs to be positive definite.

38

Many alternative methods exist for choosing the descent direction p. Some well-known

ones are steepest descent, Newton’s method, the class of quasi-Newton methods, and the
conjugate gradient method. We briefly discuss each of these in turn.

Steepest descent (1st derivative method)

The oldest method for minimizationisthat of steepest descent. At eachiterate x,, wefollow

the negative gradient vector which is guaranteed to be a descent direction unless we are
aready at a stationary point. This method is much discussed in textbooks on multivariate
minimization but is really a very poor method for machine implementation. The first
published account is that of Cauchy, circa 1847 [7].

Conjugate gradient method (1st derivative method)

A generalization of the idea of an orthogonal basis for avector space is used to generate a
sequence of non-interfering search directions p,. This method was originally developed as
a method for solving linear equations by Hestenes and Stiefel (1952) [36], and has the
property that any quadratic function of n variables that has a minimum can be minimized
in n steps, one in each of the conjugate directions, and the order in which the directions are
applied does not matter. Its extension to nonlinear problems was the work of Fletcher and
Reeves (1964) [19]. The conjugate gradient method is used commonly for large-scale
problems when methods based on matrix factorizations are not possible because the matrix
Istoo large or dense. Thisisthe approach adopted for MINOS [64].

Newton’s method (2nd derivative method)

Newton’s method is based on the ssmple quadratic model, viz. that any smooth function
looks like a quadratic with positive definite Hessian in the neighbourhood of a minimum.
The ssmple quadratic function

1, (83)
Foep) = FOO + go0'p + 3p'GOOP

Is used to model an arbitrary smooth function. It is easy to show that the quadratic is
minimized when p satisfies

39

Ghe = -0 (84)

where g, isthe gradient vector at the current iterate x, and G, isthe corresponding Hessian

matrix.

A positive definite Hessian guarantees a unique solution p,, which is termed the Newton

direction. If the quadratic form is positive definite, ie the (constant) Hessian G > 0, then
exactly oneiteration is required for the Newton direction to find the minimum.

If G isnot positive definite then there exist various strategies for modifying the computed

Hessian to find a direction to decrease F. Such modified Newton techniques rely on matrix
factorizations to check the positive-definiteness of the Hessian.

The basic Newton method has very strong local convergence properties, provided we have
positive definiteness, and this should be clear from its behaviour on a quadratic function,
and the Taylor expression for f near a minimum. It is a second derivative method, which
means that sufficient conditions for optimality can be checked. We need to be aware that it
can also fail in arather spectacular manner since the quadratic model may not be accurate
away from the minimum.

A further variation of the basic Newton ideaisto usefinite differences of the gradient vector
to arrive at an approximate Hessian. Such methods are termed finite-difference Newton
methods. Proper adaptive implementations of such methods are generally as robust and
rapidly-convergent as Newton-type methods which use the full second derivative
information of the Hessian.

Quasi-Newton methods (2nd derivative methods)

Theseare based ontheideaof building up curvatureinformation astheiterationsof adescent
method proceed, using function value and gradient vector. Newton’ s method uses the exact
Hessian and obtains the curvature at a single point. Quasi-Newton methods are based on
the fact that an approximation to the curvature of a nonlinear function can be computed
without explicitly forming the Hessian matrix.

The two well-known rank-two updates to the sequence of matrices approximating the
Hessian are those of Davidon-Fletcher-Powell (DFP), and Broyden, Fletcher, Goldfarb,
Shanno (BFGS). Good descriptions can be found in Gill, Murray and Wright [24]. The
MINTO code of Murtagh, on which the present work is based, uses BFGS.

40

Active set methodsfor thelinearly constrained problem

The approach used by Murtagh and Saunders in MINOS [62] is based on the idea of
superbasic variables. At any given stage in the minimization, the number of superbasic
variables ng is a measure of dimensionality of the subspace formed by the intersection of
theactive constraints. Superbasic variables correspond to degrees of freedom for the search,
ieto freevariableswhich are currently neither basic (dependent) nor at their bounds (fixed).
Superbasic variables are free to vary between their ssmple bounds, subject to maintaining
feasibility of the current set of basic variables.

The search may be viewed as having two interwoven components: the problem of finding
theright set of active constraints, and the problem of minimizing on that active set. Details
are given in Chapter 4.

41

Chapter 3

NLIP Literature

NLIPisanintrinsically hard problem. When embarking on aresearch project for nonlinear
integer programming, it is of little comfort to read statements such as the following from
Scarf:

In the language of complexity theory, integer programming iswhat is known as
an NP-complete problem: If there is a polynomial algorithm for integer
programming, then virtually every problem we can think of is easy to solve—a
quite unlikely possibility.

Scarf [82]

Note that the statement just cited from Scarf refersto linear integer programming! NLIPis
certainly harder than integer LP.

Conventional methods of solving NLIP are based on various sequential linearizationsof the
problem and some variations on the basic branch and bound strategy, however in some
cases, specia advantage may be taken of structure in the problem under consideration.
Indeed, there are reported instances where problems with hundreds of thousands of integer
variables have been solved. One such exampleisthat of Ryan [80] who reports the solution
of an airline crew scheduling problem involving 200,000 binary variables on a
microcomputer.

42

Thegeneral problem of nonlinear integer programming (NLIP), especially large-scaleNLIP,
Is widely recognized as a "tough nut to crack". As with most domains of mathematics,
nonlinear problemsareoften solved by generating asequence of solutionsto linear problems
which in some sense approximate the original nonlinear problem. Thisis certainly the case
with NLIP. In the following sections, we outline some of the most recent research into
algorithmsfor the general NLIP problem.

3.1 General

A good starting point for NLIPislinear integer programming, and the best modern reference
for integer and combinatorial optimization is the excellent monograph of Nemhauser and
Wolsey [68]. This book is a comprehensive treatise of the subject, and while the authors
admitthat "it doesnot comecloseto covering all theliterature” [op cit (vii)], itisnevertheless
aweighty tome, and an indispensable reference for researchers in the field. In this work,
the authors devel op among other topics, the theory of valid inequalities, which are used to
characterize the feasible set of an optimization problem; in particular those of most interest
are the ones which are active at the final solution. The theory of valid inequalities was
founded by Gomory in the late 1950s and early 1960s, and Nemhauser and Wolsey present
in this book algorithmsfor generating all valid inequalities for agiven problem. They aso
give athorough discussion of cutting-plane algorithms (the systematic addition of linear
constraints which "slice off" portions of the feasible set not containing integer-feasible
points), also pioneered by Gomory. The book is replete with examples and useful exercises;
in fact it is a goldmine of information on the state-of-the-art of integer and combinatorial
optimization in the late 1980s, although notably absent is any treatment of NLIP.

3.2 Theouter approximation algorithm of Duran and Grossmann

In 1986, Duran and Grossmann [17] published details of an outer approximation algorithm
to solve MINLP. The approach involves the construction and solution of an alternating
sequenceof integer linear programming master problems, and inner nonlinear programming
subproblems. The current subproblem is solved with the integer variables held fixed, and
the master problem isformed by linearizing the functions at the solution of the subproblem.

43

The Duran and Grossmann method uses decomposition principles to exploit problem
structure, which is assumed to be of the following form: linear in the integer variables and
convex inthenonlinear portionsof theobjectiveand constraint functions(whichonly involve
the so-called nonlinear variables). The general form of the class of problems addressed by
thismethod is

minimize
c'ly + f(x)
subject to
gx) + By<O
xe XcR"

ye UcR"

The nonlinear function f: R" — R and the vector functions g: R" — RP are required to

be continuously differentiable and convex on appropriate compact domains. As is
conventional, the domain U of the integer variables is assumed to be some finite discrete
set; most commonly the unit hypercube Y ={0,1}".

Themainideasof the method as summarized in the original paper by Duran and Grossmann
are asfollows. The linearity of the discrete variables allows independent characterization
of the continuous and discrete feasi ble search spaces of the problem. The continuous space
may be expressed as an intersection of afinite collection of compact convex regions, each
of which is parametrized by distinct values of the discrete variables. Outer-approximation
of the convex sets by intersection of supporting half-spaces is used to define a master
mixed-integer LP. The authors compare their method with the generalized Benders
decomposition method and note that while both techniques make use of the mathematical
tools of projection, outer-approximation and relaxation, their method tended to produce
better lower bounds on the optimal objective value.

Early test results reported by Duran and Grossmann show promise for the method, which
the authors indicate should particularly suit problems in which the NLP subproblems are
expensive to solve. Fletcher, Leyffer and co-workers [44] at the University of Dundee are
presently working on similar ideas to those presented by Duran and Grossmann [17].

3.3 Themethod of Mawengkang and Murtagh

Somerecentwork (1985/6) by Mawengkang and Murtagh[49] and Murtagh [59] hasallowed
progress to be made on arather general and commonly-occurring class of NLIPs, namely
those in which the proportions of integer variables and nonlinear variables are both small.
In a1986 paper [49], the authors describe experience in applying the MINOS (see[64, 62])
code to large nonlinear (both nonlinear objective and nonlinear constraints) integer
programming problems. Their work was based on an extension of the constrained search
approach used in MINOS, and the application areas considered were an instance of the
guadratic assignment problem (QAP) and a natural gas pipeline network design problem.
Since QAPs of order greater than about 10 or 15 are notoriously expensive to solve using
approaches such as branch-and-bound, the authors adopted a direct search approach which
treats a subset of the integer variablesin asimilar fashion to the superbasic variables of the
MINOS algorithm. Just as the superbasic variables in MINOS allow the extra degrees of
freedom needed for a nonlinear problem, certain of the integer variables were alowed to
vary only in discrete steps during the search, thus maintaining integer feasibility. In fact,
the present thesisinvolves an extension of the approach used by Mawengkang and Murtagh,
and the reader isreferred in particular to Chapter 5 and Chapter 6.

The paper [60] by Murtagh extends the work described in the previous paragraph, and also
forms the starting point for the present dissertation. Murtagh’s approach, as given in [60],
Is elaborated and analysed in the present Chapter 5.

3.4 Other approaches

Linearization techniques have been known for many years. Any |IP can be reformulated as
a0-1 problem (seefor exampleNemhauser and Wolsey [68]). I f theobjectiveand constraints
are polynomialsthen the problem can bereformulated asalinear integer program (Garfinkel
and Nemhauser (1972) [21]. Such techniques introduce many new 0-1 variables and many
new constraints. Extra constraints are not normally a problem, however each extra 0-1
variable has, broadly speaking, the potential to double computation time.

Twoalternativewell-knownmethodsfor NLIP problemareBenders' decompositionmethod
and Bellman's dynamic programming. These approaches are well-documented in the

45

literature and it serves little purpose to repeat them here. The interested reader may wish to
consult for example Nemhauser and Wolsey [68] for modern treatments of either of these
topics.

The thesis of Myers (1984) [66] also considers comparative branch-and-bound strategies,
in conjunction with the design of Lagrangian relaxation and subgradient optimization
strategies for linearly-constrained mixed-integer NLIPs. One of the major conclusions of
this work was to favour a branching strategy which maximized the product of
Integer-infeasibility and component of the objective gradient vector, taken acrossall integer
variables which are not currently integer-feasible.

Gupta& Ravindran (1985) [32] considered 3° = 27 separate heuristicsfor branch and bound

approaches to solving convex nonlinear integer programs. Their computational experience
indicated that branching onthevariablewith greatest integer-infeasibility seemed to be best,
but since their largest problem had only eight integer variables, one feels that such results
areinconclusive at best.

In 1984, Balas and Mazzola [1] published an influential paper proposing a linearization
approach involving the replacement of general nonlinear functions of binary 0-1 variables
appearing in inequality constraints with a family of equivaent linear inequalities. This
technique has the advantage of linearization without introducing additional variables.

Hansen's 1979 survey paper [34] gives agood summary of methods for 0—1 NLIP at that
time, as well as examples of applications and an extensive bibliography. He concluded in
particular that only a small proportion of the many algorithms that had been proposed up
to that time had actually been implemented and tested; that network flow algorithms are
useful for certain classes of quadratic O—1 programs; a standard set of test problems would
allow meaningful benchmark tests to be applied; and that Boolean formulations of 0-1
NLIPs can be useful for suggesting algorithms or proof techniques.

Several other approaches have been described in the literature, and good reviews of work
prior to 1981 are found in Gupta and Ravindran [31] and Cooper [9].

3.5 Existing NL I P software—a necessarily brief survey

Many optimization packages have been written, but very few indeed for NLIP. TheMINOS
code of Murtagh and Saunders[64] providesnonlinear objectiveaswell aslinear constraints

46

capability, and MINOSJAUGMENTED adds nonlinear constraints capability, but, as noted
above, the landscape is much more sparse when we examine available software for
general-purpose nonlinear integer optimization— until recently the only general-purpose
large-scale nonlinear integer package known to the present author is Murtagh’s MINTO
[58]. However, some recent work by Viswanathan and Grossmann [92] has resulted in the
development of software for the solution of MINLP problems. The implementation of the
new agorithm, which is an extension of the outer-approximation algorithm reported by
Duran and Grossmann [17], has been done for several hardware platforms, and within the
framework of the GAMS [5] system (the nonlinear step is done by MINOS 5.2 [65]). Also
recently brought to the author’ s attention is the work of Paulesand Floudas[72], which also
uses GAMS as a base to allow expression and solution of MINLP problems. It works to
"provide exact syntactic statement of algorithmic solution procedures’ and caters for
"completely general automated implementation of many well known algorithmsincluding
Generalized Benders Decomposition, the Outer Approximation / Equality Relaxation and
Dantzig-Wolfe Decomposition”. The APROS system specializesin catering for algorithms
which involve some kind of decomposition technique and which require extensive
communication of data between various subproblems which may be generated during the
solution process.

In recent years, microcomputers have become so powerful that many mainframe software
systems have been ported to personal computer platforms. The paper [93] by Wasil, Golden
and Liu gives areasonably up-to-date comparison of six PC-based packages which handle
nonlinear optimization problems, although notably, none has integer capability.

The MINTO code of Murtagh [62] extends MINOS to add integer capability. MINTO isa
powerful general-purpose mixed-integer optimizer which caters for nonlinear objective
and/or constraints. It uses the MINOS or MINOS/AUGMENTED algorithm to arrive at a
locally optimal point with respect to the continuous relaxation, and then switches to the
branch-and-bound technique in order to ultimately satisfy the integer requirements. The
MINOS engineisthen reused to recursively solvethe newly-generated subproblemsarising
from the branch-and-bound process. By contrast, the present work uses the MINTO
algorithm as a starting point, and allows direct search for integer feasibility and local
optimality once the continuous relaxation has been solved by the MINOS engine.
Branch-and-bound may then be used as alast resort if one of the direct search mechanisms
fails to achieve integer feasibility. MINOS, MINOSJAUGMENTED and MINTO are
discussed in greater detail in Chapter 4, and the new direct-search methods in Chapter 6.

a7

Chapter 4

MINOS' and its descendants

MINOS is a FORTRAN code designed to solve large optimization problemsin which the
objective may be nonlinear and the constraints linear, in addition to simple bounds.

In this chapter we present a summary of the fundamental ideas and equations underlying
the steps of the MINOS agorithm of Murtagh and Saunders, as reported in their seminal
1978 paper Large-ScaleLinearly Constrained Optimization [62]. Thisistheprincipal source
for the reader requiring further details of both the theory and implementation of the original
MINOS. Asoutlined in an earlier chapter, the algorithm has been extended by the original
authors and co-workers to handle both nonlinear constraints (see chapter 4.3) and integer
restrictions on the variables. The paper [61] by Murtagh and Saunders is the original
published account of thennonlinear constraintsdevel opment, whilean excellent encapsul ated
summary of inner workings of the extended MINOS (with nonlinear constraints capability)
can be found in Gill, Murray, Saunders and Wright [26].

Problem to be solved by MINOS

MINOS is a particular implementation of the reduced-gradient algorithm of Wolfe [96].
The class of problems solved by MINOS is the following:

minimize

Fx) = fx“) + c'x (85)

1 Modular In-core Nonlinear Optimization System

48

subject to

| < x < u (87)

The matrix A ismxn with m <n. It contains the columns of the m x m identity matrix I,

as a submatrix, corresponding to the problem formulation containing a full set of slack
variables.

Such problems contain constraint matrices A which are typically highly-sparse and many

aso are only dightly nonlinear, in the sense that the variables occurring nonlinearly in the
objective, denoted x" above, form only asmall percentage of the total variables.

The approach used by MINOS is an extension of the revised simplex method for linear
programming (see for example Dantzig [12], Murtagh [57] or Gill, Murray and Wright
[24]), and as such draws on a vast body of refinements that have been made over two or
three decades since the original work of Dantzig [12]. Such advancements include upper
and lower boundson all variables and stablerecurrencesfor update of asparse factorization
of the basis matrix.

The fundamental result on which the revised ssmplex method for linear programming (LP)
Isbased is of course not true for nonlinear programming (NLP). For LP we know that at an
optimal solution, at least n —m variablesareat abound. Geometrically, we areat an extreme
point, or boundary, of the feasible set. Even for constrained NLP, a locally-optimal point
caneasily beaninterior point. Anexcellent discussion of necessary and sufficient conditions
for constrained optimization (the so-called Kuhn-Tucker conditions) divided into the four
categories of linear/nonlinear and equality/inequality is given in Gill, Murray and Wright
[24, chapters 3.3 and 3.4], athough here we shall discuss linear constraints only. The
conditions have been summarized in the present section 2.11.

Nevertheless, for such apowerful and theoretically el egant technique asthe revised simplex
method, itispossibleto extend itsuseful nessto nonlinear problemsby redefining thesimplex
partition. Since the number of variablesat bound (nonbasic) at alocally optimal point isnot
known, we introduce a third element of the partition, namely the superbasic variables (the
terminology is that of Murtagh and Saunders [62]). In other words, in addition to the
conventional revised simplex partition into columns corresponding to the so-called basic
and nonbasic variables, MINOS employs a third component of the partition—that which

49

correspondsto the superbasic variables. Superbasics are essentially free variables and their
number gives the dimension of the current search space. They are free to vary between
simple bounds subject to maintaining feasibility of basics which are dependent on them.

Asclearly pointed out by Murtagh and Saunders[62], animportant advantage of the concept
of basic solutions is the emphasis given to upper and lower bounds. The constraint matrix
A is assumed to contain columns corresponding to the identity matrix, which in turn
correspond to afull set of slack variables. Inequality constraints are easily accommodated
in this manner, as is the problem of finding an initial feasible solution; this is just the
conventional phase one of the revised simplex method. It should be noted that the so-called
artificial variables used in phase one of the revised simplex method are simply slacks with
upper and lower bounds of zero. They are of no special significance computationally,
however it will be seen later that their presence in the basis causes problems for certain of
the direct search techniques of Chapter 6.

4.1 Fundamental equationsfor MINOS

Assuming then wehavethe partitioninto basics, superbasicsand nonbasic, the general linear
constraints take the form:

Xg (88)

It is assumed that the nonlinear portion of the objective, ie f(x") is sufficiently smooth so
that a Taylor series representation can be written:
. 1 . (89)
fx+Ax) = f(X) + 9g(X)Ax + éAx G (X +YAX)AX
where 0 <y < 1and G(x +yAX) istheHessian matrix of second partial derivativesevaluated
at some point between x and X + Ax.

Given the partition into basic, superbasic and nonbasic variables, and assuming that f(x)

Is a quadratic form, we have the following equations which must hold for a constrained
stationary point.

50

AXg (90)

Ie the step remains on the surface given by the intersection of the active constraints

Ok AXg B" 0 (91)
| + G |Ax| = |ST o m
oN AXy N |

From these we derive

Axy = 0 (92)
AXg = —-WAXqg
W = B7S
and
_ (93)
AX = I AXg = Z AXg
0

Gill and Murray have defined a class of algorithms in which the search direction along the
surface of active constraintsis characterized asbeing in the range space of amatrix Z which
Is orthogonal to the current matrix of linearized constraint normals. If Ax = b isthe
current set of n —s active constraints, then Z isan n xs matrix suchthat AZ = 0. The
only further requirement on Z isthat it havefull columnrank; thusseveral degreesof freedom
are still available for the choice of Z. The form used by the MINOS procedure corresponds
to the extended simplex partition in which the superbasic variables form a new component
of the partition. Thisleads to the choice of Z given by (93). The reader interested in further
details may consult the paper by Murtagh & Saunders [62].

Premultiplication of (93) by the matrix

51

00 (94)
-W" I 0
0O 0 |

leadsto some useful relationships. We can estimate the Lagrange multipliersfor the general
constraints from the first row partition:

— (95)
Bm = g + [I 0 0 G | I |Axg
0

When x is stationary, ie Axs = 0, weobtain

B'm = g (96)

Thusm is analogous to the pricing vector in the revised simplex algorithm.

The third row partition yields:

— (97)
ngN—NTn+[00|]G[|W]AxS
0

whichwhen Axg = 0 leadsto:

A =gy - N=n (98)

which is our vector of reduced costsin LP.

From the second row partition we get an expression for Axs:

— (99)
W' 1 0 G [IW]AXS = -h
0

h = W | 0lg = g-W'gs = g-S'n (100)

in which

52

4.2 Steps of the MINOS algorithm

The following gives abroad summary of the major computational steps of MINOS, and is
summarized from Murtagh and Saunders’ 1978 paper [63]. For step 0, no activity isactually
stated, merely that certain quantitiesare precomputed, and enter themethod asinitial values.

Step O: Initial conditions.

We assume that the following quantities are available:

(@) afeasiblevector x satisfying [B S N]x = b and | <x<u
(b) thecorresponding function value f(x) and gradient vector g(xX) = [0z Os Onl
(c) thenumber of superbasic variables, s, (0<s<n-m)

(d) afactorization, LU of the mxm basismatrix B

(e) afactorization R'R of aquasi-Newton approximation to the sxs reduced Hessian
matrix Z'GZ.

(f) apricing vector &, being the solutionof B'n = g

(9) thereduced gradient vector h = gs—S'n

(h) convergencetolerances TOLRG and TOLDJ

Step 1: Test for convergencein the current subspace.

If |[h] > TOLRG thengo to step 3.

Step 2: Price, ie estimate Lagrange multipliers, add one superbasic.

(@) calculate A = gy—-N'n

53

(b) select A, <-TOLDJ, the largest elements of A corresponding to variables at their

lower (upper) bound. If none, STOP, the Kuhn-Tucker necessary conditions for an
optimal solution are satisfied.

(c) otherwise

(i) choose q=q; or =0, correspondingto |[A,| = max(|Aq |, |2Aq,])

(i) add a, asanew columnof S
(iii) add A, asanew element of h
(iv) addasuitable new columnto R

(d) increments

Step 3: Computethedirection of search, p = Zpsg
(@ solve R'Rps = -h
(b) solve LUpg = -Spg

() stp = [psg Ps Pul'

Step 4: ratiotest (CHUZR)

(@ find o, =0, the greatest value o for which x+ap isfeasible

(b) if a=0thengotostep?

Step 5
(@ find o, an approximation to o, where

fx+op) = min f(x+6p)

0<0 <0y

(b) change x to x+ap andset fand g to their values at the new o.

Step 6: Computethereduced gradient vector h = Z'g

(@

(b)

(©

(d)
(€)

solve U'LT = g
compute new reduced gradient h = gs—S'n.

modify R in accordance with a quasi-Newton recursion on R'R using o, ps and the
change in the reduced gradient h—h.

set h=h.

If o < o then go to step 1. No new constraint was encountered so weremain in the

current subspace.

Step 7: Change basisif necessary; delete one superbasic.

Weassert that o = o, and for some p(0 < p £ m+s), avariable corresponding to the pth

columnof [B S] hasreached a simple bound.

(@

(b)
(©

If abasic variable hitisbound (0< p <m) then

(i) swap the pth and gth columns of B and S respectively, and correspondingly,
the components of Xz and Xs. The column of Swith index g must be such that
the new B isnonsingular.*

(i) modify L,U,R,n toreflect this changein B.

(iii) compute the new reduced gradient, h = gs—S'n.

(iv) goto(c)

otherwise, a superbasic variable hit its bound (m < p £ m+s). Define g=p-m.
make the gth variable in Snonbasic at the appropriate bound, ie

(i) deleteqgth columnsof Sand R, and correspondingly, the gqth components of xg
and h.

1 Thisisalso required for the direct search methods of chapter 6 inwhicha B <> S pivot is done.

55

(i) restore Rto triangular form.

(d) decrement sand return to step 1.

4.3 MINOSAUGMENTED

This section summarizesthe major features and capabilities of the MINOS/AUGMENTED
code of Murtagh and Saunders [61]. This system uses a projected Lagrangian algorithm to
extend the MINOS capabilities to handle nonlinear constraints. The system is specifically
designed for large-sparse constraint sets, which in most instances, contain alarge subset of
purely-linear constraints.

