
Bond University

DOCTORAL THESIS

Generating Effective Test Suites for Reactive Systems using Specification Mining

Bokil, Prasad Ramesh

Award date:
2014

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bond University Research Portal

https://core.ac.uk/display/196607311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.bond.edu.au/en/studentTheses/eccc43a0-1609-4d1a-b63c-fc49ba010bef

Generating Effective Test Suites for Reactive

Systems using Specification Mining

Presented By

Prasad Ramesh Bokil

Submitted in total fulfilment of the requirements of the degree of

Masters By Research

Faculty of Business

Bond University

The Australia

January 6, 2014

1

Abstract

Failures in reactive embedded systems are often unacceptable. Effective test-

ing of embedded systems to detect such unacceptable failures is a difficult

task.

We present an automated black box test suite generation technique for

embedded systems. The technique is based on dynamic mining of specifica-

tions, in the form of a finite state machine (FSM), from initial runs. The set

of test cases thus produced may contain several redundant test cases. Many

of the redundant test cases are then eliminated by an aggressive greedy test

suite reduction algorithm to yield the final test suite. The tests generated

by our technique were evaluated for their effectiveness on five case studies

from the embedded domain. The evaluation of the results indicate that a

test suite generated by our technique is promising in terms of effectiveness

and scales easily. Further, the test suite reduction algorithm may sometimes

remove non-redundant test cases too. Therefore, in our experimentation, we

have also evaluated the change in the effectiveness of test suites due to this

reduction.

In this thesis, we describe the test suite generation and reduction tech-

nique in detail and present the results of the case studies.

2

This thesis is submitted to Bond University in fulfilment of the require-

ments of the degree of Masters by Research. This thesis represents my own

original work towards this research degree and contains no material which

has been previously submitted for a degree or diploma at this University or

any other institution, except where due acknowledgement is made.

Prasad Ramesh Bokil

Faculty of Business

Bond University

Robina 4229

Australia

3

Acknowledgment

I would like to express my gratitude to my supervisors Prof. Padmanab-

han Krishnan, Prof. Marcus Randall and Mr. R. Venkatesh for the useful

comments, remarks and engagement through the learning process of this

master thesis. I would also like to thank my loved ones, who have supported

me throughout entire process, both by keeping me harmonious and helping

me putting pieces together. I will be grateful forever for your love.

Table of Contents

List of Figures . 6

List of Tables . 7

1 Introduction . 8

1.1 Analysis for error detection . 8

1.2 Testing for error detection . 11

1.3 The problem statement . 16

2 Literature Review . 18

2.1 Test generation . 19

2.2 Test Suite Reduction . 30

2.3 Evaluation of test suite effectiveness . 33

3 Preliminaries . 38

3.1 Reactive embedded software . 38

3.2 Test vector, test case and test suite . 40

3.3 Inputs and outputs of an embedded software system 42

3.4 Modified Condition Decision Coverage . 42

3.5 Finite State Machine (FSM) . 45

4

TABLE OF CONTENTS 5

4 Test Generation Technique . 47

4.1 Test Generation Technique - High Level 47

4.2 Test Generation Technique - Low level . 49

4.2.1 Inputs to test generation . 49

4.2.2 Test Generation Method . 50

4.3 Demonstration on an example program . 70

4.3.1 Example program . 70

4.3.2 Execution on Example Program . 72

5 Experimental Evaluation . 80

5.1 Evaluation of test suite effectiveness . 80

5.2 Case Studies . 83

5.3 Resources used in experimentation . 85

5.4 Experimentation . 85

5.5 Observation of the Results . 90

5.6 Lessons Learnt . 91

5.7 Threat to Validity . 93

6 Conclusion and Future Work . 96

Bibliography . 99

List of Figures

2.1 FSM example 1 explaining program state 26

2.2 FSM example 2 explaining program state 28

2.3 Mutation Testing . 34

3.1 Reactive System . 40

3.2 An Example FSM . 46

4.1 Test Generation Technique . 48

4.2 Program Trace Format . 56

4.3 FSM of sample program trace . 57

4.4 State merging process . 61

4.5 Test suite reduction . 67

4.6 Example Program: Trace Format . 74

4.7 Example program: Three FSMs of program run. 75

4.8 Example program: Semi-merged FSM . 76

4.9 Example program: Merged FSM specification 77

5.1 Test Suite Evaluation . 82

6

List of Tables

4.1 Example program: Initial Test Suite . 72

4.2 Example program: New Test Suite . 78

5.1 Details of Case Study . 83

5.2 Results of Experimentation . 89

7

1. Introduction

Certain software in embedded systems, like avionic and automotive systems,

is safety-critical. Examples of such software are flight navigation, autopilot in

avionics and braking system and airbags deployment in automotive systems.

Failures in these systems risk loss of life and property. No safety-critical

software should have critical errors, else they may manifest into unaccept-

able failures. Preventable losses have been observed due to software failures

[59], [37], [20]. However, preventing or detecting critical errors in embedded

systems is a difficult task [14].

Attempts have been made to detect errors in software, both by software

analysis and by software testing. We discuss some of these attempts in detail

in the following sections.

1.1 Analysis for error detection

Errors may get detected at various stages of a software development life

cycle - requirement specification, design and implementation. We list the

predominant analysis methods and mention their limitations for industrial

embedded systems.

Requirement analysis includes the task to detect errors and inconsisten-

8

CHAPTER 1. INTRODUCTION 9

cies in the requirements. This prevents percolation of errors into the design

phase and beyond. Requirement analysis may include validating the require-

ments against expected behaviour and detecting ambiguous requirements.

There exist tools capable of detecting errors in requirements like QUARCC

[9], QUARS [24] and KaOS [83]. However, these tools are not adequate for

industrial software [48]. In most projects, requirements are present in non-

executable informal notations [48]. So requirement analysis is manual, which

makes the error detection task time-consuming and error-prone. Also, the

requirements keep changing, which adds to the complexity of the analysis

[21].

Design analysis involves detecting errors in the design artifacts such as

state-charts and UML models. Example of errors include infeasible designs,

performance issues deviation from specifications, deadlocks and unreachable

states in state-charts. Though advantageous, the basic limitation of design

analysis is availability of a low level design that represents the implemen-

tation. Many a times, for legacy as well as other software, the designs are

absent. Thus design analysis requires an effort to develop designs, which is

not always put in [36]. With no designs, design analysis cannot be done. Even

when designs are present, there are many cases where the design does not

depict the actual implementation [62]. Last minute changes to the software

is the primary cause of this, where changes are made to an implementation

without updating the design artifiacts due to time constraints. In such cases,

it is hard to perform any design analysis.

Program analysis aims at automatic analysis of program behaviour. The

two main approaches in program analysis are: static analysis and dynamic

analysis. Static analysis techniques inspect the code for errors without ex-

ecution of the code [23]. They can help uncover a number of errors in the

CHAPTER 1. INTRODUCTION 10

code, like zero division, deadlocks and array index out of bounds. Tools and

techniques implementing static analysis include PolySpace [61], ASTREE

[13] and TECA [54]. These tools do scale up for large codes, but are im-

precise [74]. The tools display a number of warnings which can be potential

errors in the code. These warnings need to be manually verified for actual

errors, which takes a lot of time and effort and the process is error prone.

The problem of manual verification of warnings is compounded with increase

in complexity of the software, as the number of warnings is directly propor-

tional to size of code. As a result, static analysis has its limitation for use

on industrial embedded software.

Dynamic analysis, on the other hand, relies on program execution to

study the code behaviour, often using instrumentation. The effectiveness

of such an analysis depends greatly on the sufficiency of test inputs, i.e., it

must be ensured that an adequate slice of program’s set of possible execution

behaviours have been observed. A practicable measure of this comes from

software testing techniques such as code coverage. Dynamic analysis has

the additional ability to find security issues caused by the code’s interaction

with other system components like SQL databases, application servers or

Web services. Among its advantages over static analysis, the following are

noteworthy:

• identification of vulnerabilities in a runtime environment.

• ability to analyse applications in which one does not have access to the

actual code.

• identification of vulnerabilities that might have been false negatives in

the static code analysis.

However, such an analysis is often too complex to work with. For instance,

CHAPTER 1. INTRODUCTION 11

it’s quite difficult to trace a vulnerability back to the exact location in the

code. Besides, one cannot guarantee the full coverage of the source code in

dynamic analysis, as it is performed based on user interactions or automatic

tests. Thus, no analysis at any level is sufficient for industrial embedded

software.

1.2 Testing for error detection

There exists basic testing methods which are used to detect software errors

that could lead to failures [63]. We mention the predominant testing tech-

niques and their limitations for industrial embedded systems.

One of the best testing methods is exhaustive testing, which tests the

software for all combination of inputs. This ensures tests which can detect

all errors from the system. However, even for trivial programs, exhaustive

testing is infeasible since it is time and effort intensive. Also, in most cases,

it is not possible to generate an exhaustive test suite, like programs with

unbounded loops. Thus other forms of testing are used. Requirement based

testing is one of the primary forms of testing, where a test suite is prepared

for checking the system based on the requirements of the system. Model

based testing [5] is used when a model of the system is available. This model

drives generation of test suite. Other types of test suite generation techniques

include those that try to achieve metrics such as structural coverage [88] [31]

[77], mutation killing [19], and so on.

We argue that none of the above techniques of testing are sufficient for

embedded systems [55]. Requirement based tests may not exercise the com-

plete code [53], because of which bugs may remain undiscovered. Model based

testing has problems similar to design analysis. The models of software are

CHAPTER 1. INTRODUCTION 12

either absent or do not faithfully represent the implementation. Thus, model

based testing may not give useful tests. Test suite generation techniques to

achieve structural coverage suffer either from accuracy or scalability issues

when run on large systems [57]. It is also noteworthy that coverage may

sometimes be unsuitable to generate test suites [43], but this is often domain

specific.

With none of these sufficing, there is a need for an effective testing tech-

nique for industrial embedded systems. We aim at developing one such

technique that will help testing of these systems. For this, we choose to

detect errors from program implementations. The rest of this paragraph

justifies this choice of ours. Many a times, software programs are the only

executable artifacts available with the team. Automated testing using non-

executable artifacts is difficult. Non-executable artifacts will have to be made

executable, which may require time and effort and the process is error-prone.

Most requirements and design documents are either non-executable or they

do not match with the implementation for reasons mentioned earlier. Soft-

ware programs, on the other hand, are executable and thus their testing can

be easily automated. Also, there are cases where the requirement and design

is free from critical errors, but the implementation may contain errors. These

errors may be introduced while converting design into implementation. Ex-

ample of such errors are null pointer dereferencing and array index out of

bounds. These errors are usually introduced by a programmer while coding.

Thus, to improve the usability of the technique, we focus on error detection

from software programs.

Static and dynamic program analysis are often used to automatically

detect errors from embedded programs. Error conditions are encoded as

properties and the analysis tools try to determine whether these properties

CHAPTER 1. INTRODUCTION 13

hold in the system. A different use of these analysis tools is to automati-

cally generate test suites for the program which in turn would detect errors.

In practice, these tools are useful on small programs. However, it is well

known that for most industrial applications, due to the size and complexity

of programs, static analysis tools are imprecise and dynamic analysis tools

are un-scalable [57].

Software testing methods are traditionally divided into white- and black-

box testing. The difference is in the point of view that a tester takes while

designing the test cases. White-box testing focuses on testing the internal

structures or workings of a program, as opposed to the functionality exposed

to the end-user. The tester chooses inputs to exercise paths through the

code and determine the appropriate outputs. Black-box testing, in contrast,

treats the software as a “black box”, examining functionality without any

knowledge of internal implementation. The tester is only aware of what the

software is supposed to do, not how it does it.

While white-box testing can be applied at different levels of the software

testing process, it is usually done at the unit level. Though this method

of test design can uncover many errors and problems, it might not detect

unimplemented parts of the specification or missing requirements. Black-

box testing, on the other hand, can be applied to most levels of software

testing: unit, integration, system and acceptance.

A notable limitation of black box testing comes from the possibility that

coincidental aggregation of several errors may produce the correct response

for a test case, preventing error detection. This makes it challenging to

generate effective test cases. Moreover, the black-box testing method makes

it difficult to design test cases (with just functional specifications) and may

lead to redundant test cases. However, we prefer black-box testing for this

CHAPTER 1. INTRODUCTION 14

work because of the following advantages of it (Tanja E. Vos, et al.[84] discuss

the relevance of such testing approaches in similar settings):

• The test is unbiased because the designer and the tester are indepen-

dent of each other.

• The tester does not need access to the code; knowledge of any specific

programming languages isn’t required.

• The test is done from the point of view of the user, not the designer.

• Test cases can be designed as soon as the specifications are complete.

• It averts the need for program analysis which is often costly. As a

result, the techniques scale better.

There are existing techniques for error detection of programs using black

box analysis. Random testing is a simple black box test generation tech-

nique, which may be effective in some cases [38]. We aim to refine random

testing using information about the behaviours of the program. We identify

the set of input and output variables used by the program and then capture

the functional (input-output) behaviour of programs. Hence our approach is

predominantly black box that relies on the identification of these variables.

Our technique is based on specification mining [89]. We extract partial spec-

ification of the system by observing behaviour of the system over a test suite.

The specification is in the form of a Finite State Machine (FSM). This spec-

ification guides further test generation. The advantages of our technique are

that it is precise and scalable in principle and requires no program analysis.

On the downside, owing to the use of a black box approach, our technique

may generate a larger test suite as compared to white-box techniques. Error

detection becomes increasingly difficult with the increasing size of test suites

CHAPTER 1. INTRODUCTION 15

(the response for each test case needs to be computed and tested against an

oracle). As a result, we need to reduce the test suite. While reducing the

test suite, we need to ensure that the size of the test suite reduces without

compromising on the error detection effectiveness of the test suite. There

have been several efforts on minimization of test suites [40], [80]. Measures,

such as test case similarity [35], have been introduced to identify relevant

tests and to understand test suites better. To address the issue of test suite

reduction, we also present a straightforward test suite reduction algorithm.

This algorithm reduces the size of the test suite in the black box paradigm

while trying to maintain test suite effectiveness. As explained by Mary Jean

Harrold, et al. [75], automated test suite reduction does help in reducing

number of tests, but suffers from loss in error detection of test suite. Our

technique exhibits similar characteristics. Thus, there is a trade-off between

the number of tests against which error detection from program is to be

measured and the loss of effectiveness.

In evaluating the effectiveness of our approach, we use Modified Condi-

tion Decision Coverage (MC/DC) [53] as a measure of test suite effectiveness.

While coverage directed test generation isn’t the most effective, especially for

avionics systems [78], the reader must note that we only use coverage as an

effectiveness measure and not to guide the test suite generation. For em-

bedded systems, MC/DC is a commonly used coverage criterion, especially

for safety critical applications. Importance of MC/DC over other practi-

cal coverage criteria has been established by Kalpesh Kapoor, et al. [52].

Standards like DO-178B [2] for avionics and ISO-26262 [3] for automotive,

mandate MC/DC for all its systems.

CHAPTER 1. INTRODUCTION 16

1.3 The problem statement

Specification mining by observing system behaviour isn’t unexplored, though

not for embedded systems. But the key question we wish to answer is the

following:

Can black box techniques be as effective as white box tech-

niques?

We look for an answer in the context of industrial systems in the embed-

ded domain and use MC/DC as an effectiveness measure for the technique.

To find the answer, we evaluated the effectiveness of the algorithm sketched

below on a program P viewed as a black box with just an input-output

relation.

1. Generate an initial test suite TS.

2. Extend TS to TS1 using specification mining techniques leading to a

sink-free FSM.

3. Reduce TS1 to TS2 by eliminating test cases that are not necessary for

state coverage but that satisfy a connectedness criterion (i.e., FSM is

a connected graph but not a multigraph).

The main contribution of our work is a black box test suite generation

technique for reactive embedded systems, which generates a satisfactory test

suite. By satisfactory, we mean a test suite which is comparable in effective-

ness with respect to a white box test suite and is acceptable for practitioners.

We show the effectiveness and scalability of the technique via case studies.

CHAPTER 1. INTRODUCTION 17

While improvements to the algorithms need to be investigated, initial results

are promising.

In theory, our black box test suite generation technique can be applied to

any reactive program. The only prerequisite is that inputs, outputs that form

the state and program executable are available. However, for simplicity of

experimentation and evaluation, we have our analysis to reactive programs

written in C. So for explanation purposes, we demonstrate our technique

on a sample C program. Inputs, process and outputs at each stage of the

technique are detailed.

