
Bond University

DOCTORAL THESIS

Haematological and biochemical markers of immune function and iron status in elite
athletes during different training periods

Canetti, Elisa

Award date:
2017

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. May. 2019

https://research.bond.edu.au/en/studentTheses/3fedfabb-596e-4cf3-a156-5bd2a4442f66


 
 

 

 

 

Haematological and biochemical markers of 
immune function and iron status in elite athletes 

during different training periods 
 

by 

Elisa Fontenelle Dumans Canetti 
BPhty, MSc (High Performance Science) 

 

 

Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy 

 

 

December 2016 

 

 

Faculty of Health Sciences and Medicine 
Bond University 

 

 

 

Dr. Bon Gray 
(Principal Supervisor) 

 
Prof. Gregory Anderson               Dr. Nicola Bullock              Dr. Christopher McLellan 

(Associate Supervisors) 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

“Gold has its uses, but war is won with iron.”  

— George R.R. Martin 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 
 

Abstract 
 

Elite athletes are commonly required to achieve peak performance multiple times 

throughout a year, not only to fulfil the multi-event calendar but to guarantee selection to 

the pinnacle of human athletic endeavour: the Olympic Games. Training periodisation 

allows for the manipulation of training stimuli, such as varying training load (e.g. 

intensity and volume) and exposure to extreme environmental stress (e.g. hypoxia), 

demanding of the already highly-adapted elite athlete, further stimulus-specific physical 

and molecular adaptations. Fatigue and illness may hinder such adaptations and 

consequently performance outcomes. Iron metabolism and immune function play critical 

roles in both the physiological and biochemical adaptations to training and in maintaining 

a disease-free state. Iron is required for adequate erythropoietic function, oxidative 

metabolism, regulation of gene expression and cellular immune responses. Monitoring 

haematological and immunological adaptations to both exercise and training is therefore 

crucial to ensure the performance benefits of each training period.  

 

In order to limit disruption to training, a new, minimally invasive micro-blood collection 

method was developed and validated for evaluating circulating levels and expression of 

immune phenotypes and quantifying granulocytic function obtained from capillary blood 

sample. Adopting such methodology, this thesis investigated the effects of three specific 

training periods on haematological and immune parameters in athletes participating in a 

selection process for the 2016 Rio de Janeiro Olympic Games. Seven elite Australian 

female kayak athletes, all national and many world champions, participated in this 

longitudinal investigation from April until December 2015. Throughout the year 

investigated, the athletes underwent three training camps: high-intensity training (HI; 

n=7), a normobaric hypoxia (through a ‘live-high train-low’; LHTL) protocol: 10-12 

hours daily normobaric hypoxia - FiO2 14.8% equivalent to 3000m; n=6), and high-

volume (HV; n=3).  

 

The acute (“exercise”) and chronic (“training”) stimuli provided by each of the camps, 

and cumulatively across all three camps, were sufficient to cause significant redistribution 

of leucocyte sub-populations and variation to the expression of functional-related surface 

antigen in granulocytes. Longitudinal analysis of the expression of granulocytic surface 

antigens in resting samples (pre-training) throughout the HI camp demonstrated declines 
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of up to 30% for CD11b (p=0.008), 26% for CD18 (p=0.003), 13% for CD16 (p<0.001), 

and 13% for CD66b (p=0.010). The expression of such antigens on the last training day 

was still below baseline. Significant declines (>60% p<0.05) in stimulated oxidative burst 

capacity of granulocytes were observed daily. The daily demands of the HI camp 

perturbed iron homeostasis with a significant increase in serum hepcidin concentration 

(78% increase; p=0.025 90% CI [52.4,104]), accompanied by declines of 7% in serum 

iron 90% CI [-28.9, 14.4] and a 20% reduction in transferrin saturation 90% CI [-9.2, 

32.4].  

 

The LHTL training period caused significant daily pre- to post-training average declines 

of 40% in the capacity of circulating granulocytes to ingest E.coli (p<0.05) on every 

testing day. The phagocytic capacity was restored to baseline values after overnight 

hypoxic exposure. The introduction of the hypoxic challenge, combined with daily iron 

supplementation (equivalent to 105mg of elemental iron), caused a significant increase in 

erythropoiesis marked by a 4.4% increase in haemoglobin mass relative to athletes’ body 

weight (p=0.037) 90% CI [ 2.1,6.5] and a 6.5% increase in the concentration of transferrin 

in serum (p=0.007) 90% CI [2.4, 11.2]. There were no cumulative effects of training-

induced hepcidin up-regulation throughout the LHTL camp. 

 

The HV training camp also caused average daily declines of 40% in circulating 

CD3+CD56+ lymphocytes. The individual variations in the expression of granulocytic 

functional-related surface antigens, and iron availability highlighted the need for 

individual monitoring. Granulocytic functions of phagocytosis and stimulated oxidative 

burst compensated for each other throughout this training camp. 

 

Combined analysis of data from all training camps indicated preferential recruitment of 

innate immune components during the LHTL camp while the HI and HV camps increased 

circulating levels of lymphocytes. The HI training camp caused a greater decrease in 

granulocytic functional capacity and declines in the expression of functionally-related 

surface antigens expression than both the LHTL and HV camps. 

 

The findings of this thesis demonstrate that the modulation of immune capacity and iron-

related parameters is dependent on the specific training stimulus adopted. Superposition 

of different training stimuli may limit training adaptation through activation of opposing 

signalling pathways. Further, the simultaneous introduction of normobaric hypoxia and 
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iron supplementation to training partially suppressed resting serum levels of hepcidin. 

The up-regulation of hepcidin as a response to the training-induced inflammation may 

limit the haematological responses to LHTL, suggesting that a less intense training 

stimulus be adopted during periods of LHTL. Findings from this thesis provide new 

insights for the interactions between iron availability, inflammation and hypoxia within 

the pathways regulating hepcidin expression.  
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Maximal performance is the ultimate goal of any elite athlete, regardless of the sport in 

which they participate. Excellence in competition is a multi-factorial product, comprising 

genetic endowment, nutritional status, training and health (Smith, 2003). Fatigue and 

illness are the most common causes of under-performance in elite athletes (Budgett, 1998). 

There is a close correlation between training load and both fatigue and illness (Fricker, 

1997; Reid, 2004). In an assessment of 41 elite athletes (35 participating in endurance 

sports) Reid (2004) found that 86% of the endurance sports athletes reported fatigue and 

55% of all the assessed athletes experienced recurrent infections, which the author 

attributed to immunodeficiency, acute or unresolved infections and nutritional deficiency. 

Gleeson (2007) confirmed that the immune dysfunction caused by exercise is sufficient 

to increase the athlete’s risk of contracting common infections such as those of the upper 

respiratory tract illnesses (URTI) and influenza.  

 

In preparation for competition, athletes undergo periodised training programs 

encompassing distinct training blocks of specific durations and intensities, as well as 

multiple training sessions per day. Such training schedules impose varied strains on all 

physiological systems, including both the immune system and iron homeostasis. The 

relationship between exercise intensity and susceptibility to infection displays a “J curve” 

relationship, where prolonged strenuous exercise impairs immune function (Gleeson, 

2007; Nieman, 1994). Prolonged bouts of strenuous exercise can cause temporary 

immune depression lasting from 3 to 24 hours post-exercise (Fricker et al., 2005; Gleeson, 

2006, 2007; Pedersen & Hoffman-Goetz, 2000; Walsh et al., 2011). Continuous, 

prolonged (>1.5h), moderate (>55% V̇O2max) to high intensity exercise (>85% V̇O2max) 

has been shown to cause a more pronounced immune dysfunction when compared to 

regular moderate exercise (Gleeson, 2007; Pedersen & Hoffman-Goetz, 2000; Walsh et 

al., 2011). Periods of intensified training, such as the over-reaching phase, may result in 

a longer lasting immune suppression (Papacosta, 2013).   

 

Optimal cellular proliferation and functioning of the immune system requires availability 

of micronutrients, particularly iron. Iron is considered one of the most critical 

micronutrients in the field of exercise nutrition (Heikkinen, Alaranta, Helenius, & 

Vasankari, 2011). As part of haem, iron is a structural component of myoglobin and 

haemoglobin molecules and plays an important role as a component within the electron 

transport chain (ETC). Iron is also essential for immune function as it is a co-factor in 

lymphocyte proliferation, a structural component of neutrophilic granule contents (e.g. 
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haem-containing enzymes), and a catalyst for the production of reactive oxygen species 

(ROS). The role of iron in immune function is made evident as its deficiency may lead to 

decreases in phagocytosis and oxidative burst capacity - both essential microbicidal 

processes (Dallman, 1987; Walter, Arredondo, Arévalo, & Stekel, 1986).  

 

Exercise has also been shown to perturb iron homeostasis, increasing research interest in 

its influence on athletic performance. It is well established that in tissue iron deficiency 

(ID) iron’s basic metabolism and availability are altered. In such situations, 

concentrations of myoglobin may decrease up to 60%, limiting oxygen (O2) storage and 

distribution within the muscle (Garry & Mammen, 2007), and consequently hindering 

performance (Beard & Tobin, 2000; Beaton, Corey, & Steele, 1989). The incidence of ID 

in athletes is reported to range from 25 to 36% in non-competition season and can reach 

up to 70% in competition (Di Santolo, Stel, Banfi, Gonano, & Cauci, 2008; Malczewska, 

Blach, & Stupnicki, 2000; Reinke et al., 2012). Iron stores are often found to be depleted 

after a prolonged training phase, usually held prior to competition (Auersperger et al., 

2013). Furthermore, iron levels have been shown to take more than 10 days to be restored 

to baseline values or even remain depleted in some athletes, as Reinke et al. (2012)  

observed in 14% of the 30 elite athletes (20 rowers and 10 professional soccer players) 

examined. Several studies have also demonstrated that conditions such as viral infection 

and ID are more common in athletes when compared to the general population (Nieman, 

1997b; Peters & Bateman, 1983; Sinclair & Hinton, 2005; Weaver & Rajaram, 1992). 

This indicates the need for constant monitoring of biological markers, such as parameters 

of iron metabolism and immune function in elite athletes, as already acknowledged by 

many researchers (Fallon, 2004, 2008; Olsson, Eriksson, Ritter, & Heedman, 1984).  

 

Here it is proposed that post-exercise adaptations may alter iron status in elite athletes 

and be associated with their immunological capability. Also, as training regimes  consist 

of different training periods to accommodate  multiple competitions per year, this thesis 

sets out to identify how these affect biochemical and immunological homeostasis. This 

thesis hypothesises that periods of intense training will have a greater impact on immune 

function and iron status compared with less intense training periods. Finally, it is 

hypothesised that changes in iron availability and iron-binding proteins could potentially 

be markers for altered immune function in athletes, therefore enabling coaches to alter 

training loads to prevent illness and consequently avoid decreases in performance prior 

to competition. 
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It is now clear, for all the above mentioned reasons, that close monitoring of immune 

function and iron is indispensable in the quest for optimal sporting performance. The vast 

majority of the markers available to identify decrements (or alterations) in either immune 

function or iron status are blood-borne. Further, most of the commercial tests available 

rely on blood obtained intravenously, as most reference ranges have been set using this 

collection methodology. Venous blood collection in a sporting scenario, however, is not 

ideal as it disrupts training, may cause discomfort, has a non-weight baring criteria on the 

accessed location to avoid soreness and haematoma formation, requires a trained 

phlebotomist, increases risk of needle stick injuries and generates biological waste. 

Capillary blood collection has been suggested as an alternative to venous blood collection 

and is commonly used for sport related parameters such as lactate, blood glucose, and 

bicarbonate. Immunological parameters, however, pose a challenge to collection site 

specificity as most of immune events are regulated by membrane surface receptors. 

Physiological changes in diameter of the vessels as well as blood flow and pressure in the 

vascular tree, lead to haemodynamic forces that may alter the expression of such surface 

receptors. As vascular location may influence cell and membrane structures 

suggestion/usage of an alternative blood collection site warrants further investigation. 

Therefore, this thesis initially sets out to explore a possible alternative blood collection 

site that is more suited for monitoring immunological parameters in the elite athletic 

population. Based on vascular physics and haemodynamics, it is hypothesized that 

cellular immunological parameters from blood obtained from venous sites will differ 

from that of blood obtained from a capillary site. Specifically, the knowledge of 

mechanisms that may account for these site-specific inconsistencies will allow a better 

educated usage of different sampling sites for blood collection.  

 

 

1.1) Research Purpose 

 

Training modalities influence both immune function and iron metabolism. Few studies, 

however, have linked the three. There is abundant evidence to demonstrate the influence 

of iron metabolism on immune function (Cherayil, 2011; Dallman, 1987; Kemp, 1993; 

Mullick, Rusia, Sikka, & Faridi, 2006; Omara & Blakley, 1994; Oppenheimer, 2001; 

Ward et al., 2011). Such studies were mostly performed in iron deficient populations 
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and/or children, who have different dietary habits and imposed stressors to those of elite 

athletes.  

 

While previous studies have shown that ID negatively affects performance, longitudinal 

studies monitoring iron status, immune function and athletic performance involving the 

same group of athletes throughout a season are scarce. Further, studies accompanying an 

Olympic team selection throughout a training year are even rarer. Previous studies have 

focused on the competition season despite current training methods having developed 

into a periodised approach in order to accommodate a multi-competition year.  Therefore, 

training modalities such as high-intensity (HI) and high-volume (HV) training are 

demanded from athletes at multiple times throughout the year in short period blocks. Such 

schedules may not allow for proper recovery of baseline iron values (Auersperger et al., 

2012; Wilkinson, Martin, Adams, & Liebman, 2002) and rest periods of up to 10 days 

may be insufficient to achieve this.  It is known that ID occurs in stages; therefore, 

inadequate recovery may further deplete iron stores. This highlights the importance of 

monitoring the responses of these athletes to all the different training regimens imposed 

throughout the entirety of a season, through a feasible, athlete-friendly approach. 

 

There is a general consensus among sports scientists that, despite having an iron intake 

in accordance with the recommended daily allowance, athletes still demonstrate 

decreased baseline iron status when compared to the general population (Schumacher, 

Schmid, König, & Berg, 2002). Such agreement coincides with the variable effects of 

iron supplementation on iron status and performance in elite athletes. Progressive iron 

depletion does not derive from poor iron absorption in the duodenum, but from the 

inability of the absorbed iron to enter into the circulation (Karl et al., 2010). Thus, 

modifying training may be more effective than iron supplementation alone in maintaining 

proper iron stores. To do so, it is imperative to properly monitor iron status fluctuation 

throughout different training modalities. 

 

The three components on which this thesis focuses - exercise, iron status and immune 

function - are likely interrelated (Figure 1-1). Exercise is associated with an increase in 

the levels of cytokines such as IL-1, IL-6, IFN-γ, TNF-α, all of which have been 

demonstrated through mouse models to increase iron uptake and storage into the 

reticuloendothelial system (RES) (Alvarez-Hernandez, Liceaga, McKay, & Brock, 1989; 

Laftah et al., 2006; Ludwiczek, Aigner, Theurl, & Weiss, 2003). Many of these cytokines 
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act upon hepatocytes, modulating the expression of hepcidin, the major iron-regulatory 

hormone (Lee, Peng, Gelbart, Wang, & Beutler, 2005; Park, Valore, Waring, & Ganz, 

2001).  Hepcidin is also regulated by iron status and hypoxia. In ID and hypoxia, hepcidin 

is suppressed to facilitate macrophage iron release and to increase the absorption of 

dietary iron. However, hepcidin levels are increased by inflammation and infection, 

limiting iron availability to microorganisms that usually require iron for survival and 

proliferation. Already showing low baseline iron values often corresponding to levels 

associated with ID (Beard 2000, Auersperger 2013), iron stores in the athletic population 

is also challenged by the acute phase response to exercise that mimics iron homeostatic 

retention in inflammation and infectious scenarios (Gabriel 1997; Fallon 2001). Thus, 

hepcidin has been proposed as the common factor linking iron, immune function, and 

exercise. Plasma hepcidin increases post-exercise, decreasing serum iron concentrations, 

and exacerbating ID in athletes (Auersperger et al., 2013; McClung, 2012; Peeling, 2010). 

During periods of increased training demand, it is possible that resting serum hepcidin 

values are increased, further contributing to the decline of available iron. The impact of 

this continuous decline on iron status should be given more attention, as it may have some 

correlation with immune suppression often seen in elite athletes.  

0Figure 1-1 – Interaction between exercise, immune function and iron metabolism  

 

 

Based upon the evidence presented in the literature, it may be hypothesized that elite 

athletes enter a cycle where: (1) exercise induces an acute phase response; (2) cytokines 

are released; (3) cytokines trigger an increase in circulating hepcidin; (4) iron is 

sequestered inside cells; (5) there is subsequently a decreased availability of iron for 

myelopoiesis; (6) this results in depressed immune function; leading to (7) persistent 

fatigue and susceptibility to illness.  

Exercise

Immune 
function

Iron 
metabolism
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The literature strongly supports that intensified training induce a detrimental effect on 

immune function, however, correlation of these fluctuations post-exercise with clinical 

outcome requires further investigation (Fricker et al., 2005; Gray, Telford, Collins, Baker, 

& Weidemann, 1993; Pyne, Smith, Baker, Telford, & Weidemann, 2000). URTI are the 

illnesses most often studied in athletes, but only a few studies (Cox et al., 2008; Spence 

et al., 2007) have attempted to correlate infections with the athlete’s feedback and/or 

laboratory confirmation of pathogens. Reduction of the neutrophils’ functional capability 

has been postulated to provide a “window of opportunity” for infectious agents not 

neutralised by immunoglobulin (i.e. IgA, IgG), to establish an infectious process (Smith 

& Pyne, 1997). However, studies have shown that exercise also causes a decrease in IgA, 

particularly salivary IgA (Gleeson & Pyne, 2000), increasing host vulnerability. 

 

Finally, even though previous studies strongly demonstrate the negative effects of 

exercise on immune function, few have suggested strategies to prevent or reduce the risk 

of illness. Pyne et al. (2000) have provided guidelines for the maintenance of 

immunocompetence in athletes. The suggested strategies encompass interventions in 

training, environmental factors, psychological and behavioural considerations, and 

clinical and medical components.  

 

Particular attention must be directed to athletes that are more susceptible to iron loss: 

female athletes, endurance runners and vegetarian athletes (Beard & Tobin, 2000). Beard 

and Tobin (2000) suggest that women may have an increased prevalence to exercise-

related alterations in body iron because of a net negative iron balance. The population 

considered in this thesis are female kayak athletes who, as part of the periodised training 

to achieve both the aerobic and anaerobic capacities required for kayaking, take part in a 

variety of modalities (i.e. running, strength training). Additionally, according to Beard 

and Tobin (2000), decrements in proliferation and activity of immune effectors are linked 

to iron deficiency though molecular and cellular mechanisms that still require elucidation. 

Therefore, the cause-consequence relationship between iron biology and immune 

function in athletes warrants further investigation. 

 

The objective of this thesis was twofold. First, it aimed to establish a minimally-invasive, 

athlete-friendly, field-based method of blood collection which allows analysis of iron 

variables as well as phenotypical identification of leucocyte populations and immune 

functions. Then, utilizing the developed methodology, this thesis aimed to identify 
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periods of increased susceptibility to infection based on iron parameters and leucocyte 

concentration in circulation and function according to the different training loads imposed 

to elite female kayak athletes in preparation for the 2016 Olympic Games in Rio de 

Janeiro, Brazil. 

 

 

1.2) Investigation Design 
 

This investigation set out to provide a detailed analysis of immunological and 

haematological parameters during different training periods in elite female kayak athletes. 

Different to most of the studies available, this investigation aimed to produce a “real-life” 

analysis of the imposed stress of daily training in both iron and immune function in 

international-level athletes undergoing Olympic selection. Therefore, athletes were kept 

in their normal training environment with no visit to the exercise laboratory and minimal 

intervention to their normal training schedules. To do so, the present study sought initially 

to find a field-based, athlete friendly means of blood collection. The commonly used 

venous collection to obtain a blood sample is not welcomed by the athletes, particularly 

in kayaking where upper limb movement is predominant, since post-collection soreness 

to the arm is experienced often. Furthermore, in a detailed analysis where multiple 

samples are collected daily, compliance to such a method is diminished.  

 

Hence, the first study of this investigation compared immunological and haematological 

parameters obtained from a venous blood sampling to two commonly used capillary 

sampling sites (finger and earlobe). The development and validation of new methodology 

of blood collection enabled the research to collect up to six samples per training day with 

100% compliance of the athletes involved. It must be noted that as data was collected 

throughout a team selection and Olympic qualifying year, the number of athletes per 

training camp varied.  

 

Utilizing the methodology described on the first study, the second study followed a two-

week HI training camp where athletes trained three times per day. High training loads 

were imposed throughout this over-reaching training camp. 
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The third study followed the group of athletes selected by the coaches from the previous 

camp during a team-specific training camp with an altitude component. Athletes were 

submitted to two weeks of “live high, train low” (LHTL) methodology by sleeping in 

hypoxic normobaric tents.  

 

The fourth study observed the same group of athletes during a HV training phase. A 

decreased training load and the adoption of non-kayak specific modalities during training 

characterised this accumulation training camp. 

 

Finally, the fifth study integrated findings from the training camps and aimed to identify 

training periods that cause greater strain on immune function and iron status or do not 

allow for appropriate recovery from athletes. In doing so, suggestions were made towards 

tailoring a training year, either by rearranging different training blocks or increasing 

recovery time between heavy training loads, to decrease the incidence of ID and minimise 

immunological suppression prior to competitions.  

 

1.3) Research Significance 
 

The significance of this research is manifold. Firstly, this research supports the use of 

capillary blood sampling in the analysis of leucocyte count and function, providing 

evidence that such methodology may allow for enhanced monitoring with minimal 

disruption to training. Increased sampling times may aid in better understanding of how 

the imposed physical stress impacts immune function. By allowing increased data 

collection and monitoring, coaches and supporting staff may be able to individualise 

training and prescribe appropriate, non-detrimental training loads.   Secondly, findings of 

this research contribute to the knowledge of the interaction between training, iron 

metabolism, and immune capacity, particularly in a cohort of elite, Olympic level, athletes. 

Here, a new paradigm of the interplay of training-induced activation of signalling 

pathways influencing iron status and immune competence is proposed in accordance with 

the training period imposed.  
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1.4) Thesis Navigation 
 

This thesis has been prepared focusing on the publications arising from the research, 

presented as individual chapters.  

 

Chapter two provides a review of literature on the three main components assessed: 

immune system, iron status, and exercise/training. Throughout this chapter the interaction 

between these three components is highlighted, exposing the gaps found in literature that 

inspired this research project. 

 

Chapter three describes in detail the methodology used in all studies. 

 

Chapter four covers the first study. This study is a methodological study where an 

alternative to venous blood collection is presented. When studying exercising subjects, 

multiple samples may be required through a day as it was in the case of this research 

project. With advances in technology, minimal amounts of blood are required to perform 

laboratorial analysis of haematological and biochemical parameters. Hence the usage of 

venous blood sampling in athletic testing where multiple samples are often obtained per 

day is becoming unfeasible and unjustifiable. This study explores further applications of 

the already used capillary collection method. The applicability of this method was 

presented in the 12th Symposium of International Society of Exercise Immunology in July 

2015, published in the European Journal of Applied Physiology (volume 116, issue 8, 

pages 1583-93 doi: 10.1007/s00421-016-3413-z) and it was adopted throughout the 

research project. 

Chapters five, six and seven analyse the effects of exercise on immunological and iron 

related parameters in elite female kayak athletes by employing a single group pre-post 

training period (camp) design in three distinct training camps throughout an Olympic 

team selection training year. Chapter five focuses on a HI training period where the main 

physiological outcomes expected are increase in speed endurance and power. Chapter six 

analyses the introduction of normobaric hypoxia as an additional stressor to their training. 

Athletes maintained the training intensity as that of study five, but were under the LHTL 

regime, which will be described in detail throughout this thesis. Chapter seven follows a 

HV training phase, commonly adopted by athletes throughout a training year. 
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Chapter eight provides a longitudinal analysis of iron and immune related parameters 

from blood samples obtained venously prior to and at the end of each of the training 

camps described above. This chapter also highlights the main findings in each individual 

camp and draws comparisons between the different training periods. 

 

Chapter nine provides a combined discussion of all the studies. This chapter includes 

suggestions of practical applications, limitations of this study and future directions. 
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Athletic performance is highly dependent on innate physiological capacity and response 

to training. The ability to achieve optimal performance levels at a specific time demands 

constant manipulation of the training regime. The main objective of training is to provide 

the body with a stimulus to adapt to, culminating in the increased capacity of various 

physiological systems to perform increased workloads (Smith & Roberts, 1994). 

Adaptation will only occur if fatigue-inducing stimuli of HI or HV exercise are imposed. 

Recovery periods will then allow the body to restore the disrupted homeostasis. Therefore, 

as Smith and Roberts (1994) described, “the goal is to induce sufficient fatigue to 

stimulate the adaptive process, but not to disrupt homeostasis to such a large extent that 

the body cannot recover.” 

 

2.1) Flatwater Sprint Kayak 
 

Included in the Olympics since 1936 (men; 1948 women), flat-water sprint kayak events 

are raced by men and women and may have one (K1), two (K2) or four (K4) paddlers, 

racing in 200m, 500m or 1000m (men only) distance events. Unlike the Olympic events, 

women race at all three distances in World and Australian Championships. Australia has 

a high world ranking in kayak sprint racing and is usually in the top 5 nations at a World 

Championships or Olympic Games. The sport has brought a total of 22 Olympic medals 

to Australia since its athletes first participated at the 1956 Melbourne Olympic Games 

(Battaglia et al., 2008).  

 

2.1.1) Physiological Demands 
 

Sprint kayak is a highly physiologically and psychologically demanding sport where, 

from a stationary start in a sitting position, athletes are required to paddle a given distance 

and cross the finish line as fast as possible. To do so, kayak paddlers rely on high levels 

of both aerobic capacity and anaerobic power.  

 

The quick-start strategy requires the athletes to exert supra-maximal intensities to ensure 

advantageous positioning in the beginning of the race – a determinant of race success 

(Ualí et al., 2012). Such HI short-duration (<6 seconds) exercise requires immediate 

adenosine triphosphate (ATP) supply, obtained mainly by the hydrolysis of 
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phosphocreatine (PCr), termed the phosphagen system (Greenhaff & Timmons, 1998; 

Sahlin, Harris, & Hultman, 1979). This energy system utilises the PCr reserve found in 

skeletal muscle. PCr, adenosine diphosphate (ADP) and hydrogen ion (H+) are catalysed 

by creatine kinase forming ATP and creatine. A second reaction in this system is the 

formation of ATP and adenosine monophosphate (AMP) from two ADP molecules 

catalysed by adenylate kinase. Further, AMP is deaminated by AMP deaminase forming 

inosine monophosphate and ammonium (NH4+). Rapid consumption of the PCr reserves 

renders this pathway unsustainable for periods of longer duration, with reports 

demonstrating its initial decline after 1.3 seconds of HI contractions (Maughan, Gleeson, 

& Greenhaff, 1997).  

 

Aiming to maintain maximal velocity throughout the initial splits of the race, ATP 

production relies on a second anaerobic pathway, glycolysis. This pathway was once 

thought to initiate only after PCr reserves were depleted. However, studies show that ATP 

resynthesis from this glycolytic pathway initiates at the onset of exercise, concomitantly 

to the phosphagen system (Casey, Constantin-Teodosiu, Howell, Hultman, & Greenhaff, 

1996; Jones & McCartney, 1986). Through glycolysis, maximal ATP resynthesis rate is 

reached at 10-15 seconds of exercise (Baker, McCormick, & Robergs, 2010). In 

glycolysis, ATP in the muscle is resynthesised through the breakdown of muscle 

glycogen (or free glucose) to pyruvate through a series of chemical reactions, each 

catalysed by a specific enzyme (reviewed in Dashty, 2013). Increases in concentrations 

of ADP, AMP (possibly as a by-product of adenylate kinase reaction), inorganic 

phosphate (Pi) and calcium (Ca2+) in the skeletal muscle activate and up-regulates the 

activity of the enzyme glycogen phosphorylase which facilitates glycolysis by 

phosphorolysing glycogen into glucose 1-phosphate (Chasiotis, 1983; Cohen, 1985a, 

1985b; Rasmussen, 1986). Subsequent reactions leading to production of pyruvate (and 

lactate) have been described in detail and reviewed elsewhere (Rogatzki, Ferguson, 

Goodwin, & Gladden, 2015; Spriet, Howlett, & Heigenhauser, 2000). In HI exercise 

(and/or altered motor unit recruitment – fast twitch fibres), ATP hydrolysis and 

accumulation of pyruvate in the cytosol or mitochondria from glycolysis lead to decrease 

in H+ consumed by the lactate dehydrogenase reaction or mitochondria, augmenting 

proton release. Once deemed as the source of muscle fatigue, lactate production is now 

known to enable the removal of pyruvate, regeneration of NAD+ and proton buffering 

thus retarding metabolic acidosis in the muscle during steady-state exercise (Robergs, 

2001; Robergs, Ghiasvand, & Parker, 2004). During steady-state exercise, complete 
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oxidation of pyruvate occurs as it enters the mitochondria and is used in the tricarboxylic 

acid (TCA) cycle, which will be later described. The fate of the by-products of glycolysis 

is correlated with exercise intensity (Baker et al., 2010; Spriet et al., 2000).  

 

The women’s world record for the high intensity 200m sprint kayak race has been 

recorded at 37.898s (Carrington, L (NZ) Moscow, Russia 2014), clearly surpassing the 

time of ATP resynthesis from anaerobic pathways (Gastin, 2001). Therefore, to complete 

every sprint kayak event, contribution of an aerobic energetic pathway is required. 

Through mitochondrial respiration, complete oxidation of carbohydrate occurs. The 

product of glycolysis, pyruvate, is initially broken down into acetyl coenzyme A (acetyl-

CoA) through a reaction catalysed by pyruvate dehydrogenase. Combining with 

oxaloacetate, acetyl-CoA donates its acetyl group and enters a multi-step decarboxylation 

and dehydrogenation cycle - TCA cycle - where oxaloacetate will be regenerated and 

enter the cycle again (Krebs, 1954). The H+ released during the TCA cycle will be 

transported by reduced NADH and flavin adenine dinucleotide (FADH2) to the ETC. 

There, a series of haem-containing proteins, cytochromes, perform redox reactions 

releasing energy to phosphorylate ADP to ATP. Increased metabolic efficiency in this 

energetic pathway is evidentiated by its yield of a net of 36 ATP from a single molecule 

of glucose, while glycolysis produces only a net of 2 ATP. In high intensity exercise (non-

steady state), cellular ATP demand surpasses ATP supply from mitochondrial respiration, 

increasing the glycolytic ATP contribution (aerobic-anaerobic transition reviewed in 

Lucia et al. 1999). If HI exercise is sustained (30s-180s), the rate of glycogenolysis and 

glycolysis is reduced, further decreasing the rate of production of pyruvate and lactate 

(Robergs, 2001) . Through the adoption of different training strategies (i.e. endurance, 

power/sprint training), lactate-proton transport capacity (via proton-linked 

monocarboxylate transporters) increases, thus retarding muscular acidosis (Juel, 1998; 

Juel & Halestrap, 1999; Sahlin, 2014). This ensures maintenance of pH enabling optimal 

function of regulatory enzymes from the above mentioned energetic pathways thus 

increasing metabolic efficiency. 

 

2.1.2) Training  
 

Metabolic efficiency is a highly trainable component and it is one determinant of 

performance (Joyner & Coyle, 2008). Reducing O2 deficit (time taken to reach a steady 
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state of O2 consumption to accommodate the demand), through faster oxygen 

consumption (V̇O2) kinetics, enables a more efficient ATP delivery system (aerobic 

pathway) as detailed above. Training for aerobic power usually entails high demands on 

the cardiovascular system, as increases in cardiac output and increasing muscle’s ability 

to extract O2 from the arterial system (via increased muscle capillaries and/or increased 

mitochondria concentration) improves V̇O2max (Klausen, Andersen, & Pelle, 1981; Saltin 

& Calbet, 2006). Further, increasing muscle respiratory capacity, increases lactate 

threshold allowing exercise to be performed in greater intensities before lactate 

concentration in blood increases exponentially (Holloszy & Coyle, 1984; Ivy, Withers, 

Van Handel, Elger, & Costill, 1980). 

 

Byrnes and Kearney (1997) calculated the energy demands of sprint kayaking through 

laboratory ergometers and demonstrated a 63% anaerobic contribution in the 200m race, 

38% in the 500m race and 18% in 1000m race. Bishop (2000) observed that kayak athletes 

spend the majority of their race around V̇O2peak.  Through a stepwise multiple regression, 

Bishop (2000) established that a linear combination of anaerobic threshold and 

accumulated O2 deficit accounted for 89% of K500 time. Based on these performance 

predictors, it becomes evident that both anaerobic and aerobic training are indispensable 

for a successful event. Thus, the training involves not only kayaking and other specific 

training activities, but also a multitude of modalities, which include running, swimming 

and strength training.  

 

The kayak race requires maximum power, acceleration, and speed generation at the 

starting phase of the race and maintenance of speed throughout the remaining phases. A 

strong start requires the high power created by the initial paddle in the water to be greater 

than that of the drag forces (from both water and air) they must overcome. McKean and 

Burkett (2014) have demonstrated the influence of upper body strength on flat-water 

sprint kayak performance in elite athletes. In a three-year longitudinal study, these authors 

showed a strong correlation between strength scores and performance time (r>0.7 for both 

genders in the 500m and 200m), where 1RM bench press increased by 34.8% for men 

and 42.3% for women while their times to complete 1000m, 500m and 200m were 

decreased by 4.7% (men) and 4.9% (women), 3.7% (men) and 7.3% (women), and 5.4% 

(men) and 9.1% (women) respectively. Within the three years, female athletes came 

within 1.1% of the medallists’ times by decreasing their own time by almost 12% in the 

K1 500-m. The K1 200-m event also showed significant improvement after strength 
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training with a decrease in time of 6.7%, coming 3.2% of the medallists’ time. It has been 

established that a 0.9% increase in power achieves a 0.3% improvement in time, which is 

sufficient for a kayak athlete to move into medal contention (Bonetti & Hopkins, 2009).  

 

2.1.2.1) Periodisation 

 
Considering the importance of adaptation to training, a general consensus exists in the 

literature (Bompa & Haff, 2009; Smith, 2003) that in order to attain a significant 

improvement in performance, training should follow a cyclic pattern. This is known as 

periodisation. The traditional periodisation model proposed by Matveyev (1972) utilises 

regular workload distribution through long periods of time, aiming to develop 

simultaneously many fitness components (e.g. aerobic capacity, maximum strength) 

(García-Pallarés, Garcia-Fernandez, Sánchez-Medina, & Izquierdo, 2010; Matveyev, 

1972).  

 

Recently, the block periodisation concept (BPC) has been proposed around the basic 

principle of high concentration of training workload within a given block. These medium-

sized training cycles are designated mesocycle blocks. Issurin (2010) identifies three 

types of mesocycle blocks:  accumulation, transmutation, and realisation (Table 2-1).  

Mesocycle duration is established according to physiological and biochemical 

prerequisites and usually ranges from 2-4 weeks. A training stage is the combination of 

each mesocycle and culminates with a specific competition. Correct sequencing of the 

mesocycles is crucial to competitive performance, and is highly dependent on the sport 

undertaken and the number of important competitions the athlete will participate in 

throughout the year. 
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Table 2-1 – Block periodisation concept (BPC)   

    Adapted from Issurin (2007)  

 

According to Issurin (2010), the benefits of the BPC as compared with the traditional 

model (Matveyev, 1972), are the following: (1) the total volume of training can be 

remarkably reduced, hence reducing the incidence of over-training; (2) the multi-peak 

training design allows and facilitates successful participation in many competitions over 

the whole season; (3) monitoring can be more efficient because of the substantial 

reduction in the number of athletic abilities to be evaluated within each mesocycle; (4) 

diet and restoration programs can be appropriately modified according to the predominant 

type of training undertaken; and (5) a multi-stage annual plan creates more favourable 

conditions for peaking in time for the main competition of the season (Issurin, 2010). 

 

Periods of increased training volume with intensities below that of competition have been 

suggested to enhance recovery from HI exercise (Seiler, Haugen, & Kuffel, 2007) and 

increase duration of sustained high muscular power outputs  (Coyle, Coggan, Hopper, & 

Walters, 1988). These notions may have risen from the molecular events triggered by 

high training volumes, such as the increase in intramuscular calcium (Ca2+). Such increase 

in Ca2+ concentrations activates calcium-calmodulin kinases, which in turn activates 

peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) (Coffey & Hawley, 

2007). PGC-1α has been shown to increase type 1 fibres, mitochondrial biogenesis, fat 

oxidative capacity and glycogen and GLUT4 concentrations (Adhihetty, Irrcher, Joseph, 

Ljubicic, & Hood, 2003; Chan & Arany, 2014; Liang & Ward, 2006; Richter & 

Hargreaves, 2013; Wende et al., 2007). Ingham et al. (2008) showed that elite rowers 

submitted to 12 weeks of training only below lactate threshold had a significant 

Main 
characteristics 

Mesocycle Type 

Accumulation Transmutation Realization 

Targeted motor 
and technical 
abilities 

Basic abilities: 
aerobic endurance, 
muscular strength, 
basic coordination 

Sport-specific abilities: 
special endurance, 
strength endurance, 

proper technique 

Integrative 
preparedness: 

modelled performance, 
maximal speed, event 

specific tactics 

Volume-intensity High volume, reduced 
intensity 

Reduced volume, 
increased intensity 

Low-medium volume, 
high intensity 

Fatigue-
restoration 

Reasonable 
restoration to provide 

morphological 
adaptation 

No possibility to 
provide full restoration, 

fatigue accumulated 

Full restoration, 
athletes should be well 

rested 

Follow-up 
particularities 

Monitoring the level 
of basic abilities 

Monitoring the level of 
sport-specific abilities 

Monitoring maximal 
speed, event specific 

strategy etc. 
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improvement in rowing speed at lactate threshold when compared to rowers whose 

training regime was 30% over and 70% under lactate threshold. Laursen (2010) suggests 

that these low-intensity HV training periods may enhance the aerobic platform required 

for specific adaptations that stem from HI training to occur. 

 

Increases in training intensity with reduced training volume aim to enhance intense and 

prolonged exercise performance (Laursen & Jenkins, 2002). This methodology seeks a 

functional (short-term) overreaching after which (given appropriate fatigue monitoring 

and rest), a super-compensatory outcome is expected. In trained athletes (i.e. established 

endurance base), this transition training has been shown to increase peak power output, 

fatigue resistance (through increased muscle buffering capacity; Gibala et al., 2006  and 

phosphocreatine recovery kinetics; Forbes et al., 2008) and muscle oxidative potential 

while maintaining the athlete’s endurance performance (Hawley, Myburgh, Noakes, & 

Dennis, 1997; Iaia et al., 2009; Iaia et al., 2008; Laursen, 2010). While physiological 

explanations are still under debate, most authors agree that transition training stimulates 

skeletal muscle mitochondrial capacity - exemplified by increases in mitochondrial 

biogenesis regulator PGC-1α (Little, Safdar, Wilkin, Tarnopolsky, & Gibala, 2010) and 

cytochrome c oxidase activity (Jacobs et al., 2013) -, greater O2 extraction (via increased 

capillary network and mitochondrial content (Poole & Mathieu-Costello, 1996), increase 

in resting muscle glycogen and GLUT 4 protein content (Little et al., 2010). Maintaining 

the same total work and frequency (3 days/week for 8 weeks), Helgerud et al. (2007) 

analysed the effects of different aerobic endurance training protocols ((1) long slow 

distance 70% HRmax (2) lactate threshold (85% HRmax) (3) 15/15 interval running at 90-

95% HRmax and (4) 4 minutes running at 90-95% HRmax followed by 3 minutes of active 

resting at 70% HRmax) in V̇O2max, stroke volume of the heart, blood volume, running 

economy and lactate threshold. Results indicated that groups 3 and 4 had a significant 

5.5% and 7.2% increase on V̇O2max, respectively, while no changes were observed for 

groups 1 and 2 (Helgerud et al., 2007).  

 

Further, periodisation allows for development and training of the different ATP-forming 

energy systems (Bompa & Haff, 2009). Studies indicate that the recruitment of the 

different energy systems is not exclusive and that the three work in combination based on 

ATP requirement – increasing as exercise duration and intensity increase. Researchers 

have suggested that in a maximum effort exercise of 75 second duration, contribution of 

both anaerobic and aerobic energy systems is equal. It is then safe to conclude that athletes 
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in sports requiring an explosive and powerful start and maintenance of work output must 

train both pathways. One such sport is sprint kayak. 

 

The usual training format for kayak has been described previously (García-Pallarés et al., 

2010). Briefly, an initial training phase focuses on developing basic fitness components. 

In this phase, athletes are submitted to exercises at the second ventilatory threshold (VT2), 

muscle hypertrophy and technical skills. Evolving from that, a second training phase 

employs greater aerobic power, usually having athletes train at V̇O2max and maximal 

muscle strengthening, consequently moving into a more event-specific training. These 

two main phases are based on the characteristics of kayak described, where the power 

requirement at the starting portion of the race require greater slow resistance training 

whereas explosive resistance training enhances force development and speed 

maintenance (Liow & Hopkins, 2003).  

 

Periodised training has been shown to produce the best performances. Such training 

usually involves multiple sessions per day emphasizing the development of strength and 

endurance. Borges et al. (2012) described a season of Olympic kayak training to entail (1) 

a HV training period – 11 weeks; (2) a HI period - 15 weeks; and (3) a decreased intensity 

and volume training period, which after seven weeks culminates in the competitive period 

(Table 2-2).  

 

Table 2-2 – Weekly training performed by kayak athletes during the season leading up 
to the 2008 Olympics 

Training Load 
Time point 

t1 t2 t3 

Kayaking (km) 80-140 140-100 100-60 

Running (km) 20-35 35-20 20 
Swimming (km) 6 6-4 - 
Strength (ton) 90-140 140-110 110-100 
Calisthenics (min) 120-220 220-140 140-100 
Total specific (‘on-water’) training time (min) 90-160 160-70 70-40 
Number of weeks 11 15 20 

Weekly initial and final values at time points t1 (January) t2 (April) t3 (June). 
Adapted from Borges et al. (2012) 
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Recently, García-Pallarés et al. (2010) compared the use of two training periodisation 

models on performance markers in elite kayak athletes. Peak oxygen uptake (V̇O2peak) 

and oxygen consumption on second ventilatory threshold (V̇O2VT2) demonstrated 

similar gains after both traditional and block periodisation. This group argues, however, 

that block periodisation is more effective since its duration was 10 weeks and 120 hours 

shorter than the traditional periodisation. In addition, this same group observed a more 

significant (p<0.05) increase in specific abilities (i.e. paddling speed and paddling power) 

following block periodisation when compared to the traditional periodisation.  

 

Recently it has been described that the training status of the athlete has great influence on 

their gains for each proposed periodisation. Therefore, more extreme training techniques 

have been added to the periodisation calendar. One of particular interest is the use of 

hypoxia.  

 

2.1.3) Altitude Training 

 

2.1.3.1) Physiology of Altitude Training 

 
Part of the concept of training periodisation is the pursuit of physiological adaptations to 

different stressors that could potentially enhance performance. A common stressor 

adopted by many coaches is the exposure of the athlete to extreme environments such as 

high altitude. While the increase in altitude maintains the fractional concentration of 

inspired O2 (FiO2) at 20.9%, it decreases its partial pressure (PO2) in proportion to the 

barometric pressure. Consequently, the amount of O2 available for delivery to tissue 

decreases, a concept known as hypobaric hypoxia. As it is unfeasible to transport athletes, 

training staff and equipment multiples times per year to experience natural hypoxic 

conditions, man-made altitude chambers (developed by Finnish sport scientists in 1990s) 

or tents explore the desired adaptations by introducing a normobaric hypoxia, where PO2 

is maintained while reducing FiO2 (commonly through nitrogen dilution - addition of 

nitrogen to ambient air) (Millet, Roels, Schmitt, Woorons, & Richalet, 2010; Wilber, 

2001).  

 

In response to acute hypoxia, a compensatory hyper-ventilatory response is initiated, 

aiming to re-establish homeostasis. Such response, causes a decrease in blood and 
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alveolar PCO2 and, consequently, an alkalinisation of blood. This initial response 

negatively impacts aerobic capacity within the first 2-3 days of altitude exposure as 

bicarbonate (natural buffer of H+) reserves are being released by the kidneys in an attempt 

to restore blood pH (Goldfarb-Rumyantzev & Alper, 2014; Pinilla, 2014). The immediate 

response to decreases in PO2 is quickly countered by long-term adaptive mechanisms 

(acclimatisation) such as increases in haemoglobin concentration, haematocrit, oxidative 

enzyme activity, mitochondrial volume, free fatty acid substrate utilisation and capillary 

density (Bailey & Davies, 1997).  

 

While acute responses to hypoxia result from phosphorylation or redox state of pre-

existing proteins, the above mentioned long-term adaptations occur as a result of 

alterations in gene expression, mediated by the transcriptional regulator hypoxia 

inducible factor 1 (HIF-1) (Semenza, 2000). The alpha subunit (HIF-1α) regulates HIF-1 

biological activity, which includes mRNA and protein expression. In normoxia and 

adequate iron availability, prolyl hydroxylase domain (PHD) enzymes hydroxylate 

specific proline residues in HIF-1α (Cockman et al., 2000; Petousi & Robbins, 2014; 

Semenza, 2004). This permits HIF-1α to be ubiquitinated and to undergo proteasomal 

degradation via the von Hippel-Lindau tumour suppressor protein (pVHL) binding (Ohh 

et al., 2000). Hypoxia, however, decreases PHD activity, allowing HIF-1α to accumulate 

and, when combined with its β subunit, to become transcriptionally active and to bind to 

specific DNA sequence in hypoxia response elements (HREs) promoter element coupled 

to target genes (Petousi & Robbins, 2014). These genes include regulators of cell growth, 

differentiation and death (e.g. insulin-like growth factor (IGF)-2), erythropoiesis (e.g. 

EPO, transferrin, transferrin receptor, haem oxygenase-1), angiogenesis (e.g. VEGF) and 

energy metabolism (e.g. glucose transporter-1, -3 and -4, lactate dehydrogenase-1, 

phosphofructokinase L, pyruvate kinase M) (Favier, Britto, Freyssenet, Bigard, & Benoit, 

2015; Hirota & Semenza, 2006; Iyer et al., 1998; Kumar & Choi, 2015; Lee et al., 1997; 

Manalo et al., 2005; Semenza, 2000). Upregulation of key erythropoietic proteins, 

glycolytic enzymes and glucose transporters promotes preferential use of glycolytic 

energetic pathways, possibly enhancing aerobic metabolism (Kumar & Choi, 2015; 

Semenza, 2004). Combined, these adaptations have been reported to render the advantage 

sought in performance at sea level (Gore et al., 2001; Levine & Stray-Gundersen, 1997; 

Saunders et al., 2004; Wilber, Stray-Gundersen, & Levine, 2007). 
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There is still discussion regarding the best methodology of exposure to normobaric 

hypoxia. Different protocols, such as long continuous or intermittent exposure seem to 

benefit more sub-elite athletes and elite athletes (already highly adapted to training 

stimuli), respectively. Further, protocols utilising natural versus artificial altitude have 

been shown to enhance performance in both elite and sub-elite athletes (Bonetti & 

Hopkins, 2009). While acute hypoxia (< 90 minutes/day), highlighted in intermittent 

hypoxic exposure studies, has demonstrated no (Humberstone-Gough et al., 2013; Julian 

et al., 2004) or a detrimental effect on performance (Hamlin, Marshall, Hellemans, 

Ainslie, & Anglem, 2010; Lundby, Millet, Calbet, Bartsch, & Subudhi, 2012; Millet et 

al., 2010),  prolonged hypoxic exposure (> 12 hours/day) has been positively correlated 

with improvements in performance. In highly trained athletes, exposure to such stressor 

has shown to supplement training as it suggestively augments both aerobic power and 

anaerobic capacity (buffering capacity; Gore et al. 2001 and lactate metabolism; 

Nummela and Rusko, 2000) (Mizuno et al., 1990; Saltin et al., 1995).  

 

The most commonly adopted protocol is the “live-high train-low” (LHTL), where athletes 

train at sea-level and sleep in a normobaric hypoxic environment. The mechanisms 

responsible for the observed performance improvements in this method are still in debate. 

Authors highlight that adopting LHTL allows for the previously described desired 

physiological adaptations to occur without having to decrease training intensity and 

fatigue and declines in aerobic performance, usually seen in chronic hypoxic exposure 

(Millet et al., 2010).  While it is well established that red blood cell volume increases thus 

increasing O2 distribution, some argue that the improvement in power per unit of V̇O2 is 

more likely to influence performance (Gore & Hopkins, 2005; Schmitt et al., 2006). This 

has been quantified in elite distance runners as a 20-day exposure to LHTL conditions 

increased their exercise economy by 3.3% at submaximal pace, without significant 

increase of haemoglobin mass (Hbmass) (Saunders et al., 2004).  