A projected Lagrangian method for the nonlinearly constrained problem

Consider the problem:

minimize
() (101)
subject to
f(x)=0 (102)
l<x<u (103)

To solve this problem, we can solve a sequence of linearly constrained problemsin which
alinear approximationisused in place of thenonlinear constraintsf(x) = 0 and higher-order
terms are adjoined to the objective function to form a Lagrangian function. The problem
then becomes

minimize
LXXoh) = fx) — A(F-T) (104)

subject to

56

f=0 (105)
| <x<u (106)

where f isthelinear approximationto f at x,, ie
fxx) = f, + J(x—x) (107)

where f, and J, are respectively the constraint vector and Jacobian matrix of f, both
evaluated at X = X,.

The algorithmic details may be summarised as indicated in Figure 15.

k:=0
X:= initial estimate
Ao = initial estimate
p: = positive penalty parameter
repeat

solvethe linearly constrained problem

minimize

L (XX Ao p) = F000) = M =Ty + 5 p(F =TT (F-T)

subjectto f=0 and | <x<u
toobtain X, ,and A, .,
if not converged then
relinearize constraints at X,
ki=k+1
endif
until converged

Figure15 A projected Lagrangian method

For the ensuing discussion, and following Murtagh and Saunders[61], we assume that the
nonlinearly constrained problem as defined by equations (101)—(103) can be expressed in
the following form, in which the linear components are explicitly shown:

57

minimize f°(x)+c'x+d'y

xyl" € R"
subjectto f(x)+A,y=Db, (m, rows)
AX+Azy=b, (m, rows)
|<x<u (m=m+m,)

(108)

The solution method of MINOS/AUGMENTED consists of asequence of major iterations,
each of which involves a linearization of the nonlinear constraints at some point X,

corresponding to afirst-order Taylor series approximation:

ffoo = flix) + g™ + O1x=x[)
Defining
’f = fk + Jk(X—Xk)
we then have

f-f = f-f) - JX=%)

(109)

(110)

(111)

At the kth magjor iteration of the algorithm, the following linearly constrained problem is

solved:

minimize

LOGY XA p) = fPO)+cx+dy—A(F-F)+ % p(f-H (-1

subject to
x yI' € R
f+Ay=b,
AX+Azy=b,
|<x<u (m=m+m,)

58

(112)

(113)
(114)
(115)

(116)

44MINTO

MINTO is an extension of MINOSYAUGMENTED to handle integer restrictions on some
or al of the variables. The present work use the basic framework of MINTO as a starting
point. Published details of MINTO are scant, however some information can be found in
recent publications by Murtagh [58, 59] and the forthcoming monograph by Murtagh and
Saunders [63].

59

Chapter 5

Murtagh’sdirect search heuristic

Thischapter will describein detail adirect-search algorithm for NLI1P proposed by Murtagh
[59]. In the sections to follow we analyse his method and propose an extension. It will be
claimed that this modified approach will allow more flexibility and reliability in rapidly
arriving at aninteger-feasi ble sol ution which may then be used to start the branch-and-bound
process, or in some cases to circumvent branch-and-bound entirely.

It should benoted al so that after someextensivediscussionwith Murtagh and further research
by the present author, a number of relatively minor points have been cleared up and some
parts of the original agorithm refined slightly. In the interests of both maximum clarity and
suitability for subsequent coding, the present notation is also slightly different to that of
Murtagh [59], however no confusion should result. These minor changes are to be seen as
quite distinct from the new direct search procedures given in Chapter 6.

5.1 Structure of the problem

The general form of the NLIP problem to be solved by the methods introduced in thisthesis
isgiven by the set of requirementslabelled (117) below, and following Murtagh, we assume
that a bounded feasible solution exists to the problem. The present formulation is that of
Murtagh [57], p105, which is only slightly different to that given in Murtagh [59].

60

minimize f°x")+c'x" (117)

xeR"
subjectto f(x") +Ax" =D, (m, rows)
AX"+AX =D, (m, rows)
|<x<u (m=m+m,)

There are n variables and m constraints, m < n.

Some (assumed small) proportion of the variables x are assumed to be nonlinear in either

the objective function and/or the constraints, and some (also assumed small) proportion of
the variables are required to be integer-valued. We refer to a variable as nonlinear if it
appears nonlinearly in the problem formulation in either the objective function or the
constraints.

The same structure without the integer requirements forms the basis of the MINOS
large-scale nonlinear programming code (Murtagh and Saunders (1982, 1987)) [61, 64].
This involves a sequence of major iterations, in which the first-order Taylor series
approximation terms replace the nonlinear constraint functions to form a set of linear
constraints, and the higher order terms are adjoined to the objective function with Lagrange
multiplier estimates.

The set of linear constraints (excluding bounds) is then written in the form:

Xg (118)
Ax = [B S N][X| = b
XN

B ismxm and non-singular, x, are "non-basic" variableswhich are held at one or other of

their bounds. Xz and xg are referred to as basic and superbasic variables respectively, and
in order to maintain feasibility during the next step they must satisfy the equation

BAX;+SAXs = O (119)

or, since the basisis non-singular, we may write

Axg = —-B'SAxg (120)

61

Apart from the choice involved in deciding which nonbasic to slide up or down toward its
other bound in order to improve the objective function, we have freedom to alter the
superbasics. A step to the interior of the feasible set is possible since the superbasics need
not be at a bound and are normally between bounds.

Because of equation (120), the superbasics are seen as the driving force, since the step Axg

determines the whol e step Ax. The key to the success of the algorithm in MINOS (Murtagh
and Saunders [62]) is the assumption that the dimension of x5 remains small. According
to computational experience reported by Murtagh [59], this can be assured if the proportion
of nonlinear variables is small, but also in many instances in practice even when al the
variables are nonlinear.

Similar assumptions will be made about the structure of nonlinear integer programs. It will
be assumed that the proportion of integer variables in the problem is small.

Murtagh’s approach to obtaining a (suboptimal) integer-feasible solution is via a direct
search procedure using his concept of superbasic variables. Applications discussed in his
CTAC’ 89invited paper (Murtagh[59]) include optimal power flow (1200 constraints, 1500
variables— all nonlinear), manufacturing and process engineering. Hiswork isan extension
of ideasinitially presented by Mawengkang and Murtagh (1986) [49], wherethe application
considered was a quadratic assignment problem.

The first four sets of figure 16 partition the full index set {1,2,..n}, ie
JpulsuJul, = {1,2,.,n} and J,nJy = G, a=#P. Theset J of indices
corresponding to integer variables is assumed to be of small cardindity, and
m+ns+n_+n, = n.

The approach assumes that the continuous problem is solved, and seeks an integer-feasible
solution in the close neighbourhood of the continuous solution. The general philosophy is
toleave non-basic integer variablesat their respective bounds (and thereforeinteger valued)
and conduct a search in the restricted space of basics, superbasics, and nonbasi ¢ continuous
variables, j ¢ J,.

Murtagh’s method may be broadly summarized asfollows:
1. Obtain solution of the continuous relaxation (using the MINOS/MINTO code)

2. CYCLEL removeinteger variablesfromthe basisby moving asuitablenonbasic away
from its bound. The hopeisto drive an infeasible integer basic variable to an integer
value, and then to pivot it into the superbasic set; the previous nonbasic replacing it
in the basis.

62

Some notation isfirst needed. We define the required index setsin figure 16.

Name Meaning Cardinality

Js set of indices for basic variables |Jg] = m

Js set of indices for superbasic variables |Js| = ng

J, set of indices for nonbasic variables at their lower 13] = n
bounds

Jy set of indices for nonbasic variables at their upper| |J,| = n,
bounds

J set of indices for integer variables 13| = n

Figure16 Index setsfor extended simplex partition

3. CYCLE2, passl: adjust integer-infeasible superbasics by fractional steps to reach
complete integer-feasibility.

4. CYCLEZ2, pass2: adjust integer feasible superbasics. This phase aims to conduct a
highly-localized neighbourhood search— see Scarf [83] —to verify local optimality.

It should be noted that the designations CY CLE1, CY CLEZ2 etc do not appear inthe CTAC
'89 paper (Murtagh [59]), however they were presented in the lecture (Murtagh [60]), so
we shall use the terminology here.

We consider the detailed steps of CYCLEL, CYCLE2 Passl, CYCLE2 Pass2 and then
investigate the performance of Murtagh's algorithm via some simple examples in the
sections immediately following.

The method is imbedded in a branch-and-bound procedure in which branching to further
subproblems will terminate if one of the following three criteriais satisfied:

1. The subproblem has no feasible solution.

2. Thesolution of thesubproblemisno better thanthecurrent best knowninteger feasible
solution.

63

3. Thesolution isinteger feasible (to within a pre-defined level of tolerance).

Sincethe procedure of Murtagh determinesalocally-optimal solution in the neighbourhood
of the original continuous solution, there may be some merit in seeking the assurance of a
branch-and-bound procedure for fathoming all possible integer solutions. There would be
little cost in this, as the solution obtained by the above procedure should provide a tight
bound whichwill serveto curtail thebranching processvery rapidly under criterion 2 above.

In the following chapters, we analyze the algorithm of Murtagh [60] presented here and
then compare it with amodified versioninwhich alternative direct search methods are used.

5.2 CYCLEl1—removeinteger variablesfrom the basis

It is necessary to impose some preconditions or assumptions on the problem data before
CY CLEL can be expected to succeed.

We suppose that at the continuous solution aninteger variableisbasic at anon-integer value
x. = % + f, 0<f.<1 (121)

Further, we suppose that a chosen non-basic non-integer variable X, isbeing released from

its lower bound.

The assumption that the proportion of integer variables is small becomes a key issue in
ensuring that theinterchange operationscan take place; fortunately many practical problems
have this characteristic. Note also that it is assumed there is a full set of slack variables
present.

The work of Mawengkang and Murtagh [49] suggests a preferred choicefor i” given by:

min(f,1-f) < minf,1-f) ieJ (122)

Thischoiceof i’ ismotivated by the desire for minimal change in the objective function,
and clearly corresponds to theinteger basic with smallest integer-infeasibility. We observe
however that this approach only makes sense if the components of the reduced gradient
vector are comparable in magnitude.

Also, in choosing thenon-basic (continuous) j~ for the stepsof CY CLE1, Murtagh suggests
the preferred criterion to be the value of | for which (in the present notation):

A

ai/j

min
je G udy—d |0 #0

(123)

occurs, where), is the jth component of nonbasic partition of the reduced gradient vector

or reduced costsvector Ay, o,
the non-basic x;.

i = (B™a), and g isthecolumn of A corresponding to

In fact, since we have gone to the trouble of finding the integer basic with smallest
integer-infeasibility, it won’t make much senseto chooseanonbasi c whichforcesour chosen
basic to go in the wrong direction when the nonbasic j~ is moved. It is easy to create
counterexamples which illustrate this problem. Thus we need to refine our heuristic for the
choice of j". Such refinements are discussed at length in Chapter 6.

Comparison of the Murtagh & Saunders [62] MINOS paper with CTAC ’89 paper [59]
showsthat instead of d; (CTAC notation); inthe notation of theM INOS paper, the numerator
is2;, "analogous to reduced costs of LP"— see equation 15 of that paper.

In fact

A gy—N'm (124)

and

to= (B) g (125)

—see Murtagh and Saunders [62], egs 13, 15.

The reasoning behind this criterion is that it measures the deterioration of the objective
function value per unit change in the basic variable x;..

65

Theterms oy, are calculated by firstly producing avector z' = &'B™ (thisisrow i’ of

B,

and then calculating the inner product o, = zTaj. Once a particular j ischosen,

the full vector o = B‘laj* Is calculated for the ratio tests in equations (126)—(128).

As our chosen nonbasic X moves toward its other bound, four possible events may occur

asfol

lows.

Eventl. A basicvariable x, i,#1” hitsitslower boundfirst.

Event2. A basicvariable x, i,#1” hitsitsupper bound first.

Event3. Aninteger basic variable x,, i;€ JsnJ, becomesinteger-feasible.

Event 4. The non-basic X, hits its other bound first.

Notes

1.

’ ’

The possibility i; = 1’ isexcludedfromeventland i, = 1’ isexcluded from

event 2 above since the cases where x. hits abound are included in event 3, where
the possibility i;, = i’ arises. The desired outcomeis clearly event 3.

Aninteger variable at abound is necessarily integer-feasible.

Corresponding to each of the four possible events, we compute the following quantities:

0,

_ - x -l
B ieJg—{i"}| a”* >0 O(‘ij* (126)
= min UmR
B ie JB—{i'} | aij* <0 _O(‘ij* (127)

66

0. = min min —, min —
3 iedndgla.<0 —OL ieynlgla.>0 O (128)
ij ij

0, = u.—lI. (129)

where

o (B™a)), (130)

and a; isthe column of A corresponding to the non-basic x;.
Therefore we have

® = min®,6, 6,6, (131)

Ife" = 0, the basic variable x; becomesnon-basic at Iilandxj* replacesit in B. x;. staysbasic

with a new value (non-integer).

If 6" =0, then X, becomes non-basic at u; and X, replacesit in B as above.
If 8" =6, then X, Is made superbasic at an integer value and X, replacesitin B.

If 6" =9, then X, remains non-basic, but now at its upper bound, and x;- stays basic witha
new value (non-integer).
Similar ratios can be calculated for the case of X, being released from its upper bound. In

general, we can capture both possibilities (release from lower or upper bound) and avoid
code duplication by defining the direction indicator for CYCLEL, o,, asfollows. If X, IS

released from its lower bound (j € J,) then o, = 1. If released from upper bound (j € J,)
then o,=-1. Thus, o, = signum(ij*), where ij* IS the step in the nonbasic

X.*, j*e (JLUJu)_J|

J

Both cases are summarized in the following table.

67

89

"punoq

I woJj pesespls!l r—("cn') > | oy JKseqUOU J=BBd1UI-UOU Pa1XBJES B—SISe(aY] W0 1) So|gellen Bdjul anowey T a|qel

[

abue 1Sl Jo pue Joyloayl

abuel Jo pus B0 e oISequUOU ¢« *X |I-*n = g S % Jlseg-uouayl v
(e, do1S SON | IN 998)
[anpeA Rebdul
UW@Q - X ﬁ:gOHb OA*.__opo_mH.C_nw_ L_QOHDI ov,,__aﬁo_m_nc_nw_ ue sswnsse m_—...C_—.a Wm_
¢ uw ¢ uw | uw = %g ¢
(LOAId) ebejuioseqidns « X } . 4-T . “X a|qelrendseq v g
punoq
alIseq <« *._X 0 ﬁ oo u_mww_ z
“0rO— ovéd_&: o A ddnsiisuy ,1#% X
(LOAld) “neosequou « X—="n . a|gelfendseq Vv 7
punog
oseq *._X M ﬁ RN u_mww_ T
Tofo | st L ng | PmoIsusy 1=t X
(LOAId) leosequou « X 1= . a|gqelferdseq VT
NOILDOV d31S ONILINIT INIAL

d3aZ1MvaaINIO—T 3TOAD

Noteson CYCLE 1

1. o = (B‘laj)i and g isthe column of A corresponding to the nonbasic (xy),

2. Themaximum nonbasicstep 6 = min(8,,06,,0,,0,)
Note that for CY CLEL, some 6s may not exist, since the set of indices for which eg
O > 0 may be empty. Note that 6, always exists and 6, always exists provided that

the basis contains at least one integer variable. There is no doubt that the basis will
always contain at least one integer variable throughout CY CLEL since the principal
termination condition for CY CLEL is precisealy that there be no integer variables | eft
inthe basis. A secondary guard is the customary iteration limit.

3. When coding the CYCLEL agorithm, if two or more events occur simultaneously,
we must always choose event 3 if possible, not just eg the first or last one to happen
in some battery of IF statements. The ultimate aim of CY CLEL isto force as many as
possible of the infeasibleinteger variablesto become non-basic or superbasic. Clearly
then, event 3 isthe most desirable outcome in each iteration of CY CLE1.

4. If wefail to achieve event 3 for our choseni’ and j*, we may choose to explore the

use of multiple pricing to try to choose alternative j s for which event 3 may happen.
Thisis elaborated in one of the proposed new methods of Chapter 6.

5.3 CYCLEZ2 Pass 1—adjust integer-infeasible superbasics

Step 1.

Choose the superbasic with the smallest integer-infeasibility, i.e. we seek j" € Jg asthe

value of j for which

L = min min (f,1-f) (132)

jedg

occurs. Jsistheindex set for the superbasics. A forward step will be taken if 1-f, <f;.

and a backward step is taken otherwise. We do thisin the following way.

69

Define |, as the index of the superbasic variable with the smallest fractional component.
Thus

f = min fj (133)

jedg
Similarly, define j, as the index of the superbasic variable with the largest fractional
component. Thus

f = max f (134)

jedg !

Clearly the values of j, and j, may not be unique. At present we choose to resolve ties

arbitrarily. Perhaps later the method could be refined— eg resolve ambiguity by selecting
one from those corresponding to superbasic variables with least reduced cost.

The minimum integer-infeasibility is given by
G = min(fjl, l_sz) (135)
anditwill occurat j=j, if f <1-f elseat j=j, if f; >1-f1.

Also notethat afull step tointeger feasibility inx;; may not be possible sinceasimple bound

on a basic may be hit. This is summarized in equations (136) and (137). The limiting
backward step, Ax;; < 0Oisgiven by:

AX, = —min |f min (e 7| min U~ (Xe)
T i” ieJB|0cij,<O —O(,ijf ’ ieJB|0cij,>O O(fij’ (136)
Thelimiting forward step, Ax;, > 0Oisgivenby

AX, = min |1-f min (), = min U~ (%)
I’ e lglay >0 oy | ielglog<0 —0G/ (137)

In the interests of avoiding code duplication, the computations implied by (136) and (137)
may be described in a more compact form as follows.

We define the direction indicator for CYCLE2, o.:

70

oo -1; fjl < 1—fj2 1289
27+ £ o> 1-f,

o, isjust the sign of our desired step Ax;,, and the limits to our step imposed by the ssimple

bounds are given by

{ = min %l
b i€ Jg|oy04>0 G0 (139)

& = min hox
v i€ Jg|oy04,<0 —OL0) (140)

Step 2.
Now see if we can make afractional step (forward or backward) to make X integral. We

must check to see that all basics remain feasible. In this part of the agorithm, the basis
remains unchanged, ie there are no pivots, since we are making fractional adjustments to
the superbasic integers which are presently integer-infeasible. The new values of the basics
must of course follow because of their linear dependence on the superbasics and (fixed)
nonbasics.

If afull step forward or backward ie |Ax| = { to the nearest integer is possible for
superbasic j” then we take it, but if not then we step as far as possible without violating a
simple bound on a basic.

Thus we define i, asthe value of i for which the minimum in (139) occurs; i, as the value

of i for whichtheminimum in (140) occurs; provided the respectiveindex setsare not empty
(inwhich case oneor other of i, i, may not exist). Our step 2 of CY CLE2 can now be recast
as.

AXy = G, min (COJ CIJ Cu) (141)

I

71

Isit possiblefor our step Ax;. to be zero? The answer to this question is no, since thiswould

mean that abasic is already at a bound, ie that the current set of constraints is degenerate.
Thissituation is ruled out by our assumption of non-degeneracy.

In determining o, we must be very careful. For example, if integer-infeasibility = 0.5 then

which way do we step? In example 3 of section 5.5.3 thisis crucial sinceif we choose the
wrong direction (o, =+1) then our permissible step isO.

5.4 CYCLEZ2 Pass 2—adjust integer feasible superbasics

The superbasics can be varied at will, subject to preserving the feasibility of the basic
variables. Thusasearchthrough the neighbourhood system, asdefined by Scarf (1986) [83],
will verify the (local) optimality of the integer-feasible solution obtained.

Step 1
Thisisbasically aone-dimensional steepest descent.

Choose j’ € J,. Thecriterion for selecting j” will be that of maximum reduced cost 2.

Step 2

Calculate oy.. Also determinedirection of move—check sign of A;’, and adjust the unit tests

instep 3inlight of this.

Step 3
Check that a unit moveis possible:

o x (142)
2> 1 Vilied|op>0

v

1 (143)
270 5 1 Viliedg|ay<0

72

Step 4

Moveby 1 unit; check that objectiveimproves, iesearch in neighbourhood system asdefined
by Scarf [83, 84].

5.5 Analysis and counterexamples for Murtagh’salgorithm

Statusinfor mation
Thefollowing information isrequired for CY CLEL to commence:

1. The problem data, ie definition of objective function, the coefficients for the linear
constraints, the lower and upper bounds, the set of integer variables.

2. Extended definition of the partition which differentiates between nonbasics at |ower
bound and nonbasics at upper bound; this can be defined by Murtagh’ s index vector
hb, and status vector hs as follows:

Define hb; to be the natural index of the jth variable of the partition, where 1< j <m+ns.

Consider the j th natural variable. Then we define the statusindicator hs; as follows

0 if nonbasic at lower bound

h 1 if nonbasic at upper bound

5 T V2 it superbasic (144)
3; if basic

The index range for the basic variables is 1< j <m, and for the superbasic variables is
Mm+1<j<m+ns.

The partition may be illustrated as follows

B S NL NU

1<j<m Mm+1<j<m+ng

Note: the nonbasics are not indexed directly since, being at one or other of their bounds,
their values are implicitly known.

73

3. Current values of the superbasic variables
4. Sometolerances

CY CLEL1 then has enough information to proceed.

Wenow consider theclassof linearly constrained mixed-integer quadratic programsdefined
by the requirements (145)—(149).

Counterexamplegeneral form

minimize
3 145
f= Zy- -

subject to
X, + Ox, + oxX < b, (146)
ox, + 1x, + X, < b, (147)
| < x < u (148)
X, integer (149)

The parameters vy, t;, ®,, ®,, b;, b, and the smple bounds |, u will be specified to illustrate
some potential problemswith CY CLEL of the algorithm proposed by Murtagh [60].

Introducing slacks X, % into the general form, and setting al vy =10 and

,=12, 1,=25 1;=0.0, wehave:

74

Counterexample general form with slacks

minimize
3 150
fo= Zy-v) (0

subject to
X, + O, + oX, + 1x, + 0, < b (151)
0x, + 1%, + X + 0x, + Ix < b, (152)
| < x £ u (153)
X, integer (154)

Relaxed and integer-feasible optima

The continuous unconstrained optimum for our chosen objective function is clearly
X = 1t = (12,250,00)".

It isalso clear that the point x =(1.2,2,0,0,0.5)" satisfiesthe general (linear) constraints,

simple bounds, and isinteger feasible. For the ssmple quadratic objective, it is easy to see
that it is therefore alocal optimum for the originally posed problem.

General tableau equations

If g is the vector of basic variables and o = (B‘lN)j, then the current tableau may be
expressed as

Xg = B - ol - Xou - X ox (155)

jed. jedy jedg

If i € Jg inthe present notation then we may write

75

x = B - Zol, - X oyu - X ogX (156)

jed. jedy jedg
Counter examples—gener al

To examine the method proposed by Murtagh [59], we now consider a number of simple
examples based on the preceding class of problems. For thefirst two examples, we suppose
that the continuous optimum for this problem has x;,x, basic, X; nonbasic, and x,, Xs
superbasic. At this point the tableau equations will read

X, = b - oXx - X (157)

X, = b, — 0X — X (158)

5.5.1 Example 1

Now it may happen that the interval [l;, u;] is so narrow that x; hits its upper bound before

events1, 2 or 3of CYCLEL can occur. Thiscan clearly be contrived by making u; —I; small
enough. Sincex;istheonly nonbasicweseethat CY CLE1 will not terminate (X; will oscillate
between its bounds). To illustrate this we consider example 1, whose definition follows.

76

Definition of example 1

minimize
f = x - 12° + (X, — 25° + X (159)
subject to
1.0x, + 00x, — 10x; + 10x, + 00x, = 1.2 (160)
00x, + 1.0x, + 01x, + 00x, + 10x, = 25 (161)
(0,0,0,0,0) < x < (5,51, 100,100)" (162)
X, integer, ie J = {2} (163)
Continuous solution vector and partition:
X = (12 25,00,0.0,0.0) (164)
J = {12} (165)
Js = {4,5} (166)
J = {3} (167)
b = @ (168)
Resultsfor example 1
We have the tableau equations:
X, = 12+1.0%-1.0x, (169)
X, = 25-0.Ix—1.0% (170)

Now increase x; from 0.0 toward its upper bound 1.0. Both basics remain feasible all the

way and further, the only integer variable, x,, does not become integer feasible.