Rest of the thesis is organised as follows. Chapter 2 presents the literature

review. Chapter 3 introduces terms used in the thesis. Chapter 4 explains

our technique of test suite generation using specification mining and test suite

reduction technique in the black box domain. Chapter 5 reports the test suite

evaluation process, experimentation process and results of experimentation.

Chapter 6 concludes with summary and future work.

2. Literature Review

Effective testing of embedded software in a black box environment is a dif-

ficult task [6]. There is a need for tests that verify the software. However,

manually preparing such tests is time consuming and error prone. As dis-

cussed later, current testing methods may not be sufficient for effective de-

tection of bugs from these systems. Thus, there is a need for an automatic

test generation method. Such a technique may generate effective, but a lot

of tests. This highlights the need for test reduction as well.

Our literature review is divided into three parts. The first part presents

work related to test generation. We give motivation as to why test gen-

eration is important and list the usual types of test generation techniques.

Explanation regarding limitations of these test generation techniques with

respect to our domain is provided. We discuss specification mining in detail,

which is our approach of test generation. The second part gives insight on

the test suite minimization techniques and argues about our choice of test

suite minimization technique.

The aim of generating tests is to find errors in software. The generated

tests must, therefore, be effective on the software. A metric to measure the

test suite effectiveness needs to be decided. In the third part of this chapter,

we look at several test suite effectiveness measurement techniques and explain

18

CHAPTER 2. LITERATURE REVIEW 19

the motivation behind choosing code coverage as a measure for the current

work.

In the next couple of sections, we focus on black box techniques for gen-

eration and minimization of test suites. Evaluation of test suite effectiveness

is independent of the technique used for generation of test suite. Hence, we

do not restrict ourselves to black box for measuring test suite effectiveness.

2.1 Test generation

In this section, we focus on test generation methods on software. Some of

the methods are as follows:

Exhaustive test generation [30] is one of the most simplest test gen-

eration techniques, which, in the ideal case, guarantees generation of data to

detect all possible errors of the software. This is possible for programs with

finite number of all possible inputs. However, in practice, it is extremely

hard to generate exhaustive test data for the system. Number of inputs

to the program, datatype of the inputs, unbounded loops and reactive be-

haviour of the program make use of exhaustive inputs infeasible. Also, there

exists the oracle problem, where there needs to be a check of the output of

the program over a test case, with the desired output of the system. Being

too effort and time intensive, very few projects have an automated way of

checking this. Thus, all checkings are done manually. It is extremely time

consuming and error prone to manually check the output of a program with

its desired output. Thus, for almost all programs, exhaustive test generation

is not useful.

Requirement based test generation helps produce test data based

on requirements of the program. This type of inputs test the program for

CHAPTER 2. LITERATURE REVIEW 20

their functionality. Robert M. Poston [70] gives a detailed explanation of an

automated test generation depending on requirements of the system and its

usefulness. However, requirement based tests may not exercise complete code

[53], because of which critical errors in the program may not be discovered.

Thus, just requirement based testing is insufficient.

Model based test generation [5] is used when the model of the software

is available. This model drives generation of test suite. But, many a times,

for legacy as well as other codes, the models are absent. Thus model based

testing requires an effort to develop models, which is not always put into [36].

In the absence of models, model based testing cannot be done. Even when

models are present, there are many cases where the model does not depict the

actual implementation [62]. This is mostly because of last minute changes

required in the software, when changes are made directly on implementation

without updating the model because of time constraints. In such cases, model

based testing may not give useful tests.

At code level, there are various white box test generation techniques,

which are summarized by Jon Edvardsson [22]. Program analysis is one of

the techniques used to generate a test suite [28]. A test suite generated to

improve code coverage [31] [77] is often used in the industry. Test suites are

also prepared to detect memory related errors [92], concurrency errors [56]

like read-write race and deadlocks. Richard A. DeMillo, et al. [19] explain a

technique for test generation for mutations of the program. Performance of

most white box test generation techniques on small examples is appreciable,

but may be unsatisfactory for large systems as they run into accuracy and

scalability issues [57] [7] [8].

There are a few black box test generation techniques as well. A. A.

Omar, et al.[67] give a survey on the black box test generation techniques.

CHAPTER 2. LITERATURE REVIEW 21

We provide, below, a brief overview of some of the techniques listed there.

Random test generation is a trivial black box technique to generate a

test suite. Dick Hamlet [38] discusses situations where random testing would

be sufficient and would be an alternative to systematic testing. However,

random testing is mostly unsystematic and there is no guarantee that it

would catch the errors [32].

In equivalence partitioning (EP) [67], the input domain of a program is

partitioned into a finite number of equivalence classes. Assumption is that,

for all classes, a test of a representative value of a class is equivalent to

a test of any other value of that class. Boundary value analysis (BVA) is

similar to EP, with the constraint that values are picked at the boundaries of

the classes. This helps testing at boundaries, where errors may be present.

Stuart C. Reid [72] explains how BVA is better than EP and random testing

on an avionic code.

However, EP and BVA require (mostly manual) identification of equiva-

lence classes and generating tests within that classes. The determining factor

of success of EP and BV is the quality of creation of equivalence classes. With

manual effort involved, cost of test generation increases and this process be-

comes error prone, reducing the effectiveness of error detection.

Cause effect graphing [63] is a systematic technique for representing test

cases as a combination of inputs. The test cases can point out ambiguities

and incompleteness in the specification. Yet, the process can be difficult to

apply in practice, because the complexity of applying the technique increases

for large number of causes (distinct input or equivalence class of input) [68].

The condition table method [30] is a method in which a condition table

is prepared by looking at program specification. Tests are prepared from

combination of conditions relevant to the correct operation of the program.

CHAPTER 2. LITERATURE REVIEW 22

Another such method is the category partition method [68], where tests are

prepared by systematically decomposing the program specifications. Both

these methods depend heavily on availability of the specification, which may

not always be available. Also, manual effort is involved making the process

costly and error prone.

Except for random testing, the above black box testing methods are not

suitable for reactive programs. In reactive programs, inputs may appear at

varying intervals and response of the system is determined by the previous

state of the program. Thus, sequences of inputs are needed to increase the

effectiveness of the test suites, which is not exhibited by any of the above

techniques. Also, most black box techniques are specification based or require

manual intervention, which limit the applicability of the techniques.

In a paper by Michael D. Ernst, et al.[39], a technique to improve test

suite using operational abstractions has been mentioned, where a better test

suite is derived from an existing test suite by checking the behaviour of each

test case. This technique requires domain knowledge of the system, which

may not always be available.

Test generation using specification mining is a relatively newer area re-

lated to test generation. We explain in detail the literature review regarding

specification mining.

Specification Mining

Recently, there has been research in generating specifications by observing

program behaviour, which has been loosely summarized by Andreas Zeller

[89]. Techniques have been developed for specification mining on Object

Oriented (OO) systems. Andreas Zeller, et al. [16] explain the ADABU

CHAPTER 2. LITERATURE REVIEW 23

technique for capturing object behaviour models from JAVA code. SPY

[27] is a technique to recover specification of a software component from the

observation of its run-time behaviour. Similarly, Mayur Naik, et al. [64]

demonstrate use of static and dynamic analysis for preparing specifications

from JAVA programs.

The technique of specification mining has also been applied to test gen-

eration. TAUTOKO [15] is a tool to generate specifications from dynamic

analysis of programs and then generate test data from the specifications.

Michael D. Ernst, et al. [90] explain a combination of static and dynamic

analysis has been used for automated test generation and authors claim it to

be superior than TAUTOKO. All these approaches of specification mining

are strictly for OO systems, while most of embedded systems do not have

OO programs, but are rather coded in C language [73].

Similarly, for determining Application Program Interface (API) behaviour,

specifications can be mined either from the program source code using static

program analysis [17] [76] or from execution traces [79]. However, these tech-

niques cannot be directly applied to embedded systems because of the differ-

ence of nature of the programs. To mine API behaviour, a ‘set of valid APIs’

is considered as a ‘program state’. Most specification mining algorithms for

API programs are based on this ‘state’ concept. Clearly, this concept of state

(and thus even the algorithms) cannot be used for embedded programs.

There are techniques where knowledge of the program internals or domain

is used for specification mining. In a paper by Fides Aarts, et al. [4], regular

inference has been used to build a Finite State Machine (FSM) from program

behaviour. Antti Kervinen, et al. [47] discuss a technique to generate test

models from test cases using domain specific language to prepare the models.

Gerard J. Holzmann, et al. [44] discuss a technique and a tool Modex,

CHAPTER 2. LITERATURE REVIEW 24

to extract specifications from code, where code is annotated with specific

statements to help in specification extraction. These techniques require the

user to have a certain degree of knowledge about the system and also to make

changes to the program/technique. This may not be possible at all times due

to the time constraints in the project.

A number of authors suggest ways to prepare formal specification from

programs. Patrice Godefroid, et al. [29] explain the automatic preparation of

symbolic equations for testing x86 processor instructions. Using an exhaus-

tive test suite, the authors are able to determine the behaviour of Arithmetic

and Logic Unit (ALU) type instructions, by considering the instruction as a

black box. Claire Le Goues, et al. [58] explain a process to generate spec-

ifications from code using code quality as its guide. Although it reduces

the false positives in the specifications, it extracts specific patterns in code

and not the entire specification. Also, as shown by Mark Gabel, et al. [25],

techniques that match a specific pattern of the specification to all possible

program component combinations, are NP-complete in its general form.

Thus, our literature review suggests that specification mining technique

has not been applied for test generation of embedded reactive programs. In

the following section, we look at options for :

• representation of extracted specifications and our choice as FSM,

• representation of state of FSM and our choice of output variable values

as state, and

• test generation techniques using specification mining and our choice of

technique.

CHAPTER 2. LITERATURE REVIEW 25

Choice of representation of extracted specifications

Specification mining techniques use different representations for the spec-

ification, like equations, models and FSMs. Patrice Godefroid, et al. [29] rep-

resent the extracted specification using equations while Antti Kervinen, et al.

[47] use models to denote the extracted specifications. However, a majority

of the representation of extracted specification is a FSM [15], [90], [64], [17],

[76]. Clearly, FSM is the preferred form of specification representation. The

primary reason for choosing FSM is that the representation closely depicts

the implementation. Also, FSMs can be executable, which help in automat-

ing processes over the FSMs. The FSMs can be expanded or contracted,

which depict refinement and abstraction of the specification. Our target pro-

grams are reactive programs, which are usually represented as state-charts.

Since state-charts are built on top of FSMs, reactive programs can be nat-

urally represented as FSMs. Thus, like majority of the specification mining

techniques, we also choose FSMs as our choice of specification representation.

Choice of state of FSM

The choice of state is an important consideration for specifications repre-

sented as FSM. Most specification mining techniques are for object oriented

type of systems for which, state in the specification is the list of all available

methods in the class. We explain with example, two state capture concepts

present in the literature. Illustration is provided by an example from paper

by Carlo Ghezzi, et al. [27], as in Listing 2.1.

1. State based on availability of methods

CHAPTER 2. LITERATURE REVIEW 26

public class Stack {

public Stack () { . . }

public void push (St r ing element) { . . }

public void pop () throws Error { . . }

public St r ing top () throws Error { . . }

public boolean isEmpty () { . . }

public int s i z e () { . . }

}

Listing 2.1: Example code to explain program state

Stack

Empty

Stack

Non Empty

Stack

Full

push()

pop()

push()

pop()

push()

pop()

Figure 2.1: FSM example 1 explaining program state

CHAPTER 2. LITERATURE REVIEW 27

The example code in Listing 2.1 implements a stack data structure. It

has methods like push and pop. A sample FSM of the stack is repre-

sented in Figure 2.1. It shows four states depending on the working of

the program. The main point to be noted is that each state represents

the set of available methods present in that state. Thus, just assuming

push and pop methods,

• the Initial State has the initialize method

• the stack empty state has just push () method available

• the stack full state has just pop () method available, while

• the stack non empty state has both pop() and push () methods

available.

This type of state concept is predominantly used in object oriented sys-

tems. However, inferences from the example suggest that this concept

of state is not possible for non-object oriented systems.

2. State based on values of method return

For the same example code, Listing 2.1, an alternate representation of

state is as in Figure 2.2. This representation is used by Andreas Zeller,

et al. [16]. In this representation, the return values of methods are

used to form the state of the program. Again, this representation is

not possible for non-object oriented systems, since class and methods

do not exist. Thus, this representation cannot be applied directly for

our technique. For our technique, we use a modified form of ‘state

based on values of method return’. We elaborate on our choice of state

representation.

CHAPTER 2. LITERATURE REVIEW 28

size()=0

top()=error

isEmpty()=true

size()≤0

top() is string

isEmpty()=false

push()

pop()

push()

pop()

Figure 2.2: FSM example 2 explaining program state

In ‘state based on values of method return’ technique for OO systems,

the methods are just an interface to retrieve values of members of the

class. Thus, the values of members of the class determine the state of

the program. These members are chosen to represent the state since

the aggregation of values of members depict the information required

to form the program state. Also, values of members are persistent,

which means that they retain values over multiple method executions

over the class.

For our imperative programs, we can use a similar concept of state. All

variables in the program of imperative system are similar to members

of the class of OO systems. Before execution of the program and class,

variables and members will all be initialized to their default state re-

spectively. During execution of the program, variables can indicate the

current state of the program, similar to members of the class. With

this correlation, we can modify the technique of ‘state based on values

CHAPTER 2. LITERATURE REVIEW 29

of method return’ with values of variables as state for our technique.

The state of the program will be represented by variables which help

to maintain the persistence of the program. For imperative systems

like C, these can be the global and static variables of the program.

Static variables can be converted to global using temporary variables.

However, if global variables in the program never change their values

(act like constants), then they may not represent the program state.

These would be similar to members of a class whose values never change

and thus do not contribute to state representation. As a result, we

consider a subset of global variables, which are variables whose values

change during execution of the program. As explained in 3.3, we call

this subset of global variables as output variables of the program. Along

with output variables, return value of program iteration is required to

represent the state. This is the value returned by each iteration of the

reactive loop in the program. This is explained in detail in 3.1 and 3.3.

For simplicity, we call the return value of each iteration as a output

variable as well. Thus, we use a representation in which the FSM state

is represented by values of output variables of the system.

Choice of test generation technique

Studies suggest that, till now, TAUTOKO [15] is the most successful black

box technique for test generation which uses specification mining techniques.

Thus, we develop our technique in a similar way.

We discuss about TAUTOKO in detail. TAUTOKO [15] is a tool for

OO programs to generate specifications from dynamic analysis of programs.

The specifications are in the form of an automata and are used to generate

test data to detect exceptions in the program. In this technique, the list of

CHAPTER 2. LITERATURE REVIEW 30

all available methods is considered as state of the specification. TAUTOKO

prepares a specification from a seed test suite, and enhances the specification

by execution of all possible methods from every state of the program, thus

generating a complete specification. In this process, it generates an effective

test suite which detects exceptions in the object oriented programs. So, for

a class in object oriented system, one can test for all sequence of methods

in that class. A test case of this test suite consists of a sequential list of

methods of the class, along with values.

Since TAUTOKO uses an exhaustive approach, the technique may not

scale up for large programs. Also, we cannot borrow the concept of state of

TAUTOKO for non object oriented embedded programs. The concept of pro-

gram state is the list of all available methods at a particular execution state

in the program. For TAUTOKO, some inputs cannot appear at certain times

(like, a pop method cannot appear when the program state is stackEmpty).

But, for reactive embedded systems, all inputs are equally likely to appear

at all times. Our technique of test generation is derived from TAUTOKO,

but is scalable in principle.

2.2 Test Suite Reduction

Developing a quick and efficient test suite reduction technique is hard. The

optimal test suite reduction problem is an instance of set-cover problem which

is NP-Complete [26].

Ideally, we want to generate a test suite which is minimal in size and is

effective to detect all errors in the program. The test suite size should be

small to tackle the oracle problem. At the same time, we do not want to loose

any test suite effectiveness (i.e., test coverage) due to test suite minimization.

CHAPTER 2. LITERATURE REVIEW 31

As explained by W. Eric Wong, et al. [87], optimally minimizing test suite

with respect to a criterion may lead to major reduction with negligible losses

in test suite effectiveness. However, these results were contradicted by some

studies [42] [51], who claimed that optimally reducing test suite for a criterion

does decrease their effectiveness. However, on a space application, Eric Wong,

et al. [86] demonstrated that significant test suite reduction can be achieved

with little or no loss in test suite effectiveness. Thus, it is generally assumed

in the research community that test suite minimization does not cause much

loss in test suite effectiveness [49].