 

It is now evident that the heterogeneity of training, through periodisation and exposure to 

different stressors (hypoxia), enables and triggers different neuromuscular adaptive 

mechanisms. These have been well described in the literature in both strength and 

endurance training, usually recruiting diverging adaptive molecular mechanisms (IGF 

pathway vs adenosine monophosphate kinase (AMPK) pathway, respectively) (Coffey & 

Hawley, 2007; Nader, 2006). Changes in performance variables have also been explored 

following different training modalities (García-Pallarés et al., 2010). Haematological and 



  

26 
 

biochemical adaptations, however, have not been as well explored. After concluding that 

alterations in volume and intensity during a training season produced changes in several 

haematological parameters, Borges et al. (2012) advised that haematological monitoring 

is fundamental to the selection of optimum training loads. By closely controlling 

haematological variations, potential health risks (such as anaemia and increased 

susceptibility to infection) can be identified before they hinder athletic performance.   

 

2.2) Immune System 

 

2.2.1) Overview 

 
The immune system is a vital host defence system dedicated to the identification and 

destruction of foreign pathogens or infected/abnormal cells. It does so by evoking several 

strategies to discriminate self from non-self, such as recognizing molecular patterns in a 

pathogen’s surface or altered/infected host (own) cell (Medzhitov & Janeway, 2002). The 

immune system may be didactically divided into subsections providing innate and 

adaptive immunity. Innate immunity grants the initial protection against infections 

through physical barriers (epithelium), humoral (soluble) components and an array of 

cellular components, which will be discussed further below. Adaptive immunity consists 

of an antigen-specific response through lymphocytes - T cells and B cells. One of the 

most distinct features of the adaptive immunity is the ability to create “memory” towards 

a specific pathogen, allowing a more vigorous and rapid response if the host ever 

encounters the same invader again. In contrast to the innate immune response, this is not 

an immediate response and usually requires days or even weeks to develop (Pathak & 

Palan, 2012). The adaptive immune system is highly dependent on the antigen 

presentation and activation provided by innate immune cells, such as dendritic cells (DC) 

(Banchereau et al., 2000; Male, Brostoff, Roth, & Roitt, 2013). Beutler (2010a) affirms 

the importance of the innate immune system by suggesting that in a non-sterile 

environment, survival without it would be impossible. 

 

The cellular components of the innate immune system include haematopoietic cells of 

myeloid (granulocytes, monocytes/macrophages, mast cells and dendritic cells) and 

lymphoid (natural killer [NK] cells) origin (Turvey & Broide, 2010).  The myeloid 

progenitors, more specifically granulocytes (mostly neutrophils) and 
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monocytes/macrophages, are phagocytic cells that recognize, engulf and destroy 

pathogens (Beutler, 2004). Due to the vital immediate response nature of innate immunity 

and the predominant concentration of phagocytes amongst all immune cells, this research 

will focus on this population, more specifically, neutrophils, that make up 60-70% of 

circulating leucocytes (Amulic, Cazalet, Hayes, Metzler, & Zychlinsky, 2012). 

 

2.2.2) Polymorphonuclear Neutrophils (PMN) 
 

Under optimal physiological conditions, approximately 16x1010 neutrophils are produced 

per day (Liu, Wu, Wesselschmidt, Kornaga, & Link, 1996; Moore, Sheridan, Allen, & 

Dexter, 1979). In response to infection, the concentration of neutrophils in peripheral 

circulation can rapidly increase up to 10-fold (Lieber et al., 2004; Liu et al., 1996). The 

ability to rapidly increase neutrophil numbers in the circulation requires that a large pool 

of neutrophil progenitors be readily available. The largest neutrophil pool is found in the 

bone marrow, with approximately 18x1011 neutrophil progenitors in every developmental 

stage (Lieber et al., 2004).   

 

Neutrophils originate from a pluripotent haematopoietic stem cell, following stimulation 

by specific growth factors (Gabrilovich, 2005), such as granulocyte colony stimulating 

factor (G-CSF) (Barreda, Hanington, & Belosevic, 2004; Chatta, Price, Allen, & Dale, 

1994; Liu et al., 1996). The initial development is characterized by a mitotic stage lasting 

approximately 7.5 days. In this stage three distinct phases can be observed: the myeloblast, 

promyelocyte and myelocyte (Bainton, Ullyot, & Farquhar, 1971). A post mitotic stage, 

reported to last approximately 6.5 days, then  follows where cells differentiate, in turn, 

into metamyelocytes, band cells and finally segmented (mature) PMN (Bainton et al., 

1971).  

 

Cytoplasmic granules are formed throughout PMN maturation in the bone marrow. Three 

granules have been identified and are classified as azurophilic (primary), specific 

(secondary) and gelatinase (tertiary) granules. Azurophilic granules appear early in 

maturation during the promyelocyte stage and are reduced in number by mitosis (Bainton, 

1999; Bainton et al., 1971). Specific granules are formed later during the myelocyte stage 

and continue their development until the band cell phase (Borregaard & Cowland, 1997). 
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Tertiary granules have been shown to be derived from secondary granules and are formed 

in the band cell phase (Bainton, 1999; Borregaard, Sørensen, & Theilgaard-Mönch, 2007). 

Therefore, the mature circulating neutrophil – the segmented neutrophil – contains the 

three major granule types (Bainton, 1975), as well as secretory vesicles.  

 

Azurophilic granules contain myeloperoxidase (MPO), proteolytic enzymes (e.g. elastase, 

cathepsins, proteinase-3), antimicrobial defensins, lysozyme and BPI (Nauseff & Clark, 

2010). Granules may be identified by specific molecules on their membrane, termed 

clusters of differentiation (CD), CD63 and CD68 (Faurschou and Borregaard 2003). 

Specific granules vary greatly in size and composition and, as previously described, 

enable formation of tertiary granules (Bainton, 1999; Borregaard et al., 2007). Specific 

granules express CD11b, CD18, CD66 and cytochrome b558 on their membrane and 

contain in its matrix, lactoferrin (LF), lysozyme and B12 binding proteins (amongst other 

substances) (Faurschou & Borregaard, 2003). These granules are categorised according 

to their protein content. It has been reported that specific granules may contain only LF 

(16%), only gelatinase (24%), or a combination of both LF and gelatinase (60%) (Bainton, 

1999). MPO and LF play an important role in the oxidative chemistry of the phagosome 

and anaerobic microbicidal activity, respectively, which will be explored further in this 

thesis.  

 

Neutrophils have been suggested to have superior phagocytic ability when compared to 

the mononuclear phagocytes (Silva & Correia-Neves, 2012).  Several authors (Levy, 2004; 

Segal, 2005) have suggested that neutrophilic microbicidal capacity is greater than that 

of macrophages, attributing this to the diverse assortment of microbicidal mechanisms 

and antimicrobial molecules stored in the granules with which they are equipped 

(Borregaard & Cowland, 1997; Segal, 2005). Nathan and Shiloh (2000) identified a more 

prominent production of ROS by neutrophils when compared to that of macrophages. 

Locksley et al. (1987) have ascribed the lower antimicrobial activity in macrophages, 

when compared to neutrophils, to the loss of MPO as they mature from monocytes (in 

circulation) to macrophages (in tissue) (Klebanoff, 2005). Also, abundant in neutrophils, 

but scarce or even lacking in macrophages, are antimicrobial proteins such as defensins 

and cathelicidins (Ganz, 2003a; Lehrer & Ganz, 2002; Selsted & Ouellette, 2005), LF 

(Levay & Viljoen, 1995), as well as the bactericidal/permeability-increasing protein 

(BPI)(Weiss & Olsson, 1987).  
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2.2.3) Neutrophils and the Inflammatory Response 
 

Circulating mature neutrophils are often the first cells to arrive at an infection site, 

triggering a local inflammatory response. Early in the inflammatory response, neutrophils 

are displaced from blood and marginated along the endothelial surface. Stimulated by 

selectins, rolling neutrophils initiate adhesive interaction with the endothelium (Figure 2-

1). Pro-inflammatory mediators, such as tumour necrosis factor α (TNFα) and interleukin 

(IL) 1-β , induce surface expression of E-selectin, which in turn increases endothelial 

expression of intercellular adhesion molecule (ICAM)-1 (Muller, 2002). ICAM-1 then 

binds to β2 (leucocytes) integrins which are heterodimeric structures that contain α chains 

(CD11a, CD11b, CD11c, CD11d) and a common β chain (CD18). The binding of 

CD11b/CD18 complex with the complement activation product C3bi facilitates adhesion 

and allows diapedesis (Warren, 2010). The neutrophil will then emigrate and move 

through the interstitium. Specific chemotactic receptors on the neutrophil surface, such 

as N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement derived peptide C5a, 

bioactive lipid product platelet activating factor (PAF) and cytokines (e.g. IL-8), are 

occupied, thus activating the neutrophil and promoting directional movement, known as 

chemotaxis, towards the pathogen (Cohen, 1994).  

Figure 2-1 – Neutrophil inflammatory response 

 
 Neutrophils are the first cells recruited to the inflammatory site, mostly via interaction of selectins and 
integrins on both neutrophil and vascular endothelium. This interaction slows down neutrophilic rolling 
and promotes firm adhesion. Through conformational changes in the cytoplasm the neutrophil migrates 
into the tissue. There the interaction between receptors on the neutrophil’s surface and chemoattractants, 
initiates phagocytosis and consequently, extermination of the foreign pathogen.  Reproduced with 
permission from Delves and Roitt (2000), Copyright Massachusetts Medical Society. 
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Neutrophils can identify their targets directly through recognition of pathogen-associated 

molecular patterns (PAMPs) (such as lipopolysaccharide; LPS) by pattern-recognition 

receptors (PRR) located in their membrane, or indirectly where a target has been coated 

by serum opsonins, such as complement (i.e. C3b and iC3b) and immunoglobulin (Ig), 

particularly IgG (Cohen, 1994). Neutrophils express on their surface receptors that bind 

to the Fc portion of the IgG molecule, particularly FcγRII (CD32) and FcγRIII (CD16). 

To recognize complement, neutrophils express complement receptors 1 and 3 (CR1 and 

CR3) which recognize C3b and iC3b, respectively. Data suggests that calcium-dependent 

phagocytic pathways are mediated by Fcγ receptors, whereas CR1 and CR3 mediate 

calcium-independent phagocytic pathways (Nauseff & Clark, 2010).  Once occupied, 

these receptors trigger engulfment and microbicidal activity of the phagocyte. The 

pathogen is then trapped within a phagosome, where the neutrophils use both O2-

independent and O2-dependent mechanisms to kill the invader. 

 

The O2-independent mechanism recruits the contents of the three types of granule to 

exterminate the pathogen. Stimuli such as the occupation of C5a, PAF and the fMLP 

membrane receptor trigger the degranulation process (Tintinger, Steel, & Anderson, 

2005). Such receptors belong to the 7-transmembrane G-protein-coupled family of 

receptors (Tintinger et al., 2005). Once engaged, the receptors, controlled by G-protein 

subunits Gα and Gβγ, activate B isoforms of phospholipase C (PLC) (Tintinger et al., 

2005). Active PLC cleaves inositol 4,5-biphosphate (PIP2) into inositol triphosphate (IP3) 

and diacylglycerol (DAG) (Nelson & Cox, 2008). IP3 then binds to Ca2+ mobilizing 

receptors on the intracellular storage vesicles, releasing Ca2+ into the cytosol (Lacy, 2006). 

The gradual increase in cytosolic Ca2+ concentration via the phosphoinositide cascade 

causes the granule contents to be emptied sequentially (secretory vesicles, tertiary 

granules, secondary granules and primary granules) either into the phagosome or into 

extracellular space (Faurschou & Borregaard, 2003). CD66 is a secondary granule marker, 

detected in low density in the plasma membrane of resting neutrophils (Borregaard & 

Cowland, 1997). As the degranulation process occurs, CD66 is mobilized to the surface 

from its intracellular location, the secondary granules (Ducker & Skubitz, 1992).  The 

increase in the surface marker CD66 characterizes the sequential degranulation process. 

The antimicrobial arsenal provided by the granules includes defensins, BPI, lysozyme, 

peptidoglycan recognition proteins (PGRP), neutrophil gelatinase-associated lipocalin 

(NGAL), cathelicidins and LF. These agents act to disrupt anionic bacterial surfaces, 
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increasing their permeability (Mayer-Scholl, Averhoff, & Zychlinsky, 2004) and 

eventually degrading bacterial proteins.   

 

The O2-dependent mechanisms use granule content (particularly from secondary granules) 

(Lee, Harrison, & Grinstein, 2003) from these PMN leucocytes to create a hostile 

environment for the pathogen inside the phagosome.  In a process of intense O2 

consumption referred to as “respiratory or oxidative burst”, electrons are taken from 

NADPH in the cytoplasm, via the enzyme NADPH oxidase (enzyme commission EC 

1.6.3.1) and transferred onto O2 in the vacuole to produce superoxide anion (O2-) 

(Wientjes & Segal, 1995). Subsequent reactions involving MPO, which will be explored 

further in this thesis,  lead to the formation of other toxic species, including hydrogen 

peroxide (H2O2), hypochlorous acid (HOCl), hydroxyl radical (OH·) and singlet oxygen 

(1O2) (Clark, 1999). 

 

Recently, a novel neutrophilic antimicrobial mechanism has been described (Brinkmann 

et al., 2004; Fuchs et al., 2007), where neutrophils release extracellular traps (NETs) 

composed of chromatin and granular proteins. NET formation follows a particular pattern 

which culminates in the disintegration of the nuclear envelope into the vesicles and the 

disappearance of granular membranes, allowing the mixing of nuclear, cytoplasm and 

granular components (Fuchs et al., 2007). Fuchs et al.(2007) describe this process to be 

dependent on the generation of ROS by NADPH oxidase. This serves to illustrate the 

importance of ROS formation as it contributes to two antimicrobial pathways: 

intraphagosomal killing in live neutrophils and NET-mediated killing post mortem 

(Brinkmann & Zychlinsky, 2007). 

 

Besides their widely reported effector functions, neutrophils are now known to provide a 

substantial immunomodulatory links between innate and adaptive immunity (reviewed 

thoroughly in Mantovani et al., 2011 and Jaillon et al. 2013). Synthesis and release of 

chemokines (CXC and CC) and of cytokines such as IL-1 (α and β), TNFα and IL-6 by 

neutrophils modulates activity of B and T lymphocytes (Cassatella, 1995; Lloyd & 

Oppenheim, 1992; Scapini et al., 2000; Tecchio, Micheletti, & Cassatella, 2014). This 

activation of T-lymphocyte sub-populations (TH1, TH17 and TREG) in turn promotes 

release of neutrophil-attracting chemokines (i.e. CXCL8) which increases neutrophil 

survival and increase expression of CD11b (Mantovani et al., 2011).The recognition of a 

pathogen through C-type lectin receptors or toll-like receptors trigger (via DAP12 Syk 
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and myeloid differentiation factor 88 pathways, respectively) the phosphorylation of p38 

and phosphatidylinositol 3-kinase (PI3K) and Akt pathways, culminating in the 

production of IL-10 by murine neutrophils (Cassatella, Locati, & Mantovani, 2009; 

Zhang, Majlessi, Deriaud, Leclerc, & Lo-Man, 2009). Further cross-talks between 

neutrophils and DC via CD18 (neutrophils) and DC-SIGN (monocyte-derived DC), 

promotes maturation of DC (Jaillon et al., 2013), which may result in NK cell activation 

(IFN-γ production) (Costantini et al., 2010). 

 

2.2.4) The Acute-Phase Response 
 

A coordinated series of systemic and metabolic events including fever, leucocytosis, 

intracellular iron sequestration and increase of specific hepatic plasma proteins, occurs in 

response to trauma, stress, inflammation and/or infection, independent of recognition of 

foreign pathogens. The collection of these non-specific host defence mechanisms, termed 

the acute phase response (APR), involves not only components of the immune system, 

but also endocrine and central nervous systems, liver, pancreas, kidneys, and skeletal 

muscle (Cannon & Blumberg, 2000; Kushner, 1982). Macrophages at the inflammatory 

site produce cytokines such as IL-1β, TNFα, IFNγ and IL-6, which unleash the systemic 

APR. As the APR is initiated, there is an increase in the concentration of circulating 

cytokines such as IL-1β, TNFα, IFNγ and IL-6 (Bode, Albrecht, Haussinger, Heinrich, & 

Schaper, 2012). These are thought to mediate production of acute-phase proteins (APP) 

including C-reactive protein, ferritin, proteins of the complement system (i.e. C3), 

hepcidin, amongst many others reviewed in Gabay & Kushner (1999), Gruys et al. (2005), 

and Samols et al. (2003). 

 

2.2.5) Exercise and Immune Function 

 

Increased attention is being paid to athletes’ immune health and competency. An ill 

athlete is unable to keep his/her training program, which will, most likely, hinder future 

performances.  The majority of elite athletes experience URTI symptoms at a similar rate 

to the general population (Papacosta & Nassis, 2011; Walsh et al., 2011), reportedly one 

to four cases per year  (Fricker et al., 2000). Such episodes in elite athletes do not follow 

the seasonal patterns observed in the general population (Broadbent, 2011), but rather 
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predominantly occur during or around competition. Many studies (Broadbent, 2011; 

Gleeson, 2006, 2007; Pedersen & Hoffman-Goetz, 2000; Walsh et al., 2011) have shown 

that symptoms are dependent on the nature of the sporting activity undertaken. Kayak and 

swimming athletes usually present with illness during HI training and tapering prior to 

competition (Fricker, McDonald, Gleeson, & Clancy, 1999; Gleeson & Pyne, 2000), 

while endurance runners commonly present with symptoms after competition (Nieman et 

al., 2006). Other than URTI, athletes are also at risk of bactericidal and fungal infections, 

often attributed to environmental (i.e. water-based sports) or to sharing of sporting apparel.  

In a recent systematic review of 51 peer-reviewed studies from 1990 to 2012, 27.4% of 

the articles mentioned Staphylococcus aureus skin infection and water-transmitted 

Leptospira was found to be the most common infectious agent with a total of 226 cases 

described  (Grosset-Janin, Nicolas, & Saraux, 2012). 

 

Exercise influences humoral and cellular components of the immune system much alike 

the APR (Gleeson, 2007; Pedersen & Hoffman-Goetz, 2000), as exercise is perceived as 

stress by the central nervous system and may enhance or suppress immune function 

(Dhabhar, 2009). As such, sympathetic nerve fibres increase cardiac output resulting in 

increased shear stress, which has been postulated to increase leucocyte trafficking as the 

latter are demarginated from vascular pools. Further, release of catecholamines and 

cortisol by sympathetic nerve fibre stimulation and neuroendocrine (via hypothalamic–

pituitary–adrenal (HPA) axis) stimulation of the adrenal gland, respectively, also 

contribute to the above mentioned demargination (Walsh et al., 2011). Details of the 

interrelations between exercise and the endocrine system escape the bounds of this thesis 

but are of utmost importance and have been described extensively elsewhere (Peake, 2013; 

St-Pierre & Richard, 2013; Walsh et al., 2011).   

 

Additionally, the increase in circulating levels of immune mediators such as heat-shock 

proteins, chemokines and cytokines is known to modulate post-exercise immune function. 

ILs have gained much attention in the sporting field, particularly the increase of pro-

inflammatory IL-6. IL-6 is a multifunctional cytokine involved in the regulation of the 

immune response, APR, haematopoiesis, and inflammation (Akdis et al., 2011). Recently 

Cox et al. (2010) identified an underlying genetic predisposition to high expression of the 

IL-6 single nucleotide polymorphism (G-174C) in athletes prone to frequent upper 

respiratory symptoms (URS) when compared to the healthy group – who reported less 

than two episodes of URS in a year. Such polymorphism impacts on cytokine production 



  

34 
 

by increasing IL-6 expression (Fishman et al., 1998; Terry, Loukaci, & Green, 2000). 

Data from this study (Cox et al., 2010) show that the IL-6 high expression genotype was 

more frequent in the illness-prone group than in the healthy group (20% v 9%, 

respectively). Moreover, cytokines, such as IL-1β and TNF-α, and the complement 

system (via complement opsonisation) can recruit cellular components of the immune 

system to sites of infection, enhancing the extermination of pathogens (McDonald & 

Levy, 2013). Fielding et al. (1993) showed positive correlation between accumulated IL-

1β and neutrophils in skeletal muscle with Z-band damage in untrained men after a 45min 

downhill run (16% incline) at 70% HRmax. 

 

In relation to cellular immunity, exercise is known to cause an overall increase in 

circulating leucocytes (Simpson, 2013). However, each leucocyte population responds 

differently to the exercise stimulus. Significant immunological alterations can be 

observed even after short periods (1-3 weeks) (Gleeson, 2007) of intense training, where 

studies have reported significant decreases in lymphocyte concentration (Borges et al., 

2012; Horn, Pyne, Hopkins, & Barnes, 2010), while NK cells, monocyte and granulocyte 

concentrations are found to increase (Fielding et al., 2000; Kakanis et al., 2010). At the 

completion of training, following a reduced workload, known as the taper phase, several 

studies have also observed a significant decrease in circulating monocyte concentration 

(Borges et al., 2012; Morgado et al., 2012). The overall fluctuations in leucocyte 

concentration in response to exercise are explained mostly by the previously mentioned 

increase in neutrophils, which make up 60-70% of circulating leucocytes (Smith & Pyne, 

1997).  

 

When analysing how exercise impacts immune function, even short training periods (1-3 

weeks) demonstrated marked reductions in immune components such as salivary Ig-A, 

monocyte antigen presentation, the number of T cells producing IFN-γ, lymphocyte 

proliferation and neutrophil function (Gleeson, 2007; Gleeson & Bishop, 2000; Lancaster 

et al., 2003; Lancaster et al., 2004). These mononuclear and PMN leucocytes are 

responsible for detecting and killing pathogens, via either specific responses (e.g. B 

lymphocytes -antibody production) or non-specific responses (phagocytosis), 

respectively. While the cumulative effects of athletes undertaking multiple training 

sessions per day have been demonstrated to significantly increase (p<0.001) neutrophil 

and lymphocyte (T cells – cytotoxic and helper – and NK cells) concentrations in 

peripheral blood, they have also been found to exhibit a decrease in the function of these 
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cells (Ronsen, Pedersen, Øritsland, Bahr, & Kjeldsen-Kragh, 2001). Research examining 

the phagocytic function of neutrophils has shown conflicting results, where studies have 

demonstrated it to decrease (Chinda et al., 2003; Gabriel et al., 1995), increase or remain 

unchanged (Ortega Rincon, 1994; Pyne, 1994). Oxidative burst activity per cell has also 

been shown to decrease significantly (p<0.001) in response to exercise (Chinda et al., 

2003; Gabriel et al., 1995) .  

 

The influence of exercise on immune function has been the focus of many studies, often 

with conflicting results, as previously mentioned. However, there is strong agreement that 

neutrophil function is decreased, despite observed increases in peripheral blood 

neutrophil concentration, post-exercise. A major constituent of the non-specific immunity, 

presenting the first line of defence against foreign pathogens, neutrophils are endowed 

with a range of microbicidal, bactericidal and virucidal functions, which are critical to 

host defence. As the body’s most distinct phagocyte, neutrophils depend on their full 

complement of killing capacities – adherence, chemotaxis, phagocytosis and microbial 

killing - to ensure successful extermination of invaders.   

 

Studies that focus on the granular content of neutrophils have demonstrated fluctuations 

in the cell’s functional response post-exercise. While the oxidative burst function has not 

been shown to be altered immediately post-exercise, significant decreases in its capacity 

have been observed 3-6 hours thereafter (Morozov, Pryatkin, Kalinski, & Rogozkin, 

2003). Accordingly, chemiluminescence (activation resulting from metabolic 

oxygenation activity, measured by luminol deoxygenation producing a high quantum 

yield of photons) per neutrophil was found to be the same immediately post exercise and 

was sustained for the hour to follow (Lieberman, Sachanandani, & Pinney, 1996). Once 

again, in the post-exercise period analysed, chemiluminescence intensity per neutrophil 

was shown to  be reduced by 22% and 28%, at the third and sixth hour, respectively 

(Morozov et al., 2003). Morozov et al. (2003) found a significant correlation ratio (η=0.95; 

p<0.001) between the intensity of the degranulation process and work capacity. Gray et 

al. (1993) established the existence of a relationship between intense interval training and 

granulocyte degranulation, through an increase in the expression of receptors for 

complement fragment C3bi (CD11b/CR3) and the Fc portion of IgG (CD16) 24 hours 

post-exercise. 
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It has been suggested that such degranulation stimulates bone marrow granulopoiesis 

(Delforge et al., 1985; Metcalf, 1997; Morozov et al., 2003). The decrease in oxidative 

burst capacity was then attributed to the release of immature bone marrow neutrophils, a 

phenomenon known as “left shift”. Suzuki et al.(2003) demonstrated that there was a 

significant increase in band (non-segmented) neutrophils from pre- to post- marathon race, 

310 to 3650 cells/µL, respectively. Post-race plasma showed an increase in the 

concentration of cytokines, particularly IL-6, IL-8, IL-10, G-CSF and monocyte 

chemotactic protein 1 (Nieman et al., 2005; Suzuki et al., 2003). Recent findings have 

identified a positive correlation between increased levels of IL-6 and G-CSF and 

neutrophil mobilization from the bone marrow (Suzuki et al., 2002). It is well established 

that both IL-6 and G-CSF are increased post-exercise (Peake, 2002; Yamada et al., 2002). 

Interestingly, IL-6 and G-CSF were also found to facilitate neutrophil degranulation 

(Borish, Rosenbaum, Albury, & Clark, 1989; Jiang, Puntis, & Hallett, 1994; Suzuki et al., 

2000) and consequently are often used as markers for neutrophil activation (Camus et al., 

1998; Niess et al., 1999; Suzuki, Totsuka, et al., 1999).   

 

Although the presence of immature neutrophils in the circulation has been discussed by 

many authors, there is limited literature quantifying the different granulocyte phenotypes 

according to their maturity post-exercise. Even scarcer are studies in the sporting field 

that correlate immature neutrophil phenotypes to their functional capacity.  

 

2.3) Iron 
 

2.3.1) Physiological Roles of Iron 
 

Iron is an essential transition metal that possesses numerous biological roles. This 

micronutrient is required for adequate erythropoietic function, oxidative metabolism, and 

cellular immune responses.  ID, clinically defined as serum ferritin <35µg/L; 

haemoglobin >115 g/L; Tf saturation >16% (Peeling, Dawson, Goodman, Landers, & 

Trinder, 2008), is the most common nutrient deficiency in the world. According to the 

World Health Organization, over 30% of the world’s population is anaemic and about 

one billion suffer from iron deficiency anaemia (IDA) (Butcher, Chahal, Nayak, Sinclair, 

Henriquez, Sapey, O’Mahony, et al., 2001). 
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Iron has diverse biochemical functions in living organisms. These can be divided into (1) 

structural, (2) electron transport, (3) dioxygen binding and (4) catalytic roles (Crichton, 

2001). Iron can be found in iron containing proteins, such as haemoproteins, iron-sulfur 

(Fe-S) proteins, and mononuclear and dinuclear non-haem iron enzymes, all of which are 

essential for cellular metabolic functions. The most common catalytic use of iron is when 

it is incorporated into a prosthetic group called haem. Haem consists of a single iron atom, 

in its ferrous state (Fe2+), bound to a complex organic structure, protoporphyrin IX (Figure 

2-2). Haemoproteins can be further subdivided into O2 carrying proteins (haemoglobin 

and myoglobin), activators of molecular O2 (cytochrome oxidase, peroxidases, catalases 

and cytochrome P450), and electron transport proteins (cytochromes) (Crichton, 2001). 

Haemoglobin and myoglobin are reversible O2 binding proteins that transport and store 

O2, respectively, throughout the body. Cytochromes participate in a number of respiratory 

chains, interacting with other compounds, accepting, and redistributing electrons. 

Figure 2-2 – Haem molecule 

 
 

The chemical properties of iron define its biological importance. Iron can transition 

between the ferric (Fe3+) and Fe2+ states through one-electron oxidation-reduction 

reactions (Hentze, Muckenthaler, & Andrews, 2004). When not adequately sequestered 

by proteins, iron can participate in Fenton reactions, where Fe2+ reacts with hydrogen 

peroxide (H2O2) or lipid peroxides, generating Fe3+, OH-, and the highly reactive and 

toxic hydroxyl radical (OH·), or lipid radicals such as lipid alkyl radical (LO·) and 

lipid alkoxyl radical (LOO·) (Hentze et al., 2004). These radicals damage cellular 

membranes, proteins, and DNA. Due to this reactivity, both intra and extra cellular iron 

is usually bound to proteins. Therefore, iron homeostasis requires tight control of its 

uptake, storage, and distribution. 
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2.3.2) Iron Metabolism 
 

A normal healthy adult contains 3-5g of iron. Perhaps two thirds of this is present in 

haemoglobin in circulating erythrocytes, with much of the rest distributed between iron-

containing proteins in all cells. Approximately 10-20mg of iron in the body is in excess 

of immediate metabolic requirements and is stored mainly in hepatocytes and 

reticuloendothelial macrophages. The maintenance of body iron levels is critical for 

health and the capacity for physical work. Of the 15-20mg of iron present in a normal 

daily diet, only 1-2mg/day is absorbed (Hentze, Muckenthaler, Galy, & Camaschella, 

2010). This is much less than the 20-25mg/day which is required for erythropoiesis. To 

meet these requirements, there is extensive internal turnover of iron, with iron from 

senescent erythrocytes being returned to the transferrin-bound iron pool in the plasma by 

the reticuloendothelial system (RES).  The transferrin-bound iron pool turns over 5-7 

times per day, serving to meet erythropoiesis requirements in the bone marrow (Andrews, 

2008; von Drygalski & Adamson, 2012). 

 

If the internal recycling of iron is insufficient to meet metabolic (predominantly 

erythropoietic) needs, intestinal iron absorption becomes important. Inorganic (non-haem) 

dietary iron is absorbed by the duodenal enterocytes after being reduced to Fe2+ by brush 

border ferric reductases.  Divalent metal-ion transporter 1 (DMT1) then transports Fe2+ 

across the brush border membrane via a proton-coupled mechanism (von Drygalski & 

Adamson, 2012; Wang & Pantopoulos, 2011). Once in enterocytes, Fe2+ can either be 

stored within ferritin, or exported via ferroportin across the basolateral membrane and 

into the circulation (Figure 2-3). The latter process requires an iron oxidase, hephaestin, 

for maximum efficiency. Haem iron absorption is less well understood. Haem must be 

released from proteins (e.g. haemoglobin, myoglobin) through proteolytic activity in the 

lumen of the stomach and duodenum. After movement from the lumen into the enterocyte, 

by a mechanism that has not yet been defined, iron is released from the protoporphyrin 

ring by haem oxygenases (Hartmann & Bissell, 1982; Raffin, Woo, Roost, Price, & 

Schmid, 1974; Tenhunen, Marver, & Schmid, 1968). Haem-derived iron subsequently 

appears to exit the enterocyte through the same pathway as non-haem iron, i.e. via 

ferroportin (Anderson, Frazer, McKie, Vulpe, & Smith, 2005).  

 

Iron absorption is influenced by both systemic regulators, such as hepcidin, and at the 

enterocyte level (Kühn, 2009; Simpson & McKie, 2009). Enterocyte O2 tension 
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influences the transcription factor hypoxia-inducible factor 2α (HIF-2α), which in turn 

regulates the transcription of DMT1 and ferroportin (Peyssonnaux, Nizet, & Johnson, 

2008; Recalcati, Minotti, & Cairo, 2010). Von Drygalski and Adamson (2012) showed 

that when the enterocytes are hypoxic or iron deficient, DMT1 and ferroportin expression 

is upregulated, thus promoting dietary iron absorption. While enterocyte iron levels can 

influence HIF-2α activity, they can also influence the activity of iron regulatory proteins 

1 and 2 (IPR1/ IRP2) (Galy, Ferring-Appel, Kaden, Gröne, & Hentze, 2008). Both IRP1 

and IRP2 bind to iron responsive elements (IREs) in the untranslated regions of certain 

target mRNAs when iron is scarce. Such binding stabilizes transferrin receptor 1 (TfR1) 

and DMT1 messenger RNA (mRNA), and decreases the translation of the mRNA for 

ferritin, ferroportin and HIF-2α (Sanchez, Galy, Muckenthaler, & Hentze, 2007).  

 

Figure 2-3 – Absorption mechanism of haem and non-haem iron by enterocytes 

 
a. Non-haem iron absorption. (1) Non-haem iron is reduced from Fe3+ to Fe2+ either chemically (by 
gastric acid) or through the action of brush border reductases. (2) Fe2+ is taken up into mucosal cells 
via DMT1. (3) Once inside the intestinal epithelial cell, iron either binds to ferritin or is transported 
via ferroportin into the circulation. Hephaestin oxidizes Fe2+ to Fe3+. (4) Fe3+ binds to 
transferrin. b. Haem iron absorption. Haem is transported across the brush border membrane via 
mechanisms that are still poorly understood. Within the enterocyte, iron is liberated from its porphyrin 
framework by haem oxygenases and enters the same pool as non-haem iron.  Re-printed and adapted, 
with permission, from Stein, Hartmann, and Dignass (2010) 
 

 

Recently, many studies have highlighted hepcidin as the key regulator of systemic iron 

homeostasis, affecting both iron absorption and the recycling of erythrocyte-derived iron 

by macrophages (Collins, Wessling-Resnick, & Knutson, 2008; De Domenico, Ward, & 

Kaplan, 2007; Ganz, 2003b; Nemeth & Ganz, 2009; Nicolas et al., 2002; Young et al., 
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2009). Hepcidin is a 25-amino acid peptide hormone produced primarily by hepatocytes 

and released into the circulation (Krause et al., 2000; Park et al., 2001). Regulation of 

hepcidin production is largely transcriptional, and mRNA levels increase in response to 

iron loading (via bone morphogenic protein (BMP) / sons of mothers against 

decapentaplegic homologue protein (SMAD) signalling pathways) and inflammatory 

stimuli (i.e. cytokines, namely IL-6) (Andriopoulos Jr et al., 2009; Camaschella & 

Silvestri, 2008; De Domenico et al., 2007; Ganz, 2011). In contrast, transcription rates 

are decreased under conditions of hypoxia and iron withdrawal/deficiency, as the actions 

of HIF-1 are also known to downregulate hepcidin expression (Beutler, 2010b).  

 

Hepcidin acts by binding to ferroportin on the cell surface and facilitating its 

internalization and degradation (Collins et al., 2008). This leads to iron sequestration 

inside the cell. Consistent with this, mice injected with hepcidin showed an 80% drop in 

serum iron levels within one hour (Rivera et al., 2005). The response of hepcidin to body 

iron levels is proportional to the level of transferrin saturation (Collins et al., 2008). The 

effects of hepcidin on iron status have been demonstrated in many studies (Auersperger 

et al., 2012; Ganz, 2006, 2011; Nemeth & Ganz, 2009; Nicolas et al., 2002; Roe, Collings, 

Dainty, Swinkels, & Fairweather-Tait, 2009; Viatte & Vaulont, 2009; Zimmermann et al., 

2009). 

 

 

2.3.3) Iron Deficiency Anaemia  

 
Iron deficiency anaemia (IDA) is characterized by a staged decrease in iron levels. Initially 

a negative iron balance may be observed, followed by iron depletion. In these stages, the 

anaemia may produce normocytic and normochromic erythrocytes, and may not have 

overt symptoms. Further depletion of iron stores leads to iron-deficient erythropoiesis and 

consequently IDA. The rapid progression and lack of pronounced symptoms makes 

monitoring crucial to ensure that iron depletion does not escalate into IDA. It is only at 

the iron-deficient erythropoiesis stage that symptoms will arise. These later stages are 

characterized by microcytic and hypochromic erythrocytes, with decreased erythropoiesis 

in the bone marrow resulting in low haemoglobin levels (Clark, 2008). In IDA, serum 

ferritin is decreased, and there are increases in soluble transferrin receptor and transferrin 

concentration (measured as total iron-binding capacity) (Table 2-3) (Beutler, 2010b).   
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Table 2-3 – Sequential changes in iron status 

Measure Normal 
Early 

Negative 
Iron Balance 

Iron 
Depletion 

Iron-Deficient 
Erythropoiesis IDA 

Bone marrow iron (*) 2-3* 1* 0-1* 0 0 
TIBC (µg/dL) 330+30 330-360 360 390 410 
Ferritin (µg/L) 100+60 <25 20 10 <10 
Iron Absorption (%) 5-10 10-15 10-15 10-20 10-20 
Plasma Iron (µg/dL) 115+50 <120 115 <60 <40 
TSAT (%) 35+15 30 30 <15 <15 
Erythrocyte 
protoporphyrin (µg/dL) 30 30 30 100 200 

Erythrocytes Normal Normal Normal Normal Microcytic + 
Hypochromic 

sTfR Normal Normal-High High Very High Very High 

TIBC = total iron-binding capacity. TSAT = transferrin saturation. sTfR=soluble transferrin receptor * Represents 
estimates of iron stored in bone marrow through a 6 -point scale: 0=iron absent 1=iron decreased 2-3=normal 4=iron 
increased 5= iron massively increased. Adapted from Clark (2008). 
 
 
 

2.3.4) The Anaemia of Inflammation 
 
Also known as the anaemia of chronic disease (ACD), this anaemia is characterized by a 

low serum iron level, a low to normal transferrin level, normal serum transferrin receptor 

and a high to normal ferritin level (Beutler, 2010b).  

 

Table 2-4 – Comparison of laboratory measures in IDA and ACD 
Laboratory Measures     IDA ACD 
Serum Ferritin Reduced Normal to Increased 
Serum Iron Reduced Reduced 
Transferrin Increased Reduced to Normal 
Transferrin Saturation Reduced Reduced 
Mean Corpuscular Volume Reduced Reduced to Normal 
sTfR Increased Normal 
Haemoglobin Reduced Reduced 
sTfR/log ferritin ratio High (>2) Low (<1) 
Cytokine Levels Normal Increased 

                   sTfR= Soluble transferrin receptor. Adapted from Clark (2008) 

 

The ACD is accompanied by an increase of cytokine levels (Clark, 2008) (Table 2-4). Of 

particular interest are the increases in TFN-α, IL-1, IL-6 and interferon-γ (IFN-γ) (Weiss 

& Goodnough, 2005).  TNFα and IL-1 induce the synthesis of ferritin (the major iron 

storage protein) by macrophages and hepatocytes, thus facilitating increased iron storage 

within the RES system (Weiss, 2005). IL-6 triggers the synthesis of hepcidin by 

hepatocytes and its release into the circulation. Hepcidin binds to ferroportin, the iron 

exporter on the surface of most body cells, and the complex is then internalised and 
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degraded, locking iron within the cell resulting in a decrease in serum iron (Collins et al., 

2008; De Domenico et al., 2007; Weiss & Goodnough, 2005) (Figure 2-4). IFN-γ also 

contributes to the inhibition of iron delivery to the plasma as it stimulates DMT1 synthesis 

and down-regulates ferroportin expression (Weiss & Goodnough, 2005). 

 
Figure 2-4 – The mechanism of iron withholding in the ACD  

 

Reprinted with permission Cui, Wu, and Zhou (2009). 

 

 

2.3.5) Iron and Immune Function 
 
Optimal performance is also dependent on the health status of the athlete. A less explored 

avenue in which iron possibly influences performance is via alterations in immune 

function. The well-known inflammatory response to exercise has provided new 

perspectives on the decreased iron levels often seen in athletes. The role of inflammatory 

products such as cytokines and hormones is becoming more evident in iron metabolism. 

The inflammatory cytokine IL-6, known to be increased post exercise, is intimately 

related to the up-regulation of hepcidin activity (Northoff & Berg, 1991; Peeling et al., 

2009a; Roecker, Meier-Buttermilch, Brechtel, Nemeth, & Ganz, 2005). As previously 

described, hepcidin is a key regulator of iron metabolism. Studies have shown that IL-6 

is not only released as a product of exercise induced inflammation but also as a product 

of muscle contraction (Febbraio & Pedersen, 2005; Helge et al., 2011; Keller et al., 2001; 

Steensberg et al., 2002). Most of the IL-6 present in circulation post-exercise is muscle 

derived, and its levels reflect exercise intensity and duration (MacDonald, Wojtaszewski, 

Pedersen, Kiens, & Richter, 2003; Pedersen, 2011). 

 
Not only is iron fundamental to normal cell differentiation and proliferation, it is an 

essential structural and functional component of peroxidise-generating and nitrous oxide 
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generating enzymes (Beard, 2001). Such enzymes are responsible for effective microbial 

killing, hence the importance of maintaining normal iron stores. Iron is also a regulatory 

factor in cytokine production and action as well as in the development of cell mediated 

immunity (Kumar & Choudhry, 2010).   

The effects of ID on erythropoiesis are well known (Cavill, 2002). However, this is not 

the case for myelopoiesis, even though iron is an essential component of myeloid 

progenitor cells, particularly granulocytes. IDA may cause a hyper-segmentation of 

neutrophils, as Westerman et al. (1999) observed in 62% of the anaemic adults analysed, 

compared to 4% of non-anaemic controls. Sipahi et al., (2002) reported that 81% in 

anaemic children had hypersegmented neutrophils compared to 9% of non-anaemic 

controls, and this has been demonstrated in other studies (Duzgun, Yildirmak, & 

Cetinkaya, 2005). Although the clinical significance of hyper-segmentation of the 

neutrophilic nucleus is still not fully elucidated, Beard and Weintraub (1969) have shown 

it to be strongly correlated with iron levels, as lobe average in the observed population 

returned to normal following iron therapy.   

 
The importance of iron for the immune system is most clearly shown during ID (Cherayil, 

2010, 2011). Each particular leucocyte population utilises iron in a different manner. Iron 

plays a key role in lymphocyte proliferation (e.g. DNA synthesis; Seligman  et al. 1992), 

and decreases in iron levels impair such events, particularly in T-cells (Lauffer, 1992). 

The activity of TH1 helper cells, a sub-population of T cells, is decreased in ID, as 

manifested clinically by decreased skin-test responses (Lauffer, 1992). Further, 

lymphocytes and dendritic cells require iron for activation, during which there is 

increased uptake of iron through the transferrin-transferrin receptor (CD71) system 

(Brock & Mainou-Fowler, 1983). Although its role is still not fully elucidated, the 

participation of iron in myelopoiesis is essential to immune competency. It is known that 

granulocytes carry in their granules essential microbicidal iron-containing proteins such 

as MPO, iron-binding protein LF, and components of iron-containing enzyme NADPH 

oxidase.  

 

The NADPH oxidase enzyme complex catalyses the production of O2- in phagocytic cells. 

It is composed of a membrane bound flavohaemoprotein (cytochrome b558), three 

cytosolic components (p67phox, p47phox and p40phox) and a low molecular weight G protein 

(RAC 2 or RAC1) (Babior, 2004; Sheppard et al., 2005) (Figure 2-5). Iron is a component 

of cytochrome b558, and is present in the two haem prosthetic groups, both of which are 



  

44 
 

responsible for the assembly of this heterodimer. One haem group selectively binds 

gp91phox, while the other binds gp91phox and p22phox.  These components, combined with 

a flavin adenine dinucleotide (FAD) make up the NADPH oxidase (Babior, 1999). The 

FAD and the two haem groups function as a redox pathway, enabling electron transfer 

across the membrane (Sheppard et al., 2005). Rotrosen et al. (1992) concluded that 

cytochrome b558 is the only obligate electron transporting component of the NADPH 

oxidase complex, highlighting its role in immune function. In resting neutrophils these 

cytochrome b558 components are distributed between the cytosol and intracellular 

membranes. The amount of the cytochrome b558 complex found in specific granules is 

four times greater than in the plasma membrane (Vaissiere, Le Cabec, & Maridonneau-

Parini, 1999).   

 

Figure 2-5 – NADPH Oxidase 
 

 
 
Phagocyte NADPH oxidase activation (a) resting state (b) assembly of components upon activation. 
Adapted from Kuijpers and Lutter (2012) 
 
 
 
Vaissiere et al. (1999) propose that, upon activation, specific granules act as the site for 

functional assembly of the NADPH oxidase complex, with subsequent transfer to the 

plasma membrane during granule exocytosis. In support of this, Kobayashi et al.  (1998), 

using electron microscopy, identified vesicles and granules as the principal sites of O2- 

production. Any defects in the protein subunits or in the assembly of cytochrome b558 

results in decreased oxidase activity (Newburger et al., 1983; Vaissiere et al., 1999; Yu, 

Quinn, Cross, & Dinauer, 1998). Recently, Kurtoglu et al. (2003) demonstrated a 
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significant decrease in NADPH oxidase activity in subjects with IDA, relative to healthy 

controls.  

 

 More substantial evidence of the importance of the NADPH oxidase system is provided 

through studies examining the congenital condition of chronic granulomatous disease 

(CGD), where genetic mutations in any of the genes that encode the NADPH oxidase 

components described above, the enzyme’s activity is reduced or abrogated (Heyworth, 

Cross, & Curnutte, 2003; Holland, 2010). Consequently, CGD patents are highly 

susceptible to recurrent infections and prolonged inflammatory reactions (Kuijpers & 

Lutter, 2012). NADPH oxidase is vital in the generation of superoxide derivatives. These 

ROS play a key role in pathogen extermination via the oxidative burst. The primary 

products of NADPH oxidase activity are O2- and H2O2. O2- does not kill bacteria directly 

and H2O2 is only bactericidal at high concentrations, necessitating the formation of 

secondary oxidants, mostly through the action of MPO (Hampton, Kettle, & Winterbourn, 

1998) (Figure 2-6). 

 

Figure 2-6 – Reactions of NADPH oxidase and myeloperoxidase 

 
Through the action of myeloperoxidase hydrogen peroxide forms hypochlorous acid and oxygen and 
nitrogen reactive species. Adapted from Hampton (1998). 
 
 
 
MPO is a haem containing enzyme involved, alongside NADPH oxidase, in the formation 

of ROS and oxidation of biological material (Arnhold, 2004). Utilising products of the 

oxidative burst,  MPO will generate highly anti-microbial ROS, contributing significantly 

to the neutrophil killing process of microbes (Hampton et al., 1998).  MPO contains two 

identical haems, joined with the apoprotein by two ester linkages and one sulfonium ion 

linkage (Fiedler, Davey, & Fenna, 2000). Halogenation and peroxidise cycles transform 

the native enzyme into two distinct forms. The activated forms are able to oxidise 
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different substrates. Of greater significance is the oxidation of chloride (Cl-) to 

hypochlorous acid (HOCl) done exclusively, in mammals, by MPO (Gaut et al., 2001). 

HOCl reacts with various compounds to form further ROS and nitrogen reactive species 

(NRS). Many species of bacteria are killed readily by the myeloperoxidase/hydrogen 

peroxide/chloride system, and HOCl is the most bactericidal oxidant known to be 

produced by the neutrophil (Hampton et al., 1998). Not surprisingly, neutrophils carry 

three times more MPO than monocytes (Arnhold, 2004), indicating the importance of this 

enzyme for effective microbicidal neutrophil function.  

 

ID has been shown to reduce MPO activity (Beard, 2001; Spear & Sherman, 1992). 

Murakawa et al. (1987) induced ID in rats and demonstrated that MPO activity was 

decreased by 53%, when compared to a control group. In the same study, MPO activity 

did not return to baseline values until intramuscular iron supplementation had been 

provided for seven days. 

  
A member of the transferrin family, the 80kDa iron-chelating protein LF contains two 

iron-binding sites and is found in secondary granules of mature neutrophils. LF exists in 

two forms: an iron-free form, apo-lactoferrin, and in an iron-loaded form as holo-

lactoferrin. The loading of iron to this protein causes conformational changes to the 

tertiary structure of LF (Baker & Baker, 2009). In this thesis, wherever LF is mentioned 

please regard it as apo-lactoferrin unless stated otherwise. Many physiological functions 

have been attributed to LF, such as cellular growth and differentiation, host defence 

against microbial infection and inflammation and regulation of myelopoiesis (Legrand & 

Mazurier, 2010; Lonnerdal & Iyer, 1995). LF has a crucial role in host immunity by not 

only sequestering iron, due to its high iron affinity, and destabilizing membranes of 

microorganisms thus limiting their proliferation and adhesion to the epithelial surface, 

but also, by modulating the overall immune response (Puddu, Valenti, & Gessani, 2009). 

LF plays a role in the degranulation process by modifying the physiochemical properties 

of the neutrophil surface (Boxer, Coates, et al., 1982; Boxer, Haak, et al., 1982; Faurschou 

& Borregaard, 2003). LF has also been described as essential for regulating hydroxyl 

radical production (Cohen, Britigan, Hassett, & Rosen, 1988), for the regulation of 

granulopoiesis (Broxmeyer, Smithyman, Eger, Meyers, & de Sousa, 1978), and for the 

modulation of complement function (Kijlstra & Jeurissen, 1982). Ward et al. (2008) 

demonstrated reduction in stimulated oxidative burst capacity of neutrophils isolated from 

LF knockout mice. LF has the ability to control antigen presenting cells and influence 
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cytokine production by binding to LPS and its receptor (CD14) blocking further 

activation of pro-inflammatory pathways and tissue damage (Puddu et al., 2009; Ward, 

Paz, & Conneely, 2005). 

