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ABSTRACT 

 

microRNA (miRNA) are short, non-coding RNAs that can significantly affect gene 

expression. In Multiple Sclerosis (MS), an autoimmune disease targeting the central 

nervous system, much is understood about how the immune system promotes 

neurodegeneration in early stages of disease. However, studies on secondary 

progressive MS (SPMS) demonstrate that the continued role of the immune system 

in disease progression is not well characterised. As key regulators of gene 

expression, identifying changes of miRNA expression patterns in SPMS tissues will 

provide insight into disease mechanisms at this stage. 

Using next-generation sequencing, a comprehensive miRNA expression profile of 

CD4+ T-cells was attained, and the NanoString nCounter miRNA array was used to 

the same effect in normal appearing white matter (NAWM) of SPMS individuals. RT-

qPCR confirmed results from these methods, and further explored associated gene 

expression changes, such as common targets of dysregulated miRNAs, and genes 

essential to miRNA biogenesis and DNA methylation. The role of DNA methylation on 

miRNA dysregulation was also explored using Illumina 450k arrays. 

A convergence of several factors, led by changes in miRNA expression, was found to 

reduce activity of CD4+ T-cells in SPMS. Broad down-regulation of miRNAs was 

identified, a novel observation in MS miRNA studies, caused by a reduction of miRNA 

biogenesis molecules. This resulted in: up-regulation of SOCS6, negatively 

regulating T-cell activation; and de novo hypermethylation driven by miR-29b-

associated up-regulation of DNMT3b. These findings point towards CD4+ T-cells 

having a diminished role in SPMS. Additionally, analysis of miRNA expression in 

NAWM also identified miR-29b down-regulation, amongst other miRNAs, that may 

act to prevent oligodendrocyte maturation and thus hinder remyelination. This 

suggests that neurodegenerative mechanisms are fully operational in NAWM during 

SPMS.  

In conclusion, the mechanisms of disease progression in SPMS are now better 

understood. miRNA down-regulation prompts CD4+ T-cells to take a backseat, and 

neurodegeneration assisted by miRNA dysregulation, is primed to occur in NAWM.  
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CHAPTER ONE - INTRODUCTION 

 

Multiple Sclerosis (MS) is a complex autoimmune disease affecting the central 

nervous system, and risk of developing MS is determined by genetics, environment 

and epigenetic factors. A key epigenetic factor of interest is microRNAs (miRNAs), 

which regulate gene expression by binding to messenger RNA (mRNA) thus 

repressing translation to proteins or triggering mRNA degradation. Each miRNA can 

regulate multiple mRNAs and an mRNA can be targeted by multiple miRNAs. 

Dysregulation of miRNA levels plays an important role in disease by causing altered 

cell growth, apoptosis and tissue differentiation.  

 

MiRNA species are short (~22nt), non-coding RNAs that are remarkably stable and 

there is great potential for them to be used as biomarkers to diagnose and predict 

disease outcome in MS. Analysis of miRNA expression has been conducted in 

peripheral blood mononuclear cells (PBMCs), whole blood, T regulatory cells (T-

regs), plasma, serum and white matter. However, miRNA studies in heterogeneous 

cell populations fall short of identifying the effect miRNA dysregulation has on 

particular cell types. Furthermore, MS pathology initiates in the normal appearing 

white matter (NAWM) before development of symptomatic lesions, yet studies in 

white matter have looked at a limited panel of microRNAs and/or in small sample 

cohorts, and potentially missed significant dysregulation in the MS brain. 

 

The significance of this research lays in identifying microRNA changes in CD4+ T-

cells and the NAWM of secondary progressive MS (SPMS) patients, how these 

changes are correlated, and understanding how this dysregulation plays a role in 

disease progression. 
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Multiple sclerosis 

MS is an autoimmune disease caused by multifocal inflammatory attacks on the 

central nervous system (CNS) resulting in demyelination and axonal damage. 

Propagation of action potentials along the axon is hindered when the insulating 

myelin sheath is damaged. This results in physical symptoms including muscle 

weakness, vision impairment and lack of coordination. MS typically affects young 

Caucasian individuals with disease onset between 20 to 50 years of age. Females 

account for more cases of MS than males with a ratio ranging from 2:1 to 3:1 (1) and 

are predisposed to higher relapse activity than males (2). MS has moderate 

heritability; the concordance rate for developing MS is only 25% in monozygotic 

twins, whom share 100% of their genes (3, 4), indicating that factors other than 

genetics significantly contribute to the development of MS, such as environment and 

epigenetics. 