77

Event 4 occursie xX; — us. Since it isthe only nonbasic, the next iteration of CY CLEL

will see x; revert to its lower bound once again. It is clear that this sequence of events
will be repeated ad infinitum.

5.5.2 Example 2

Another possible difficulty is that an initially basic variable may cycle in and out of the
basis. To see this, suppose that x,; hitsits upper bound as x; is increased from |;. Thus we
must choose m, < 0. Select m, small enough so that x, neither becomes integer-feasible nor
hitsits bound.

Assigning values to parameters to illustrate this phenomenon, we have example 2, which
Isidentical to example 1, except that the upper bound on x; has been widened:

78

Definition of example 2

minimize
f = (x - 12° + (X, — 25° + X (171)
subject to
1.0x, + 00x, — 10x; + 10x, + 00x, = 1.2 (172)
00x, + 1.0x, + 01x, + 00x, + 10x, = 25 (173)
(0,0,0,0,00" < x < (5,5,5100,100)" (174)
X, integer, ie J = {2} (175)
Continuous solution vector and partition:
X = (12 25,00,0.0,0.0) (176)
J = {L2} (177)
J = {45} (178)
J = {3} (179)
J = O (180)
Resultsfor example 2
We have the tableau equations:
X, = 12+1.0%-1.0x, (181)
X, = 25-0.1%— 1.0 (182)

79

Xzisnonbasic at I;=0. Now we allow X, to increase. It can be seen that x, would become

integer-feasible at x, = 2 if x; reached 5, however x, hitsits upper bound u, = 5 before this

Thus
X, — nonbasicat u,=5
X, — basic (at 3.8)
A pivot operation gives the new tableau equations:
X, = —1.24X+X, (183)

X, = 2.62-0.1%—0.1%,— X (184)

Since x, =5, we have x, = 2.12 and X, = 3.8.

Now release x, from its upper bound 5, sinceit isthe only (non-integer) nonbasic. It should

be clear that we get cycling using this process since as x; decreasesfrom 5, x; will hitl;=0
when x, = 1.2 but x, will not become integer-feasible. We have no other choice since x; is
the only nonbasic.

5.5.3 Example 3

Example 3 has the same structure as examples 1 and 2 respectively except that a different
starting partition is used.

80

Definition of example 3

minimize
f = (x - 12° + (X, — 25° + X (185)
subject to
1.0x, + 00x, — 10x; + 10x, + 00x, = 1.2 (186)
0.0x, + 1.0x, + 01x, + 00x, + 10x, = 25 (187)
(0,0,0,0,0' < x < (5,5,1,100,100) (188)
X, integer, ie J = {2} (189)
Continuous solution vector and partition:
X = (12,250.0,0.000) (190)
J = {12} (191)
J = {3} (192)
J = {45} (193)
b = 9 (194)
Resultsfor example 3
Once again we have the tableau equations:
X, = 12+1.0%-1.0x, (195)
X, = 25-0.1%— 1.0 (196)

81

inwhich x, and x; arenonbasic at 0. Wehavei’ = 2 since x, isthe only basic integer variable

and therefore i =2 is the only candidate for i’. Similarly, applying the heuristic for
determining j~, we find that j =5 is the only candidate for j° (j =4 is not eligible since
0C24=O).

Dueto x; being in NL, it was easy for Murtagh’s CY CLEL to remove the integer variable

X, from the basis. Contrasting this with example 1, we see that termination of Murtagh’s
CYCLEL depends crucially on the initial partition. Modifications to his method will be
described in Chapter 6.

5.5.4 Summary of exampleresultsfor CYCLE1

These are organized into table 2 overleaf.

82

€8

Yo Jeas 199.41p S.yberin iy yumswe|goad Jo uonnjosey za|gel

"9]q1SS80Je 10U 310 BB}
pue ¢z pue T Sa|dwexa ul dleqledns
SeM YaIym X 0] SS900e pasu aM sny
*AI1gsea} ebeiulans1yde 01 X pamo| e

‘Palinbel JON |IN Ul °X 81 uonied [eniul SNolNLOH ‘T | ‘UoIee]I T UISsieuIWe) T8 [oAo—ws|goidoN e
" leJBBIU2X3XeW 01U LA YBnouS 10U
Sueal & 10 X Jay1e uo (T°0 = ¥ = 0) '9|q1ses)
aouspuadap 1ybIs Ajuo yim pajdnod Jobojul ob jou seop X a|gelreA Bielul Bhie)
'DAOCR SY |EX ‘TXU0Spunog molkeu ApAiriedwo) ‘T |JIN0a|IyMmsiseq JO N0 pue ulareuss] e & pue ' Z
*018eq4edns snonuuod €0 |ews e
3|(elns YHIM J1seq 10Ad ¢ Siseq
'so1seqedns asn 01 paMo|e Bbuieq 10N “Z |8yl wod) 2 Jebejul Buinows. premo) ssaiboud
*01SequOU aWo029q Aue Bupew NOYIIM Spunog usemisq Ylio)
0] Somseqedns Jepsuo) T 3[ge|feAe SO1Sequou Ubnous 10N T |pUe YJeq ssplis d1sequou ajge|ene Ajuo ay L T
SNOILNT10S3d
37191SS0Od S3ISNVO NIT190dd | ATdINV X

5.5.5 Conclusions

1. What implications do the counterexamples have for CYCLEL of Murtagh's direct
search algorithm? It is clear from the foregoing examples that at least 2 types of
"cycling" are possible in CY CLEL (unfortunate choice of words!).

Firstly, we have seen that the extreme case of only one eligible continuous nonbasic
X; with very narrow bounds may result in the cycle X, — u;, followed by [; < x;
indefinitely. Thereisno change of basisinthistype of cycling (example 1). Secondly,
cyclic basis changes occur as afixed sequence of nonbasics enter and leave the basis
with period 2 or more. This phenomenon, which occursin example 2, may also occur
even in purely linear (MILP) problems, and is discussed further in the following
chapter.

2. Weneedtoensurethat CY CLE1 will awaysterminate. It has not yet been established
that thisis always possible. Certainly in the case where there are no integer variables
in the basis to begin with, CY CLE1 must be skipped. In fact, we see from (1) above
that CY CLEL does not terminate in general.

3. For the present CYCLEL of Murtagh, it is clear that at each iteration, one of events
1-4 must occur. However, there would seem to be no guarantee that event 3 will ever
occur! Thisis obvious from examples 1 and 2 above. We need to consider ways in
which CY CLE1 could be modified to ensure termination, ie no integer variables left
in the basis. Until this occurs, no progressin the class of direct search methods based
onMurtagh’ sconcept of superbasi c variablescan bemade. Thesemattersarediscussed
at length in Chapter 6,where we consider modifications to Murtagh’s CY CLE1.

4. |t should be noted that this set of very simple examples was devised long before the
interactive implementation of the methods of Chapter 6. It was therefore of some
considerableinterest to check the behaviour of the methods on the present small QIPs.
Thisisdiscussed in Chapter 8.

5. Murtagh’s original approach has been successful in solving a number of NLIPs. He
assumed a small proportion of integer variables, and a small proportion of
nonlinearities. We next seek alternative methods which extend his ideas, so that
progress can be made on a somewhat wider class of problems.

Chapter 6

Proposals for new direct search methods

Problemswith Murtagh’'s CYCLEL1

In the previous chapter we considered Murtagh’ s heuristic for direct search. For CYCLEL
of Murtagh's algorithm (an attempt to remove all integer variables from the basis), it is

supposed that achosen non-basic non-integer variable X was being released fromitslower

bound. From the problems brought to light by the class of constrained integer quadratic
examples of the previous section, it is clear that we need to modify Murtagh’s method as
presented in Chapter 5 and the paper [60].

Two cycling possibilities emerged: a nonbasic could oscillate between its bounds without
change of basis and without event 3 (a basic integer variable becoming integer-feasible)
occurring, and secondly, a sequence of variables cycling between the basic and nonbasic
partitionswithout making progress toward emptying the basis of integer variables. In either
case, Murtagh’'s CYCLEL iterates indefinitely since the termination condition
JknNJ = Oisnever met. To have any hope of forcingamodified CY CLEL to terminate,
it is clear that we must have access to the superbasic variables. Thisis the case even for
linear (MILP) problems, inwhich thereare zero superbasi csat the sol ution of the continuous
relaxation. However, new degrees of freedom can be opened up for linear problems by the
simple device of changing the status of a nonbasic variable to superbasic, but with no
movement away from its bound.

85

6.1 Alternative approachesfor CYCLEL (removeintegersfrom basis)

If all nonbasicsareinteger variablesand CY CLEL still hasn’ t terminated (eg basisisall-slack
except for oneinteger variable and one slack is superbasic), then we may select asuperbasic
non-integer variable for j* rather than a nonbasic. Since we want to remove all integer
variablesfromthe basis, it isreasonableto require that we have accessto all other variables
(ie superbasic as well as nonbasic) in order to do this. In essence, we are saying that we
really should allow superbasicsto vary without pivot just asnonbasicsdo. Thisextradegree
of freedom may just be enough to get integer feasibility in a basic integer variable—it
certainly isin the quadratic counterexamples considered earlier.

If non-termination of any proposed new CYCLEL is detected, eg with iteration counter
(difficulties getting our chosen basic integer variable to be coaxed to integer-feasibility),
then we could just pivot an integer variable with asuperbasic anyway evenif itisn’tinteger
feasible. Such a superbasic must correspond to a column of the current linearized general
constraint matrix that will not cause the new basisto be singular (or near-singular).

Another approach for amodified CY CLE1 would be to start asin Murtagh’s approach, ie
try to get integers out of the basis by sliding selected continuous nonbasics to their other
bounds. Do this for as long as possible—a condition for detection of termination of this
processisrequired, and herein liesthe difficulty. It was decided for the present research not
to proceed with this approach, primarily because clean detection of non-termination in this
case can be awkward and asimple iteration limit is crude and really avoids the structure of
the problem.

If integers are still basic and no suitable nonbasic can be found to precipitate event 3, we
may try aMINOS step 7a(see Murtagh and Saunders[62], p50). Thisinvolvesaredefinition
of the partition so that a continuous superbasic isinterchanged with an integer basic, and it
must be ensured that the basis remains non-singular. The Sherman-Morrison identity (see,
for example Murtagh’s Advanced Linear Programming [57]) can be used as a basis for
checking a proposed new basis column, or simply that row i’ of the current basis inverse
must not be (nearly) orthogonal to the proposed new column. Now choose a nonbasic j* to
become superbasic (expand search space) and repeat the steps above. The nonbasic to be
chosen must correspond to a continuous variable, and a suitable heuristic would be to go

for one with a large o, and wide bounds in the hope that subsequent movement of this

variable when superbasics are atered in CY CLE2 will produce integer feasibility in x. (in

86

fact, for the methods actually implemented, we just choose the first suitable nonbasic in
natural order). Notethat si ncex: will beimmediately selected for B <> Spivot, the heuristic

for j* should be extended to require the nonsingular basisinvariant.

Another ideaisto pivot asmany basicintegerswith suitabl e superbasi c continuous variables
as possible, since there will be no movement from continuous solution, just a redefinition
of the partition. If, asmentioned in one paper by Mawengkang and Murtagh [49], therewere
only 2 or 3 superbasics at a continuous solution even though the problem has more than
1000 integer variables, then we may need to promote selected continuous nonbasics to be
superbasic statusin order to give us enough superbasicsto pivot theintegersout of the basis.
Then the modified CY CLEL can proceed as defined just above. This should be donein any
case where there are integer-feasible basics present at the continuous solution, and is also
the basis of method M2, to be discussed in section 6.3.2.

87

6.2 Alternative approachesfor CYCLEZ2 (superbasic steps)

For Murtagh’s CY CLEZ, it may be worthwhile to put more emphasis on getting afull step
to integer feasibility than just blindly looking for the superbasic with minimum
integer-infeasibility and then trying afull step on that one, but being content with a partial
step if we hit abound on abasic. For example, superbasic #1 may have integer-infeasibility
= 0.3 and superbasic #2 may have integer-infeasibility = 0.4; however afull step to integer
feasibility may be possible with #2 but not with #1. It seemsreasonableto prefer afull step
with#2 instead of apartial step with #1— provided the obj ective does not worsen too much.

Once j’ is chosen and the corresponding o- is calculated we can do as much work as we
like with it—the real computational burden isin choosing j* and calculating o, so all
possible steps may be calculated once j” ischosen. Therefore, it would not be unreasonable
to choose afew (perhaps 3-5) "likely prospects” for j” (integer-infeasible superbasic to be
stepped) and evaluate o for all of them. This is somewhat akin to "multiple pricing" in
ordinary LP, and is also in keeping with the idea of the number of integer variables being
small. In thismanner, if no step is possible with current j’, then another could betried. The
linearized general constraints are automatically satisfied for any step away from the current
feasible point, however the simple bounds on the basicswill limit our step. Sinceall integer
variableswere removed from the basisin CY CLE 1, the only barrier to complete feasibility
of the current solution is presented by the integer-infeasible superbasics (nonbasic integer
variables are at a bound and are therefore integer-valued).

88

6.3 The new methods

After CYCLEL terminates, we may either apply some form of Murtagh’'s CYCLE2 as
defined in the CTAC 89 invited lecture [60], or we could fix the integer-feasible integer
variables and solve the resulting continuous problem.

Based on the somewhat digjointed batch of ideas presented in the previoustwo sections, we
wish to propose several new direct search methods for NLIP. In the presentation, some
simplifications have been made in order to give pseudocode which is reasonably readable.
For example, code which controls the abortion of loops in the case of detected errors has
been omitted for reasons of simplicity. Calls to subroutines in the actual code have been
replaced with short, descriptive statements of the basic functions of the routines concerned.
It ishoped in thisway to convey afairly clear statement of the processesinvolved without
undue and distracting detail.

Some abbreviations/identifiers used in the pseudocode for the methods are as follows:

numbasinf number of basis integer-infeasibilities

maxits maximum iterations (constant)

jstar nonbasic selected to move away from bound
thetastar largest permissible step for nonbasic jstar
ierrcode error code

its iteration counter

searching Boolean flag to control search for nonbasic jstar
stilllooking as above

jmin initial value for of j for jstar search

n number of columns (variables) in problem
event3count number of event 3 occurrences, ie basic goes IF
jstarstar superbasic for B <--> S pivot

jns nonbasic to be promoted to superbasic

One further comment isin order: throughout the remaining chapters, reference is made to
Method 0. This is ssimply branch-and-bound as implemented in Murtagh’s MINTO code
[58]. The method is well-described by several authors, and also briefly summarized in the
present section 2.9.1.

89

6.3.1 Method 1

Method 1 isessentially CY CLEL of the procedure described by Murtagh in [59], however
the first significant operation on each traversal of the loop is the detection and pivoting of
integer-feasible basics to the superbasic set. This operation involves the selection of a
suitable superbasic variable to be pivoted into the basis. The corresponding column of the
linearized constraint set must be such that the new basis is non-singular. Pseudocode for
M1lisgiveninfigure 17.

its := 0
do while (numbasinf>0) & (ierrcode=NOERROR) & (its<maxits)
inc (its)

pivot any integer-feasible basics with suitable superbasics
compute jstar’
compute minimum ratio thetastar
do nonbasic step
recompute number of basic integer-infeasibilities
enddo

Figure17 Pseudocodefor M1

6.3.2 Method 2

Theideafor this method was to take immediate advantage of any superbasics available at
the continuous sol ution to pivot out as many basicintegers as possible, after each such pivot
attempting a step to integer-feasibility before the next pivot. Initially, those basics already
feasiblewould be pivoted with suitable superbasics, asin M1 above. The motivation behind
M2 isthat we have more control over aninteger variableif it issuperbasic thanif it isbasic.
Also, a pivot operation does not alter the solution vector, merely the extended partition
definition, so that the objective does not change either. From the standpoint of algorithmic
taxonomy, it can be considered a greedy strategy (see, for example, McMahon [50]), since
we try to postpone any deterioration in objective for as long as possible. Pseudocode for
M2isgivenin figure 18.

1 Nonbasic to move away from bound.

90

its := 0
pivot any integer-feasible basics with suitable superbasics
do while (numbasinf>0) & (ierrcode=NOERROR) & (its<maxits)
inc (its)
compute jstarstar’
do B<-->S pivot?
recompute basics, objective and gradients
recompute number of basic integer-infeasibilities
enddo
do while ((numbasinf>0) & (ierrcode=NOERROR) & (its<maxits))
inc (its)
compute jstar’
compute minimum ratio thetastar
do nonbasic step
recompute number of basic integer-infeasibilities
enddo
try to step each infeasible integer superbasic to nearest integer

Figure 18 Pseudocodefor M2

6.3.3 Method 3

The am in this method is to insist on event 3 (our chosen basic integer variable goes
integer-feasible) for thenonbasic step if possible. Thisinvolvesamultiple-pricing operation
since we do not give up in our search for a suitable nonbasic to precipitate event 3 until no
suitable ones are left. Clearly, artificials are not considered, since they cannot move. Note
also that M3 invokes M4 at the very end in case further progress can be made. Pseudocode
for M3 isgiven infigure 19.

1 Superbasic for B «» S pivot.
2 Pivot basic i’ with superbasic ™.
3 Nonbasic to move away from bound.

91

pivot any integer-feasible basics with suitable superbasics

jmin := 0
searching := true
event3count := 0
its := 0
do while searching
jmin := jmin + 1
j := jmin
jstar := 0
stilllooking := (j <= n)

do while stilllooking
if column j is nonbasic & not artificial then
check if column j corresponds to integer variable
if column j does not correspond to integer variable then

jstar := j
jmin := j + 1
endif
endif
inc(3)
stilllooking := (jstar = 0) & (j < n)
enddo

compute minimum ratio thetastar
if event = 3 then
do nonbasic step
recompute number of basic integer-infeasibilities
pivot any integer-feasible basics with suitable superbasics
increment event3count

endif
searching := (numbasinf > 0) & (its <= maxits)
if jmin >= n then
jmin := 0
if event3count = 0 then
searching := false
else
event3count := 0
endif
endif

enddo
invoke M4

Figure19 Pseudocodefor M3

92

6.3.4 Method 4

Thisstrategy was developed in an attempt to combine the best of the earlier methods which
weretried and found wanting. It has been found to be generally the best, although, and this
istypical for methods which have at |east some heuristic component, it is certainly not the
best on al problems. Support for this statement can be seen by inspection of the
computational experience chapters of this work.

Method 4 is sometimes successful in removing all integer variables from the basis. It is
identical to M5 except that access to fixed or artificial variablesto be considered for j,s' is
denied. In general, it is advisable to avoid artificials if possible since their presence in the
basis can mean that no movement of superbasic or nonbasics is possible. This definitely
"crampsthe style" of later stepsinvolving movement of superbasic variables, since we have
effectively "backed ourselves into a corner” and cannot move. Having said that, we must
also notethat there exist problemsfor which thetermination of M4 requiresuse of artificials
for B <> S pivot. Thisis the precise reason for the existence of M5, described in the next
section. Pseudocode for M4 isgiven in figure 20.

1 j,sistheindex of anonbasic column suitable for change of status to superbasic, and subsequent pivot with the
integer basici’.

93

its := 0
pivot any integer-feasible basics with suitable superbasics
do while (numbasinf>0) & (ierrcode=NOERROR) & (its<maxits)
increment iteration count
try to step each infeasible superbasic feasibility’
recompute number of basic integer-infeasibilities
compute jstar’
compute minimum ratio thetastar
if event = 3 then
do nonbasic step
else
seek jstarstar’
if jstarstar can’t be found then
seek nonbasic, jns®, suitable to go superbasic then basic
endif
if suitable nonbasic jns found then
change status of column jns to superbasic
label new superbasic column jstarstar
do B<-->S pivot®
else
ierrcode := CANTFINDAJSTARSTAR
endif
endif
recompute number of basic integer-infeasibilities
pivot any integer-feasible basics with suitable superbasics
enddo

Figure20 Pseudocodefor M4

6.3.5Method 5

Method 5 is one which guarantees to remove al integer variables from the basis since we
have access to all superbasic and all nonbasic continuous variables—including artificials.
As mentioned in the previous section, M5 isidentical to M4 except that M5 is allowed to
consider artificialsas candidates for changing status to superbasic for subsequent pivot with

1 Thistries, in turn, to step each of the superbasic integer variables which is currently infeasible with respect to the
integer requirements to the nearest integer.

2 Nonbasic to move away from bound.

3 Superbasic for B <> S pivot.

4 Must be linearly independent of all current basic columns except possibly iprime; fixed and artificial variables are
not considered.

5 Pivot basic i’ with superbasic ™.

94

aninteger basic, whereas M4 is denied such freedom. It has been found that problems exist,
eg Berry—Sugden (see the present Chapter 14) or Shanker—Tzen (see the present Chapter
13), for which accessto artificialsis necessary for M5, to terminate. The termination of M5
Is guaranteed and is the subject of atheorem in section 6.4. Pseudocode for M5 isgivenin
figure 21.

its := 0
pivot any integer-feasible basics with suitable superbasics
do while (numbasinf>0) & (ierrcode=NOERROR) & (its<maxits)
increment iteration count
try to step each infeasible superbasic feasibility'
recompute number of basic integer-infeasibilities
compute jstar’
compute minimum ratio thetastar
if event = 3 then
do nonbasic step
else
seek jstarstar’
if jstarstar can’t be found then
seek nonbasic, jns*, suitable to go superbasic then basic
endif
if suitable nonbasic jns found then
change status of column jns to superbasic
label new superbasic column jstarstar
do B<-->S pivot®
else
ierrcode := CANTFINDAJSTARSTAR
endif
endif
recompute number of basic integer-infeasibilities
pivot any integer-feasible basics with suitable superbasics
enddo

Figure21 Pseudocodefor M5

1 Thistries, in turn, to step each of the superbasic integer variables which is currently infeasible with respect to the
integer requirements to the nearest integer.

2 Nonbasic to move away from bound.
3 Superbasic for B <> S pivot.

4 Must be linearly independent of all current basic columns except possibly i’. Fixed and artificial variables are
considered.

5 Pivot basic i’ with superbasic ™.

95

6.4 Some theor etical propertiesof the new methods

Itwasnotedin Chapter 5that there may be no non-integer nonbasicsfor Murtagh’ sCY CLE1.
This means that j~ does not exist and CY CLE1 cannot proceed. We are led therefore to
consider allowing superbasic variables to be considered for direct pivot with basicsin the
hope that the number of integer-infeasibilitiesin the basis may be decreased.

Before deriving sufficient conditions for direct-search method M5 to terminate with no
integer variablesin the basis, we examine briefly two negativeresults. Lemmas 1 and 2 are
presented in order to show that certain conditions are not sufficient for the termination of
M5. For each of the following results, we assume the standard form of MINOS;
corresponding to major iteration of MINTO, inwhich relinearization of constraintsis made
at the commencement of each major iteration. A full set of slack variablesis present, iethe
constraint matrix A contains the identity |, as a submatrix. We assume that the continuous
relaxation has been solved with local optimum at x'.

Lemmal

ThereexistsaNLIP in which the linearized constraint matrix contains afull set
of slacks(ie |,isasubmatrix of A) for which Murtagh’ scycle 1fallstoterminate
except in the event of an error condition or iteration limit being reached.

Pr oof

Consider either counterexample 1 or counterexample 2 of Chapter 5.

Lemma?2

Consider the method M4. Then there exists a NLIP for which M4 fails to
terminateexceptintheevent of anerror conditionor iterationlimit being reached.

Pr oof

All that isrequired hereisasingle example, and the problem reported by Shanker
& Tzen [86] and discussed in the present Chapter 13 fills the bill.

96

Remarks

1. Wenoteinall test problemsthat M5 terminates with zero integer-infeasibilitiesin the
basis. Thisisno coincidence, and we next prove that, because we have accessto afull
set of slacks, some of which may be artificials, and we are permitted to use all slacks
If necessary for pivot operations, that M5 always ter minates.

2. From the two preceding lemmas, we see that M4 is not sufficient for cycle 1 to
terminate, ieto remove all integer variables from the basis. We now show that M5is
sufficient for all problems. It should be noted aso that, for certain problems, it is not
necessary to invoke M5 to remove al integers from the basis, since, in particular,
counterexample 1 of Chapter 5 terminated using the MINTO starting partition and
invoking M3.

Theorem 1

Consider theclassof problemsdefinedin section 5.1, withthefurther assumption
that a bounded, feasible solution exists. Then for any such problem there exists
abasis containing no integer variables and this basis is attainable starting from
the continuous solution and applying method M5.

Pr oof

Define mg = |JznJ |, thenumber of basic integer variables.

The first observation that needs to be made is that the number of basic
integer-infeasibilities must decrease by at |east one on each iteration of the main
dowhileloop of M5. Stated another way, we need to establish theloop invariant
that m decreases by at least one on each traversal of the loop. The result will
then follow by induction on my.