Work has been done on test suite reduction for regression testing [33], [46].

The test suite reduction for regression testing decreases the time required to

re-test the software after changes are made to the software. When certain

features of a software are modified, the entire test suite is executed over the

software. This is to check if the output of the modified software is same as

per the requirement. However, one can execute only a subset of the test suite

and not execute those test cases which do not execute any modified part of

code. This saves time and effort in executing the tests. Regression testing

of high-assurance software is particularly expensive, such as software that is

produced for airborne systems. One reason for this expense is the extensive

verification required for the software. As quoted by Mary Jean Harrold, et

al. [51], one of the company reports that for one of its products of about

20,000 lines of code, the MC/DC-adequate test suite requires seven weeks to

run. Test suite reduction for regression can help solve this problem.

However, reduction methods for regression test suite cannot be used for

our technique. This is because, these reduction methods reduce the effort of

execution of unnecessary tests as opposed to discarding tests having no value.

These techniques help choose test cases to temporarily ignore for execution

CHAPTER 2. LITERATURE REVIEW 32

while we want techniques to completely delete the unwanted test case.

Most test suite reduction techniques are performed over some properties.

Such properties include code coverage (like [45], [51]) and mutation analysis

(like [66]). Test suite reduction for code coverage discards test cases which

add no value to code coverage. Similarly, test suite reduction for mutation

analysis discards test cases which do not increase mutation kill ratio. How-

ever, all these techniques are useful when program code is available. In the

black box domain, code coverage based or mutation based test suite reduc-

tion algorithms cannot be used, program code is unavailable to perform any

such analysis.

For black box, there are few test suite reduction techniques. A random

technique is unusable as one can always delete the important test cases [34].

So random test suite reduction is rarely used. Most times, test reduction is

based depending on some criteria. The HGS algorithm [41] is a test suite

reduction technique, which reduces a test suite based on requirements. The

HGS algorithm uses a greedy technique which selects the next test case which

matches the most requirements. Mary Jean Harrold, et al. [41] showed that

this technique reduces test suites without major loss of test suite effective-

ness and the claim was supported [34]. Mats P. E. Heimdahl, et al. [42]

explain another greedy technique to reduce test suites using models. This

uses model checking techniques to reduce the test suites. Michael D. Ernst,

et al. [39] propose a new technique for generating, augmenting, and mini-

mizing test suites called the operational difference technique. This technique

analyses program properties rather than program code. Jiang Zheng [91]

explains a black box technique for selecting test cases for regression, based

on documentation.

Of these techniques, we select a slightly customized version of the HGS

CHAPTER 2. LITERATURE REVIEW 33

algorithm. The reason for selecting HGS algorithm is that it is easy to

implement and has been proven to be effective. Most other techniques of test

suite reduction require different prerequisites whereas our technique need the

specifications, which have been generated by us.

2.3 Evaluation of test suite effectiveness

The effectiveness of a test suite is dictated by the number of errors detected

by it. In order to get an absolute measure, one may look at the ratio of errors

detected by a test suite to the total number of errors in a program. However,

this ratio is not easy to arrive at, as the total number of possible errors in a

program is rarely known. As a result, test suite effectiveness is measured in

relative terms. If a test suite TS1 finds more errors than another test suite

TS2, then TS1 is said to be more effective than TS2.

We would like to measure the effectiveness of the test suite generated by

our technique. This would be measured on a relative basis with test suite

generated using other techniques. For checking effectiveness, we need two

versions of the program, one with errors and other with the errors fixed.

Executing the test suites on the programs would show their effectiveness.

However, coming up with this setup is hard because of the actual availability

of such versions of a program. So we decide to use the other established

methods to measure test suite effectiveness.

Jeff Offutt, et al. [60] explain a few alternate methods of test suite mea-

surement. As per the paper, mutation testing and code coverage are effective

forms of test suite effectiveness measurement. We discuss both methods of

test suite effectiveness measurement and conclude on a metric.

CHAPTER 2. LITERATURE REVIEW 34

Figure 2.3: Mutation Testing

Mutation Testing

Mutation testing [65] can be used to measure quality of test suite for the

given program. The flow diagram in Figure 2.3 attempts to illustrate the

technique. In mutation testing, the source code of a program P is mutated (or

modified) to create a program P ’. The test suite of the program is executed

over both versions of the program and their respective output is compared.

If any test case in the test suite produces a different outputs for program P

and P ’, the mutant is said to be killed (or detected). This means that the

current test suite is good enough to catch a bug in the program where P ’

is the buggy version of the program. Similarly, mutant programs P1 ’, P2 ’,

.. Pn’ are automatically created based on some properties. Thus, Mutation

Kill Ratio (MKR) is computed for a test suite which is the ratio of number of

mutants killed by a test suite to the total number of mutants against which

the test suite was run. A test suite TS1 is considered to be more effective

than TS2 if MKR of TS1 is greater than that of TS2.

We could have used MKR as a measure in evaluation of test suite effec-

tiveness. With a C program and an input test suite, there are tools available

for computing MKR, like Proteum [18] and MILU [50]. However, our expe-

rience with the tools indicates that these tools are inadequate when run for

CHAPTER 2. LITERATURE REVIEW 35

industrial software. We tried to execute Proteum on our case studies, but

the tool would throw an exception for industry code. Building an automated

mutation analysis tool was beyond the scope of the thesis, since it was time

and effort intensive. As a result, we could not use mutation testing for effec-

tiveness evaluation of our test suites.

Code Coverage

A large number of coverage criteria have been defined for a variety of test-

ing applications. Hong Zhu, et al. [93] illustrate some fundamental notions

underlying these while presenting a comprehensive survey of various types

of test adequacy criteria. For the sake of completeness, we introduce some

of the most basic ones here: (For the ease of illustration of some of these

criteria, we implicitly switch between the two equivalent notions - a program

and its control-flow graph.)

• Function coverage - Has each function in the program been called?

• Statement coverage - Has each statement in the program been exe-

cuted?

• Decision coverage - Has every edge in the program been executed,

i.e., have the requirements of each branch of each control structure

been met as well as not met?

• Condition coverage (or predicate coverage) - Has each boolean sub-

expression evaluated both to true and false? This does not necessarily

imply decision coverage.

• Condition/decision coverage - Have the decision and condition cov-

erage been satisfied?

CHAPTER 2. LITERATURE REVIEW 36

For safety-critical applications, we often look at a stricter criteria called

modified condition/decision coverage (MC/DC). This criterion extends

condition/decision criteria with the requirements that each condition should

affect the decision outcome independently. For example, consider the expres-

sion 2.3.1 in a code:

if (a or b) and c then .. (2.3.1)

The following tests satisfy the condition/decision criteria for the above

statement: (a=true, b=true, c=true) and (a=false, b=false, c=false).

However, the above tests set will not satisfy modified condition/decision cov-

erage, since in the first test, the value of b and in the second test the value

of c would not influence the output. Therefore, the tests needed to satisfy

MC/DC are (a=false, b=false, c=true), (a=true, b=false, c=true),

(a=false, b=true, c=true) and (a=true, b=true, c=false).

For embedded systems, MC/DC is a commonly used coverage criterion.

Importance of MC/DC over other practical coverage criteria has been proven

by Kalpesh Kapoor, et al. [52]. Safety critical standards like DO-178B

[2] for avionics and ISO-26262 [3] for automotive mandate MC/DC for all

its systems. Therefore, we use MC/DC as our code coverage criterion for

checking effectiveness of test suites.

Similar to most structural coverage criteria, MC/DC of a test suite is

measured as follows:

MC/DC =

Total number of conditions which

have showed independent effect

Total number of conditions

present in the code

 ∗ 100 (2.3.2)

CHAPTER 2. LITERATURE REVIEW 37

We assume that, if test suite TS1 attains more MC/DC than test suite

TS2, then TS1 is said to be more effective than TS2. The intuition behind

the assumption is that more the MC/DC, more is the coverage of the code

of the program.

In the next chapter, we introduce some of the basic terms and notions that

will frequently appear in the rest of this thesis. We start with an informal

definition of an embedded reactive system and introduce a few commonly

used terms in software testing. Later, we get into the details of MCDC, a code

coverage criteria that we employ to test the effectiveness of our technique,

and briefly explain finite state machines.

3. Preliminaries

This section introduces some terms and notions which are used in this thesis.

3.1 Reactive embedded software

Most software in embedded systems is reactive in nature. The software ac-

cepts a set of inputs, processes them and produces a set of outputs before

processing the next set of inputs. Figure 3.1 shows the interaction between

a reactive system and its environment. The environment can be any entity

which provides continuous inputs to the system. A practical approach to

model-based testing of reactive embedded systems is to allow modeling of

the environment to enable test automation [6]. Examples of environment are

humans, sensor values and other similar systems. The environment provides

input to the reactive system. The reactive system processes these inputs

and generates outputs, which are sent back to the environment. The system

will mostly maintain an internal state. This internal state will facilitate the

system to decide on the output values. This state may note the number of

times a particular input has occurred, last instance of an input, last instance

of an output and the internal timer values. Once the outputs are presented

to the environment, the reactive system will read the next set of inputs and

38

CHAPTER 3. PRELIMINARIES 39

the process continues.

A typical example of a reactive embedded software is a wiper control of a

car. The system is supplied with inputs to operate the wiper. This input can

be provided either by a human (by adjusting wiper setting), sensor values

(rain sensor) or the car itself (if ignition is on). An example input can be

to operate the wiper at medium speed. The wiper control system processes

the inputs and performs calculations depending on its internal state. For

example, the input state may be that the wipers are off. In this case, it

needs to start the wiper operation and increase its speed. It may also happen

that the wiper is already running at high speed, where in the wiper speed

needs to be reduced. Thus, the wiper control module computes the wiper

operation and produces an output. As soon as the output is produced, the

wiper control system waits for the next set of inputs to work on.

There are two assumptions about reactive systems. Firstly, it is assumed

that a reactive system operates instantaneously, that is without any time

delay. In practice, any reactive system takes a non-zero time for its opera-

tion, which is acceptable in practice. Secondly, it is assumed that reactive

systems will run for a relatively long time, depending on its deployment. For

example, it is expected that the automatic door operation system of a car is

in operation for entire lifetime of the car. This makes it important to test

reactive systems for long sequences of input, so that some defects can be

detected. A peculiar feature of reactive embedded systems is that any of the

available inputs can occur at anytime. As an example, wiper on or off, speed

of the wiper, rain sensor and other sensors are inputs that can occur at any-

time while the system is functioning. This is in contrast to other systems like

banking software, where a series of different inputs in a well defined sequence

is needed for proper functioning of the software.

CHAPTER 3. PRELIMINARIES 40

Reactive

System
Internal

State

Environment

Input

Output

Figure 3.1: Reactive System

Another feature of most embedded systems is that the inputs are pre-

dominantly boolean or enumeration types. For example, whether the wiper

is on or off, wiper speeds and so on are all types of such inputs. The above

information regarding embedded systems can be used for test generation of

these systems.

A sample outline of a sequential program which depicts a reactive system

is shown in Listing 3.1. In the program, the driver function contains a loop

which executes forever. This loop is called the reactive loop. Each iteration

of this loop is called as an iteration of the reactive loop or program iteration.

This loop reads inputs, executes the system and produces outputs, all in a

continuous manner.

3.2 Test vector, test case and test suite

Almost all software systems need to be tested for error detection. We define

terms used during this testing and explain it with the help of the wiper

control example.

A test vector for a system is a single assignment of values to inputs of that

CHAPTER 3. PRELIMINARIES 41

dr ive rFunct ion () {

repeat the loop f o r e v e r {

read inputs from environment for the r e a c t i v e system

execute the r e a c t i v e system

repor t outputs o f r e a c t i v e system to the environment

}

}

Listing 3.1: Sequential program depicting a reactive system

system. A single test vector is input at each iteration of reactive loop of the

program. A test case (or test data) for a system is a sequence of one or more

test vectors. The sequence of test vectors in a test case should be constant.

The output of a test case may change if the order of test vector execution

is altered. Ideally, a test case should contain expected values of the system

for each test vector. Our test cases need not have expected values since we

ignore all expected values for the purpose of test generation. A test suite is

a set of test cases. The order of test cases in the test suite can be altered

without changing the output of the system.

For the wiper control system of the car, assume that we would like to test

if the wiper works for medium wiper speed for 10 seconds followed by high

wiper speed for 5 seconds. Thus, a test vector would be the value of medium

speed of the wiper (say tv1). Another test vector would be the value of high

speed of the wiper (say tv2). These test vectors would be input at different

iterations of the system. A test case would contain the test vector tv1 to be

executed for 10 seconds followed by test vector tv2 for 5 seconds. Note that

changing the ordering of test vectors may change the output of the system

for the test case. Many such individual test cases form the test suite for the

wiper software.

CHAPTER 3. PRELIMINARIES 42

3.3 Inputs and outputs of an embedded soft-

ware system

Inputs to an embedded software system are values which are provided by the

environment to the reactive program. At a program level, we define input

variables as variables which are read in the program. Similarly, outputs

are values generated by the reactive system for the environment. We define

output variables of a program as global variables to which values are assigned

in the program and the return value of program iteration. We assume the

set of input and output variables to be disjoint.

3.4 Modified Condition Decision Coverage

Modified Condition Decision Coverage (MC/DC) is one of the most widely

used code coverage criterion for embedded systems. MC/DC shows an in-

dependent effect of each of its conditions on the decision. To show an inde-

pendent effect of a condition (called condition under consideration or CUC)

on a decision, two sets of test values are needed. In both sets, the values of

all conditions, except CUC, are masked so that they do not play any role in

the decision making process. Thus, toggling the value of the condition under

consideration, the decision should toggle and this becomes a test case which

satisfies MC/DC for that condition.

Consider that a particular decision in the code is cond1 AND (cond2 OR

cond3). Such code types are common in embedded systems. A usual error

in such systems is the logical operator error (AND replaced by OR and vice

versa).

For the above case, let us consider cond2 to be CUC. The two test cases

CHAPTER 3. PRELIMINARIES 43

for MC/DC of cond2 are (cond1=T, cond2=T and cond3=F) and (cond1=T,

cond2=F and cond3=F). The two test cases toggle the value of just CUC and

the decision toggles. Now assume that first AND operator in the decision

should have been an OR operator as per the specification. In this case, the

output of the decision in one of the test cases would be computed differently

than in the specification. This would help uncover the logical operator error.

There are three types of MC/DC: Unique-Cause MC/DC, Unique-Cause

+ Masking MC/DC, and Masking MC/DC [11]. We explain in brief the

three types of MC/DC and explain our choice of Masking MC/DC in the

experiments.

1. Unique-Cause MC/DC requires a unique cause for all possible (un-

coupled) conditions. Unique cause means that toggling a single con-

dition should change the expression result, with all other conditions

constant. In the case of strongly coupled conditions, no coverage set is

possible. For example, consider the following expression.

if (a or b) and (a or c) then .. (3.4.1)

For the above expression, conditions a are strongly coupled in the ex-

pression. Unique-cause MC/DC cannot be achieved for this expression,

since changing the value of one condition changes the other condition

too. For such cases, no guidance is provided by DO-178B standards on

how to cover these conditions. Fortunately, expressions with strongly

coupled conditions are quite rare in airborne software (one study puts

it at 72 conditions of 20,256 expressions).

2. Unique-Cause + Masking MC/DC requires a unique cause for

all possible (uncoupled) conditions. For strongly coupled conditions,

CHAPTER 3. PRELIMINARIES 44

masking will be allowed for that condition only (i.e., all other (uncou-

pled) conditions will remain fixed). For expression 3.4.1, unique-cause

+ masking MC/DC is allowed to have values for tuple (a,b,c) as (0,0,1)

and (1,0,1) to show independent effect of first instance of the condition

a.

3. Masking MC/DC, as its name implies, allows masking in all cases.

This is an extension beyond 2 that masking be allowed for strongly

coupled conditions only. For expression 3.4.1, masking MC/DC can

have values for tuple (a,b,c) as (0,0,1) and (1,0,0) to show independent

effect of first instance of the condition a.

Out of the above three types of MC/DC, masking MC/DC is the pre-

ferred choice of MC/DC to satisfy maximum MC/DC of a system. There are

multiple reasons for choosing masking MC/DC [11]:

1. Masking MC/DC requires a number of tests equivalent or lesser than

that of the other forms of MC/DC,

2. The performance of masking MC/DC is nearly identical from the prob-

ability of error detection viewpoint,

3. More independence pairs at all levels can be prepared for masking

MC/DC than for either of the unique-cause forms. It is assumed that

the larger the number of independence pairs, the easier the coverage

would be to attain.