Several forms of MS define varying degrees of symptomatic debilitation over time: 

relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary 

progressive MS (PPMS). The most common form of MS is RRMS, accounting for 

~85% of initial diagnoses. RRMS is characterised by relapses followed by periods of 

remission.  New symptoms appear spontaneously while existing symptoms become 

more severe. Relapses can occur over days, weeks or months and recovery can be 

slow, gradual or instantaneous. The remission phase of RRMS is highly variable in 

duration, ranging from months to years. Age of disease onset and the use of disease 

modifying therapies (DMT) influence the risk of RRMS patients converting to a SPMS 

disease course; risk decreases with DMT treatment (5), whereas higher age of 

disease onset increases the likelihood of transition to SPMS (5, 6). Onset of 

progression is more dependent on age rather than the duration of pre-progression 

symptomatic disease course (7). Over half of RRMS patients will transition to SPMS 

within 33 years of disease onset; SPMS has no remitting phase and is characterised 

by demonstrated disability accumulation in the absence of relapses (8). At this stage, 

the disease is considered to be more neurodegenerative than inflammatory (9) 

(figure 1.1). Once diagnosed with SPMS, treatment with a DMT is usually halted, as 

disease progression is less sensitive to current treatment options (10). 

PPMS is progressive from disease onset. Disease course is relentlessly progressive 

without interspersed relapses or significant recovery, and symptoms gradually 
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worsen. This type of MS is the most severe form and accounts for 15% of MS cases 

(11). The age of onset of PPMS is typically later than in RRMS, presenting itself in 

the late thirties or early forties (12). PPMS onset is slow and followed by gradually 

worsening symptoms and almost no remissions (13). 

A single episode of neurological symptoms is defined as Clinically Isolated Syndrome 

(CIS) (14). On further laboratory or imaging investigation, the clinician may find 

evidence of a second attack that defines RRMS. Repeat investigations after an 

interval or a second attack may be necessary to diagnose MS in very early cases. 

 

Figure 1.1:  Schematic detailing the relationship between disability, 

neurodegeneration, inflammatory events, brain volume, and disease course. 

 

Diagnosis 

MS is diagnosed according to the McDonald criteria that combines neurological 

history and examination, disseminating lesions in space and time, paraclinical 

laboratory examinations and magnetic resonance imaging (MRI) (15, 16). Disease 

severity is measured using the Expanded Disability Status Scale (EDSS), which 

ranges from 0 to 10 and is based on measures of impairment in seven functional 

systems as well as walking ability. A score of 0 to 5.5 indicates the MS patient can 

walk unaided, though walking distance is reduced between EDSS 4.0 to 5.5. A score 

of 6.0 to 9.5 indicates impairment to walking through to confinement to bed and other 
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functional deficiencies (17). Following RRMS, EDSS increase in the absence of 

relapse, over the course of at least three months, indicates the patient has 

transitioned to SPMS disease course (8). 

 

Pathogenesis and progression 

MS is an autoimmune disease that attacks the CNS, however the initial mechanism 

of pathogenesis is not fully established. Does the immune system attack the CNS 

unprompted, or is there a starting point in the CNS that cascades down to activation 

of the immune system?  

Homeostasis of the CNS is largely controlled by the blood-brain barrier (BBB) that 

actively limits movement of mediators and lymphocytes from the periphery to the 

CNS. The BBB is a highly specialised component of the neurovascular system and is 

disrupted in MS allowing immune activity within the CNS. In RRMS, CD4+ T-cells are 

amongst the primary infiltrators moving from the periphery, through the BBB into the 

CNS (18). These cells then initiate an immune response that results in localised 

demyelination and corresponding symptoms.  

Several neurodegenerative disorders have BBB dysfunction as a component of their 

pathogenesis including Alzheimer’s (AD) and Parkinson’s diseases and Amyotrophic 

Lateral Sclerosis (ALS) (19). Studies have thus far defined a number of pathways for 

lymphocyte entry from blood to the CNS (20-22) and results of a study in 

experimental autoimmune encephalopathy (EAE) in mice (animal model of MS) 

suggest that infiltration of the BBB occurs in parenchymal capillaries and post-

capillary venules (21). Recently, a lymphatic system within the CNS was discovered 

(23), presenting a further potential path for lymphocyte infiltration into the CNS. 