The only steps which can alter the number of basic integer variables are

(1) do nonbasic step
(i) do B < Spivot
(i) pivot any integer-feasible basics with suitable superbasics

97

Each of these is designed to pivot out integer-feasible basic variables. The worst
caseisthat event 3 never occurs. Then either j or jys must be found. Sincethe
basisisalready nonsingular, we show that we can alwaysfind one, provided that
mg =1, iethat thereis at least one integer variable still basic. Then, on each
iteration, mg must decrease by at least one, and thus M5 terminates.

Now to complete the proof, we note the preconditions for the loop:

(i) mg =1 (this must be so, else the loop has already terminated).
(i1) basisisnonsingular

Let there be m, dack/artificial basic columns, where 0<m,<m-1. These

are elementary vectors (columns of the identity 1,,). Then we have m—-m,
remaining columns of |, which are either superbasic or nonbasic, and
1<m-m, <m. Suppose none of these is suitable to pivot with column i’ of
the current basis. But B is a basis for E™, so that B with column i’ removed
consistsof m— 1 linearly independent vectors, and isthusabasisfor E™*. The
remaining m— 1 columns of B aong with m—m, slack/artificial superbasic or
nonbasic columns span E™, since they contain all columns of |,,. Thus we have
abasisfor E™. Thisisa contradiction, and the proof is complete.

Noteon Theorem 1

Theresultjust proved holdseven for amixed-integer linear program (MILP), however there
IS no guarantee that the integer-free basis so obtained corresponds to an integer-feasible
point. In general, there will still be integer-infeasibilitiesin the superbasic variables, which
may now be present even in alinear problem. Superbasics were introduced by Murtagh and
Saunders [62] in order to cater for nonlinearities; they are being used here to also help in
the quest for integer-feasibility, and so are applicable even to MILPs.

98

Chapter 7

| mplementation of the new direct search
methods

Both Murtagh’ sdirect search method [59] and the proposed new methodswereimplemented
initially asPascal prototypesdueto thesuperior algorithmic expressive capabilitiesof Pascal
over FORTRAN, and also due to the superior high-quality development and debugging
tools available on PCs in products such as Borland's Turbo Pascal®. The development
machineswere 80386/80387-based IBM or compatiblesrunning PC-DOS3.3and MS-DOS
5.0. The Pascal compilersused were versions 5.0, 5.5 and 6.0 of Borland' s Turbo Pascal ®,
all of which have excellent program preparation and debugging facilities.

Once a working prototype algorithm was fully developed and debugged, it was naively
believed that a fairly simple, mechanical process would be required to hand-trandlate to
FORTRAN andimbed theresulting codein Murtagh’ sSMINTO NLIP optimizer. For various
reasons, some of which are described in section 7.8, thiswas in fact not the case.

7.1 SPECS options

Two options were added to Murtagh’ s SPECSfile, namely DIRECT SEARCH METHOD
and FIX INTEGERS. These operate as follows.

DIRECT SEARCH METHOD n

99

The user may select any of five direct search methods M1-M5 or branch-and-bound
(MO—thisisthe default), or interactive (99).

n Effect

Branch-and-bound

Method 1 (Murtagh’s heuristic)
Method 2

Method 3

Method 4

Method 5

99 Interactive

ga b~ WO NP O

FIXINTEGERSYES
FIX INTEGERSNO

This option controls whether the integer-feasible variables at the termination of any of the
direct search methods are held fixed for subsequent continuous reoptimization, followed by
branch-and-bound if required. Default is YES.

7.2 Some obstacles encountered

It must be admitted that early versions of the direct search methods were rather primitive.
A variety of test problems gave ample opportunity to hone these methodsto the point where
it could bereasonably claimed that they work moderately well onawidevariety of MINLPs.

Some difficulties were encountered when running the Shanker-Tzen problem described in
Chapter 13. In particular, since the Shanker-Tzen problem islinear, there are no superbasic
variables present at the continuous solution. Also, it is a highly-degenerate 0-1 problem,
and has 6 feasible basics at the continuous solution. When this problem was encountered,
thefirst approach was to change the status of a suitable nonbasic variable to superbasic and
then pivot feasible integer basics out (B < S). Thisworks up to a point, however we end
up with alot of artificial variablesin the basis, and when we try to do anonbasic step later,
no movement is possible. For example, in the Shanker-Tzen problem, a point is reached

100

where 4 integers are basic, compared with 18 at the continuous solution. Unfortunately,
artificials prevent any movement since they are fixed at zero. Originally, the search for j,,
(nonbasic to be promoted to superbasic) did not consider artificial nonbasics, but this did
not get very far—the supply of nonbasics was exhausted after the first two N — S
operations—and no nonbasic j,, could be found to become superbasic since al rows of the
current basisinverse were orthogonal to all continuous nonbasic columns. For a number of
problems M4 is very successful, but the above-mentioned difficulties first observed with
the Shanker-Tzen model made it clear that M4 would not be adequate for some problems.
Thus M5 was born.

7.3 Interactive display program

A special programwas written in Borland Turbo C® to allow the user to direct the progress
of the direct search algorithm. Some experience with it enabled various proposed methods
to be tested and subsequently "hard-wired" into the direct search FORTRAN subroutine.
The display program follows a spreadsheet paradigm in that updated values of the solution
vector, objective, reduced gradient vector and other problem parameters are redisplayed
after each step, which typically takes of the order of a second or less on a 20 MHz
80386/80387 machinewith problem size 168 rows and 316 columns, of which 84 areinteger
(thisis the Berry—Sugden model of Chapter 14).

Theuser can select from amenu, oneoption of whichistoinstruct MINTO/INTERACTIVE
toproceedinthe conventional "automatic" modeto the solution, without further intervention
from the user. All functions available within the MINTO/INTERACTIVE system are
described in the next section.

The C program was written in order to provide some interactive control of the direct search
methods by the user. The user receives immediate feedback on the success or failure of an
operation. For example, one may wish to manually select anonbasic j” and see the result
of computing each minimumratio 8 for that particular j . If suitable (normally oneisseeking
event 3), then the user would opt to execute the step, thus removing an integer from the
basis while simultaneously achieving integer-feasibility in that variable (see Chapter 5 and
Chapter 6). The C code does considerable local checking, such as ssmple bound violations
on proposed steps in superbasic variables, but for complex checks, control is passed back
totheMINTO enginewhichfor example, will check aproposed superbasic movefor possible

101

simple bound violations on the basic variables. If such a violation occurs, an appropriate
error status is returned to the C program and the user is then informed of the error with a
descriptive message.

Apart from simple, atomic operations such as computing theminimum ratio 0s, entiredirect
sear ch methods may beinvoked directly fromthe C program. Astheiterations of the search
proceed, updated information such as number of integer-infeasibilities, number of
superbasic variables, etc is displayed as progress information for the user. It is indeed
Instructive to observe the progress of the various search strategies in this manner.

7.4 Functions availablein MINTO/INTERACTIVE

Thefollowing keystrokesare usedto control theoperation of theinteractivedisplay program.
A brief description of the effect of each is given.

The (=) (horizontal tabulation) key isused to toggle thedisplay modefrom

E to F format. In particular, this facility is useful to inspect the integer
variables and quickly seethelevel of integer-infeasibility. For example, if
the representation 39.02195 is displayed rather than the representation
0.3902195E+02, theinteger-infeasibility 0.02195 (approximately) ismuch
more easily discerned. On the other hand, very small values such as 10
are usually more conveniently displayed in scientific or engineering form
as0.1E-10 or 1.0E-11 or perhaps 10.0E-12.

The escape key is used to request recalculation of the current solution.

Control istransferred back to the MINTO engine which then recomputes
the solution vector, gradient vector and objective function.

Thiscontrol switches automatic recal culation mode on or off. It issimilar

in function to the corresponding feature in a conventional electronic
spreadsheet such as Lotus 1-2-3®.

102

=)

©

Home

n

ﬂaaglﬂﬂ
U_go-

(]

This keystroke produces a pop-up screen which allows the user to switch

each of sixteen debugging flagson or off. Thisfacility isuseful for testing
new portions of code and to acertain extent, overcame the poor debugging
facilities available for development of the MINTO/INTERACTIVE
system (not easy to debug because of mixed-language programming).

Refresh screen. Thisfunction allowsthe user to rewrite the display screen,

perhaps after some operation has overwritten part of the display, because
of poor formatting.

Quit to MINTO; continue in automatic mode. This terminates the

interactive display program and MINTO proper regains control. The
problemwill then solveto completion using branch-and-bound if required,
ieif any integer-infeasibilities remain.

Move cursor up one row on the display—similar to spreadsheet.

Move cursor down one row on the display—similar to spreadsheet.

Move cursor to top of arrays.

Move cursor to end of arrays.

Scroll up one screenful.

Scroll down one screenful.

Increase superbasic by the current value of Ax. The cursor must be

positioned on a row corresponding to a superbasic variable, and the
operation is disallowed if thisis not the case. Feasibility with respect to
the general linearized constraint set is automatically checked and the
operation denied if the move would violate a constraint. If acceptable, the
move is made and the recomputed objective and solution redisplayed.

Decrease superbasic by the current value of Ax. See comments above for

Increase superbasic.

103

=
|—\

3
N

3
W

z
N

3 @ T 3 @
©) o N ©& (W

a
=

0

Entry to on-line help system. The initial help screen will pop up, and the

user may page down to further help screens. See figures 24-28 for
snapshots of the help screens.

Changes the status of the current nonbasic to superbasic. The cursor must

be positioned on arow corresponding to a nonbasic variable.

Uses the refined CTAC *89 heuristic [59] to search for a suitable j~ for a

nonbasic move.

Pivots the currently-selected superbasic j~ with the currently-selected

integer basici’.

Calculates the minimum ratio 8 for anonbasic move.
Execute nonbasic move after 6 calcul ated.

Set the value of Ax for a subsequent superbasic move.
Calculate superbasic index j~ for basic/superbasic pivot.

Automatically cal culate nonbasi c using heuristic to becomesuperbasic and

select asj~ for subsequent basic/superbasic pivot. This nonbasic column
must be linearly independent of the current basis columns, with the
exception of the basic column i’. Equivalently, the basis nonsingularity
invariant must be preserved after the proposed pivot operation.

Changes the status of the current superbasic to nonbasic. The cursor must

be positioned on a row corresponding to a superbasic variable. This
functionisessentially theinverse of that described abovefor the keystroke
F2, however it is more complex and has not yet been fully implemented.

Selects/desel ects the current basic or nonbasic as i’, | respectively.

When arow is selected, the background colour on the screen will change
toreflectthenew status. Likewise, when desel ected, the background col our
will revert to the defaullt.

104

Shift-Ins

ift-F4

ift-F5

Pl

Shift-F7

Gray-+

=)

As above but for thej~ selection.
Cancel all selections, ie deselect all rows.

Try to automatically pivot all integer-feasible basics into the superbasic

set. This operation is necessary before the direct various search methods
may commence, and in fact, isbuilt-in to all Mn.

Tries to achieve a decrease in the number of superbasic
integer-infeasibilities by selecting superbasics in pairs to be stepped to
integer-feasibility.

Forcethe current superbasi c variableto the user-supplied value. The cursor

must be positioned on arow corresponding to a superbasic variable, and
the operationisdisallowed if thisisnot the case. Any bound violationsare
displayed as flashing val ues after the operation, and an error message may
be displayed.

Step current superbasic to next integer. The cursor must be positioned on

a row corresponding to a superbasic variable, and the operation is
disallowed if thisis not the case. This operation is convenient to check for
feasibility of a proposed superbasic step. It will be disallowed if any
constraint violation occurs.

Step current superbasic to previous integer. See comments above.

Toggle screen display 25/28/43 line modes. For VGA screens, this option

allows many more data rows for the problem to be displayed as a single
screenful (28 rowsin 43-line mode).

Clear iteration count. If an attempted method has become stuck in aloop

and used up all itsiterations, this option allowsthe user to reset the counter
and try another method without having to restart the program.

Fix current integer-feasible variable at its current value.

105

Automatically run method M 1.

)

Automatically run method M2.
Automatically run method M3.
Automatically run method M4.
Automatically run method M5.

7.5 Sample screensfrom MINTO/INTERACTIVE

This section presents some screen snapshots of the MINTO/INTERACTIVE system.

106

i hbinv hs bl X bu gradient red g
. 1 4 3 0 40.91594 80 -2.86e-07 le-14
. 2 2 3 0 39.65044 79 -1.82e-07 -2.62e-15
. 3 3 3 0 40.55087 80 -1.13e-06 -2.13e-15
* 4 1 3 0 39.02059 79 7.19e-07 -9.43e-15
. 5 5 3 0 40.47456 80 -6.01le-07 -0.115
6 7 2 0 40.00000 80 -2.93e-07 0
7 6 2 0 40.00000 80 -1.46e-07 0
8 8 2 0 40.00000 80 7.06e-08 0
9 0 0 0.00000 40 3.82e-07 0
10 0 0 0.00000 40 0 0
newx 0| #Binf 5|j* 0[i1 0|j** 0lm 5|imn
dx 0.1 |#Bfeas 0|j*shrt 0|i2 0|0l 0ln 31|icsr 0
obj 6.3318e-13 |#Sinf 0|j*long 013 0|jmin 1|ns 4 |imx 9
01 0|#Sfeas 0 event 03"’ 0[nl 22 |pgsz 10
02 0|auto OFF |art? N |i'0 1|jsup 0|nu 0|csr 4
03 0| opcode 32 il 5|jns 0|ni 5
04 O0|errcode 0|its 0ir 1l|o’ -1

il -Help I -N-->S i3] -Calcj* Iy -BSpiv Iy -CalcO IqYy -NStep
Wl -Setdx I -Calcj** |3 -AutoNS IauNel - S - - >NL IEl-FixInts |3#4-Quit!

Figure22 MINTO/INTERACTIVE displays continuous solution for a small QIP

107

i hbinv hs bl X bu gradient red g
. 1 8 2 0 41.00000 80 2.83 -10.8
. 2 12 2 0 40.00000 79 0 5.25
. 3 11 2 0 40.00000 80 -9.42 74
. 4 10 2 0 39.00000 79 0.667 12
. 5 13 2 0 40.00000 80 2.75 -7.27
6 7 2 0 40.00000 80 -2.93e-07 -55.5
7 6 2 0 40.00000 80 -1.46e-07 -11.4
8 3 3 0 35.29167 80 0.168 -43.7
9 0 0 0.00000 40 3.82e-07 0
10 0 0 0.00000 40 -0.0412 0
newx 0| #Binf 0|j* 0[i1 5|j** 8|m 5|imn 0
dx 0.074409 |#Bfeas 0|j*shrt 13]i2 2ol lin 31|icsr 4
obj 26.835 | #Sinf 0|j*long 013 3 |jmin 1|ns 8 |imx 9
01 10.069 | #Sfeas 5 event 03"’ 0[nl 18 |pgsz 10
02 4.2462|auto OFF |art? N |i’0 0|jsup 13 |nu 0|csr 8
03 0.33333|opcode 23 irl 0|jns 0[ni 5
04 40|errcode 0]its 5|1 0|c’ 0

Il -Help F2
W -Setdx E'8

-N-->8
-Calcj**

3] -Calcj* Iy -BSpiv Iy -CalcO Iqy -NStep
I3 -AutoNS INN0] - S - - >NL IEl-FixInts |3#Y-Quit!

Figure23 MINTO/INTERACTIVE displaysinteger-feasible solution for a small

QIP

108

i hbinv hs bl X bu gradient red g
. 1 HELP FOR MINTO/INTERACTIVE —— — Page 1/5 -10.8
. 2 1 5.25
¢ Il MINTO/INTERACTIVE is a nonlinear integer optimizer. 74
. 4 1 12
¢ SOl The interactive display program allows the user to direct -7.27
6 the progress of the direct search algorithm of Murtagh & =55 .5
7 Sugden. The user may request elementary operations such as -11.4
8 autocalc of minimum ratio 0%, or simply ask that predefined -43.7
9 heuristics designed to achieve integer-feasibility be run. 0
10 Local optimality with respect to the superbasic wvariables 0
may also be checked automatically or manually.
newx Variables are displayed in natural, not partition, order, 0
dx and diamonds indicate integer wvariables. 0
obj 9
01 Elements of the partition are colour coded as follows: 10
62 4
03
04 PgDn
F1 -Help F2 -N-->S F3 -Calcj* F4 -BSpiv F5 -CalcH F6 -NStep
F7 -Setdx -Calcj F9 -AutoNS Fl1ll-FixInts F12-Quit!

Figure24 Help screen #1 for MINTO/INTERACTIVE

109

i hbinv hs bl X bu gradient red g
. 1 HELP FOR MINTO/INTERACTIVE —— — Page 2/5 -10.8
. 2 1 5.25
¢ 3 1 Toggle display mode (E or F format) 74
¢ 4 1 Recalculate current solution (back to MINTO) 12
¢ 5 1 Toggle autocalc mode -7.27
6 Toggle debug switches -55.5
7 Refresh screen -11.4
8 Quit to MINTO; continue in automatic mode -43.7
9 Toggle silent mode (error buzz ON/OFF) 0
10 Move cursor up 0
Move cursor down
newx Move cursor to top of arrays 0
dx Move cursor to end of arrays 0
obj Scroll up one screenful 9
01 Scroll down one screenful 10
02 Increase superbasic by deltax 4
03 Decrease superbasic by deltax
04 PgUp/PgDn
-Help F2 -N-->S F3 -Calcj* i F5 -CalcH F6 -NStep
-Setdx F8 -Calcj** F9 -AutoNS Fl11-FixInts F12-Quit!

Figure25 Help screen #2for MINTO/INTERACTIVE

110

i hbinv hs bl X bu gradient red g
. 1 HELP FOR MINTO/INTERACTIVE —— -10.8
. 2 1 5.25
L 3 1jmmas Entry to on-line help system 74
¢ 4 11 Current nonbasic goes superbasic 12
¢ 5 1)zl Calculate j* for nonbasic move -7.27
6 F4 Basic <--> Superbasic pivot -55.5
7 F5 Calculate 0* for nonbasic move -11.4
8 Fé6 Do nonbasic move -43.7
9 F7 Define deltax for super move 0
10 F8 Calculate nonbasic index j** for move 0
F9 Autocalc Nonbasic --> Superbasic
newx Flo0 Superbasic to nonbasic lower 0
dx F11 Fix integers at current values 0
obj Fl2 QUIT! - Return to DIRSCH + shutdown 9
01 Ins Toggle basic/super/nonbasic selection 10
02 ShiftIns Toggle j** gselection 4
03 Del Cancel all selections
04 PgUp/PgDn

-Help
-Setdx

F2 -N-->S F3 -Calcj* F4 -BSpiv F5 -CalcH Fé6

-NStep

F8 -Calcj** F9 -AutoNS Fl11-FixInts F12-Quit!

Figure26 Help screen #3for MINTO/INTERACTIVE

111

~

~

i hbinv hs bl X bu gradient red g
* 1 HELP FOR MINTO/INTERACTIVE .47e-09
. 2 1 .57e-08
¢ 3 ShiftF4 Auto pivot IF basics to superbasic .56e-09
¢ VS| ShiftF5 Step superbasics in pairs .48e-323
¢ 5 ShiftF7 Set value for current superbasic 0
¢ 6 GreyPlus Step current superbasic to next integer 0
¢ 7 GreyMinus Step current superbasic to previous integer 0
* 8 Grey * Toggle screen display 25/28/43 line modes 0
¢ 9 c Clear iteration count 0
¢ 10 1)mm3y Toggle Fixed/Artificial variables for jns 0

I Fix current integer-feasible wvariable

newx 1 Invoke direct search method M1 0
dx 2 Invoke direct search method M2 0
obj 3 Invoke direct search method M3 9
01 4 Invoke direct search method M4 10
02 5 Invoke direct search method M5 4
03
04 PgUp/PgDn

il -Help I -N-->S 3] -Calcj* Iy -BSpiv Iy -CalcO Iqy -NStep
Wl -Setdx I -Calcj** |3 -AutoNS IauNel - S - - >NL IEl-FixInts |3#Y-Quit!

Figure27 Help screen #4 for MINTO/INTERACTIVE

112

i hbinv hs bl X bu gradient red g
. 1 HELP FOR MINTO/INTERACTIVE —— -10.8
. 2 1 5.25
¢ cBl Display Headings 74
. 4 1 12
¢ 5 1 natural index of current variable x[i] -7.27
6 partition index of current natural variable -55.5
7 partition indicator: 0=NL; 1=NU; 2=S; 3=B -11.4
8 lower bound of current natural variable -43.7
9 value of current natural variable 0
10 upper bound of current natural variable 0
gradient component of gradient vector
newx red g component of reduced gradient vector 0
dx 0
obj 9
01 10
62 4
03
04

F1 -Help F2 -N-->S F3 -Calcj* i F5 -CalcH F6 -NStep
F7 -Setdx F8 -Calcj** F9 -AutoNS Fl11-FixInts F12-Quit!

Figure28 Help screen #5for MINTO/INTERACTIVE

113

i hbinv hs bl X bu gradient red g
TOGGLE DEBUG SWITCHES
¢ 1 -10.8
. 2 1| VY 0 Solution vector in natural order 5.25
¢ 3 1 1 Partition index vectors 74
. 4 1 2 Soln vec, grad, red grad in ptn order 12
¢ 5 1| ¥V 3 I0PB (input/output parameter block -7.27
6 4 Checkpoints in super basic move check -55.5
7 5 Generated alpha columns -11.4
8 6 Computed basics for super move check -43.7
9 7 Predicted basic for C1P2 0
10 \ 8 Parameters from calc theta routine 0
9 Parameters from calc z tranpose routine
newx A CALCG parameters 0
dx B UPDATEXFGH major checkpoints r 0
obj \ ¢ caLncgs parameters 9
01 D Alpha sub jstar in CALCTHETA Z 10
02 \ E Results of super move check 4
03 F Progress of IF basics to super pivot
04
 - cancel all dumps <ins> - select all dumps
F1 -Help
F7 -Setdx F8 -Calcj** F9 -AutoNS F10-S-->NL F1ll-FixInts F12-Quit!

Figure29 Debug screen for MINTO/INTERACTIVE

114

7.6 The FORTRAN workhorseroutines

This section gives avery brief overview of the magjor FORTRAN subroutines which form
the building-blocks for implementation of the various direct search methods.

115

Name

Purpose

ASSERT

A very short but effective routine which simply checksthat aclaimed
predicate is in fact true. If so then control returns to the caller,
otherwise execution is aborted with a caller-supplied diagnostic
message. Sample call:

call assert(iprime .gt. 0, ’'CALCJNS:: iprime <= 0’)

C1P1STEP

Pivot the current basic integer variable i” with a chosen superbasic
variable .

C1P2STEP

The abbreviation isfor CYCLE 1, PHASE 2 step. A nonbasic step
causes one of four possible outcomes. We seek integer-feasibility for
our selected basic (event #3). If achange of basisoccurs (events 1-3)
then MODLU is caled to update the sparse basis factorization.

C2P1

Theabbreviationisfor CYCLE 2 PHASE 1. Thisinvolvesastep for
aninteger-infeasiblesuperbasicvariabletoachieveinteger feasibility.

CALCINF

Computemany parametersrel atingtointeger-infeasibilities: calculate
min/max integer-infeasibilities: scan all basics and superbasics and
compileindicesof min/max integer-infeasibilitiesfor both basicsand
superbasics separately. Also detect (super)basicintegerswhicharein
fact integer-feasible. Count the number of integer-feasible integer
variables, both basic and superbasic.

CALCINS

Find a nonbasic suitable for becoming superbasic and ultimately to
be pivoted into the basis. The corresponding column of the linearized
constraint matrix A must not be (nearly) orthogonal to row i” of the
basisinverse, wherei’ isthe integer basic variable to be pivoted.

CALCJS

Calculate j"—a nonbasic which prima facie has the best chance of

forcing our basic to integer-feasibility while not worsening the
objective too much.

Table3 TheFORTRAN subroutinesPart A

116

CALCJSS Calculate] —a superbasic which, when pivoted into the basis, the
basis remains nonsingular.

CALCTH The "minimum ratio test". Computes the four thetas, corresponding
to limits imposed on the move of a nonbasic by basics reaching
bounds, basics going integer-feasible, or nonbasic reaching the other
end of itsrange.

CALCZT Compute row i’ of the basis inverse, where i’ is the current basic
selected for step to integer-feasibility.

CHUZQI Choose acolumn q corresponding to acontinuous superbasic variable
which will become j™ (see entry for CALCJSS above).

DIRSCH This is the main control routine for the direct search methods and
subfunctions which may be invoked from the interactive display
program. It contains the command interpretation loop and calls to
many of the routines listed in this section.