 

In ID, decreased levels of LF may result in decreased phagocytic activity (Bethell & 

Huang, 2004; Ekiz, Agaoglu, Karakas, Gurel, & Yalcin, 2005) and microbial killing, as 

iron-lactoferrin may provide the iron needed to catalyse the production of free radicals 

within phagolysosomes (Lima & Kierszenbaum, 1987). The role of LF in effective 

antimicrobial activity is supported by findings that patients lacking specific LF 

containing-granules suffer from recurrent infections (Boxer, Coates, et al., 1982; Breton-

Gorius, Mason, Buriot, Vilde, & Griscelli, 1980; Sanchez, Calvo, & Brock, 1992). De 

Vet and ten Hoopen (1978) found low concentrations of LF in neutrophils in IDA and 

even lower concentrations in acute inflammation. Such low concentrations could prevent 

neutrophils from effectively killing engulfed micro-organisms.  

 

2.3.6) Iron and Exercise 

 
Once thought to merely be the product of fluidic shift post-exercise, “sports anaemia” has, 

after extensive research, generated new scientific reviews and explanations. Nowadays it 

is known that sports anaemia may be ascribed, in part, to exercise-related events including 

haemolysis, premature senescence of erythrocytes, depressed Fe3+ absorption and 

increased iron loss via sweat and gastrointestinal tract bleeding (Smith & Roberts, 1994). 

As previously mentioned, ID is  very common in the general population and is frequent 

among athletes (Koehler et al., 2012). For example, Fogelholm et al. (1995) found that 

mean iron depletion (measured by serum ferritin) was 14% greater in athletes than in 

sedentary controls.  

 

Avenues for iron loss due to exercise include sweating, gastrointestinal bleeding, 

haematuria, haemolysis and the inflammatory response. It is known that iron stores in 

women are lower than in men – approximately 12% of total body iron in women 

compared to 30% in men (Gleason & Scrimshaw, 2007). This is a concern for female 

athletes, who, in many studies, even fail to meet recommended dietary allowances for 

iron intake, despite having increased dietary iron density (ratio between iron intake and 

energy intake) when compared to male athletes (Koehler et al., 2012). Koehler et al. (2012) 
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identified iron depletion (serum ferritin <35µg/L) in 57% of the 97 female elite junior 

athletes studied. Additionally, female athletes lose significant amounts of iron during 

menstrual periods, when iron status has been intimately correlated with intensity and 

duration of the menses (Malczewska et al., 2000). 

 

ID is known to severely affect skeletal muscle, impairing its capacity for oxidative 

metabolism (Dallman, 1986). Due to the large mass of muscle in the body, several authors 

(Davies et al., 1984; Davies, Maguire, Brooks, Dallman, & Packer, 1982; McLane et al., 

1981) have discussed the impact of this decrease in oxidative metabolic capacity on 

energy metabolism.  Most of the mitochondrial enzymes involved in the oxidative 

production of ATP contain iron. As haem, iron is present in cytochromes a, b and c, and, 

as part of Fe-S complexes, iron can be found in NADH dehydrogenase (Complex I) and 

succinate dehydrogenase (Complex II) (Crichton, 2001; Dallman, 1986). ID affects the 

iron-containing enzymes in mitochondria according to their location in the ETC (Dallman, 

1986). As part of the first reaction in the ETC, Fe-S-containing dehydrogenases are the 

most severely depleted, followed by cytochrome b and c - Complex III - located in the 

middle of the ETC (Dallman, 1986; McKay, Higuchi, Winder, Fell, & Brown, 1983). The 

least affected are cytochromes a and a3, essential components of Complex IV, which 

comprise the last reaction of the ETC (Dallman, 1986). Muscle mitochondria content is 

directly correlated with exercise capacity, notably in endurance exercise (Holloszy & 

Coyle, 1984). The increase in muscle mitochondrial content and respiratory capacity of 

the muscle fibres are adaptations induced by endurance exercise (Holloszy, 1967). There 

is a two-fold increase in succinate and NADH dehydrogenase, NADH-cytochrome c 

reductases and cytochrome oxidase per gram muscle in rats following a two hours/day 

running program (Holloszy, 1967), and the total protein content of the mitochondrial 

fraction increased approximately 60% compared to sedentary rats (Holloszy, 1967), 

findings later confirmed in human studies (Hoppeler, Lüthi, Claassen, Weibel, & Howald, 

1973; Morgan, Cobb, Short, Ross, & Gunn, 1971). However, Perkkio et al. (1985) 

demonstrated that even though training improved the oxidative capacity in iron deficient 

rats, it only matched the oxidative capacity of the sedentary rat fed an iron-sufficient diet, 

failing to match the oxidative capacity of trained rats with normal iron status. Davies et 

al. (1984) proposed that in ID, the observed defects in V̇O2max were a result of diminished 

O2 delivery, whereas decreased endurance capacity was reflective of an impaired muscle 

mitochondrial function.   
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Other studies investigating physical performance have shown that ID impairs favourable 

adaptation to aerobic exercise (Brownlie, Utermohlen, Hinton, & Haas, 2004; Hinton & 

Sinclair, 2007) and that changes in serum ferritin are positively correlated with changes 

in ventilatory threshold (Hinton & Sinclair, 2007). DellaValle and Haas (2011) identified 

a significant relationship between the iron status of non-anaemic female rowers and 2 km 

time trial results showing that rowers with serum ferritin <20µg/L were 21 seconds slower 

than rowers with normal iron status. These  authors also found that even using a higher 

serum ferritin cut-off (<25µg/L), iron deficient rowers were still significantly slower (-

17.4 seconds p=0.01) than controls (Dellavalle & Haas, 2011). Reductions in aerobic 

capacity (V̇O2max reduced by 30%) and energy efficiency (measured by slope of the 

regression of V̇O2 on work output at different work levels on a cycle ergometer - 5% 

reduction) (Li et al., 1994) have been shown to be proportionate to decline in iron stores 

(serum ferritin < 30μg/L) and usually corrected with iron supplementation (Haas & 

Brownlie, 2001; Zhu & Haas, 1998). Dallman (1982, 1986) has established the concept 

that anaemia limits O2 distribution to the exercising muscle, whereas tissue ID limits the 

capacity of the individual to perform oxidative metabolic processes.  

 

As discussed above, iron has been widely associated with athletic performance. It is 

known that decreased iron status results in decreased levels of haemoglobin and 

myoglobin production, impairing O2 carrying capacity and consequently decreasing O2 

distribution to muscles (Beard & Tobin, 2000). Additionally, such alterations in O2 

distribution result in changes to lactate metabolism, leading to increased lactate 

production and decreased blood lactate clearance (Gregg, Mazzeo, Budinger, & Brooks, 

1985). Increased lactate levels have been associated with fatigue and an eventual decrease 

in the ability to sustain a workload (Diafas, Chrysikopoulos, Diamanti, & Kaloupsis, 

2009).  

 

Karl et al.(2010), in a randomized, double-blind, placebo-controlled study with 142 

female soldiers, found that iron supplements attenuated decrements in iron status in iron-

deficient anaemic subjects, but not in iron deficient or normal subjects. Such a finding is 

consistent with the rationale that iron is not lost post-exercise, but rather it may be trapped 

inside the reticuloendothelial system, via the actions of hepcidin on ferroportin. This 

mechanism also reduces intestinal iron absorption and there is an inverse relationship 

between circulating hepcidin concentrations and iron absorption in humans (Roe et al., 

2009; Young et al., 2009; Zimmermann et al., 2009).  
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ID, accompanied by hypochromic erythrocytes and haemoglobin was more prevalent in 

mixed sports such as rowing, when compared to solely aerobic or anaerobic disciplines 

(Milic, Martinovic, Dopsaj, & Dopsaj, 2011). This group highlighted the increased risk 

of depletion of iron stores for female athletes in mixed sports. Alaunyte, Stojceska, and 

Plunkett (2015) suggested that such findings could be attributed to the increase in iron 

requirement by muscle tissue as an adaptation to the increase in oxygen demands for 

aerobic metabolism in mixed sports. As it may be expected from its acute phase proteic 

nature, serum ferritin levels are increased post-exercise. Therefore, Milic et al. (2011)  

suggested that in intense training periods iron parameters such as serum iron and sTfR 

should be closely monitored. Further, authors agree that acute effects of exercise, seasonal 

adaptations, and specific training regimes (i.e. strength or endurance training) may induce 

changes in haematological parameters (Banfi & Del Fabbro, 2006; Di Santolo et al., 2008; 

Dopsaj, Sumarac, Novakovic, & Dopsaj, 2008; Milic et al., 2011; Schumacher, Schmid, 

Grathwohl, Bultermann, & Berg, 2002).  

 

Endurance exercise has been shown to increase transferrin concentrations in plasma by 

12% post-exercise, and these remain elevated above pre-exercise levels for seven days 

(Liesen, Dufaux, & Hollmann, 1977). In a case study of a kayak ultra-marathonist, 

Rodrigues dos Santos et al. (2007) showed biological and body composition 

modifications at four time points (12 hours, 3 days, 6 days,  and 10 days) after HI exercise 

(1000km in 17 days, varying from 55 to 85 km per day). The subject’s plasma iron 

concentration before the race was 27.4µmol/L. Levels post-exercise were 17.9µmol/L, 

18.6µmol/L, 17.7µmol/L and 22.9µmol/L at 12 hours, 3 days, 6 days, and 10 days, 

respectively.  This shows that the plasma iron concentration was reduced by 35% relative 

to baseline 12 hours’ post-exercise and remained below baseline values, even after 10 

days. The slow rate at which iron levels return to baseline post-exercise raises the question 

of whether this reduced amount of available iron may influence biological processes such 

as the ETC and erythropoiesis, processes that are known to require iron.  Additionally, 

ID may affect performance by decreasing athletes’ immunological competence. 
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2.4) Athletic Monitoring 
 

2.4.1) The Female Elite Athlete 
 

With increasing number of women participating in sport, physiology exclusive to women 

must be acknowledged. The uniqueness of the female sex hormones in regulating 

temperature, substrate utilisation, muscle fatigue and endocrine responses to exercise 

govern, at least in part, the physiological adaptations in female athletes. 

 

It would be an oversight to undertake a study involving female subjects without alluding 

to female-specific physiology. While the author appreciates that menstrual cycle and the 

use of oral contraceptive (OC) are occurring events when working with female athletes, 

detailed analysis the effects of the menstrual cycle and OC use on exercise performance 

are beyond the scope of this thesis. The sections below are by no means all-encompassing. 

For further details on the topic please refer to the in-depth reviews by de Jonge (2003) 

and Allaway et al. (2016). 

 

2.4.1.1) Menstrual Cycle 

 

With focus on female sex hormones, estrogen and progesterone, the menstrual cycle is 

divided into 3 phases (1) early follicular phase (low estrogen and progesterone); (2) late-

follicular phase (high estrogen and low progesterone); and (3) mid-luteal phase (high 

estrogen and progesterone) (de Jonge 2003). Contrary to popular belief, most research 

fails to consistently support the notion that the menstrual cycle phase affects intense 

(anaerobic/aerobic) performance indicators particularly post-exercise blood lactate 

concentration, plasma volume, haemoglobin concentration, heart rate, ventilation, and 

other determinants of V̇O2max.  Some have suggested that during the mid-luteal phase 

there is increased lipid metabolism (Hackney 1999, Dombovy 1987), while others have 

found no significant differences in substrate utilisation during this phase (Niklas et al. 

1989, de Souza et al. 1990). For prolonged events, the increased body temperature 

brought about during the mid-luteal phase may potentially increase cardiovascular strain, 

decreasing time to exhaustion (de Jonge 2003). Another focus of research has been 

strength and fatigability where, again, there has been no indication of correlation between 

the menstrual cycle phase and muscle contractile characteristics (de Jonge et al. 2001).  
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Nonetheless, OC pills are often prescribed to athletes for cycle regulation 

(decrease/control athletic amenorrhea), prevent bone density loss (in conditions of 

estrogen deficiency) and to decrease pre-menstrual symptoms such as water retention, 

fatigue and irritability (Bennell, White, & Crossley, 1999; Carlson, Curtis, & Halpern-

Felsher, 2007). Combined oral contraceptives (COCs) have an estrogen and a 

progestogen component. Recent formulations available contain a lower dosage of 

synthetic estrogen, ethinyl-estradiol (EE), hormone thought to spare glycogen utilization 

whilst increasing lipid utilisation during exercise (Ruby et al., 1997).  . Recent attention 

has been paid to oral contraceptive usage amongst athletes and its implication, if any, in 

performance and adaptation. The few studies employing female athletes (rather than 

sedentary or moderately active women) did not show any significant change in 

performance (Rickenlund et al., 2004; Vaiksaar et al., 2011). Rickenlund et al. (2004) 

analysed 26 endurance athletes (13 with oligo/amenorrhea and 13 menstruating regularly) 

and 12 controls for 10 months of treatment with low-dose, monophasic COC (30g EE and 

150g levonorgestrel) and found significant increase in body mass (~2.4kg) only in the 

group with irregular or absence of menses. 

 

In addition to their effects on metabolic responses, oestrogen and progesterone influence 

the immune system. The local alterations in the ovaries and endometrium during the 

ovulation and menstruation, respectively, mimics key events in inflammation including 

tissue oedema, recruitment of immune cells and increase in local production of cytokines 

and chemokines in endometrial inflammatory mediators such as IL-8 and NF-κB 

(Critchley, Kelly, Brenner, & Baird, 2001; Hutchinson, Rajagopal, Sales, & Jabbour, 

2011; Maybin & Critchley, 2015; Rae & Hillier, 2005). Further, recruitment of NK cells, 

macrophages, eosinophils, lymphocytes and mast cells during the secretory phase of the 

menstrual have been attributed to the decline in levels of estrogen and progesterone. 

Estrogen and progesterone have been shown to affect innate monocytic, NK cells, and 

granulocytic function (Bouman, Heineman, & Faas, 2005). Miyagi et al. (1992) showed 

that progesterone increases chemotactic activity of neutrophils while estrogen decreases 

it. Studies on in vitro ROS production by neutrophils incubated with estrogen or 

progesterone has produced conflicting results (Békési et al., 2000; Cassidy, 2003; Molloy 

et al., 2003). Further, nitric oxide (NO) production via NO-synthase in vivo has been 

shown to increase with higher levels of estrogen (García-Durán et al., 1999). For a more 
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in-depth review of the influence of sex hormones in immune function the reader is 

directed to Bouman et al. (2005) and Muñoz-Cruz (2011). 

 

The expression of cytokines (i.e. IL-4, IL-6) and leucocyte concentration in peripheral 

blood of regular menstruating women has been shown to vary according to menstrual 

phase (Angstwurm, Gärtner, & Ziegler-Heitbrock, 1997; Faas et al., 2000). Female sex 

hormones oestradiol and progesterone have been shown to influence levels of IL-6 in 

vitro and in vivo (Angstwurm et al., 1997; Konecna et al., 2000). Exercise-focused 

research on the influence of OC pills in IL-6 levels have shown that the use of OC pills 

does not influence the exercise-induced rise in IL-6 (Sim et al., 2015). Further, Sim et al. 

(2015) showed that post-exercise levels of hepcidin were not affected by OC pills. This 

same group suggested, after testing subjects in both hormone–depleted and –replenished 

stages, that the different oral contraceptive cycle phases should not be considered as 

determinant variables in future studies investigating IL-6 and hepcidin involving 

monophasic OC pills users.  

 

Comparable to the changes induced the menstrual cycle described above, variations in 

training protocols induce/ impose distinct effects on not only performance parameters, 

but also immune and iron homeostasis. Every adaptation detailed above can take place 

only due to communication between environment and cell (i.e. ligands and receptors). 

The modulation of training, either by increasing load or volume, is perceived as a stressor. 

As such, increases in blood flow cause mechanical disturbance to the environment (i.e. 

blood) and the previously described APR causes a chemical alteration (i.e. increases in 

APP) to the environment that leucocytes and plasma proteins are in. This inflammatory 

response as well as iron metabolism markers described previously are assessed though 

blood sampling. Therefore, the interaction between the blood components mentioned and 

their interaction with the vascular environment must be acknowledged.  

 

 

2.4.2) Blood Sampling 

 

Venous blood sampling, typically from the antecubital vein, has been widely used in the 

collection of blood samples and it is considered the “gold standard” in terms of assessing 

blood-related parameters. However, it can be an impractical means of sample collection 
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in resource-poor (MacLennan et al., 2007), field and/or exercise settings (Simmonds, 

Baskurt, Meiselman, & Marshall-Gradisnik, 2011). Venous blood sampling is not viable 

in the aforementioned environments since it requires a trained phlebotomist, generates 

biological waste, can cause discomfort, and may disrupt training (MacLennan et al., 2007; 

Sitoe et al., 2011).   

 

Micro-sampling, or the use of a decreased volume of capillary blood, has been used as a 

point-of-care alternative to the collection of venous samples. New mobile analysis 

equipment has been the focus of a number of studies attempting to demonstrate how 

results between blood drawn from a finger prick can be interchangeable with results 

obtained from a venous sample (MacLennan et al., 2007; Sitoe et al., 2011). The former 

is considered to be minimally invasive, allowing the subject to resume activities with no 

restrictions. In contrast, a venous blood draw, usually from the antecubital vein, has a no 

weight bearing criterion in the sampled limb so as to avoid the development of a 

haematoma and/or soreness.  

 

Studies comparing capillary and venous blood parameters have shown contrasting results. 

Daae et al. (1988) found that haematocrit, as well as haemoglobin and leucocyte 

concentrations were significantly higher in capillary samples. In contrast, mean 

corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean 

corpuscular haemoglobin concentration (MCHC) were not significantly different between 

venous and capillary samples. Ponampalam et al. (2012) compared samples in emergency 

department patients and found statistically significant variations in platelet and 

haemoglobin concentrations, but acknowledged that such difference had no clinical 

significance. 

 

The few available studies regarding leucocyte concentration obtained from different 

sampling sites have provided conflicting results. Ponampalam et al. (2012) found no 

significant difference in leucocyte concentrations, while Yang et al. (2001) found that 

total leucocyte concentrations were 9.2% higher in blood samples taken from the fingertip. 

In particular, concentrations of the large leucocyte populations (mostly granulocytes) 

showed elevations of 12.6% in capillary samples relative to venous samples. Without 

specifying populations, Schalk et al. (2007) demonstrated increased leucocyte 

concentrations in capillary compared to venous samples. When analysing leucocyte 

populations, Hollis et al. (2012) observed significantly lower lymphocyte concentrations 
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in capillary samples, while Yang et al. (2001) found no significant difference, further 

conflicting with an increase of 4.5% for this population found by Daae et al. (1988). 

 

Specific lymphocyte population data are even scarcer. MacLennan et al. (2007) showed 

that finger-prick blood samples can be used interchangeably with those obtained via 

antecubital venepuncture for CD4+ lymphocyte counting as a rapid-test alternative for 

HIV studies. Also in regards to HIV positive patients, Sitoe et al. (2011), using two gold 

standard flow cytometers, investigated both CD4+ lymphocyte concentration as well as 

the percentage of total lymphocytes that presented as CD4+ in venous and capillary 

samples and found close agreement for both (absolute bias=+12.3 cells/mm3, limits of 

agreement: −259.2 to +283.9, R2=0.95, p=0.75 and overall bias=+0.6% limits of 

agreement: −3.1 to +4.3, R2=0.97, p=0.39, respectively). This demonstrates that the 

different sample site will not introduce a greater bias than what is already considered 

acceptable. 

 

Studies comparing leucocyte phagocytic function in different blood vessels are even 

scarcer. Indeed, the work of Bakhmetyev and Agafonova (2002) is the only study to 

analyse such variables. When comparing phagocytic activity in arteries, capillaries and 

veins between healthy men and men with atherosclerosis, they found that neutrophil 

phagocytic activity in capillary samples was lower compared to arterial and venous blood. 

They also found that the absolute number of neutrophils in capillary samples was lower 

than in venous and arterial samples, which contrasts with the findings of Daae et al. (1988) 

and Yang et al. (2001) as noted above. They also demonstrated elevated monocyte 

phagocytic activity in capillary samples (Bakhmetyev & Agafonova, 2002).  

 

Despite the diverging results from the few studies available, the variations between 

capillary and venous blood samples tend to be relatively small and, in most cases, 

capillary sampling has been suggested to be an acceptable alternative to venous sampling 

in most cases. However, advances in scientific technology and knowledge of vascular 

physiology and receptor mediated signalling pathways raise the question if the use of 

alternate sampling sites is indeed acceptable practice. 
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2.4.2.1) Vascular Physics and Haemodynamics 
 
The circulatory system connects every system in the body through blood flow. The 

circulating blood provides every system with the necessary nutrients, O2 and defence 

while removing metabolic by-products or waste. Blood is made of plasma and formed 

elements. Made up of 90% water, plasma carries fundamental solutes such as electrolytes, 

proteins, nutrients, respiratory gases, and hormones. The formed elements of blood are 

platelets, erythrocytes, and leucocytes.  

 

The circulatory system is composed of unique blood vessels whose structures are 

intimately related to their function. Larger vessels such as arteries and veins contain three 

layers surrounding the vessel lumen: tunica intima, tunica media and tunica externa. 

Distribution of oxygenated blood through the body is made possible through the arterial 

system (note that in the pulmonary circulation oxygenation the status of arteries and veins 

is reversed). Arteries’ most distinct layer, the tunica media, is composed of smooth 

muscle cells and sheets of elastin, allowing control of vascular diameter, and 

consequently the ability to withstand pressure exerted from the blood leaving the heart. 

The systemic venular system, responsible for returning deoxygenized blood from the 

body to the heart, has its most pronounced layer being the tunica externa, mostly 

composed of longitudinal bundles of collagen fibres and elastic networks. As exchange 

vessels (O2, nutrients, immune cells, and waste collection), capillaries are only equipped 

with the most inner layer, the tunica intima. Even though arteries, veins and capillaries 

share this common layer composed of endothelium cells (EC), their arrangement and 

molecular structure vary according to haemodynamic forces suffered according their 

vascular location.   

 

As a viscous flowing mean, blood has, at any given moment, haemodynamic forces acting 

on it. These forces are dependent on blood flow (F), pressure (BP), and resistance (R). 

Blood flow is subject to variation based on vascular mechanical stress caused either by 

the cyclic pressure of blood hitting vascular walls and/or changes in vessel lumen 

(vasoconstriction/vasodilation) (Lehoux, Castier, & Tedgui, 2006). This relationship is 

elucidated by the formula:  

𝐹𝐹 =
∆𝐵𝐵𝐵𝐵
𝑅𝑅

 



  

57 
 

where blood flow is directly proportional to differences in blood pressure and inversely 

proportional to resistance.  

 

Interaction between these three physiological terms generates various types of 

haemodynamic forces such as hydrostatic pressures, cyclic strains, and wall shear stress 

(Gimbrone, Topper, Nagel, Anderson, & Garcia-Cardena, 2000). Due to its direct contact 

with blood, EC alignment, phenotype, gene expression and function are susceptible and 

adaptive to the shear stress (Aird, 2007; Remuzzi, Dewey, Davies, & Gimbrone, 1984; 

Resnick & Gimbrone, 1995). This frictional force has shown to, though a series of 

mechanotransduction-activated pathways (reviewed in Lehoux et al., 2006), increase 

macromolecular permeability, endothelial cell damage and repair, leucocyte recruitment 

and expression of adhesion molecules, amongst others (Gimbrone, Nagel, & Topper, 

1997; Joris, Zand, & Majno, 1982; Walpola, Gotlieb, Cybulsky, & Langille, 1995).  

 
EC lining the blood vessels were once thought to be static barriers. However, it is now 

known that though molecular signalling these cells allows passage of not only of water 

but essential proteins such as albumin. Further, molecular mediated events allow 

migration of leucocytes through endothelial cells. Inflammatory mediators disrupt the 

interendothelial junction barrier by binding to their specific receptors leading to a 

reorganization of the interendothelium thus allowing migration of cells from the blood to 

the tissue. In true capillaries, this is facilitated due to variations observed in (1) the 

thickness of the epithelium, being the venular part of the capillary the thinnest section of 

the circulatory system (0.17μm) as well as in (2) its composition, (e.g.  number of vesicles 

in capillaries (~ 1000/μm3) is 1.5 and 5.2 times greater than in post capillaries and 

arterioles, respectively) (Simionescu, 2008). Further, in resting physiological conditions 

lower shear stress in capillaries and post capillary venules (< 0.5 dynes/cm2) compared to 

arteries (10-30 dynes/cm2) (Lipowsky, 1985) allow greater leucocyte-endothelium 

interaction (Sheikh, Rainger, Gale, Rahman, & Nash, 2003). This was elucidated by the 

low shear stress activation of CXC chemokines with a glutamate-leucine-arginine (ELR) 

tripeptide motif (ELR+CXC chemokine) expression such as IL-8 observed in micro 

circulation compared to aortic endothelium (Shaik et al., 2009). 

 

 

 

 



  

58 
 

Figure 2-7 – Vascular physics 

a. b. 

 

 
Figure depicts (a) blood flow and interaction of erythrocytes and leucocytes in large diameter vessels e.g. 
veins and (b) Fahraeus-Lindqvist effect where, in vessels with reduced diameters e.g. capillaries, leucocytes 
are marginalised towards the vessel endothelium. 'Zoomed-in' section indicates interaction between 
adhesion molecules on the neutrophilic surface and on the vascular endothelium. 
 

 

Leucocyte extravasation from blood to tissue is an important process mediating 

pathogenic clearance. In such, neutrophils’ come in contact with the epithelium (rolling) 

before they eventually adhere and transmigrate. Haemodynamic forces are important 

determinants of these processes. In decreased diameters, as in capillaries and post 

capillary venules, preferable sites of neutrophil extravasation, blood flow tends to already 

facilitate neutrophilic contact with vessel wall as erythrocytes tend to flow towards the 

centre of the vessel (Fahraeus-Lindqvist phenomenon) (Figure 2-7).  Neutrophilic rolling 

and adhesion has two distinct pathways, a selectin and a CD18-dependent, shown to be 

dependent on shear rate (Gaboury & Kubes, 1994). L-selectins (expressed by leucocytes) 

and P-selectins (expressed by platelets and EC) recognize fucosylated carbohydrate 

ligands expressed on the EC surface. In physiological shear stress, selectins decrease 

neutrophilic velocity and mediate neutrophilic rolling, as inhibition of such molecules 

reduced rolling by 90% in vivo (Gaboury & Kubes, 1994). A decrease in neutrophilic 

velocity in the vessel, exemplified by reductions in blood flow (occlusion) leads to 

projection on pseudopods – process of cytoplasmic rearrangement – increasing contact 

with EC prior to migration toward tissue.  

If researchers have reached the conclusion that not all endothelium cells are alike and that 

their molecular heterogeneity is dependent on their location (Aird, 2007), why is it still 
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assumed that migrating/circulating cells in contact with these different surfaces will 

behave the same throughout the entirety of the circulatory system?  

 

Micro sampling methods have been introduced in the sporting field as an important tool 

for evaluating the immediate responses to exercise. To date, these methods have mostly 

been used for the measurement of blood lactate, glucose, growth hormone and 

haematocrit (Godfrey, Whyte, McCarthy, Nevill, & Head, 2004). Recently, Simmonds et 

al. (2011) compared erythrocyte deformability and aggregation in venous and capillary 

blood using both a finger and earlobe sample, expanding the potential application of this 

method. During this review of the literature it was not possible to identify a leucocyte 

micro sampling study including specific lymphocyte population count, presenting values 

for B cells, T cells and NK cells, or one demonstrating immune function of leucocytes in 

the sporting field. Therefore, given the conflicting data presented in literature, the need 

for further validation studies is warranted. 

Taken together, the findings highlighted throughout this literature review demonstrate 

that training evokes short and long-term modulation of both immune response and iron 

metabolism. Most importantly, the different types of training (i.e. high intensity, hypoxic, 

high volume) have been shown to determine, in part, the magnitude of the response of 

immune components, which, in turn, may affect iron status. In almost a cyclic manner, 

the importance of maintaining adequate iron status is vital for performance and immune 

competency, particularly in times of high metabolic demands such as increased training 

intensities or exposure to hypoxia. Immune function and iron status in elite female kayak 

athletes during different training periods have been largely unexplored. This population 

presents as a high-risk group for iron deficiency as eumenorrheic females athletes and as 

participants in mixed energy sport. Compromises in both iron status and immune 

competency is likely to deter athletes for normal training. Training days lost to illness 

may, in turn, jeopardise performance. Knowledge of the training-induced modulations of 

iron status and immune function will provide coaches and sports physiologist with a better 

understanding of how training regimes affect iron status and immune function and, 

potentially, performance.  
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The purpose of this study was to evaluate the modulation of immune and iron status 

brought about by the adoption of different training periods throughout an Olympic 

selection year. To overcome issues with current methodologies, a more athlete-friendly 

method of sample collection was implemented. This method, described and reviewed in 

section 3.1 below, allowed increased monitoring of the parameters analysed, as it required 

minimal disruption to training and minimal discomfort to the athletes. A full 

haematological screening was performed on collected samples using a standard five-part 

differential haematological Coulter Counter analyser (Beckman Coulter, NSW, Australia). 

Biochemical analysis was performed using the Cobas INTEGRA® 400 plus multi-analyte 

analyser (Roche Diagnostics, Switzerland). Enzyme-linked immunosorbent assays 

(ELISA) were performed on the serum collected to quantify concentration of immune and 

iron-related variables. Samples were also analysed by flow cytometry to identify 

alterations in immune populations (phenotyping) and function in accordance with the 

different training periods under investigation.  

 

 

3.1) Sample Collection Method 
 

Blood collection was performed using a micro-method. A lancet was used to obtain a 

micro puncture in the athlete’s earlobe. The first drop was wiped away to ensure 

collection of circulating, not stagnant, blood, free of excess tissue fluids. As a second 

droplet formed, the tip of the capillary tube touched the droplet allowing blood to flow 

into the tube through capillary action. Samples dedicated to flow cytometric analysis were 

collected using lithium heparin as an anti-coagulant in gel separator capillary tubes of 300 

µL capacity, while samples used for full blood count were collected in 

ethylenediaminetetraacetic acid (EDTA)-containing 200 µL capillary tubes. Collection 

tubes were plastic and, therefore, safe to work with in field situations. Tubes were labelled 

and kept on ice at 4oC until they were transported to the laboratory at Bond University. 

Haematological and immunological analysis were performed within two hours of sample 

collection. Samples for biochemical analysis were centrifuged at 3000 g for 10 minutes, 

following which plasma was collected and stored at -80oC for subsequent analysis.  

 

A resting venous blood sample was collected prior to and at the end of each training camp 

utilising a 21-gauge butterfly needle (BD Vacutainer Safety-Lok™, BD Biosciences, 
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Australia). Samples (4 mL) were collected in EDTA-containing Vacutainer® tubes (BD 

Biosciences, Australia) for a five-part differential haematological Coulter Counter 

analyser (Beckman Coulter, NSW, Australia). Samples (5 mL) designated for 

biochemical analysis (Cobas INTEGRA® 400 plus, Roche Diagnostics, Switzerland) 

were collected in SST Vacutainer® tube (BD Biosciences, Australia). After being 

allowed to clot at room temperature for 30 minutes, samples for were centrifuged at 3000 

g for 10 minutes, following which 100 µL aliquots of serum were stored at -80oC for 

subsequent analysis.  

 

 

3.2) Flow Cytometry  
 

As explicated in the literature review, CDs are commonly used to identify populations 

with the same phenotypical characteristics as well as determining functional status of a 

cell. The granulocytic functions explored in the literature review have been associated 

with expression of receptors on the granulocyte's surface. Once activated, membrane-

bound receptors may be up- or down-regulated and as some receptors are located on the 

surface of granules, the movement of these granules project the receptors to the cell 

membrane. The receptors may then be quantified with surface staining and flow 

cytometry. 

 

Flow cytometry is a highly complex technique that allows simultaneous measurement of 

various physical characteristics of particles (cells) from heterogeneous populations, as 

they are interrogated by laser beams through a fluid stream. By combining fluidic, optic 

and electronic systems, flow cytometry provides information on each particle’s size, 

internal complexity and relative fluorescence intensity.  

 

The fluidics system is responsible for aligning the cells in a single file to be assessed by 

the optical system. It does so by exploring physical principles of flow systems and coaxial 

laminar flow dynamic properties as described by Reynolds (1883). Briefly, the sample is 

injected through a central channel enclosed by an outer sheath containing fluid flowing 

in higher velocity, creating a drag effect (hydrodynamic focusing) on the central channel. 

This parabolic profile of flow velocities - created as the central tube is narrowed - 

positions each individual particle in optimal velocity in the flow cell at the observation 

region (Picot, Guerin, Le Van Kim, & Boulanger, 2012; Shapiro, 2003). 
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The optical system of a flow cytometer consists of the illumination (laser), the light 

collection and detection systems (Ormerod & Imrie, 1990). As the flow of the cell through 

the pathway of the laser beam interrupts its course, light is deflected, scattered, emitted 

or absorbed. The size of the cell is determined by the extent of the forward scatter (FSC) 

while the side scatter (SSC) is proportional to the cell’s nuclear structure, cytosolic 

complexity and granularity. The detection of these properties is independent of 

fluorescence as the measurement is made mostly from diffracted light detected in the axis 

of the laser beam (by a photodiode) or from light reflected and refracted at 90° to the laser 

beam (by photomultiplier tubes – PMT), respectively (Ormerod & Imrie, 1990; Picot et 

al., 2012; Shapiro, 2003). Combined, the measurements obtained from FSC and SSC 

provide enough information to differentiate different cell types in a heterogeneous cell 

population.  

 

Detection of further characteristics in a particle is enabled by coupling of light-excitable 

molecules (i.e. fluorophores) to a desired specific target, often through receptor-ligand 

properties. Following the laser interrogation, fluorophores are excited to a higher, yet very 

unstable, energy state. As the excited molecule cannot withstand such excitation, it loses 

the recently acquired energy through emission of light at a longer wavelength than the 

one it was excited by. These wavelengths are detected by fluorescence-exclusive 

detecting PMTs, which guarantee specificity through filters that allow passage of certain 

wavelengths while blocking others (Shapiro, 2003). To enhance the possible number of 

characteristics that may be analysed simultaneously, scientists have developed single and 

tandem fluorochrome dyes often coupled with antibodies (Recktenwald, 1993). Tandem 

dye antibodies consist of two conjugated dyes that are covalently linked and whose 

absorption spectra are in close proximity (30-50 nm). When one of the dyes is excited, its 

emission is transferred to the nearby dye which then emits its fluorescent signal at a higher 

wavelength. Multicolour immunofluorescent staining is essential in identifying mixed 

cell populations or characterizing multiple parameters in single cells by flow cytometry 

or immunofluorescence microscopy (McCarthy, 2007).  Tandem dyes expand the 

possibilities for fluorescence colour selection of antibodies for use in multicolour flow 

cytometry.  These tandem dyes can provide a much higher wavelength fluorescence 

emission relative to the excitation wavelength and thus allow for multiple distinct 

emission ranges from a single laser (Ormerod, 2008).  
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The collected emissions are then processed by the electronic system by converting the 

voltage created into digital values. Through a series of voltage amplifiers and analogue 

to digital converters flow cytometers determine the detector (channel) numbers and plots 

the values into a linear or logarithmic scale (Picot et al., 2012). Events of interest may be 

gated allowing further analysis to be made on this specific subpopulation (Rahman, 2006). 

This enables simultaneous analysis of multiple parameters and subsets contained in a 

heterogeneous solution (e.g. blood) and helps to better define poorly resolved 

subpopulations (Recktenwald, 1993). 

 

Based on its ability to analyse rapidly multiple parameters in each individual cell as well 

as to identify and sort different cell populations, flow cytometry is routinely used in 

immunological studies. Developed in the late 1960s (Bonner, Hulett, Sweet, & 

Herzenberg, 1972; Herzenberg et al., 2002; Hulett, Bonner, Barrett, & Herzenberg, 1969), 

early cytometers measured three parameters: one fluorescent signal and two scatter light 

signals – FSC and SSC. With technological advances, modern flow cytometers are now 

able to measure more than 17 fluorescent signals (Perfetto, Chattopadhyay, & Roederer, 

2004). Using a FACSVerse™ Flow Cytometer (BD Biosciences, Australia), this study 

employed a multi-coloured panel to identify the different leucocyte populations, perform 

a phenotypic and functional analysis of neutrophils, and quantify transferrin receptor 

expression on leucocytes. The FACSVerse™ Flow Cytometer used contains two spatially 

separated lasers: (1) a blue Argon-ion laser that emits light at a wavelength of 488nm; 

and (2) a red diode laser that emits light at a wavelength of 635 nm. The instrument 

contains four fluorescence channels which are capable of detecting green (FL-1, 515-545 

nm), yellow (FL-2, 564-606 nm), orange (FL-3, 653-669 nm) and red (FL-4, > 670 nm) 

light emissions (BD Biosciences, 2012). Analysis of flow cytometric data files was 

performed with FACSSuite software (BD Biosciences, Australia). For this study, based 

on the capabilities of the flow cytometer, the fluorochromes used were as follows: 

Table 3-1 – Fluorochromes – maximum excitation and emission wavelengths 

Fluorochrome Excitation Max 
(nm) 

Emission Max 
(nm) 

Fluorescein isothiocyanate (FITC) 494 520 
R-phycoerythrin (PE) 496 578 
Allophycocyanin (APC) 650 660 
*PerCP-Cy™5.5 482 695 
*APC-Cy™7 650 785 
*APC-H7 650 785 
*PE-Cy™7 496 785 

                  * Tandem fluorochromes 



  

67 
 

3.2.1) Parameters Analysed 

 

3.2.1.1) Immune cell concentration 

 

Immune cell populations were identified using CD antigens with  monoclonal antibodies 

(mAbs) that recognize specific CDs (Kipps, 2010). Each CD was carefully selected to 

identify a particular cell population (Table 3-2). 

Table 3-2 – Leucocyte populations – surface markers  
Population Marker Distribution  
Monocytes CD14+ Strongly expressed on monocytes 

Lymphocytes 

CD3+CD4+ Helper T cell phenotype 
CD3+CD8+ Cytotoxic T cell phenotype 
CD3-CD19+ B lymphocyte phenotype 
CD3-CD16+CD56+ Natural killer lymphocyte phenotype 

 
 
 
 
 
 
Granulocytes 
 
 
 
 
 

 
 
CD11b 

 

 

Expressed in neutrophils in the metamyelocyte phase 
(Terstappen, Safford, & Loken, 1990) Complexes with 
CD18 to form receptor for C3bi, facilitating homotypic or 
heterotypic adhesion, cell activation, phagocytosis and 
chemotaxis. Has been used in several studies as marker of 
granulocyte function (Gray et al., 1993) and has been 
shown to increase expression up to 75% 12hours after 
infection (Dosogne et al., 1997).    

CD18 Complexes with several α chains (CD11a-d) and is 
essential for correct leucocytes adhesion and signalling. 

CD16 

FcγRIII found in polymorphonuclear leucocytes; Has been 
described to be expressed on band (dim) and segmented 
(bright) neutrophils only (Fujimoto et al., 2000; 
Terstappen et al., 1990) and described as membrane 
markers correlating with specific granule and gelatinase 
(Bainton, 1999).  

CD66b 

Expressed exclusively by granulocytes. 
Glycosylphosphatidylinositol (GPI) isoform that 
facilitates heterotypic adhesion. Marker of neutrophilic 
degranulation 

 

Blood was aliquoted (20 µL) into two tubes. CD3 (FITC), CD4 (PE-Cy7), CD8 (PerCP-

Cy5.5), CD19 (APC-H7), CD56 (PE) and CD71 (APC) were added to tube one. To the 

second tube, CD11b (APC-Cy7), CD66b (PerCP-Cy5.5), CD16 (PE), CD18 (FITC) and 

CD71 (APC) were added. Isotype controls for each antibody were used prior to assay set-

up to determine negative and positive populations as per manufacturer’s 

recommendations.  All antibodies were purchased from Becton, Dickinson and Company 

(BD) Biosciences (California, USA). Tubes were incubated for 30 minutes at room 

temperature in the dark, as fluorochromes are light sensitive. Erythrocytes were lysed 

with NH4Cl lysing solution (500 µL). Tubes were incubated for a further 10 minutes at 
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room temperature in the dark. They were then centrifuged at 300 x g for 5 minutes. Cells 

were resuspended in phosphate buffered saline (PBS) and fixed with 1% formalin. 

Samples were analysed through the flow cytometer within two hours of fixation. 

 

 3.2.1.2) Immune function 

   

3.2.1.2.1) Phagocytosis 

 
Based on the principle of ingestion of pathogens by phagocytic cells, this assay utilised 

fluorescently labelled bacteria (FITC labelled E. coli) to quantify the percentage of 

phagocytes that have ingested bacteria and their activity (number of ingested bacteria per 

cell).   

  

The phagocytic function of neutrophils was analysed in whole blood using a previously 

described method (Antal et al., 1995; Bohmer, Trinkle, & Staneck, 1992; Hasui, 

Hirabayashi, & Kobayashi, 1989; Santos, Montes, Gutierrez, & Ruiz, 1995; White-Owen, 

Alexander, Sramkoski, & Babcock, 1992). Blood was collected in lithium heparin tubes, 

as anticoagulants such as EDTA and acid citrate dextrose capture Ca2+ ions that are 

essential for phagocytosis (van Eeden, Klut, Walker, & Hogg, 1999). Since the 

phagocytosis process is greatly dependent on temperature, whole blood (25µL) was 

aliquoted into two 5 mL tubes labelled ‘hot’ and ‘cold’. Pre-labelled FITC E. coli bacteria 

(5µL) were added to each tube. The ‘hot’ labelled tube was incubated in a water bath at 

37°C for 10 minutes, while the ‘cold’ labelled tube was placed on ice for 10 minutes. 

After precisely 10 minutes, the ‘hot’ labelled tube was placed on ice to stop further 

phagocytosis.  Trypan blue (25 µL) was added to each sample and mixed. This solution 

quenches the FITC fluorescence of surface bound bacteria, leaving the fluorescence of 

the ingested bacteria unaltered (Oda et al., 2006). To ensure quenching capacity of trypan 

blue, visual confirmation of bacterial ingestion by neutrophils was performed in piloted 

samples of the assay through electronic fluorescence microscopy (EVOS® fl, AMG, 

Washington, USA) (Figure 3-1a). Tubes were washed with 1mL of PBS and centrifuged 

for 2 minutes at 1000 x g, after which the supernatant was removed. The washing 

procedure was subsequently repeated. Following this, erythrocytes were lysed with 

NH4Cl lyse solution (500 µL) and incubated for 10 minutes in the dark at room 

temperature. Samples were centrifuged, washed, and centrifuged again as previously 
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described. Cells were resuspended in PBS and fixed with 1% formalin. Samples were 

then analysed at 488 nm on a FACSVerse™ flow cytometer. FSC and SSC determined 

granulocytic population while histogram distinguished ingestion or not of E.coli by 

granulocytes (Figure 3-1b). 

 

Figure 3-1 – Gating granulocyte phagocytic activity 

a. b. 

  

(a) Electronic microscopy to confirm FITC-labelled E.coli ingestion (b) The tube labelled ‘cold’ was 
considered negative, while ‘hot’ tube considered positive. Values for statistical analysis were obtained by 
the gating the granulocyte population presented on the histogram shown here.  

 

 

3.2.1.2.2) Oxidative Burst 

 
This test is based on the principle of ROS (particularly H2O2) formation of activated 

granulocytes (i.e. neutrophils) by stimulating the NADPH oxidase system. 

Physiologically, ROS formation is initiated via phosphorylation NADPH sub-units 

(Groemping & Rittinger, 2005). IP3-induced Ca2+ release into the cytosol of neutrophils 

will, in combination with diacylglycerol, activate intracellular kinases that activate 

NADPH oxidase (Bass et al., 1987). Protein kinase C (PKC) has been suggested as the 

central component of stimulus-response coupling in neutrophils (Bass et al., 1987). 

Phorbol 12-myristate 13-acetate (PMA) is an analogue of diacylglycerol, binding and 

activating PKC (Groemping & Rittinger, 2005). PKC then translocates from the cytosol 

to activate NADPH oxidase and consequently stimulate ROS formation (Bass et al., 1987; 

Nelson & Cox, 2008). Formation of the reactive oxidants during the oxidative burst can 

be monitored by the addition and oxidation of dihydrorhodamine 123 (DHR 123) (Rothe, 

Emmendorffer, Oser, Roesler, & Valet, 1991). Oxidation converts DHR123 to a 

fluorescent cation, rhodamine 123, which is excited at 511nm and emits fluorescence at 
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534 nm (van Pelt et al., 1996). The fluorescent signal produced by such oxidation 

represents mainly H2O2 levels (Rothe et al., 1991).   

 
Oxidative burst capacity of granulocytes was analysed in whole blood using a previously 

described method (Avendano, Sales-Pardo, Marin, Marin, & Petriz, 2008; Richardson, 

Ayliffe, Helbert, & Davies, 1998; van Pelt et al., 1996; VanderVen, Yates, & Russell, 

2009; Vowells, Sekhsaria, Malech, Shalit, & Fleisher, 1995; Walrand et al., 2003; Wan, 

Myung, & Lau, 1993). Whole blood (25 µL) and PBS (225 µL) were aliquoted into three 

5mL tubes labelled ‘blank’, ‘unstimulated’ and ‘stimulated’. Working solution of 

DHR123 with a final concentration of 25μg/mL (2.5 μL) was added to the unstimulated 

and stimulated tubes, mixed and incubated at 37°C for 15 minutes in the dark. 

Subsequently, a working solution of PMA, with a final concentration of 100ng/mL 

(2.5μL), was added to the stimulated tube only and mixed. Both DHR123 and PMA were 

obtained from Sigma-Aldrich (Missouri, USA).All tubes were then incubated once again 

at 37°C for 15 minutes in the dark, and then centrifuged for two minutes at 1000 x g. The 

supernatant was then removed. Erythrocytes were lysed with 250 µL of NH4Cl lyse 

solution. All tubes were incubated once again at 37°C for five minutes in the dark, before 

being centrifuged for two minutes at 1000 x g. The supernatant was again discarded. 

Samples were subsequently washed with 500 µL PBS and again centrifuged for two 

minutes at 1000 x g following which the supernatant was removed. Finally, samples were 

resuspended in 125 µL 1% formalin and analysed at 488 nm wavelength on a 

FACSVerse™ flow cytometer. Figure 3-2 illustrates gating technique utilised using 

‘blank’ tube as control. 

 

Figure 3-2 – Gating granulocyte oxidative burst 

 

Histogram of stimulated tube, with overlayed blank and unstimulated tubes 
to illustrate gating methodology. 
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3.2.1.3) Iron studies 

 

3.2.1.3.1) Transferrin Receptor (TfR) CD71 

 
The transferrin receptor (TfR or CD71) is a membrane-bound receptor for the iron-

carrying protein, transferrin. CD71 binds serum iron-transport protein transferrin at a 

neutral pH and iron-free apotransferrin at acidic intracellular pH to facilitate cellular iron 

uptake (Kipps, 2010). Hence its expression in all active or proliferating cells (Kipps, 

2010). Erythrocytes have the greater expression of CD71(Marsee, Pinkus, & Yu, 2010). 

As this study was based on immunological function, expression of CD71 was measured 

in the leucocyte populations previously described. This allows for quantification of the 

requirement for iron by each population, as transferrin receptor expression is known to 

increase according to intracellular iron requirements.  

 

APC labelled CD71 expression was evaluated through its addition to the immune cell 

concentration assays. In a multi-coloured panel flow cytometry, the use of the blue and 

red laser allowed the detection of multiple wavelengths with minimal interference, which 

was later compensated for. The manufacturer-recommended isotype control (APC IgG2a, 

κ) was used prior to testing to determine negative and positive populations (Schioppa et 

al., 2003).  
 

 

3.3) Enzyme-linked immunosorbent assay (ELISA) 
 

Still exploring the concept of receptor-ligand interactions, this thesis employed the use of 

enzyme-linked immunosorbent assays (ELISA) to determine concentration of specific 

proteins and hormones related to immune function and iron metabolism. 

 

ELISA is a commonly used technique originally derived from radioimmune assays 

published in the 1960s. There are various ELISA techniques described extensively 

elsewhere (Aydin, 2015; Crowther, 1995). This thesis employed the ‘sandwich 

assay’(Kato et al., 1977). This technique employs the use of wells pre-coated with 

primary antibodies to capture the molecule of interest. After incubation, unbound 

molecules are washed from the sample. Samples are then incubated with a secondary 

antibody-enzyme complex which binds to the primary antibody-antigen complex. The 
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enzyme in the secondary complex the catalyses a colour-producing reaction which can be 

quantified by measuring absorbance wavelengths (Butler, 1988). The colour intensity is 

proportional to the concentration of the molecule of interest in the sample. 

 

3.3.1) Parameters analysed 
 

3.3.1.1) Serum myeloperoxidase 

 
The concentration of serum haem-containing enzyme myeloperoxidase, abundant in 

neutrophils and monocytes, was determined by commercially available enzyme-linked 

immunoassay (ELISA) (DMYE00B, Quantikine® ELISA – R&D Systems). Briefly, this 

sandwich enzyme immunoassay contained wells pre-coated with specific MPO 

monoclonal antibody, where diluted standards or serum samples (1:50) were incubated 

into for two hours in an orbital microplate shaker set at 500 rpm. After washing procedure, 

MPO-specific enzyme-linked polyclonal antibody conjugated with horseradish 

peroxidase (HRP) was added and incubated for two hours as described above. Following 

washing, wells were incubated with stabilized hydrogen peroxide and chromogen 

solution for 30 minutes before the addition of a 2N sulfuric acid “stop” solution. The plate 

was immediately read in microplate reader (iMark, Bio-Rad Laboratories. California, 

USA) with a 450nm measuring absorbance wavelength with the correction wavelength 

set at 540 nm. The concentration was determined by plotting absorbance and 

concentration of known standards in Microsoft Excel and obtaining regression equation 

(Figure 3-3). The concentration obtained from the standard curve was then corrected 

appropriately for the dilution factor. Log transformation of data was performed. 