Endothelial cells in the BBB express tight junction and adherens junction proteins 

which act to reduce paracellular permeability (24). Astrocytes play an important role 

in maintaining the integrity of the BBB through contact-dependant mechanisms and 

secretion of essential factors, however in neuroinflammatory disorders such as MS, 

astrocytes can also release inflammatory cytokines causing endothelial cell activation 

and BBB dysregulation (24, 25). In MS, activated T-cells produce cytokines, reactive 

oxygen species and matrix metalloproteinases that either disrupt BBB components or 

act on receptors expressed by endothelial cells of the BBB (for in-depth review see 
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(26)). In contrast, resting T-cells have limited capability to cross the BBB (27). 

Advancement of brain endothelial cells towards an inflammation phenotype is 

considered to be mediated by proinflammatory cytokines such as TNFα and IFN-γ, 

secreted from lymphocytes and CNS-resident cells. These induce the expression of 

chemoattractant cytokines (e.g. CXCL10, CX3CL1 and CCL3) on the brain 

endothelium, promoting adhesion of lymphocytes to the BBB and increased 

permeability (26, 28, 29). Furthermore, it should be noted that lymphocyte infiltration 

of the BBB increases the barrier’s permeability, facilitating subsequent crossings 

(30). Consequently, a permissive environment is created for the trafficking of 

inflammatory molecules and circulating lymphocytes into the CNS, causing 

demyelination and axonal loss. 

Many studies have focused on the activity of lymphocytes, particularly CD4+ T-cells 

(31), in RRMS, and their pathway into the CNS. However, the interplay between the 

immune system and CNS in SPMS is an incomplete puzzle. While it is recognised 

that neurodegeneration is a significant driving force in accumulation of disability 

(increased EDSS) in SPMS, the continued role of CD4+ T-cells and the immune 

system in disease progression is poorly established (32). 

Myelin is synthesised by mature oligodendrocytes and forms the extended 

membrane of oligodendrocyte cells; it is composed of a lipid bilayer and proteins. The 

function of myelin is to insulate neurons providing rapid conduction of action 

potentials along the axon. Damage to axons occurs very early on in disease (33) and 

repeated demyelination events eventually destroy the axon (34). Over the course of 

MS, a series of remyelination events occur whereby oligodendrocyte precursor cells 

(OPC) migrate to surround active lesions in response to semaphorin 3A and 3F (35), 

temporally coinciding with the phagocytic removal of myelin. These OPCs then 

differentiate to mature oligodendrocytes and remyelinate the naked axons. Cycles of 

demyelination and remyelination eventually exhaust the capacity for tissue repair and 

the degree of recovery associated with remyelination decreases after each event 

(36). 

Histologically, MS presents as lesions throughout the CNS (figure 1.2). Demyelinated 

lesions form most commonly in the white matter but can also form in grey matter and 

across white and grey matter (leukocortical) (37). The diameter of lesions can vary 

greatly, from one millimetre to several centimetres and occur throughout the CNS but 
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most predominantly in the periventricular white matter and optic nerve (38). 

Formation of lesions is associated with degeneration of myelin and resulting impaired 

neuronal function causing physical symptoms of MS. There are three main types of 

lesions: active, chronic active and chronic. Active lesions are filled with macrophages 

containing myelin debris, demonstrate infiltration by lymphocytes, and BBB disruption 

(39). Unlike active lesions, chronic active lesions exhibit well demarcated margins 

and myelin-containing macrophages are commonly found here. The centre of a 

chronic active lesion may be either absent of myelin or contain remyelinated fibres 

originating from the lesion edge. Chronic lesions have no inflammatory component 

and a fibrous centre, as with chronic active lesions, remyelination can also occur 

throughout the whole lesion; this is known as a shadow plaque (40). 