DUMPCOL4 These are utility routines useful for debugging—they write

DUMPCOLS8 floating-point or integer columns (vectors) to the output file.

DUMPICOL

DUMPIOPB Writes the contents of the IOPB (input/output parameter block)
common block totheoutput file. Thisblock isused for communication
with the interactive display program, which iswritten in C.

DUMPPTN Writesthecurrent extended simplex partitioninformationto theoutput
file.

DUMPXNAT Writes the current solution vector in natural order to the output file.

Table4 TheFORTRAN subroutinesPart B

117

ERRMSG Definition of parametrized error messages common to FORTRAN
and C routines.

ERRS Definition of parametrized error codes common to FORTRAN and
C routines.

FIXINTS Redefine bounds on all integer-feasible integer variables so as to fix
them at the current value. Used when exiting from the direct search
routinewith nointeger-infeasibilities so that acontinuousresol vewill
not alter the integer values obtained at so much effort.

ICHKNAT Seeif ith NATURAL variableis an integer.

ICHKPTN Seeif ith PARTITION variableis an integer.

IFBTOS Pivot integer feasible basics to superbasic. Needed in particular for
Berry model, in which 9 basics are integer-feasible at the continuous
solution. Precondition: CALCINF has been called or i’ is otherwise
up-to-date (eg by manual selection in disp.c).

INITIOPB Initialize the IOPB common block structure.

IOPB Definition of thel OPB (includefile). Thisfileautomatically generated
by the OPGEN program (see section 7.7).

NATTOPAR Returns the partition index of natural variablei, ieinverts Murtagh’'s
hb index.

NTOS Change status of nonbasic jns (optionally automatically selected by
this routine to be suitable for subsequent basis pivot—see
CHUZQNS/CALCJINS above) to superbasic. Also select as |~ for
subsequent pivoting into basis with basici’.

OPMSG Definition of parametrized operation messages common to
FORTRAN and C routines.

OPS Definition of parametrized operation codes common to FORTRAN

and C routines.

Table5 TheFORTRAN subroutinesPart C

118

SMQOV2

Assuming that all attempts to separately step integer superbasic
variables have failed, this routine tries simultaneous moves (four
possibilities) for two currently-chosen superbasic variables. Deltax1
and deltax2 are the POSITIVE forward steps separately required for
integer feasibility in the superbasics jsuperl, jsuper2. Precondition:
no integersin basis.

SPMOVCHK

Check if proposed step in superbasic variable x[iopb.jsuper] in
PARTITION order isfeasible.

SUPERADJ

Tries to step each integer-infeasible superbasic integer variable to
feasibility, checking after each one if by chance any basics have
become feasible—this actually happens in some highly-degenerate
0-1 problems such as Shanker, Berry. The present routine is called
during method loops M4, M5 in particular. NB Thisroutineis NOT
the same in function as C2P1 or C2P2.

SUPERM OV

Moves superbasic jsuper by deltax (positive or negative) and updates
X, f, g but first checks for constraint or ssimple bound violations by
calling SUPERMOVECHK.

UPDATXFG

Returns latest function value gradient, and reduced gradient. Also
updates pricing vector and reduced gradient norm.

Table6 The FORTRAN subroutinesPart D

119

7.7 Utility programs

During the development process, some simple but useful software tools were written. The
fundamental computing principle of having a single defining occurrence for each object
that a computer is going to eventually process, coupled with suitable tools for converting
such objectstothevariousformsrequired by existing software, wasthe overriding objective.
The present writer has a particular aversion to the reinvention of specific, well-known
whesels.

Accordingly, many tools were written—the primary ones being a FORTRAN dump code
generator, an M PSgenerator, aQl Pgenerator and agenerator for iopb commonblock include
file, error codes and error messages strings. Since mixed language programming was used,
it was very awkward to keep a single point of definition for parameters. operation codes,
error codes, messages etc so asto have consistency between the FORTRAN and C routines.
Pascal programs were written to automatically generate the C and FORTRAN sourcefiles
from a single definition of these parameters. Each utility program is described in further
detail below.

7.7.1 MPS gener ator

At an intermediate stage of the development and testing for the direct search techniques, it
was realised that a utility which would accept an algebraic description of aMILP and then
write a corresponding MPS file would be of great benefit. MPS files are not noted for their
ease of comprehension by human readers, but aredeliberatel y designed to be a suitableinput
format for MP problems. A simple linear expression parser and detection of ssmple bounds
plus building of symbol table were the main requirements, so that this program was
developed relatively quickly using Borland’ s Turbo Pascal ®, version 6.0.

Once this tool was available, problems could be expressed succinctly in normal algebraic
notation, and then the generator invoked to producethe MPSfile. Sincetheoriginal problem
was available in algebraic form, it could then be included in the present document in the
knowledge that no corruption of data had occurred, because of re-keying or other
unnecessary and error-prone duplication of effort.

120

7.7.2 QI P generator

For initial testing of the direct search methods, some small linearly-constrained QIPs were
very useful. These were provided by aspecial purpose program, GENQIP, writtenin Turbo
Pascal®.

7.7.310PB generator

Another program was written in Turbo Pascal® to read severa definition files containing
error codes, error message strings, operation codes, operation code descriptions, definition
of scalar parameterswhich would ultimately become elementsof aFORTRAN COMMON
BLOCK iopb (input/output parameter block), and correspondingly, a C structure. This
approach ensured that communication between the C and FORTRAN code was based on a
consistent, single point of definition for all objectsinvolved. Since only the starting address
of the FORTRAN common block is passed to the C routines, much stack overhead could
be avoided (only one pointer rather some 50 parameters was passed), to say nothing of
increased code readability and maintainability. As with most efforts toward code
improvement and generalization, this approach involved some considerable work initially,
but paid handsome dividends as the devel opment work proceeded.

Nevertheless, many frustrating hours were spent trying to debug very ssmple errors which,
while not detected in FORTRAN until run-time or link-time, would not have even got past
the compiler if amore modern language such as MODULA-2 had been used. Some further
comments on the limitations of FORTRAN appear in section 7.8.

7.8 Some FORTRAN traps

The decline and fall of the Roman number system provides an interesting case
study on the importance of codes and representations. It shows that a long time
Is needed to overthrow established systems, even when the alternatives are far
superior. A modern example of thisisthe QWERTY keyboard, which is used on
almost every typewriter and terminal. It is known that alternative layouts can
improve productivity by more than 30 percent, but who will make the effort to

121

change? What other examples of this phenomenon can you think of ? What about
computer character codesor programminglanguages. (emphasisours) — Hext

[37].

Thefollowing paragraphs contain some brief observationsfrom an experienced FORTRAN
programmer who prefers to avoid the language wherever possible. Despite the excellent
quality of the Lahey FORTRAN77 compiler (with useful extensions), the fundamentally
primitive nature of the FORTRAN language caused a very considerable amount of wasted
time when developing and debugging the MINTO/INTERACTIVE system. It should be
noted that the FORTRAN language only supportsindependent compilation as distinct from
separate compilation, which isafeature of modern languages suchasMODULA-2, Ada®,
or even Turbo Pascal ® (versions4.0ff). For definitionsof theseterms, thereader may consullt,
for example the excellent book by Booch [3].

It is worthy of note that when the United States Department of Defense requested
submissionsfor thedesign of anew languagefor all embedded systemssoftware devel opment
(culminating in Ada®), all five shortlisted designs were based on Pascal, a true
block-structured language unlike FORTRAN or C.

Problems experienced

1. Itwasnecessary to bevery careful when using array indexing. If INTEGER* 2 instead
of INTEGER*4 wereused, theresultswereessentially unpredictable, certainly without
delvingintolow-level details. It should not be necessary for an application programmer
in the 1990sto haveto resol ve such issues— such menial tasks can be performed with
ease by the programming language compiler if the language definition is sufficiently
precise.

2. It is rather inconvenient to have to pass severa dozen parameters, with resulting
problems with line-length just to get variable array dimensioning. It isindeed ironic
in a language which does not permit long identifiers that problems of this kind are
encountered.

3. Debugging facilitieswererather primitive, although any debugger isbetter than none.
Theloosetype-checking andimplicit typinginherentin FORTRAN aretheroot causes
of so many unnecessary (from the point of view of programming-language design)
debugging problems that they simply do not bear mentioning. One example only:

122

forgetting toincludearequiredincludefilefailsto elicit an error diagnostic from either
compiler or linker when an undeclared object is referenced, because of the archaic
FORTRAN system of implicit typing.

4. Poor subprograminterface checking—only at run-timecanthisbedonein FORTRAN
unless one has accessto alanguage-sensitivelinker whichisaware of the independent
compilation of FORTRAN, C and related languages— unlike languages such as Ada
and MODULA-2.

5. FORTRAN issowoeful whenit comesto /O, especially screen|/O that it wasdecided
to write the interactive display program in C (another detestable language, however
the Lahey F77 compiler used had no link to the preferred languages Pascal or
MODULA-2). The FORTRAN-C interface means that even less type-checking and
interface checking thanusual in FORTRAN can be done. Asnoted el sewhere, aspecial
program was written in Pascal to read files containing definitions of operation codes,
error codes, parameter block and generate FORTRAN and C code to be included at
compiletime.

6. IMPLICIT NONE could not be switched on (to get maximum possible compile-time
checking) because of existing large volume of code.

7. Run-timeerrorssuch asnon-existent subroutinesimply hang the system, whereaswith
a modern language such as MODULA-2 it would not even get past the compiler or
linker!

Includefiles

Many include fileswere used during development. The prime advantage with this approach
when writing in disparate languages is to ensure a single point of definition for parameters
and common-block variables. It would be possible of course to write automatic checkersor
source-code generators (as outlined above), but surely this highlights the fundamental
limitationsof thehopel essly dated approach of FORTRAN —even FORTRAN77—tobasic
Issues such as type-checking and declaration of all objects before use.

123

7.9 ldeasfor futurework

As the algorithmic development work proceeded, the rate at which new ideas for search
procedures were being created far outstripped the rate at which such ideas could be
implemented and tested. This is certainly not a new phenomenon, and is to be expected,
giventhecurrent poor collection of high-level languagesavailablefor therapid devel opment
of easily-maintainable mathematical programming software. Thus, at the time of writing,
we still have severa strategies which are as yet untested. A brief summary of those which
seem to hold promise is given in this section.

Much time was spent on development work, both FORTRAN "workhorse" routines, and
aso the C interactive code. Some further work simply exercising this code would be most
valuable since the basic tools are there for skilled user (ie optimization researcher) to
experiment with various approaches based on Murtagh and Saunders' fundamental ideas of
superbasic variables and search in the reduced space.

Anideainspired by the Shanker & Tzen problem of Chapter 13 isthat, for the j heuristic,

we may aso need to relax the requirement of "short step”. In fact, the development code
has been altered to compute two j s, viz one corresponding to a "short" step to integer
feasibility for the chosen basic variable, and one corresponding to a"long" step. We prefer
the short step, since this is more likely to stay closer to the continuous solution, or
alternatively, suffer a smaller deterioration in objective. However, if no suitable | can be
found for the short step, we may choose to take the long step. In fact, this has actually been
implemented in the latest version of the code.

Concerning CYCLEZ1, ie movement of selected nonbasics in order to achieve integer
feasibility in a chosen basic variable. A pre-condition of this part of the search is that we
start at the continuous solution, even if some B <> S pivot operations have already been
done. Animplication of thisfact isthat on the first iteration, the reduced gradients are zero
(weareat aconstrained continuousoptimum). Thus, onthefirstiteration, we cannot estimate
the change in objective on the basis of first-order information, nor can we choose j” on the
basis of "stegpest descent”. The reduced Hessian will in genera give information adequate
to find a nonbasic giving smallest increase of objective.

On subsequent iterations we wish to choose a nonbasic x. 10 give steepest descent for

objectiveand integer feasibility on anindependently-choseninteger basicvariable x,.. This
will of course not be possible in general, but it would be a shame to missit if the chance
came up. Therefore it is proposed that we should detect it, but degrade to another choice
for j” (seelater) when it doesn’t happen (most of the time)— it should not be too expensive

124

to compute. We also must of course maintain feasibility of other basics. We may therefore
speak of a"feasible " to get integer feasibility for our chosen basic which is hopefully a
descent, but in general is chosen to minimize any increase in objective.

Since Af = kj*ij*, afirst order estimate of Af isknown immediately for each eligible

nonbasi c. Scan such nonbasicsand keep track of thebest feasible |, iesuchthat Af issmallest
(most negative). The best feasible | will oftengive Af >0 (infact thismust besoinitially).
Further, there may be no feasible | at all, ie"event 3" doesn’'t happen this time around.

If thisis the case then we accept one of the other outcomes as defined in Murtagh’ s paper
[59]. Having already chosen Xxg;,, On every iteration we need to ask the question, "is the
current nonbasic x; afeasible descent candidate, ieis

A, signum(Ax) < -tolrg ?

where tolrg is the reduced gradient tolerance. Also, is it going to take us in the correct
direction to get the basic X, feasible? We could easily go the wrong way and waste any
benefit of having computed the basic with least integer-infeasibility. It is clear that thereis
some room for refinement of these heuristics.

125

Chapter 8

Computational experience | —Resultsfor
counterexamples

8.1 Introduction

The observations made in Chapter 5 were confirmed by running the counterexamples and
using old and new methods. We present details only for the first of the examples below,
since the others give no further insight.

8.2 Example 1—general comments

Running example 1 of Chapter 5 using MINTO/INTERACTIVE confirmed the
non-termination of CYCLEL of Murtagh’s direct-search approach (the present M1). As
diagnosedin Chapter 5, themethodfail sbecausethereisnot enough " freedom of movement".
In particular, the presence of only one nonbasic j~ at the continuous solution, for which Ol

Is small does not allow our target integer variable x, to move to integer feasibility before
our solitary nonbasic hits its other bound.

Invocation of the present M4 followed by a simple superbasic step gives the (globally)
optimal solution to this problem.

It is interesting to note also that our contrived continuous partition for this problem is not
so different from the actual partition at the continuous MINTO solution. Our partition has
X1, X, basic; x,, X5 superbasic and x; nonbasic at lower bound O; whereas the continuous
MINTO solution has the same basis, but no superbasics (X, X, X; are all nonbasic at 0).

126

Nevertheless, application of Murtagh’s procedure (the present M1) to this latter MINTO
solution yields x = (2.2, 2,1.0,0.0, 0.4)" with objective value 1.25, which islocally optimal
with respect to the integer restriction but clearly inferior to the global optimum
x =(1.2,2,0.0,0.0,0.5)" with objective value 0.25 obtained by the present M4.

It should be noted however that continuous reoptimization after Murtagh's heuristic with
X, fixed then gives the same result as M4. The fina partition for M1 has x,, X; basic; x,
superbasic; X; nonbasic at upper bound 1; X, nonbasic at lower bound O, whereas that for
M4, while having the same basis, has x,, X, superbasic, and x; honbasic at lower bound O.

As stated in Chapter 5 (table 2), it is clear that we need access to the superbasics even for
CYCLEL1 and even for simple linearly-constrained QIPs to achieve global optimality, or
even to achieve integer-feasibility. Thus we conclude that there exist problems for which
M1 is unsuitable, and in particular, does not terminate, except if the customary iteration
limit guard isimposed. This result confirms the observations made in Chapter 5.

8.2.1 Objective function/gradient routine CALCFG

SUBROUTINE CALCFG(MODE,N,X,F,G,NSTATE,NPROB)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 X (N) ,G(N)

COMMON /IOCOMM/ IREAD,IPRINT

* %

** counterexample 1
* %

f = (x(1)-1.2)**2 + (x(2)-2.5)**2 4+ x(3)**2
g(l) = 2.0%(x(1) - 1.2)
g(2) = 2.0*(x(2) - 2.5)
g(3) = 2.0*x(3)
g(4) = 0.0
g(5) = 0.0
RETURN
END
8.2.2 MPSfile

BEGIN SPECS FILE FOR counterl

MINIMIZE
ROWS 200
COLUMNS 400

127

ELEMENTS 2600

INTEGER VARIABLES 5
NONLINEAR VARIABLES 25
PRIORITY NO
LIST LIMIT 200
DIRECT SEARCH METHOD 99
FIX INTEGERS YES
END SPECS FILE FOR counterl
*
*
*
NAME random
ROWS
E ROW1
E ROW2
COLUMNS
x1 ROW1 1.0000
*
MARKER INTORG
X2 ROW2 1.0000
MARKER INTEND
*
x3 ROW1 -1.000
X3 ROW2 0.100
*
x4 ROW1 1.0000
*
x5 ROW2 1.0000
*
RHS
B ROW1 1.2
B ROW2 2.5
BOUNDS
LO BD x1 0.0000
UP BD x1 5.0000
LO BD X2 0.0000
UP BD X2 5.0000
LO BD X3 0.0000
UP BD X3 1.0000
LO BD X4 0.0000
UP BD X4 100.00
LO BD x5 0.0000
UP BD x5 100.00
ENDATA
8.2.3 Continuous solution
PROBLEM NAME counterl OBJECTIVE VALUE 0.0000000000E+00

SECTION 2 - COLUMNS

128

NUMBER

i
o Ul A W N R

.COLUMN.

x1
X2
x3
x4
x5
B

AT

BS
BS
LL
LL
LL
EQ

.. .ACTIVITY...

P O o o

.20000
.50000
.00000
.00000
.00000
.00000

8.2.4 Output for method O (branch-and-bound)

PROBLEM NAME

SECTION 2
NUMBER

b
o Ul W N R

counterl
- COLUMNS
.COLUMN. AT
x1 BS
x2 v
x3 LL
x4 LL
x5 BS
B EQ

OBJECTIVE VALUE

.. .ACTIVITY...

1

P O oo N

8.2.5 Output for method 1

PROBLEM NAME

SECTION 2
NUMBER

b
o Ul W N R

counterl
- COLUMNS
.COLUMN. AT
x1 BS
x2 v
x3 LL
x4 LL
x5 BS
B EQ

.20000
.00000
.00000
.00000
.50000
.00000

.. .ACTIVITY...

P O o o N

.20000
.00000
.00000
.00000
.50000
.00000

8.2.6 Output for methods2 and 3

PROBLEM NAME

SECTION 2
NUMBER

- COLUMNS
. COLUMN.

counterl

AT

.. .ACTIVITY...

OBJECTIVE VALUE

OBJECTIVE VALUE

129

2.5000000000E-01

2.5000000000E-01

2.5000000000E-01

1

2
A 3
A 4

5
A 6
Notes

1. Itisinteresting to observe that both M2 and M3 arrive at the correct global optimum
on their own! However M2 does this with our starting partition and M3 with the

x1
X2
x3
x4
x5

BS
Iv
LL
LL
BS
EQ

P O oo N B

MINTO starting partition.

2. For M2, starting with our partition (2 superbasics), the number of superbasicsremains
at 2. For M3, startingwithMINTO partition (O superbasi cs), thenumber of superbasics

at the integer solution is 1.

8.2.7 Output for method 4

PROBLEM
SECTION
NUMBER

g
o Ul W N R

NAME counterl

2 - COLUMNS

. COLUMN .

x1
X2
x3
x4
x5
B

AT

BS
Iv
LL
SBS
BS
EQ

.20000
.00000
.00000
.00000
.50000
.00000

.. .ACTIVITY...

1.
.00000
.00000
.00000
.50000
.00000

P O o o

8.3 Resultsfor example 2

20000

OBJECTIVE VALUE

These were identical to those for example 1.

130

2.5000000000E-01

8.4 Resultsfor example 3
For thisexample, M 1 works as expected (no superbasic step after termination of the method

was required. M2 and M3 both fail to remove integers from the basis, while M4 succeeds
on its own (no superbasic step required).

131

Chapter 9

Computational experiencell —An example
from Ravindran et al*

This section reports computational experience with avery small quadratic integer problem
from Ravindran [77], 472ff. It isrecognized that this problem is rather trivial, however we
include it because of a notable comparison between certain of the new methods and the
branch-and-bound integerizing procedure of Murtagh’s MINTO code.

Description of the problem

maximize
13x, — 5% + 302x, — xX + 10x, — 2.5% (197)
subject to
2x;, + 4, + 5% < 10 (198)
X, + X + X < 5 (199)
X, X, X3 =0 (200)
All x; integer.

1 Ravindran, Phillips and Solberg.

132

A screen snapshot of the solution parameters after invocation of M4 is given in figure 30.

4 R
i hbinv hs bl x bu gradient red g
. 1 4 2 0 3.00000 2.5e+04 0 -20.2
* 2 3 2 0 1.00000 2.5e+04 0 =7/
* 3 0 0 0.00000 2.5e+04 -20.2 0
4 0 =dl, -1.00000 -1 =¥/ 0
5 1 3 0 0.00000 le+20 0 0
6 2 3 0 1.00000 le+20 0 0
newx 0| #Binf 0|j* 011 0|j** 0|m 2| imn 0
dx -0.34444 | #Bfeas 0|j*shrt 5112 0|ol 1in 6|icsr 0
obj -55.2 | #Sinf 0|j*long 013 1|jmin 1|ns 2| imx 5
01 le+20 | #Sfeas 2 event olj""’ 0|nl 2 | pgsz 10
02 le+20|auto OFF |art? N [i’0 0|jsup 4 |nu 0|csr 4
03 0|opcode 32 i1 0|jns 0|ni 3
04 le+20|errcode O0|its 1)1 0|c’ 0
il -Help I -N-->S ige] -Calcj* i -BSpiv Iy -CalcO Iy -NStep
Il -Setdx I -Calcj** |3 -AutoNS 1INl - S - - >NL IEl-FixInts |3#4-Quit!
4

_

Figure30 Ravindran example optimal solution obtained using M4

Notes

1.

The published optimal solution in Ravindran et al [77] isX = (3,1,0)7, with
objective value 55.2. The continuous solution objective is 56.268.

MINTO using branch-and-bound with default node selection and branching options
arrives at a suboptimal solution xX° = (1,2,0)", with objective 52.4.

Using any of the present methods M2, M4 or M5 yieldsthe published optimal solution
without branch-and-bound being required at all. Further, no superbasic steps are
required after termination of the Mn—the solution isinteger feasible and optimal.

133

Chapter 10

Computational experiencelll —A plant
upgrade problem

This problem is taken from Daellenbach, George and McNickle [11] and is cited in
Mawengkang [48] where he solvesit using the earlier direct search method of Mawengkang
and Murtagh [48, 49].

Introductory description of problem

An electrical manufacturer wishesto upgrade its machinery as running costs are increasing
as machines begin to wear out or become obsolete. The present plant cannot meet a recent
increased demand. Two types of wire are produced by the manufacturer: bare wire and
insulated wire. The problem ultimately reducesto the determination of the configuration of
the new plant such that production costs are minimized while ensuring that demand is met.
A more detailed description may be found in Daellenbach, George and McNickle [11].

Mathematical statement of the problem

Let y, bethenumber of machines of optionsi, and x; be the proportion of annual machine

time on machines of optionsi to producewiresizej, (i =1,...,5 and] =1,2). Thelinear
objective function isthe total running cost, represented by P, and the problem is:

134

minimize

P = 30y, +33.6x;, +32.88x,, + 50y, + 47.4X,, + 47.04x,, + 80y, + 58.8%;,

+57x,, + 100y, + 62.4x%,, + 54.7X,, + 140y, + 86.4x,, + 82.8x.,

subject to

5880x,, + 8820X,, — 7200x,, — 9600x,, > 3000

4704, + 8232X,, — 6000x,,— 7800x,, > 2000

6984x,, + 9312x,, + 9312x;,

5820x,, + 7566X,, + 6984X.,

yl 2 Xll + X12
y2 2 X21 + X22
y3 2 X31 + X32
y4 2 X41 + X42
Ys 2 Xu t Xy
y, < 2

Y + Ya =1

X; 2 0, 1=1...,5;
y, = 0, andinteger,
Results

>

>

14000

10000

(201)

(202)
(203)
(204)
(205)
(206)
(207)
(208)
(209)
(210)
(212)
(212)
(213)
(214)

(215)

Resultsaretabul ated overleaf and agreewith the published valuesfrom Daellenbach, George

and McNickle. Solution vectors and objective were identical in all cases.