Figure 3-3 – Standards regression for myeloperoxidase ELISA assay 
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3.3.1.2) Serum lactoferrin 

 
The concentration of LF found in venous-obtained serum was quantified through 

commercially available ELISA (ab108882- HLF2 Human ELISA Kit – abcam®) with a 

0.35 ng/mL sensitivity. Briefly, a 96-well plate containing pre-coated lactoferrin specific 

monoclonal antibodies was incubated for two hours containing 50 µL of either the 

standards (prepared as manufacturers’ specifications with concentrations ranging from 40 

ng/mL to 0.625 ng/mL) or samples (pre-diluted 1:50 with Diluent N provided). A blank 

well was kept to subtract any noise from the plate. The plate was then washed five times 

with wash buffer provided before being incubated for one hour with 50 µL of the 

biotinylated lactoferrin antibody (previously diluted as per instructions provided). 

Washing was repeated as per instructions, followed by a 30-minute incubation with 50 

µL of streptavidin-peroxidase conjugate, after which another wash was performed. Then, 

50µL of chromogen substrate were added to each well and incubated for 15 minutes 

before addition of the “stop” solution. Plate was read immediately in microplate reader 

(iMark, Bio-Rad Laboratories. California, USA) with a 450 nm measuring absorbance 

wavelength with the correction wavelength set at 570 nm. The mean values from the 

duplicate sample wells were calculated based on the standard curve generated through 

linear regression analysis (Microsoft Excel) with correction to account for the dilution 

factor (Figure 3-4). Average intra-assay CV was 5.0%. 

Figure 3-4 – Standards regression for lactoferrin ELISA assay 
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pre-coated with monoclonal antibody specific to human IL-6, was incubated for two 

hours containing 100 µL of a buffered protein base assay diluent and 100 µL of either 

standards (serially diluted from 300 pg/mL stock) or samples. Wells were washed four 

times with wash buffer provided and then incubated for two hours after 200 µL of 

polyclonal antibody specific for human IL-6 (conjugated with HRP) were added to each 

well. Washing procedure was repeated and 200 µL of substrate solution (containing 

stabilized hydrogen peroxide and tetramethylbenzidine (TMB)) was added to each well 

and allowed to incubate at room temperature, in the dark, for 20 minutes, after which a 

2N sulfuric acid ‘stop’ solution was added to each well. The plate was immediately read 

in a microplate reader (iMark, Bio-Rad Laboratories. California, USA) with a 450 nm 

measuring absorbance wavelength with the correction wavelength set at 570 nm. A linear 

regression standard curve was generated using the mean of the duplicate standards wells 

(Microsoft Excel). Then, the mean values from the duplicate sample wells were calculated 

based on the standard curve. Mean intra-assay CV was 1.1%. 

 

 

3.3.1.4) Serum Hepcidin 

 
The concentration of venous and capillary-obtained serum hepcidin was quantified 

separately using sandwich technique commercially available ELISA kit (DHP250 

Quantikine® ELISA – R&D Systems) containing 96-well plate pre-coated with a 

monoclonal antibody specific for human hepcidin. Briefly, 50 µL of assay diluent was 

added to each well, followed by addition of either standards (7 serial dilutions from 

1000pg/mL stock) or diluted samples (1:5). After a two-hour incubation period at room 

temperature plate was washed (four times) and 200 µL of a monoclonal antibody specific 

for human hepcidin conjugated to HRP were added to each well. Following another two-

--hour incubation period, the wash procedure was repeated and 200 µL of a substrate 

solution containing stabilized hydrogen peroxide and TMB were added to each well and 

allowed to incubate in the dark for 30 minutes. To interrupt the reaction between TMB 

and HRP a 2 N sulfuric acid solution was added and the plate was read immediately in a 

microplate reader set at 450nm with correction set at 540 nm (iMark, Bio-Rad 

Laboratories. California, USA). Mean intra-assay CV was 2.1% for the capillary samples 

and 3.0% for the venous samples. The mean values from the duplicate sample wells were 

calculated based on the standard curve generated through linear regression analysis 

(Microsoft Excel) with correction to account for the dilution factor (Figure 3-5). 
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Figure 3-5 – Standards regression for hepcidin ELISA assay 

a. Venous serum hepcidin b. Capillary serum hepcidin 

  

 

3.4) Biochemical Analysis 

 
The biochemical analysis of iron parameters was conducted through use of a Cobas 

INTEGRA® 400 plus analyser. Post collection, samples were centrifuged, allowing for 

the collection of approximately 100 µL of serum. From this minimal volume of sample, 

all the iron parameters described in section 3.4.1 were measured.  

The Cobas INTEGRA® 400 plus biochemical analyser uses light absorbance and 

microparticle immunoturbidimetric assays to quantify biomarkers in body fluids, such as 

plasma and serum. Such assays are based on an agglutination reaction induced by antigen-

antibody binding. Light is then directed to the sample mixture and the change in 

absorbance is measured photometrically. The change in absorbance is proportional to the 

agglutination rate of the microparticle. Biomarkers are measured using competition 

between the protein contained in the sample and the antigen-coated microparticle for the 

specific antibody (Koivunen & Krogsrud, 2006). 

 

3.4.1) Parameters Analysed 
 

3.4.1.1) Serum Iron 
 
As previously detailed, iron does not travel freely throughout the body, but rather is bound 

to transferrin. Serum iron determination is the measurement of the quantity of circulating 
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iron bound to transferrin. This circulating iron will be carried to the bone marrow to be 

incorporated in both erythro- and myelopoiesis (Ganz, 2007). 

 

Both physiological and pathological states influence serum iron. Physiologically, serum 

iron concentration has a diurnal rhythm, which increases and peaks between 7:00-10:00 

hours and drops throughout the afternoon reaching its lowest values at approximately 

21:00 hours (Beutler, 2010b; Schaap et al., 2013). In females, this parameter fluctuates 

accordingly to menses (Malczewska et al., 2000). In pathological states such as IDA, 

acute or chronic inflammation or haemorrhage, serum iron concentrations are decreased 

(Burtis, Ashwood, & Bruns, 2012). Increased concentrations of serum iron occur in iron-

overload disorders such as hemochromatosis, in acute hepatitis, in acute iron poisoning 

in children, and following oral ingestion of iron medication or parenteral iron 

administration (Burtis et al., 2012). 

 

The Cobas INTEGRA® 400 plus measured serum iron through the FerroZine method. 

Fe3+ is released from transferrin under acidic conditions (citric acid) and reduced to Fe2+ 

by ascorbate. Bivalent iron ions form a red-coloured chelate complex with FerroZine. To 

prevent copper interference, cupric ions are bound to thiourea. The colour intensity is 

directly proportional to the iron concentration in the sample, which is determined by 

measuring the increase in absorbance at 552 nm (Roche Diagnostics, 2012). This assay 

has a measurement range of 0.9-179 μmol/L (5-1000 μg/dL). 

 

3.4.1.2) Serum Ferritin 
 
As previously discussed, iron is not found freely in the body as it can be highly toxic. 

Intra-cellularly, iron is bound to storage proteins such as haemosiderin and ferritin 

(Deakin, 2000).  Ferritin consists of two components, the apoferritin (protein) and the 

iron core. Iron is deposited within this core as insoluble ferric hydroxide phosphate (Cook, 

Baynes, & Skikne, 1992). Serum ferritin is the most commonly used single indicator of 

iron stores (Borch-Iohnsen, 1995). There is a direct correlation between the concentration 

of ferritin in serum to ferritin stored in the tissues, where 1 µg/L serum ferritin 

corresponds to 8–10 mg or 120 µg storage iron/kg body weight (Cook, 2005; Finch et al., 

1986). However, authors have discussed that as serum ferritin levels increase as part of 

the acute phase response to inflammation, determining iron status in athletic population 
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using only ferritin may not accurately portray actual iron storage levels (Nadeem, Shah, 

Iqbal, Iqbal, & Hanif, 2011; Skikne et al., 2011). 

 

The Cobas INTEGRA® 400 plus measured serum ferritin through a particle enhanced 

immunoturbidimetric assay, where the precipitate formed from the agglutination of 

ferritin and latex particles coated with anti-ferritin antibodies is determined 

turbidimetrically at 552nm (Roche Diagnostics, 2009). The measurement range of the 

assay was 10-484µg/L (Roche Diagnostics, 2009).  

 

3.4.1.3) Transferrin 
 

Transferrin is a 79 kD glycoprotein containing 679 amino acid residues. It is synthesized 

mainly by hepatocytes and has a reported half-life in vivo of eight days (van Campenhout, 

van Campenhout, Lagrou, & Manuel-y-Keenoy, 2003). Its role is to transport iron in its 

redox-inactive form. Iron-loading to transferrin is dependent on pH, temperature, chelator 

and ionic concentrations (He, Mason, Nguyen, MacGillivray, & Woodworth, 2000). Iron-

loaded transferrin delivers iron to active cells through the transferrin-transferrin receptor 

complex. The complex is internalised and iron is only released once the pH inside the 

endosome is 5.5, via an ATP-dependent proton pump (Paterson, Armstrong, Iacopetta, 

McArdle, & Morgan, 1984). The iron-free transferrin molecule is then released back into 

circulation towards iron-loading sites (i.e. enterocytes, macrophages) where the iron-

loading and transport process may by initiated again (Gkouvatsos, Papanikolaou, & 

Pantopoulos, 2012). Serum concentrations of transferrin range from 25.2-37.8 µmol/L. In 

a case study, Hayashi et al. (1993) associated the observed stunted growth, anaemia, and 

increased incidence of infection with transferrin concentrations below 1.26 µmol/L.  

Serum concentrations of transferrin were assessed through an automated biochemical 

analyser (Cobas INTEGRA® 400 plus). Incubated with anti-human transferrin antibodies 

(rabbit), transferrin formed a precipitate which was determined turbidimetrically at 340 

mn. The measuring range of the assay was 1.26-65.5 µmol/L (Roche Diagnostics, 2011b) 
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3.4.1.4) Soluble Transferrin Receptor  
 

Soluble transferrin receptor (sTfR) is a single polypeptide chain derived from the 

transferrin receptor. sTfR originates from a proteolytic cleavage between arginine-100 

and leucine-101 of the extracellular domain of the transferrin receptor by a matrix 

metalloproteinase (Speeckaert, Speeckaert, & Delanghe, 2010).  Serum sTfR 

concentration reflects the receptor density on cells and the number of cells expressing 

receptors; therefore, it is closely related to cellular iron demands and to the erythroid 

proliferation rate (Infusino, Braga, Dolci, & Panteghini, 2012). In humans, 75% of 

transferrin receptors are found in erythroid precursors in the bone marrow. When the 

functional compartment of iron is reduced, the number of transferrin receptors in serum 

increases, even before the haemoglobin concentration is significantly depressed. Skikne 

et al., (1990) in a quantitative phlebotomy study aimed at slowly reducing body iron 

content, demonstrated that serum transferrin receptors remained within the normal range 

until iron storage has been exhausted. In the same study, the onset of anaemia was 

observed at soluble transferrin receptor concentrations of 8.8 mg/L (baseline average was 

5.3 mg/L). 

 

This study employed the sTfR assay from Cobas INTEGRA® 400 plus which determined 

sTfR concentrations in serum based on the particle enhanced immunoturbidimetric assay 

principle. Human soluble transferrin receptor agglutinates with latex particles coated with 

anti-soluble transferrin receptor antibodies. The precipitate was determined 

photometrically at 583 nm. The measurement range was 0.5-20.0 mg/L (Roche 

Diagnostics, 2011a).  

 

3.4.1.5) sTfR/Ferritin Ratio 
 

Serum ferritin levels reflect iron stores while sTfR levels reflect the degree of availability 

of iron for cells. Calculating the sTfR/log ferritin index from these two measures provides 

an estimate of body iron over a wide range of normal and depleted iron stores (Beguin, 

2003; Skikne et al., 1990). As described by Skikne et al. (2011) the sTfR measurement 

(expressed in nmol/L or mg/L) is used in conjunction with the ferritin measurement 

(expressed in ng/mL) to provide a calculated sTfR index using the following equation: 

sTfR/log10 ferritin. The sTfR/ferritin index thus takes advantage of the reciprocal 
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relationship between two variables influenced by ID, an increase in sTfR and a decrease 

in the ferritin concentration. While sTfR and ferritin measurements are useful in the 

diagnosis of ID and in the differential diagnosis of various types of anaemia, some reports 

have suggested that the combination of sTfR and ferritin measurements and the 

calculation of the sTfR/ferritin index improves the ability to accurately classify anaemia, 

particularly in anaemia accompanying diseases with active inflammation (Punnonen, 

Irjala, & Rajamaki, 1997). 

 

Studies have shown that ferritin reacts to inflammatory stimuli (Koulaouzidis, Said, 

Cottier, & Saeed, 2009; Nadeem et al., 2011; Suominen, Punnonen, Rajamäki, & Irjala, 

1998). In contrast, sTfR has been shown to be an indicator of ID and is unaffected by 

concomitant chronic disease and inflammation (Koulaouzidis et al., 2009).  The 

measurement of sTfR/Ferritin index has been described in many studies (Infusino et al., 

2012; Malczewska, Szczepanska, Stupnicki, & Sendecki, 2001) as being more accurate 

and superior to other means of detecting ID. Studies (Skikne et al., 2011) have shown that 

the combined use of ferritin, sTfR and sTfR/log ferritin as a diagnostic tool more than 

doubles the detection of IDA, from 41% (ferritin alone) to 92% (three parameters 

combined) (Table 3-3). 
 

Table 3-3 – Sensitivity of iron markers  
  Iron Deficiency Anaemia Anaemia of Chronic Disease 
  Serum Ferritin sTfR sTfR/ferritin ratio Serum Ferritin sTfR sTfR/ferritin ratio 

Sensitivity 85% 89% 100% 82% 85% 85% 
Specificity 64% 81% 81% 78% 100% 97% 
Positive Predictive 76% 86% 87% 77% 100% 97% 
Negative Predictive 77% 85% 100% 82% 88% 88% 
False Positive 36% 19% 19% 22% 0% 3% 
False Negative 15% 11% 0% 18% 15% 15% 
Accuracy 76% 86% 92% 80% 91% 90% 

 Adapted from Nadeem et al. (2011) 

 

3.4.1.6) Unsaturated and Total Iron Binding Capacity (UIBC and TIBC) 
 

As previously described, iron is transported through circulation in the ferric form bound 

to transferrin. Under physiological conditions, only about one third of the iron-binding 

sites of transferrin are occupied by Fe3+, which represents the average 2.5 mg of iron 

found in plasma. Measurements of UIBC indicate the additional iron-carrying capacity 

of transferrin. TIBC, determined by the sum of the serum iron and UIBC, represents the 
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maximum iron concentration that transferrin can bind (Yamanishi, Iyama, Yamaguchi, 

Kanakura, & Iwatani, 2003). Serum TIBC varies in disorders of iron metabolism. In IDA, 

TIBC is elevated and the transferrin saturation is lowered to 15% or less. Low serum iron 

associated with low TIBC is characteristic of the anaemia of chronic disorders, malignant 

tumours, and infections (Burtis et al., 2012). In this study, UIBC was determined directly 

by the FerroZine method (Persijn, van der Slik, & Riethorst, 1971) through a biochemistry 

analyser (Cobas Integra 400 Plus, Roche Diagnostics). FerroZine binds to unbound 

excess Fe3+ producing a coloured solution. The increase in absorbance measured at 522 

nm is directly proportional to the unbound excess iron and indirectly proportional to 

UIBC (Roche Diagnostics, 2005).   

 

3.4.1.7) Transferrin Saturation 
 

Transferrin saturation (TSAT) is the ratio of serum iron to TIBC. Reductions in iron status 

cause decreases in transferrin saturation, as circulating iron becomes less available. Under 

optimum physiological conditions, transferrin is ~30% saturated. A reduction in 

transferrin saturation below 16%  is a reliable index of an undersupply of iron to the 

developing red cell (Bothwell, Charlton, Cook, & Finch, 1979). However, since iron 

deficient erythropoiesis occurs not only in ID but also in acute and chronic inflammation 

or malignant disease, TSAT was used in combination with the above described iron 

parameters to ensure specificity (Cook et al., 1992). The percentage of transferrin 

saturation was calculated from the ratio of serum iron to total iron binding capacity 

multiplied by 100 (%TSAT= [SI/TIBC] x 100)(Fusaro et al., 2005). 

 

 

3.5) Quantification of Training  
 

Prescription of training intensity is based on five training zones established by the 

energetic pathway which contributes to ATP throughout the majority of the demanded 

activity. These zones have been correlated with physiological parameters such as heart 

rate and V̇O2max. The Australian sprint kayak team has an additional three zones which 

correspond to the demands of the 500m and 200/100m racing, while the last adopted zone 

is a maximal effort with short duration (5-15 seconds) probably aimed to mimic the power 
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required to start the race (Table 3-4). The distance accumulated and time spent in each 

zone determined the intensity of the training camp. 

 

Quantifying training load presents numerous difficulties such as need for expertise, cost 

and loss of data. Qualitative analysis of training intensity has been proposed and is 

internationally accepted through a visual scale of rating of perceived exertion (RPE). The 

commonly adopted accepted Borg Scale translates exercise exertion phrases such as light, 

hard or very hard to values from 6-20. Such a scale provides data that correlates with 

measurable physiological parameters such as heart rate (r>0.80) and V̇O2, since both 

increase linearly with work load (Borg, 1970).  

 

Training load encompasses an internal load, where the outcome is measured by the 

athlete’s perception of the load imposed and an external load where the exercise is 

quantified in either distance covered, velocity or power output. It has been suggested that 

a combination of the RPE multiplied by the duration of the session yields a reliable, field-

based, training load monitoring tool, titled session RPE (Foster et al., 2001; Foster et al., 

1995). This method of training load quantification is adopted in a range of both individual 

(i.e. swimming (Wallace, Slattery, & Coutts, 2009) and team sports (i.e. soccer 

(Impellizzeri, Rampinini, Coutts, Sassi, & Marcora, 2004)) and has been recently 

validated in sprint kayak (Borges, Bullock, Duff, & Coutts, 2014). Through the AIS 

Athlete Management System (AMS) the athletes input training duration, type of training 

(i.e paddle, running, gym) and RPE for each session. The AMS also provides the athletes 

with a scale to demonstrate readiness to train at their best (where a comments section 

allowed any symptoms/illnesses to be reported) and recovery for every session. Data 

collected from the AMS was used to determine both acute (daily) and cumulative (seven-

day rolling average) training load. 
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Table 3-4 – Sprint kayak training zones 

Training 
Zone Intensity Stress 

Point RPE SR • min-1 % HRmax % V̇O2max 
Lactate 

(mmol/L) 

Blood Lactate 
Threshold 

Relationship 

Exercise 
time to 

exhaustion 

T1 Light 
Aerobic/Recovery .5 Very light <60 60 -75 <60 < 2.0 Below LT1 > 3 h 

T2 Moderate Aerobic 1.0 Light 56 - 72 75 - 84 60 - 75 1.0 - 3.0 Lower half between 
LT1 and LT2 1 - 3 h 

T3 Heavy Aerobic 2.0 Somewhat 
hard 70 - 82 82 - 89 75 - 85 2.0 - 4.0 Upper half between 

LT1 and LT2 20 min to 1 h 

T4 Anaerobic Threshold 3.0 Hard 78 - 92 88 - 93 85 - 90 3.0 - 6.0 LT2 12 - 30 min 

T5 Maximal Aerobic 
(1000m race pace) 5.0 Very Hard 90 - 100 92 - 100 90 -100 > 5.0 Above LT2 5 - 8 min 

T6 500m race pace 8.0 Very, very 
hard 106 - 120 100 n/a > 8.0 Above LT2 1.5 - 2 min 

T7 200m race pace 11.0 Almost 
maximal 115 - 140 - n/a > 6.0 Above LT2 30 - 50 sec 

T8 Sprints 15.0 Maximal > 130 - n/a - - 10 - 15 sec 

RPE- Rate of perceived exertion SR-Stroke Rate HR – Heart Rate LT- Lactate Threshold. Source: Bullock, Woolford, Peeling, & Bonetti  (2013) 
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Introduction 
 
Physiological systems and biochemical processes are assessed routinely through a range 

of techniques that utilise blood samples. Venous blood sampling, typically from the 

antecubital vein has been widely used and is considered the “gold standard” in the 

collection of blood samples. However, it can be an impractical mean of blood sampling 

in resource-poor (MacLennan et al., 2007), field and/or exercise settings (Simmonds et 

al., 2011) since it is relatively invasive, requires a trained phlebotomist, generates 

biological waste, can cause discomfort and may disrupt training (MacLennan et al., 2007; 

Sitoe et al., 2011). Alternatively, micro-sampling, or the use of a decreased volume of 

capillary blood, has been used as a “point-of-care” means to obtain a blood sample. 

Micro-sampling is considered to be minimally invasive and allows the subject to resume 

activities with minimal restrictions, and thus is ideal in the aforementioned environments. 

 

Mounting evidence demonstrates a transient but significant immune suppression 

following exercise (Nieman, 1997a). As most of the immune components are circulating 

through blood, it has come to the attention that new methods of blood collection may be 

warranted to allow increased sampling time points and consequently a more detailed 

analysis of the immune response to exercise. Even though leucocyte concentration is 

routinely tested, temporary functional alterations, particularly of neutrophils, are more 

frequent and are largely neglected in the clinical practice (Hoang et al., 2013). Micro-

sampling methods have been introduced in the sporting field as an important tool for 

monitoring immediate responses to exercise. However, to date, the use of these methods 

has been limited to blood lactate, glucose, growth hormone and haematocrit profiling 

(Godfrey et al., 2004).  

 

Whilst it might be assumed that venous and capillary samples would yield identical results, 

emerging evidence suggests otherwise. Although erythrocyte parameters such as 

haematocrit and haemoglobin concentration, have been found to be significantly higher 

in capillary samples (Daae et al., 1988), leucocyte concentrations have provided 

conflicting results. Capillary samples have yielded increased (Schalk et al., 2007; Yang 

et al., 2001), decreased (Bakhmetyev & Agafonova, 2002) or not significantly different 

(Ponampalam et al., 2012) results for the concentration of leucocytes when compared to 

venous samples. Furthermore, analysis of leucocyte subpopulations in capillary samples 

has also produced diverging results, where lymphocyte concentration has been found to 
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be increased (Daae et al., 1988), decreased (Hollis et al., 2012) or unaltered (Yang et al., 

2001) in comparison to results obtained from venous samples. Yang et al. (2001) 

demonstrated a 12.6% increase in the concentration of granulocytes from capillary 

samples, while Hollis et al. (2012) and Rao, Moiles and Snyder (2011) suggested that 

capillary and venous samples could be used interchangeably for this cell population. 

 

In addition to the concentrations of specific leucocyte subpopulations, an individual’s 

immunological status relies on proper functioning of these sub-populations. Neutrophils, 

the most abundant leucocyte in the peripheral circulation, provide defence from 

pathogens through a series of microbicidal activities. Molecular interactions between 

neutrophilic surface receptors and inflammatory signals, such as chemokines and 

cytokines, trigger a chain of events including rolling, adhesion, chemotaxis, phagocytosis 

and degranulation, which provides effective pathogenic clearance (Futosi, Fodor, & 

Mocsai, 2013; Kobayashi & DeLeo, 2009). Studies comparing leucocyte function in 

different blood vessels are rare. Bakhmetyev and Agafonova (2002) was the only study 

found to date to analyse such variables.  When comparing phagocytic activity in arteries, 

capillaries and veins between healthy men and men with atherosclerosis, these researchers 

found that neutrophil phagocytic activity in capillary samples was significantly lower 

compared to cells obtained from arterial and venous blood.  

 

In light of such inconsistent results in the literature, it is reasonable to assume that 

different vascular regions may impart different biochemical and biophysical forces on the 

cell. The most notorious difference in vascular anatomy is the calibre of the different 

vessels. Forces such as flow and shear stress are directly influenced by vascular diameter 

(Pyke & Tschakovsky, 2005). As the internal diameter of blood vessels varies from 3.0cm 

in abdominal aorta (Erbel & Eggebrecht, 2006) to 4µm in arterial capillaries (Braverman, 

2000), it would be imprudent to neglect the biofluid mechanics of the forces acting on 

blood cells as they pass through ever-changing vessel diameters. Previous diverging 

results in leucocyte concentration and function may not have taken into account that the 

difference in diameter of the vessels may exert different forces onto the flowing cells. 

Such changes in vascular diameter impact the flow of cells and consequently the 

interaction between the blood components. Erythrocytes flow through the centre of the 

vessel marginating leucocytes and platelets towards the vascular epithelial (Sundd, 

Pospieszalska, & Ley, 2013). This event, termed the “Fahraeus-Lindquits phenomenon”, 

is known to produce a more pronounced haematocrit in samples obtained from the 
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microcirculation compared to larger vessels (Papaioannou & Stefanadis, 2005). As the 

majority of neutrophil functions are receptor-mediated events, it is then reasonable to 

cogitate that any alteration in the interaction of blood components with the vascular 

endothelial may impact on leucocyte function. 

 

Polychromatic flow cytometry analysis has allowed recognition of unique antigens 

expressed on the surface of each particular cell population. Some of these antigenic 

structures are also markers of specific cell functions and may be up-regulated or down-

regulated as necessary. This study employed common cluster of differentiation (CD) 

antigens for identification of monocytes, granulocytes, lymphocytes and their subsets. 

Cells were identified with anti-human monoclonal antibodies as helper T lymphocytes 

(expressing CD3+ CD4+), cytotoxic T lymphocytes (CD3+ CD8+), B lymphocytes (CD3-

CD19+), natural killer (NK) cells (CD3-CD56+) and monocytes (CD14+). Granulocytes 

were labelled with antibodies against specific antigenic structures that relate to neutrophil 

developmental stage and distinct neutrophilic functions (CD66b, CD16b, CD11b and 

CD18). Owing to the functional relevance of these granulocyte surface antigens 

(Elghetany, 2002; Kuijpers et al., 1991; Lund-Johansen & Terstappen, 1993; Schmidt et 

al., 2012; Wang et al., 2013) the level of expression of these markers was also assessed. 

Thus, profiling such surface markers may elucidate developmental distribution of 

neutrophils as well as possible alterations in functional capabilities according to vascular 

location.   

 

Given the conflicting data presented in literature, the need for further validation studies 

is warranted. During the review of literature associated with this study it was not possible 

to identify previous studies in which a micro sampling technique was applied to the 

investigation of specific lymphocyte population concentration, presenting values for B 

cells, T cells and NK cells, and granulocyte phenotypes, as well as functionality of 

neutrophils. Therefore, using a combination of light scatter properties and specific 

antibody labelling, this study aimed to produce a comprehensive phenotypic profile of 

clinically important leucocyte subsets and assess neutrophilic function in venous and 

capillary sites. It was hypothesised that blood sampling site would yield statistically 

different results for leucocyte concentration. Further, surface antigen expression and 

neutrophilic functions of phagocytosis and oxidative burst were hypothesised to produce 

statistically different results between blood sampling sites. Validation of the technique of 

capillary sampling opens up the field of exercise immunology to previously inaccessible 
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field-based research. Furthermore, a greater number of sampling time points will allow 

for increased immune function monitoring, which may, in the future, be used as a tool to 

prescribe individually tailored training loads aiming to attenuate or even avoid immune 

suppression post exercise.  

 

Methodology 
 

Participants 

A total of ten healthy volunteers (age: 25.1+3.1 years; height: 174.8+7.3 cm; mass: 

73.3+8.9 kg), with males and females in equal number, were recruited via electronic 

correspondence from Bond University, Gold Coast, Australia. Subjects were instructed 

to attend a single appointment at Bond University, between 9-11am. Informed consent 

was obtained as per Bond University Ethics committee requirements.  

 

Blood Collection 

Upon arrival, subjects were requested to rest in a seated position for approximately 20 

minutes before blood collection. Topical cream containing nonivamide (1.7 mg) and 

butoxyethyl nicotinate (10.8mg) (Finalgon® Boehringer-Ingelheim, Reims, France) was 

applied to one earlobe and the hand (opposite to venous blood collection) was placed into 

warm water (37-38oC) for five minutes to encourage blood flow to the capillary sites. The 

venous blood sample was collected first to allow for both cream and warm water to 

increase blood flow in the earlobe and fingertip, respectively. A venous blood sample was 

drawn from the antecubital vein using a 21 gauge butterfly needle (BD Vacutainer Safety-

Lok™, BD Biosciences, Australia) into a 4mL heparin Vacutainer® tube (BD 

Biosciences, Australia), followed by immediate collection into a 4mL EDTA 

Vacutainer® tube (BD Biosciences, Australia). Following venous blood sampling, the 

hand was dried and capillary blood from fingertip was collected using a 2 mm contact 

activated lancet (BD Biosciences, Australia) to the lateral portion of distal phalanx of 

third or fourth metacarpal into a 300 μL heparinised capillary tube (Kabe Labortechnik, 

Germany) immediately, followed by collection 300 μL EDTA capillary tube (Kabe 

Labortechnik, Germany). Earlobe blood collection followed the same procedures. An 

alcohol swab was used to remove any cream excess. The  inferior border of earlobe was 

punctured using a 2 mm contact activated lancet (BD Microtainer® Contact-Activated 
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Lancet BD Biosciences, Australia) and blood was collected into a 300 μL heparinised 

capillary tube immediately, followed by collection into a 300 μL EDTA capillary tube 

(Kabe Labortechnik, Germany). The first blood drop for both fingertip and earlobe was 

discarded to minimize excess tissue fluid. All tubes were placed onto a roller (Roller 

Mixer SRT6, Stuart) and analysed within two hours of collection. All blood 

measurements and analyses were performed by a single investigator. 

 

Full Blood Concentration 

Samples collected using EDTA as an anti-coagulant were analysed in a five-part 

differential haematological analyser (Beckman Coulter, NSW, Australia) immediately 

after collection, for the determination of total leucocyte concentration, specific 

differential leucocyte concentration (neutrophils, eosinophils, basophils, lymphocytes 

and monocytes), erythrocyte concentration, haemoglobin, haematocrit, mean corpuscular 

volume (MCV) mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin 

concentration (MCHC)  and red cell distribution width (RDW).  

 

Leucocyte Phenotyping 

Whole blood (capillary site 25 μL; venous site 100 μL) was aliquoted into two 5 mL tubes 

(BD Falcon™ Tubes) containing previously aliquoted monoclonal antibodies with 

concentrations as per manufacturer’s instructions for venous tube and adjusted 

proportionally for capillary tubes (Table 4-1). Tubes were incubated for 15 minutes at 

room temperature in the dark. Erythrocytes were lysed with ammonium chloride (NH4Cl) 

solution (933-001-1, Kinetik, Australia) for further 10 minutes under the same conditions. 

Samples were then centrifuged at 300 x g for 5 minutes, washed and centrifuged at 300 x 

g for 5 minutes once more. Cells were resuspended in PBS (300μL) and analysed 

immediately.  

 

Phenotypical Analysis 

A FACSVerse™ flow cytometer equipped with a two argon-ion lasers, 488nm blue laser 

and a 640nm red laser was used to excite fluorochromes presented and data were collected 

into FACSuite 5.0 software (BD Biosciences, Australia). Acquisition was set to 10,000 

total events and manual gates were set on the three major populations (lymphocytes, 

monocytes and granulocytes) using forward and side-scatter properties. Median 
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fluorescence intensity was taken as an index of antigen expression and was recorded.  All 

measurements were performed after the instrument passed quality control using CS&T 

Beads (BD Biosciences, Australia) and analysed under fixed instrument settings 

(photomultiplier tube voltages and compensations). 

 

Table 4-1 – Monoclonal anti-human antibodies (mAb) 
Tube mAb Clone Fluorochrome Concentration Catalogue 

 

Lot 

 

1 

CD3 HIT3a FITC 1 µg/20 µL 555339 3035946 

CD4 SK3 PE-Cy™7 0.015 µg/5 µL 557852 3060697 

CD8 RPA-T8 PerCP-

 

0.125 µg/5 µL 560662 3179537 

CD19 SJ25C1 APC-H7 0.5 µg/5 µL 560177 3193985 

CD56 B159 PE 0.125 µg/20 

 

555516 2317618 

CD71 M-A712 APC 0.03 µg/20 µL 551374 3060509 

2 

CD11b ICRF44 APC-Cy™7 1 µg/5 µL 557754 3256562 

CD18 L130 FITC 6.25 µg/mL 347953 3199505 

CD16b CLB-

 

PE 0.25 µg/20 µL 550868 3329800 

CD66b G10F5 PerCP-

 

0.125 µg/5 µL 562254 3193504 

CD14 M5E2 PE-CY™7 0.25 µg/5 µL 557742 3011778 

CD71 M-A712 APC 0.03 µg/20 µL 551374 3060509 

All fluorochromes were purchased from Becton Dickinson (BD) Bioscience. FITC 
(fluorescein isothiocyanate); PE (R-phycoerythrin); APC (allophycocyanin); APC-
Cy™7 (APC-cyanine tandem fluorochrome), PerCP-Cy™5.5 (PerCP-cyanine 
tandem fluorochrome); APC-H7 (APC-cyanine tandem fluorochrome); PE-Cy7 (PE-
cyanine tandem fluorochrome) 

 

 

Granulocyte Function  

Phagocytosis 

Whole blood (capillary site 25 μL; venous site 100 μL) was aliquoted into two 5mL tubes 

(BD Falcon™ Tubes) labelled ‘hot’ and ‘cold’. Pre-labelled FITC E. coli bacteria 

(concentration of 2 x 107 per 100μL of whole blood) was added to each tube. The ‘hot’ 

labelled tube was incubated in a water bath at 37°C for 10min, while the ‘cold’ labelled 

tube was placed on ice for 10 minutes. After precisely 10 minutes, the ‘hot’ labelled tube 

was placed on ice to stop further phagocytosis.  Trypan blue (12.5µL and 50µL, 

respectively) was added to each sample and mixed to quench any bacteria attached to cell 
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surface and consequently ensure that the fluorescence observed was from internalized 

(phagocytosed) E.coli only. Tubes were washed with PBS and centrifuged for 2 minutes 

at 1000 x g, after which the supernatant was removed. The washing procedure was 

repeated. Erythrocytes were lysed with NH4Cl solution (933-001-1, Kinetik, Australia) 

and incubated for 10 minutes in the dark at room temperature. Samples were centrifuged, 

washed and centrifuged again as described above. Cells were resuspended in PBS and 

analysed using an excitation wavelength of 488nm on a FACSVerse™ flow cytometer 

(BD Biosciences, Australia). 

 

 

Oxidative Burst 

Oxidative burst function of neutrophils was analysed in whole blood using a previously 

described method (Richardson et al., 1998). Briefly, this method quantified the 

production of ROS, principally H2O2, in response to activation of the NADPH oxidase 

system, stimulated by a protein kinase C activator and an analogue of diacyglycerol, 

phorbol 12-myristate 13-acetate (PMA) (Nauseef, 2014; Groemping and Rittinger, 2005).  

ROS production was quantified by the oxidation of the dye dihydrorhodamine (DHR), by 

hydrogen peroxide, which results in a fluorescence emitting compound (530-535nm), 

rhodamine 123 (Richardson et al., 1998). Whole blood (capillary site 25μL; venous site 

100μL) and PBS (225µL and 900µL respectively) was aliquoted into three 5mL tubes 

(BD Falcon™ Tubes) labelled ‘blank’, ‘unstimulated’ and ‘stimulated’. DHR (final 

concentration 25ug/mL) was added to the unstimulated and stimulated tubes, mixed and 

incubated at 37°C for 15min in the dark. PMA (final concentration 100ng/mL) was added 

to the ‘stimulated’ tube only and mixed. All tubes were then incubated once again at 37°C 

for 15min in the dark, and then centrifuged for 2 minutes at 1000 x g. Erythrocytes were 

lysed using a NH4Cl solution (933-001-1, Kinetik, Australia) for 10 minutes at room 

temperature in the dark, before being centrifuged for 2 minutes at 1000 x g. Samples were 

washed with 500µL PBS and again centrifuged for 2 minutes at 1000 x g. Finally, samples 

were resuspended in 300µL 1% formalin and analysed using an excitation wavelength of 

488nm wavelength on a FACSVerse™ flow cytometer (BD Biosciences). 
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Statistical Analysis 

A multivariate analysis of variance (MANOVA), utilizing Pillai’s Trace with α < 0.05 

significance level, analysed the effects of the different sampling sites in the selected 

erythrocyte parameters, the main leucocyte populations, and the CD expression in each 

leucocyte population. MANOVA was also used in all granulocyte functional analysis. 

Prior to the MANOVA data was examined using SPSS Statistics to ensure all underlying 

assumptions were met. MANOVA was chosen since it has been described to have greater 

power than ANOVA to detect effects because it takes into account the correlations 

between dependent variables (Field, 2009). MANOVA was reported as V = , F(,) = , p 

< .05., where V is the result of the Pillai’s Trace, F is the ratio of the model to its error, 

and, in between brackets, are the degrees of freedom, hypothesis and error, respectively 

(Field, 2009). In the event of a significant difference being identified, the post-hoc 

Bonferroni test was used as well as a discriminant function analysis to verify how the 

dependent variables discriminate the groups. All statistical analyses were performed 

using SPSS (IBM SPSS Statistics for Windows, version 20; IBM Corp., Armonk, N.Y., 

USA).  

 
 

Results 
 
Erythrocyte Parameters 

 
Erythrocyte parameters analysed showed no significant differences between vein, finger, 

and earlobe sampling sites (p=0.526) (Figure 4-1 a-g). 
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Figure 4-1 – Erythrocyte parameters analysed 
                                                             a. 

 
b. c. d. 

     
e.  f.  g.  

   
Erythrocyte parameters analysed: (a) erythrocyte concentration (b) haemoglobin (c) haematocrit (d) 
red cell distribution width (RDW) (e)  mean corpuscular volume (MCV) (f) mean corpuscular 
haemoglobin (MCH) (g) mean corpuscular haemoglobin concentration (MCHC). Solid bars represent 
mean values and error bars represent SD. V=0.460 F(14,44)=0.940 p>0.05. 
 

 

Leucocyte Concentrations 

Concentration of total leucocytes and of its specific populations (neutrophils, eosinophils, 

basophils, lymphocytes, and monocytes), showed no significant difference between the 

three sampling sites (p=0.447), as shown in figure 4-2. 
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Figure 4-2 – Leucocyte concentration 

 
Leucocyte concentration. Solid bars represent mean values and error bars represent SD. Eosinophil and 
Basophil populations were not depicted in the figure as numbers are low in healthy volunteers. Mean + 
SD for eosinophil population in vein, finger and earlobe are 0.11 + 0.09, 0.12 + 0.09 and 0.08 + 0.07, 
respectively. Mean + SD basophil population in vein, finger and earlobe are 0.0 + 0.00, 0.0 + 0.00, and 
0.0 + 0.00, respectively. 

 
 

Lymphocyte Subpopulations 
 

Lymphocyte populations showed no significant difference in phenotypical distribution 

amongst the three sampled sites (p=0.241) (Figure 4-3).  

Figure 4-3 – Phenotypical distribution of lymphocyte subpopulations 

 
Phenotypical distribution of lymphocyte subpopulations based on known surface antigen expression.  
Solid bars represent mean values and error bars represent SD. V=0.368 F (8, 48) = 1.355 p > 0.05.  
 
Granulocyte Subpopulations 

Percentage of cells positive for granulocytic markers showed no significant difference 

between the sampling sites (p=0.237) (Figure 4-4). 
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Figure 4-4  – Phenotypical distribution of granulocytes 

 
Phenotypical distribution of granulocytes. Solid bars represent mean values 
and error bars represent SD. V=0.358 F (8, 50) = 1.361 p>0.05. Subjects not 
expressing CD16b (Clone CLBgran11.5) are considered zero.  

 

However, surface receptor expression between granulocyte subpopulations utilizing 

Pillai’s trace showed significant difference between sites (p=0.008), where a Bonferroni 

post-hoc test demonstrated significant differences between venous and capillary samples 

for both CD11b (Vein-Finger p=0.023 / Vein-Earlobe p=0.000) and CD18 (Vein-Finger 

p=0.030 / Vein-Earlobe p=0.000) markers (Figure 4-5).  

 

Figure 4-5 – Phenotypical expression of granulocyte phenotypes 

 
              Phenotypical expression of granulocyte phenotypes measured through 

median fluorescence intensity. Solid bars represent mean values and error 
bars represent SD. V=0.646 F (8, 50)=2.98 p<0.05. * Significant difference 
between vein and capillary samples. 
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Granulocyte Function 

Multivariate analysis assessing difference between sampling sites in regards to percentage 

of total granulocytes, percentage of ROS producing granulocytes and ROS production 

(measured as median fluorescence intensity – Figure 4-6) showed no significant 

difference between sampling sites (p=0.198) 

Figure 4-6 – Stimulated ROS production by granulocytes 

 
Granulocytes producing ROS. Solid bars represent mean values 
and error bars represent SD. V= 0.305 F (6,50)= 1.498  p>0.05. 

 

Multivariate analysis of the percentage of granulocytes in each sample, the percentage of 

granulocytes performing phagocytosis and amount of E.coli ingested (measured by 

median fluorescence intensity) demonstrated a significant difference between the three 

sampling sites (p=0.011). Bonferroni post-hoc analysis indicated a difference in 

percentage of granulocytes carrying out phagocytosis between vein and finger sample 

(p=0.025), but not between vein and earlobe (p=0.638) or finger and earlobe (p=0.389).  

Figure 4-7 – Granulocytes phagocytosing E.coli 

 
Granulocytes phagocytosing E.coli. V=0.527 F (6,52) = 3.099  p<0.05. Solid bars represent mean values. 
The error bars represent SD of the percentage of granulocytes performing phagocytosis.  (*) Significant 
difference in the percentage of cells performing phagocytosis between assigned sites. 
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Furthermore, the amount of E.coli ingested was significantly different between vein and 

finger (p=0.001), between vein and earlobe (p=0.006) but not between finger and earlobe 

(p=1.000) (Figure 4-8). 

 
Figure 4-8 – E.coli ingested by granulocytes according to sampling site 

 
E.coli ingested by granulocytes, measured by MFI. V=0.527 F (6,52)=3.099  p<0.05. Solid bars represent 
mean values and error bars represent SD. (*)Significant difference in the number of E.coli ingested 
between the sites. 
 
 

    Discussion    
 

This study was conducted to compare leucocyte distribution, phenotypical expression of 

specific antigens in particular leucocyte subpopulations, as well as granulocytic (i.e. 

neutrophils) phagocytic and ROS producing functions between three blood collection 

sites (vein, finger and earlobe). It was hypothesised that erythrocyte parameters (Figure 

4-1a-g) and leucocyte distribution (Figure 4-2) would be significantly different between 

the three different sampling sites. Statistical analysis did not confirm this hypothesis. 

Distribution of lymphocyte subpopulations (Figure 4-3) and of granulocyte 

subpopulations (Figure 4-4) showed no significant difference between the sampling sites. 

However, further analysis of surface receptor expression in granulocytes, particularly 

CD11b and CD18 (Figure 4-5) revealed significant differences between the venous and 

capillary sampling sites. While granulocytic, PMA stimulated, ROS production showed 

no significant differences between the sampling sites (Figure 4-6), the percentage of 

phagocytosing neutrophils (Figure 4-7) and their phagocytic capacity was significantly 

different between the venous and capillary samples (Figure 4-8). 
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Research has shown that when travelling from major vessels to vessels of smaller 

diameter, as from arterioles to capillaries then onto post-capillary venules, leucocytes are 

subject to conformational changes (Sundd et al., 2013). When passing through smaller 

vessels with lower diameters, leucocytes do not deform as much as erythrocytes (Chien 

et al., 1987). This is supported by the lack of reduction in RBC velocity while leucocytes 

may become almost stationary when travelling from a 9µm diameter to a 5µm capillary 

(Oertel, 2010). Additionally, the decreased vascular diameter promotes collisions of 

erythrocytes and leucocytes, leading to margination of the latter to the vascular wall 

(Sundd et al., 2013). Such physiological margination and decrease in travelling velocity 

allows for increased interaction between neutrophilic surface receptors, such as low-

affinity β2-integrins, and epithelial cells (Anderson, Hotchin, & Nash, 2000). In contact 

with the vascular epithelium, neutrophils project pseudopods and if not stimulated, they 

retract the pseudopod, return to spherical shape and resume rolling adhesion as fluid shear 

force created from the change in vessel diameter acts on it (Fukuda, Yasu, Predescu, & 

Schmid-Schonbein, 2000; Mitchell, Lin, & King, 2014). Pseudopod projection and 

adhesion have been associated with expression of adhesion molecules, such as 

CD11b/CD18 (CR3) (Anderson, 1995), and the continuous activation and deactivation of 

these molecules enables neutrophilic physiological rolling (Sheikh & Nash, 1996). Until 

recently, it was thought that only chemotactical stimuli were responsible for the 

neutrophilic activities described above. However, the mechanotransduction mechanism 

described has been suggested to regulate pseudopod projection due to physiological, 

shear-induced, conformational changes and cleavage of CD18 (Shin, Simon, & Schmid-

Schonbein, 2008). 

 

Data has also established that haemodynamic conditions vary between vascular regions, 

imposing forces on each cell such as circumferential stress and shear stress (Papaioannou 

& Stefanadis, 2005). As shear force has been related to internal diameter of the vessel, it 

is safe to assume that in the capillary samples obtained, where cells were confined to 

diameters varying from 4-6µm in arterial capillaries to 10-15µm in post capillary venules 

(Braverman, 2000), shear force was greater than when cells were obtained from ante-

cubital veins, where diameters vary from 1.3-2.9mm (Baptista-Silva, Dias, Cricenti, & 

Burihan, 2003).  Such mechanical stimulus has the ability to remodel the neutrophil 

cytoskeleton as well as induce cell activation through change in surface receptors, 

particularly adhesion molecules (Yap & Kamm, 2005). The transient change in 

expression of CD11b/CD18 could provide insight into the difference in expression of 
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these receptors observed between the venous and capillary sampling sites. Perhaps once 

past the mechanical and chemical stimuli in the capillary beds, neutrophils return to an 

inactivated state and flow freely through venous vascularity.  As the findings of the 

present study support this hypothesis, it becomes apparent that blood collection location 

must be regarded as an important factor in assays measuring antigen expression in 

leucocyte subpopulations. 

 

Furthermore, the vasodilatation techniques used in this study may slow flow rate, 

allowing a “loose and somewhat transient” adhesion (tethering) resulting in rolling of 

neutrophils along the epithelium (Witko-Sarsat, Rieu, Descamps-Latscha, Lesavre, & 

Halbwachs-Mecarelli, 2000). The consistency of increased expression of adhesion 

molecules in capillary-drawn samples (Figure 4-5) may also suggest that the routinely 

used methods adopted in this research to increase blood flow to these sampling sites, 

either via action of nonivamide and butoxyethyl nicotinate containing cream - Finalgon® 

(Zavorsky (Beneke & Alkhatib, 2015; Schommer et al., 2012; Zavorsky, Lands, 

Schneider, & Carli, 2005) or submersion of limb in hot water, may have contributed to 

neutrophil activation. Nonivamide has been described to, when applied to the skin, induce 

release of vasodilative polypeptides such as calcitonin-gene-related peptide (CGRP) and 

substance P (Stucker, Reuther, Hoffmann, Aicher, & Altmeyer, 1999). CGRP has been 

shown to promote accumulation of inflammatory cells in areas of inflammation and to 

enhance neutrophilic adhesion to the endothelium in vitro (Hartung & Toyka, 1989; 

Zimmerman, Anderson, & Granger, 1992). The later study however, did not associate this 

neuro-peptide induced neutrophilic adhesion to CD11/CD18, L-selectin, E-selectin, or 

ICAM-1. Substance P, however, has been linked with priming of mice neutrophils for 

chemotactic response through the augmentation of CD11b receptors in its surface 

membrane (Sun, Ramnath, & Bhatia, 2007). Additionally, research has shown a greater 

expression of CR3 receptors incubated at 37oC, compared to 4oC incubation (Mobberley-

Schuman & Weiss, 2005). Furthermore, capillary blood collection involved greater tissue 

trauma compared to venipuncture, possibly increasing the recruitment of activated 

neutrophils to the area (Hoang et al., 2013).  

 

This study also hypothesised that the function of granulocytes collected from the three 

different sampling sites would yield statistically different results. The main finding of this 

study did support such hypothesis, as MANOVA (Pillai’s trace) results showed 

significant differences in phagocytic capacity of granulocytes according to their vascular 
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location at the point of collection (Figure 4-8). The percentage of neutrophils that 

underwent phagocytosis was significantly different from vein to finger (p=0.025) (Figure 

4-7). Most significant was the reduced number of ingested E.coli, measured as median 

fluorescence intensity, between the samples obtained from the vein and both capillary 

sites (Figure 4-8). 