Normal appearing white matter (NAWM) is defined as a region that appears 

unaltered upon light microscopic analysis. However, in-depth molecular analyses of 

NAWM indicate that MS pathology initiates within this tissue before development of 

symptomatic lesions. A study focused on microglia analysed the phenotype ex vivo 

and the immune responsiveness in vitro of microglia from MS NAWM. This study 

found elevated levels of the immunoregulatory molecule CD45, however contrasting 

low levels of additional markers such as CD206 were also observed. These findings, 

combined with increased mRNA levels of the inhibitory CD32b isoform, demonstrate 

that microglia within MS brain NAWM are in an alerted state but displaying features 

of immunosuppression (further characterised by unresponsiveness to bacterial 

lipopolysaccharide) (41), likely preventing full activation of the inflammatory response 

responsible for lesion formation. In murine EAE models, severe nerve fibre pathology 

was detected in the NAWM, comparable to that found in white matter lesions (42).  

MRI techniques have also been used to observe NAWM and monitor its influence on 

MS pathology. Diffusion tensor imaging (DTI) can assess the micro-structural integrity 

of white matter in MS. The degree of axonal degradation and white matter pathology 

is resolved by observing the extent to which water diffuses preferentially along axons 

and is constrained by cell walls (43). DTI is sensitive to myelin content and axon 

count (44), and to the evolution of tissue damage within lesions (45). DTI of NAWM 

also correlates with processing speed in MS individuals (46).  
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Figure 1.2: Brain sections stained with Luxol Fast Blue – Periodic acid Schiff (LFB-

PAS) depicting MS pathology. (A) Whole section showing white matter (WM), grey 

matter (GM) and a chronic lesion. (B) Chronic lesion (x400) astrocytes (arrows) 

present. (C) Active lesion (x400) LFB+ macrophages (arrows). (D) Normal appearing 

WM (NAWM) (x200) with consistent myelin coverage and normal oligodendrocyte 

morphology. GM adjacent. (E) Remyelinated region (x400) patchy areas of myelin 
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and oligodendrocytes difficult to locate. (F) Recently active region (x400), 

macrophages (arrows) containing PAS positive material. These images were 

produced by Katherine Sanders from samples and methods described in Chapter 

Five. 

 

Environmental risk factors 

Many studies have shown that environmental influences can cause significant 

changes to epigenetic traits (47-49), which in turn may impact of risk of developing 

MS, disease course and progression. Factors such as vitamin D deficiency, smoking 

and Epstein-Barr virus (EBV) infection show strong and consistent association with 

development of MS (in-depth review (50)).  

The prevalence of MS is significantly lower in countries in close proximity to the 

equator (51); this observed latitudinal effect complements the finding that MS risk 

decreases with increasing vitamin D levels in serum (52). Vitamin D is produced in 

the skin as a result of exposure to ultraviolet-B (UV) radiation and it has been shown 

that vitamin D regulates expression of histone modifying enzymes (53), 

demonstrating a probable link between vitamin D and epigenetic regulation in MS. 

Disease course in MS also appears to be influenced by levels of vitamin D; degree of 

disability (54) and frequency of relapses are augmented by lower levels of vitamin D 

(54, 55). However, it should be noted that serum vitamin D levels are often used as a 

proxy for patient’s UV exposure. UV has immunomodulatory mechanisms that can be 

vitamin D independent (56). Therefore, caution must be exercised when describing 

effects of UV and vitamin D as the same factor, as they can operate independently. 

Cigarette smoke is a very heterogeneous substance containing many toxins and 

carcinogens; this makes it difficult to associate any specific substance with a 

particular mechanism of action.  However, analysis of the large scale Nurses’ Health 

Study clearly demonstrated significantly increased risk of getting MS in smokers 

compared to those who never smoked (57).	Cigarette	smoke	also	has	a	significant	 impact	

on	epigenetic	mechanisms	 including	DNA methylation (49), microRNA	(miRNA)	expression	

(58-60)	and	histone	modification	(61-63).	
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EBV infection is very common and persists latently in memory B cells after infection. 

Seropositivity for EBV in adults is approximately 95% in the normal population 

complicating studies into the effect of EBV on MS risk. Seronegativity is associated 

with very low risk of MS development (64), whereas a symptomatic response to EBV 

(infectious mononucleosis) nearly doubles the risk of getting MS (65). Changes in 

DNA methylation occur in response to EBV infection via the up-regulation of several 

DNA methyltransferase genes (66), and miRNA expression in B cells is dysregulated 

(67). EBV was the first virus in which miRNAs were found (68) and the Sanger 

database presently lists EBV as encoding 44 mature miRNAs. Several EBV-encoded 

miRNAs have been found to be dysregulated in the B cells of RRMS individuals (69). 