MC/DC is the only practically useful code coverage criteria, which guar-

antees that detection of logical errors. Other code coverage criteria either

give no guarantees (like decision coverage) or require too many test cases

CHAPTER 3. PRELIMINARIES 45

(like multiple condition coverage). As a result, we use masking MC/DC in

the evaluation of test suite effectiveness.

3.5 Finite State Machine (FSM)

A finite state machine is a mathematical model of computation consisting

of a set of states, a start state, an input alphabet and a transition function

to go from one state to another depending on the input symbol. It can be

conceived as an abstract machine that can be in one of a finite number of

states. At any given time, the machine can be in only one of its states (the

current state).

The behaviour of state machines can be observed in a number of systems

performing a predetermined sequence of actions depending on a sequence

of events with which they are presented. Some common examples include

vending machines which dispense products when the proper combination of

coins are deposited, elevators, spell-checkers, traffic lights switching between

red, yellow and green, and combination locks which require the input of

combination numbers in the proper order.

Finite-state machines have been used to model a large number of prob-

lems, among which are electronic design automation, communication proto-

col design, language parsing and other engineering applications. In biology

and artificial intelligence research, state machines or hierarchies of state ma-

chines have been used to describe neurological systems and in linguistics to

describe the grammars of natural languages.

The example in Figure 3.2 encodes as an FSM, the design of an overly sim-

plified elevator controller (figure and explanation refered from ‘FSM tutorial’

[82]). The elevator can be at one of the two floors (states): Ground or First.

CHAPTER 3. PRELIMINARIES 46

Ground First

Up

Down

Up
Down

Figure 3.2: An Example FSM

This is controlled through a switch which can take two values (inputs): Up

and Down. The circles represent the states and the arrows represent transi-

tions between them. The arrow labels indicate the input value corresponding

to the transition. For instance, when the elevator is in the Ground state and

the input value is Up, the state of the elevator changes to First.

We will now start looking at the test generation technique, in the chapter

to come. To start with, we will spend some time to get a high level overview

of the procedure. As a next step, we would zoom in to illustrate all the

important steps of the process. The implementation details and the pseu-

docode of each of them would also form a part of this illustration. We would

be ending the chapter with a demonstration of our technique on a sample

program.

4. Test Generation Technique

This chapter describes our test generation technique. We split this chapter

into four sections. Initially, we give a high level explanation of our technique.

Next, we provide a detailed explanation of the test generation process. This

includes inputs to our technique and the algorithms underlying test suite

generation and test suite reduction. The third section contains the imple-

mentation level details of the technique. The final section demonstrates our

test generation technique on an example program. We explain each part of

the technique, with their inputs and outputs, when the example program is

input to test generation.

4.1 Test Generation Technique - High Level

A high level test generation technique is as explained in Figure 4.1.

Our aim is to generate a test suite from the program. This is done

by exploiting the dynamic behaviour of the program. The test generation

comprises of the following steps.

1. Inputting a reactive program and an initial test suite.

2. Running the test suite on the reactive program

47

CHAPTER 4. TEST GENERATION TECHNIQUE 48

Figure 4.1: Test Generation Technique

The initial test suite, obtained as an input, is executed over the input

program to produce execution sequences.

3. Inferring program specifications

Execution sequences are converted to a specification, depicting the be-

haviour of the program for the initial test suite.

4. Generating test suite from specification

Properties of specification are used to generate additional tests, which

would explore new behaviours of the program.

5. Reducing the generated test suite

Test cases not contributing to test suite effectiveness are removed.

6. Outputting the test suite thus generated

It is the initial test suite with the additional tests appended to it.

CHAPTER 4. TEST GENERATION TECHNIQUE 49

The next section details this process of test generation.

4.2 Test Generation Technique - Low level

Before explaining the test suite generation process, we explain the inputs to

the test generation process.

4.2.1 Inputs to test generation

The inputs to test generation process are: a reactive program, the input and

output variables of the program, an initial test suite and a timeout value.

The characteristics of these are explained below.

Reactive program

Our technique of test generation through specification mining is di-

rected toward reactive embedded systems. Programs showing the char-

acteristics of reactive embedded systems (see Section 3.1) are selected.

Thus, we assume our programs accept a set of inputs, process them

and produce a set of outputs before processing the next set of inputs.

Input and output variables

Inputs and outputs of embedded programs are explained in Section 3.3.

For our technique of test generation, we assume that input and output

variables of the program have been provided. In Section 5.4, we show

how these variables can be extracted automatically from the program.

Initial test suite

As explained in Section 3.2, a test suite consists of test cases. We call

a test suite an initial test suite if the test suite is already available to

CHAPTER 4. TEST GENERATION TECHNIQUE 50

us. We require this initial test suite for our test generation.

We assume the availability of such an initial test suite (TS), to guide the

specification mining process. In case such a test suite is not available,

Section 5.4 explains possible steps to prepare an initial test suite.

Timeout value

For some programs, our technique of test generation may take time

that is not acceptable in practice. This is true for reactive programs,

which are designed to run for long durations and thus will have long

tests. Preparing such tests may take time. For these programs, we

need some external control to stop the test suite generation process

if it exceeds a pre-specified time limit. If such an external control is

not available, the test suite generation process may take a very long

time before stopping. Hence, we accept a timeout value for our test

generation technique. When the time taken by the test generation

algorithm exceeds the timeout value, the test suite generation process

is halted. The value of timeout can be configured to be within the time

constraints. This enables us to experiment with large systems with

predecided time bounds on the test generation process.

4.2.2 Test Generation Method

For each stage of test generation and reduction, we classify the stage into

three components. The first component informally explains the process of

that stage. The next component gives input and output formats of each

stage. The final component gives implementation level details of that stage

with algorithms and data structures used in implementation.

We have implemented our test generation technique in the PERL pro-

CHAPTER 4. TEST GENERATION TECHNIQUE 51

gramming language. The main function of the PERL script has steps as in

Algorithm 1. Throughout this thesis, we refer to this algorithm as the main

algorithm.

Inputs to the algorithm are: a C file (F), name of the selected func-

tion under test (funcName), the list of input variables (Ilist), the list of

output variables (Olist), the initial test suite (TS) and the timeout value

(TMval). For simplicity of explanation, the algorithm shown here accepts

only a single C file. This, however, is not a limitation of the procedure.

The algorithm can trivially be modified to accept multiple files as input.

The algorithm first prepares a wrapper function to test the selected func-

tion. Next, an executable file is prepared to execute the test suite over the

selected function. A loop executes the set of statements of recording pro-

gram behaviours (recProgBehaviour), preparing FSMs from program traces

(prepareFSMsfromTraces), merging the FSMs to generate a single specifica-

tion FSM (mergeFSMs) and generating test data from the specification FSM

(genTestDataFromSpec). The loop terminates when no new test data can

be generated from the specification with our technique (errorFlag) or when

timeout has occurred (lT imeV ar >= TMval). Once the loop has executed,

we have TS with initial and new test cases. The test suite (TS) is optimized

using a reduction criteria (reduceTestSuite) to generate a reduced test suite

TSreduced. The algorithm outputs the test suite TSreduced.

In practice, prepareFSMsfromTraces and mergeFSMs are part of a single

stage. For simplicity, they are explained as separate stages.

Each of these are explained below in detail.

1. Prepare program environment

Preparing a program environment includes preparing a driver function

and using the driver function to prepare a program executable.

CHAPTER 4. TEST GENERATION TECHNIQUE 52

Algorithm 1 PseudoPERL script for test generation
Input: F, Ilist, Olist, TS, TMval

driverFunc = prepareProgramDriver (F, funcName, Ilist, Olist)

execF ile = prepareExecutable (driverFunc, F)

testGenF lag, lT imeV ar, FSMspec = (TRUE, START, ())

TSnew = TS

while testGenF lag = TRUE do

traceF iles = recProgBehaviour (execF ile, TSnew)

FSMs = prepareFSMsfromTraces (traceF iles)

FSMspec = mergeFSMs (FSMs, FSMspec)

newTestData, errorF lag = genTestDataFromSpec (FSMspec)

if errorF lag = FALSE then

TS = appendNewTestData(TS, newTestData)

TSnew = newTestData

if lT imeV ar >= TMval then

testGenF lag = FALSE

end if

else

testGenF lag = FALSE

end if

end while

TSreduced = reduceTestSuite (TS)

Output: TSreduced

CHAPTER 4. TEST GENERATION TECHNIQUE 53

Initially, we prepare a driver for the program. This driver simulates

an environment to the actual program function. The driver is similar

to the program shown in Listing 3.1. Driver contains a reactive loop

where input values are accepted, the program function is called and the

output is displayed. The driver can be generated with the availability

of input and output variables.

Once the driver function is generated, we prepare an executable file

with the program and driver function.

Implementation detail

To generate the driver for the program, we need

• input and output variables with their datatypes, and

• signature of the program function.

With this information, the driver can be prepared as shown in Figure

4.1. Function prepareProgramDriver from main algorithm produces

this driver function. The driver function is written to a separate file.

The driver in the figure is for programs in pseudo C language. A similar

driver can be prepared for most such languages.

In the initial part of the driver, file pointers and temporary variables

are declared. This declaration is with respect to the datatypes. Next,

a driverFunction is written which simulates the actual reactive envi-

ronment. The driverFunction opens the input test file for reading and

executes the reactive loop till all tests in a test file are read. It also calls

functions which read inputs and print outputs in a desirable format.

Once the driver is generated, an executable file is prepared. We use the

GCC compiler to generate the executable file. The function prepare-

CHAPTER 4. TEST GENERATION TECHNIQUE 54

Executable calls the GCC compiler with the C files and driver function

as input and outputs an executable file.

2. Run initial test suite on the program

The initial test suite TS is executed on the program to produce a set

of program runs.

The driver in step 1 is prepared such that each test case is input to the

program. The function is executed for that test case. Result, namely

the values of output variables, are printed to a file. This process of

reading test vector, executing the function and capturing outputs is

sequentially performed for each test vector in the test case. This process

is repeated for each test case in the test suite.

Each test case produces a program trace or a program run, which con-

tains information regarding the program’s run for a set of inputs, exe-

cuted in sequence. We prepare this trace as shown in Figure 4.2

The program run has information of the values of input variables and

program states in the sequence of execution. First, the initial values of

output variables are recorded. This is followed by the values of input

variables. Next, the values of output variables after execution of inputs

on the function are noted. This pair of related input-output values is

recorded for all test vectors in a test case. Execution of all test cases

in the test suite result in a set of such program runs.

Implementation detail

The executable generated in the previous stage is used to prepare pro-

gram runs. The function recProgBehaviour produces these program

runs by running the test suite (TS) over the executable. The Pseu-

doPERL algorithm for recProgBehaviour is shown in Algorithm 2.

CHAPTER 4. TEST GENERATION TECHNIQUE 55

// This d r i v e r i s prepared f o r func t i on <programFunction >.

FILE ∗ f p InpF i l e ;

char ∗ i npF i l e ;

// Temporary v a r i a b l e s prepared as per t h e i r da ta type .

<dt1> retVar ; // re turn va lue o f program func t i on

<dt2> glbForParam1 ; // parameters o f program func t i on

<dt3> glbForParam2 ;

void dr iverFunct ion () {

unsigned int i t e r a t i onVar = 0 ;

f p InpF i l e = openFi l e (‘ ‘ i npF i l e ”) ;

p r i n t f (‘ ‘ INITIAL OUTPUTS\n”) ;

reportOutputsFromFunction () ;

while (f p InpF i l e != NULL) {

getInputsForFunct ion () ;

retVar = <programFunction >(glbForParam1 , glbForParam2 ,

. . .) ;

reportOutputsFromFunction () ;

}

}

void getInputsForFunct ion () {

f s c a n f (‘ ‘%d %f %d %f . . . \n” ,&glbInp1 , &glbInp2 , &

glbForParam1 , &glbForParam2 , . . .) ;

p r i n t f (‘ ‘ INPUTS\n”) ;

p r i n t f (‘ ‘% d %f %d %f . . . \n” , glbInp1 , glbInp2 , glbForParam1 ,

glbForParam2 , . . .) ;

}

void reportOutputsFromFunction () {

p r i n t f (‘ ‘OUTPUTS\n”) ;

p r i n t f (‘ ‘% d %f . . . \n” , glbOut1 , glbOut2 , . . .) ;

}

Listing 4.1: Sample Program Driver

CHAPTER 4. TEST GENERATION TECHNIQUE 56

INITIAL_OUTPUTS

<O1>_<O2>_<O3>_ ...

INPUTS

<I1>_<I2>_<I3>_ ...

OUTPUTS

<O4>_<O5>_<O6>_ ...

INPUTS

<I4>_<I5>_<I6>_ ...

OUTPUTS

<O7>_<O8>_<O9>_ ...

...

Figure 4.2: Program Trace Format

Algorithm 2 PseudoPERL function for recProgBehaviour
Input: execF ile, TS

traceF iles = ()

for testCase in TS do

opF ile = prepareTraceFile ()

opF ile = execute (execF ile, testCase)

traceF iles = addToSetOfFiles (traceF iles, opF ile)

end for

Output: traceF iles

CHAPTER 4. TEST GENERATION TECHNIQUE 57

O1,O2,O3 O4,O5,O6 O7,O8,O9
I1,I2,I3 I4,I5,I6

Figure 4.3: FSM of sample program trace

The function recProgBehaviour takes the executable file (execFile) and

the test suite (TS) as input to produce a set of trace files traceF iles.

Each test case in the test suite is executed over the executable file. The

driver function present in the executable file prepares an output trace

file recording behavioral information of the test case. This information

is captured in the opF ile file. These files are collected in a set which

we call traceF iles.

3. For each program run, prepare a specification in the form of

a FSM

An individual program run is converted into a FSM. Each output be-

comes a state in the FSM and the input becomes the guard on some

transition. Each run produces a FSM. To prepare this, we sequentially

traverse the program run. The values of initial output form the initial

state of the FSM. The value of next occurring inputs form the guard

on the transition to the state formed from the following values of out-

put variables. This process continues until all the states have been

exhausted.

For the program run in Figure 4.2, Figure 4.3 gives the FSM so pro-

duced.

Implementation detail

The function prepareFSMsfromTraces in the main algorithm prepares

CHAPTER 4. TEST GENERATION TECHNIQUE 58

FSMs from program runs. The PseudoPERL algorithm for prepareF-

SMsfromTraces is shown in Algorithm 3.

We iterate over the set of program traces to get each program trace.

A program trace thus selected is converted into a FSM. For preparing

a FSM from a program trace, we read pairs of lines from the program

trace and classify every pair as either an input or an output. The first

line of the pair denotes whether the pair is an input (INPUTS) or an

output (INITIAL OUTPUTS or OUTPUTS). The second line of the

pair contains the respective values. In case of input, the values are

added to the input array (addToInputArray). In case of output, they

are added to the state array (addToStateArray). After every output

pair denoted by (OUTPUTS), the sequence of inputs and states are

stored in transition array (addToTransitionArray). Thus, after reading

the complete trace file, we obtain three array of arrays: inputArray,

stateArray and transitionArray. These arrays store the entire informa-

tion of the trace file.

Arrays inputArray and stateArray are of the same format. For ex-

ample in Figure 4.3, stateArray will be ((O1,O2,O3...), (O4,O5,O6...),

(O7,O8,O9...)) and inputArray will be ((I1,I2,I3...), (I4,I5,I6...)). Each

element of stateArray will contain an array of output values. Similarly,

each element of inputArray will contain an array of input values. For

both arrays, the values are added to the respective arrays after per-

forming a duplicate check. It may be possible that values to be added

as element are previously present. In that case, the new element is

not added, but the index of previously present same array element is

returned.

Array transitionArray contains the linking of the arrays in the form

CHAPTER 4. TEST GENERATION TECHNIQUE 59

Algorithm 3 PseudoPERL function for prepareFSMsfromTraces
Input: traceF iles

FSMs = ()

for each runFile in traceF iles do

inputArray, stateArray, transitionArray = (), (), ()

while (line = readNextLine(runFile)) not end of file do

if line = INITIAL OUTPUTS then

opLine = readNextLine(runFile)

prevStateIndex = addToStateArray (stateArray, opLine)

else if line = INPUTS then

opLine = readNextLine(runFile)

prevInputIndex = addToInputArray (inputArray, opLine)

else if line = OUTPUTS then

opLine = readNextLine(runFile)

stateIndex = addToStateArray (stateArray, opLine)

transitionArray = addToTransitionArray ((prevStateIndex, prevInputIn-

dex, stateIndex))

prevStateIndex = stateIndex

end if

end while

FSMs = addToFSMs (FSMS, (inputArray, stateArray, transitionArray))

end for

Output: FSMs

CHAPTER 4. TEST GENERATION TECHNIQUE 60

of ((s0, i0, t0), (s1, i1, t1) ...), where sx and tx represents index of state

array elements while ix represents index of input array. For example in

Figure 4.3, transitionArray will contain ((0,0,1), (1,1,2), ...).