 

Clearance of pathogens via the process of phagocytosis is dependent on both the 

concentration of neutrophils and the appropriate functioning of all their killing capacities 

(Li, Karlin, Loike, & Silverstein, 2004). Since neutrophil concentration between the three 

different sampling sites did not differ significantly (Figure 4-2), neutrophil supply does 

not appear to be the source of altered phagocytic capacity in capillary samples.  

 

Abnormal phagocytosis has been attributed to a failure in the opsonisation process or 

defect in the ingestion capability of the phagocyte (Robinson, Carter, & Narayanan, 1997). 

Even though phagocytic cells have the ability to engulf both opsonized and non-

opsonized particles, phagocytosis is enhanced by the opsonisation process (Lee et al., 

2003). The importance of opsonic phagocytosis may be demonstrated by the increased 

susceptibility to infection suffered by patients who lack components of opsonic systems 

found in serum, such as immunoglobulin G (IgG) and the complement system (Peiser and 

Gordon, 2001). The main opsonin receptors in neutrophils are Fc receptors (FcγRIIA 

(CD32), FcγRIIIb (CD16)) and β2 integrin (CR3, MAC1 (CD11b/CD18)). Decreased 

expression of CD16 antigen observed in elderly patients has been correlated with 

attenuated Fc mediated phagocytosis (Butcher, Chahal, Nayak, Sinclair, Henriquez, 

Sapey, O'Mahony, et al., 2001). However, such molecular event was not found in this 

study as there was no significant difference in CD16 expression observed between the 

three sampling sites. Previous research has highlighted the crucial role of serum, 

particularly complement opsonisation, for efficient phagocytosis of E.coli, where 

unopsonised E.coli were not significantly up-taken by neutrophils when compared to 

opsonised bacteria (Gordon, Rice, & McDonald, 1989; Nishimura et al., 2001). Research 

has demonstrated a more rapid inactivation of complement factor C3 in serum from 

capillary samples when compared to serum obtained from a venous sample (Bjorksten, 

1973). Such observation could explain the decrease in the number of bacteria ingested by 

granulocytes from both fingertip and earlobe when compared to those obtained from 

venous sample. It is possible to suspect then that extracellular factors, such as complement 

fragment level, may cause the discrepancies observed between venous and capillary 
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samples, particularly seeing that the expression of CD11b/CD18 molecules, as previously 

discussed, showed significant increase in capillary sites when compared to venous site 

(Figure 4-5). The fact that there was no statistical difference (p=1.00) in phagocytic 

capacity between the two capillary samples (finger and earlobe) strengthens this argument 

(Figure 4-7). 

 

Questions arise since the increased expression of CD11b/CD18 has been correlated with 

increased phagocytic capacity (Hofman et al., 2000), contrary to the findings in this study. 

Both fMLP stimulation and cultured intestinal epithelial transmigration of neutrophils 

increased CD11b/CD18 expression and phagocytic capacity according to Hofman et al. 

(2000). Even though antigen expression quantification in this study did not make use of 

any neutrophilic stimulation, the association of increased antigen expression and capacity 

of these cells to phagocytose more bacteria can still be suggested. Furthermore, 

occupancy or blockage of CD11b/CD18 has been shown to inhibit binding of not only 

iC3b opsonised particles but of bacteria such as E.coli to neutrophils (Wright & Jong, 

1986). While CD11b/CD18 recognises bacterial lipopolysaccharides (Wright & Jong, 

1986), the rate in which it uptakes the microorganism, compared to an iC3b coated one is 

not yet fully described. Gordon et al. (1989) observed increased expression of 

CD11b/CD18 incubated with opsonised E.coli after 30min compared to unopsonised 

E.coli. The difference in CD11b/CD18 kinetics between opsonised and unopsonised 

E.coli was only insignificant after 60 minutes incubation (Gordon et al., 1989). Thus, 

incubation time of 10 minutes in this study might not have been sufficient to allow 

phagocytosis of unopsonised E.coli via lipopolysaccharide recognition.  

 

Another noteworthy physiological phenomenon that occurs with the decrease in vascular 

diameter is the formation of platelet-neutrophil complexes (PNC). The previously 

mentioned displacement of erythrocytes to the central core of the blood vessel pushes 

platelets and leucocytes towards the vascular wall, allowing increased interaction 

between them. PNCs have been reported to constitute to approximately 25% of 

circulating polymorphonuclear leucocytes (Peters, Heyderman, Hatch, & Klein, 1997). 

PNCs show increased activation through increased expression of adhesion receptors 

CD11b/CD18 and increased phagocytic capacity (Peters et al., 1999). Such observations 

however conflict with our findings since even though capillary samples showed greater 

expression of CD11b/CD18 their phagocytic capacity was less than that observed in 

neutrophils obtained from the venous blood sample (Figure 4-5 and Figure 4-8, 
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respectively). Further analysis could be performed by adding platelet-marker CD42b to 

identify specific neutrophilic capacity of PNCs in different sampling sites.  

 

Conclusion 
 
With increased attention being paid to immunological responses to the physical stress 

imposed by exercise, the present study demonstrates that valuable information regarding 

immune cell population distribution as well as specific immune functions may be attained 

utilizing a minimal amount of blood. The present study has demonstrated that 

concentrations of erythrocytes and leucocyte subpopulations (lymphocytes, monocytes, 

eosinophil, basophils and neutrophils) do not vary significantly between capillary and 

venous blood sampling sites, supporting the interchangeability of sampling sites for these 

variables. However, it has been shown that antigenic expression and function of 

leucocytes, particularly neutrophils, do vary according to their vascular location at the 

time of blood draw. The clinical applications of such conclusions however, must still be 

demonstrated.  

As leucocyte populations have been shown to respond to both biochemical and 

biomechanical stimuli happening inside the vascular system, sampling site must be taken 

into account when comparing results between studies. The present study demonstrates 

that although phagocytic function of neutrophils has been shown to be altered depending 

on the cells’ vascular location, it does not exclude the usage of the micro-sampling 

method in sports setting. While results do indicate the need for further research to 

establish reference ranges for the parameters mentioned above based on sampling site, 

provided that fidelity to sampling site is kept, changes brought about through exercise 

may be seen in any sampling site.  

Despite not being within the bounds of this study, future research should aim to address 

the questions raised here. As the present study obtained resting samples from healthy 

individuals, further research will aim to observe if such variations occur when the immune 

system is under stress. For that, exercise seems to be an ideal model to allow further 

investigation into the differences between sampling sites as it not only influences blood 

distribution, but also sets the immune system under stress. Furthermore, in light of the 

relationship between complement fragments and their capacity to opsonise 

microorganisms for efficient phagocytosis, further research should consider the 

availability of complement (i.e. concentration) in serum in different vascular regions. 
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Also, further studies could aim to quantify antigen expression with and without 

stimulation (such as chemoattractants) and phagocytic capacity of the stimulated and 

unstimulated samples on a venous and capillary blood sample.  
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Study II 

 

 

 
 

Effects of exercise and training on immunological and iron related 
parameters in elite female kayak athletes during a period of                 

intensified training 
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Introduction 
 
Throughout a training year, elite athletes are commonly challenged with periods of 

intensified training. This strategy evokes greater physiological adaptations such as 

increased maximum strength, peak power and velocity when compared to low-intensity 

training periods (DeWeese, Hornsby, Stone, & Stone, 2015a, 2015b; Kraemer & 

Ratamess, 2004). In this training phase athletes are often required to perform work at 

approximately 85 to 110% of race pace, corresponding to intensities above the second 

ventilatory threshold (Guellich, Seiler, & Emrich, 2009). If not carefully prescribed, the 

demands imposed by the increased load may increase sympathetic stress and induce a 

state of “over-reaching”, in which performance is decreased (Halson & Jeukendrup, 

2004). Concomitantly, the increased stress may come to affect other physiological 

processes such as immunity and iron regulation (Magazanik et al., 1988). 

 

Exercise-induced immune modulation is known to be dependent on specific 

characteristics of training such as duration and intensity. The effects of intensified bouts 

of exercise on the immune system have been widely reported in both adaptive and innate 

immune branches (Pyne, 1994). Immediately post-exercise an overall transient increase 

in blood leucocyte concentration is observed, mainly through increase in concentration 

of granulocytes, which usually make up 60-80% of circulating leucocytes. Gabriel and 

Kinderman (1997) demonstrated post-exercise neutrophilia is more pronounced in 

exercises of long duration (>1.5 hours) rather than HI. Lymphocytes (particularly the 

CD3+ subsets) show an increase during exercise and immediately post-exercise, with 

CD3+CD8+ showing a greater relative increase in concentration (Gleeson & Bishop, 

2005), but declining quickly and reaching below pre-exercise values one hour into 

recovery. Post-exercise distribution of CD19+ lymphocytes in the circulation has been 

described in literature as ‘decreased’ (Morgado et al., 2014), ‘unchanged’ (Natale et al., 

2003; Shek, Sabiston, Buguet, & Radomski, 1995) and ‘increased’ (Nielsen, Secher, 

Christensen, & Pedersen, 1996). Exercise intensity dictates the magnitude and duration 

of NK lymphocyte (CD3-CD56+) mobilization (Gabriel, Urhausen, & Kindermann, 1992), 

with reports of an increase of over 500% from pre-exercise values (Gabriel & 

Kindermann, 1997), contrary to the previously described lymphocyte sub-populations 

(Gleeson & Bishop, 2005). These changes observed in leucocyte sub-populations after a 

single bout of exercise have been attributed to the increase in apoptosis (via increase in 

ROS, glucocorticoids and/or Fas ligand) (Krüger & Mooren, 2014) and increase in the 
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concentration of catecholamines (mainly adrenaline and noradrenaline), cortisol, 

cytokines (including GM-CSF, IL-6, IL-1, IL-17, IL-23 (Sugama, Suzuki, Yoshitani, 

Shiraishi, & Kometani, 2012) and acute phase proteins release during exercise that 

promote leucocyte migration from bone marrow (or marginated pools in organs such as 

spleen, liver and lung) (Hogg & Doerschuk, 1995; von Vietinghoff & Ley, 2008), to 

circulation and onto tissue (Northoff, Weinstock, & Berg, 1994). This dynamic 

redistribution of leucocyte sub-population in peripheral circulation may take up to 24 

hours to return to baseline values (Robson, Blannin, Walsh, Castell, & Gleeson, 1999). 

 

Periods of intensified training, where exercise intensity and training frequency are 

increased, may delay the return of the previously described acute changes in leucocyte 

concentration to baseline values. Five days of intensified training has been shown to 

decrease circulating concentration of CD3+CD4+, CD3+CD8+ and CD3-CD19+ 

lymphocytes from pre-camp baseline values in male soccer players (Malm, Ekblom, & 

Ekblom, 2004). Mochida et al. (2007) compared circulating leucocyte concentration 

changes in female collegiate judoists pre- and post-exercise following a 64-day training 

period and an intensified 6-day training period. Prior to the habitual 64-day training 

period, a 67% increase in concentration of circulating neutrophils was observed, while 

after the training camp, only a 34% increase in circulating neutrophils was observed. 

While a significant increase in neutrophil to leucocyte ratio was observed after both 

training modes, the percent change in this ratio from pre- to post-exercise before the camp 

was 32% while after the camp was only 7% (Mochida et al., 2007). After four weeks of 

intensified training, male triathletes exhibited a lower circulating neutrophil concentration 

compared to the group that maintained normal training (Coutts, Wallace, & Slattery, 

2007). The functional capacity of these leucocyte sub-populations, however, is not 

necessarily related to changes in concentration (Smith, 1997).  

 

While activation of neutrophils, evidenced by changes in their phagocytic, oxidative 

capacity and degranulation functions, has been described after a single bout of exercise 

(Gray et al., 1993; Peake, 2002; Pyne, Smith, et al., 2000; Robson, Blannin, Walsh, 

Castell, et al., 1999), few have considered multiple training sessions per day, as it is 

routinely scheduled for elite athletes in intensified training periods (see supplement 1 - 

Table A). Prasad et al. (1991) has demonstrated that pre-stimulated neutrophils have 

reduced capacity of both production and release of ROS. Even though this research group 

demonstrated a recovery in ROS production (measured through chemilumenscence) after 
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2 hours it is not clear if multiple stimulations (i.e. multiple training sessions per day) 

would provide similar results. Introduction of interval training sessions in a 2-week 

training period has been shown to significantly decrease neutrophilic degranulation in 

elite male triathletes (Robson, Blannin, Walsh, Bishop, & Gleeson, 1999). Elastase (a 

product of degranulation) released per neutrophil decreased after a 2-week HI training 

period was introduced amidst a 4-week training camp (Robson-Ansley (Robson-Ansley, 

Blannin, & Gleeson, 2007). The capacity to produce an oxidative burst, a vital anti-

bactericidal function of neutrophils, showed significant decrement after only one week of 

intensified training in cyclists (Lancaster et al., 2003). Nieman et al. (2014) showed that, 

the insertion of a 3-day intense training cycle in the 5th week of a 12 week period, caused 

decrements in neutrophilic phagocytic and oxidative burst capacity. These functions 

remained decreased after 38 hours post-exercise by 27% and 12%, respectively. 

Interestingly, this same group did not find any significant difference between sporting 

disciplines, highlighting that in either cycling or running, the intensity of the exercise 

performed dictated the decrement in neutrophil function, rather than the mode of exercise 

undertaken (Nieman et al. 2014). Even though the clinical significance of such variations 

is still to be elucidated, the significant perturbation of the immune system and the 

increased susceptibility to opportunistic infections induced by the previously stated 

stimuli are well established (Gleeson, 2006). 

 

While cellular immunity is highly efficient in exterminating pathogens, other 

physiological mechanisms are activated once inflammation and/or infection are perceived. 

One of the strategies is pathogen starvation via iron sequestration as part of the APR. This 

mechanism is governed by increased circulation of iron-regulating hormone, hepcidin, in 

response to increased concentrations of the pro-inflammatory cytokine IL-6 (Kemna, 

Pickkers, Nemeth, van der Hoeven, & Swinkels, 2005; Nemeth et al., 2004; Wrighting & 

Andrews, 2006). Acute changes in iron parameters have been observed after both 

moderate and HI single training sessions, indicating that exercise is a sufficient stimulus 

to perturb iron homeostasis (Cordova Martinez & Escanero, 1992; Newlin et al., 2012; 

Roberts & Smith, 1990; Skarpanska-Stejnborn, Basta, Trzeciak, & Szczesniak-

Pilaczynska, 2015). Exercise intensity impacts circulating iron parameters, as research 

showed that while incremental running (Bruce protocol) caused a 37% decrease in serum 

iron, running at 50% HR for 30 minutes at constant speed only caused a 17.4% decline in 

serum iron levels in national-level female taekwondoists (Rahmani-Nia, Rahnama, & 

Masoumi, 2007). This same group also noted a significant increase in sTfR concentration 
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post-incremental running, signalling the increased cellular requirement for iron 

acquisition. Further, exercise-induced fluctuations in iron parameters seem to be more 

pronounced in trained subjects when compared to their untrained counterparts (Haymes 

& Spillman, 1989; Schumacher, Schmid, Grathwohl, et al., 2002). 

Recently, attention has been paid to the requirements for iron that may arise during this 

period of iron sequestration. It is well established that leucocyte populations, such as 

lymphocytes, require iron for proliferation, activation and DNA synthesis (Breuer, 

Epsztejn, & Cabantchik, 1995; Neckers & Cossman, 1983). Using transferrin receptor 

(CD71) expression in the cellular membrane Broadbent (2011) identified greater CD4+ 

lymphocyte requirement for iron in male triathletes throughout an endurance training year 

through flow cytometric identification of a double positive lymphocyte population 

(CD4+CD71+) in periods of increased training volume and intensity preceding 

competition. These findings were interpreted as having an inverse relationship with 

intracellular iron stores as CD71 expression provides an index of iron requirement of an 

individual cell. According to the author, this suggests that the increased lymphocyte 

proliferation could be correlated with a decrease risk of infection, as the only two URTI 

cases reported occurred in the same month in which the lowest percentage of CD4+CD71+ 

lymphocytes was recorded (Broadbent, 2011). Little is known about iron requirements in 

other leucocyte populations, assessed via the expression of CD71, particularly concerning 

exercise. 

 

The aim of this study was to identify variations of immune function and iron status in 

elite female kayak athletes during a period of intense training. To do so, acute alterations 

were analysed measuring variations from pre- to post-training on each testing day as well 

as a comparison between pre- and post-training samples throughout the training camp. 

These investigations will quantify the impact of a period of increased training load on the 

distribution and function of specific leucocyte subsets, as well as iron requirements in 

elite female kayak athletes. 

 

 

 

 



  

111 
 

Methodology 
 

Participants 

 World-class female kayak athletes (n=7, age=26+3.4 years, mass=73.2+5.6kg, ∑7skinfold= 

76.2+15.6mm, V̇O2peak=52.0+3.3 mL/kg/min) participated in this study. This select group 

of athletes is comprised of two medallists at World Championships, two ranked within 

the top nine in World Championships, three are medallists at the Under 23 World 

Championships and a member of the K4 which placed 11th  in World Championship.  

These athletes were all national medallists and pre-selected to take part in the training 

camps from which the Australian Olympic Kayak team would be selected.  

 

Training 

The targeted intensity-focused camp was held in April 2015, 17 weeks before the 2015 

International Canoe Federation Canoe Sprint and Para-canoe World Championships held 

in Milan, Italy- a Rio 2016 Olympics qualifying event. The 10-day intensified training 

period in this study consisted of three daily sessions. The initial session (AM1) and the 

second morning session (AM2) were both “on-water” sessions while the third session (PM) 

entailed strength training followed, on occasion, by a paddling session. Training was 

divided into eight training zones according to Bullock et al. (2013), detailed in the 

methodology section of this thesis (Methodology - Table 3-4). In the AM1 session athletes 

trained in both T2 and T5 zones, coming up to T7 and T8 on force testing and time-trial 

days, respectively. The AM2 session usually involved ‘mini-max’ tests (i.e. 750m ‘on-

water’ step test – see supplement I - Table A and B) where athletes accumulated 

kilometres in the T6 zone. Finally, the PM session was held at the gymnasium with 

specific individualized strength programmes and was  complemented by  either 30 

minutes of cross training or 15 second bouts of on-water HI, high resistance interval 

training at T8 zone. All training protocols and scheduling were developed and supervised 

by the women’s senior kayak coaches and AIS physiologists. A detailed training schedule 

and results from the on-water 750m step test (performed on testing day 1 under AIS senior 

physiologist’s supervision) are provided in the supplement I (Table A and B). 

 

The daily training loads throughout the entirety of the training camp were analysed based 

on the athlete’s daily input of session RPE onto the on-line assessment method previously 
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established by AIS.  Session RPE was based on the Borg Scale (6-20) where increments 

are linear, reflecting the intensity of the stimulus and physiological responses to it (i.e. 

heart rate and V̇O2). Training load was quantified based on the product of session RPE 

and session duration (Foster et al., 2001), recently validated for kayak athletes (Oliveira-

Borges et al., 2014).  After every training session athletes recorded a RPE through the on-

line assessment method previously established by AIS. A seven-day rolling average of 

the training loads was considered as cumulative training load.  

 

Blood collection  

On four non-consecutive days capillary blood was collected from the athlete’s earlobe 

after 5-10 minutes of vasodilative stimulation with Finalgon® cream (Boehringer 

Ingelheim, Germany) into heparinised capillary tubes (300µL) containing serum 

separator gel (Kabe Labortecknik, Germany). Capillary samples were collected between 

05:00-06:30 hours prior to AM1 (‘pre-training’) and at the end of the PM training session 

(‘post-training’), between 15:00-16:30 hours. On the first and last capillary collection day, 

a third sample was collected immediately after the AM2 session (Table 5-1). 

Table 5-1 – HI camp schedule 
Date  21 22 23 24 25 26 27 28 29 30 1 
 T W Th F S Su M T W Th F 

Gold Coast Training Camp                    

Athlete Arrival/Departure               
Capillary samples 
 (Immune parameters) 

 TDay 1  TDay  2   TDay 3  TDay 4   

Capillary samples  
(Iron parameters) 

            

Schedule of training camp held in April 2015 at AIS Gold Coast training centre. Testing days (TDay) will 
be later referred to in-text.  

 

Blood samples were immediately transported to the laboratory where analysis of 

leucocyte phenotypes through monoclonal antibody labelling, neutrophilic phagocytosis 

of FITC labelled E.coli and PMA stimulated oxidative burst function were independently 

performed (described in the Methodology chapter (3) of this thesis). Throughout all 

training days the iron requirement by leucocytes was analysed through cell surface 

expression of transferrin receptor (CD71). Remaining capillary blood ( ̴ 150µL) was 

centrifuged and serum was stored at -80°C for analysis of iron parameters. Serum iron, 

transferrin, sTfR and UIBC were analysed by the COBAS Biochemical Analyser 400 plus 
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(Roche Diagnostics, Switzerland). Capillary samples were diluted 1:3 reaching total 

volume of 100µL required for analysis.  Serum hepcidin concentration was performed in 

once-only thawed samples through commercially available ELISA kit (Quantikine® 

ELISA DHP250 – R&D Systems), abiding by manufacture’s manual. Samples were read 

in 450nm with wavelength correction at 570nm. Samples were analysed in duplicate and 

mean intra-assay CV was 6.7%.  

 

Statistical Analysis 

Acute responses to the training day, from pre AM1 session to post PM session, were 

analysed through paired samples t-test after data met the required assumptions. Where 

data failed normality assumptions, a Wilcox Signed Rank test was performed. 

Significance was set at α < 0.05/4 to correct for the four testing days analysed together 

(Bonferroni adjustment). Also using the acute measures (pre AM1 session to post PM 

session), an exploratory Pearson’s product-moment correlation was made to determine 

the existence, if any, of a linear association between the variables analysed. Calculation 

of effect size (ES) was performed in every paired sample t-test according to Cohen’s d, 

where difference between means is divided by the half the sum of the standard deviations 

(Cohen, 1988). Effect size was considered “small” if d < 0.2, “medium” if d = 0.5 and 

“large” if d > 0.8. 

 

Combined analysis of the samples obtained pre AM1 session from each training day 

provided information on the daily variation of the parameters analysed. Repeated 

measures linear mixed model analysed the impact of each training day to phenotypical 

distribution of leucocyte sub-populations and the neutrophilic functions described above. 

Finally, a repeated measures linear mixed model analysis was used to examine the effect 

of changes in the expression of antigens on the granulocyte’s surface on the capacity of 

these leucocytes to ingest fluorescently labelled E.coli. 

 

Selecting a repeated measures mixed model for statistical analysis preserved the 

independence between the athletes while taking into account the correlation between the 

repeated measures (training day). Mixed modelling, used here and in the subsequent 

chapters, accounted for the small sample size (Bell et al., 2010) and for possible missing 

data points (particularly from AMS data), reviewed in Ibrahim and Molenberghs (2009). 

All models were initially fitted for fixed effects based on the smallest Akaike’s 
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Information Criterion (AIC) and lowest number of parameters, using an estimation 

method of maximum likelihood. Once fixed effects were determined, different covariance 

structures for repeated and random effects using a restricted maximum likelihood 

estimation criterion were compared. This model was selected based on smallest values 

for AIC for both repeated and random covariance structures. As days were repeated, and 

the correlation between of the outcome was expected to decrease as times points got 

further apart, the best covariance structure for the repeated measures was auto-regressive 

1 (Beaumont, 2012). Taking into account each athlete’s baseline and slope, a random 

intercept and slope (day) was applied using a scale identity covariance structure. The 

model’s suitability was determined by checking normality, multicollinearity and 

homoscedasticity of the residuals. Then, model-predicted values were plotted against 

residuals and measured values. Residuals were also explored for outliers. 

 

Results 
 

Training Load 

The HI camp accumulated a total of 122 km over 632 minutes of training throughout a 

10-day period. The allocation of time and distances per training zone is detailed in table 

5-2. 

 

Table 5-2 – Training distance and time per training zone  
T1 T2 T3 T4 T5 T6 T7 T8 

Total Distance (km) 29.0 44.5 9.5 19.2 8.4 10.2 0.9 0.2 
Total Time (minutes) 174.0 244.7 47.5 86.4 33.6 42.0 3.2 0.7 

 

No significant differences between training loads on the testing days were found. 

However, there were significant differences between training loads throughout the camp. 

Figure 5-1a shows variability in training load per day of the training camp. Further, 

calculated cumulative training load, which considered training load from previous 

training days, showed significant difference from the beginning to the end of the training 

camp (Figure 5-1b). The constant increase in cumulative load (Figure 5-1b) highlighted 

significant differences from TDay 1 to TDay 2 (p=0.025), TDay 3 (p<0.001) and TDay 

4 (p<0.001). 
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Figure 5-1 – Daily and cumulative training load per day of camp 
a. b. 

  

Solid bars represent mean values and error bars represent SD. 
* Training load was significantly different (p<0.05) to that measured on previous training day.  
# Cumulative training load significantly different (p<0.05) to TDay 1 (22-Apr).  
Testing days are marked in red. 26-April is highlighted as a full resting day, hence no training load. 
 

 

Acute Changes 

Leucocyte phenotypical distribution and expression 
 

Specific lymphocyte sub-populations (expressed as a percentage of total lymphocytes) 

fluctuated from pre- to post-training samples (Figure 5-2 a-d). CD3+CD8+ lymphocyte 

concentration was increased in the post-training sample in TDay 1, but declined from pre-

sample in every other training day, reaching significance on TDay 3 (p=0.009). The 

percentage of B lymphocytes (CD3-CD19+) in the sample collected after training was 

increased from pre-training values on TDay 2 (p=0.009) and TDay 4 (p=0.004). Post-

training samples showed a consistent trend towards a decline in the percentage of 

circulating CD3-CD56+ lymphocytes in every testing day, with decrements of over 40% 

from daily baseline values (Figure 5-2d).  
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Figure 5-2 – Distribution of circulating lymphocyte subsets pre- and post-training  

a b 

  

c d 

  

                                                              Pre-training            Post- training        

 
Solid bars represent mean values and error bars represent SD.   
* Significant difference from pre-training values (p< 0.01) 
‡ Significant difference in pre-training values compared to baseline (pre TDay 1) (p< 0.05) 

 

Acute changes, measured per day, from pre- to post-training, did not show any significant 

changes in granulocytic expression of CD11b and CD18, while the expression of CD66b, 

CD16 and CD71 varied throughout the camp (Figure 5-3a-e). A significant (p=0.012) 

increase in CD66b expression was observed in TDay 1 from pre- (1421+256 AU) to post-

training (1727+378 AU) (Figure 5-3d). On TDay 3, a significant decline (p<0.001) was 

observed in the expression of CD16 from pre- (7875+2000 AU) to post-training samples 

(6762+1652 AU) (Figure 5-3c).   

 

The percentage of granulocytes expressing the respective markers also varied throughout 

the camp (Figure 5-3 a-e). TDay 3 was marked by significant decrements in the 

percentage of granulocytes positive for CD11b, CD18, CD66b and CD16. The results 

observed in TDay 3 were in contrast to the results obtained for TDay 2 and 4 where the 
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percentage of granulocytes positive for CD16, CD66b, CD11b and CD18 in the post-

training sample was increased (TDay 4 only) (Figure 5-3 a-e). The percentage of 

granulocytes expressing CD71, declined significantly on the next testing day (p=0.005). 

For further details please see Supplement I- Table C. 

 

Figure 5-3 – Phenotypical expression and distribution of granulocytes pre- and post-
training  
a. b. 

  

c. d. 

  

e.  

 

 

Legend 

% of total neutrophils expressing 
respective surface antigen 
 
Antigen expression (MFI) 

 

 

 Solid bars represent mean values and error bars represent SD.  df = 6 for all paired T-tests performed. 
 ‡ Significant at p< 0.01 (bar graph)   Ɏ Significant at p< 0.01 (line graph)      
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Granulocyte function 

A significant increase (p=0.001) in phagocytic capacity (measured by MFI) was observed 

in the post-training sample of TDay 2 (2785+1277 AU), compared to the pre-training 

sample (742+432 AU) obtained on the same day (Figure 5-4). On TDay 3 however, there 

was a significant reduction (p<0.001) in ingested E.coli observed in the post-training 

sample (1174+838 AU) compared to that obtained prior to training (2750+937 AU).  

 
Figure 5-4 – Phagocytosis of E.coli by granulocytes 

 
Solid bars represent mean values and error bars represent SD.   
* Values differ significantly (p<0.01) between pre- and post-training samples. 

‡ Significant difference between pre-samples compared to baseline (pre-sample TDay 1). 
 
 

The percentage of granulocytes participating in phagocytosis of E.coli varied throughout 

the training camp. An increase from pre- to post-training of 3.4% and of 18.8% in TDay 

1 and TDay 2, respectively, were followed by a significant 20% decline in TDay 3 

(p=0.008) (Table 5-3). 

 

Table 5-3 – Granulocyte phagocytosis 
 

    Mean SD % 
Change t p ES 

Phagocytosis             
(% of total 

granulocytes ) 

TDay1 
  

Pre 94.6 2.2 3.4 -2.845 0.029 1.35 

Post 97.9 2.6  2.000 0.043* 0.77 

TDay2 
  

Pre 80.2 17.4 18.8 -2.674 0.037 1.46 
Post 95.2 3.2  0.000 0.018* 0.89 

TDay3 
  

Pre 93.9 3.0 -20.1 3.936 0.008‡ -2.11 
Post 75.0 14.9        

TDay4 
  

Pre 96.2 3.0 -2.7 1.852 0.113 -0.63 
Post 93.6 5.2        

Values in italics – Due to violations of normality a Wilcoxon signed rank test were performed. For these 
days, columns should read, t = T and Cohen's d = r. df = 6 for all paired T-tests performed. * Significant at 
p<.05 ‡ Significant at p<0.01 
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H2O2 generation through stimulation of oxidative capacity showed a significant decline 

of over 60% from pre- to post-training samples in every training day (Figure 5-5). The 

percentage of granulocytes participating in PMA-stimulated ROS formation (measured 

by H2O2 generation) was significantly decreased from pre- to post-training samples (Table 

5-4).  

Figure 5-5 – Granulocyte stimulated oxidative burst capacity 

 
Solid bars represent mean values and error bars represent SD.   

* Significant at p<.05 ‡ Significant at p <0.01 
 
 
 
Table 5-4 – Effects of exercise on granulocytes’ stimulated capacity to generate ROS   

     Mean SD % Change t p ES 

Oxidative 
Burst 

  (% of total 
granulocytes ) 

TDay1 Pre 94.9 3.5 2.6 -1.326 0.233 0.81 
  Post 97.2 2.2        
TDay2 Pre 93.6 4.3 -32.2 2.694 0.036* -1.82 
 Post 63.3 29.1        
TDay3 Pre 96.9 1.5 -74.1 17.964 <0.001‡ -11.73 
  Post 25.1 10.8        
TDay4 Pre 97.1 2.7 -41.0 3.732 0.01‡ -2.63 
  Post 57.1 27.7  0.00 0.018* -0.89 

Values in italics – Due to violations of normality Wilcoxon signed rank test was performed. For these days, 
columns should read, t = T and Cohen's d = r. df = 6 for all paired T-tests performed. (*) Significant at p< 
0.05 (‡) Significant at p <0.01 
 

Iron Studies 

While there was a trend to decreases in serum iron concentration and consequently 

transferrin saturation found in the post-training samples, statistical significance was not 

reached. Such changes were accompanied by increases in serum transferrin, UIBC and 

TIBC, again, without reaching statistical significance. At the end of TDay2, the 
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concentration of serum hepcidin was significantly increased by 78% from the pre-training 

value (Table 5-5). 

Table 5-5 – Iron parameters prior to and at the end of TDay 2 

 Pre-training Post-training Mean % 
Change t p ES 

 Mean SD Mean SD 
Serum Iron (μmol/L) 10.5 3.2 9.6 4.6 -7.3 .516 .625 -.24 
Transferrin (μmol /L) 30.7 3.7 35.8 9.7 16.7 -1.595 .162 .76 
UIBC (μmol/L) 35.0 8.1 42.0 11.6 22.7 -1.780 .125 .72 
TIBC (μmol/L) 45.5 7.1 51.6 15.0 14.5 -1.128 .302 .55 
TSAT (%) 23.7 7.9 18.3 5.8 -20.8 2.359 .056 -.78 
Hepcidin (nM) 2.4 0.6 4.2 1.2 78.1 -4.179 .025* 2.06 

* Significant at p<0.05 df = 6 for all paired 2-tailed T-tests performed.  
 Values were converted from ng/mL to nM, based on 1 ng/mL= 0.358 nM for the predominantly occurring 
hepcidin-25 (Ganz, 2003b, 2008) 
 
 
Using the data collected during the second training day, Pearson’s two-tailed correlation 

between the variables depicting iron parameters and neutrophil functions and phenotypes 

was assessed (Supplement I - Table D). Pre-training samples were analysed separately 

from post-training samples. Pre-training samples showed a very strong positive 

correlation between serum iron and CD11b (r=.861, n=7, p=.013) and CD18 (r=.800, n=7, 

p=.031) expression. These correlations were not present in post-training samples, with 

values, although non-significant, showing a trend towards a moderate negative correlation. 

CD71 showed a very strong positive correlation with UIBC (r=.826, n=7, p=0.022) and 

TIBC (r=.830, n=7, p=0.021) and a strong negative correlation with CD16 (r=-.774, n=7, 

p=0.041) were observed in the pre-training sample, but not in the post-training sample. 

The sample collected at the end of the second training day showed a very strong 

correlation between CD16 and transferrin (r=.876, n=7, p=0.010), UIBC (r=.846, n=7, 

p=0.016) and TIBC (r=.867, n=7, p=0.012). Further, there was a strong negative 

correlation between E.coli ingested and TSAT (r=-.783, n=7, p=0.037) in the pre-exercise 

sample but not in the post-training sample. The post-training sample showed a very strong 

correlation between E.coli ingested and expression of CD66b (r=.844, n=7, p=0.017) and 

CD11b (r=.844, n=7, p=0.017). There was a very strong positive correlation between 

expression of CD11b and CD18 in both pre- (r=.984, n=7, p<.001) and post-training 

(r=.954, n=7, p=0.001) samples. CD66b was very strongly correlated with expression of 

CD11b (r=.857, n=7, p=0.014) and CD18 (r=.840, n=7, p=0.018) in the post-training 

samples.  
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Daily Variations 

Cell concentration and phenotype expression 

Despite showing no significant change from pre- to post-training samples, the percentage 

of circulating CD3+CD4+ lymphocytes was increased by 10.5% and 18.6% from baseline 

on pre-training samples obtained on TDay2 (p=0.020) and 4 (p=0.016), respectively 

(Figure 5-2a). Contrarily, the CD3-CD56+ sub-population, which underwent  the greatest 

variation from pre- to post-training, did not show any significant cumulative effects when 

comparison between pre-training samples per training day was made (Figure 5-2d). 

CD3+CD8+ lymphocytes increased by approximately 20% from baseline on pre- training 

samples on TDay2 (p<0.001) and TDay3 (p=0.001), and, despite a small decline on 

TDay4, values were still 16% higher than baseline values (p=0.018) (Figure 5-2b). B 

lymphocytes expressing CD3-CD19+ demonstrated an opposite trend, declining ~20% 

from baseline on pre-training TDay2 (p=0.002), TDay3 (p=0.007) and TDay4 (p=0.006) 

samples (Figure 5-2c). 

 

Samples obtained prior to training differed between days, suggesting a possible effect of 

the training loads imposed (Table 5-6). At the onset of the second training day, values for 

adherence-related surface receptors CD11b and CD18 were significantly decreased 

(p=0.008 and p=0.003, respectively) from baseline values by approximately 30%. Values 

for expression of surface receptors CD16 and CD66b obtained prior to the training on 

TDay2 were also significantly reduced (p<0.001 and p=0.010, respectively) by ~15% 

from baseline values. Neutrophilic CD11b and CD18 expression was still decreased on 

pre-training samples obtained on TDay3 (p=0.002 and p=0.006, respectively), as was the 

expression of CD16 (p=0.008). Expression of CD11b showed a tendency to return to 

baseline values but was still significantly decreased on pre-training TDay4 samples 

(p=0.034). Contrarily, CD16 expression decreased from the previous testing day, showing 

even further decline compared to baseline (p=0.003) (Table 5-6). Post-training samples 

did not show any significant differences between days. 

 

The percentage of circulating granulocytes expressing CD11b, CD16, CD18 and CD71 

varied throughout the training camp (Table 5-6). Circulating CD11b+ granulocytes 

showed a significant increase from baseline (pre-training TDay1) on TDay3. This testing 

day was also marked by a significant increase in CD16+ granulocytes and a significant 

decline in CD71+ granulocytes when compared to baseline. The percentage of gated 



  

122 
 

granulocytes however, showed a declining trend from baseline in every pre-training 

sample obtained thereafter (Table 5-6). 

Table 5-6 – Cumulative effects of training on selected granulocyte phenotypes 

 

  

Mean SD % Change 
from Day 1 

p 
(compared 
to TDay 1) 

% Change 
from 

previous 
testing day 

p                 
(compared to 

previous 
testing day) 

CD11b 
MedianFI 

(AU) 

TDay1 4940 916         
TDay2 3489 1063 -29.4 0.008‡ -29.4 0.048 
TDay3 3582 920 -27.5 0.002‡ 2.7 1.000 
TDay4 3889 1108 -21.3 0.034 8.6 1.000 

CD16 
MedianFI 

(AU) 

TDay1 8511 1913     
TDay2 7363 1871 -13.5 <0.001‡ -13.5  
TDay3 7875 2007 -7.5 0.008‡ 7.0 0.150 
TDay4 7670 2205 -9.9 0.003‡ -2.6 1.000 

CD18 
MedianFI 

(AU) 

TDay1 2486 456     
TDay2 1827 490 -26.5 0.003‡ -26.5  
TDay3 1831 359 -26.3 0.006‡ 0.3 1.000 
TDay4 2203 441 -11.4 0.219 20.3 0.411 

CD66b 
MedianFI 

(AU) 

TDay1 1421 256     
TDay2 1226 257 -13.7 0.01‡ -13.7 0.063 
TDay3 1355 238 -4.6 0.353 10.5 0.425 
TDay4 1370 277 -3.6 0.487 1.1 1.000 

CD71 
MedianFI 

(AU) 

TDay1 706 251     
TDay2 553 102 -21.7 0.19 -21.7 1.000 
TDay3 650 132 -7.9 0.461 17.5 1.000 
TDay4 804 206 13.9 0.336 23.7 1.000 

CD11b 
(% of 

granulocytes) 

TDay1 98.3 1.1     
TDay2 98.5 0.4 0.2 0.531 0.2 1.000 
TDay3 99.5 0.1 1.3 0.002‡ 1.1 0.036 
TDay4 98.9 0.5 0.6 0.105 -0.7 0.316 

CD16 
(% of 

granulocytes) 

TDay1 93.9 3.0     
TDay2 95.2 1.5 1.4 0.044* 1.4 0.263 
TDay3 97.1 1.8 3.4 <0.001‡ 1.9 0.049 
TDay4 95.8 2.4 2.0 0.023* -1.3 0.274 

CD18 
(% of 

granulocytes) 

TDay1 98.8 1.5     
TDay2 99.8 0.2 1.0 0.046* 1.0 0.278 
TDay3 99.7 0.3 0.9 0.053 -0.1 1.000 
TDay4 99.6 0.3 0.7 0.092 -0.1 1.000 

CD66b 
(% of 

granulocytes) 

TDay1 98.1 1.7     
TDay2 97.9 1.4 -0.2 0.793 -0.2 1.000 
TDay3 99.0 0.6 1.0 0.146 1.1 0.748 
TDay4 98.6 0.8 0.5 0.451 -0.5 1.000 

CD71 
(% of 

granulocytes) 

TDay1 6.3 2.9     
TDay2 7.2 4.3 14.0 0.486 14.0 1.000 
TDay3 2.9 2.2 -53.8 0.007‡ -59.5 0.023 
TDay4 5.1 3.3 -19.3 0.34 74.7 0.599 

Granulocytes 
(% of 

leucocytes) 

TDay1 40.9 7.7     
TDay2 33.1 5.4 -19.1 0.026* -19.1 0.159 
TDay3 37.4 8.6 -8.7 0.31 12.8 1.000 
TDay4 32.6 10.7 -20.3 0.038* -12.7 0.932 

*Significant at p<0.05    ‡ Significant at p<0.01 
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Granulocytic Function 

When comparing all pre-training samples, the percentage of granulocytes participating in 

phagocytosis of E.coli did not differ from baseline to subsequent training days. However, 

E.coli phagocytosis, as indicated by MFI, was significantly decreased in samples obtained 

prior to TDay2 (2032+687 AU) compared to baseline (3805+1002 AU p=0.001), TDay3 

(3885+1250 AU p<0.001) and TDay4 (4130+1083 AU p<0.001) (Figure 5-1). 

 

Interaction of granulocytic functional capacity and antigenic expression was modelled 

considering repeated measures for day. As day of testing became further from baseline, 

auto-regressive 1 covariance structure was determined for repeated effects of day. The 

number of E.coli ingested, quantified through fluorescence intensity, was considered the 

outcome, while considering day a factor and each CD expression a covariate. Due to the 

small sample size, the effect of each surface antigen expression in granulocytic 

phagocytosis of E.coli was modelled separately. Using only samples obtained prior to 

each training day, linear mixed model found a significant effect of the expression of 

CD11b (p=0.032) and CD18 (p=0.038) on the phagocytic capacity of granulocytes. 

Samples obtained at the end of each training day did not show any effects of antigen 

expression in the number of bacteria ingested by granulocytes. 

 

Despite the significant acute differences from pre- to post-training described above, when 

analysing all pre-training samples between the testing days, no cumulative effect of 

exercise could be observed in granulocytic involvement or in its capacity to produce ROS 

(Figure 5-5).  

 

Discussion 
 

 

This study examined the effect of one HI training camp on leucocyte sub-populations, 

granulocytic function, and iron parameters in elite female kayak athletes. Results from 

this study demonstrate the exercise-induced (acute) phenotypical heterogeneity of 

circulating lymphocytes and granulocytes and highlighted cumulative effects of exercise 

on these populations.  Granulocytic functional receptors for FCγRIII (CD16) and 

adhesion (CD11b/CD18) demonstrated decreased expression from TDay1 throughout the 

HI camp. The latter finding correlated with the decrease in neutrophilic function of 
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phagocytosis of E.coli from TDay1 in the all the remaining resting samples obtained 

throughout the HI camp. In contrast, the cumulative effects of exercise were not observed 

in ROS production, despite its acute pre- to post-training variations.  

 

Exercise-induced changes in lymphocyte distribution have been described extensively 

(Kakanis et al., 2010; Morgado et al., 2014; Natale et al., 2003; Ronsen et al., 2001). 

Malm et al. (2000) identified an increase in muscle concentration of CD56+ lymphocytes 

post-exercise. Muscle damage, quantified by biochemical markers (creatine kinase) and 

inflammatory markers (C-reactive protein and IL-6), has been reported post-exercise, 

particularly eccentric exercise (Margaritelis et al., 2015). The decline in circulating levels 

of CD56+ lymphocytes observed in this study (Figure 5-2d), may be rationalised by the 

proposed participation and regulatory function of NK cells in muscle repair (Malm et al., 

2000; Robertson, Grounds, & Papadimitriou, 1992). Similarly to Nielsen et al. (1996), 

who observed a 2-fold increase in CD19+ lymphocytes after a first bout of maximal 

exercise and a 5-fold increase after the last (sixth) bout of maximal exercise in elite rowers, 

this study observed an increase in CD19+ in samples collected post-training (Figure 5-2c). 

It is important to highlight that Bertouch et al. (1983) and Huang et al. (2015), have 

demonstrated significant diurnal variation in CD19+ lymphocytes, highlighting their 

increase in circulating concentration and percentage on samples obtained in the afternoon 

(from 1500-1800 hours) compared to samples collected at 0800 hours. The diurnal peak 

observed by the aforementioned authors corresponds to the sampling time of this study. 

When analysing samples collected at the same time (prior to training – all before 0700 

hours), the percentage of CD19+ lymphocytes throughout the training camp showed 

significant differences compared to baseline (TDay1). It has been established that 

throughout the recovery period (from 1 hour post exercise) the concentration of this 

population, as well as all other lymphocyte sub-populations, decreases from pre-exercise 

values. However, studies have typically shown lymphocyte concentrations have returned 

to baseline values with 24 hours rest post-exercise (Kakanis et al., 2010), thus the decline 

in the percentage of circulating CD19+ lymphocytes observed in the daily pre-training 

values (Figure 5-2c) may stem from the cumulative effect of consecutive HI training days. 

 

Research has shown that exercise intensity is an important factor in determining the 

phenotypical distribution of circulating granulocytes (Peake et al., 2005; Shephard, 2003). 

A significant ~5% decline in the percentage of circulating CD11b+, CD18+, CD16+ and 

CD66b+ granulocytes from pre-training to post-training was observed on the third testing 
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day (Figure 5-3), suggesting migration of these populations from the circulation into 

tissues. The observed decline could be explained by the successful infiltration of these 

populations towards muscle tissue as to repair exercise-induced muscle damage. Malm 

(2000) demonstrated a 12-fold increase in the concentration of CD11b+ neutrophils in 

muscle biopsies obtained six hours post-eccentric exercise. Further studies corroborate 

the notion of exercise-induced neutrophilic infiltration into tissues by showing an 

increased concentration of CD16+ (Paulsen et al., 2010) and CD66b+ (Vella et al., 2016) 

granulocytes in muscle tissue immediately after exercise with significant peak three hours 

of post-exercise. 

 

Granulocytic surface antigen expression is correlated with function- and activation-

induced cytoplasmic rearrangements. Up-regulation of CD66b in the neutrophilic plasma 

membrane, as observed in the post-training samples obtained on TDay1 (Figure 5-3d), 

has been associated with degranulation of specific granules (location of CD66b 

intracellular stores) (Skubitz, 1999). Degranulation post-exercise has been reported 

previously (Gray et al., 1993; Peake, 2004; Robson, Blannin, Walsh, Bishop, et al., 1999). 

The observed 13% increase in CD11b expression from pre- to post-training on TDay1 

further substantiates the suggestion of neutrophilic degranulation post-training (Figure 5-

3a). CD11b is expressed sub-cellularly in secretory vesicles, gelatinase and specific 

granules (Sengeløv, Kjeldsen, Diamond, Springer, & Borregaard, 1993). At the earliest 

perception of chemoattractive signals, secretory vesicles are mobilized to increase 

membrane expression of CD11b and ensure firm adhesion between neutrophil and 

endothelium ICAM-1 (Borregaard, Kjeldsen, Lollike, & Sengeløv, 1995). Non-localized 

(i.e. not restricted to adhesion site) up-regulation of CD66b on neutrophilic cellular 

membrane has been reportedly triggered within 60 seconds of neutrophil adhesion 

(Naucler, Grinstein, Sundler, & Tapper, 2002).  

 

Curiously, contrary to the observed post-exercise increase in neutrophilic CD16 

expression in TDay2, CD16 expression in this population was significantly decreased on 

TDay3 (Figure 5-3c). Such decline in this FcRγIII receptor expression has been 

previously described post-exercise (Peake, 2004). CD16 is sensitive to cleavage by 

elastase (Tosi & Berger, 1988). Therefore, if, as mentioned previously, exercise is 

contributing to neutrophilic degranulation, and consequently release of elastase (Gleeson 

et al., 1998; Gray et al., 1993; Robson, Blannin, Walsh, Bishop, et al., 1999), it is 

reasonable to believe that such a mechanism may be at least in-part responsible for 
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decreased surface expression of CD16. Up-regulation of CD16 from intracellular stores 

in neutrophils has been shown to occur only once the surface CD16 has been cleaved 

(Tosi & Zakem, 1992). Given the functional importance of CD16 (i.e. phagocytosis; 

Cohen, 1994) , it is not surprising that CD16 is consistently expressed on the neutrophilic 

surface (resting and activated), and the levels of cell surface expression are maintained 

by recruitment of intracellular stores. Increased concentrations of shed CD16 found freely 

in serum have been associated with inflammatory conditions (Fleit et al., 1992; 

Kabutomori, Iwatani, Koh, Fushimi, & Amino, 1993). Not coincidentally, on the same 

day (TDay3) that CD16 expression was decreased post-exercise, so was the granulocytic 

ingestion of E.coli (Figure 5-4). Butcher et al. (2001) have shown a highly significant 

correlation between CD16 expression and phagocytic index (r=0.83; p<0.05). As CD16 

is shed by elastase, possibly the exercise-induced granulocyte pre-activation (via 

cytokines) (Peake et al., 2005), or degranulation post-training, diminishes granulocytic 

capacity to subsequently carry out phagocytosis. 

 

It is important to highlight that the expression of neutrophilic surface antigens analysed 

in this study post-training did not seem to follow a particular trend. While there was a 

tendency towards the increase in expression of CD11b, CD18 and CD66b post-training 

on TDay1 and TDay2, these observations were not noticed on TDay3. Interestingly, all 

granulocyte surface antigens analysed presented decreased  expression in TDay3. 

Lacking a significant difference in the acute training load between the testing days, the 

peculiarity of TDay3 lies on the 24 hour rest the athletes had prior to it (Figure 5-1). After 

the day of rest, values of the expression of CD11b, CD18 and CD66b obtained pre-

training were higher than values obtained on the previous day, but were still lower than 

baseline values (Table 5-6). This shows that consecutive training days with multiple 

training sessions do take a toll on both the distribution and function of leucocytes, and 

highlights the importance of rest to resume optimal functional capacity of the immune 

system. However, based on the inability of the expression of functional-related markers 

to return completely to baseline values, the kinetics of the response remain to be fully 

described as one rest-day is likely to be insufficient to completely recover from exercise-

induced declines in immune function.  