135

ocT

'S91[1qsesul-Jebeiul o1seqedns Jo Jeguunu sy pue sanijiqsesjul-iebeiul d1seq Jo BgWiNU 8Y) JO WNS 8yl S1eneASIYL T

Slepwe fed Joulw ppow ape.lbdn jueld /a|qel

T T 0 € 0 g Son|iqsesul-eleul #
14 14 c 14 14 1% nu ‘punog Jeddn Je solsequou #
6 6 1T 4) 6 €T |u ‘punog MO e Sosequou #
9/9°6CL 9/9°6CL 9/9°6CL 9/9°6CL 9/9°6CL 8Tv'ST.L annm®elqo
14 14 14 T 14 0 soseqledns #
€ € 14 T 14 0 soiseqiedns a|q Sea)-leboiul #
T T 0 0 0 0 soseqadns a|q seajul-leul #
0 0 0 0 0 € SoIseq 9| sea-Jebelul #
0 0 0 € 0 c soseq a|qsesul-Rehoul #
g U ‘'s3|qelien »ebeul #
oS u ‘(Sxefs jpul) suwn|oo #
€T w ‘(lgo jour) smou #
uonnjos
SN YIN EN ¢N T | Snonuluod
SATAV RPUY RUY RPUY RPUY w Anuend

LET

"PuUNog-pue-Loue.q s1 0 POUB N 7

"pa1Inba. SayoIeas-aul| JO JBgUINU B} Se PaInsesW SISIYL €

"NO PaUR1INS UoTIeieusB 9pod 110-zg UM WeisAS /8£08/98508 ZHINOZ & UO Uny Z
'S9TRUIWLBY U Uoee Je1fe pexI) Se|delieA a|qises)-ebew| T

Arewwns s1nsa J ppow apelbdn jue|d gajqeL

8T T € T 9/5'6¢L SN
8T T € T 9/5'6¢L YN
Tc [€ 0 9/5'6¢L EN
0¢ 4 € € 9/5'6¢L ZN
ar [€ 0 9/5'6¢L TIN
8T [€ 14 9/5'6¢L HOW
8 [T VIN 8TV'aTL snonunuo)
sapou
Suolre el -(098) punog-pue
SONIN | setoeeusbap # swuny -youe.uq # an»Iqo ©pow uny

Chapter 11

Computational experience |V —A heat
exchange networ k optimization problem

This problem is taken from Papoulias and Grossmann (1983) [70] and is cited in
Mawengkang [48] whereit issolved using the earlier direct search method of Mawengkang
and Murtagh [49]. The problem isamixed-integer linear program. In achemical processing
system, the heat exchanger network must integrate the hot and cold streamsin a process so
that the amount of heating and cooling utilities required is minimized. A more detailed
description of thisexample may be found in the original paper by Papouliasand Grossmann
[70].

Mathematical statement of problem
minimize
YAAO01+YABO1+YACO1+YADO1+YAEO1+YBAO1+YBBO1+

YBCO01+YBDO0O1+YBEO1+Y CA01+Y CB0O1+Y CCO1+Y CDO1+
Y CEO1+YDAO1+YDBO0O1+YDCO01+YDEO1

subject to
QADO01 = 120.0
QADO01 + RAO1 = 600.0
QADO02 + QBD02 = 240.0
QADO2 - RA0L1 + RAO2 = 300.0

138

QBDO2 + RB02 = 60.0

QACO3 + QBCO03 + QCCO3 = 160.0
QADO3 + QBDO03 + QCD03 = 600.0
QACO3 + QADO3 - RAO2 + RAQ3 = 750.0
QBCO03 + QBD03 - RB0O2 + RB03 = 120.0
QCCO03 + QCD03 + RCO3 = 3200
QAAO4 + QBAO4 + QCA04 + QDAO4 = 200.0
QABO4 + QBB04 + QCB04 + QDB04 = 300.0
QAC04 + QBCO4 + QCCO4 + QDC04 = 3200
QAAO4 + QABO4 + QACO4 - RAO3 + RA04 = 600.0
QBAO4 + QBB04 + QBC04- RBO3+RB04 = 0.0
QCA04 + QCBO04 + QCCO4 - RCO3+RC04 = 0.0
QDAO4 + QDB04 + QDCO04 + RD04 = 360.0
QAAOQ5 + QBAOS + QCAO5 + QDAO5 = 400.0
QAEQ5 + QBEO5 + QCEOS5 + QDEQ5 = 1179.9999
QAAOD5 + QAEQ5 - RA04 + RAOS = 150.0
QBAO5 + QBEOS - RB04 + RB05 = 00
QCAO5 + QCEO5 - RC04 + RCO5 = 00
QDAO5 + QDEO5 - RD04 + RD05 = 360.0
QAA06 + QBAOG + QCA06 + QDA0B = 100.0
QAAD6 - RAD5 < 00
QBAOG - RBO5 = 00
QCAO06 - RC05 = 00
QDAO06 - RD0O5 = 00
QAAO04 + QAADS + QAADG - 7TOOYAAOL < 0.0
QABO4 - 300YABO1L < 00
QACO3 + QACO4 - 480Y ACO1 < 00
QADO1 + QADO2 + QADO3 - 960YADOL < 0.0
QAEQ5 - 1179.9999Y AEO1L < 00
QBAO4 + QBAO5 + QBAO6 - 180YBAOL < 0.0
QBBO4 - 180YBBO1 < 00
QBCO03 + QBCO4 - 180Y BCO1 < 00
QBDO02 + QBDO3 - 180YBDO1 < 00
QBEO5 - 180Y BEOL < 00
QCA04 + QCA05 + QCA06-320YCAOL < 0.0
QCBO4 - 300Y CBO1 < 00
QCCO03 + QCCO04 - 320Y CCO1 < 00
QCDO03 - 320Y CDO1 < 00

139

QCEOS - 320Y CEO1 < 0.0
QDAO4 + QDAO5 + QDAOG6 - 700YDAO1 < 0.0
QDB04 - 300YDBO1 < 0.0
QDCO04 - 480YDCO1 < 0.0
QDEO5 - 720Y DEO1 < 0.0

and also subject to

YAAOQL, YABO1, YACO1, YADO1, YAEOQ1, YBAO1, YBBO1,
YBCO01, YBDO1, YBEO1, YCAO1, YCBO01, YCCO01, YCDO01,
YCEO1, YDAOL, YDBO01, YDCO01, YDEO1 € {0,1}

Results

Results for this problem are summarized in the tables overleaf.

140

Wi

'S91[1qisesul-Jebeiul o1seq.edns Jo Jequunu 8y pue sai|igsesjul-Jebeiul d1seq JO Jeguunu 8y JO WNS 8yl S1aNEASIYL Z

"9eUILLLIB) 0] P3| 12} PUe ‘dels J1sequou Uo pajoAd ainpaooidsiy] T

Slepwe jed Joulw ppow abueyoxs 1eaH 6 9|0e.l

17 17 T 9 17 / SonI|iqsesjul-ebol #
T T T T T T nu ‘punoq Jaddn e soisequou #
A% A% 8 €S 99 99 |u ‘punoq JeMo| Je sdisequou #
€809'S €809'S €809'S €809'S €809'S €809'S aARI[go
6T 6T 8T €T GT 0 soseqadns #
1) 1) 8T €l qT 0 soseqJedns a|qisea }-ebelul #
14 14 0 0 0 0 soiseqedns a|qSeajul-Jebolul #
0 0 0 0 0 €T SoIseq | sea-sebelul #
0 0 T 9 14 9 soseq a|qsesul-Rehoul #
61 U ‘'s3|qelien »ebeul #
V1T U ‘(Syefs jpul) suwn|oo #
A% w ‘(lgo pur) smou #
uonnjos
SNoNuIU02
GIN BPUY | YIN BUY | EIN BUY | 2N BPUY | TN BUY w Anuend

A4}

"9]eu ILR) 0] P3|} puUe ‘dals JI1Sequou Uo Pa[oAd 8inpaco.d SIU) 8ouls pare|ngel 10U TN G
"puUNog-pue-youe.d s1 0 POUB N 7

"pa1Inba. Sayo1eas-aul| JO JBgUINU B} Se PaInsesW SISIYL €

"NO PaUR1INS UoTIeieusB 9pod 110-2g UM WeisAS /8£08/98508 ZHINOZ & UO Uny Z
'S9TRUIWLY U Uoee Je)fe pex|) Se|delieA a|qises)-ebew| T

Arewiwns s1jnsa . ppow abueyoxe JeaH QT a|qe L

1772 oT oT cl 008 SN
8L LT TT ¢l 008 YN
TTT 6T A oT 008 EN
78 8T oT LT 008 <IN
[AZA> oT Lcc 8144 008 HOW
ac ar 14 VIN €809'9 snonunuo)
sapou
Suolre el -(098) punog-pue 2pouwl
SONIN | Sa10eRUBaP # awin uny -Youe q # ann®lgo uny

Notes

1.

This problem was solved successfully using the new direct search methods which
yielded a minimum of 8.0, in agreement with the previously published minimum of
Papoulisand Grossmann[70], whousetheLINDO [85] codeto obtainit. Theminimum
obtained by Mawengkang [48] for the same problem was 9.0 (this seems to be a
typographical error on the part of Mawengkang).

For this problem, the heuristic of Murtagh (essentially the present M 1) has problems
with cycling. One benefit of MINTO/INTERACTIVE isthat such cycling usually is
obvious from the on-screen behaviour as updated parameters are displayed on each
traversal of the search loop.

We observe that the present direct search methods (followed by a short
branch-and-bound) achieve integer feasibility and indeed local optimality for this
problem, in a much shorter time than branch-and-bound alone.

143

Chapter 12

Computational experienceV—Two
examples from Myers'

A recent contribution to linearly-constrained NLIP by Myers (1984) [66] examines several
strategies for improving the efficiency of branch-and-bound and the use of Lagrangian
relaxation for linearly-constrained mixed-integer problems. The twenty test problems he
presentsareall purely integer, linearly-constrained, and with separable nonlinear objective.

We have solved severa of the test problems listed in Myers dissertation, in some cases
obtaining much-improved optima. Dueto limitations of space, computational experienceis
reported with only the first two of Myers' problems here.

12.1 Myersproblem #1

The Myers problem #1 is defined as follows

1 PhD dissertation of D.C. Myers.

144

minimize

f = 4.0exp(x) + 5.0exp(-0.4x,) - 2.0x,
+ X + 30x + 01 + X
— In2.0x,+1.0) — InX+3.0 + x5
— 40x, + X3 4+ %+40

subject to

—3X; — 2%, 4+ 2%, — X+ 3Xs— X, — 2%y, = —26.6

—2X, — SXg+ 44X — 2%+ 2%+ 2%, = 6.6

X+ 3%+ 3K — 2%, + 6X, + X+ 2%,y = 57.7

—3X; — 2%, — Xy + X, — AXg — X+ 84X, — g — g+ 2Ky 2

Xp 4+ 2%+ 2X3 — 3%, — X — 2% — Xg + 6% — 3%, = —-10.5

2K+ X, — 2%+ X+ X+ 2%+ 3Xg— 48X,y = 7.5

—2X, + 5% — 3, — X+ Xs— X, — %, = —-20.5

OX; + 2%+ Xg— Xy + 44X — Xg— 2%, + 3%+ 3%, = 35.1

All x; integer and nonnegative.

145

—-5.8

(216)

(217)
(218)
(219)
(220)
(221)
(222)
(223)

(224)

ot

'S91[1qsesul-Jebeiul o1seqedns Jo Jeguunu sy pue sanijiqsesjul-iebeiul d1seq Jo BgWiNU 8Y) JO WNS 8yl S1eneASIYL T

Slepwe ed Joulw T we|goidseAN TTo|gel

Z Z g g g 8 Sonl|iqsesul-eleul #
0 0 Z g Z G nu ‘punoq Jeddn Je solsequou #
€ € € € € € |u ‘punog ,BMO| Je Soisequou #
ey o- ey o- GTEL’0- 0.LE¥°0- GT1E€L’0- 20S88°0- anneigo
8 8 9 € 9 € soleqedns #
9 9 € € € 0 soseqJedns a|q1Sea)-Jeboiu! #
Z Z € 0 € € soIseqJedns a|qseajul-eloul #
0 0 0 0 0 0 SoIseq | Isea-Jebelul #
0 0 c] c q soseq a(qsesul-Rehoul #
0T U ‘'s3|qelien »ebeul #
0c u ‘(Sxefs jpul) suwn|oo #
6 w ([go fout) ‘smou #

uonnjos

SNoNUIIU02

GIN BUVY| YN BUVY| EN BUVY| ZIN BUYV| TN BUV w Anuend

yAd)

"PuUNog-pue-youelq si 0 POYIB I €
"pa1Inba. Sayo1eas-aul| JO JBgUINU B} Se paInsesW SISIYL 2
"NO PaUR1INS UOTIeieusB 9pod 110-ZE UM WeisAS /8E08/98E08 ZHINOZ © Uo uny T

Arewwnssyinsal T we|goldseAN ZT 9|gel

Gy 0 1474 62 88 186'6¢ SN
VA% 0 31474 62 88 T86'6¢ 14
S6 0 ocT 9 14" L8TL°) EN
06. T 189 1517 art T6°€0T ¢N
S6 0 €st 6 14" L8TL'L TIN
OTT 0 eect 09 79T 900 OWN
14 0 Ly € VIN G88°0- snonunuo)
sopou
Suolreell| sseuUeleq | S|eo 1welpeld ;(038) punog-pue
SONIIN #| Ppue uoloun4 aw uny -Youe g # aA® (g0 apow uny

Notes

1.

The results of running the various methods for the present problem from Myers
dissertation are given in tables 11 and 12. With respect to Myers' published result
[66], some improved optima were obtained using the direct search methods M 1-M4,
although, notably, none was able to obtain the MINTO’ s branch-and-bound (MO)
solution having objective 2.04 (M3 did come reasonably close in amuch shorter time
than M0). Of course, the price paid for this improved minimum is extra computation

time.

The minimum claimed by Myersfor thisproblemis98.33at (2,3,0,1,1,0,5,5,1,4)",

but on eval uation of the objectiveat thispoint, theresultis94.33. Inview of thelexical
similarity of thetwo values, it would seem that 98.33 isa simple typographical error,

and the correct valueisin fact 94.33.

Only M2 fails to improve on the minimum found by Myers.

12.2 Myers problem #2

The Myers problem #2 is defined as follows

minimize

f = -20Inx,+15 + 3.0x, + exp(0.4x,)
—InBx,+2) — 40x, + X + X
+ 2.0x — 50x, + 4.0 + 3.0exp(—xy)

+ X + 40 — 3.0vXgp

subject to

—3X; — 2%+ 2%, — X+ X — X, — 2%, = —26.6
—2X, — SXg+ 4% — 2%+ 2%+ 2%, = 6.6
X+ 3%+ 33X — 2%, + 6X, + X+ 2%,y = 57.7

—3X; — 2%, — Xy + X, — AXg — X+ 44X, — g — X+ 2X,; = 5.8

148

(225)

(226)
(227)
(228)

(229)

X, + 2%, + 2% — 3%, — 3% — 2 — Xg + BXg— 3%, = —10.5 (230)

2X, + X, — g+ X, + X+ 2%+ 3X,—4X,, = 7.5 (231)
—2%, + 5%y — 3K, — e+ Xg— X, — X, = —20.5 (232)
BX, + 2X, + Xg — X, + A% — Xg— 2%, + g+ 3%, = 35.1 (233)

All x; integer and nonnegative.

149

0ST

'S91[1qsesul-Jebeiul o1seqedns Jo Jeguunu sy pue sanijiqsesjul-iebeiul d1seq Jo BgWiNU 8Y) JO WNS 8yl S1eneASIYL T

Slepwe fed Joulw z we|goidseAN €T a|gel

0 0 € g g L Sonl|iqsesul-eleul #
0 0 T G e G nu ‘punog Jeddn e solsequou #
€ € € € € € |u ‘punog ,BMO| e Sosequou #
78T'9¢ 78T'9¢ G/8¢C 9/G°¢C- T61°0- TSST - ann®Igo
8 8 L € S € soseqedns #
8 8 S € € 0 soiseqedns a|q Sea)-leboiul #
0 0 Z 0 Z Z soiseqJedns a|qiseajul-eloul #
0 0 0 0 0 T So1se(q 3|q1Sea-ebolul #
0 0 T] € q soseq a|qsesul-Rehoul #
0T U ‘'s3|qelien »ebeul #
0c u ‘(S fs jpul) suwn|oo #
6 w ([go four) ‘smou #

uolinjos

SnoNnuuol

GIN BUY| VIN BUV| EN BUV| CN BUYV| TN BUYV w Anuend

TGT

"PuUNog-pue-youelq si 0 POYIB I €
"pa1Inba. Sayo1eas-aul| JO JBgUINU B} Se paInsesW SISIYL 2
"NO PaUR1INS UOTIeieusB 9pod 110-ZE UM WeisAS /8E08/98E08 ZHINOZ © Uo uny T

Arewwnssyinsal g we|gold s AN T 9|0el

{4 0 ve 4 0 8T'9¢ SN
104 0 12> [0 819¢ YN
44} 0 act 8 6c eorT EN
9G 0 18 S 14" 61°9¢ ¢N
€6 0 0LT 6 6T 61°9¢ TN
66.T 0 LT/T €6 ot 8E'€C O
a1 0 104 [V/N aGTv- snonunuo)
S|ed sopou
Suolreell| sseseuslbeq |1uwsipelf pue ;(038) punog-pue
SONIIN #|uonouny # awi uny -youe g # aA® (g0 apow uny

Notes

1.

The results of running the various methods for the present problem from Myers
dissertation aregivenintables 13and 14. Onceagain, with respectto Myers' published
results [66], some improved optima were obtained using the direct search methods
M1-M4. In fact, all Mn but M3 improved on Myers' published value of 28.55.

Our MO, ie branch-and-bound, achieves an objective of 23.38 which is superior to
Myers' published value of 28.55.

M4 and M5 achieve integer-feasibility with no need for branch-and-bound. This
much-reduced computation timeis of course at the expense of a suboptimal solution.
However, the solution obtained in this way is still superior to Myers' published
solution.

152

Chapter 13

Computational experience VI —A loading
and dispatching problem in a random
flexible manufacturing system

In this chapter we report computational experience in solving an example of awell-known
class of problems being increasingly reported in the optimization literature. Werefer to the
class of loading and dispatching problemsin arandom flexible manufacturing system, and
the example considered in this chapter was reported by Shanker and Tzen (1985) [86].

Detailed accounts of this problem are given in the original paper by Shanker and Tzen [86],
and also in the dissertation of Mawengkang [48], who solved it using asimilar approach to
one of the present direct search direct techniques. Mawengkang also presents a useful
summary of previousattacksonthisclassof problems, including variationson the ubiquitous
branch-and-bound approach. Accordingly, only a brief description and algebraic
formulation will be given here. In a nutshell, the problem is in fact a mixed-integer linear
program (MILP) involving 41 binary variables, 8 continuous variables and 29 constraints.
An original formulation contained one nonlinear constraint, but thisis easily transformed
out of the problem. Both formulations are given in Shanker and Tzen [86], and we consider
here the linear formulation only.

153

Brief description of the problem.

Thefollowing gives only the essential variablesinvolved in the example being considered.
For full detailsof the general model, the reader may consult the paper by Shanker and Tzen
[86]. The objective is designed for workload balancing and minimization of late jobs.

Decision variables

1; ifjobi selected (234)
X = {O; otherwise }
1; if operationk of jobi isassigned on machine (235)
Xik {O; otherwise }
O, = overload on machine | (236)
U, = underload on machine | (237)
where
i = 1,..m (238)
k = 1,...,y (239)
i = 1,...,n (240)

Problem statement

Objective
minimize
0,+0,+0,+0,+U, +U,+ U, + U, —500x, — 0.0007x, (241)

—0.0013x, — 500x, — 0.0015x; — 0.0014x, — 0.0006x, — 0.0005x,

subject to the following:

154

Tool slot constraints

Xo11F+ 2Xa11 + Xear + Xgo1 + Xgr1 + Xga +Xgpy < O (242)
X113+ Xazg + Xaz+ 3+ Xoog + X135+ Xrz + X3 S O (243)
Xooat Xo1a+ g4+ Xaps + X+ Xepa + 3Xgzq + X4 S 5 (244)
Xozp + 2X512+ Xopp + Xggo + Xeo + X720+ Xg10F Ko+ Xg1o = Xo5 S D (245)
Xogp + oo = Xp5 < 1 (246)
Koz~ Xpp T 2X25 < 0 (247)

Uniquejob routing constraints

X+ %, <1 (248)
Xgat+Xg; < 1 (249)
Xep+Xgs < 1 (250)
Xepat Xep+ Xz < 1 (251)
XeptXemw < 1 (252)
X3+ Xop+ X, <1 (253)
Xgpp+Xppg+ X7y < 1 (254)
Xg11+Xgp+Xes < 1 (255)
Xgp+Xgy < 1 (256)

Non-splitting of jobs constraints

X=X = 0 (257)
Xog1 +Xo10+ Xoog + X3, — 3%, = 0 (258)
XgpatXgp +Xos—2% = 0 (259)
Xpz+Xey—2%, = 0 (260)

155

X512+X513+X522_2X5 = 0
X614+X624+X622+X623+X632+X631_3X6 = 0
X713 T X712 T X714 Koo + Xyo3 + Kooy + Xg3a — 3X7 = 0

X811 + X812 + X813 + X822 + X821 + X831 - 3X8 = O

M achine capacity constraints

225X51; + 338Xy, + 210Xg5, + 156X, + 325Xy,

+312Xg,, + 091%,,, + U, - O, = 480

198X5, + 198X, + 225X, + 210X45, + 070X, + 156X,

+228X,,,+ 091Xy, + 325%,,+ U,- O, = 480

144X, 15+ 143X5y5 + 084X ;5 + 198X5,5 + 070Xgp5 + 228X;44

+156X,,5+ 325X+ U;— O, = 480

216X,,, + 225X, + 338X, + 114X, + 160X, ,

+070Xg, + 276X,5, + 228%,,,+U,—O, = 480

I nteger requirements

All x and all x € {0,1}.

156

(261)
(262)
(263)

(264)

(265)

(266)

(267)

(268)

LGT

'S91[1qsesul-Jebeiul o1seqedns Jo Jeguunu sy pue sanijiqsesjul-iebeiul d1seq Jo BgWiNU 8Y) JO WNS 8yl S1eneASIYL T

SJepWre fed Jouiw ppPow UszZ| 3 JBYueys GIajgel

6 0T g 0T 0T 0T Sonl|iqsesul-elel #
g 9 9 9 9 9 nu ‘punog Jeddn Je solsequou #
0c % 8e % % 1% U ‘punog JMmo| e So1sequou #
000T- 000T- 000T- 000T- 000T- 000T- 9ANI00
9T c L Z Z 0 soseqsedns #
/ Z / Z Z 0 soiseqiedns a|q ISea)-lebelul #
6 0 0 0 0 0 soiseqJedns a|qseajul-eloul #
0 14 14 14 14 9 So1se(q 3|q1ISea-1ebolul #
0 0T g 0T 0T 0T SoIseq 3|qsesul-Rbeul #
TV U ‘'s3|qelien »ebeul #
08 u ‘(S fs jpul) suwn|oo #
6¢ w ([go fout) ‘smou #
uoinjos
EN ¢\ TW | Snhonuljuod
SN BUY| ¥ IN UV RPUY RUY BUY v Anuend

84T

"PuUNog-pue-youelq si 0 POYIB I €
"pa1Inba. Sayo1eas-aul| JO JBgUINU B} Se paInsesW SISIYL 2
"NO PaUR1INS UOTIeieusB 9pod 110-ZE UM WeisAS /8E08/98E08 ZHINOZ © Uo uny T

AJewwins S1INsaJ ppow usz] % Jeyueys 9T a|gel

991 1T aT ar 8Y'CT L0S eor- SN
6L oT 8 14" 8'SY'T 199 eer- YN
€00¢ TT TET ore L'€T €L6 ELY EN
TZE 14 €c 17 8'9's'v'CT Zs9 8re- ZN
6. oT 8 14" 8'SY'T 199 eer- TIN
TE€ZS €T 90¢ T9E 9'5Y'CT 44} 8/8- OWN
8¢ L 14 VIN VIN VIN 000T- snonunuo)
sopou

Suolre o]l saloe ;(08s) | punog-pue pa1%0BsS aoueequn

SONIN | -Jousbeq# swnuny| -youeig# sqor [exo1L ann»Iqo Spow uny

Discussion of results

1.

As stated by Mawengkang [48], the continuous solution to this problem contains 30
feasible binary integers out of 41. His process for achieving integer-feasibility was
successful and the result of total system unbalance = 370 is superior to that obtained
by any of the present Mn, which is somewhat incongruous, since his direct search is
essentially the present M 1.

It can be seen from table 16 that, while suboptimal, the present method M5 achieves
arespectableresult in terms of total system unbalance. The unbalance (507) isnot as
good as that obtained by branch-and-bound (122), but superior to the Shanker and
Tzen loading policy #5, which leadsto atotal system unbalance = 761. Note al so that
the run time on a20M hz 80386 PC with floating-point coprocessor for the present M5
Isonly 15 seconds, whereas branch-and-bound (MO) takes 306 seconds.