Thus, these three arrays form a FSM represented in a specific format.

Using a combination of these three arrays, one can easily generate a

representation as in Figure 4.3. For each trace file, the three arrays are

produced and collected in FSMs. The FSMs are output from this stage

of the algorithm.

4. Merge individual FSMs to form a single FSM

Each FSM depicts a behaviour of the program for a specific input. The

program may show either total identical behaviour or partial identical

behaviour on two or more inputs. This identical behaviour can be

detected and the corresponding FSMs merged, to reduce redundancy

of behaviours in the FSMs. Thus, all FSMs are merged into a single

FSM to make it easier to work with a single FSM representing complete

behaviour of program for a test suite than many individual FSMs.

The individual FSMs are combined into a single FSM by merging states

with same values. If two FSMs have a state with same values, then the

two states form a single state. All incoming transitions to the two states

are now sink into the merged state. Also, all outgoing transitions from

the two states have a single source state which is the merged state.

Figure 4.4 depicts this state merging process. For simplicity of ex-

planation, we represent the state values and input values with q and

i respectively. Consider FSM 1 as a FSM produced from a program

run and FSM 2 as another FSM from an other program run and state

qB and qY to be the same states. The merged FSM is shown in the

CHAPTER 4. TEST GENERATION TECHNIQUE 61

qA qB qC FSM 1

qX qY qZ FSM 2

qA qC

qX qZ

qB-qY Merged FSM

i1 i2

i3 i4

i1

i3

i2

i4

Figure 4.4: State merging process

diagram where the states are merged and the transitions are adjusted.

All other non-identical states retain their existence in the merged FSM

along with their transitions.

Implementation detail

The function mergeFSMs in the main algorithm merges individual

FSMs into a single FSM specification. The PseudoPERL algorithm

for mergeFSMs is shown in Algorithm 4.

The FSMspec contains the specification in the form of a FSM. Format

of FSMspec is same as the format of FSMs, i.e. collection of three

arrays of inputs, states and transitions. To prepare FSMspec, we

merge the FSMs. Thus, we want to merge all respective arrays of

inputs, states and transitions into three arrays of inputs, states and

transitions which will represent the complete specification.

We pick each singleFSM from set of FSMs and merge it with FSMspec.

Initially, FSMspec will be empty and thus will be directly assigned the

CHAPTER 4. TEST GENERATION TECHNIQUE 62

Algorithm 4 PseudoPERL function for mergeFSMs
Input: FSMs, FSMspec

for each singleFSM in FSMs do

(inputArray, stateArray, transitionArray) = singleFSM

if FSMspec = () then

FSMspec = singleFSM

else

setOfSimilarStates = compareFSMsForState(FSMspec, stateArray)

FSMspec = addAllUniqueStates (FSMspec, setOfSimilarStates)

setOfSimilarInputs = compareFSMsForInput(FSMspec, inputArray)

FSMspec = addAllUniqueInputs (FSMspec, setOfSimilarInputs)

for each transition in transitionArray do

(source, input, target) = transition

source = getStateIndexFromFSMspec (FSMspec, stateArray[source])

input = getInputIndexFromFSMspec (FSMspec, inputArray[input])

source = getStateIndexFromFSMspec (FSMspec, stateArray[target])

FSMspec = addTransToSpec ((source, input, target))

end for

end if

end for

Output: FSMspec

CHAPTER 4. TEST GENERATION TECHNIQUE 63

values of singleFSM . For all further cases, we first determine all pairs

of similar states (compareFSMsForState) and inputs (compareFSMs-

ForInput) in singleFSM and FSMspec. All unique states and inputs

are added to the FSMspec. For each transition in transitionArray

of singleFSM , the tuple (source, input, target) is updated with new

index values from similar arrays of FSMspec. This updated tran-

sition is added to FSMspec using function (addTransToSpec). If a

particular transition is found to be duplicate, it will not be added by

(addTransToSpec).

Iteratively performing this action for all FSMs, we will get a merged

FSM in FSMspec. This specification will be used for test generation

process in the next step.

5. Generate additional test cases using the merged specification

Additional test cases are generated such that each newly generated

test case explores unexecuted runs of the program. This is achieved

by taking runs that end in a state that has no outgoing transition and

extending it by an input test vector that was generated earlier. This

will lead to a new transition to either a new state or an existing state.

The motivation to choose a terminal state is with the assurity that any

input executed from a terminal state will generate a new state or a new

transition or both. The specification in the form of a FSM represents

the behaviour of the program for a test suite. If we are able to prepare

test cases such that new states and transitions in the specification are

generated, then we may have new test cases which probe previously

unexplored behaviours of the program. If we execute a new test vector

from a non terminal state, we might generate another transition to the

CHAPTER 4. TEST GENERATION TECHNIQUE 64

same state of the FSM. Thus, we might have two inputs which have

same source and target states. This would mostly mean taking the same

program path with different inputs, which is unlikely to increase code

coverage. Intuitively, it is easier to achieve more program coverage by

generating new states in the program. Thus, we target test generation

from terminal states than other intermediate states.

For example, referring to the merged FSM in Figure 4.4, states qC and

qZ are two states from which there are no outgoing transitions. One

such terminal state is randomly selected, say state qC. Also, an input

vector from the test suite is randomly selected, say ix. Next, existing

test case to reach state qC from initial state is selected and the newly

selected test vector of ix is appended to it. So the new test case formed

is 〈...,i1,i2,ix 〉.

Generating a test case by selecting qB-qY as the selected state, may

result in an input such that new transition is from state qB-qY to state

qC or qZ. Thus we select a terminal state for test generation.

Implementation detail

The function genTestDataFromSpec generates new test data using FSM-

spec. The PseudoPERL algorithm for genTestDataFromSpec is shown

in Algorithm 5.

The steps in the algorithm are as per the technique explained above.

First a random terminal state (state) is selected (getRandomTerminal-

State) from the specification. We used PERL provided rand function

to generate random values. Next, a list of input vectors (inputList)

to reach state from the initial state is deduced (getListOfInputToRe-

achState). A random test vector from the available set of test vec-

CHAPTER 4. TEST GENERATION TECHNIQUE 65

Algorithm 5 PseudoPERL function for genTestDataFromSpec
Input: FSMspec

state = getRandomTerminalState (FSMspec)

inputList = getListOfInputToReachState (FSMspec, state)

inputSelected = getRandomInputVector (FSMspec)

newInput = prepareInput (inputList, inputSelected)

Output: newInput

tors is selected (getRandomInputVector) and is appended to inputList

(prepareInput) to produce a new input test case as newInput. This

newInput is the test case generated by our technique.

The new test case is executed on the actual code of the program. This

program execution produces a new program run. The process of gen-

erating a FSM from program run is repeated. This FSM is merged

with the existing specification. The new program run produces a new

program transition and a new program state in the specification. This

step of test generation is repeated until there are no terminal states

or the process times out. At the end of this step, a new test suite is

generated which is the collection of all test cases generated in this step.

6. Test suite reduction

The test suite generated from step 5 is reduced as follows:

(a) Sort the test suite in descending order with respect to number of

test vectors in a test case. This helps us ensure that a test case

completely contained within another is removed from the final test

suite.

Thus, a sorted test suite will have test cases with more number of

CHAPTER 4. TEST GENERATION TECHNIQUE 66

test vectors at the beginning of the test suite and the number of

test cases with lesser number of test vectors at the end of the test

suite.

(b) Using the sorted test suite regenerate the merged specification

as a FSM as in the test generation technique. Each test case is

individually executed and FSMs are prepared from their program

runs. Then, the individual FSMs are merged as per the merging

process explained in the test generation technique. The order of

merging the individual FSMs is determined by the order of test

cases in the sorted test suite. Thus, the FSMs prepared by the first

two test cases are merged first. This new FSM is next merged with

the third test case to produce a new merged FSM. This process

continues until all test cases in the test suite are exhausted.

While merging the test cases, we want to discard all test cases

which do not generate a new state or which generate only duplicate

transitions between source and target states with different inputs.

A test case is not discarded when,

• the test case generates a new state in the FSM, or

• the test case generates a transition to an existing state in the

FSM where there is no direct transition between the source

and target state.

Considering Figure 4.5, assume that we have an initial merged

FSM formed from a test suite and three new test cases TC1,TC2

and TC3. Successive merging of FSMs produced by TC1, TC2

and TC3 with the initial merged FSM produces a new merged

FSM. Looking at the initial merged FSM and the new merged

FSM, one can conclude the following:

CHAPTER 4. TEST GENERATION TECHNIQUE 67

q0 qA qB

qC qD

Initial Merged FSM

TC1 = i1, i2, i6

TC2 = i3, i2

TC3 = i3, i5

q0 qA qB qNew

qC qD

New Merged FSM

i1 i2

i3

i4

i5

i1 i2

i3

i4

i5

i5

i2

i6

Figure 4.5: Test suite reduction

• TC1 generates a new state (qNew). Since a new state is

generated, this test case is not discarded.

• TC2 does not generate a new state, but generates a transi-

tion between states qC and qB. Since there is no previous

direct transition between state qC and qB, this test case is

not discarded.

• TC3 neither generates a new state, nor a new transition. It

does generate a transition between states qC and qD, but

there already exists a transition between these two states. As

a result, this test case is discarded, since it is assumed that

this test case does not add any value to the test suite.

(c) Output is a reduced test suite with all unrequired test cases re-

moved from final test suite. All unrequired test cases, if added to

the test suite, would not produce any new state in the FSM and

CHAPTER 4. TEST GENERATION TECHNIQUE 68

would also not produce any unique transition between a source

and target state.

Implementation detail

The function reduceTestSuite in the main algorithm removes redundant

test cases from the generated test suite based on a criterion. The

PseudoPERL algorithm for reduceTestSuite is shown in Algorithm 6.

The reduction algorithm is a modified version of Algorithm 2. The test

suite file TS and an executable file execF ile are input to the algorithm.

Initially, we sort the test suite file TS based on the number of test vec-

tors (sortTestSuite). Priority is given to test cases with larger number

of test vectors. For each test case in the test suite, following actions

are performed in sequence. First, a test case is executed over the pro-

gram to produce a program run (recProgBehaviour). The program run

file has same format as that of Figure 4.2. Program run file is read

and classified as either input or output pair as in Algorithm 2. While

classifying and preparing arrays from the file, additional information

regarding states and transitions is prepared. Every new state and every

transition between two unconnected states is reported by functions (ad-

dToStateArray) and (addToTransitionArray) respectively. Once such

a state or transition is found, the test case is not discarded. All other

test cases are discarded. Thus, we get a reduced test suite in the form

of TSreduced.

7. The reduced test suite is now used in the evaluation process.

CHAPTER 4. TEST GENERATION TECHNIQUE 69

Algorithm 6 PseudoPERL function for reduceTestSuite
Input: TS, execF ile

TSreduced = ()

inputArray, stateArray, transitionArray = (), (), ()

TS = sortTestSuite (TS)

for each testCase in TS do

traceF ile = recProgBehaviour (execF ile, testCase)

newStateFlag = FALSE;

while (line = readNextLine(traceF ile)) not end of file do

opLine = readNextLine(traceFile)

if line = INITIAL OUTPUTS then

(prevStateIndex, newStateFlag) = addToStateArray (stateArray,

opLine)

if newStateF lag = TRUE then

last # “last” is PERL is same as “break” in C

end if

else if line = INPUTS then

prevInputIndex = addToInputArray (inputArray, opLine)

else if line = OUTPUTS then

(prevStateIndex, newStateFlag) = addToStateArray (stateArray,

opLine)

(transitionArray, newTransFlag) = addToTransitionArray ((prevStateIn-

dex, prevInputIndex, stateIndex))

if newStateF lag = TRUE or newTransF lag = TRUE then

last

end if

prevStateIndex = stateIndex

end if

end while

if newStateF lag = TRUE or newTransF lag = TRUE then

TSreduced = appendToTestSuite (TSreduced, testCase)

end if

end for

Output: TSreduced

CHAPTER 4. TEST GENERATION TECHNIQUE 70

4.3 Demonstration on an example program

In this section, we run our technique of test generation on an example C

program and explain the inputs and outputs at each stage of the technique.

4.3.1 Example program

We use a simple wiper code program as an example to illustrate our tech-

nique. Relevant explanations have been made in this section, with respect

to the example. The code of wiper program is in Listing 4.2.

The wiper code consists of a single function, which determines the func-

tioning of the wiper. The function accepts five inputs from the environment,

out of which two are boolean inputs, two are enumerations while one is an

unsigned integer. The function generates four output variables, where two

are boolean, one is enumeration while one is an unsigned integer. The main

function acts like the environment of the wiper function. As seen from the

code, the main function repetitively and sequentially performs the following

three steps:

• Get input values

• Call wiperControl function

• Report output values

The while loop in main function is the reactive loop of the program. Thus,

the main function simulates a reactive environment for the wiperControl

code.

CHAPTER 4. TEST GENERATION TECHNIQUE 71

// Inputs from the environment as be low

bool wiperOperate ; // Operate ON or OFF

bool eng ineStatus ; // Engine ON or OFF

enum rainSensorEnum {VERY LOW,LOW,MEDIUM,HIGH,VERY HIGH}

ra inSenso r ;

enum wiperSpeedEnum {VERY SLOW,SLOW,INTERMEDIATE,FAST,VERY FAST}

wiperSpeed ;

unsigned int veh i c l eSpeed ; // Value between 0 to 200

// Outputs to the environment as be low

bool wiperOutput ; // Wiper shou ld opera te or not

bool wipe rDi r e c t i on ; // Go l e f t or r i g h t

enum wiperSpeedEnum outputWiperSpeed ;

unsigned int timerVar ; // Timer v a r i a b l e from 0 to MAX INT

// Actual Function

void wiperContro l () {

// Function which computes the ou tpu t s as per the

// inpu t s and prev ious output va l u e s

}

// Environment to wiperContro l f unc t i on

void dr iverFunct ion () {

while (1) {

getInputsForFunct ion () ;

wiperContro l () ;

reportOutputsFromFunction () ;

}

}

Listing 4.2: Example Program: Code

CHAPTER 4. TEST GENERATION TECHNIQUE 72

Table 4.1: Example program: Initial Test Suite

Variable
wiper

Operate

engine

Status

rain

Sensor

wiper

Speed

vehicle

Speed

TestCase 1

0 0 0 0 0

1 1 0 1 0

1 1 0 1 20

TestCase 2

1 0 0 0 0

1 1 2 0 0

1 1 0 1 20

1 1 0 3 40

TestCase 3
1 1 0 0 0

1 1 0 4 100

4.3.2 Execution on Example Program

1. Inputs to the technique

Input program The program explained in Listing 4.2 is an example

reactive program. We assume this program to be representative

of most embedded programs.

Input and output variables The list of input and output variables

is available. There are five input and four output variables as

mentioned in 4.3.1.

Initial test suite Let us assume that we have the initial test suite as

in Table 4.1. This test suite has three test cases, each with a set

of test vectors. Each test vector is input to the wiperControl code

at each iteration of the reactive loop.

CHAPTER 4. TEST GENERATION TECHNIQUE 73

Timeout value For this example, we ignore the timeout value since

this example is for explanation purpose.

2. Test Generation Technique on example program

We explain each step of the technique on execution on the example

program.

(a) Prepare program environment

We prepare a driver for the program.

The driverFunction is this driver function for the example pro-

gram. The driverFunction can be automatically prepared once

the input and output variables are known. The getInputsFor-

Function function sets input values to input variables while the

reportOutputsFromFunction function displays the values of output

variables. The wiperControl is the actual function call to perform

the functionality of wiper control. All this code is put in a while

loop, which acts as a reactive loop.

(b) Run initial test suite on the program

We execute the initial test suite TS (Table 4.1) on the example

program to get a set of program runs. On execution of first test

case in the test suite of Table 4.1, the execution run prepared is

as in Figure 4.6.

Execution of all test cases of Table 4.1 gives three similar program

runs, one each for a test case.

(c) For each program run, prepare specification in the form

of a FSM

From the three program runs, three individual FSMs are obtained.