 

Despite post-training increases in most of the neutrophilic surface receptors analysed, 

values pre-exercise on the next testing day were significantly decreased. The post-training 

increase in expression of the surface antigens described marks an activated state (i.e. 
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degranulation), possibly related to exercise-induced increases in the concentration of pro-

inflammatory cytokines (i.e. IL-6, IL-8, G-CSF) and hormones (i.e. cortisol, growth 

hormone), which although not measured here, are well described in literature to influence 

neutrophilic recruitment and functions (Mullen, Windsor, Walsh, Fowler, & Sugerman, 

1995; Shephard, Rhind, & Shek, 1994; Suzuki et al., 2000). The decrease in neutrophilic 

surface antigen expression at least 12 hours post-exercise (overnight), could be due to a 

refractory period neutrophils undergo post-activation. It is this refractory period that has 

been postulated by other researchers as the window of opportunity for opportunistic 

pathogens (Gray et al., 1993; Pyne, 1994; Smith & Pyne, 1997).  While it is appreciated 

that testing is not performed on the same neutrophils tested (i.e. same sample), it is 

plausible that the high physical demand of the HI training maintains increased levels of 

circulating cytokines or other serum factors for longer periods, which would come to 

affect circulating neutrophils hours after the cessation of training.   

 

The stimulated capacity of neutrophils to produce H2O2 was significantly reduced in 

every end of day sample obtained (Figure 5-5). This study employed the use of PMA to 

stimulate, in the presence of intracellular-calcium (Allard, Long, Block, & Zhao, 1999), 

protein kinase C, which phosphorylates cytosolic proteic members of the NADPH 

oxidase, promoting its assembly. Through this methodology, surface receptor binding, 

which would initiate G-protein coupling leading to PIP2 hydrolysis into DAG and IP3 

thus enabling release of intracellular calcium from the endoplasmic reticulum, is by-

passed. The use of this methodology assures that the decrements in ROS were not surface 

receptor-mediated, thus restricting possible mechanisms to the distal part of the signalling 

cascade in which NADPH oxidase assembly and functioning occur. There is evidence 

that NADPH oxidase assembly is not restricted to the neutrophil’s cytoplasmic-

membrane, as it also occurs in specific granules, demonstrable by the presence of 

cytochrome b558 in its membrane (Ambruso, Cusack, & Thurman, 2004; Vaissiere et al., 

1999). PMA is known to promote translocation of NADPH oxidase cytosolic components 

p47phox and to p67phox to both cytoplasmic-membrane bound and specific granule NADPH 

oxidase assembly (Ambruso et al., 2004). It is plausible that pre-training values for 

concentration of ROS produced were a sum of both membrane and specific granule 

NADPH oxidase activity. Therefore, if degranulation did occur post-exercise, as 

previously proposed based on surface antigen upregulation, the amount of H2O2 produced 

post-exercise may not involve a contribution of specific membrane NADPH oxidase, thus 

accounting for the decreased post-exercise values observed (Figure 5-5).  



  

128 
 

Although the correlation matrix (Supplement I – Table D) strengthens this study’s power 

by demonstrating significant correlations between iron parameters and immune 

phenotypes and function, its exploratory nature requires further analysis. When the very 

conservative Bonferroni correction was applied, only the correlation between CD11b and 

CD18 expression was significant. Therefore, it is suggested that future investigations 

should invest in increasing the number of sampling points to allow for a more powerful 

conclusion on the correlation between the variables mentioned.  

 

The marked increase in serum hepcidin concentration observed post-exercise in this study 

reinforces previous findings (Newlin et al., 2012; Peeling et al., 2009a). Interestingly, the 

reported peak in hepcidin concentration three hours’ post-exercise and steady decline 

reaching baseline levels at 24 hours, is a widely recognised response to increased IL-6 

concentration post-exercise (Newlin et al., 2012). The samples in this study were obtained 

at the end of the training day (see Methods), when time elapsed from the first training 

bout was approximately seven hours. Possibly, the substantial increase in serum hepcidin 

seen in this study (>76%) is a cumulative effect of multiple daily training sessions. 

Cumulative effects of multiple training sessions in (urinary) hepcidin concentration have 

been previously investigated in male triathletes and endurance runners with healthy iron 

status (Peeling et al., 2009a). In this randomized cross over study (seven days between 

trials), athletes ran either one session (T1) (10x1km interval running at 90% of individual 

peak V̇O2 running velocity) or two-sessions (T2) ((1) 10km run at 70% of peak V̇O2 

running velocity and (2) after a 12-hour overnight rest period, same protocol described in 

T1)). While results from this study demonstrated that a 12-hour rest period was sufficient 

to restore urinary hepcidin levels back to baseline, after it had been significantly elevated 

three hours post-exercise, with no significant discrimination between trial intensities, it 

does not clarify the potential cumulative effects of multiple exercise sessions performed 

on the same day. Taken that hepcidin responds to an increased concentration of serum IL-

6, whose concentration has been reported to peak at 1.5 hours post-exercise (Bruunsgaard 

et al., 1997; Margeli et al., 2005; Pedersen, Steensberg, & Schjerling, 2001) it could be 

postulated that the adopted training schedule in this study was sufficient to induce and 

maintain increased levels of IL-6. Ronsen et al. (2002) have shown that a second session 

of exercise (of same duration and intensity) after three hours of rest of an initial session 

(75 minutes at 75% V̇O2max), evokes a more pronounced peak in plasma IL-6 response 

than a single training session. This group further demonstrated that while prolonging the 

rest time between trials to 6-hours attenuated the IL-6 peak plasma concentration 



  

129 
 

observed with a shorter rest period, a second training session still produced a greater peak 

in IL-6 than a single daily session, highlighting significant cumulative effects of training 

in cytokine response. Further, Roecker et al. (2005) have classified athletes as ‘responders’ 

and ‘non-responders’ based on changes in hepcidin concentration. Individual analysis 

showed that four out of the seven athletes tested were responders (hepcidin response was 

considered high when an increase greater than 20% from pre-exercise values was 

observed), similar percentage found by Newlin et al. (2012). 

 

Finally, attention must be paid to further changes in iron parameters. Decreases in serum 

iron may lead to tissue ID and hinder erythrocyte production and consequently O2 

delivery to the exercising musculature. Transferrin saturation values observed in this 

study might not have shown a statistically significant decline, but the 20% decrease from 

pre- to post-training requires further monitoring, as transferrin saturation less than 16% 

has been correlated with deficient erythropoiesis (Chatard, Mujika, Guy, & Lacour, 1999). 

Two out of the seven athletes presented values equal to or lower than this level at the end 

of the training day. The literature suggests that such decrease may persist as Fallon, Fallon, 

and Boston (2001) demonstrated that female soccer players had a significant decrease in 

transferrin saturation at the cessation of a heavy training week (21+7%) compared to 

baseline values (36+13%). As iron status was not investigated on a daily basis it remains 

unclear if the post-training values returned to baseline; reiterating the need for monitoring 

iron status in elite female athletes. 

 

The importance of periods of increased training load for performance enhancement is 

undeniable. However, it is becoming evident that a balance between the imposed stress 

and recovery are of uttermost importance to avoid time lost to illness hence ensuring the 

so-desired performance gains. This study has demonstrated that a two-week intensified 

training camp was sufficient to perturb both the immune system and iron metabolism in 

elite female kayak athletes. Redistribution of leucocyte sub-populations with varying 

phenotypes may be correlated with alterations in immunological function throughout a 

HI training period. Further, it has become clear that for some parameters, such as the 

expression of surface antigens related to neutrophilic functions, a 24 hour ‘rest’ day is 

insufficient to return measured values to pre-training camp values. The daily variation in 

immune cell distribution may come to burden other systems such as cellular turnover and, 

consequently, increase bone-marrow activity (Zhao et al., 2012). As it is still unknown if 

the constant demand on cellular turnover may be sustained as functional-related antigen 
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expression in neutrophils showed declines throughout the camp compared to baseline 

values, further research is required. 
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Supplement I – Chapter 5 
 
Table A – Training schedule Gold Coast Camp April 2015 
 

 
 
 

Date 
M T W Th F S Su M T W Th F 
20 21 22 23 24 25 26 27 28 29 30 1 

   TDay 1  TDay 2   TDay 3  TDay 4   

T
ra

in
in

g 
Se

ss
io

n 

AM1 

    

On water 
testing 
4x750m 
(SR:65,75,80
,85) + 
1x500m max  
12 min base 
  

2x8min, 
6x6min@T2 
12 sec of each 
2 min @T5 

Force 
testing (K4) 
SR: 90, 
100, 110, 
115-120 

  

20-30min full race 
warm-up 5 (20sec, 
40sec off, 40sec 
on 20sec off, 
20sec on) -‐ on's at 
race pace off's at 
T2/T3 7min base. 

Force 
Testing 
(5x300m) 

6x400m. 
Starts and 
transitions 
+ 20min 
individual 
float 

4x750m @ 
80 SR 6 
min base + 
6x250m on 
3 min base 
T5 

Time 
trials 
3x500m 
on 30min 
base 

AM2 

    

 

Drills and 
skills session - 
2x750m 
broken (250m 
on/off/on) + 
change of pace 
3x45sec 4 
starts 

K2 Warm 
up to 300m 
course 
7x300m 
@110SR 
on 6min 
base  
 

7min base 
T4 efforts 4 
& 8 max 
(standing 
starts)  
 

 

K4 drills and 
skills session -‐ 
2x750m broken 
(250m on/off/on) 
+ change of pace  
2 (3x45sec %,SR) 

Warm up to 
300m 
course 
7x300m 
@110SR 
on 6min 
base  

 

Drills and 
skills 
session - 
4x750m 
broken 
(250m 
on/off/on) 
+ 4 starts 

 

PM 

    

Gym + 
resistance 1 
ball 6x15sec 
on 1.45 off 

 
Gym + 
30min 
cross 
training 

  

3 pm gym + 
resistance 1 ball 
3x20sec on 1.40 
off. Strap only 
3x30sec on 1.30 
off (power 
paddling) 

4x6min 
@75-80 SR 
on a 12min 
base  

Gym + 
resistance 1 
ball 
6x15sec on 
1.45 off 

 

Gym + 
30min 
cross 
training 

  SR= Stroke rate. T = refers to training zones (table 5-1 in-text)
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Table B – 750m On-water step test 

 Athlete Stroke 
Rate 

Time  
(min:s.ms) 

Velocity 
(m/s) 

eWPS 
(%) 

Pace 
(min:s.ms) 

Heart 
Rate 

(bpm) 

Lactate 
(mM) 

A001 

67 03:45.10 3.33 33.1 02:30.15 170 2.1 
78 03:29.38 3.58 35.3 02:19.66 179 5.3 
81 03:26.97 3.62 35.1 02:18.12 180 6.8 
87 03:23.41 3.62 34.7 02:15.50 181 10.9 

107 02:08.48 3.89 33.0 02:08.53 181 13 

A002 

56 04:07.22 3.03 29.8 02:45.02 147 1.4 
69 03:57.09 3.16 27.4 02:38.23 150 2.6 
75 03:52.23 3.23 27.0 02:34.80 157 3.0 
83 03:42.28 3.37 27.7 02:28.37 167 5.2 

102 02:18.29 3.62 27.9 02:18.12 174 11.0 

A003 

65 03:52.45 3.23 31.1 02:34.80 150 1.3 
71 03:39.16 3.42 33.8 02:26.20 160 1.8 
78 03:32.41 3.53 33.8 02:21.64 168 2.8 
85 03:25.63 3.65 34.3 02:16.99 177 3.8 

101 02:09.83 3.85 33.9 02:09.87 180 7.5 

A004 

68 03:49.77 3.26 30.6 02:33.37 156 1.8 
74 03:38.48 3.43 32.7 02:25.77 168 3.6 
79 03:31.47 3.55 34.0 02:20.85 174 4.9 
85 03:24.85 3.66 34.6 02:16.61 180 6.6 

108 02:07.30 3.93 33.7 02:07.23 191 15.1 

A005 

66 03:46.79 3.31 33.0 02:31.06 N/A 2.4 
75 03:32.49 3.53 35.2 02:21.64 N/A 3.3 
80 03:30.27 3.57 34.1 02:20.06 N/A 4.0 
83 03:25.92 3.64 34.9 02:17.36 N/A 5.7 

104 02:10.00 3.85 32.9 02:09.87 N/A 8.3 

A006 

65 03:52.78 3.22 30.8 02:35.28 135 1.2 
75 03:38.06 3.44 32.6 02:25.35 138 2.5 
84 03:24.78 3.66 35.0 02:16.61 158 4.5 
85 03:26.79 3.63 33.8 02:17.74 168 4.9 

102 02:07.47 3.92 35.4 02:07.55 176 6.8 

A007 

69 03:50.26 3.26 30.1 02:33.37 150 2.2 
77 03:33.39 3.51 33.7 02:22.45 158 3.0 
83 03:26.79 3.63 34.6 02:17.74 170 4.0 
88 03:21.54 3.72 35.1 02:14.41 176 5.4 

106 02:07.08 3.93 34.4 02:07.23 178 8.0 
Data collected by AIS senior physiologist 
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Table C – Acute changes in neutrophil phenotypical expression and distribution 
 

 
  

Mean Std. 
Deviation 

Mean % 
Change t Sig. 

(2-tailed) 
Effect size 

(ES) 

CD11b 
MedianFI 

(AU) 

TDay1 Pre 4940 916 14.2 -1.047 .335 -.118 
Post 5593 1856     

TDay2 Pre 3489 1063 12.7 -1.400 .211 -.083 
Post 3921 1540     

TDay3 
 

Pre 3582 920 -13.5 1.597 .161 .183 
Post 2969 756     

TDay4 
 

Pre 3889 1108 9.5 -.096 .927 -.013 
Post 3943 933     

CD16 
MedianFI 

(AU) 

TDay1 Pre 8511 1913 -6.7 0.673 .526 .049 
Post 8028 3047     

TDay2 Pre 7363 1871 5.9 -1.848 .114 -.050 
Post 7716 1632     

TDay3 
 

Pre 7875 2007 -13.7 5.225 .002‡ .152 
Post 6763 1653     

TDay4 
 

Pre 7670 2205 0.4 .097 .926 .004 
Post 7639 2057     

CD18 
MedianFI 

(AU) 

TDay1 Pre 2486 456 11.6 -1.168 .287 -.134 
Post 2703 351     

TDay2 Pre 1827 490 3.6 -0.406 .699 -.019 
Post 1865 506     

TDay3 
 

Pre 1831 359 3.4 -0.126 .904 -.014 
Post 1851 335     

TDay4 
 

Pre 2203 441 2.4 .270 .796 .046 
Post 2121 455     

CD66b 
MedianFI 

(AU) 

TDay1 Pre 1421 256 21.7 -3.533 .012‡ -.241 
Post 1727 379     

TDay2 Pre 1226 257 8.6 -1.590 .163 -.088 
Post 1318 263     

TDay3 
 

Pre 1355 238 -11.3 2.928 .026* .201 
Post 1189 176     

TDay4 
 

Pre 1370 277 8.6 -.957 .376 -.083 
Post 1478 379     

CD71 
MedianFI 

(AU) 

TDay1 Pre 408 132 -1.6 .282 .787 0.120 
Post 395 76     

TDay2 Pre 424 133 -6.9 1.115 .308 .417 
Post 378 85     

TDay3 
 

Pre 329 28 -3.9 .876 .415 .311 
Post 316 56  -1.014 .310  

TDay4 
 

Pre 364 118 22.5 -2.129 .077 .581 
Post 435 125  -2.197 .028*  

CD11b 
(% of 

Granulocytes) 

TDay1 Pre 98.3 1.1 -1.1 1.200 .275 .130 
Post 97.2 3.0     

TDay2 Pre 98.5 0.4 1.0 -6.554 .001‡ -.689 
Post 99.5 0.4     

TDay3 
 

Pre 99.5 0.1 -5.7 3.889 .008‡ .714 
Post 93.8 3.9     

TDay4 
 

Pre 98.9 0.5 0.5 -2.653 .038* -.335 
Post 99.4 0.2     
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Table C 
continued    Mean Std. 

Deviation 
Mean % 
Change t p ES 

CD16 
(% of 

Granulocytes) 

TDay1 Pre 93.9 3.0 2.2 -1.078 .323 -.147 
Post 95.9 3.6     

TDay2 Pre 95.2 1.5 2.5 -8.074 <.001‡ -.396 
Post 97.6 1.5     

TDay3 3 Pre 97.1 1.8 -6.0 3.533 .012‡ .442 
Post 91.3 4.8     

TDay4 4 Pre 95.8 2.4 2.3 -3.227 .018* -.334 
Post 97.9 0.9     

CD18 
(% of 

Granulocytes) 

TDay1 Pre 98.8 1.5 -0.8 0.584 .581 .091 
Post 98.0 3.2     

TDay2 Pre 99.8 0.2 0.0 0.000 .999 .000 
Post 99.8 0.1     

TDay3 3 Pre 99.7 0.3 -5.9 3.689 .010‡ .646 
Post 93.8 4.3     

TDay4 4 Pre 99.6 0.3 0.3 -3.561 .012* -.357 
Post 99.9 0.1     

CD66b 
(% of 

Granulocytes) 

TDay1 Pre 98.1 1.7 -0.74 0.513 .626 .075 
Post 97.3 3.2     

TDay2 Pre 97.9 1.4 0.94 -1.685 .143 -.220 
Post 98.8 0.7     

TDay3 3 Pre 99.0 0.6 -6.54 3.557 .012‡ .592 
Post 92.5 4.9     

TDay4 4 Pre 98.6 0.8 0.70 -3.250 .017* -.286 
Post 99.2 0.4     

CD71 
(% of 

Granulocytes) 

TDay1 Pre 6.3 2.9 279.2 -2.583 .042* -1.641 
Post 18.8 12.4     

TDay2 Pre 7.2 4.3 -70.35 4.279 .005‡ 1.568 
Post 2.1 2.1     

TDay3 3 Pre 2.9 2.2 105.8 -0.100 .923 -.045 
Post 3.0 2.1     

TDay4 4 
Pre 5.1 3.3 -16.6 1.806 .121 .925 
Post 2.8 1.7     

Granulocytes 
(% of 

Leucocytes) 

TDay1 
Pre 40.9 7.7 -7.39 0.336 .748 .053 

Post 37.9 20.8     

TDay2 
Pre 33.1 5.4 32.28 -3.016 .024* -.376 

Post 43.8 8.8     

TDay3 
 

Pre 37.4 8.6 32.24 -2.143 .076 -.231 

Post 49.4 17.4     

TDay4 
 

Pre 32.6 10.7 29.76 -1.928 .102 -.211 

Post 42.3 12.3  
   

* Significant at p<0.05 df = 6 for all paired T-tests performed.  
‡ Significant at p<0.01 (Bonferroni correction) 
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Table D – Correlation between iron and immune markers 

    
Serum 
Iron Tf UIBC TIBC TSAT PHAG O.B. CD18 CD16 CD66b CD11b CD71 

Serum 
Iron 

Pearson 
Correlation   .834* .639 .804* .730 -.357 .001 -.585 .687 -.152 -.588 -.137 

Sig.     (2-
tailed)   .020 .122 .029 .062 .432 .999 .167 .088 .745 .165 .769 

Tf Pearson 
Correlation -.420   .956** .998** .239 -.150 .079 -.153 .876** .231 -.235 -.347 

 Sig. (2-
tailed) .348   .001 .000 .605 .748 .867 .743 .010 .618 .612 .445 

UIBC 
Pearson 
Correlation -.468 .953**   .971** -.048 -.022 .135 .112 .846* .415 -.007 -.400 

 Sig. (2-
tailed) .290 .001   .000 .919 .962 .774 .812 .016 .354 .988 .374 

TIBC Pearson 
Correlation -.074 .885** .916**   .189 -.127 .104 -.095 .867* .274 -.187 -.352 

 Sig. (2-
tailed) .875 .008 .004   .685 .785 .824 .840 .012 .551 .688 .439 

TSAT Pearson 
Correlation .894** -.741 -.807* -.504   -.408 -.121 -.845* .102 -.530 -.750 .289 

 Sig. (2-
tailed) .007 .056 .028 .248   .363 .796 .017 .827 .221 .052 .530 

PHAG 
Pearson 
Correlation -.730 .642 .637 .387 -.783*   .595 .692 .122 .844* .844* .124 

 Sig. (2-
tailed) .062 .120 .124 .391 .037   .159 .085 .795 .017 .017 .792 

O.B. 

Pearson 
Correlation -.266 -.436 -.304 -.464 .002 -.156   .591 .232 .721 .633 -.302 

Sig. (2-
tailed) .564 .328 .507 .295 .996 .739   .163 .616 .067 .127 .511 

CD18 Pearson 
Correlation .800* -.287 -.346 -.027 .691 -.383 -.267   -.009 .840* .954** -.226 

 Sig. (2-
tailed) .031 .532 .447 .954 .086 .397 .562   .985 .018 .001 .626 

CD16 Pearson 
Correlation .075 -.205 -.469 -.495 .290 -.019 -.311 .203   .378 .012 -.571 

 Sig. (2-
tailed) .873 .659 .289 .259 .529 .968 .498 .663   .404 .979 .181 

CD66b Pearson 
Correlation .488 -.230 -.423 -.256 .513 -.173 -.528 .733 .769*   .857* -.156 

 Sig. (2-
tailed) .267 .620 .344 .579 .239 .711 .223 .061 .043   .014 .738 

CD11b Pearson 
Correlation .861* -.230 -.315 .036 .719 -.443 -.353 .984** .224 .734   -.168 

 Sig. (2-
tailed) .013 .620 .491 .940 .069 .319 .437 .000 .629 .061   .719 

CD71 
Pearson 
Correlation -.227 .702 .826* .830* -.535 .407 -.023 -.316 -.774* -.696 -.281   

  Sig. (2-
tailed) .625 .079 .022 .021 .216 .365 .960 .491 .041 .083 .541   

Blue background = pre-training samples. White background= post-training samples. 
PHAG = phagocytosis. O.B = Oxidative burst. 
* p< 0.05 ** p< 0.01 
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Study III 

 
 

 
 

Effects of exercise and training on immunological and iron related 

parameters in elite female kayak athletes during a period of                            

“live-high, train-low” training 
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Introduction 
 

‘Live-high train-low’ (LHTL) is a commonly adopted training methodology where 

athletes are exposed to a hypoxic stimulus, usually for 10-12 hours (overnight) and 

undertake their training in normoxic normobaric conditions (sea level). The rise to 

moderate altitude (2000-3000m natural or simulated i.e. hypoxic chambers) elicits 

physiological adaptive responses that reportedly increase performance (Hahn & Gore, 

2001; Levine & Stray-Gundersen, 1997; Rusko, Penttinen, Koistinen, Vahasoyrinki, & 

Leppäluoto, 1995). While still under debate, such adaptations include an increase in O2 

carrying capacity (via increased erythropoiesis and increase in haemoglobin mass 

(Hbmass)) (Brugniaux et al., 2006; Wehrlin, Zuest, Hallén, & Marti, 2006), increase in 

V̇O2max (Stray-Gundersen & Levine, 2008; Wilhite, Mickleborough, Laymon, & 

Chapman, 2013), improvement in exercise economy (Saunders et al., 2004), increase in 

muscle buffering capacity (Gore et al., 2001), and increase in lactate threshold (Gore, 

Clark, & Saunders, 2007), which are of utmost importance to sprint kayak performance 

(Bishop, 2000; Michael, Rooney, & Smith, 2008). 

 

The majority of the altitude training research focuses on direct performance outcomes, 

such as V̇O2max and lactate threshold, as mentioned above. Recently, focus has shifted 

towards haematological adaptations to hypoxia, mainly focused on erythrocyte 

production via EPO release, Hbmass and iron related parameters (Govus, Garvican-Lewis, 

Abbiss, Peeling, & Gore, 2015). The increases in Hbmass and sTfR concentration observed 

in national level triathletes after 17 days LHTL (~14 hours daily) exposure to normobaric 

hypoxia equivalent to 3000m altitude (Humberstone-Gough et al., 2013), highlight the 

effectiveness of this commonly adopted exposure methodology in eliciting an 

erythropoietic response. Rather than using altitude in the lead-up to competition, altitude 

may be used before or during heavy aerobic periods.  When used prior to or during heavy 

aerobic training periods, the focus is on maximising Hbmass which will allow the athlete 

to train at a higher aerobic intensity (Saunders, Pyne, & Gore, 2009). This increase in 

training capacity may produce the smallest worthwhile change in performance of 0.5%, 

which already differentiates medal from non-medal athletes (Bonetti, 2008; Borges, 

2013). 

 

Iron availability is an important determinant of physiological adaptations to hypoxia. 

While there is evidence of the relationship between iron metabolism and hypoxia, the 
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exact molecular mechanisms are still unclear (Frise et al., 2016; Govus, 2015; 

Peyssonnaux et al., 2008). Studies suggest that hypoxia may coordinate iron availability 

by regulating expression of the iron regulatory peptide hormone hepcidin through a direct 

pathway involving HIF factors (Peyssonnaux et al., 2008) or an EPO-dependent pathway 

(Kautz et al., 2014; Kautz & Nemeth, 2014; Rishi, Wallace, & Subramaniam, 2015). 

Hypoxia-induced EPO release stimulates the production of the hormone erythroferrone 

(ERFE) by erythroid precursors in the spleen and bone marrow through signal transducer 

and activator of transcription 5 (STAT5)(Kautz et al., 2014).  ERFE acts on the liver to 

suppress the expression of hepcidin (Kautz & Nemeth, 2014). This enables iron storage 

release and increased duodenal iron absorption, thus providing sufficient iron for the 

(reportedly three-fold - Faura et al., (1969)) increase in erythropoietic demand. 

 

However, when an athlete adds the extra stressor of hypoxia on top of routine training 

there is a dichotomy in maintaining both functionally-available iron and iron stores. The 

hypoxic stimulus down-regulates hepcidin expression (Jeong et al., 2005; Yan et al., 1995) 

while exercise-induced increase in inflammation markers, such as IL-6 and IL-1, up-

regulates hepcidin expression (Lee et al., 2005; Nemeth et al., 2004; Sim et al., 2013; 

Wrighting & Andrews, 2006). Interestingly, hypoxia has also been reported as an inducer 

of oxidative stress and cytokine release (IL-6, TNF-α), which were described to occur 

proportionally to the severity of the hypoxic stimulus (He et al., 2014). In vitro studies 

have shown increased IL-6 transcription in cultured human endothelial cells (Yan et al., 

1995) and cultured myocytes (Yamauchi-Takihara et al., 1995) exposed to hypoxic 

challenge (PO2 ~ 14 Torr and 95%N2 5%CO2, respectively). Klausen et al. (1997) 

demonstrated incremental increase of serum IL-6 concentration in ten male subjects at 

4350m from the first day of exposure, reaching a significant increase of 86% on day 4 

compared to sea-level values. Thus, whilst hypoxia-induced low tissue O2 triggers 

hepcidin down-regulation to allow iron store release to meet erythropoietic demands, 

increases in IL-6 and IL-1 concentration (induced by either hypoxia or exercise) have the 

opposite effect, up-regulating hepcidin expression (via STAT3 activation) (Lee et al., 

2005). 

 

Some studies suggest that acute systemic hypoxic exposure may alter immunological 

function, mostly attributed to altitude-related increases in cortisol, adrenaline and 

noradrenaline (Mazzeo, 2005). Comparable to changes in immunological parameters 

after a single bout of exercise, altitude results in significant lymphopenia and neutrophilia 
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in peripheral blood, as well as impairments of T-cell activation and proliferation and 

increases in NK lymphocyte concentration and activity (Facco et al., 2005; Karagiannidis 

et al., 2006). One day of hypobaric hypoxic exposure (4500 m) elicited a significant ~20% 

increase in circulating neutrophils (Hitomi et al., 2003).  Neutrophilic CD18 expression 

was increased by more than 20% and the rate of spontaneous O2- production per 106 

neutrophils in 15 minutes was enhanced six-fold in 12 individuals after 60-90 minutes 

after arrival at 3196m (helicopter ascent) (Choukèr  et al., 2005). These neutrophilic 

responses, as well as enhanced degranulation (quantified through elastase release), were 

also observed in a study employing acute normobaric hypoxia (68% of SaO2 measured 

through pulse oximeters) in healthy volunteers (Tamura et al., 2002).  

 

The addition of exercise to the hypoxic stimulus may affect the immune system more 

significantly, stemming from a more pronounced sympathoadrenal response (Mazzeo, 

2005). Wang and Chiu (2009) showed a more marked neutrophilia following moderate 

exercise in hypoxic (12% O2) environment than when the same exercise protocol 

performed in normoxia. Further, the same group demonstrated an enhanced phagocytic 

and oxidative burst capacity as well as increased expression of adhesion molecules (L-

selectin, LFA-1 C5aR and CD11b/CD18) in neutrophils after 50% V̇O2max exercise 

protocol was performed at 12% O2 compared to the same protocol performed at 21% O2 

(Wang & Chiu, 2009). 

 

These studies have highlighted the effects of exercising under hypoxic conditions. 

However, this escapes the reality of the commonly adopted LHTL protocol, where 

training occurs in normoxia and the hypoxic stimulus is undertaken overnight. The few 

studies to date which analysed the impact of LHTL on immunological status explored 

mostly mucosal immunity (salivary IgA - Tiollier et al., 2005 and lymphocyte T cell 

redistribution; Zhang et al., 2007) . Using this hypoxic model (LHTL), we set out to 

observe the possible immunological changes, particularly leucocyte phenotype 

distribution and neutrophilic function during this specific training period. Additionally, 

owing to the relation between functionally available iron as well as iron stores and 

hypoxia and the knowledge that serum iron may be decreased post-exercise, particularly 

in female athletes, this study also aimed to profile the iron status of elite female kayak 

athletes undergoing a LHTL training camp. In the previous study performed on these 

athletes (see Chapter 5), it was shown that hepcidin was significantly increased from pre-

training in the samples obtained post-training. Hepcidin kinetics post-exercise have been 
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well characterized in literature (Díaz et al., 2015; Peeling et al., 2009a, 2009b; Peeling et 

al., 2014); however, its possible cumulative effects in LHTL training setting has only 

been described recently in Govus et al. (2016) , warranting further investigation. 

Therefore, due to the small sample size obtained and the number of assays performed 

making use of these samples, this study set out to compare serum hepcidin concentration 

in samples obtained at the end of TDay2 and TDay3. 

 

Methods 
 

All methodological procedures are thoroughly detailed in the Methodology section of this 

thesis (Chapter 3). Here, methods utilised for this camp will be described briefly. 

 

Six elite female kayak athletes (age = 25.5+3.7 years; mass = 74.5+5.3 kg; ∑7skinfold = 

75.2+16.7mm; V̇O2peak = 52.1+3.3mL/kg/min) in selection to represent Australia in the 

2016 Olympics participated in this study. The athletes trained at sea level and spent the 

night (10-12 hours) in altitude tents (Colorado Altitude TrainingTM, Boulder, Colorado), 

starting at 2000m (FIO216.5% O2) on the first day, progressing to 2600m (FIO2 15.9% O2) 

on the second day and reaching the equivalent to 3000m (FIO2 14.8% O2) on the third day. 

This initial altitude acclimatization was performed in the athlete’s home-base (i.e. 

interstate athletes) one week prior to arrival at the Gold Coast training camp (Table 6-1). 

Such normobaric hypoxic conditions weres achieved by addition of nitrogen, hence 

decreasing the percentage of available O2 to levels as low as 14.8%. Athletes remained in 

the LHTL program at the simulated altitude of 3000m for a total of 18 days. The LHTL 

program was structured and overseen by AIS staff, with no input from researchers. Also 

following AIS standards to maintain athletic nutrient (trace element) intake, athletes were 

supplemented once daily with commercially available iron supplements containing 

325mg dried ferrous sulphate BP (equivalent to 105 mg elemental iron) and 500mg 

ascorbic acid (Ferro Gard C, Abbott Laboratories, Botany Bay, Australia). As one of the 

athletes discontinued the altitude component she was excluded from the study. The 

remainder of the athletes in this cohort had undertaken the LTHL protocol on at least two 

occasions prior to this exposure. 

 

All training protocols performed during the camp were planned and executed by the AIS 

coaches with no direct supervision or intervention from the investigators. Training load 
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was quantified through AIS-adopted methodology of sessional RPE (Borg scale 6-20) 

multiplied by the duration of the training. As part of their habitual training program during 

the 10-day camp the local athletes (n=3) performed laboratory testing of haemoglobin 

mass using the carbon monoxide rebreathing technique (reviewed in Gore et al., 2013). 

This test was performed by an AIS staff member who had been performing this test for at 

least four years and had a typical error of measurement of 1.9% for this test.  

 

Blood Collection 

Prior to any blood collection the athletes had been acclimatizing to altitude exposure for 

one week in their respective training headquarters (Table 6-1). Capillary blood (300μL) 

was obtained from the earlobe, after 5-10 minutes of application of thermogenic cream 

(Finalgon®) prior to (‘pre-training’ 05:00-06:30 hours) and at the end of the training day 

(‘post-training’ 15:00-16:30 hours) in each of the testing days of the training camp 

(assigned on Table 6-1). Since the athletes did not train under the same protocol on the 

last two days of the camp and as athletes not based in Queensland returned to their home-

state, testing dates were selected to ensure that all athletes tested were under the same 

training protocol (Table 6-1).  

Table 6-1 – Training and testing schedule for camp held in June 2015. 
Date 2 3 4 5 6  7 8 9 10 11 12 13 14 15 16 17 18 19 20 
(June 2015) T W Th F S Su M T W Th F S Su M T W Th F S 
Altitude 
Tent 

                   

Training 
Camp 

                   

Athlete 
Arrival/ 
Departure 

                   

Hbmass *                    

Capillary 
samples 
(Immune) 

        TDay1  TDay2   TDay3  TDay4    

Capillary 
samples 
(Iron) 

                   

* Hbmass was only assessed on local athletes (n=3).  
TDay – Testing days. The numbers assigned on the capillary sample testing days are later referred to in 
text.  
 

Phenotypical assessment  

Briefly, whole blood obtained from a capillary site (20µL) was stained for 15 minutes in 

the dark with monoclonal antibodies (all from BD Biosciences, California, USA) in two 

separate tubes: tube 1 contained CD3 (FITC), CD4 (PE-Cy7), CD8 (PerCP-Cy5.5), CD19 
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(APC-H7), CD56 (PE) and CD71 (APC) and the second tube contained CD11-b (APC-

Cy7), CD66b (PerCP-Cy5.5), CD16b (PE), CD18 (FITC) and CD71 (APC). Erythrocytes 

were lysed with NH3Cl solution for 10min, centrifuged at 300 x g for 5 minutes and 

washed with PBS. Cells were fixed with 1% formaldehyde and analysed through a 

FACSVerse flow cytometer (BD Biosciences, California, USA) immediately.  

 

Neutrophilic function 

Phagocytosis of FITC labelled E.coli and PMA-stimulated oxidative burst capacity were 

performed independently using capillary whole blood (25µL) in previously described in 

the Methodology section (Chapter 3). 

 
Iron Status   

Serum obtained from the capillary samples was diluted 1:3 in NaCl (0.9%) solution (final 

volume 90μL) and SI, TfR and UIBC were analysed through an automated biochemical 

analyser (Cobas Integra® 400 Plus Roche). TIBC was calculated by adding UIBC to SI. 

TSAT was calculated by the formula (SI÷TIBC) x 100.  

 
IL-6 

Serum IL-6 concentration was determined by commercially available Human 

Quantikine® IL-6 ELISA kit (R&D Systems) on samples obtained pre- and post-training 

following the manufacturer’s protocol.  

 

Hepcidin 

Serum hepcidin concentration was quantified through the use of a commercially available 

Human Hepcidin Immunoassay Quantikine® ELISA kit (R&D Systems) following 

manufacturers’ protocol. 

 

Statistical Analysis 

The effect of the exercise per day was analysed through paired samples T-test comparing 

pre-training samples to end of the day samples. If data violated assumptions non-

parametric Wilcoxon Signed Rank test was applied. After Bonferroni correction for 
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multiple comparisons, significance was attained where α<0.05/4. Effect size (ES) was 

calculated in every paired sample t-test according to Cohen (1988), as previously 

described. ES was considered ‘small’<0.2, ‘medium’=0.5 and ‘large’>0.8. A Pearson’s 

product-moment correlation coefficient was used on samples obtained prior to and at the 

end of TDay2 to assess the possible relationship between iron and immune parameters. 

To highlight the effects of the overnight hypoxic exposure in each of the parameters 

analysed, the samples obtained prior to training in each testing day (fixed effect) were 

modelled through mixed model analysis with AR1 structure for repeated measures (day) 

accounting for each individual athlete through random intercept and slope (day).  Finally, 

through a linear mixed model phagocytic and oxidative burst capacity were assessed 

using training day as a fixed effect and the phenotypical distribution as a covariant, as 

detailed previously, with significance set at α<0.05. 

 

Results 
 

Overnight exposure to hypoxic environment throughout the entirety of the camp had 

significant haematological effects on the athletes. This is corroborated by the significant 

4% increase in the Hbmass (p=0.037) relative to body mass prior to and at the end of the 

training camp (Table 6-2).  

Table 6-1 – Haemoglobin mass prior to and at the end of LHTL camp 
  Pre-Camp End of Camp % 

Chang
e 

t P ES 
  Mean  SD Mean  SD 

Hb Mass (g)  812.5 + 82.7 842.6 + 87.6 3.7 -4.28 .050* 0.35 
Hb Mass (g/kg)  11.2 + 0.3 11.7 + 0.4 4.4 -5.07 .037* 1.31 

Significance set at p<0.05 in a two-tailed paired sample t-test (df=2). ES = effect size (Cohen’s d)  

 

Training load 

Training load increased significantly throughout the training camp (Figure 6-1). Training 

loads on TDay3 (2879+195 AU p<0.001) and TDay4 (2685 +192 AU p=0.013) were 

significantly higher than the load imposed on TDay1 (2261+ 215AU).   
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Figure 6-1 – Training load throughout LHTL camp 
a. b. 

  

Data points represent mean values and error bars represent SD.   
Testing days are assigned with red border. * Significant difference (p<0.05) from baseline (TDay 1) 
 

 
Table 6-2 – Distribution of training distance and duration per training zone  

 

Pre- to post-training variations 

Variations in phenotype of circulating leucocyte subpopulations and neutrophilic function 

from pre- to post-training were assessed through paired samples t-test.  

 

Phenotypical distribution  

The percentage of CD3+CD4+ lymphocytes was significantly increased from pre 

(43.9+3.7%) to post-training (48.7+4.3%) on TDay2 (p=0.016, ES=1.2) (Figure 6-2a). 

Percentage of NK lymphocytes (CD3-CD56+) showed a significant decrease from pre- to 

post-training on TDay2 (12.7+3.9% to 7.6+3.1% p=0.014, ES=1.4), TDay 3 (12.2+4.3 to 

7.7+3.0% p=0.002, ES=1.2) and TDay4 (12.8+5.0 to 6.8+3.7% p=0.003, ES=1.4) (Figure 

6-2d). Cytotoxic T lymphocytes (CD3+CD8+) and B lymphocytes (CD3-CD19+) did not 

show any significant variations from pre- to post-training (Figure 6-2b and 6-2c, 

respectively). Further, CD71 expression in the CD3+ lymphocyte sub-population was 

significantly increased post-exercise on TDay3 compared to pre-training samples 

obtained that same day (p=0.002, ES=1.2) (Figure 6-2e). CD3- lymphocyte-sub 
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population did not show any significant variation in percentage of cells positive for CD71 

between samples obtained prior to and at the end of the training day (Figure 6-2f). 

Figure 6-2 – Lymphocyte distribution pre- and post-training 
a. b. 

  

c. d. 

  

e. f. 

  
Solid bars represent mean values and error bars represent SD.   
* Significant difference (p<0.01) between pre- and post-training values. 
 

Disturbance in granulocyte phenotypical distribution was only observed on the first 

training day (TDay1) where the expression of CD11b (p=0.021, ES=1.7), CD16 (p=0.042, 

ES=0.26) and CD66b (p=0.038, ES=1.2) was down-regulated post-training (Figure 6-3a-

c). Also in TDay1, there were significant decreases (p=0.005, ES=1.6) in the expression 
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of CD18 from pre-training (4391+428 AU) to post-training (3591+570 AU) (Figure 6-

3d). Different to the post-training decrease observed on TDay 1, the expression of CD71 

by neutrophils on TDay2, 3 and 4 showed a trend towards an increase post-training 

compared to pre-training values. On TDay4, there was a significant up-regulation of 

CD71 in neutrophils from pre- to post-training (548+139 AU to 809+210 p=0.012, 

ES=1.5) (Figure 6-3e).  

 
Figure 6-3 – Phenotypical expression of granulocytes pre- and post-training 

a. b. 

  
c. d. 

  
e.  

 

 

                  Pre-training  

                    Post-training   

Solid bars represent mean values and error bars represent SD.   
* Significant difference (p<0.01) between pre- and post-training values.  
‡ Significant difference (p<0.05) between pre-training values 

 

 

‡

‡ ‡

4000

8000

12000

16000

TDay 1 TDay 2 TDay 3 TDay 4

M
FI

 (A
U

)

CD11b

‡

‡
‡

*

1500

3000

4500

6000

TDay 1 TDay 2 TDay 3 TDay 4

M
FI

 (A
U

)

CD18

‡

6000

8000

10000

12000

14000

16000

TDay 1 TDay 2 TDay 3 TDay 4

M
FI

 (A
U

)

CD16

‡
‡

‡

1500

2500

3500

4500

5500

TDay 1 TDay 2 TDay 3 TDay 4

M
FI

 (A
U

)

CD66b

‡

‡

*

400

600

800

1000

1200

TDay 1 TDay 2 TDay 3 TDay 4

M
FI

 (A
U

)

CD71



   

149 
 

Granulocytic function 

Phagocytic function of granulocytes, measured through FITC-labelled E.coli ingestion 

(MFI), was decreased by more than 40% from pre- to post-training day samples on the 

first three testing days (TDay1 p=0.017, TDay2 p=0.013, and TDay3 p<0.001) (Figure 6-

4). This trend was not observed on TDay4. The percentage of neutrophils involved in 

E.coli ingestion did not differ significantly from pre- to post-training samples. 

Figure 6-4 – Phagocytosis of E.coli by granulocytes 

 
Solid bars represent mean values and error bars represent SD.   

*Significant difference (p<0.01) between pre- and post-training values. 
‡ Significant difference (p<0.05) between pre-training values compared to baseline (TDay 1) 

 

A trend towards an increased capacity of stimulated granulocytes to produce H2O2 from 

pre- to post-training (measured by MFI) was observed on the first three testing days 

(TDay1 p=0.032, ES=2.2; TDay2 p=0.04, ES=1.2; TDay3 p=0.354, ES=0.5) (Figure 6-

5). The last testing day was marked by an increase in both pre- and post-training sample 

compared to previous testing days. Contrary to the other testing days, post-training 

samples on TDay4 were decreased, albeit without reaching statistical significance 

(p=0.454, ES=0.5) (Figure 6-5). The percentage of neutrophils producing H2O2 was 

increased at the end of training TDay1 by 40% of pre-training values (p=0.031, ES=2.4). 

This trend was seen in every other testing day, in lesser magnitude, without reaching 

statistical significance (data not shown). 
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Figure 6-5 – Granulocyte stimulated oxidative burst capacity 

 
Solid bars represent mean values and error bars represent SD.   

*Significant difference (p<0.01) between pre- and post-training values. 
‡ Significant difference (p<0.05) between pre-training values compared to baseline (TDay 1) 

 

Iron parameters 

The effects of one training day (TDay2) on serum iron parameters showed a trend towards 

a decrease from pre- to post-training in serum iron, TIBC and TSAT. By contrast, there 

was an increase in unsaturated iron binding capacity and transferrin concentration; the 

latter was the only measured iron value that showed significant statistical variation, 

increasing from pre (28.43+5.01 μmol /L) to post (30.29+4.89 μmol /L) exercise (p=0.007, 

ES=0.38).  

Table 6-3 – Iron related parameters pre- and post-training day  
 Pre End Mean % 

Change t p ES  Mean  SD Mean  SD 
Serum Iron (μmol/L) 18.0 + 6.2 12.6 + 6.5 -30.0 1.14 .316 -0.85 
Transferrin (μmol /L) 28.4 + 5.0 30.3 + 4.9 6.6 -5.06 .007* 0.38 
UIBC (μmol/L) 31.6 + 5.2 36.1 + 10.9 14.1 -1.09 .338 0.55 
TIBC (μmol/L) 49.6 + 9.5 48.7 + 8.8 -1.9 1.21 .292 -0.10 
TSAT (%) 35.8 + 6.5 26.4 + 15.7 -26.1 1.01 .372 -0.84 

* Significance set at p<0.05 in a two-tailed paired sample t-test (df=4). ES = Effect size (Cohen’s d) 

 

Iron status was correlated with immune phenotypes and neutrophilic functions pre- and 

post-training on the second day (TDay2) of the camp. Whilst low correlations were 

observed between iron parameters in serum, expression of CD71 on granulocytes 

correlated significantly with phenotypical and functional-related markers CD16 

(r(5)=.941 p=0.017), CD66b (r(5)=.987, p=0.002) and CD11b (r(5)=.950, p=0.013). 

Interestingly, these correlations were only observed in the samples obtained at the end of 

training day (Supplement II - Table C). 
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Values for IL-6 were below the detectable range of the adopted assay (3.1-300pg/mL) in 

both pre- and post-exercise samples and therefore data were not shown. Hepcidin 

concentration was not significantly different between the two post-training day samples 

analysed (TDay2 6.2+1.0mM; TDay3 6.3+0.7nM p=0.829, ES= 1.3).  

 
Daily variations 

 

Phenotypical distribution 

Phenotypic expression in neutrophils in the samples obtained prior to training varied 

between days (Supplement II- Table B). CD11b expression was decreased from baseline 

sample (pre-TDay1) on testing TDay2 (p=0.002), TDay3 (p<0.001) and TDay4 (p=0.007) 

(Figure 6-3a). Expression of CD18 followed the same trend, with significant decrements 

from baseline in TDay2 (p=0.001), TDay 3 (p<0.001) and TDay4 (p=0.001) (Figure 3b). 

CD66b was also reduced from baseline on TDay2 (p=0.006), TDay3 (p=0.003) and 

TDay4 (p=0.006) (Figure 3d). CD71 expression in granulocytes showed decreased values 

from baseline (891+215 AU) on TDay2 (491+100 AU p=0.015) and TDay4 (548+139 

AU p=0.018) (Figure 6-3e).  

 

The percentage of circulating granulocytes positive for CD11b, CD18, CD16 and CD66b 

did not change significantly throughout the training camp. However, there was a 

significant decrease in circulating CD71-positive granulocytes on samples obtained prior 

to testing days TDay2 (27.2+10.0% p=0.001), TDay3 (30.0+12.5% p<0.001), and TDay4 

(22.1+6.5% p=0.001), compared to baseline values (53.8+13.2%) (Figure 6-6).  

 
Figure 6-6 – Percentage of circulating granulocytes positive for CD71 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data points represent mean values and error bars represent SD.                                                                     
* Significant difference (p<0.05) from baseline value (TDay1) 
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Granulocytic function 

When comparing all samples obtained pre-training, the percentage of granulocytes 

participating in phagocytosis did not differ from baseline to subsequent training days. 

However, E.coli ingestion was significantly decreased (p=0.033) on the last training day 

(TDay 4 3983+1941AU) when compared to baseline (TDay 1 5863+1144AU) (Figure 6-

4).  

 

Pre-training granulocytic capacity for ROS production was significantly increased on the 

last testing day (10812 + 612) compared to all previous testing days (Day 1 1976+436AU; 

Day 2 3049+1349AU; Day 3 3575+2032AU - all p <0.001) (Figure 6-5).  

 

Discussion 
 

This unique study assessed phenotypical distribution of leucocyte sub-populations and 

granulocytic function in elite female kayak athletes during a planned period of LHTL. 

The introduction of the hypoxic challenge to the analysed training period elicited a 

decrease on the resting concentration of circulating granulocytic phenotypes, particularly 

CD11b/CD18, CD66b and CD71 throughout the camp. Granulocytic phagocytosis, in the 

resting samples however, seem to have been restored from observed post-training 

decreases.  

 

There was a paucity in the redistribution of the circulating T-lymphocyte subset (CD3+) 

from pre- to post-training in this study, which may be explained by the successful 

acclimatization of athletes prior to the onset of the training camp (Figure 6-2). Mazzeo 

(2005) has described acute hypoxia to cause a significant decrease in circulating 

CD3+CD4+ concentration as well as decline in activation and proliferative ability of T-

lymphocytes. This decline in adaptive immune response lead the author to suggest that a 

one week acclimatization allowance be granted for elite athletes to avoid infection 

(Mazzeo, 2007). Zhang et al. (2007) found that the CD3+CD4+/CD3+CD8+ lymphocyte 

ratio in soccer players exposed to 28 days of simulated normobaric LHTL (FIO2 14.2%) 

was significantly decreased on days 14 and 28 compared to baseline values. Such a 

decrease was not observed in this study (data not shown). As athletes underwent 

acclimatization prior to the camp and testing days, the acute effects of hypoxia on CD3+ 
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lymphocyte sub-populations described in the literature were not observed. The 

distribution of NK lymphocytes however, was affected by exercise, with values obtained 

post-training significantly lower than those obtained prior to training (Figure 6-2d). This 

has been demonstrated by others who indicate that the intensity-dependent exercise-

induced muscle tissue injury is associated with decreases in post-exercise concentration 

of circulating NK lymphocytes, which may last up to 8 hours after cessation of the activity 

(Del Giacco et al., 2004; Kakanis et al., 2010; Northoff, Enkel, & Weinstock, 1995). The 

distribution of NK cells in the circulation post-exercise has been reported to return to pre-

exercise values after 24 h of an acute bout of intense exercise. Analysis of the effects of 

training day on NK cells (pre-training samples only) through linear mixed model adds to 

previous findings as pre-exercise values did not differ significantly between testing days. 