159

Chapter 14

Computational experienceVII —A

lar ge-scale nonlinear integer programming
model for joint optimization of
communications networ k topology and
capacitated traffic allocation

I ntroduction

This chapter is concerned with a NLIP model for the optimization of communications
network topology and traffic allocation which has been proposed by Berry and Sugden [2].

Classification of network optimization problems

In Chapter 5.5 of his work Queueing Systems, Volume 2: Computer Applications [41],
Kleinrock presents a taxonomy of network design optimization problems in which four
broad classesare defined. In each case, the objectiveto be minimized isthe average message
delay, which will not be defined here. The reader seeking further details is referred to
Kleinrock’s book [op cit]. The four problem classes are as follows:

(i) Thecapacity assignment (CA) problem, in which the network flows and topology are
given, and one seeksto determine the channel capacities.

160

(i) Theflow assignment (FA) problem, in which the network capacities and topology are
given, and one seeks to determine the channel flows.

(iif) The capacity and flow assignment (CFA) problem, in which the only the network
topology is given, and one seeks to determine the channel capacities and flows.

(iv) The topology, capacity and flow assignment (TCFA) problem, in which nothing is
given, and one seeks to determine the topology, channel capacities and flows.

In an obvious extension of Kleinrock’staxonomy, we may classify the problem discussed
in this chapter as atopology and flow assignment (TFA) problem, in which link capacities
are specified and we seek to minimize total network cost with respect to topology and link
flows.

Literature

The following paragraphs contain a very brief survey of literature in the general field of
network optimization, but specialized to those papers concerned with simultaneous
consideration of both topology and allocation (routing).

In a recent paper [23], Gersht and Weihmayer describe an algorithm to simultaneously
generate communications network topol ogies and allocate line capacities while optimizing
the total network cost. Most prior network optimization work has been concerned with the
separate optimization of topology and capacity allocation.

In avery recent research report, Gavish [22] has summarized some of the most promising
approaches to the problem of topologica design and capacity expansion of
telecommuni cation networks. Such problems are characterized by the intrinsic complexity
of network topology design and enormous dimensionality of the corresponding
mathematical programming models. In general these models are extremely large
NLIPs—even for moderately-sized networks, eg 20 nodes or less.

In his survey [op cit], Gavish has considered the design of efficient exact and heuristic
procedures for solving the topological design and capacity allocation/expansion planning
problem for large-scale telecommunication networks. Apart from the usual creativity
involved in taking advantage of special problem structure, the approaches have been based
onL agrangianand surrogateconstrai nt decompositions, and variousglobal searchstrategies.

161

To give some idea of the general state-of-the-art, Gavish notes that:

. Despite the practical importance of the problem, only a handful of
Investigations have been reported so far.....

.... A mathematical formulation of moderate size networks consists of tens of
millions of variables and hundreds of thousands of constraints.

Gavish [22]

Even if there were no integer restrictions and all constraints and objective were linear, this
would still be aformidable problem even with modern large-scale L P technol ogy — see for
example Murtagh [57]. When it is remembered that the class of network optimization
problems being considered here aimost invariably involves large numbers of integer
variables with the accompanying insurmountable combinatorial barriers, then it may be at
least dimly appreciated how fundamentally intractable such problems are.

Gavish gives a general statement of the quantities involved in the expansion of network
topology and capacity, based on a multi-period dynamic expansion approach as follows:

Given
* number of possible switches and their locations
» traffic requirement matrix for each period
* cost structures as a function of time
Minimize
net present worth of total cost
with respect to
» when and wheretoinstall conduits (network topol ogy expansion)
 when and where to expand line capacities (network capacity
expansion)
* how to route network traffic (routing decisions)
subject to

» reliability constraints
» grade of service constraints or loss or delay constraints

162

» flow conservation constraints
e capacity constraints
» other types of side constraints that are application-dependent

Gavish [22]

The present chapter considers application of the direct-search techniques developed in this
thesisto avery small example of anetwork optimization problem. Our formulationisavery
simple one which is static with respect to time, however it servesto illustrate the benefits
of the direct-search techniques developed herein. The model is proposed by Berry and
Sugden [2] for network synthesis and capacitated traffic allocation and is described below.
It is alinearly-constrained quadratic mixed-integer program. Before stating the problem,
we recall some elementary definitions from graph theory in the section to follow.

For further background on the graph-theoretical concepts involved, written from a
computational viewpoint, the reader may consult the excellent books by Nemhauser and
Wolsey [68], Papadimitriou and Steiglitz [69], or Reingold, Nievergelt and Deo [78].

For the reader interested in extra details from the standpoint of application to large-scale
telecommunication networks, a wealth of references is to be found in the Gavish survey
paper cited [op cit], from which we select the following (pertaining to network topology
and capacity expansion): Zadeh [97], Christofidesand Brooker [10], Doulliez and Rao [16],
Minoux [53], and Parrish, Cox, Kuhner and Qiu [71].

14.1 Complete graph

Given a positive integer n,, representing the number of vertices (also called nodes) in the

network to be considered, we first construct (conceptually) the complete graph K, . In this

simple undirected graph, each vertex isconnected to al other vertices by asingle edge. We
label the vertices of Ks, smply 1, 2, ..., n,. The vertex setisthus V=1{1,2,...,n,}. Since

the graph is undirected, the edges of K, correspond to the 2—element subsets of V (rather

than ordered pairs), so that the edge set of K, is given by

163

E = { {pg} : pg € V} (269)

The cardinality of the edge-set of K, istherefore given by

2 (270)

Example

Weconsider K,. HerewehaveV = {1,2,3,4,5,6,7}, N=21, and

E = { {12}, {13}, {14}, {15, {16}, {17}, (271)
{2,3}, {24}, {25} {26} {27}
{34}, {35}, {36}, {37},
{4,5}, {4,6}, {47},
{56}, {57},
{6, 7} }

164

Figure31 A representation of thecomplete graph K.

Pathsin K,

A path of length | from vertex p to vertex q is defined to be an edge sequence of the form

{VoVi}t, {vu, Vo), ..., {vi_uVv}), where voy=p and v, =(q. Note that elements of the
sequence are doubleton sets, each representing an edge in the graph.

SinceK, issimple, ie no multiple edges or self-loops, we can equally well define apath as

a vertex sequence. Suppose once again that p and q are vertices. Then a path of length |
from vertex p to vertex q is defined to be the vertex sequence (Vy, Vi, Vs, ..., Vi1, V;), Where
Vo=p and v, =q, theother v; being vertices of the graph, with none repeated. Of course,
paths may also be defined inductively, ierecursively. For such adefinition, the reader may
consult almost any elementary text on graphtheory or discrete mathematics; for definiteness,
we cite Ross and Wright [79]. The vertex v,=p isreferred to as the origin vertex and
v, =(asthe destination vertex; thus (v,,v;) = (p,q) isan origin-destination pair, or
OD-pair. It may be argued that an origin-destination pair (OD—pair) should be an ordered
pair (ki, k) of nodes specifying an edgein adigraph, however we takethe view that, in spite
of the "direction" implied by the term origin-destination, we need only consider undirected
paths.

165

Enumerating the OD—pairs

For K, the number of OD—pairsis given by the expression

) No(o—1) (272)
2] 2

Consider now the ith OD-pair in some enumeration (eg lexicographic order of vertex

suffixes). We have ¢, Cy,, Cs, Cis, being the costs of the four cheapest paths from p to g. If
| isthelength of such apath, then1 <1 <n,—1 (avertex may not berevisited). Note: links
(edges) may also be numbered using the same scheme since thereisa 1-1 correspondence
between OD-—pairs and edges.

Consider alsotheset P of all paths of maximal length (I =n,— 1) from p to g. How many

such paths are there? Since a vertex may not be revisited, there is a 1-1 correspondence
between such paths and the permutations of the elements of theset V \ {p,q}. Thus, the
number of pathsof length | = n,— 1 isgiven by the expression (n,—2)!, and all such paths
may be enumerated by any algorithm which liststhe permutations of the elementsof agiven
Set.

Consider now paths of length n,— 2. These may be enumerated by considering each subset

of cardinality n,—3 of V\{p,q}, and for each one, computing al the permutations of
vertices.

Proceeding in this manner, we find that for K, , the number of paths of length | between

any pair of verticesis given by the expression

n,—2
(I _l)(l - = (Ng—2)(Nyg—3)...(ng—1 -1) (273)

This expression represents the number of permutations of | —1 objects chosen from a set
of n,—2 objects.

166

14.2 Definition of terms

We define the variables and constant parameters involved in the Berry—Sugden NLIP
network model. For further semantic details on the terms defined, and notation used (which
Is essentially standard), the reader is referred to the 1972 monograph of Potts and Oliver

[74].

OD-pair number, 1<i <N

link (edge) number, 1<A<N

route (chain) number, 1<) <4

cost for link from vertex p to vertex q per unit traffic
traffic between vertex p and vertex q

cost for OD-pair i onroute j per unit traffic

total traffic carried for OD-pair i

chain flow, ietraffic carried for OD-pair i on route |
proportion of total traffic on jth route for OD-pair i
actual total traffic (flow) onlink A

maximum total traffic (flow) onlink A

{ 1; if jth routeis chosen for OD-pair i }
0; otherwise

{ 1; if jth route for OD-pairi useslink A }
0; otherwise

The last-defined quantity a{j, Is known as the link-chain incidence matrix.

For the present model we look at the four cheapest routes and choose precisely two routes
for each OD—pair. This seemingly arbitrary requirement does in fact have arational basis.
Therobustness of a network may be defined as the ability to carry traffic on more than one
route for agiven OD—pair. One advantage of this property is that ameasure of redundancy

167

IS obtained, so that in the event of failure of any link (edge) in aroute (thus rendering that
route unavailable), at |east one other isavailableto carry at least some of the traffic. Since
weare modelling afixed capacity constraint for eachlink (edge), it iscertainly possible that
the entire volume of planned traffic for agiven OD—pair cannot be supported if one of the
allocated routes goes down because of alink failure. Teletraffic researchers also speak of
network link diversity or node diversity, which are concepts related to our robustness.

MP formulation for the Berry—Sugden model

minimize
N 4 (274)
2t X GoyX
i=1 j=1
subject to
4) (275)
(R) XX = 2 i=1,...,N
j=1
4) (276)
S Zocij = 1, 1=1....N
j=1
N 4 (277)
(M) ZtiZaMocij < X, A=1...,N
i=1 j=1
V) X — O > 0, i=1..,N; j=1..4 (278)
V) ociJ-ZO, i=1..,N; j=1..4 (279)
(W) x,;€{0,1}, i=1..N; j=1,...4 (280)
Notes

1. Theobjectivefunctionisthetotal network cost, requiring choice of exactly two routes
for each OD—pair.

2. TheR category constraints specify that precisely two routes must be all ocated for each
OD-pair. Thisis to ensure robustness, as defined above.

168

3. The S category constraints specify that the sum of fractional allocations for a given
OD—pair isunity. Thisfollows directly from the definition of ;.

4. Fromtheforegoing definitionsand constraints, we see that thetraffic h; (alsotermed

chain flow) on route j for OD—pair i is given by the expression h; = oy;t;. Summing
traffic over al four routes for a given OD—pair i yields the relationship:

4 4 4
2h = Yot = t2Xoy =t
j=1 j=1 j=1

The T constraints place upper bounds on the total traffic carried by each link
(edge) of the network.

5. Wewishtohave o;; >0 imply x; = 1. Itisalogical contradictionto allocate nonzero

traffic (oy; > 0) to an unselected route (x; = 0). Also, there is no point in selecting a
route, but then alocating zero traffic, however this is a harmless situation. The U
category of constraints will force the former condition at the cost of introducing a
considerable number of (linear) constraints.

6. After the NLIP model is solved, the outcomes of interest are:

(i) Whichlinks (edges) are used from K, ?

(i) For a given OD—pair, what is the chain-flow pattern? ie how is the flow
distributed among the four possible routes?

(iii) For each link, what is the total flow? Actually, when this information is
available, the answer to (i) is clear, since only those links from the complete
graph which have been used will have nonzero flows. For link A, thetotal flow
f, is given by the expression

N 4 | (281)
fk = _thi _21 Otij axj
i= j=

Sizeof QIP

It may be noted that even a moderate number of nodes n, in the network givesriseto quite

alarge QIP. In general, if we count the numbers of rows and columnsfor the corresponding
QIP, we obtain:

169

(@) 4N continuous variables
(b) 4N integer variables

(d) N category R constraints
(e) N category S constraints
(f) N category T constraints
(c) 4N category U constraints

Therefore, in toto we have 7N = 7ny(n,— 1)/2 rowsand 8N = 4n,(n,—1) columns. When

dacks and right-hand-side are included (as they will be in MINTO) we have
n = 15N+1=15n,(n,—1)/2 + 1 columns.

Example

Weconsider aprobleminwhich n, = 7, thusleadingto 168 structural variablesand 147

constraints. This leads to an effective n = 316 (168 structural + 147 slack + 1 rhs) and of
course m = 147. Thisisindeed alarge QIP for such asmall network (n,=7).

Traffic and cost matrices

The traffic and cost matrices, T° and C° respectively, for this example are as follows:

0 7 9 5 3 4 2]
7 065213
9 6 089 2 3
T = [tf] = |5 5 8 0 2 7 6 (282)
3292052
412 750 4
2 3 3 6 2 4 0]

170

0 5 12 8 6 4 1]
5 0 6 8 15 6 4
2 6 0 5 4 7 7
C’ =1[cl =|8 8 5 0 2 76 (283)
6 15 4 2 0 5 2
4 6 7 7 5 0 4
|1 4 7 6 2 4 0]

A special-purpose program was written to generate the four best paths for each of the 21
OD-pairs, and thento generatetherequired MPSfileand CALCFG FORTRAN subroutine.
The generated t vector and C matrix follow.

t = [t] = (7,9,53,4,2,6,521,3892327,6,524) (284)

11 11 10

11 11 5

11 13 13
10 11 12

(o]
=
o
(o)

285
13 12 6 (285)

o ©
el
o R

|_\
© o

10
9
10

(0]

O
Il
5
Il
ADNOOODONDNMNMNNNPPOOPMNOODOOOE, MAO OOKLW O
[ep}
|_\
© © A~ ~ Y
|_\
o

~N O O

7
5 10

Thetraffic capacities for each link are given by the vector X:

171

X = [X] = (15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15, 15, 15,15)

The elements t; of the traffic vector t are obtained simply by listing the elements t} in

lexicographic order of vertex pairsij, ie
0 0 0 0 0 0 0 0 0 0 0
1:125 1:135 1:145 1:155 tlﬁa tl?a 1:235 1:245 1:255 1:265 1:275

0 0 0 0 0 0 0 0 0 0
1:345 1:355 1:365 1:375 1:455 1:465 1:475 1:565 1:575 t67

The numbers are just the elements of the upper triangle of T° (excluding main diagonal),
and enumerated row-wise.

Asstated earlier, the elements ¢; were computed by aspecial program written for the task;

thisjob being to find among all possible pathsin K, from each OD—pair {p,q}, thefour

cheapest ones. Thus, C° is amatrix of dimension n,(n,—1)/2 x 4.

14.3 Results and comments for the Berry—Sugden model

1. Severa hurdles had to be overcome while solving the Berry—Sugden model using the
direct search methods. The size of the Berry—Sugden executable modul e (640kb) and
theusual DOS 640kb memory limitationsrequired abare-bonesDOS5.0 configuration
with no device drivers or other resident programs. This was most inconvenient for
development work. Also, some patching of routines to update factorizations of basis
and Hessian was needed in order to alocate enough memory for the generation of
many new superbasic variables.

2. Arelatively large number of integer-feasiblebasicsat the continuous sol ution required
aprocedureto automatically pivot these variablesfrom the basis to the superbasic set.

3. For post-processing, a specia-purpose program READCOL S was written to read the
MPS output from MINTO and then construct network quantities of interest. In
particular the link-flow for each of the 21 links was computed by simple summation,
and links having zero flow were then easily noted. Such links are then unused from

172

the complete graph K.. The READCOLS program aso flagged traffic alocation
warnings if aroute is selected but no traffic allocated, ie x; # 0 but o;; = 0. As noted
above, this situation is not really a problem, so the program prints a simple warning
message. The aternative condition for which constraintswereformul ated to explicitly
exclude is o;; > 0 but x; = 0. A feasible solution was obtained so one expects that no
such conditionwill occur, howeveritisvery easy to checkintheREADCOL Sprogram,
and therefore serves as ssimple confirmation that the requirement has been modelled
correctly.

The READCOLS program was extended to also implement a greedy allocation
heuristic, so that some comparison could be made with the direct search results. The
greedy strategy simply processes each OD—pair in lexicographic sequence and tries
to allocate as much traffic as possible to the cheapest route, then if necessary to the
remaining three routes in strict order of increasing cost. It should be noted that this
strategy need not lead to a feasible solution, let alone an optimal solution. However,
for the present example, the greedy allocation method just described arrived rapidly
at a(necessarily feasible) suboptimal solutionwith objective531.0. It wasnot required
to satisfy allocation of exactly two routes for each OD—pair for this approach.

In summary, for the example presented, it was found that, for most of the methodsMn
used, 4 linksfrom atotal of 21 from the complete graph K, were not used, ie no route
eventually selected to carry at least part of the traffic for the 21 OD—pairs actually
used those 4 links. For example, in the case of M3N, the unused links are thosejoining
vertices (1,3), (1,5), (2,5) and (4,6). It was aso found that of the 42 routes allocated,
19 had zero traffic.

Variation of the upper bound X; onthelink flows produced expected behaviour from

the model. As the bounds were decreased, further spread (robustness) in allocation
was in evidence.

Another interesting test case which could be considered isto force the model to select
aminimal spanning treefor thetopol ogy + all ocation problem by making certainroutes
prohibitively expensive. In fact, the model would need to be reformulated in order to
achieve this, since at present we insist on the selection of exactly two routes for each
OD—pair.

A 0-1 problem such as that described by the Berry-Sugden model must of necessity
be highly-degenerate (many basics at a bound) if there are considerable numbers of
integer variables present in the basis at the optimal solution. A 0-1 variable cannot
but be at abound if it isinteger-feasible.

173

10.

11.

12.

13.

Some cycling problemswere noted. Branch-and-bound had troublewith asubproblem
and the iteration limit expired because of cycling. M2 also had cycling problems.

The remaining methods M1, M3, M4, M5 produced results close to the (possibly
suboptimal) result achieved by the aborted branch-and-bound process. M1, M3, M4
actually produced the same objective as branch-and-bound when integers were not
fixed after the respective direct search procedure.

M5 fared better on an earlier version of thepresent MINLP model, inthat it terminated
withonly two of the84 integer variabl esinfeasi ble and superbasi c (from approximately
65 at the continuoussol ution). Notethat M5 alwaysterminateswith nointeger variables
basic. Thepresent model hasapproximately 50integer-infeasibilitiesat thetermination
of M5 (all necessarily superbasic), and thismay bedirectly attributed to theimposition
of 21 extralink capacity constraints (the T set of constraints). Intuitively, it may be
imagined that M5 had much less "room to move" inits attempt to evict integers from
the basis. Consequently, the B «<» S pivot operation (which does not decrease thetotal
integer infeasibilities) would seem to have been invoked more often than the nonbasic
step (whichalwaysdecreasesinteger infeasibilitiesby at | east one) thanwaspreviously
the case.

Post-processing or even simple inspection of the MPS output solution indicated that
the constraints have had the desired effect—the limited link traffic capacities and
"encouragement” of diverse allocation have allowed some non-trivial assignmentsto
be made. In this, we refer to assignments which perhaps might otherwise be made by
a greedy allocation algorithm, which would be expected to allocate all traffic for a
given OD—pair to the cheapest route if thiswere possible (see comment #4 above).

Since the numerical results for the Berry—Sugden model are quite voluminous, no
output is included here, however post-processing of the MPS output file by the
READCOLS program is included aong with summary information in the tables
overlesf.

174

7

'S91[1qisesul-Jebeiul o1seq.edns Jo Jequunu 8y pue sai|igsesjul-Jebeiul d1seq JO Jeguunu 8y JO WNS 8yl S1aNEASIYL Z
"‘Wo1qoJd U} Joj STeulLuS] 10U PIP 11 92UIS S| 8U) WOl J PEpNPXe S ZIN T

SJepwe fed Joulw uonn|os ppow uspbns—AiLeg /T 9|0el

9 94 TS YA €9 Sanljiqsesjul-eliol #
9g 79 09 TS 9 nu ‘punog Jeddn Je solsequou #
o€ 99 1°1% 0S 99 [U ‘punog JBmo| e Saisequou #
€e'srs LE6VE 09'08¢ (07074 90°Eve 9AN®Igo
€8 /S €9 89 6€ soseqadns #
15 82 1 62 0 soseqadns a|q seay- el #
9¢ A T T oT soseqsedns a|qseajul-lebolul #
0 0 T T 14’ So1se(q 3 |qISea-ebolul #
0 LE GE T€ YA soseq a|qsesjul-Rehoul #
8 U ‘'s3|qelien »ebeul #
9T¢ u ‘(S s joul) suwn|oo #
8/VT w (lgo pul) ‘smou #

uonnos

SIN YN EN TN snonuljuod
RPUY PUY PUY PUY v Amuend

9/T

"PeXIJ 10U N ‘yosess 10811p JelJe paxy Buleq se|qelren o ses)-iebeiul 01SeJel 4 XINS 8y L §
PSPESOXe 11LU1| UoTeRY| 7

"pa1Inba. Sayo1eas-aul| JO JBgUINU B} Se PaInsesW SISIYL €

"NO PaUR1INS UoTIeieusB 9pod 110-2g UM WeisAS /8£08/98508 ZHINOZ & UO Uny Z
‘SJEUILLLIS) JOU SS0P 11 85Medsq| PONILUO SN T

Arewwns synsaJ ppow uspbns—Alleg gro|gel

[AA4) L9 06 96€ ¢s 00819 NSIN
TET 69 28/.¢ ovy qg 00°0TS N¥IN
08 172 V61T [AST4 8¢ 00°.¢S drIN
Zraet €L G6SC 8€e Zs 00°0TS NEW
606 69 10,4 76T T €L°01S AAEN
ceetl 0L cvee oce 0S 00°0TS NTIN
veEL 0L OTTT 68T LC 00°TTS dTN
,6666 69 TLTET €997 €ee 00°0TS ON
T9C Gt 99¢ 59 VIN 90'ere snonunuo)

S|ed sapou

Suolreell| sseuebeqg e 1pe I -(098) punog-pue
SONIIN # PANRIOO#| swnuny -Youe g # aA® (g0 /pow uny

Chapter 15

Conclusions

Thiswork has presented anumber of direct search strategiesfor achievinginteger-feasibility
for a class of mixed-integer nonlinear programming problemsin arelatively short time. It
has improved on the previous direct search approaches of Murtagh [59], and Mawengkang
and Murtagh [48], aso based on the superbasic variables and active constraint method of
Murtagh and Saunders [62]. It was found that the method described by Mawengkang
sometimes had trouble terminating because of one or two cycling phenomena, at least on
certain problems. Alternative direct-search methods have been proposed and tested. The
results appear to be quite encouraging. The present methods have solved instances of anew
network optimization model proposed by Berry and Sugden [2] and done so in very
reasonable time on an 80386 PC.

The new direct search methods have been shown to be successful on arange of problems,
while not always able to achieve global optimality, generally achieve integer-feasibility
(perhaps with some ad from branch-and-bound) in a much shorter time than
branch-and-boundalone. Ininasignificant number of casesthe suboptimal point so obtained
Isacceptable, sincetheexponential complexity of integer programming ingeneral precludes
branch-and-bound except on small to medium problems unless oneis very lucky and tight
bounds are obtained early in the branching process.

The fifth of the new direct search methods is herein proven to always terminate with no
integer variables in the ssimplex basis. Since such termination is a precondition for further
development of the method along the lines of trial fractional, then integer steps in the
superbasic integer variables, a foundation has been established for this further work.

McMahon [50] defines greedy algorithms as

177

... those non-backtracking algorithms in which irrevocable decisions of global
significance are made on the basis of local information.

McMahon [50]

The direct search methods of the present work certainly fall into this category, and it is
recognized that the use of such methods normally implies suboptimal solutions.
Nevertheless, it must be remembered that published methods also fall into this category,
and global optimality, or even guaranteed local optimality for the general MINLP problem
iIsagoal whichisinmany practical instances, simply out of reach. A useful avenue of further
researchwould beaimed at obtaining tight upper and lower boundsfor the objectivefunction
at anearby locally optimal point for a solution obtained by the proposed new direct search
methods.