Each FSM depicts the behaviour of the program for a test case.

CHAPTER 4. TEST GENERATION TECHNIQUE 74

INITIAL_OUTPUTS

0_0_0_0

INPUTS

0_0_0_0_0

OUTPUTS

0_0_0_10

INPUTS

1_1_0_1_0

OUTPUTS

1_0_0_25

INPUTS

1_1_0_1_20

OUTPUTS

1_1_0_35

Figure 4.6: Example Program: Trace Format

For the program run in Figure 4.6, FSM labelled FSM1 is pro-

duced as in Figure 4.7.

Assume the three FSMs to be as in Figure 4.7.

(d) Merge individual FSMs to form a single FSM

Figure 4.9 depicts the merged FSM from individual FSMs.

To prepare the merged FSM, we pick the first two FSMs FSM1

and FSM2 of Figure 4.7. Observing the two FSMs, one can con-

clude that:

• states Sa and Se are same,

• states Sb and Sf are same,

• none of the other states are identical.

Thus, one can merge state Sa with state Se. None of these states

have any incoming transition. Both have a single outgoing tran-

sition. Thus, one can generate a single state Sae, which has same

value as Sa and Se. The outgoing transition from Sa, now has Sae

CHAPTER 4. TEST GENERATION TECHNIQUE 75

FSM 1

0,0,0,0

Sa

0,0,0,10

Sb

1,0,0,25

Sc

1,1,0,35

Sd

FSM 2

0,0,0,0

Se

0,0,0,10

Sf

1,0,2,25

Sg

1,1,2,35

Sh

1,0,3,45

Si

FSM 3

0,0,0,0

Sj

1,0,0,10

Sk

1,0,2,25

Sl

0,0,0,0,0 1,1,0,1,0 1,1,0,1,20

1,0,0,0,0 1,1,2,0,0 1,1,0,1,20 1,1,0,3,40

1,1,0,0,0 1,1,0,4,100

Figure 4.7: Example program: Three FSMs of program run

CHAPTER 4. TEST GENERATION TECHNIQUE 76

FSM 1

0,0,0,0

Sae

0,0,0,10

Sbf

1,0,0,25

Sc

1,1,0,35

Sd

1,0,2,25

Sg

1,1,2,35

Sh

1,0,3,45

Si

FSM 3

0,0,0,0

Sj

1,0,0,10

Sk

1,0,2,25

Sl

0,0,0,0,0 1,1,0,1,0 1,1,0,1,20

1,1,0,1,20 1,1,0,3,40

1,1,0,0,0 1,1,0,4,100

1,1,2,0,0

1,0,0,0,0

Figure 4.8: Example program: Semi-merged FSM

as the source and Sb as the target. Similarly, outgoing transition

from Se, now has Sae as the source and Sf as the target. In an

identical manner, states Sb and Sf can be merged to give state

Sbf. Thus, we have a semi-merged FSM as in Figure 4.8. FSM3

has been replicated in Figure 4.8 from Figure 4.7 for simplicity.

Next, FSM3 is to be merged with the semi-merged FSM of Figure

4.8. Two states of FSM3 have an identical state in Figure 4.8.

Thus, we create a merged FSM as in Figure 4.9.

(e) Generate additional test cases using the merged specifi-

cation

We target terminal states of FSM and execute inputs from those

states. Referring to the merged FSM in Figure 4.9, the two high-

CHAPTER 4. TEST GENERATION TECHNIQUE 77

0,0,0,0

Saej

0,0,0,10

Sbf

1,0,0,25

Sc

1,1,0,35

Sd

1,0,0,10

Sk

1,0,2,25

Sgl

1,1,2,35

Sh

1,0,3,45

Si

0,0,0,0,0 1,1,0,1,0 1,1,0,1,20

1,1,0,0,0 1,1,2,0,0

1,1,0,4,100 1,1,0,1,20 1,1,0,3,40

1,0,0,0,0

Figure 4.9: Example program: Merged FSM specification

lighted states Sd and Si are the terminal states from which there

are no outgoing transitions. One such terminal state is randomly

selected, say state Sd. Also, an input vector from the test suite

is randomly selected, say 1,1,0,1,0. Next, existing test case to

reach state Si from initial state is selected and the randomly se-

lected test vector is appended to it. So the new test case formed

is 〈0,0,0,0,0 - 1,1,0,1,0 - 1,1,0,1,20 - 1,1,0,1,0 〉.

This new test case is executed on the actual code of the program.

This program execution produces a new program run. The process

of generating a FSM from program run is repeated. This FSM is

merged with the existing specification. The new program run

produces a new program transition and a new program state in

the specification. This step of test generation is repeated until

there are no terminal states or the process times out.

At the end of this step, a new test suite is generated, which is the

CHAPTER 4. TEST GENERATION TECHNIQUE 78

Table 4.2: Example program: New Test Suite

Variable
wiper

Operate

engine

Status

rain

Sensor

wiper

Speed

vehicle

Speed

TestCase 1

0 0 0 0 0

1 1 0 1 0

1 1 0 1 20

TestCase 2

1 0 0 0 0

1 1 2 0 0

1 1 0 1 20

1 1 0 3 40

TestCase 3
1 1 0 0 0

1 1 0 4 100

TestCase 4

0 0 0 0 0

1 1 0 1 0

1 1 0 1 20

1 1 0 1 0

collection of all test cases generated in this step.

(f) Test suite reduction

Assume the test suite in Table 4.2 has been generated by the test

generation technique. This test suite is reduced as follows:

i. Sort the test suite in descending order with respect to number

of test vectors in a test case. As seen in the table, test cases

2 and 4 have four test vectors each, test case 1 has three test

vectors while test case 3 has two test vectors. Thus, the order

of test cases in the test suite is now 2, 4, 1, 3.

ii. Using the sorted test suite regenerate the merged specification

CHAPTER 4. TEST GENERATION TECHNIQUE 79

as a FSM in the test generation technique.

Thus, test cases from the test suite are executed in the sorted

order. Clearly, test case 1 is completely contained within test

case 4. Thus the individual FSM created by test case 1 will

be a subset of the FSM of test case 4. Also, test case 4 is

executed first, followed by test case 1. As a result, during

merging, test case 1 will not contribute to the merged FSM,

since the merged FSM will already have test case 4. So test

case 1 will not generate any new state or a new transition.

So, test case 1 is ignored.

iii. Output is a reduced test suite with all unrequired test cases

removed from final test suite. Thus, the final test suite is as

shown in Table 4.2 without the first test case.

(g) The final test suite is output from the technique.

In the following chapter, we evaulate our technique based on the exper-

iments performed on some selected case studies. To begin, we describe the

process of test suite evaluation in details. We explain the different case stud-

ies on which we worked and list the resources used for the experimentation.

Then, we move on to illustrate the experimental set-up and the steps in-

volved. We provide the results and explain our observation towards the end

of the chapter. We end the chapter drawing inferences from our experiments

and listing the limitations of our technique.

5. Experimental Evaluation

In this chapter, we explain the actual experimentation performed on case

studies to determine the effectiveness of our test suite with test suites gen-

erated from other techniques. We first explain the process of test suite eval-

uation in detail. Next we describe the example programs chosen for experi-

mentation while arguing the choice of these case studies. This is followed by

the experimentation details. All steps present in the test generation process

are explained on the example programs. Next section shows the results and

observations of the experiments. We list some assumptions of our experi-

mentation process with respect to usability of our approach. The chapter is

concluded with assessment of threats to the validity of our technique.

5.1 Evaluation of test suite effectiveness

We evaluate test suite effectiveness based on MC/DC. We assume that more

the MC/DC achieved by a test suite, more is the effectiveness of that test

suite.

We compare the test suite effectiveness of our technique against an MC/DC-

satisfying test suite generated using AutoGen [10]. AutoGen automatically

generates an MC/DC-satisfying test suite for reactive programs in C. Auto-

80

CHAPTER 5. EXPERIMENTAL EVALUATION 81

Gen generates test data for conditions that cover MC/DC and reports cases

for which it is not possible to generate test data. AutoGen uses a combi-

nation of program analysis and model checking techniques to generate test

data. In program analysis, program slicing [85] is performed which helps

AutoGen to scale up. Model checking techniques generate the required test

data. We assume AutoGen generated MC/DC to be the maximum achievable

MC/DC for a program. This is possible for programs where AutoGen scales

up. For our experiments, AutoGen is the only tool available that generates

tests satisfying MC/DC hence we use it. While other tools exist, like Reactis

for C [71] and CoverageMaster WINAMS [81], they were not available to us.

Hence all results are compared against AutoGen.

The procedure to compare test suite effectiveness of our technique with

a AutoGen generated test suite based on MC/DC is summarized as follows,

with reference to Figure 5.1.

1. For an embedded program, generate a MC/DC-satisfying test suite

(TS1) using AutoGen.

2. Using a seed test suite (TS), run the specification mining technique to

generate FSM and subsequently a new test suite (TS2) as in Section

4.2.

3. Apply reduction technique to obtain reduced test suite (TS3), again as

in Section 4.2.

4. Compare test suites TS1, TS2 and TS3 based on MC/DC.

CHAPTER 5. EXPERIMENTAL EVALUATION 82

Figure 5.1: Test Suite Evaluation

CHAPTER 5. EXPERIMENTAL EVALUATION 83

Table 5.1: Details of Case Study

System
Wiper

Control

Turn

Indicator

Mem

Slave5

Trans-

mitter13

Token

Ring13

LOC 53 986 752 787 808

Inputs 7 13 33 14 15

Outputs 5 142 45 70 72

Predicates 15 535 218 228 230

5.2 Case Studies

For our experimental analysis, we choose five relevant case studies. Two of

the five case studies are from the automotive domain while three of them

are from the Kratos benchmark suite [12]. The general characteristics of the

programs have been presented in Table 5.1. We use gcov [1], a well known

code coverage tool, to measure lines of code (LOC) and number of predicates

of the programs. Explanation of each case study is as follows:

The first case study from the automotive domain is the wiper control

module. This system controls the operation of the wiper in an automobile.

It is a relatively small case study, but a timer variable present in the code

adds complexity to test suite generation. The system requires fixed values

as inputs for certain number of iterations before all parts in the code can be

explored.

The second case study from the automotive domain is the turnIndicator

system [69]. This system manages the turn indicator functionality of an

automobile. UML models were available for the turnIndicator system. We

auto-generated stubs from the UML model. Unfortunately, we were unable

to generate code from the UML models using any of the freely available code

CHAPTER 5. EXPERIMENTAL EVALUATION 84

generators. So we manually wrote the code by extending the stubs generated

from the model. An ideal step after this would have been to verify the exact

functionality of the code and the UML models. This would have ensured

that behaviour of the models and the code was identical. However, strict

code correctness with respect to the model was not needed, since it was not

relevant to our experimentation. Our aim was to generate tests for the code

and not verify the code with models.

We chose the above two case studies since they closely depicted the na-

ture of embedded systems. The next three case studies were from the Kratos

benchmark suite [12] for testing performance of model checkers. The first

of these benchmarks is the memSlave5 program. The next two case stud-

ies are the transmitter13 and tokenRing13 programs. Both these programs

have a similar code structure. Overall, these three programs are part of

memory management and transaction generation module of a network traffic

controller system. They model an abstract bus with blocking input/output

behaviour. All these programs are automatically generated and hence have a

peculiar code structure. It is unlikely that practitioners would write code in

such a manner. For instance, these programs use goto as their main control

structure. This use of gotos makes program analysis difficult. These pro-

grams were chosen as AutoGen, our test generation tool, was unable to scale

up for these programs to generate test data for MC/DC. For these programs,

AutoGen would terminate before generating test data, even when the slicer

was turned on and timeout value was set to 10 minutes per condition.

These programs are not very large with respect to lines of code. How-

ever, their code is non trivial and large percentage of code is predicates.

Some involve floating point computations. Predicates and heavy computa-

tions generally make code analysis difficult. The programs exhibit reactive

CHAPTER 5. EXPERIMENTAL EVALUATION 85

behaviour which generates a large number of states.

5.3 Resources used in experimentation

We give a short information about the resources used in experimentation.

All experiments related to AutoGen were performed on a standard Windows

machine, Intel Core 2 Duo PC @ 2.27GHz, 2GB RAM. Other processes, like

generation and reduction of test suite, were run on a Linux server, Intel Xeon

CPU 32 bit, 8 processors, 8GB RAM. As we are not comparing time taken

to conduct the experimentation the use of two different machines does not

matter.

5.4 Experimentation

This section explains the actual experimentation process. The process of

experimentation for the programs was as in Section 4. For each of the above

programs, following steps were performed for test generation and evaluation.

1. Prerequisites:

For experimenting with the programs, we needed four prerequisites as

explained in Section 4: program code, list of input-output variables of

the program, an initial test suite and a timeout value. Out of these

prerequisites, only the program code was available to us. The rest of

the things were either computed or determined.

We compute list of input-output variables of the program. AutoGen,

which is primarily a tool for test generation, has a feature to extract

information of input and output variables from the program. It uses

static analysis methods to determine the input and output variables.

CHAPTER 5. EXPERIMENTAL EVALUATION 86

The static analysis tool conservatively determines the variables. Hence

there may be some inputs which are not actually inputs to the system,

but are reported as inputs by AutoGen. Thus, after generation of these

variables, the inputs need to be manually reviewed and some inputs are

removed. This is a one time activity per program. This scenario is when

the list of inputs is not known, which was in all of these case studies.

Ideally, an initial test suite should be a requirement-based test suite,

that is one which tests the program for requirements. But, since such a

test suite was not available, we generated a random test suite for every

program and used it as an initial test suite. We choose a random test

suite as a seed (initial) test suite since a random test suite is trivial to

generate and it has been shown to be effective on embedded programs

[55]. While doing random test generation, it is easy to introduce a bias

towards a particular program. Some programs are computation inten-

sive, like braking system, where majority of program code determines

the amount of brake to be applied. These programs should ideally

have large number of test cases with short sequences, to effectively test

these systems. Other type of programs require large test sequences to

effectively test them, like wiper control. This is usually the case for

systems having timer variables, where code is executed depending on

timer value.

So, while generating a random test suite, we need to ensure that a

particular type of program is not favoured by our initial test suite. If

favoured, the comparison of effectiveness across all programs will not

be same. Thus, we generate every test suite with 100 test cases and

with each test case having 100 iterations.

While determining a timeout value, we want to select a value which

CHAPTER 5. EXPERIMENTAL EVALUATION 87

is neither very small, nor very large. A small value will not allow our

test generation technique to generate enough tests. A large value of

timeout for test generation may not be acceptable in practice. Thus,

for timeout, a fixed value of 20000 seconds was chosen for each program.

2. MC/DC test suite generation:

AutoGen was used to generate an MC/DC satisfying test suite TS1.

For the first two case studies, AutoGen was able to generate such a test

suite. However, for the next three programs of Kratos, AutoGen was

unable to scale up. Thus we do not have MC/DC satisfying test suite

TS1 for the last three programs.

To ensure fairness in test suite generation across all programs, we kept

the same configuration of AutoGen for all programs. The configuration

variables included timeout value per condition, number of maximum

iterations of reactive loop and usage of slicer.

3. Test suite generation using specification mining:

With inputs as provided in prerequisite 1, a new test suite TS2 was

generated using specification mining technique explained in Section 4.2.

Except for transmitter13 system, the test generation technique for all

systems was stopped due to timeout. For transmitter13, a complete

FSM was obtained and hence the test generation was terminated. Note

that, a complete FSM does not guarantee a complete specification, since

a different input in one of the state may result in generation of a new

state.

4. Test suite reduction:

The test suite produced in the earlier step TS2 was reduced using the

CHAPTER 5. EXPERIMENTAL EVALUATION 88

technique explained in Section 4.2 which gave a reduced test suite TS3.

As seen from the results, except for wiper system, the reduction tech-

nique was successful in reducing the test suite without significant losses

in its effectiveness. For wiper system, the reduction of test suite size

was 96%, however, the MC/DC effectiveness decreased almost 20%.

5. Comparison of test suite effectiveness:

We compared the effectiveness of TS1, TS2 and TS3 for the first two

programs. As explained earlier, TS1 was not available for the Kratos

suite of programs. In that case, we compared TS2 and TS3 only.

MC/DC was used as a measure of test suite effectiveness. Given a

program and a test suite, AutoGen tool has a feature to compute

the MC/DC for that test suite. Thus AutoGen was used to compare

MC/DC of the programs for each of the test suites.