Other potential environmental risk factors for MS have been identified, including 

sodium intake (70, 71), alcohol consumption (72) and childhood obesity (73, 74). 

However, further studies are necessary to corroborate their effect on MS risk. 

 

Genetic risk factors 

MS is a complex disease and incidence is influenced by many factors including 

genetics, though polymorphisms alone cannot fully determine MS risk. As 

demonstrated above, environmental factors are strongly associated with MS risk and 

some have also been associated with epigenetic modifications. There are a number 

of genetic loci that predetermine an individual’s MS risk baseline before 

environmental risk factors are accounted for. The human leukocyte antigen (HLA) 

gene cluster located at chromosome 6p21.3 in the major histocompatibility region 

(MHC), has strong association to MS susceptibility with the primary signal located at 

the HLA-DRB1 gene (75); some HLA-DRB1 alleles are associated with an up to 

three-fold increased risk of developing MS (76). The gene products of the MHC locus 

are involved in antigen presentation which ties-in with the autoimmune status of MS. 

HLA-DRB1*15 has been identified as a risk allele for MS; its frequency is higher in 

females than males and transmission is more common from mother to daughter 

compared with father to daughter inheritance (77). Also, the HLA-DRB1*15 allele is 

related with lower age of onset (78). In contrast, the HLA-DRB1*08 allele is prevalent 

in RRMS and associated with lower relapse rate and degree of disability (79). 
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New genetic susceptibility variants for MS continue to be discovered; in 2013 the 

International Multiple Sclerosis Genetics Consortium identified 48 new susceptibility 

single nucleotide polymorphisms (SNPs) (80) bringing the total number of variants 

outside the MHC locus to 110 (80-84). Variants were identified in a number of loci 

including nuclear factor-kB that plays a role in controlling gene expression relevant to 

autoimmune disease (85). Furthermore, two SNP variants in the MHC produce a two-

fold increase in the likelihood of positive oligoclonal bands in the cerebrospinal fluid 

(CSF); a key diagnostic marker of MS (86). Other genomic regions containing 

susceptibility variants are related to functions including antigen presentation and 

processing, the MHC, oxidative phosphorylation, synaptic transmission, cellular 

transport and translational initiation (for a detailed review see (87)).  A large 

proportion of these variants were in regions not previously associated with known 

function, though they are predominantly found in close proximity to immunologically 

relevant genes (83). Many of these variants have no known function and may not 

have any consequence for the gene in which they are located. However, it is now 

becoming apparent that some of these variants are associated with control of gene 

expression (88). Perturbation of gene expression control would have wide 

consequences and could be significantly contributing to MS. Interestingly, these 

genetic studies have identified susceptibility factors strongly concentrated on the 

immune system. Though why the immune system specifically targets the CNS in MS 

is still not clear. 

 

Epigenetics 

Epigenetics causes modification of the expression of genes without altering the 

genetic code itself. Epigenetic factors are capable of creating or influencing chemical 

modifications on the genome, affecting the way genes are expressed. There are 

numerous epigenetic mechanisms including DNA methylation, histone modifications 

(methylation and adenylation), post-transcriptional alterations (polyadenylation) and 

RNA interfering molecules such as miRNAs.  
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DNA methylation 

DNA methylation is the addition of a methyl group to cytosine at 5’-C-phospate-G-3’ 

(CpG) dinucleotides, often concentrated in hundreds of dinucleotide repeats (CpG 

islands) near gene promoter regions. Hypermethylation in promoter regions 

suppresses gene expression (89). DNA methylation is mediated by DNA 

methyltransferases (DNMTs). Maintenance of DNA methylation patterns is performed 

by DNMT1 during cell replication, whereas de novo methylation of unmethylated sites 

is carried out by DNMT3a and DNMT3b (90). Methylation patterns are dynamic and 

can change with age (91), environmental pressures (92), and disease, including MS 

(93). 