Moreover, since values obtained in this study reflect other studies that analysed samples 

after a 24-h rest period post-exercise (Kakanis et al., 2010), it may be concluded that the 

overnight hypoxia does not seem to play a significant role in NK cell redistribution. 

 

Post-exercise variation in the expression of specific neutrophilic phenotypes have been 

previously described (Gabriel & Kindermann, 1998; Peake, 2004). Interestingly, on the 

first testing day, all neutrophilic phenotypes analysed showed a decrease in expression 

from pre- to post-training. This however, was not observed in the subsequent testing days. 

The lack of statistically significant variation of neutrophilic phenotypical expression from 

pre- to post-training on TDay2, 3 and 4 observed in this study may point towards a less 

pronounced neutrophilic activation post-training than what has been reported in the 

literature (Gabriel & Kindermann, 1998; Peake, 2004).. Gabriel and Kindermann (1998) 

showed increased expression of both CD11b (p<0.01) and CD18 (p<0.05) in neutrophils 

from 19 cyclists and triathletes following a cycling-to-exhaustion trial at 110 % of 

individual anaerobic threshold. Gray et al. (1993) showed an increased expression of 

CD11b post-intensive exercise, closely related to degranulation of secretory vesicles and 

secondary granules, which are known sub-cellular locations of CD11b. The positive 

correlation between CD11b and CD18 observed only in the post-training samples 

(Supplement II- Table C) strengthens this argument and the validity of the assay 

employed as an index of activation, as the combination of these markers make up the α 

and β chain of the Mac-1 integrin protein, respectively. The correlation observed between 

CD11b and CD66b in the post-exercise samples  may also be attributed to the previously 

described post-exercise degranulation, although values for these phenotypes post-training 

were not significantly different from pre-training values.  
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While training itself did not seem to perturb neutrophilic phenotypical distribution in the 

peripheral circulation (pre- vs post-training), overnight exposure to hypoxia caused a 

significant decrease in the expression of CD11b, CD18 and CD66b by circulating 

neutrophils (Figure 6-3). It is important to highlight that resting values on TDay4 for these 

markers were significantly decreased from values obtained prior to the LHTL camp 

(TDay1). The functional importance of CD11b in neutrophilic adherence (combined with 

CD18), phagocytosis and oxidative burst has been widely demonstrated and it is evident 

in leucocyte adhesion molecule deficiency (LAD), as LAD patients suffer recurrent 

infections and have impaired inflammatory exudate formation (Berton, Yan, Fumagalli, 

& Lowell, 1996; Coxon et al., 1996; Diacovo, Roth, Buccola, Bainton, & Springer, 1996; 

Kuijpers et al., 2007). Further, Coxon et al. (1996) showed complete inefficiency of 

CD11b knockout mice neutrophils in phagocytosing serum-opsonized paraffin oil 

droplets and a 60% reduction in oxidative burst (through dichlorofluorescein diacetate 

oxidation) compared to their wild-type counterpart. Not coincidently, TDay4 also 

demonstrated a decreased capacity of neutrophils to ingest E.coli (measured by MFI - 

Figure 6-4). Further studies should extend the testing schedule (i.e. days after completion 

of camp) to unravel the kinetics of functional surface antigen expression after a LHTL 

camp as persisting decrements in such antigens may impair vital neutrophilic functions 

and increase the risk of illnesses. 

 

Interestingly, training had a negative impact on neutrophil phagocytic capacity, as 

observed by the decreased values post-training compared to pre-training samples obtained 

on TDay1, 2 and 3. Such a trend is often observed in periods of intensified training 

(Nieman et al., 2014) and at the end of prolonged endurance (>1.5 hours) exercises 

(Chinda et al., 2003; Chishaki et al., 2013). However, after spending the night in hypoxic 

chambers phagocytic capacity was restored or even enhanced compared to the baseline 

values obtained prior to training (TDay1)(Figure 6-4). The increase in phagocytic 

capacity post-hypoxic exposure may be related to neutrophilic adaptability and capacity 

to perform its functions in hypoxic environments, such as inflammatory sites, where 

oxygen tensions have been reported to be as low as 4 mmHg (Caldwell et al., 2001). 

Further evidence of such capacity comes from neutrophilic reliance on anaerobic 

glycolysis as the main ATP-producing pathway for most of its cellular functions (Cramer 

et al., 2003; Gale & Maxwell, 2010). HIF-1α has been shown to govern the shift towards 

such pathway in hypoxic environments by increasing expression of glucose transporters 

(Ebert, Firth, & Ratcliffe, 1995) and glycolytic enzymes (Semenza, Roth, Fang, & Wang, 
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1994), pyruvate dehydrogenase kinase 1 (Kim, Tchernyshyov, Semenza, & Dang, 2006; 

Papandreou, Cairns, Fontana, Lim, & Denko, 2006) and altering expression of 

cytochrome c oxidase components (Fukuda et al., 2007). The addition of the nightly 

hypoxic exposure may have created a conducive environment for neutrophils, with 

reduced tissue oxygen and increased levels of circulating inflammatory markers. Due to 

the constant exposure of myeloid cells to hypoxic environments, hypoxia alone is 

incapable of promoting HIF-1α stabilization (Gale & Maxwell, 2010). Thus, as an 

evolutionary/protective measure, in myeloid-derived cells, only the combined signalling 

of hypoxia and inflammatory markers (i.e. TNF and LPS) enhances HIF-1α accumulation 

promoting binding to hypoxia responsive elements, consequently increasing transcription 

of target genes involved in responses such as maturation, activation and survival 

(Cummins, Keogh, Crean, & Taylor, 2016). HIF1- α has been described to delay 

neutrophilic apoptosis through a ‘cross-talk’ with pathways such as NF-κB and PI3 

kinase-Akt-mTOR, although specific molecular mechanisms are not fully elucidated 

(Rius et al., 2008; Walmsley et al., 2005). Knowing that hypoxia delays neutrophilic 

apoptosis, the return of the phagocytic capacity observed on TDay2 and TDay3 

(comparable to baseline), after a significant decline immediately after training, may be 

hypothesised to be due to the prolonged presence of the mature neutrophils in the 

circulation (Figure 6-3). These are more capable of phagocytosis when compared to their 

naïve counterparts (band neutrophils i.e. left shift), well described to be marginalised 

post-exercise (Suzuki et al., 2003).  

 

Curiously, the last training day presented a significant increase in the capacity of 

neutrophils to produce H2O2 (Figure 6-5). ROS formation in ROS-producing cells (ie 

neutrophils, endothelial cells) is dependent on the assembly of NADPH oxidase. 

Cassatella et al. (1990) reported a 3-fold increase in mRNA levels of gp91phox in IFN-γ-

treated neutrophils. Other stimuli, such as LPS and iron, have been reported to increase 

gene transcription of haem-containing, catalytic NADPH oxidase-component, p22phox in 

human aortic endothelial cells (HAEC) (Li & Frei, 2009). Increases in NADPH oxidase 

components augments NADPH oxidase activity, consequently increasing cellular 

capacity for ROS generation. Further, HAEC incubation with TNF-α, which, similar to 

LPS, is known to up-regulate DMT1 in endothelial cells, has also been shown to increase 

NADPH oxidase activity two-fold (Li & Frei, 2009). It may be postulated that NADPH 

oxidase in neutrophils responds to the above mentioned stimuli in the same manner as 

endothelial cells, however, confirmation through further investigation is needed.   
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In this study, the last training day was marked by a decrease in CD71 expression on 

neutrophils (Figure 6-3e), which indicated a decreased requirement for iron. As the 

athletes were taking iron supplements, it may be hypothesized that the intra-cellular iron 

stores on this testing day were saturated. Li and Frei (2009) proposed that labile 

intracellular iron may induce oxidative stress which stimulates redox-sensitive 

transcription factors NF-κB and AP-1 (Manea, Manea, Gafencu, & Raicu, 2007; Manea, 

Manea, Gafencu, Raicu, & Simionescu, 2008), increasing the LPS or TNF-α -induced 

p22phox gene expression in human aortic endothelial cells. The finding that NADPH 

oxidase activity is impaired in iron-deficiency and is corrected with iron supplementation 

(Kurtoglu et al., 2003) strengthens the correlation between intracellular iron and NADPH 

oxidase activity proposed here. 

 

An increase in the expression of CD71 indicates cellular necessity for iron acquisition. 

This transferrin receptor expression is usually seen in activated and/or proliferating cells. 

Interestingly, on the second week of the LHTL training camp (TDay 3 and TDay4), where 

training load was significantly higher than the first week (Figure 6-1a) there was increase 

in the expression of CD71 on neutrophils in post-training samples (Figure 6-3e). Such a 

finding may indicate the increased cellular requirement for iron usually seen in immature 

neutrophils, which are known to be released from the bone marrow into the circulation 

post-exercise (i.e. left-shift). Curiously, in samples obtained on TDay2, 3, and 4 after a 

minimum 12-hour rest (pre-training samples - excluding acute effect of exercise) the 

percentage of CD71 positive neutrophils was significantly lower than that obtained on 

TDay1. Such decline may indicate the exit of immature neutrophils or neutrophils whose 

physiological apoptosis had been delayed, mainly through post-exercise increase in 

circulating cytokines and GCS-F from circulation onto tissues. 

 

Relative Hbmass values were increased after the altitude camp, confirming the 

effectiveness of the protocol adopted in eliciting haematological changes (Table 6-2). 

Further, the demands of each training day were reflected in iron status as serum iron 

declined after one training day (TDay2). Such a finding is in consonance with the acute 

phase reaction model of iron-withdrawal by the RES system post-exercise, mostly 

through the increase in IL-6-triggered hepcidin release (Bode et al., 2012; Kemna et al., 

2005; Nemeth et al., 2004). Previous analysis from our group (Chapter 5 in this document) 

and others (Badenhorst et al., 2014; McClung et al., 2013; Peeling et al., 2014; Robson-
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Ansley, Walshe, & Ward, 2011) shows that serum hepcidin concentration is increased 

post-exercise. Further, this study had hypothesised the possible effects of cumulative 

exercise through multiple sessions through consecutive training days on hepcidin 

concentration. No significant differences on serum hepcidin concentration were found 

between samples obtained at the end of TDay2 (6.2+1.0 nM) and TDay3 (6.3+0.7 nM). 

Similarly, Peeling et al. (2009a) did not observe cumulative effects of two running 

sessions’ 12-h apart in urinary hepcidin concentration. However, using a longer duration 

and intensity than the protocol adopted by Peeling et al. (2009a), Roecker et al. (2005) 

demonstrated that urinary hepcidin concentration was still elevated 24 hours after the 

cessation of the exercise. Despite a reported high correlation between urinary and serum 

hepcidin (r=0.82, Ganz et al., 2008), further investigation is required to determine 

hepcidin kinetics in serum and additionally, its kinetics with multiple exercise bouts in 

during consecutive training days, thus reflecting the training schedule of an elite athlete. 

It is important to highlight that one athlete had a 33% increase in hepcidin concentration 

from TDay 2 to TDay 3, which may be indicative of the athlete being a hepcidin responder 

as identified previously (Chapter 5). 

 

One of the most significant challenges to the body when exposed to altitude, particularly 

with the addition of the training stress, is maintaining functionally available iron and iron 

stores - which are fundamental for cell proliferation and function. This study has shown 

that the haematological changes elicited by LHTL are not limited to erythrocytes. 

Phenotypical redistribution and functional alterations in leucocytes, demonstrated here by 

change in surface antigen expression and specific neutrophilic functions, have highlighted 

the importance of a balance between hypoxic exposure and physical demands. Hepcidin 

is a fundamental link between iron status, exercise-induced inflammation, and hypoxia 

(Peeling et al., 2008). While decreased iron stores and hypoxia down-regulate hepcidin 

transcription, exercise and inflammation causes its up-regulation. While the molecular 

mechanisms of such opposing effects described in literature were not analysed here, it is 

interesting to hypothesize that they may come to attenuate the acute phase reaction-

induced iron sequestration, provided that the athletes maintain their iron supplement 

intake, hence preserving iron stores (ferritin) levels.  Maintaining functionally available 

iron and iron stores throughout a LHTL training camp may come to promote immune 

surveillance of athletes, highlighted in this study by maintenance of the resting phagocytic 

capacity of neutrophils throughout the training camp and enhanced stimulated oxidative 

capacity of neutrophils at the end of the LHTL training camp.  
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Supplement II – Chapter 6 
 

Table A – 2-week training schedule 
 

 8-Jun 9-Jun 10-Jun 11-Jun 12-Jun 13-Jun 14-Jun 

 Mon Tue Wed Thurs Fri Sat Su 

AM1 

Training 
session home 

base 
8-10km 
Aerobic 
T2/T3 

15min bike T2/T3         
K4 session skills 

and drills/resistance/ 
change of pace work 

-‐ inc. 3 standing 
starts 

K4 -‐ 6x300m 
rolling @ 100sr 
paddle backs on 

10min base 
Target time set. 

(4x6min @ 
T4(AT)) 10min 
base -‐ measure 

distance and 
Lactates  

15min Bike after 
session T2 

K1 - Speed 
endurance/lactate set. 

2 (6x50sec off/10sec on 
-4min rest -4x45sec 

off/15sec on -4min rest-
3x40sec off/20sec on) 
7min rest between sets. 

15min Bike after session 
T2 

K4 -‐ 1x500m time trial 
(race plan) - 

following TT K4 
3(100m/200/100/200/ 
100/200/100/200/ 100) 
100m as on’s 200m as 

off's 10min base. 

Rest 

AM2  
K1 -‐ 8-‐10km wash 
leads in pairs (T3 on 

lead) 
 Rest - Massage 

K4 / mixed K2's  
5xbroken 750's as 250m 

T3/T2/T3 
Rest Rest 

PM Gym + 15min 
bike T2/T3 

K1 two groups 
8x1000m @ T3 on 
7min base (2min 
between groups) 

Gym + 15min 
bike T2/T3 Rest - Massage Gym + 15min bike 

T2/T3 Rest Rest 
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Table A – continued 

 
15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-

Jun 
 Mon Tue Wed Thurs Fri Sat Su 

AM1 

Warm up + bike 
K4 session 15-‐20min 

skills and drills 
/resistance + 3 starts 

3DS + 2x broken 500m 
as 200/100 off/100/100 

off/200m (K2 3x3ds 
starts 6x2min 3mr 

@95sr 8x1min 105sr 
2mr) 

 

Warm up + bike – 
K4 -‐ 4 x broken 

500m (sub max 90-‐
95%) working 

on race plan (250m 
on/off/on) 

(K2 -‐ 6xsplit 750m's) 

Warm up + bike – 
K4/K2 -‐ 5x300m 
rolling @ 105sr 
paddle backs on 

12min base 
Target time set. 

K1 2x8min T2, 
4x6min T2, 

5x3min T3 (T2 
efforts 1min rest, 
T3 efforts 2 min 

rest) 

Warm up + bike 
K4 -‐ 6x200m alt. 
race simulation 1st 
and last 200m of 
race (MINI MAX 

K4/K2). (K2 
6x(50m/50m/100m) 

on 10min base) 

Warm up 
+ 

bike 
Rest 

AM2 
K1 -‐ 9km in pairs 

done as 2km T2/1km 
T3 

6km 
K1 -‐ T1-‐T2 recovery 

K1 paddle 
 Rest - Massage 4-6km K1 T1/T2 

recovery 

K4/K2 -‐ 3x500m time 
trials (race plans) on a 
20min base first effort 
Finish with K1 paddle 

2x4min, 6x2min all T2 1 
min rest 

Rest 

PM Gym + 20 min bike 
T2/T3 

K1 two groups 
6x1500m @ T3 on 
9min  base (2min 
between groups) 
20min bike after 

session 

Gym + 20 min 
bike T2/T3 or on-
water resistance 

session 

Rest - Massage Gym + 20 min bike 
T2/T3 Rest Rest 
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Table B – Resting daily variation (pre-training) of the expression of granulocytic phenotypes 

 

  

Mean SD 
% Change 
from Day 

1 

p                
(from 

TDay1) 

% Change 
from 

previous 
testing day 

p              
(previous 

testing 
day) 

CD11b 
MedianFI 
(AU) 

TDay 1 12778 1023     
TDay 2 6293 945 -50.7 <0.001* -50.7 0.002 
TDay 3 8153 1777 -36.2 <0.001* 29.5 0.715 
TDay 4 8612 1753 -32.6 0.001* 5.6 1.000 

CD16 
MedianFI 
(AU) 

TDay 1 11077 2488     
TDay 2 9179 1748 -17.1 0.015 -17.1 0.089 
TDay 3 10196 1744 -8.0 0.114 11.1 0.789 
TDay 4 10826 3161 -2.3 0.648 6.2 1.000 

CD18 
MedianFI 
(AU) 

TDay 1 4391 428     
TDay 2 2414 169 -45.0 <0.001* -45.0 0.001 
TDay 3 2539 568 -42.2 <0.001* 5.2 1.000 
TDay 4 2941 470 -33.0 <0.001* 15.8 1.000 

CD66b 
MedianFI 
(AU) 

TDay 1 4256 618     
TDay 2 2257 256 -47.0 0.001* -47.0 0.006 
TDay 3 2605 290 -38.8 <0.001* 15.4 1.000 
TDay 4 2774 826 -34.8 0.001* 6.5 1.000 

CD71 
MedianFI 
(AU) 

TDay 1 891 215     
TDay 2 491 100 -44.9 0.002* -44.9 0.015 
TDay 3 690 174 -22.6 0.052 40.5 0.399 
TDay 4 548 139 -38.5 0.003* -20.6 1.000 

Bonferroni adjustment for multiple comparisons. 
*Significant differences from baseline values (p<0.01) 
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Table C – Correlation between iron and immune markers 

    S_Iron Tf UIBC TIBC TSAT CD18 CD16 CD66b CD11b CD71 

S_Iron Pearson 
Correlation 1 0.116 -0.591 0.008 .965** -0.527 0.004 -0.342 -0.435 -0.323 

  Sig. (2-
tailed)   0.853 0.294 0.989 0.008 0.362 0.995 0.573 0.465 0.596 

Tf Pearson 
Correlation .896* 1 0.711 .967** -0.124 0.349 0.089 0.207 0.311 0.057 

  Sig. (2-
tailed) 0.04   0.178 0.007 0.843 0.565 0.887 0.739 0.611 0.928 

UIBC Pearson 
Correlation 0.395 0.727 1 0.802 -0.777 0.737 0.252 0.562 0.689 0.436 

  Sig. (2-
tailed) 0.511 0.164   0.103 0.122 0.155 0.683 0.325 0.198 0.463 

TIBC Pearson 
Correlation 0.864 .978** 0.803 1 -0.249 0.523 0.315 0.443 0.533 0.301 

  Sig. (2-
tailed) 0.059 0.004 0.102   0.687 0.365 0.605 0.456 0.355 0.622 

TSAT Pearson 
Correlation 0.854 0.537 -0.124 0.486 1 -0.67 -0.126 -0.487 -0.594 -0.436 

  Sig. (2-
tailed) 0.065 0.351 0.842 0.407   0.216 0.839 0.405 0.291 0.463 

CD18 Pearson 
Correlation 0.701 0.498 -0.08 0.411 0.772 1 0.658 0.877 .934* 0.83 

  Sig. (2-
tailed) 0.187 0.394 0.899 0.492 0.126   0.228 0.051 0.02 0.082 

CD16 Pearson 
Correlation -0.422 -0.102 0.595 0.052 -0.731 -0.576 1 .920* 0.844 .941* 

  Sig. (2-
tailed) 0.479 0.871 0.29 0.934 0.16 0.31   0.027 0.072 0.017 

CD66b Pearson 
Correlation -0.313 -0.28 0.016 -0.194 -0.298 0.176 0.51 1 .985** .987** 

  Sig. (2-
tailed) 0.608 0.648 0.979 0.755 0.626 0.777 0.38   0.002 0.002 

CD11b Pearson 
Correlation -0.026 -0.182 -0.375 -0.222 0.174 0.669 -0.177 0.744 1 .950* 

  Sig. (2-
tailed) 0.966 0.77 0.534 0.719 0.779 0.217 0.775 0.15   0.013 

CD71 Pearson 
Correlation -0.414 -0.678 -0.801 -0.706 0.014 0.289 -0.262 0.572 0.809 1 

  Sig. (2-
tailed) 0.489 0.208 0.104 0.182 0.982 0.637 0.67 0.313 0.097   

Correlation between iron and immune parameters pre- (blue) and post-training (white) TDay2. 
For all correlations, n=5. Correlation is significant at p=0.05 (*) and significant at p=0.01 (**). 

 

 

 

 

 

 

 

 

 



   

162 
 

 

 



   

163 
 

Study IV 

 

 

 
 

Effects of exercise and training on immunological and iron related 

parameters in elite female kayak athletes during a period of            

high-volume training  
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Introduction 
 
Research has demonstrated throughout various sporting modalities such as cycling, 

swimming and rowing, that athletes spend more than 75% of their training at low-

intensity (lactate < 2mM) endurance exercises (Laursen, 2010; Seiler & Kjerland, 2006), 

despite competing at supra-maximal intensities. Accumulating hours in these low-

intensity training zones improves cardiorespiratory and local muscle fitness via tissue 

remodelling and substrate utilisation through increased mitochondrial mass and oxidative 

enzyme activity (Baar, 2006; Burgomaster et al., 2008; Hood, Irrcher, Ljubicic, & Joseph, 

2006; Terada et al., 2002). In training phases where elite athletes are exercising at 

moderate intensities, training volume is usually increased. The physiological adaptations 

gained from a low-intensity HV training phase are different to those obtained from a low-

volume HI training one (Ingham et al., 2008; Laursen, 2010), described previously in the 

literature review and in chapter five of this thesis. Further, the type of training activates 

distinct molecular signalling, where, HV training has been associated with calcium-

calmodulin kinase pathway, and HI training with the AMP-dependent protein kinase 

pathway (Coffey & Hawley, 2007; Gibala et al., 2006). It has been suggested that HV 

training (60 or 120 minutes below VT1) may elicit enough molecular signalling to provide 

the expected performance improvements with less disturbance to the autonomic nervous 

system than a HI training period (Seiler et al., 2007). However, adaptations in immune 

function and iron metabolism following HV training periods are not yet well established.   

 

The immune response to varying exercise intensities is well documented. However, most 

conclusions arise from single bouts of effort. Conclusions drawn from such studies may 

not be applicable to periods of training. Only a few studies have been found to describe 

immunological function throughout a period of decreased intensity and increased volume 

(Brown et al., 2015; Hack, Strobel, Weiss, & Weicker, 1994; Nieman, 2000). 

Comparisons of such findings to periods of increased training intensity in the same 

athletic population are still scarce. It may be postulated that by decreasing intensity the 

exercise-induced acute response may not be of the same magnitude and consequently may 

not illicit the same alterations in immune function as a HI period. According to the “J” 

curve model proposed by Neiman (1994), it would be expected that decreasing training 

intensity from ‘high’ to ‘moderate’ (~60% V̇O2max) would promote immuno competence. 

Syu et al. (2012) suggested that in healthy untrained subjects, chronic moderate exercise 

(cycling 30 minutes/day for 4 weeks at 60% of workloadmax) may promote a glycolysis-
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dominating shift in neutrophilic metabolism, thus enhancing chemotaxis, phagocytosis, 

citrate synthase activity and mitochondrial membrane potential. It has been suggested that 

a minimum exercise intensity of ~60% V̇O2max is necessary for significant increases in 

plasma catecholamines (Viru, 1985). In a highly-cited study, Robson et al. (1999) 

demonstrated that long-duration (>3 hr) moderate exercise (55% V̇O2max) elicited a 

greater post-exercise neutrophilia than a HI (80% V̇O2max) exercise performed by athletes 

for one hour. The increased concentration of neutrophils in the circulation after the 

moderate-intensity trial remained more elevated five hours after the cessation of the 

exercise than that following the HI trial and only returned to baseline 24 hours post-

exercise. Further, this same group demonstrated that while neutrophils were activated 

immediately post-exercise by both trials (measured through elastase release), LPS-

stimulated oxidative burst capacity after both exercise protocols was decreased (Robson 

et al. 1999). Curiously, while neutrophilic degranulation returned to pre-exercise values 

after the HI trial, this function was still below baseline values 24-hours post moderate-

intensity exercise. Despite the above mentioned and many other studies attempting to 

determine the effects of exercise intensity and volume on neutrophilic functions, definite 

conclusions are made difficult, as indicated by Peake (2002), due to the variety of 

individual training status, blood-sampling time points, exercise protocols and assay 

techniques employed. 

 

A two-week training phase in which training volume increased by ~40% did not alter the 

resting distribution of circulating components of the T-lymphocyte subset (CD3+) in 

female soccer players (Brown et al., 2015). Indeed, Robson (1999) demonstrated that 

post-exercise lymphocytosis was of greater magnitude after a HI (80% V̇O2max) compared 

to moderate intensity (55% V̇O2max) exercise bout. However, when analysing immune 

competence in elite swimmers throughout a training season, Rama et al. (2013) found an 

increase in reported URTI symptoms after a HV training phase, which, not coincidentally, 

was associated with a significant decrease in NK lymphocytes. More specifically, 

increased training volumes caused a redistribution of NK lymphocyte subsets in 

peripheral circulation, decreasing the more cytotoxic NK lymphocyte subset (CD56dim) 

while increasing the more cytokine-producing CD56bright subset (Cooper, Fehniger, & 

Caligiuri, 2001; Poli et al., 2009; Rama et al., 2013). It is possible that the increase in 

circulating cytokines produced by the CD56bright subset is a mechanism aiming to 

augment the pro-inflammatory response, while recruiting other leucocyte subpopulations. 
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Vital for immune competence, iron status parameters have also been shown to vary 

according to the intensity of the training stimulus. Lehmann et al. (1997) described 

significant decreases in serum iron (23+4 to 16+6 μmol/L) and serum ferritin (71+40 to 

28+19 mg/L) of elite distance runners exposed to a four-week HV training period 

consisting of a weekly average increase in training volume of 35% of baseline 

(85.9+14.2km week one and 174.6+26.7km week four). After a nine-week basic combat 

training (~72 km/week) serum ferritin was decreased by 20.1% and TSAT by 42.7%, 

reaching a functionally compromising transferrin saturation of 14.7+7.7% in female 

soldiers (McClung et al., 2009). This same group demonstrated a positive correlation 

between the decline in iron status, indicated by the increase in sTfR, and the decrease in 

running performance at the end of the combat training. 

 

Clearly training characteristics of intensity and duration pose different stress to both 

immune and iron metabolism homeostasis. However, HV training periods employed 

frequently by elite athletes have not gained the deserved attention.  Therefore, this study 

investigated the effects of a 10-day increased training volume camp in immune and iron-

related parameters in elite female kayak athletes. It was hypothesized that while the HV 

training period would increase the concentration of leucocytes in circulation, it would 

decrease immune competency. Further, the increase in training volume during the HV 

camp was hypothesized to decrease resting iron status of elite female kayak athletes. 

 

 

Methodology 
 

Training and participants 

The HV training camp was held from 14-24th of December 2015 (Table 7-1). In this camp 

a total of 153.2 kilometres on-water and 1266.2 minutes were recorded from each athlete, 

divided into training zones as shown in Table 7-2. As per previous camps, all training 

intervention was determined by AIS coaches with no intervention from the researchers. 

Four athletes were initially recruited to this training camp. One athlete was removed from 

training for medical reasons. The remaining three athletes (body mass=73.3+6.4 kg; 

age=23.7+4.7 years; ∑7skinfolds= 71.4+10.2 mm; peak V̇O2= 54.1+2.5 mL/kg/min) who 

participated in this study represented Australia in the Rio 2016 Olympics at the K1 500m 

and K2 500m events. Daily training load was considered the product of training duration 
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and session RPE, while cumulative training load was a rolling 7-day average of the daily 

training loads. 

Table 7-1 – High-volume camp schedule  
Date  14 15 16 17 18 19 20 21 22 23 24 
 M T W Th F S Su M T W Th 

GC Training Camp            

Athlete 
Arrival/Departure 

           

Capillary samples 
 (Immune parameters) 

  TDay1  TDay2   TDay3  TDay4  

Capillary samples  
(Iron parameters) 

           

Schedule of training camp held in December 2015 at AIS Gold Coast training centre. Testing days 
(TDay) are later referred to in-text.  

 

Blood Collection 

Capillary blood collection was performed in accordance with the methodology described 

in this thesis for the previous training camps (Chapters 5 and 6). Briefly, pre- and post-

training samples (300µL) were collected from each athlete after a 5-10 minute 

vasodilative cream (Finalgon®) was applied to their earlobe. Samples were immediately 

transported and analysed for immune phenotypes and neutrophilic phagocytic function 

and PMA-stimulated oxidative capacity, and previously described in the Methodology 

chapter of this thesis (Chapter 3). Remaining capillary blood was centrifuged (300 x g for 

10 minutes) and serum was aliquoted (~100µL), stored at -80°C and later analysed for 

iron parameters as per the Methodology chapter of this thesis (Chapter 3). 

 

Statistical Analysis 

Maintaining the standard of statistical analysis performed throughout this study, statistical 

analysis of the daily variations from pre- to post-training was performed through paired 

t-test, despite the small sample size (n=3). De Winter (2013) has highlighted that while 

there is a greater probability of false positive results when adopting a small sample size 

there is no objection towards its use. Hence, the percent change from pre- to post-training 

for each of the parameters analysed were quantified per individual athlete, as suggested 

by Vaux (2012), and brought to the reader’s attention when necessary (>20%). ES were 

calculated according to Cohen (1988) and considered ‘small’ <0.2, ‘medium’ =0.5 and 

‘large’ >0.8. Based on the number of athletes, this study was considered a large case study 
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and data on each athlete were displayed in the figures. Combined analysis of pre-samples 

throughout the HV camp were made through linear mixed model, considering the effects 

of each training day. Models were selected based on lowest AIC and number of 

parameters. Residuals were explored and observed values were plotted against model-

predicted values to assert model’s goodness-of-fit.  

 

Results 
 

Training 

The HV camp accumulated a total of 153.2km ‘on-water’ over 787.6 minutes of training 

throughout a 10-day period. This training camp involved 480 minutes of ‘off-water’ 

training (considered T1) which included up- and down-hill running as well as strength 

and conditioning training. The allocation of time and distances per training zone is 

detailed in Table 2. 

Table 7-1– Distance and time per training zone throughout the training camp  
T1 T2 T3 T4 T5 T6 T7 T8 

Total Kilometres ‘on-water’ 0 94 33 7.2 7.6 9.9 1.1 0.4 
Total Minutes 480 517.5 165 30.2 30.4 38.1 4 1 

 

Training load variation throughout the camp is shown in Figure 7-1. TDay3 had the highest 

training demand with a training load of 2228+97.5 AU, followed closely by TDay 4 and TDay1 

with 2111+653 AU and 2090+477 AU, respectively.  

 
Figure 7-1 – Training load throughout the high-volume camp 
a. b. 
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Acute Changes 

Leucocyte phenotypical distribution and antigen expression 

Distribution of circulating lymphocyte sub-populations from pre- to post-training was 

maintained throughout the HV camp (Figure 7-2). There were no significant changes in 

the proportions of circulating T-lymphocytes, CD3+CD4+ and CD3+CD8+, between pre- 

and post-training samples. There was a trend towards an increase in circulating percentage 

of B lymphocytes post-training (Figure 7-2c). Samples from athlete A07 showed the most 

accentuated changes from pre- to post-training in the distribution of circulating B 

lymphocytes (CD3-CD19+), with values increasing 1.8 and 2.2-fold on TDay3 and TDay4, 

respectively. Circulating distribution of NK lymphocytes (CD3-CD56+) was the 

lymphocyte sub-population most affected by training, with average declines >40% on 

every testing day (Figure 7-2d).  

Figure 7-2 – Distribution of lymphocyte sub-populations pre- and post-training 
a. b. 

  

c. d. 
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Neutrophil surface antigen expression did not present significant variation from pre- to 

post-training (Figure 7-3). A mean increase in the expression of CD66b on circulating 

neutrophils from pre- to post-training (68+0.0 to 179.7+97.7 AU p=0.186) was observed 

on TDay2 (Figure 7-3d). Such increase was mainly attributed to the approximate 250% 

increase in the expression of CD66b in neutrophils obtained from one particular athlete 

(A05 Figure 3d). The expression of CD71 from pre- to post-exercise showed two distinct 

patterns throughout the camp (Figure 7-3e). On the first two testing days (first week of 

the HV camp) there was a trend towards an increase in CD71 expression post-training, 

with observed increases of ~15% for athletes A05 and A07. The second training week, 

however, there was an average 20% decrease from daily pre-training values in TDay3 

and TDay4 (Figure 7-3e).  

 

Figure 7-3 – Neutrophil phenotypical distribution pre- and post-training 
a. b. 

  
c. d. 

  
e.  
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Granulocyte functions 

 

There was a trend towards decreased phagocytic capacity from pre- to post-training 

(Figure 7-4). The two most marked decreases occurred on TDay1 (2905+1428 AU to 

1455+333 AU p=0.162 ES=1.6) and TDay3 (2562+601 AU to 1150+279 AU p=0.03 

ES=3.4) with average post-training values 49% and 57% lower than pre-exercise values, 

respectively. Despite showing the highest pre-training phagocytic capacity (4504+892 

AU), TDay2 was also marked by a >33% training-induced decline in phagocytic capacity 

(p=0.055, ES=1.5). Contrary to the previous testing days, TDay4 was marked by an 

increase in phagocytic capacity of 34% from pre- to post-training values (1757+1081 AU 

to 2357+1273 AU p=0.033 ES=0.5). 

 

Figure 7-4 – Phagocytic capacity of granulocytes pre- and post-training. 

 
* Significant difference (p<0.01) between pre- and post-training 
‡ Significant difference (p<0.05) between pre-training values and baseline (Pre-training TDay 1) 
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athlete A07 had an 87% increase in stimulated ROS production, while the other two 

athletes had increases of over 50% of pre-training values. This trend was not observed in 
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Figure 7-5 – Stimulated oxidative burst capacity of granulocytes pre- and post-training. 

 
* Significant difference (p<0.01) between pre- and post-training 
‡ Significant difference (p<0.05) between pre-training values and baseline (Pre-training TDay 1) 
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Table 7-3 shows the effects of one day of increased volume-training on iron parameters. 
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consequently, transferrin saturation. There was a ~20% decline in transferrin post-training 

and a marked decrease in both unsaturated and total iron binding capacity. 

Table 7-2 – Iron parameters pre- and post-training on TDay2 
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Change t p ES 
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TSAT (%) 14.0 + 14.5 30.0 + 1.3 373.1 -1.439 0.387 -2.0 
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values were above the reference range (13-56 µmol/L) with pre-training value of 61.7 

µmol/L.  

 

Daily Variations 

Leucocyte phenotypical distribution and surface antigen expression 

Neutrophilic distribution in peripheral blood amongst the athletes did not vary 

significantly between the pre-training samples collected during the HV training camp. 

However, individual (per athlete) variations in circulating neutrophilic phenotypes were 

observed. Compared to baseline, on TDay2, circulating neutrophils from athlete A03 had 

a 63% decrease in the expression of CD11b, a 47% decline in CD18 and a 16.5% decline 

in expression of CD71. The expression of these markers was still decreased on TDay3 

and CD11b and CD18 remained 32.5% and 19% lower than baseline values on TDay4. 

On TDay 3, samples from athlete A05 were marked by a 24.5% and 32% decline from 

baseline values on the neutrophilic expression of CD11b and CD18, respectively. 

Increases from baseline values in the expression of CD71 in neutrophils obtained from 

A05 were observed in TDay2 (31%), TDay3 (18%) and TDay4 (25%). Athlete A07 

showed similar pattern in increased CD71 expression with highest increase from baseline 

observed on TDay3 (35%). While there was a paucity in the expression of CD66b on 

neutrophils from athletes A03 and A05, athlete A07 had a 212% increase in the expression 

of this marker on TDay2, with values returning to baseline on TDay3 and TDay4. 

Neutrophilic expression of CD16 was decreased in samples obtained on TDay4 from all 

athletes, with the greatest change observed in athlete A03 with a 17% decrease from 

baseline. 

 

Aiming to evade the acute effects of training on phagocytic capacity, samples obtained 

prior to every testing day were analysed through linear mixed model and demonstrated 

considerable variation amongst the athletes (Figure 7-4). Granulocytes from athletes A03 

and A05 had an 18% and 34% increase in phagocytic capacity on TDay2, respectively, 

compared to their baseline (pre-training sample TDay1). However, as the camp 

progressed, granulocytes from all athletes showed a reduction in their capacity to ingest 

FITC-labelled E. coli. On TDay4, granulocytes from athlete A05 had a 65%, athlete A03 

a 31% and A07 a 15% decline in phagocytic capacity compared to baseline.    
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Linear mixed modelling found a significant effect of day (p=0.006) in the stimulated 

oxidative burst capacity of granulocytes (Figure 7-5). Analysing granulocytes from pre-

training samples, stimulated oxidative burst capacity on TDay2 (3613+1004 AU p=0.006) 

and TDay3 (3593+169 AU p=0.008) were significantly decreased from baseline 

(7800+2016 AU). By TDay4, however, oxidative capacity was restored (9802+1560 AU 

p=0.114). 

 

Discussion 
 

The HV training camp did not seem to cause significant redistribution of either lymphoid 

or myeloid lineages in circulation. However, significant individual variations in function-

related granulocytic surface antigen expression, phagocytosis and oxidative burst 

capacity highlighted the need for individual monitoring.   

 

Lymphocyte sub-populations demonstrated distinct patters of mobilization post-training. 

Lymphocyte mobilization has been well described in the literature comparing moderate 

(55% V̇O2max) and high (80% V̇O2max) intensity bouts of exercise, with the latter having a 

greater impact on cellular redistribution (Nieman et al., 1994; Robson, Blannin, Walsh, 

Castell, et al., 1999).  While the HV moderate-intensity training adopted in this camp did 

not seem to mobilize T lymphocyte subsets (Figure 7-2a and 7-2b), there was a tendency 

towards a post-training increase in circulating B lymphocytes distribution (Figure 7-2c). 

Post-exercise B lymphocyte mobilization has been previously described in response to a 

range of exercise intensities, with higher intensities producing greater B lymphocyte 

redistribution from bone marrow into circulation. Recently, the post-exercise increase in 

circulating B lymphocytes has been attributed to an increase in an immature sub-

population of B lymphocytes (CD3-CD19+CD27-CD10+; Turner et al. 2016) . Utilising a 

rodent model, Engler et al. (2004) suggested that the redistribution of B lymphocytes from 

the bone marrow to the spleen would enable an immediate immune response after 

repeated stress events (experimental group was exposed to aggressive male C57BL/6 

mice). Despite the increase in circulating percentage of NK lymphocytes at the onset of 

exercise, many have reported declines of up to 40% in this population in recovery stages 

(from 5 minutes’ post-exercise) after prolonged exercise (~120 minutes) (Gabriel & 

Kindermann, 1997; Shek et al., 1995). The strain imposed by the non-kayak training 

modalities adopted during this camp (i.e. down-hill running) may have contributed to the 
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decline in the percentage of NK lymphocytes in circulation of similar magnitude to the 

above mentioned studies. NK lymphocyte redistribution post-exercise has been attributed 

to this population’s function in muscle tissue repair, which would explain their decrease 

from peripheral circulation (Malm et al., 2000).  

 

Throughout the HV training camp, the expression of specific antigens on the granulocytes’ 

surface was minimally altered. In the first week of training, there was a trend towards a 

mean increase in iron requirement of granulocytes post-training, measured by the increase 

in CD71 expression. However, on the second week of the camp post-training expression 

of CD71 on granulocytes presented decreases of up to 25% of pre-training values (Figure 

3e). Information on the relationship between CD71 expression in granulocytes and their 

function is scarce. In granulocytes, CD71 is expressed in bone-marrow derived normal 

blasts, with highest expression observed in pathological conditions such as acute-

leukemic granulocytes due to their over-proliferation in the bone-marrow (Liu et al., 

2014). In resting circulating granulocytes CD71 is minimally expressed (Dunphy, 2010). 

To date, only Zarco et al. (1999) have demonstrated an increase in CD71 expression on 

circulating granulocytes from healthy donors after G-CSF administration.  The increased 

expression of genes coding for components of the NADPH oxidase (p22phox, p47phox, 

p67phox, gp91phox) in peripheral neutrophils stimulated with opsonized S. aureus and E. 

coli LPS was demonstrated (Matthews et al. 2007). Iron is a regulator of gene expression, 

being present as Fe-S proteins in numerous DNA binding proteins (e.g. glycosylases; 

Boal et al., 2005; Porello, Cannon, & David, 1998), DNA processing, repairing and 

replicating enzymes (e.g. helicases and DNA polymerases; Pokharel and Campbell, 2012; 

Netz et al., 2011; Rudolf et al., 2006), RNA polymerase (in M. acetivorans; Jennings et 

al., 2015) ,  RNA-modifying enzymes (Kimura & Suzuki, 2015) and many others recently 

reviewed in Mettert and Kiley (2015) and Fuss et al. (2015). Thus, it is reasonable to 

suggest that the transferrin receptor would be upregulated in transcriptionally active 

granulocytes. Individual data from athlete A03 demonstrated the greatest training-

induced decline in CD11b, CD18 and CD71 expression. Such declines in expression of 

CD11b/CD18 and CD71 remained below baseline values throughout the training camp. 

Interestingly, this athlete was the only one in the cohort to report flu-like symptoms (nasal 

congestion with productive cough) and fatigue on TDay1 (verbal communication with 

investigator) and was later prescribed oral antibiotics by a physician. Further studies 

should aim to determine CD71 kinetics in granulocyte and its possible correlation with 

pathogen extermination rates. 
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Daily HV training had a suppressive effect on neutrophilic phagocytosis of E.coli, with 

post-training declines observed in TDays 1, 2 and 3. In contrast, the samples collected at 

the end of TDay4, demonstrated enhanced phagocytic capacity compared to pre-TDay4. 

While the TDay4 post-training values may indicate possible restoration of phagocytic 

capacity as values tended to return to (but were still less than) baseline values (pre-

TDay1), further investigation utilising more sampling time-points is required to ensure 

that the improvement is sustained post-camp. Interestingly, on TDay1, the stimulated 

oxidative burst capacity was increased from pre- to post-training. However, this trend was 

not sustained throughout the camp, with values usually remaining unchanged (TDays 2 

and 3) before declining from pre- to post-training on TDay4. TDay2 was preceded by a 

low training load day and TDay3 by a rest day. Interestingly, these two days showed 

marked decline in stimulated oxidative burst capacity, compared to baseline. Mochida 

(2007) suggested that neutrophilic functions may compensate for themselves post-

exercise. In-vitro, such observation might be valid, however, through a physiological 

perspective, in effective microbicidal killing, ROS production would follow a 

successful/complete phagocytosis (Briggs, Robinson, Karnovsky, & Karnovsky, 1986; 

Segal, 2005). Assembly of the NADPH oxidase complex however is not an exclusively 

post-phagocytic event, as molecular signalling originates from stimuli such as β2-

integrins and FcγRs receptor coupling (Anderson et al., 2010; Nathan, 1987), 

chemoattractants (e.g. fMLP;  Dahlgren and Karlsson,  1999), cytokines (e.g. GM-CSF 

and TNF) and components of the complement cascade (Condliffe et al., 2005) which have 

been shown to promote NADPH oxidase ROS formation. Therefore, while in-vitro 

stimulated oxidative burst capacity may be enhanced post-training, it does not necessarily 

translate to increased immune competence of the athlete, as incomplete/frustrated 

phagocytosis may lead to ROS formation and release into extra-phagosomal space which 

could potentially harm the host.  

 

The HV camp also brought about individual changes in iron metabolism. There was an 

increase in serum iron which might be reflective of the non-kayak-specific modalities (i.e. 

running) adopted in this camp. Such modalities have been reported to elicit foot-strike 

haemolysis (Miller, Pate, & Burgess, 1988; Telford et al., 2003). This concept 

acknowledges that the increase in serum iron after endurance demands might be caused 

by the mechanical trauma which leads to the breakage of the plasma membrane (i.e. 

haemoglobin degradation) of erythrocytes consequently releasing haem into circulation 

(Janakiraman, Shenoy, & Sandhu, 2011; Salvagno, Lippi, Tarperi, Guidi, & Schena, 2015; 
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Telford et al., 2003). Due to serum iron levels varying up to 50% throughout the day, a 

reliable iron status requires other iron-related parameters such as ferritin, transferrin and 

transferrin saturation to be measured (Scales, Vander, Brown, & Kluger, 1988). Circadian 

variation of iron demonstrates that serum iron levels are at their highest from 8:00-12:00 

hours with declines thereafter, reaching its nadir between 16:00-20:00 hours. Blood 

collection in this study occurred from 5:30-6:30 hours prior to the first training session 

and at 16:00-17:00 hours after the completion of the last training session of the day. Scales 

et al. (1988) did not show significant differences in the plasma iron concentration at these 

two time-points, which indicates that the sampling time-points elected were not greatly 

influenced by the physiological diurnal variation in serum iron. Further, as diet was not 

controlled, it is possible that athlete A05 had an iron-rich meal throughout the day, 

possibly restoring the values of circulating iron from the below reference range value of 

2.4 µmol/L obtained pre-training to 12.7 µmol/L post-training. Even so, dietary intake in 

the short time elapsed from pre- to post-samples do not seem sufficient to cause increases 

of such magnitude to serum iron as, using standardised meals, Ridefelt et al. (2010) did 

not find significant changes in serum iron in the blood samples obtained hourly, for 4 

hours post-meals in healthy young men. It is known that in ID, the rate of iron absorption 

is increased, however full restoration of serum iron to adult reference-range values only 

occurs after days of iron replenishment (Frazer et al., 2002). Despite the possible 

confounding variables which may have influenced serum iron values, analysis of UIBC 

and Tf demonstrate the capacity of the HV training to cause disturbance to individual iron 

status, upholding the necessity for continuous monitoring of iron status, including training 

periods where training intensity is lowered. 

 

This study demonstrates that a HV training camp has a moderate effect on immune 

modulation and iron metabolism. The most distinct alterations observed may be attributed 

to the adoption of non-kayak specific modalities, which would likely have caused 

increased muscle damage, brought about by eccentric contraction of large muscle mass 

(e.g. downhill running), however, further research is warranted (Peake et al., 2005; Pizza 

et al., 1995). Despite not having significantly influenced granulocytic phenotypical 

expression and distribution, the HV camp modulated effector functions of phagocytosis 

and oxidative burst. Interestingly, these functions seem to have had compensated for each 

other throughout the camp.  
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Study V 

 

 
 

 

Longitudinal analysis of haematological and biochemical parameters in elite 

female kayak athletes throughout an Olympic selection training year 
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Introduction 
 
Multi-peak training years require athletes to perform at their utmost multiple times per 

year. In an Olympic selection year, winning World Championships and World Cups 

guarantees a place at the Olympic Games. Longitudinal analysis of the impact of such 

demands are scarce in literature, particularly when assessing immune function and iron 

status. Therefore, the aim of this chapter is to provide a longitudinal analysis of the 

impacts that the HI, LHTL and HV camps had on the immune function and iron status of 

the elite female kayak athletes. 

 

Owing to the singularities of venous and capillary blood sampling sites, comprehensively 

explored in Study I of this thesis (Chapter 4), this chapter will discuss only findings from 

venous blood samples, obtained prior to and at the end of each training camp. This will 

enable a longitudinal analysis of the training year, highlighting the effects of the different 

training periods - HI (April), a LHTL (June) and a HV (December) - on iron and immune-

related parameters. The reader is referred to chapters five (2-week HI camp n=7), six (ten 

day LHTL camp, n=5) and seven (10 day HV camp, n=3) of this thesis if a revision of 

the characteristics of each camp and their influence on iron metabolism and 

immunological modulation is required.  

 

Methods 
 

Details and characteristics of each training camp and participating athletes can be found 

in Study II, III and IV (Chapter 5, 6 and 7, respectively) of this thesis.  

 

Blood collection 

Resting venous blood samples were obtained prior to the onset and at the last day of each 

camp as athletes arrived at the AIS Gold Coast training centre between 6-9am. After a 

10-minute rest in the seated position, venous blood samples (10 mL) were collected into 

two separate tubes: an EDTA-containing tube and a serum separator tube (SST) 

(Vacutainer BD BioSciences, New Jersey, US). A five-part differential full blood count 

(HmX, Beckman Coulter, California, US) was immediately performed on the sample 

containing EDTA as an anticoagulant. Samples in the SST were allowed to clot at room 
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temperature for one hour before being centrifuged at 2000 x g for 10 minutes. Serum was 

then aliquoted into 1 mL tubes (Eppendorf®, Hamburg, Germany) and frozen at -80°C. 