Note that AutoGen uses a combination of static analysis (program

slicing) and dynamic analysis (model checking) techniques, which are

one of the best in their class. Also note that AutoGen is a resource

intensive process, which consumes considerable time and memory for

generation of test suite. Thus, AutoGen produces a maximum possible

MC/DC satisfying test suite for a program.

We do not wish to compete with AutoGen with respect to generation

of an effective test suite. We use AutoGen generated test suite as a

benchmark test suite to decide the normal number of test cases required

to attain the maximum possible MC/DC for the program.

CHAPTER 5. EXPERIMENTAL EVALUATION 89

T
ab

le
5.

2:
R

es
u
lt

s
of

E
x
p
er

im
en

ta
ti

on

S
y
st

em
T
es

t
S
u
it

e
T
ec

h
n
iq

u
e

T
es

t
S
u
it

e
S
iz

e
M

C
/D

C
(%

)

T
es

t
C

as
es

(#
)

T
es

t
V

ec
to

rs
(#

)

W
ip

er

A
u
to

G
en

M
C

/D
C

11
19

4
96

.6

S
p
ec

M
in

in
g

99
89

12
22

12
96

.6

R
ed

u
ce

d
35

8
48

12
76

.6

T
u
rn

In
d
ic

at
or

A
u
to

G
en

M
C

/D
C

43
49

8
81

.6
8

S
p
ec

M
in

in
g

23
79

25
53

6
75

.7
9

R
ed

u
ce

d
10

01
11

37
8

75
.7

9

M
em

S
la

ve
5

S
p
ec

M
in

in
g

20
01

21
00

0
42

.8
9

R
ed

u
ce

d
10

01
11

00
0

42
.8

9

T
ok

en
R

in
g1

3
S
p
ec

M
in

in
g

23
83

25
74

8
67

.3
9

R
ed

u
ce

d
11

09
12

54
9

67
.3

9

T
ra

n
sm

it
te

r1
3

S
p
ec

M
in

in
g

21
78

23
92

6
67

.5
4

R
ed

u
ce

d
12

62
13

96
1

67
.5

4

CHAPTER 5. EXPERIMENTAL EVALUATION 90

5.5 Observation of the Results

The results of our experiments are presented in Table 5.2. The table de-

picts results for the five case studies. For each case study, the table shows

the MC/DC achieved by the test suite which is either generated by Auto-

Gen (AutoGen MC/DC), generated from our specification mining technique

(SpecMining) or test suite reduced from the test suite prepared by specifi-

cation mining technique (Reduced). The number of test cases in each test

suite, along with the total number of test vectors, is reported. Observations

from the table are summarised below.

• Wiper control was a small case study for which AutoGen was able to

generate a complete MC/DC satisfying test suite. The test suite origi-

nally produced by our technique was as good as the MC/DC satisfying

test suite in effectiveness but had too many test cases. The reduction

technique reduced the test suite by 96%, however, there was a consider-

able loss in MC/DC. Investigations in the code showed that a decision

involving four operands (n) and three logical operators modified a sin-

gle boolean output variable. To achieve MC/DC, there was a need for

at least five test cases (n+1). These test cases were generated by Auto-

Gen as well as our technique. However, from a black box perspective,

all five test cases performed the same function, which was setting the

value of that variable. Thus, our reduction algorithm deemed three of

the five test cases as insignificant and discarded them. All five test cases

take different paths in the program, but produce just two outputs. Our

reduction technique does not have access to paths in the program and

thus removes the remaining three test cases. This remains a limitation

of our reduction algorithm and would be a limitation for most black

CHAPTER 5. EXPERIMENTAL EVALUATION 91

box test suite reduction techniques.

• AutoGen was able to produce 43 test cases covering 81.68% MC/DC

for the TurnIndicator code. We assume this to be the maximum achiev-

able MC/DC for that program. AutoGen took a relatively long time

to generate these test cases (approximately 27500 seconds). Our tech-

nique generated a test suite with 2379 test cases which were reduced

to 1001 test cases. The test suite generated by our technique was

marginally inferior to the AutoGen generated test suite (i.e., less by

6% MC/DC). Another point to note is that the reduction algorithm

halved the number of test cases while maintaining almost the same

test suite effectiveness.

• For programs memSlave5, tokenRing13 and transmitter13, AutoGen

was unable to scale up. For these programs, our technique was able

to generate a test suite which had 42% MC/DC for memSlave5 and

almost 67% MC/DC for the other two programs. The reduction tech-

nique eliminated 46% to 57% of the test cases based on our reduction

technique, while keeping MC/DC unaffected. However, unlike the ear-

lier programs, we do not have any benchmark measure of what coverage

was achievable and what was achieved by our technique for these pro-

grams.

5.6 Lessons Learnt

Results of our experiments indicate that our technique can generate a sat-

isfactory test suite which is comparable in MC/DC effectiveness with a

MC/DC satisfying test suite. For cases where AutoGen scaled up, the

CHAPTER 5. EXPERIMENTAL EVALUATION 92

MC/DC achieved by the test suite generated by our technique was com-

parable to the MC/DC achieved by the AutoGen generated test suite. But,

to achieve the same level of MC/DC, the number of test cases generated by

our technique were much larger than those generated by AutoGen. For cases

where AutoGen did not scale up, our technique was able to generate a test

suite. We argue that effectiveness of this test suite is satisfactory as follows.

The advantages of our technique are that it is black box (code indepen-

dent and does not require program analysis) and is scalable for large and

complex codes. Thus we recommend that for embedded programs, when

code is available and amenable to program analysis, one should use program

analysis to generate test suite. For all other cases, our technique is a better

option.

Aim of any ideal test suite reduction technique should be that the tech-

nique should reduce the size of test suite without compromising effectiveness

of the test suite. Experimental results show that our test suite reduction

technique reduces the test suite considerably without significant loss in ef-

fectiveness. Yet, there is scope for improvement on reducing the test suite

further and on decreasing the small losses of effectiveness.

Our technique requires an initial test suite along with the program as

input. However, none of our case studies had a test suite. Thus we had to

build a test suite for each of the case studies. We selected a random test suite

to be our seed test suite since it is easy to generate a random test suite. Also,

based on our results from [55], we assumed that a random test suite would

help in generating a useful specification. As seen from the results, test suite

generated by our black box specification mining technique is comparable to

the MC/DC test suite for most of the programs. Note that we measure

effectiveness based on MC/DC. This concludes that random test suite as a

CHAPTER 5. EXPERIMENTAL EVALUATION 93

seed test suite helps generate a good specification for test suite generation.

Thus, we claim that the black box technique of test generation prepares

an effective test suite for embedded programs.

5.7 Threat to Validity

This section explains the threat to validity of the success of our technique.

1. Choice of case study:

While doing empirical analysis, we have chosen five case studies which,

we believe, are representative of embedded domain. However, case

studies chosen for experimentation may not be representative of embed-

ded domain. Incase the case studies do not represent all of embedded

domain programs, our sample programs may be insufficient samples.

Since we have chosen a variety of programs, we assume that patterns

depicted by these case studies is common in embedded programs.

2. Choice of test suite evaluation criteria:

The ideal way of measuring test suite effectiveness is the ability of

the test suite to detect number of errors in the program. Embedded

programs with the error information were not available to us. As a

result we had to use a different metric to measure test suite effective-

ness. We could have used Mutation Kill Ratio (MKR) as a metric,

which is shown to be the better metric at error detection than code

coverage. However, none of the available mutation analysis tools for C

programs could successfully analyse our case studies. Thus, we have

chosen MC/DC, a code coverage criterion used for safety critical ap-

plications, as the metric for test suite evaluation. MC/DC does not

guarantee error detection. But it is assumed that higher the MC/DC

CHAPTER 5. EXPERIMENTAL EVALUATION 94

of a test suite, more is its probability of detecting errors in programs.

Analysis needs to be done to show if increase in MC/DC corresponds

to increase in error detection in code.

3. Assumption of structure of embedded programs:

Embedded systems are mostly reactive. We assumed that the FSM of

its behaviours should be a connected graph, that is a graph where each

state has an edge to at least one other state. It is a possibility that

other embedded programs may not exhibit this behaviour of connected

graphs. In those cases, our technique of test generation may not mine

a good enough specification, hampering test suite generation. How-

ever, in our experience, the structure of programs in the case studies is

representative of embedded programs.

4. Choice of test suite reduction technique:

Even though the test suite reduction technique implemented by us al-

most halves the number of test cases, the size of the resulting test

suite may still not be small enough for practitioners. This is evident

when size of test suites generated by AutoGen and generated by our

technique are compared. Our test suite reduction technique is very

simplistic. A more sophisticated technique may reduce more test cases

while maintaining test suite effectiveness.

5. Choice of timeout:

We have chosen a fixed value of 20000 as the timeout value for our

experiments. In four of the five case studies, timeout occurred while

generating test data. There may be a different timeout value for which

a better specification is mined. We have not experimented with dif-

ferent timeout values. However, our experiments show that a useful

CHAPTER 5. EXPERIMENTAL EVALUATION 95

specification can be mined with the current chosen value of timeout.

So we choose not to experiment with different timeout values to answer

our research question.

In what follows, we would revisit the question that we had started with

and see if we have been able to find an answer satisfactorily. We would like

to conclude that the results are indicative of the usefulness of our technique.

We would also be highlighting some areas for future work in this direction.

6. Conclusion and Future Work

In Section 1.3 we had raised the question “Can black box techniques be as

effective as white box techniques?”. The reason we set out to find an answer

to this is the advantages that black box testing enjoys over white box testing.

In response to this question of ours, we have presented a black box technique

for test suite generation of embedded programs, which is based on specifi-

cation mining. The idea of specification mining is to extract specifications

from existing systems, effectively leveraging the knowledge which is typically

encoded as millions of lines of code. These specifications are models of soft-

ware behaviour and can be used for building, verifying and synthesizing new

or revised systems.

In our proposed technique, we first extract program specification using an

initial test suite. These specifications are modelled as finite state machines,

which consist of a set of states, an initial state, the transition relation and an

input alphabet. These specifications are used to guide the process of gener-

ating more tests for the program. The tests are designed to explore untested

behaviours of the program. After the new test suite has been generated,

we attempt to remove redundant test cases from new test suite. Thus, our

technique includes a test generation strategy as well as a test suite reduction

method. To measure the effectiveness of the generated test suites, we per-

96

CHAPTER 6. CONCLUSION AND FUTURE WORK 97

formed experiments on five case studies. The results indicated that our test

suite reduction technique reduced the test suite size considerably, without a

significant loss in effectiveness.

The effectiveness of the test suites was measured in terms of MC/DC

code coverage. Coverage of test suites generated by the white box technique

were compared with test suite with black box techniques. Results of the

experiment indicate that effectiveness of test suites generated by white and

black box technique are comparable, but the size of the test suites are very

different. The test suite generated using white box technique is much smaller

than that of black box technique. However, for programs where white box

techniques do not scale, black box test suite gives 42% - 67% MC/DC code

coverage. This code coverage may be acceptable for programs where white

box techniques do not scale. Thus, experiments indicate that our technique

is suitable for black box test suite generation in embedded programs.

In future, as an improvement to the existing work, we wish to experi-

ment with a number of test suite reduction criteria and propose a reduction

algorithm that does not affect the effectiveness of the test suite. Our cur-

rent algorithm seems to remove some useful test cases while preserving some

non-useful ones. Further, for test suite evaluation, it would be insightful to

use a “different” metric - like mutation kill ratio. However, for the programs

that we have considered in this work, there is no tool that would measure

mutation kill ratio. While it will be an effort-intensive task to build such

a tool or to modify our programs to suite the existing tools, we believe it

would be worthwhile to do so.

As an extension of our work, we wish to explore new specification mining

techniques in the black box domain to generate test suites with greater ef-

fectiveness. Currently, there is no known method to generate black box test

CHAPTER 6. CONCLUSION AND FUTURE WORK 98

suites using specification mining techniques for reactive programs. There is

a need to develop a class of such techniques and to formally validate them.

Bibliography

[1] GCOV - A Structural Code Coverage Measurement Tool.

[2] DO-178B: Software Considerations in Airborne Systems and Equipment

Certification. Technical report, 1994.

[3] ISO26262: Road vehicles – functional safety. Technical report, Interna-

tional Organization for Standardization, Geneva, Switzerland, Novem-

ber 2011.

[4] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating Models of

Infinite-State Communication Protocols using Regular Inference with

Abstraction. In Proceedings of the 22nd IFIP WG 6.1 International

Conference on Testing Software and Systems, pages 188–204. Springer-

Verlag, 2010.

[5] Larry Apfelbaum and John Doyle. Model Based Testing. In Proceedings

of the 10th International Software Quality Week Conference, QW’97,

pages 296–300, San Francisco, California USA, 1997. ACM.

[6] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. Black-box

system testing of real-time embedded systems using random and search-

based testing. In Proceedings of the 22nd IFIP WG 6.1 International

99

BIBLIOGRAPHY 100

Conference on Testing Software and Systems, ICTSS’10, pages 95–110,

Berlin, Heidelberg, 2010. Springer-Verlag.

[7] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth

Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Daw-

son Engler. A Few Billion Lines of Code Later: using Static Analysis

to find Bugs in the Real World. Communication ACM, 53:66–75, Feb

2010.

[8] Purandar Bhaduri and S. Ramesh. Model Checking of Statechart Mod-

els: Survey and Research Directions. CoRR, cs.SE/0407038, 2004.

[9] B. Boehm and Hoh In. Identifying quality-requirement conflicts. Soft-

ware, IEEE, 13(2):25–35, 1996.

[10] Prasad Bokil, Priyanka Darke, Ulka Shrotri, and R. Venkatesh. Auto-

matic Test Data Generation for C Programs. In Proceedings of the Third

IEEE International Conference on Secure Software Integration and Re-

liability Improvement (SSIRI), pages 359–368. IEEE Computer Society,

2009.

[11] John Joseph Chilenski. An investigation of three forms of the modified

condition decision coverage (mcdc) criterion. Technical report, Office of

Aviation Research, 2001.

[12] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya,

and M. Roveri. Kratos benchmarks. URL:

https://es.fbk.eu/tools/kratos/index.php?n=Main.Benchmarks.

[13] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. The ASTREE Analyzer. In Proceedings of the 14th Eu-

BIBLIOGRAPHY 101

ropean Symposium on Programming, ESOP’05, Edinburgh, UK, 2005.

Springer LNCS 3444.

[14] Patrick Cousot and Radhia Cousot. Verification of Embedded Soft-

ware: Problems and Perspectives. In Proceedings of the 1st Interna-

tional Workshop on Embedded Software (EMSOFT), LNCS 2211, pages

97–113. Springer-Verlag, 2001.

[15] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack,

and Andreas Zeller. Generating Test Cases for Specification Mining. In

Proceedings of the 19th International Symposium on Software Testing

and Analysis(ISSTA), pages 85–96. ACM, 2010.

[16] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, and An-

dreas Zeller. Mining object behavior with ADABU. In Proceedings of

the 2006 International Workshop on Dynamic Systems Analysis, WODA

’06, pages 17–24, New York, NY, USA, 2006. ACM.

[17] Guido de Caso, Vı́ctor Braberman, Diego Garbervetsky, and Sebastián

Uchitel. Program Abstractions for Behaviour Validation. In Proceedings

of the 33rd International Conference on Software Engineering, pages

381–390. ACM, 2011.

[18] Márcio Eduardo Delamaro and José Carlos Maldonado. Proteum/IM

2.0: An Integrated Mutation Testing Environment. Kluwer Academic

Publishers, 2001.

[19] Richard A. DeMillo and A. Jefferson Offutt. Constraint-Based Auto-

matic Test Data Generation. IEEE Transactions on Software Engineer-

ing, 17:900–910, September 1991.

BIBLIOGRAPHY 102

[20] Mark Dowson. The Ariane 5 Software Failure. SIGSOFT Software

Engineering Notes, 22(2):84–94, March 1997.

[21] D. Edberg and L. Olfman. Organizational learning through the pro-

cess of enhancing information systems. In Proceedings of the 34th An-

nual Hawaii International Conference on System Sciences (HICSS-34)-

Volume 4, HICSS ’01, pages 4025–4035, Washington, DC, USA, 2001.

IEEE Computer Society.

[22] Jon Edvardsson. A Survey on Automatic Test Data Generation. In Pro-

ceedings of the Second Conference on Computer Science and Engineering

in Linköping, pages 21–28, October 1999.

[23] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial

static analysis tools. Electronic Notes Theory Computer Science, 217:5–

21, July 2008.

[24] Lami G. QuARS: A tool for analyzing requirements. Software Engi-

neering Technical Report CMU/SEI-2005-TR-014, September 2005.