The new methods have been implemented in conjunction with an interactive modulewhich
allowsaskilled user to "drive" the NLIP solver engine. Alternatively, if desired, the system
may be run entirely in the conventional "batch™ mode, in which any of the direct search
strategies may be automatically invoked. The use may assume interactive control of the
search process at the point where the solution of the continuous relaxation has just been
found. From this point a variety of operations designed to give information about progress
toward both integer-feasibility and improvement of objective may be selected from amenu.
Full error-checking is provided so that the current solution vector remains feasible at all
times. For example, atrial step in asuperbasic variable (either discrete or continuous) may
be attempted, but will not be allowed if it would violate any of the current set of linearized
constraints; in fact, in this situation, thefirst basic variable to be violated isindicated in the
on-screen error message to the user. In asignificant number of such cases, it becomes clear
that no further progress is possible because the current search strategy has led us to an
impasse.

If small steps are too tedious, then the user may select to any of the five direct search
procedures to be executed at any time and observe the progress toward integer-feasibility
as the solution parameters are dynamically updated on the screen. The display follows a
pseudo-spreadsheet paradigm in which rows may be selected for subsequent operation by
simply moving the cursor. Valuable insight into the internal mechanisms and run-time
behaviour of the direct search process has aready been obtained by observing the progress
on-screen. It ishoped that more experience with alarger classof MINLP problemswill lead
to further refinement of the search procedures described in thiswork.

178

Refer ences

aa A~ W DN

10

11

12

Balas, E. and Mazzola, J.B. (1984). Nonlinear 0-1 Programming: |. Linearization
Techniques I1. Dominance Relations and Algorithms. Mathematical Programming
30:1-45.

Berry, L.T.M. (1991). Private communication.
Booch, G. (1987). Software engineering with Ada. 2nd edition. Benjamin-Cummings.
Brent, R.P. (1973). Algorithms for minimization without derivatives, Prentice-Hall.

Brooke, A., Kendrick, D. and Meeraus. (1988). AGAMSA Users Guide. Scientific
Press, Palo Alto.

Burkhard, R.E. and Rendl, F. (1984). A thermodynamically motivated simulation
procedure for combinatorial optimization problems. European Journal of Operations
Research 17:169-174.

Cauchy, A. (1847). Méthode générale pour larésolution des systémes d’ équations
simultanées. Comp. Rend. Acad. <ci. Paris 378-383.

Connally, D.T. (1990). Animproved annealing scheme for the QAP. European
Journal of Operations Research 46:93-101.

Cooper, M.W. (1981). A Survey of Methods for Pure Nonlinear Integer
Programming. Management Science 27:353-361.

Christofides, N. and Brooker, P. (1974). Optimal expansion of an existing network.
Mathematical Programming 6:197-211.

Daellenbach, H.G., George, J.A. and McNickle, D.C. (1983). Introduction to
operations research techniques. 2nd edition. Allyn & Bacon.

Dantzig, G.B. (1962). Linear programming and extensions. Princeton university
press, Princeton, NJ.

179

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Dantzig, G.B., Orden, A. and Wolfe, P. (1955). The generalized simplex method for
minimizing alinear form under linear inequality restraints. Pacific Journal of
Mathematics 5:183-195.

Davis, L. (1987). Genetic algorithms and simulated annealing, Los Altos CA:
Morgan Kaufmann.

Dennis, J. and Torczon, V. (1990). Direct search methods on parallel machines.
Rice University, Dept of Mathematical Sciences. Technical Report TR90-19, Sept
1990.

Doulliez, P.J. and Rao, M.R. (1975). Optimal network capacity planning: a shortest
path scheme. Operations Research 23:811-818.

Duran, M.A. and Grossmann, |.E. (1986). An Outer-Approximation Algorithm for a
Class of Mixed-Integer Nonlinear Programs. Mathematical Programming
36:307-339.

Fletcher, R. (1987). Practical methods of optimization. Wiley.

Fletcher, R. and Reeves, C.M. (1964). Function minimization by conjugate
gradients. Computer Journal, 7:149-154.

Fiacco, A. and McCormick, G. (1968). Nonlinear programming: sequential
unconstrained minimization techniques. Wiley.

Garfinkel, R.S. and Nemhauser, G.L. (1972). Integer programming. Wiley.

Gavish, B. (1991). Topological design and capacity expansion of telecommunication
networks— State of the art survey. Centre for Telecommunication Network Research
Report #11/91. Bond University, Australia.

Gersht, A. and Weithmayer, R. (1990). Joint optimization of data network design and
facility selection. IEEE Journal on Selected Areas in Communications 8:1667—1681.

Gill, P.E., Murray, W. and Wright, M.H. (1981). Practical Optimization. Academic
Press. ISBN 0-12-283952-8.

Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H. (1984). Software and its
relationship to methods. SAM Numerical Optimization 1984. ISBN 0-89871-054-5.

Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H. (1988). GAMSMINOS
User Manual, Appendix D. Scientific Press.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine
learning. Addison-Wesley.

180

28

29

30

31

32

33

35
36

37

38
39

40

41
42

Gomory, R. (1965). On the relation between integer and noninteger solutions to
linear programs. Proceedings of the National Academy of Science 53:2, 260—265.

Gomory, R. (1967). Faces of an integer polyhedron. Proceedings of the National
Academy of Science 57:1, 260-265.

Gomory, R. (1969). Some polyhedrarelated to combinatorial problems. Journal of
Linear Algebra and its Applications 2:4, 451-558.

Gupta, O.K. and Ravindran, A. (1983). Nonlinear integer programming algorithms:
A Survey. OPSEARCH 20:189-206.

Gupta, O.K. and Ravindran, A. (1985). Branch and bound experimentsin convex
nonlinear integer programming. Management Science 31:1533-1546.

Hammer, P.L. and Rudeanu, S. (1968) Boolean methods in operations research and
related areas. Springer-Verlag, Heidelberg.

Hansen, P. (1979). Methods of 0-1 nonlinear programming. Annals of Discrete
Mathematics 5:53-70.

Hardy, G.H. (1967). A mathematician’s apology, 85. Cambridge University Press.

Hestenes, M.R. and Stiefel, E. (1952). Methods of conjugate gradients for solving
linear systems. J. Res. N.B.S. 49:409-436.

Hext, J. (1990). Programming structures. Volume | —Machines and programs, 46.
PHI.

Himmelblau, D.H. (1972). Applied nonlinear programming. McGraw-Hill.

Jeroslow, R.G. (1974). Trivia integer programs unsolvable by branch-and-bound.
Mathematical programming 6:105-109.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.
Internal report, Mathematical Sciences Division, AT& T Bell Laboratories, Murray
Hill, New Jersey.

Kleinrock, L. (1976). Queueing Systems Volume 2: Computer Applications. Wiley.

Kocis, G.R. and Grossmann, |.E. (1986). A Relaxation Strategy for the Structural
Optimization of Process Synthesis. Annual AlChE Meeting, Miami, November 1986.

Kuhn, H.W. and Tucker, A.W. (1951). Nonlinear programming. Proceedings of the
second Berkeley symposium on mathematical statistics and probability, 481-492,
Berkeley, University of California Press.

181

45

46

a7

49

50

ol

52
53

55
56

S7

58

Leyffer, S. (1991). Private communication.

Lustig, I., Mulvey, J. and Carpenter, T. (1989). Formulating stochastic programs for
interior point methods. Technical Report SOR-89-16, Department of Civil
Engineering and Operations Research, Princeton University, New Jersey.

Marsten, R., Saltzman, M., Shanno, D., Pierce, G. and Ballantijn, J. (1989).
Implementation of adual affine interior point algorithm for linear programming.
ORSA Journal on Computing 1:4, 287-297.

Marsten, R., Subramanian, R., Saltzman, M., Lustig, |. and Shanno, D. (1990).
Interior point methods for linear programming: Just call Newton, Lagrange, and
Fiacco and McCormick. Interfaces 20:4, 105-116.

Mawengkang, H. (1988). Nonlinear Integer Programming. PhD dissertation,
University of New South Wales.

Mawengkang, H. and Murtagh, B.A. (1986). Solving Nonlinear Integer Programs
with Large-Scale Optimization Software. Annals of Operations Research 5:425-437.

McMahon, G.B. (1989). A structural taxonomy for algorithms. Working Paper
1989-3-007, July 1989. School of Information and Computing Sciences, Bond
University.

Michalewicz, Z., Krawczyk, J.B., Kazemi M. and Janikow, C.Z. (1990). Genetic
algorithms and optimal control problems. Proc. 29th |EEE Conference on Decision
and Control, 1664—1666.

Minoux, M. (1986). Mathematical Programming. Wiley.

Minoux, M. (1987). Network synthesis and dynamic network optimization. Annals
of Discrete Mathematics. 31:283-324.

Mohd, I.B. (1986). Global optimization using interval arithmetic. PhD dissertation,
University of St Andrews.

Moore, R.E. (1966). Interval analysis, Prentice-Hall

Morrow, M. (1991). Genetic algorithms. Australian Personal Computer 12:4,
85-93.

Murtagh, B.A. (1981). Advanced Linear Programming: Computation and Practice.
McGraw-Hill. ISBN 0-07-044095-6.

Murtagh, B.A. (1988). MINTO User Manual.

182

59

60

61

62

63

65

66

67

68

69

70

71

Murtagh, B.A. (1989). Nonlinear Integer Programming with Applicationsin
Manufacturing and Process Engineering. Proceedings of the Computational
Techniques and Applications Conference: CTAC-89, 103-113.

Murtagh, B.A. (1989). Nonlinear Integer Programming with Applicationsin
Manufacturing and Process Engineering. Unpublished overhead transparencies for
CTAC-89 invited paper.

Murtagh, B.A. and Saunders, M.A. (1982). A Projected Lagrangian Algorithm and
its Implementation for Sparse Nonlinear Constraints. Mathematical Programming
Sudy 16:84-117.

Murtagh, B.A. and Saunders, M.A. (1978). Large-Scale Linearly Constrained
Optimization. Mathematical Programming 14:41-72.

Murtagh, B.A. and Saunders, M.A., Large-Scale Optimization (unpublished
manuscript).

Murtagh, B.A. and Saunders, M.A. (1987). MINOSS5.1 User’s Guide. Report SOL
83-20R, Stanford University, December 1983 (revised January 1987).

Murtagh, B.A. and Saunders, M.A. (1985). MINOS5.2 User’s Guide. Systems
Optimization Laboratory, Department of Operations Research, Stanford University.

Myers, D.C. (1984). The design of branch and bound, Lagrangian relaxation and
subgradient strategies for mixed integer programming problems. PhD dissertation.
Virginia Polytechnic Institute and State University.

Nelder, JA. and Mead, R. (1965). A simplex method for function minimization.
Computer Journal 7:308—313.

Nemhauser, G.L. and Wolsey, L.A. (1988). Integer and Combinatorial
Optimization. Wiley. ISBN 0-471-82819-X.

Papadimitriou, C.H. and Steiglitz, K. (1982). Combinatorial optimization.
Algorithms and complexity. PHI.

Papoulias, S.A. and Grossmann, |.E. (1983). A structural optimization approachin
process synthesis— heat recovery networks. Computers and Chemical Engineering.
7:707-721.

Parrish, S.H., Cox, T., Kuhner, W. and Qiu, Y. (1990). Planning for optimal
expansion of leased communication networks. Technical Report USwest Boulder,
Colorado, (Annals of Operations Research, forthcoming).

183

72

73

74

75

76

77

78

79

80

81

82

83

85
86

Paules, G.E. and Floudas, C.A. (1989). APROS: Algorithmic development
methodology for discrete-continuous optimization problems. Operations Research
37:902-915.

Peressini, A., Sullivan, F. and Uhl, J. (1988). The mathematics of nonlinear
programming. Springer-Verlag.

Potts, R.B. and Oliver, R.M. (1972). Flows in transportation networks. Academic
Press, Mathematicsin Science and Engineering Series, Volume 90.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988).
Numerical Recipes. Cambridge University Press.

Ratschek, H. and Rokne, J. (1988). New computer methods for global optimization.
Halstead Press.

Ravindran, A., Phillips, D.T. and Solberg, J.J. (1987). Operations Research,
Principles and Practice. 2nd edition. Wiley.

Reingold, E.M., Nievergelt, J. and Deo, N. (19847?). Combinatorial
Algorithms— Theory and Practice. PHI.

Ross, K.A. and Wright, C.R.B. (1992). Discrete Mathematics, 3rd edition, 193. PHI.

Ryan, D.M. (1990). Mathematics meets the real world—a guided tour of crew
scheduling. Abstract of paper presented at 26th Applied Mathematics Conference of
the Australian Mathematical Society, Greenmount, February 1990.

Salkin, H.M. and Mathur, K. (1989). Foundations of integer programming,
North-Holland.

Scarf, H.E. (1990). Mathematical programming and economic theory. Operations
Research, 38:377-385.

Scarf, H.E. (1986). Neighbourhood Systems for Production Sets with
Indivisibilities. Econometrica 54:507-532.

Scarf H.E. (1986). Testing for optimality in the absence of convexity. Social Choice
and Public Decision Making. Chapter 6. Cambridge University Press 1986. Edited
by Heller, W.P., Starr, R.P. and Starrett, D.A.

Schrage, L.E. (1981). User Manual for LINDO. The Scientific Press, Palo Alto.

Shanker, K. and Tzen, Y.J. (1985). A Loading and Dispatching Problemin a
Random Flexible Manufacturing System. International Journal of Production
Research 23:579-595.

184

87

88

89

0

91

92

93

94
95

96

97

Shin, D., Glerdal Z. and Griffin, O. (1990). A penalty approach for nonlinear
optimization with discrete design variables. Engineering optimization 16:29-42.

Steinberg, L. (1961). The backboard wiring problem: A placement algorithm. SAM
Review 3:37.

Strang, G. (1986). Introduction to applied mathematics. Wellesley-Cambridge
Press.

Torczon, V. (1990). Multi-directional search: a direct search algorithm for parallel
machines. PhD dissertation. Rice University, Dept of Mathematical Sciences.
Technical Report TR90-7, May 1990.

Van Laarhoven, P.JM. and Aarts, E.H.L. (1987). Smulated Annealing: Theory and
Applications. Reidel.

Viswanathan, J. and Grossmann, |.E. (1990). A combined penalty function and
outer-approximation method for MINL P optimization. Computers and Chemical
Engineering 14:769-782.

Wasll, E., Golden, B. and Liu, L. (1989). State-of-the-art in nonlinear optimization
software for the microcomputer. Computers and operations research 16:497-512.

Wayner, P. (1991). Genetic algorithms. BYTE 16:1, 361-368.

Wilhelm, M.R. and Ward, T.L. (1987). Solving quadratic assignment problems by
simulated annealing. I1E Transactions 19:1, 107-119.

Wolfe, P. (1967). Methods of nonlinear programming. Nonlinear programming.
North-Holland. Ed J. Abadie, 97-131.

Zadeh, N. (1974). On building minimum cost communication networks over time.
Networks 4:19—34.

185

| ndex
A

Aarts, EH.L., 16

active set methods, 41
Ada, 122

airline crew scheduling, 42
algebraic form, 120
amosba method, 5

artificial variable, 100
ASSERT, 116

B

backboard wiring problem, 2

Baas, E., 46

basic feasible solution, 17, 18

basic variable, 61

Bellman, R., 45

Benders decomposition, 44

Berry, L.T.M., iii, 101, 160, 163, 168, 172

bisection method, 37

Booch, G., 122

branch-and-bound, v, vi, 20, 60, 63, 100
depth-first, 22

branching, 22

Brent, R.P., 37

Brent’s method, 37

Brooker, P., 163

Broyden, C.G., 40

Burkhard, R.E., 16

C

C (programming language), 122
C1P1STEP, 116
C1P2STEP, 116
C2P1, 116
CALCINF, 116
CALCINS, 116
CALCJS, 116
CALCJSS, 117
CALCTH, 117
CALCZT, 117
Carpenter, T., 19
Cauchy, A., 39
chain flow, 169
Cholesky, 26
Christofides, N., 163
CHUZzQI, 117
compilation
independent, 122

186

separate, 122
complete graph, 163
complexity, 42
concavity, 6
conjugate-gradient method, 39
Connally, D.T., 16
constrained stationary point, 27
constraint

active, 28, 29, 35, 41

equality, 1

Inactive, 28

inequality, 1

integer, 2

nonlinear, 2

satisfaction, 28

simple-bound, 8, 9

violation, 28
constraint qualification, 33, 35
continuous relaxation, v
convexity, 6

local, 23
Cooper, M.W., 46
Cox, T., 163
CTAC, v, 62, 63
curvature, 40

positive, 31

D

Dadllenbach, H.G., 134
Dantzig, G.B., 17, 18, 49
Davidon, W.C., 40
Davis, L., 17
degeneracy, 100

Deo, N., 163

descent direction, 29, 39
direct search, v, 3

DIRECT SEARCH HEURISTIC, 99

DIRSCH, 117
disp.c, 101
Doulliez, P.J., 163
DUMPCOLA4, 117
DUMPCOLS, 117
DUMPICOL, 117
DUMPIOPB, 117
DUMPPTN, 117
DUMPXNAT, 117
Duran, M.A., 43
Duszczyk, B., ii

E

eigenvalue, 26

embedded system, 122

ERRMSG, 118

ERRS, 118

exponential complexity, 2, 19 - 21

F
feasibility
preservation of, 38
feasible arc, 33
feasible direction, 32
feasible set, 5, 17
Fiacco, A.V., 7,19
Fibonacci search, 37
FIX INTEGERS, 99
FIXINTS, 118
Flannery, B.P., 16, 37
Fletcher, R., 6, 40, 44
flexible manufacturing systems, 2
FORTRAN, 48, 99, 121, 122
Lahey, 122

G

Garfinkel, R.S,, 45
Gauss, K.F., 26
Gaussian elimination, 26
Gavish, B., 161, 163
gene pool, 16

genetic algorithms, 16
GENQIP, 121

George, JA., 134
Gersht, A., 161

Gill, P.E., 5, 6, 19, 26, 37, 38, 40, 48, 49
Goldberg, D.E., 17
Golden, B., 47

golden section search, 37
Goldfarb, D., 40
Gomory, R., 24

gradient vector, 4, 39
Griffin, O., 7
Grossmann, |.E., 43, 138
Guerdal, Z., 7

Gupta, O.K., 46

H

help screens, 109

Hammer, P.L., 24
Hansen, P., 24, 46
Hardy, G.H., i

187

Hessian matrix, 4, 25, 26, 31, 38, 40, 172
of Lagrangian, 33

ICHKNAT, 118
ICHKPTN, 118
IFBTOS, 118
INITIOPB, 118
integer program, 1
mixed, 1
nonlinear, 1
pure, 1, 6
interactive display program, 101
IOPB, 118
|OPB generator, 121

J

Jacobian matrix, 32, 57
Janikow, C.Z., 17
Jerodow, R.G., 21

K

Karmarkar, N., 19
Kazemi, M., 17
kernel
see nullspace
Krawczyk, J.B., 17
Kuhn, H.W., 26
Kuhn-Tucker conditions, 26
Kuhner, W., 163

L

Lagrange, J., 19
Lagrange multiplier, 26, 27, 29, 33, 52, 61
positive, 31, 35
zero, 30, 31, 35, 36
Lagrangian function, 33, 56
lattice, 6, 20
Leyffer, S, 44
linear programming, 2, 17, 18
integer, 19
large-scale, 17
Liu, L., 47
local minimum
strong, 31
Lustig, I., 19

M

manufacturing, 62
Marsten, R., 19

mathematical programming, 18
Mathur, K., 24
Mawengkang, H., 16, 24, 45, 64, 134, 138,
159
Mazzola, J.B., 46
McCormick, G.P., 7, 19
McNickle, D.C., 134
Mead, RA., 5
mean value theorem (MVT), 25
Michaewicz, Z., 17
minimum
global, 8, 10
unconstrained, 4
minimum ratio, 101
minor, 26
MINQS, v, 2, 41, 45, 46, 48, 53, 61
MINOS/AUGMENTED, v, 47
Minoux, M, 163
MINTO, v, 40, 47, 99
interactive, vi
MINTO/INTERACTIVE, 101, 122
MODULA-2, 121, 122
Mohd, 1.B., 16
Moore, R.E., 16
Morrow, M., 17
MPS generator, 120
MS-DOS, 99
Mulvey, J., 19
Murray, W., 5, 6, 19, 26, 37, 38, 40, 48, 49
Murtagh, B.A., ii, v, 1, 16, 17, 19, 40, 41,
45, 46, 48, 49, 60 - 65, 73, 74, 76, 82, 84,
85, 96, 99, 134, 138, 162
mutation, 16
MVT
see mean value theorem
Myers, D.C., 46, 144

N

NATTOPAR, 118
neighborhood, 4, 25
neighborhood search, v, 63
Nelder, JA., 5
Nemhauser, G.L., 23, 43, 45, 163
network flow, 46
Newton, 1., 19, 38
Newton’'s method, 37 - 39
finite-difference, 40
Newton-like methods, 4
Newton direction, 40
Nievergdlt, J., 163
NLIP
boolean formulation of 0-1, 46
nonlinear integer programming, 2, 42

188

nonlinear programming, 2
NP-completeness, 42
NTOS, 118

nullspace, 27, 31, 33, 36

O

objective, 1, 4, 18
OD-pair
see OD-pair, 165
operations research, 2
OPMSG, 118
OPS, 118
optimal network design, 2
optimal power flow, 2, 62
optimization
combinatorial, 2, 6, 20
constrained, 26
global, 2, 4
local, 2
unconstrained, 5, 25
Orden, A., 18
origin-destination pair
see OD-pair, 165
outer approximation, 43

P

Papadimitriou, C.H., 163
Papoulias, SA., 138
Parrish, SH., 163
Pascal, 99, 122
Turbo, 99, 120 - 122
perturbation
binding, 29, 31
feasible, 29, 35
non-binding, 29
pipeline network design, 45
polyhedron, 17
polynomial complexity, 19
polytope
convex, 17
portfolio construction, 2

positive definiteness, 4, 25, 29, 38

Powell, M.J., 40

Press, W.H., 16, 37
pricing vector, 52

process engineering, 2, 62

projected gradient vector, 27, 33
projected Hessian matrix, 27, 29

of Lagrangian, 34

projected L agrangian method, 56

Q

QAP

see quadratic assignment problem
QIP

see quadratic integer program, 12
QIP generator, 121
Qiu, Y., 163
guadratic assignment problem, 16, 45, 62
guadratic function, 25
guadratic integer program, 12
quadratic interpolation, 37
guasi-Newton methods, 5, 39, 40
QWERTY keyboard, 121

R

rank, 33

rank-two update, 40
Rao, M.R., 163
Ratschek, H., 4, 16
Ravindran, A., 46, 132
READCOLS, 172
reduced costs vector, 52
reduced space, 6
Reingold, E.M., 163
Rendl, F., 16

revised simplex method, 17, 18, 52
Rokne, J., 4, 16
Rudeanu, S., 24

Ryan, D.M., 23, 42

S

Sakin, HM., 24
Saltzman, M., 19
Saunders, M.A., v, 1, 17, 19, 41, 46, 48, 61
Scarf, H.E., v, 42, 63, 72
Shanker, K., 100, 153
Shanno, D., 19, 40
Sherman-Morrison identity, 86
Shin, D., 7
simplex, 17

basis, v
simulated annealing, 2, 16
smooth function, 5
smoothness, 25, 37, 38
SMOV2, 119
sparsity, 2, 19
SPECS, 99
spectrum, 26
SPMOVCHK, 119
spreadsheet, 101
steepest descent, 39

Steiglitz, K., 163
Steinberg, L., 2
Strang, G., 19
Subramanian, R., 19
Sugden, B.E., iii
Sugden, 1., iii

Sugden, JE., iv
Sugden, S.J., 160, 163
Sugden, S.J., jr., iii
Sugden, V.L.M., iv
SUMT, 7
SUPERADJ, 119
superbasic variable, v, 3, 41, 50, 61, 62,
100

SUPERMOV, 119

T

Taylor’ s theorem, 25
Taylor series, 27, 29, 40, 61
Teukolsky, SA., 16, 37
Tucker, AW., 26

Tweedie, R.L., ii

Tzen, Y.J, 100, 153

U

UPDATXFG, 119

V

Van Laarhoven, P.JM., 16
Vetterling, W.T., 16, 37

W

Ward, T.L., 16

Wasll, E., 47

Wayner, P., 17

Welhmayer, R., 161

Wilhelm, M.R., 16

Wolfe, P., 18, 48

Wolsey, L.A., 23, 43, 45, 163

Wright, M.H., 5, 6, 19, 26, 37, 38, 40, 48,
49

Z

Zadeh, N., 163

189