Serum samples from all camps were thawed once only and analysed at the same time after 

no longer than eight months’ storage under the above mentioned conditions. Analysis of 

iron parameters (serum iron, transferrin, soluble transferrin receptor, ferritin and 

unsaturated iron-binding capacity (UIBC)) was performed on a Cobas Integra® 400 plus 

biochemical analyser (Roche Diagnostics, Basel, Switzerland) after all calibrators, 

controls and standards were performed (in duplicates). TIBC was calculated from the 

addition of serum iron and UIBC values. The percentage of transferrin saturation was 

calculated from the formula SI/TIBC x 100. Immune- and iron-related parameters 

(myeloperoxidase, lactoferrin, interleukin-6 and hepcidin) were analysed through 

commercially available ELISA kits (MPO, IL-6 and Hepcidin were purchased from R&D 

Systems, Minnesota, USA and LF from ABCAM, Cambridge, UK) described previously. 

 

Statistical Analysis  

Initial assessment of pre- and post-camp values for each individual camp was made 

through paired samples t-test, after all the data was explored and all assumptions were 

met. Significance was set at α<0.05. Calculation of effect size was performed according 

to Cohen (1988) where the difference of the means of the two groups divided by the sum 

of their standard deviations divided by 2 (d) is considered ‘small’ <0.2, ‘medium’ =0.5 

and ‘large’ >0.8.  

 

Combined analysis of iron- and immune-related parameters between the three camps was 

made utilizing a linear mixed model. Model selection was determined by lowest AIC and 

least amount of parameters, as previously described. Each outcome was modelled with 

fixed effects of time (pre- or post-camp), camp (HI, LHTL or HV) and interaction 

between these two effects (time*camp). The model controlled for random intercept and 

slope (time) for each athlete and camp was established as a repeated measure accounting 

for time of collection for each athlete (athlete*time). Estimated marginal means of fitted 

models with Bonferroni adjustment compared main effects of camp, time and camp*time. 

The goodness-of-fit of the models were established by exploring the residuals and by 

plotting observed values against model-predicted values.   
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Results 
 
Training intensity and duration 

 

Characterisation of each camp was based on the training distance (‘on-water’ kilometres), 

duration (minutes) and stress imposed per training zone. Figure 8-1 highlights the 

uniqueness of each camp according to these parameters. The HI camp, showed increased 

distance and time spent in training zone (T) 6, where athletes produced work at the 500m 

race pace, compared to the LHTL and HV camps (see Table 3-4 in methodology section 

for complete description of training zones). Adding to the altitude challenge, the LHTL 

camp was a highly demanding training period, demonstrated by the 2.5km spent in T7, 

2.7-fold more than the HI camp, and the compiled distance and time spent on the aerobic 

zones (T2 and T3). As seen in Figure 8-1a during the LHTL camp the distance 

accumulated in T3 were 4.7-fold more than the HI camp. In the HV camp, the athletes 

worked for 94km in zone T2, twice as much as in the HI camp. Further, in the HV camp 

the athletes increased the time spent in other water-based training capacities, such as surf-

ski and surfing (T1), as shown in Figure 8-1b. 

Figure 8-1 – Duration and distance performed per zone in each training camp. 
a. b. 

  
c.  

 

HI Camp 
 
LHTL Camp 
 
HV Camp 

T=training zone. Refer to Table 3-4 in the Methodology chapter (3) for description of each training zone. 
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Blood-related parameters 

 

Venous blood samples collected prior to and post-camps were employed in the analysis 

of the cumulative effects of the different training volumes and intensities adopted in each 

training period on iron and immune-related parameters. Each training camp caused a 

unique redistribution in circulating leucocyte sub-populations from pre- to post-camp 

(Figure 8-2a-c). In the LHTL camp there was an increase in the circulating percentage of 

neutrophils from pre (46.8+4.9%) to post-camp (56.6+11.1% p=0.076, ES=1.2), while 

there was an average 5% decrease from pre-camp values in both the HI and HV camps. 

Contrary to the neutrophilic population, in the LHTL camp, distribution of lymphocytes 

was decreased from pre- (41.6+6.1%) to post-camp (34.1+9.8% p=.121 ES=0.9), while a 

11.6% and 6.8% increase from pre-camp values were observed in the HI and HV camps, 

respectively. While these values did not reach statistical significance, comparison of each 

time-point amongst the three camps through linear mixed model demonstrated a 

significant difference in the percentages of circulating leucocyte sub-populations 

throughout the training periods (Figure 8-2a-c). The average concentration of circulating 

neutrophils (pre-and post-camp) was significantly greater in the HI camp (60.9+8.6%) 

compared to both the LHTL (51.7+9.5% p=0.040) and HV (43.5+4.8% p<0.001) camp. 

Further investigation highlighted that the percentage of circulating neutrophils in the 

samples obtained prior to the LHTL (46.8+4.9% p=0.011) and HV (43.9+5.8% p=0.004) 

camps were ~25% lower than the values obtained prior to the HI camp (62.5+9.0%) 

(Figure 2a). At the termination of the camps, the difference between neutrophil 

concentration in the HI (59.3+8.5%) and HV (42.9+4.2%) camps remained significant 

(p=0.02) (Figure 8-2a). The percentage of circulating lymphocytes was significantly 

lower on the HI camp compared to both LHTL (p=0.022) and HV (p=0.001) (Figure 8-

2b). Detailed investigation showed that samples obtained prior to the LHTL and HV 

camps were respectively 14% and 15% greater than the percentage of circulating 

lymphocytes obtained prior to the HI camp. As the concentration of circulating 

lymphocytes at the end of the LHTL camp decreased, no significant differences in these 

time points were observed between the HI and LHTL camps. However, values obtained 

after the completion of the HV camp were still 14% higher than those observed at the end 

of the HI camp. Percentage of circulating monocytes (Figure 8-2c), eosinophils and 

basophils (data not shown) did not differ significantly between data collection points.  
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Figure 8-2 – Leucocyte populations pre- and post-camps 

a. b. 

  
c.  

 

  

 

Pre-camp 

Post-camp 

HI-high-intensity, LHTL live-high train-low, HV high-volume camp.  
Solid bars represent means and error bars represent SD. 
* Significant difference between pre-samples on assigned camps 
‡ Significant difference between post-samples on assigned camps 
 

Erythrocyte-related parameters varied throughout the different training camps. The 

highest values for all the erythrocyte-related parameters were obtained after the 

completion of the LHTL camp (Figure 8-3). At the end of the LHTL camp, erythrocyte 

concentration was 5.0% and 5.3% greater than that measured at the end of both the HI 

(p=0.04) and HV (p=0.035) camps (Figure 3a). At this same time-point, haemoglobin 

concentration was also 6.2% and 4.9% higher in samples obtained in the HV (p=0.032) 

and the HI camp (p=0.067), respectively (Figure 3b). Haematocrit at the end of the LHTL 

camp (40.3+0.8%) was significantly higher than at the end of the HI camp (38.8+0.9% 

p=0.035) (Figure 8-3c). Different to the HI and HV camps, there was a 12% increase in 

thrombocyte concentration at the end of LHTL camp from pre-camp values (p=0.056). 

Values for thrombocyte concentration at the end of the LHTL camp (260.1+13.7 x 109 

cells/L) were significantly greater than at the end of the HI (218.7+12.6 x 109 cells/L 

p=0.004) and the HV camp (217.8+15.7 x 109 cells/L p=0.030). 
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Figure 8-3 – Erythrocyte-related parameters pre- and post-camps 

a. b. 

  
c. d. 

  
Pre-camp (      ) Post-camp (     )    
HI-high-intensity, LHTL live-high train-low, HV high-volume camp. 
Solid bars represent means and error bars represent SD. 
* Significant difference between pre-samples on assigned camps  
‡ Significant difference between post-samples on assigned camps 
 
 

A comprehensive iron profile of the different training camps is provided in Table 1. At 

the end of the LHTL camp, serum iron was increased by 16.1% of pre-camp values, 

despite not reaching statistical significance. Transferrin saturation was reduced by 2% of 

pre-camp values in the HI camp, while an increase of 12.3% was observed at the end of 

the LHTL camp. While serum ferritin concentration was reduced at the end of the HI 

camp by 4.1%, iron stores were maintained throughout the LHTL and HV camps.  Mean 

serum ferritin concentration obtained in the HI camp (pre- and post-camp) was 

approximately 30% less than that obtained in the HV camp (p=0.025). STfR-Ferritin 

index was significantly higher (p=0.025) in the HI camp, compared to the HV camp 

(Table 8-1).   
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Table 8-1– Iron parameters prior to and post training camps  
 Camp Pre-camp  Post-camp Mean % 

Change t p ES  Mean         SD  Mean         SD 

Serum Iron 
(µmol/L) 

HI 20.9 + 6.6  18.9 + 3.6 1.0 0.731 0.492 0.39 
LHTL 18.1 + 2.5  21.0 + 7.0 16.1 -0.986 0.380 0.60 
HV 18.1 + 4.4  18.1 + 4.2 1.1 -0.025 0.982 0.01 

UIBC 
(µmol/L) 

HI 34.7 + 8.3  38.4 + 9.9 12.0 -1.123 0.304 0.40 
LHTL 33.9 + 7.8  33.3 + 10.6 -0.4 0.147 0.890 -0.06 
HV 38.2 + 11.5  35.9 + 10.0 -4.7 0.894 0.466 -0.21 

TIBC 
(µmol/L) 

HI 55.6 + 7.6  57.3 + 8.1 3.2 -1.213 0.271 0.22 
LHTL 52.0 + 8.5  54.3 + 10.8 4.3 -1.080 0.341 0.24 
HV 56.3 + 8.9  54.0 + 8.1 -3.8 1.402 0.296 -0.27 

Transferrin 
(µmol/L) 

HI 28.8 + 3.7  29.9 + 3.8 3.8 -1.959 0.098 0.28 
LHTL 27.3 + 4.6  28.8 + 6.3 4.9 -1.285 0.268 0.27 
HV 29.6 + 4.5  28.7 + 4.3 -3.1 2.200 0.159 -0.21 

TSAT (%) 
HI 37.6 + 11.4  33.8 + 9.4 -1.9 0.801 0.454 -0.36 
LHTL 35.2 + 5.4  38.9 + 12.3 12.3 -0.615 0.572 0.42 
HV 33.1 + 11.1  34.2 + 9.5 5.5 -0.332 0.772 0.11 

Ferritin 
(pmol/L) 

HI 152.5 + 43.9  147.4 + 59.9 -4.1 0.461 0.661 -0.10 
LHTL 180.1 + 70.9  174.7 + 58.3 -0.2 0.498 0.644 -0.08 
HV 215.4 + 76.0  209.9 + 66.5 -0.1 0.307 0.788 -0.08 

sTfR 
(nmol/L) 

HI 33.8 + 6.7  32.3 + 6.1 -4.2 2.236 0.067 -0.23 
LHTL 27.1 + 3.5  27.9 + 0.8 3.9 -0.551 0.611 0.34 
HV 28.7 + 3.9  27.2 + 1.3 -4.5 1.005 0.421 -0.57 

sTfR-
Ferritin 
Index 

HI 1.6 + 0.3  1.5 + 0.4 1.5 0.828 0.439 0.09 
LHTL 1.2 + 0.2  1.3 + 0.1 1.3 -0.344 0.749 0.19 
HV 1.2 + 0.1  1.2 + 0.1 1.2 1.485 0.276 0.52 

UIBC=unsaturated iron binding capacity TIBC=total iron binding capacity Tf=transferrin 
TSAT=transferrin saturation sTfR= serum transferrin receptor. Degrees of freedom for each camp: HI (6), 
LHTL (4), HV (2)  
*Significant at p<0.05 HI (high-intensity), LHTL (“live-high, train-low”), HV (high volume) 
 

 

Table 8-2 depicts changes in serum hepcidin, MPO and LF throughout the three camps. 

Analysis of serum hepcidin concentration prior to and at the end of each individual camp 

highlighted increases of more than 25% above pre-camp values in every training camp, 

with the greatest increase (65%) observed at the end of the HI camp. Statistically 

significant changes however, were only observed in the LHTL camp, where post-camp 

samples had an average increase of 48% (p=0.001 ES=2.9) of pre-camp sample values. 

At the end of this same camp, LF concentration was significantly increased by 10% 

(p=0.008 ES=0.7).  Serum concentration of MPO was increased by 4% above pre-camp 

after the HI camp, while a 21% and 11% decrease were observed at the end of the LHTL 

and HV camps, respectively. Data for IL-6 results are not shown as serum IL-6 values 

from both pre- and post-camp were all below the detection limit of the immune-assay 

(3.1pg/mL) for every training camp. 

 



   

188 
 

Table 8-2 – Iron and immune-related serum components pre- and post-camps 
 

Camp 
Pre-camp Post-camp Mean % 

Change t p ES Mean  SD Mean  SD 

MPO        
(pmol/L) 

HI 1191.2 + 525.1 1347.0 + 849.2 4.1 -1.03 0.343 0.23 
LHTL 704.0 + 464.9 551.6 + 590.0 -20.8 0.88 0.428 -0.19 
HV 515.5 + 306.0 459.0 + 279.1 -11.0 2.71 0.113 -0.19 

Hepcidin 
(nmol/L) 

HI 3.1 + 1.5 4.0 + 1.0 65.3 -1.55 0.173 0.74 
LHTL 3.3 + 0.6 4.9 + 0.5 48.1 -34.27 0.001* 2.92 
HV 4.3 + 0.7 5.3 + 0.2 25.5 -1.66 0.345 2.35 

LF 
(nmol/L) 

HI 25.7 + 5.4 23.9 + 6.8 -7.6 1.34 0.230 -0.29 
LHTL 16.8 + 4.8 20.5 + 5.7 10 -4.89 0.008* 0.70 
HV 18.0 + 4.9 18.1 + 3.0 2.5 -0.04 0.968 0.01 

Paired t-test between pre- and post-camp samples. Degrees of freedom for each camp: HI (6), LHTL (4), 
HV (2) *Significant at p<0.05 
 
 
 
 
Longitudinal comparison of all camps through linear mixed modelling indicated a 

significant effect of camp on serum MPO, LF and hepcidin. Values for MPO 

concentration obtained in the HI camp were significantly higher than those obtained in 

both the LHTL (p=0.012) and HV (p=0.005). Further analysis revealed that MPO 

concentration was significantly higher at the end of the HI camp (1347+849 pmol/L) 

compared to both the LHTL (551.6+590 pmol/L p=0.026) and HV (459+279 pmol/L 

p=0.024) camps. Serum concentration of LF also fluctuated between the camps, with 

higher concentrations found in the HI, compared to the LHTL (p=0.006) and HV 

(p=0.036) camps. Pairwise comparison, derived from the mixed model, between pre-

camp samples of the three camps showed that values for LF obtained prior to the HI camp 

were 35% and 30% higher than pre-camp values for both the LHTL (p=0.004) and HV 

(p=0.067), respectively (Table 2). The linear mixed model’s test of fixed effects revealed 

the significance of both ‘time’ (p=0.002) and ‘camp’ (p=0.023) in the outcome of 

hepcidin concentration. In this model it was clear that the LHTL and HV camps had a 

significant effect on hepcidin concentration and that the training itself increased hepcidin 

concentrations, as time (pre- versus post-camp) was a significant effect in the model.  
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Discussion 
 

The main findings of this study were the increase in circulating erythrocyte-related 

parameters following the LHTL camp compared to the HI and HV camp. The increase in 

the percentage of neutrophils in circulation from pre- to post-camp was observed in the 

LHTL but not in HI or the HV camps. In contrast, the percentage of circulating 

lymphocytes decreased post-camp compared to pre- LHTL camp values, while an 

increase in circulation for this population was observed post-HI and HV camp. HI camp 

caused an increase in serum levels of MPO. While the LHTL camp caused an increase in 

serum levels of LF, the HI and the HV camps did not seem to affect serum levels of LF. 

Additionally, this study demonstrated that serum hepcidin concentration is responsive to 

the training stimulus (i.e. intensity) and that such a response is augmented as a hypoxic 

challenge is added to the physical stress. 

 

The concentrations of erythrocytes and haemoglobin were significantly increased at the 

end of the LHTL camp, contrary to the trend observed in both the HI an HV camps (Figure 

8-3a-c). It is well established that hypoxic exposure triggers erythropoiesis, mainly 

through release of EPO, despite studies adopting the LHTL protocol being unable to 

produce consistent results in erythrocyte-related parameters, mostly due to the lack of 

standardisation in the hypoxic component (simulated or not) and/or duration of the 

exposure (Ashenden, Gore, Dobson, & Hahn, 1999; Levine & Stray-Gundersen, 2005; 

Rusko, Tikkanen, & Peltonen, 2004; Wehrlin et al., 2006). Recently, Alvarez-Martin et 

al. (2016) demonstrated the effects of hypoxia on the bone-marrow micro-environment, 

utilizing a clinically-relevant intermittent hypoxia rat model for 30-35 days, mimicking 

effects of obstructive sleeping apnoea syndrome (OSA). The OSA model restricts O2 

delivery throughout the night (~10.5h/day), similar to the hypoxic exposure the athletes 

underwent during the LHTL camp. This group demonstrated an increase in erythrocyte 

colonies (specifically burst forming unit-erythroid) in the bone-marrow as well as 

increases in circulating erythrocyte concentration in rats exposed to hypoxia compared to 

their normoxia-exposed counterparts. These results, as well as others specifically 

reporting increases in erythrocyte-related parameters in elite athletes exposed to the 

LHTL protocol (Bonetti, Hopkins, & Kilding, 2006; Brugniaux et al., 2006; Siebenmann 

et al., 2012), are in agreement with results shown in this study.  
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While LHTL studies reporting thrombocyte concentrations are scarce, this study has 

shown that such a protocol may lead to an increased concentration of thrombocytes in 

peripheral blood. It is reasonable to suggest that hypoxia may stimulate differentiation of 

megakaryocyte progenitors in the bone marrow, as observed in rats exposed to hypoxic 

chambers with reduced air pressure (~307.5mmHg) for 6 hours (Lebedeva, Yushkov, & 

Chereshnev, 2003). However, it is not confirmed that such an increase in bone marrow 

megakaryocytopoiesis is reflected in increases in platelet concentrations in peripheral 

blood. Further investigation with human subjects is required. 

 

The most significant change in the peripheral distribution of neutrophils in blood obtained 

from pre- to post-camp was observed after the LHTL camp, where there was as 20.7% 

increase in the percentage of circulating neutrophils. Interestingly, this was different to 

the HI and HV camp where post-camp percentages of circulating neutrophils were lower 

than pre-camp values. The concentration and percentage of circulating neutrophils in the 

HV camp, in both pre- (2.4x103/µL; 45%) and post-camp (2.3x103/µL; 42.8%) 

measurements, were the lowest recorded for all camps. Peripheral lymphocyte 

distribution, however, behaved opposite to that, with circulating percentages decreased at 

the end of the LHTL camp, but increased after the HI and HV camps. The previously 

mentioned study by Alvarez-Martin et al. (2016) demonstrated an upregulation of 

myeloid progenitor cells and B lymphocytes and a significant decrease in the percentage 

of T lymphocytes in the bone marrow of hypoxia-exposed rats compared to the control 

animals kept in normoxia. As T lymphocytes represent 61-85% and B lymphocytes only 

7-23% of total lymphocytes (Reichert et al., 1991), changes to the T lymphocyte subset 

would presumably dictate the trend observed. Most interestingly is the finding that such 

changes in haematopoietic lineages were reflected in peripheral blood (Alvarez-Martins 

et al., 2016), in agreement with findings obtained from peripheral blood in this study. 

This may lead to the conclusion that while HI and HV training camps apparently favour 

the proliferation of cells mediating the adaptive immunity (i.e. lymphocytes), the 

additional stimuli provided by the LHTL camp enhances circulation of myeloid-derived 

innate-immunity components.  

 

Concomitantly to the increase in circulating neutrophils in the LHTL camp, there was a 

significant increase in serum concentration of LF. The origin of serum lactoferrin is 

mostly from neutrophil degranulation (Iyer & Lonnerdal, 1993). In an elegant in-vitro 

study on the effects of hypoxia (0.8% O2 and 0.5% CO2) on neutrophilic degranulation, 
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Honderdos (2014) demonstrated a significant increase in specific granule exocytosis, 

quantified by an increase in lactoferrin concentration of 240% and 250% in the 

supernatant of freshly isolated neutrophils (human) stimulated with GM-CSF + fMLP and 

cytochalasin-B + fMLP, respectively. It is not fully understood how hypoxia, as 

experienced locally through inflammation or systemically through, or, in the context of 

this thesis, the LHTL training camp, triggers degranulation in peripheral neutrophils. 

There are suggestions that hypoxia causes a rearrangement of the neutrophilic 

cytoskeleton (Honderdos, 2014), which in turn may signal down-stream molecules such 

as GTPases Rac and Rho, which are involved in the PI3K cascade (Akasaki, Koga, & 

Sumimoto, 1999; Welch, Coadwell, Stephens, & Hawkins, 2003) and are vital for 

azurophilic granule exocytosis (Rac2) (Abdel-Latif, Steward, & MacDonald, 2004; 

Eitzen et al., 2011). Hoenderdos (2014) has shown that PI3Kγ is crucial in the signalling 

events that lead to the increased degranulation observed during hypoxia. Further, 

McGovern et al. (2011) demonstrated that while hypoxia did not cause degranulation 

(measured through elastase release) in unstimulated neutrophils, elastase release from 

cytochalasin-B–primed fMLP-stimulated neutrophils increased significantly. It is 

reasonable to believe that the combined effects of training-induced APR (via increase in 

IL-6, TNF-α) and the hypoxic stimulus during the LHTL camp may mimic events in an 

inflammatory site, where O2 availability is diminished and neutrophils are primed (i.e. 

enhanced phagocytosis and ROS production; Condliffe et al. 1998), thus increasing serum 

LF as an immune strategy to ensure any available iron is not used by proliferating 

pathogens. 

 

The high variability of serum hepcidin concentration observed in the HI camp (i.e. large 

standard deviations) demonstrates the individual-specific responsiveness of hepcidin. In 

this camp, two athletes presented 2.5 and 3.5-fold increases from pre- to post-camp values. 

Individual changes of these magnitudes were not observed in either the LHTL or HV 

camps. Curiously, these athletes were not further selected to participate on the LHTL and 

HV camps. The increase in serum hepcidin concentration at the end of every training 

camp demonstrates the effect that physical exertion has on hepcidin concentration, as 

shown previously by others (Auersperger et al., 2013; Peeling et al., 2009a; Skarpanska-

Stejnborn et al., 2015). Interestingly, the LHTL camp, despite a lower percent change 

from pre- to post-camp compared to the HI camp, still had a significant 48% increase in 

hepcidin concentration. The hypoxic challenge is known to negatively regulate hepcidin 

expression through signalling pathways including HIF-α, platelet-derived growth factor 



   

192 
 

(which blocks cAMP response-element binding protein/H; Sonnweber et al., 2014) and 

EPO (Kautz & Nemeth, 2014; Rishi et al., 2015). The hypoxic stimulus results in EPO 

release for increased RBC production. Erythroid precursors then express erythroferrone 

(EFRE) which down-regulates hepcidin to allow iron to be absorbed and distributed to 

the bone marrow for erythropoiesis (Kautz et al., 2014). This stimulus occurs at the onset 

of exposure to hypoxia. Possibly the increase in hepcidin expression post- LHTL camp 

demonstrated a feed-back regulation where sufficient iron had been absorbed and 

delivered to the bone marrow and at the time of testing hepcidin was being up-regulated 

to re-establish iron homeostasis as athletes were taking iron supplements.  It may be 

possible that the expected down-regulation of hepcidin occurred during the 

acclimatisation phase of the LHTL camp, which happened one week before the pre-camp 

samples were obtained from the athletes. Goetze et al. (2013) described an increase in 

established erythropoietic markers (i.e. EPO and GDF-15) after two days of arrival at 

4559m and at the same time a significant decline in hepcidin levels, which reached lowest 

values after four days. Using the same methodology of hypoxic exposure as used in this 

thesis (i.e. LHTL), Govus et al. (2016) characterized the hepcidin response prior to 

altitude exposure (baseline) and on days two and 14 of LHTL. This research group 

demonstrated a significant decrease in plasma hepcidin after two days of exposure 

compared to baseline, which, despite a trend towards returning to baseline values, the 

decrease was still significant after 14 days.  Further, if erythropoiesis was occurring after 

the camp it would most likely be reflected in a decrease in serum iron concentration at 

the same time-point (Goetze et al., 2013). In contrast, serum iron concentration was 

increased by 15% from pre-camp values at the end of the LHTL camp. It has been 

proposed that the molecular signalling for hepcidin expression may be more responsive 

to iron status/stores (BMP/SMAD pathway) than to hypoxia (Huang, Constante, Layoun, 

& Santos, 2009); therefore, adequate or increased iron availability would trigger the up-

regulation of hepcidin expression to maintain iron homeostasis, even in the presence of 

the hypoxic stimulus. Findings from the previously mentioned study undertaken by 

Govus et al. (2016) may also aid in understanding the interactions between training 

induced inflammation, hypoxia, hepcidin and iron supplementation, as in their study, 

iron-supplemented athletes did not show an up-regulation of hepcidin after 14-days of 

LHTL exposure as did the non-supplemented athletes.   
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The slight decrease in resting plasma ferritin concentration after every camp may be 

related to the training stimulus imposed. After the HI training camp, ferritin levels were 

decreased by 3.4% of baseline value, while after the HV training camp, this decrease was 

2.5%. While there is an established positive correlation between serum ferritin and 

training load (Koehler et al., 2012; Malczewska et al., 2000), correlations with training 

volumes are poor (Ostojic & Ahmetovic, 2008). Interestingly, a 3.0% decrease from pre-

camp values was observed at the end of the LHTL camp. In this camp, the altitude 

challenge, combined with the training sessions, had a greater imposition on erythrocyte 

production, as observed by a significant increase in erythrocyte parameters at the end of 

this camp, compared to the other two camps (Figure 8-3). Govus (2015) reported a 33% 

reduction from baseline in serum ferritin concentration in elite athletes after moderate 

exposure (1,500-3,000m) for 21+3 days without iron supplementation. Curiously, ferritin 

concentration from iron-supplemented athletes only decreased by 13% from baseline 

values (Govus, 2015). As declines in ferritin observed after the LHTL camp are 

comparable to those of the HI and HV camps, it may be concluded that by providing iron-

supplementation to the athletes in this study, iron stores were maintained during the 

hypoxia-driven increase in iron requirement for erythropoiesis, as demonstrated by others 

(Dellavalle, 2013; Govus, 2015). The 16% increase in serum iron observed at the end of 

this camp, but not at the end of the other two camps, supports such hypothesis. 

 

Training-induced perturbation of immune and iron-related parameters may lead to 

reduction in performance and increased susceptibility to infections. This study 

demonstrated that such disturbances are training-period specific, enabling coaches to 

better structure the training periods to avoid potentially negative changes in 

immunological capacity and iron status that may impact performance. Future studies 

should aim to establish if there is a hierarchy in the signalling pathways involved in 

hepcidin mRNA expression. If an ‘over-riding’ mechanism exists, the exercise-induced 

anaemia of inflammation may be attenuated, as it could be counter-acted with hypoxic 

stimuli combined with iron supplementation. By avoiding decrements in functionally 

available iron and iron stores ideal erythro- and myelopoiesis can be ensured.  In a cross-

over study, Badenhorst et al. (2014) demonstrated that three hours of hypoxic exposure 

(FIO2 ~15%) during the recovery phase post-interval running session (8 × 3 minutes 

repeats at 85% V̇O2peak with 90 seconds of active recovery (60% V̇O2peak) between 

repetitions) attenuated circulating hepcidin concentrations in male endurance runners 

compared to their recovery in normoxia. This not only solidifies the suggestion made 
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previously but paves the way for further investigation into attenuating training-induced 

acute-phase response in order to maintain functionally available iron and consequently 

aid recovery.   
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This set of studies provides unique insight into the physiological/immunological 

processes induced by a range of training regimes in elite female kayak athletes in 

preparation for, and while endeavouring to gain selection in the team to compete in, the 

2016 Rio Olympic Games. Throughout the training year (conducted during 2015), the 

effects of the training camps organised by AIS were studied based on the different training 

methodologies employed. Using a micro-sampling technique exclusively developed for 

this thesis, data on immune function and iron status were collected from three separate 

training camps: HI, LHTL, and HV. Performance outcomes after each camp were 

measured by the success of the athlete at the subsequent competition, most of which were 

international championships. Results from each event determined the continuation of the 

athlete in the Olympic training program. Main findings were: 

 

• The LHTL camp (18 days) enhanced the circulation and function of granulocytes 

compared to both the HI (2 weeks) and the HV (2 weeks) training camps 

 

• Improved recovery from the post-exercise decrease in neutrophilic stimulated 

ROS production was observed in the LHTL camp compared to the HI and HV 

camp. 

 

• The HV training camp promoted circulation of lymphocytes while the LHTL 

promoted increased circulation of neutrophils. 

 

• As expected, the LHTL camp, combined with iron supplementation, increased 

erythrocyte, haemoglobin, haematocrit, and thrombocyte concentration while, in 

contrast, the HI and HV camps caused decrements in these parameters. 

 

• The introduction of normobaric hypoxia (via LHTL) and iron supplementation to 

a HI training camp partially suppressed the post-camp resting serum hepcidin 

concentration. 

 

It was demonstrated that during different training periods, post-training leucocyte 

distribution is dictated by the intensity and duration of the daily training imposed. 

Additionally, this study highlighted the training-dependent modulation of the immune 

capacity through changes in the expression of surface receptors of leucocytes. Such 
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receptors not only identify specific leucocyte sub-populations but relate to specific 

leucocytic functions. Similarly, granulocytic functions of phagocytosis and stimulated 

oxidative burst are shown here to be affected not only by daily training load but also by 

the accumulation of such loads in periods of HI, LHTL and HV training.  

 

Throughout the different training camps, lymphocyte subsets showed exercise-induced 

redistribution from pre- to post-training. These acute responses have been described 

extensively in the literature (Campbell et al., 2009; Fry, Morton, & Keast, 1992; Gleeson, 

Bishop, Oliveira, McCauley, & Tauler, 2011; Nieman et al., 1994; Tvede, Kappel, 

Halkjaer-Kristensen, Galbo, & Pedersen, 1993), with NK and B lymphocyte subsets 

demonstrating the greatest mobilization, compared to helper and cytotoxic T lymphocytes. 

Amongst the training camps analysed, the HI training camp caused the greatest 

mobilization from pre- to post-training of these subsets. Interestingly, even though the 

LHTL camp imposed large training load and provided large adaptive stimulus, the 

redistribution of B lymphocytes throughout the LHTL did not mimic the HI camp as did 

the NK lymphocytes. This original finding brings into the question the impact of altitude 

training on mobilisation of adaptive components of the immune system as the expected 

acute B- lymphocyte redistribution from pre- to post-training (Morgado et al., 2014; 

Navalta et al., 2013; Turner et al., 2016) was abolished during LHTL, maintaining B-

lymphocyte concentration constant throughout the training camp. It may be the case that 

the paucity in B-lymphocyte recruitment to the circulation during the LHTL camp 

demonstrates a preferred recruitment of innate rather than adaptive immune components 

during hypoxic challenges. Hypoxia, as observed in the inflamed tissue, promotes the 

circulation and migration of neutrophils towards the affected tissue (Sica, Melillo, & 

Varesio, 2011), which strongly supports the findings of this study.  

 

Neutrophils have been erroneously portrayed as a short-lived, non-proliferative, non-

specific type of leucocyte. Its highly condensed nucleus added to the notion of a 

terminally differentiated leucocyte thought not to perform gene expression. Such 

assumptions have been refuted as neutrophils are known to synthesize heat-shock proteins 

though a transcription-dependent manner (Eid, Kravath, & Lanks, 1987) and to regulate 

RNA synthesis and gene expression in response to various stimuli (Zhang et al., 2004). 

Neutrophils also orchestrate the inflammatory response through up-regulation of genes 

encoding for chemokines and cytokines such as TNF-a, IL-1b, IL-1ra, IL-8 (McDonald, 

Bald, & Cassatella, 1997). More specific to the functions analysed in this thesis, 
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neutrophils express mRNA-encoding phagocytic receptors (e.g. FcR; Jack and Fearon, 

1988) and up-regulate the genes encoding the NADPH oxidase cytochrome components 

gp91phox and p22phox in response to surface antigen coupling with specific cytokines (e.g. 

TNF-α and GM-CSF) and bacterial LPS (Newburger, Dai, & Whitney, 1991; Newburger, 

Ezekowitz, Whitney, Wright, & Orkin, 1988). The reduced number of mitochondria and 

amount of mitochondrial respiration compared to other leucocytes, led researchers to 

believe that such organelles did not play a role in neutrophilic functions. However, it is 

now known that, contrary to other leucocyte populations, the mitochondria in neutrophils 

is displayed as a tubular network and they are involved in functions such as chemotaxis 

and apoptosis (Bao et al., 2015; Maianski et al., 2004). Curiously, both these functions 

require cytoplasmic rearrangement. Description of neutrophilic behaviour during surface 

antigen-dependent activities such as rolling, tethering and adhering to the vascular 

epithelium demonstrate clear remodelling of the cytoplasm, which may also indicate 

mitochondrial involvement (via ATP; Bao et al., 2014). Fossati et al. (2003) demonstrated 

that disruption to the neutrophilic mitochondrial membrane potential perturbed structural 

rearrangement of the cytoplasm, heavily influencing neutrophilic morphology. It is 

known that under physiological shear flow, neutrophils project pseudopods increasing the 

contact area with the epithelium enabling firm adhesion which precedes successful 

chemotaxis (Rocheleau, Sumagin, Sarelius, & King, 2015). Therefore, the involvement 

of the mitochondria in the multitude of functions described indicates that neutrophils may 

have a functional-dependent requirement for iron possibly to be incorporated to the ETC, 

haem and/or Fe-S clusters. The identification of receptors for transferrin on the 

neutrophilic surface (Maneva & Taleva, 2009) cements such a suggestion. In the LHTL 

camp, the acute post-training up-regulation of transferrin receptors, accompanied by 

increases in CD11b/CD18 complex on the granulocytic surface, is consistent with an 

increased demand for iron for cellular activation.  

 

The importance of maintaining a functionally-available iron supply during training 

periods undoubtedly exceeds the oxygen-carrying and erythropoietic functions of iron. 

Immune competence throughout these highly demanding training periods is challenged 

due to alterations in iron availability, as lymphocytes, monocytes, and granulocytes - 

particularly made evident in this thesis - have a functional-related demand for iron. Any 

limitation in the availability of iron has the potential to compromise immune function via 

a decrease in ATP produced (secondary to impairment of oxidative phosphorylation) 

and/or via a range of other iron-dependent processes critical in leucocytes (e.g. 
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lymphocyte proliferation). The noteworthy increase in stimulated oxidative burst capacity 

observed on the last testing day of the LHTL camp may have been a combination of 

increased exposure to iron (supplement) (Chandra, 1973, 1976, 1979; Chandra & Saraya, 

1975; Dallman, 1986; Moore & Humbert, 1984; Yetgin, Altay, Ciliv, & Laleli, 1979) and 

training-induced delayed neutrophilic apoptosis (Mooren et al., 2012). The post-exercise 

increase in CD71 expression (discussed above) and the increase in oxidative burst 

capacity observed in samples obtained hours later (prior to training) are chronologically 

in agreement with the time lag for the translation and synthesis of NADPH oxidase 

components, which require iron incorporation (Newburger et al., 1991). The increased 

time neutrophils are in the circulation due to the delayed apoptosis extends neutrophilic 

exposure to plasma cytokines and LPS, known to be increased post-exercise (Ashton et 

al., 2003; Bernecker et al., 2013; Pedersen & Toft, 2000; Starkie, Rolland, Angus, 

Anderson, & Febbraio, 2001), particularly if considering the possible cumulative effects 

of multiple training sessions per day. LPS-induced neutrophilic activation is mediated by 

a cluster of receptors including the toll-like receptor 4 (TRL4), CD14 and CD11b/CD18 

(Kabanov, Grachev, & Prokhorenko, 2014; Schymeinsky, Mocsai, & Walzog, 2007; 

Wright, Ramos, Tobias, Ulevitch, & Mathison, 1990; Zarewych, Kindzelskii, Todd, & 

Petty, 1996). Through two distinct pathways (myeloid differentiation primary response 

gene 88 (MyD88)-dependent and MyD88-independent), mitogen activated protein kinase 

(MAPK) and interferon regulatory factor 3 are activated, respectively, translocating NF-

κB. Both signalling pathways are involved in priming of the neutrophil oxidative burst, 

through increase membrane expression of flavocytochrome b558 via exocytosis of specific 

and gelatinase granules as well as secretory vesicles (Ward, Nakamura, & McLeish, 2000). 

Interestingly, GM-CSF and TNF-α, which are both found in higher concentrations in 

plasma post-exercise, also prime neutrophilic oxidative burst via the MAPK pathway 

(McDonald et al., 1997; McLeish et al., 1998; Suzuki, Hino, Hato, Tatsumi, & Kitagawa, 

1999).  

 

Findings in this thesis support the acute post-exercise serum hepcidin up-regulation 

previously discussed by others (Govus et al., 2016; McClung et al., 2013; Peeling et al., 

2009b; Peeling et al., 2014; Sim et al., 2012). Further, findings of this research indicate 

that resting serum hepcidin concentration is dependent on not only training intensity, but 

also hypoxic exposure. Such results raise questions about the regulatory role and the 

possible signalling-hierarchy that inflammation, iron status and hypoxia have on iron 

regulation. Signalling of iron status and inflammation (IL-6) through the SMAD and 
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STAT3 pathways, respectively, upregulate hepcidin expression. In contrast, it is well 

established that hypoxia, through EPO, HIF-1α or platelet-derived growth factor 

receptor/cAMP response-element binding protein/H pathways, is a negative regulator of 

hepcidin expression. EPO-dependent erythropoiesis leads to activation of ERFE pathway 

(Kautz et al., 2014) and the activation or stabilization of matriptase-2 (transmembrane 

serine proteinase TMPRSS6) which inhibits the hepcidin-upregulating BMP-SMAD 

signalling pathway (via cleavage of HJV) (Nai et al., 2016). Here it was observed that 

hepcidin expression was enhanced after a HI training camp, in line with previous findings 

which associate hepcidin up-regulation to IL-6 increase post-exercise (via JAK/STAT3 

pathway). Training not only increases circulating levels of IL-6 in plasma but also other 

cytokines such TGF-1β (Czarkowska-Paczek, Bartlomiejczyk, & Przybylski, 2006). This 

superfamily of cytokines has been shown to signal SMAD1/5/8 and SMAD2/3 

complexing with SMAD4. These signalling pathways and SMAD1/5/8 + SMAD4 

complex also up-regulates hepcidin expression through BMP6 signalling, suggesting an 

additional ‘inflammation-induced’ avenue for hepcidin up-regulation. Recently it has 

been shown that hypoxia induces HIF-1α stabilization and consequently expression of 

genes regulated by this transcription factor, such as Glut1. HIF-1α has been suggested to 

directly inhibit hepcidin expression. Hypoxia causes an up-regulation of SMAD7 in 

endothelial cells (Chi et al., 2006), and most recently such up-regulation has been shown 

to be HIF-1α dependent (Heikkinen et al., 2010). SMAD7 is an antagonist of TGF-β and 

BMP signalling through negative-feedback mechanisms (Guo & Wang, 2009; Yan & 

Chen, 2011; Yan, Liu, & Chen, 2009). Recently Nai et al. (2016) highlighted the 

importance of inhibition of the BMP-SMAD signalling pathway for effective ERFE-

driven hepcidin down-regulation. Therefore, as proposed in Figure 9-1 (below), while HI 

exercise triggers hepcidin up-regulation, possibly through STAT3 and SMAD signalling, 

hypoxia-induced increase in ERFE and HIF-1 activation of SMAD7 may be down-

regulating hepcidin expression. The combination of HI exercise and hypoxia in this study 

demonstrated a 26.3% down-regulation of post-camp resting serum hepcidin compared 

to HI alone. But, resting hepcidin values post-LHTL were still significantly increased 

from baseline values, indicating that the hepcidin-promoting signalling was greater than 

that of the hypoxia-induced down-regulation under the specific experimental conditions 

of the LHTL study. Further, a ‘cross-talk’ between the BMP/SMAD and other pathways 

has been established (Guo & Wang, 2009) highlighting that iron status may modulate 

other pathways, as SMAD4 modulates STAT3 activity in ACD with ID (Theurl et al., 

2011). This leads to two important observations: (1) maintenance of iron status is vital 
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for hepcidin regulation and (2) iron availability for erythropoiesis will determine hepcidin 

expression if opposing signalling pathways are activated. 

 

Figure 9-1 – Model of hepcidin regulation via inflammation and hypoxia 

 
 
Exercise induced hepcidin regulation, suggested to occur via STAT3 and SMAD signalling pathways, may 
be counteracted by the inclusion of a hypoxic challenge. Hypoxia down-regulates hepcidin expression via 
SMAD7 pathway. Iron status, through SMAD4, may regulate other pathways (i.e. STAT3). BMP, bone 
morphogenetic protein; BMPR-I, BMP receptor-I; BMPR-II, BPM receptor-II; C/EBPα, 
CCAAT/enhancer-binding protein alpha; CREB/H, cAMP response-element binding protein/H; EPO, 
erythropoietin; ERFE, erythroferrone; HFE, hemochromatosis protein; HIF, hypoxia-inducible factor; HJV, 
hemojuvelin; IL6, interleukin 6; IL-6R, interleukin 6 receptor; JAK, Janus kinase; PDGF-BB, platelet-
derived growth factor-BB; PDGFR, platelet-derived growth factor receptor; SMAD1/5/8, sma and mothers 
against decapentaplegic homologue 1/5/8 complex; SMAD2/3, SMAD homologue 2/3; SMAD4, SMAD 
homologue 4; SMAD7,SMAD homologue 7; STAT3, signal transducer and activator of transcription 3; 
TFR1, transferrin receptor 1; TFR2, transferrin receptor 2. Adapted from Huang et al. (2009) and Rishi et 
al. (2015). 
 
 
As the highly demanding training load was sustained from the HI to the LHTL camp 

(2502+187AU and 2579+265AU, respectively), the altitude challenge and the iron 

supplementation were the main factors distinguishing both camps. Given the pathways 

that regulate hepcidin expression described above, findings of this thesis are in 

accordance with recent findings of decreased serum hepcidin concentration after hypoxic 
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stimulus - both short-term (3 hours) simulated hypoxia interventions (FIO2 ~ 15%) and 

14-days LHTL (11h/day at FIO2 ~ 15%) - (Badenhorst et al., 2014; Govus et al., 2016). It 

is possible that iron supplementation prevented the 4% reduction in ferritin observed post-

HI, from occurring post-LHTL. Recently, Garvican-Lewis et al. (2016) highlighted that 

iron-supplementation (105mg/day) during LHTL, even in iron-replete athletes 

(ferritin>100ug/L), was beneficial for the sought haematological outcome (i.e. increased 

Hbmass). As both the concentration of serum iron and transferrin saturation were higher at 

the end of LHTL compared to post-HI camp, it is reasonable to suggest that the use of 

iron supplementation acted in maintaining and even increasing iron availability. The 

results shown in this thesis demonstrate that such supplementation during the hypoxic 

challenge may also benefit innate immune responses. 

 

Interestingly, the increase in serum LF post-LHTL was not observed post-HI, which may 

lead to the suggestion that the hypoxic challenge itself was contributing to the 

degranulation of granulocytes (Sica et al., 2011). It has been established that hypoxia 

causes increased permeability and production of CXCL8 and other chemokines of 

endothelial and epithelial cells enhancing neutrophilic adhesion and migration (Arnould, 

Michiels, Janssens, Delaive, & Remacle, 1995; Colgan, Dzus, & Parkos, 1996; Rainger, 

Fisher, Shearman, & Nash, 1995). Additionally, hypoxia increases serum IL-6 

concentration (Hartmann et al., 2000; Klausen et al. 1997; Ertel et al. 1995). Therefore, it 

is possible that an additive effect of the exercise-induced and the hypoxia-induced 

‘inflammation’ may have increased the hepcidin response seen at the end of the LHTL 

camp. Further studies are required to elucidate a dosage of hypoxic exposure that would 

promote immune capacity while still maintaining the desired performance-related 

outcomes. Resting hepcidin concentration was also increased post-HV camp, but not to 

the same magnitude as in both the HI and LHTL camps. Based on this novel longitudinal 

observation, it is proposed that the adoption of a greater volume (and reduced intensity) 

of training during an iron-supplemented LHTL intervention may further attenuate the 

resting post-camp hepcidin concentration thereby maintaining functionally available iron.   

The year-long investigation of the response of Olympic level athletes to specific training 

periods (HI, LHTL, HV) provides new insights into the interaction between training load, 

iron-metabolism and immune function. Such insights require a re-evaluation of what has 

been identified as the potentially negative consequences of training induced inflammation 

(i.e. limiting erythropoiesis and iron-related responses) when superimposed on a period 

of LHTL training. Maintenance of iron stores and readily available iron during HI training 
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periods is vital for adequate innate immune function. The introduction of a hypoxic 

challenge, combined with iron supplementation, may promote innate immune 

competence, thus increasing the opportunity for hypoxia-based recovery protocols to be 

suggested. 

 

In summary, this thesis describes a connected series of studies across a full training year 

involving elite level female kayak athletes preparing for the 2016 Rio Olympic Games. It 

has established firstly, that specific training interventions (i.e. HI, LHTL, HV) 

differentially affect both the immune and haematological systems, and suggests that 

training prescription should now consider the effects that perturbations to such systems 

may have on performance and desired training adaptations. 

 

Secondly, it has established that the inflammatory response induced as part of HI training 

may interfere with the haematological response to hypoxia (e.g. increased haemoglobin 

concentration), thus potentially limiting adaptation when inflammation is superimposed 

on the stimulus provided by a LHTL protocol.  

 

Thirdly, the leucocyte composition of blood and the functional characteristics/capacities 

of specific leucocyte subsets (e.g. phagocytosis, receptor expression) varies as a function 

of tissue location and hence sampling site. Samples drawn from different sites can no 

longer be considered to be identical and should not be used interchangeably. 

 

Limitations 

Although the results of this thesis have practical applications and the potential to aid in 

maintenance of immune competence in elite female athletes through different training 

periods, as adopted in preparation for the Olympic Games, the following limitations do 

apply: 

- The sampling times were restricted and did not allow a more extensive post-camp 

evaluation of both immune and iron status since most athletes involved in the camps were 

interstate.  

 
- Evaluation of immune and iron status could not be performed throughout a tapering 

period as all tapers in 2015 were held at overseas training camps.  
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- All results obtained are limited to a specific population of elite female kayak athletes 

with resting pre-camp ferritin levels greater than 90pmol/L (40µg/L), Hb levels greater 

than 130g/L and transferrin saturation above 20%, indicative of normal iron stores. 

 

- The small number of senior elite athletes chosen for the 2016 Olympic games did not 

allow for distinctive analysis between eumenorrheic and oral contraceptive pill users. Sim 

et al. (2015) demonstrated that oral contraception does not alter the post-exercise hepcidin 

response, however, it is not yet established if resting hepcidin values are altered, 

particularly with a LHTL intervention. 

 

Practical Applications 

The findings of thesis may translate into practical recommendations regarding athletic 

monitoring and prescription of training for elite athletes as follow: 

- The blood microsampling technique presented herein allows monitoring of 

cellular immune function and phenotypical distribution of leucocytes in 

circulation. 

- The transient innate immune suppression observed after intense training camps is 

attenuated as the athlete is exposed to periods of hypoxia, as adopted in the LHTL 

camps. 

 

-  Iron supplementation throughout the LHTL camp not only ensures that iron status 

is maintained for erythropoiesis but also for adequate immune cell function.  

 

Future Research 

- Establish hepcidin responses in iron-deficient athletes undergoing LHTL. Future 

studies should aim to describe the kinetics of the hepcidin response in the 

acclimatization phase as well as the training phase.  

 

- Determine if LHTL without iron supplementation for iron replete athletes impacts 

granulocytic functions. 
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- Implement multiple LHTL training camps per season in female kayak athletes, to 

establish if there is an exposure-threshold for the down-regulation of hepcidin 

through hypoxia as research has shown that LHTL induces higher HIF-1a mRNA 

sensitivity to acute hypoxia (Pialoux et al., 2009).  Garvican-Lewis et al. (2013) 

and Saunders et al have shown success in multiple altitude exposures throughout 

the preparation of water polo and race walking, respectively, for the 2012 Olympic 

games. Saunders et al. 2003 has shown improvement in 400m events, which 

would be physiologically more similar to the demands experienced by sprint 

kayak athletes. Future research should aim to demonstrate the possible 

immunological benefits of multiple LHTL training camps. 

 

- Determine clinical and performance consequences of monitoring and managing 

immune competence and iron status throughout different training periods. Future 

research should aim to incorporate a control group to quantify more precisely the 

independent effects of training, hypoxia interventions and iron supplementation. 

 

- Aim to further characterise signalling pathways linking iron availability, 

inflammation, and hypoxia to hepcidin expression. 
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