[25] Mark Gabel and Zhendong Su. Symbolic mining of temporal specifica-

tions. In Proceedings of the 30th International Conference on Software

Engineering, pages 51–60. ACM, 2008.

[26] Michael R. Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,

New York, NY, USA, 1979.

[27] Carlo Ghezzi, Andrea Mocci, and Mattia Monga. Synthesizing inten-

sional behavior models by graph transformation. In Proceedings of the

31st International Conference on Software Engineering, ICSE ’09, pages

430–440, Washington, DC, USA, 2009. IEEE Computer Society.

BIBLIOGRAPHY 103

[28] Patrice Godefroid, Peli de Halleux, Aditya V. Nori, Sriram K. Rajamani,

Wolfram Schulte, Nikolai Tillmann, and Michael Y. Levin. Automat-

ing software testing using program analysis. IEEE Software, 25:30–37,

September 2008.

[29] Patrice Godefroid and Ankur Taly. Automated synthesis of symbolic in-

struction encodings from I/O samples. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 441–452. ACM, 2012.

[30] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data

selection. In Proceedings of the International Conference on Reliable

Software, pages 493–510, New York, NY, USA, 1975. ACM.

[31] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic Test

Data Generation using Constraint Solving Techniques. In Proceedings of

the 1998 ACM SIGSOFT International Symposium on Software Testing

and Analysis, ISSTA ’98, pages 53–62, New York, NY, USA, 1998. ACM.

[32] Arnaud Gotlieb and Matthieu Petit. Path-oriented Random Testing. In

Proceedings of the 1st International Workshop on Random Testing, RT

’06, pages 28–35, New York, NY, USA, 2006. ACM.

[33] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter,

and Gregg Rothermel. An empirical study of regression test selec-

tion techniques. ACM Transactions Software Engineering Methodology,

10(2):184–208, April 2001.

[34] Rothermel Gregg, Harrold Mary Jean, Ostrin Jeffery, and Hong Chris-

tine. An empirical study of the effects of minimization on the fault

BIBLIOGRAPHY 104

detection capabilities of test suites. Technical report, Corvallis, OR,

USA, 1998.

[35] Michaela Greiler, Arie van Deursen, and Andy Zaidman. Measuring

test case similarity to support test suite understanding. In Proceedings

of the 50th International Conference on Objects, Models, Components,

Patterns, TOOLS’12, pages 91–107, Berlin, Heidelberg, 2012. Springer-

Verlag.

[36] Wolfgang Grieskamp. Multi-paradigmatic Model-Based Testing. In For-

mal Approaches to Software Testing and Runtime Verification, volume

4262 of Lecture Notes in Computer Science, pages 1–19. Springer Berlin

/ Heidelberg, 2006.

[37] M. Grottke and K.S. Trivedi. Fighting bugs: remove, retry, replicate,

and rejuvenate. IEEE Computer 40(2), 40(2):107–109, 2007.

[38] Dick Hamlet. When Only Random Testing Will Do. In Proceedings of

the 1st International Workshop on Random testing, pages 1–9. ACM,

2006.

[39] Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving Test

Suites via Operational Abstraction. In Proceedings of the 25th Inter-

national Conference on Software Engineering, ICSE ’03, pages 60–71,

Washington, DC, USA, 2003. IEEE Computer Society.

[40] Mary Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodol-

ogy for controlling the size of a test suite. ACM Transaction Software

Engineering Methodology, 2(3):270–285, July 1993.

BIBLIOGRAPHY 105

[41] Mary Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodol-

ogy for controlling the size of a test suite. ACM Transaction Software

Engineering Methodology, 2(3):270–285, July 1993.

[42] Mats P. E. Heimdahl and Devaraj George. Test-suite reduction for model

based tests: Effects on test quality and implications for testing. In

Proceedings of the 19th IEEE International Conference on Automated

Software Engineering, ASE ’04, pages 176–185, Washington, DC, USA,

2004. IEEE Computer Society.

[43] Mats P. E. Heimdahl, Devaraj George, and Robert Weber. Specifi-

cation test coverage adequacy criteria = specification test generation

inadequacy criteria. In Proceedings of the Eighth IEEE International

Conference on High Assurance Systems Engineering, HASE’04, pages

178–186, Washington, DC, USA, 2004. IEEE Computer Society.

[44] Gerard J. Holzmann and Margaret H. Smith. A Practical Method

for Verifying Event-driven Software. In Proceedings of the 21st Inter-

national Conference on Software Engineering (ICSE), pages 597–607.

ACM, 1999.

[45] J.R. Horgan and S. London. A data flow coverage testing tool for C. In

Proceedings of the Second Symposium on Assessment of Quality Software

Development Tools, 1992, pages 2–10. IEEE, 1992.

[46] JeeHyun Hwang, Tao Xie, Donia El Kateb, Tejeddine Mouelhi, and

Yves Le Traon. Selection of regression system tests for security policy

evolution. In Proceedings of the 27th IEEE/ACM International Con-

ference on Automated Software Engineering, ASE 2012, pages 266–269,

New York, NY, USA, 2012. ACM.

BIBLIOGRAPHY 106

[47] Antti Jääskeläinen, Antti Kervinen, Mika Katara, Antti Valmari, and

Heikki Virtanen. Synthesizing Test Models from Test Cases. In Proceed-

ings of the 4th International Haifa Verification Conference on Hardware

and Software: Verification and Testing, pages 179–193. Springer-Verlag,

2009.

[48] Prateek Jain, Kunal Verma, Alex Kass, and Reymonrod G. Vasquez.

Automated review of natural language requirements documents: gen-

erating useful warnings with user-extensible glossaries driving a simple

state machine. In Proceedings of the 2nd India software engineering

Conference, ISEC ’09, pages 37–46, New York, NY, USA, 2009. ACM.

[49] Dennis Jeffrey and Neelam Gupta. Test suite reduction with selective

redundancy. In Proceedings of the 21st IEEE International Conference

on Software Maintenance, ICSM ’05, pages 549–558, Washington, DC,

USA, 2005. IEEE Computer Society.

[50] Yue Jia and M. Harman. Milu: A customizable, runtime-optimized

higher order mutation testing tool for the full c language. In Practice

and Research Techniques, 2008. TAIC PART ’08. Testing: Academic

Industrial Conference, pages 94–98, 2008.

[51] James A. Jones and Mary Jean Harrold. Test-suite reduction and prior-

itization for modified condition/decision coverage. In Proceedings of the

IEEE International Conference on Software Maintenance (ICSM’01),

ICSM ’01, pages 92–102, Washington, DC, USA, 2001. IEEE Computer

Society.

[52] Kalpesh Kapoor and Jonathan Bowen. Experimental Evaluation of the

Variation in Effectiveness for DC, FPC and MC/DC Test Criteria. In

BIBLIOGRAPHY 107

Proceedings of the 2003 International Symposium on Empirical Software

Engineering, pages 185–194. IEEE Computer Society, 2003.

[53] Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J., and Rierson

Leanna K. A Practical Tutorial on Modified Condition/Decision Cover-

age. Technical report, NASA Langley Center, 2001.

[54] Shubhangi Khare, Sandeep Saraswat, and Shrawan Kumar. Static pro-

gram analysis of large embedded code base: An experience. In Proceed-

ings of the 4th India Software Engineering Conference, ISEC ’11, pages

99–102, Thiruvananthapuram, Kerala, India, 2011. ACM.

[55] Padmanabhan Krishnan, R. Venkatesh, Prasad Bokil, Tukaram Muske,

and Vijay Suman. Effectiveness of random testing of embedded systems.

In Proceedings of the 2012 45th Hawaii International Conference on

System Sciences (HICSS), pages 5556–5563. IEEE Computer Society,

2012.

[56] Shuvendu Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. Static and

Precise Detection of Concurrency Errors in Systems Code Using SMT

Solvers. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided

Verification, volume 5643 of Lecture Notes in Computer Science, pages

509–524. Springer Berlin / Heidelberg, 2009.

[57] Kiran Lakhotia, Phil McMinn, and Mark Harman. Automated Test

Data Generation for Coverage: Haven’t We Solved This Problem Yet?

In Proceedings of the 2009 Testing: Academic and Industrial Conference

- Practice and Research Techniques, pages 95–104. IEEE Computer So-

ciety, 2009.

BIBLIOGRAPHY 108

[58] Claire Le Goues and Westley Weimer. Measuring code quality to im-

prove specification mining. IEEE Transactions in Software Engineering,

38(1):175–190, January 2012.

[59] Nancy G. Leveson. An Investigation of the Therac-25 Accidents. IEEE

Computer, 26:18–41, 1993.

[60] Nan Li, Upsorn Praphamontripong, and Jeff Offutt. An Experimental

Comparison of Four Unit Test Criteria: Mutation, Edge-Pair, All-Uses

and Prime Path Coverage. In Proceedings of the IEEE International

Conference on Software Testing, Verification, and Validation Work-

shops, pages 220–229. IEEE Computer Society, 2009.

[61] Patrick Munier. Polyspace, pages 123–153. John Wiley & Sons, Inc.,

2012.

[62] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software Reflexion

Models: Bridging the Gap between Source and High-level Models. In

Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of

Software Engineering, SIGSOFT ’95, pages 18–28, New York, NY, USA,

1995. ACM.

[63] Glenford J. Myers and Corey Sandler. The Art of Software Testing.

John Wiley & Sons, 2004.

[64] Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv.

Abstractions from tests. In Proceedings of the 39th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 373–386. ACM, 2012.

BIBLIOGRAPHY 109

[65] A. Jefferson Offutt. A Practical System for Mutation Testing: Help

for the Common Programmer. In Proceedings of the 1994 International

Conference on Test, pages 824–830. IEEE Computer Society, 1994.

[66] J. Offutt, J. Pan, and J. Voas. Procedures for reducing the size of

coverage-based test sets. In Proceedings of the Twelfth International

Conference on Testing Computer Software, June 1995.

[67] A. A. Omar and F. A. Mohammed. A survey of software functional

testing methods. SIGSOFT Software Engineering Notes, 16(2):75–82,

April 1991.

[68] T. J. Ostrand and M. J. Balcer. The category-partition method for spec-

ifying and generating functional tests. Communication ACM, 31(6):676–

686, June 1988.

[69] Jan Peleska, Artur Honisch, Florian Lapschies, Helge Löding, Hermann

Schmid, Peer Smuda, Elena Vorobev, and Cornelia Zahlten. A real-world

benchmark model for testing concurrent real-time systems in the auto-

motive domain. In Proceedings of the 23rd IFIP WG 6.1 International

Conference on Testing Software and Systems(ICTSS), pages 146–161.

Springer-Verlag, 2011.

[70] Robert M. Poston. Automating Specification-Based Software Testing.

IEEE Computer Society Press, Los Alamitos, CA, USA, 1st edition,

1997.

[71] Reactis. White Paper - Finding Bugs in C Code with Reactis for C,

August 2011.

[72] Stuart C. Reid. An empirical analysis of equivalence partitioning,

boundary value analysis and random testing. In Proceedings of the 4th

BIBLIOGRAPHY 110

International Symposium on Software Metrics, METRICS ’97, pages

64–, Washington, DC, USA, 1997. IEEE Computer Society.

[73] VDC research survey. http://blog.vdcresearch.com/embedded sw/2011/06/2011-

embedded-engineer-survey-results-programming-languages-used-to-

develop-software.html. 2011.

[74] Xavier Rival. Understanding the origin of alarms in astree. In Proceed-

ings of the 12th International Conference on Static Analysis, SAS’05,

pages 303–319, Berlin, Heidelberg, 2005. Springer-Verlag.

[75] Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, and Christie

Hong. Empirical studies of test-suite reduction. Journal of Software

Testing, Verification, and Reliability, 12:219–249, 2002.

[76] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. Static

Specification Mining using Automata-based Abstractions. In Proceed-

ings of the 2007 International Symposium on Software Testing and Anal-

ysis, pages 174–184. ACM, 2007.

[77] Mary Lou Soffa, Aditya P. Mathur, and Neelam Gupta. Generating Test

Data for Branch Coverage. In Proceedings of the 15th IEEE Interna-

tional Conference on Automated Software Engineering, ASE ’00, pages

219–, Washington, DC, USA, 2000. IEEE Computer Society.

[78] Matt Staats, Gregory Gay, Michael Whalen, and Mats Heimdahl. On

the danger of coverage directed test case generation. In Proceedings of

the 15th International Conference on Fundamental Approaches to Soft-

ware Engineering, FASE’12, pages 409–424, Berlin, Heidelberg, 2012.

Springer-Verlag.

BIBLIOGRAPHY 111

[79] Rajiv Ranjan Suman and Rajib Mall. State model extraction of a soft-

ware component by observing its behavior. SIGSOFT Software Engi-

neering Notes, 34:1–7, January 2009.

[80] Sriraman Tallam and Neelam Gupta. A concept analysis inspired greedy

algorithm for test suite minimization. In Proceedings of the 6th ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, PASTE ’05, pages 35–42, Lisbon, Portugal, 2005.

ACM.

[81] GAIO technologies. Coveragemaster winams -

http://www.gaio.com/product/dev tools/pdt07 winams.html.

[82] Princeton University. How to design a finite state machine -

http://www.cs.princeton.edu/courses/archive/spr06/cos116/fsm tutorial.pdf.

[83] A. Van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in

goal-driven requirements engineering. IEEE Transactions on Software

Engineering, 24(11):908–926, 1998.

[84] Tanja E. Vos, Felix F. Lindlar, Benjamin Wilmes, Andreas Windisch,

Arthur I. Baars, Peter M. Kruse, Hamilton Gross, and Joachim Wegener.

Evolutionary functional black-box testing in an industrial setting. Soft-

ware Quality Control, 21(2):259–288, June 2013.

[85] Mark Weiser. Program Slicing. In Proceedings of the 5th International

Conference on Software Engineering, pages 439–449. IEEE Press, 1981.

[86] Eric Wong, Joseph R. Horgan, Aditya P. Mathur, and Alberto Pasquini.

Test set size minimization and fault detection effectiveness: A case study

in a space application. In Proceedings of the 21st Annual International

Computer Software and Applications Conference, pages 522–528, 1997.

BIBLIOGRAPHY 112

[87] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur.

Effect of test set minimization on fault detection effectiveness. In Pro-

ceedings of the 17th International Conference on Software Engineering,

ICSE ’95, pages 41–50, New York, NY, USA, 1995. ACM.

[88] Xianming Wu, J. Jenny Li, David M. Weiss, and Yann-Hang Lee.

Coverage-Based Testing on Embedded Systems. In Proceedings of the

Second International Workshop on Automation of Software Test, AST

’07, pages 31–36, Washington, DC, USA, 2007. IEEE Computer Society.

[89] Andreas Zeller. Specifications for Free. In Proceedings of the Third In-

ternational Conference on NASA Formal methods, pages 2–12. Springer-

Verlag, 2011.

[90] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. Combined

Static and Dynamic Automated Test Generation. In Proceedings of

the 2011 International Symposium on Software Testing and Analy-

sis(ISSTA), pages 353–363. ACM, 2011.

[91] Jiang Zheng. In regression testing selection when source code is not

available. In Proceedings of the 20th IEEE/ACM International Confer-

ence on Automated software engineering, ASE ’05, pages 752–755, New

York, NY, USA, 2005. ACM.

[92] Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou,

Samuel Midkiff, and Josep Torrellas. AccMon: Automatically Detecting

Memory-Related Bugs via Program Counter-Based Invariants. In Pro-

ceedings of the 37th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 37, pages 269–280, Washington, DC, USA,

2004. IEEE Computer Society.

BIBLIOGRAPHY 113

[93] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit

test coverage and adequacy. ACM Computer Survey, 29(4):366–427,

December 1997.

	List of Figures
	List of Tables
	Introduction
	Analysis for error detection
	Testing for error detection
	The problem statement

	Literature Review
	Test generation
	Test Suite Reduction
	Evaluation of test suite effectiveness

	Preliminaries
	Reactive embedded software
	Test vector, test case and test suite
	Inputs and outputs of an embedded software system
	Modified Condition Decision Coverage
	Finite State Machine (FSM)

	Test Generation Technique
	Test Generation Technique - High Level
	Test Generation Technique - Low level
	Inputs to test generation
	Test Generation Method

	Demonstration on an example program
	Example program
	Execution on Example Program

	Experimental Evaluation
	Evaluation of test suite effectiveness
	Case Studies
	Resources used in experimentation
	Experimentation
	Observation of the Results
	Lessons Learnt
	Threat to Validity

	Conclusion and Future Work
	Bibliography