A study of discordant monozygotic twins identified no significant differential DNA 

methylation (94) suggesting other epigenetic mechanisms play a crucial role in MS 

risk, however it should be noted that the study only looked at three pairs of twins and 

did not perform MRI on the unaffected twin to show discordance. In fact, other DNA 

methylation studies have identified differentially methylated regions (DMRs) in 

numerous MS tissues compared to healthy controls (HC) (95-101). Genome-wide 

DNA methylation analyses have been conducted in CD4+ and CD8+ T-cells of 

RRMS patients (98, 99, 101), and a hypomethylated DMR in the MHC region, 

specifically HLA-DRB1,  was identified in CD4+ T-cells (98). Furthermore, hypo- and 

hypermethylated DMRs in NAWM of MS patients have a demonstrated effect on 

associated gene transcription (100). 

However, while DNA methylation changes clearly play a role in MS pathology, it does 

not account for all remaining risk, and other epigenetic factors such as miRNAs must 

also be considered. Interestingly, epigenetic mechanisms can regulate or influence 

one another. DNA methylation can control expression of miRNAs (102), and vice 

versa (103), though there are currently no studies in MS cross-referencing DNA 

methylation and miRNA expression patterns. 
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MicroRNA 

miRNAs are endogenous short (~22nt), non-coding RNAs that play a role as post-

transcriptional regulators. Gene silencing occurs when they bind to the 3’ 

untranslated region (UTR) of target mRNAs, suppressing translation or marking the 

mRNA for degradation. According to miRBase v21, over 1800 miRNAs have been 

identified in the human genome (104) and it is estimated that miRNAs regulate at 

least half of human genes. Dysregulation of one or many miRNAs will affect cellular 

gene expression, resulting in abnormal phenotype that may contribute to disease 

onset, progression and exacerbation. 

One miRNA can target many mRNA; likewise, a mRNA may have binding sites for 

multiple miRNAs. The target sites on mRNAs are only partially complementary to the 

miRNA itself and this makes predicting the target genes of miRNAs difficult. However, 

nucleotides 2-7 of the miRNA (known as the seed region) are critical for target 

recognition (105). Software packages are available that utilise prediction algorithms 

to identify potential targets and are often used in combination to select target mRNAs 

for experimental validation. For example, miRSystem, a freely accessible online tool, 

incorporates seven miRNA gene target prediction programs to robustly predict gene 

targets (106). 

 

MicroRNA biogenesis and mechanism of action 

MiRNA-coding sequences are commonly found within or overlapping with mRNA or 

other RNA genes; these are referred to as the host genes for miRNAs. In most 

cases, miRNA genes are transcribed by RNA polymerase II producing the primary 

miRNA transcript (pri-miRNA) (107). There are two pathways that lead to the 

processing of mature miRNAs, canonical and non-canonical. The majority of miRNAs 

are processed in the canonical pathway and shall be described (Figure 1.2). 
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Figure 1.3: The canonical pathway of microRNA biogenesis. See text below for 

explanation.  

 

Within the nucleus the pri-miRNA is cleaved by Drosha, bound by its regulatory 

subunit DGCR8 (DiGeorge critical region 8), to an isolated hairpin-structured 

precursor (pre-miRNA) approximately 60-70nt long. A two-nucleotide overhang is 

produced by Drosha’s ribonuclease (RNase) III activity and marks the pre-miRNA for 

export to the cytoplasm performed by Exportin 5 associated with Ran cofactor 

coupled to guanosine triphosphate (GTP). Once in the cytoplasm, Exportin 5 

releases the pre-miRNA when GTP is replaced by guanosine diphosphate (GDP). 

Dicer (another RNase), assisted by its cofactor TAR RNA binding protein (TRBP), 

then cleaves the pre-miRNA to produce a miRNA duplex approximately 22nt (108). 

The duplex then associates with Argonaute (Ago) protein where it is unwound; one 

strain is retained as the mature miRNA and forms an RNA-induced silencing complex 

(RISC) and is then capable of mRNA regulation. The two strands of the mature 

miRNA follow established nomenclature, -5p or -3p, dependant on whether they 

originate from the 5’ or 3’ end of the pri-miRNA loop. Often, one strand is dominant 

and is not annotated as -5p or -3p in the literature. However, both strands are 

functional in many miRNAs, and will associate with different Ago protein complexes 

to become active (109). 
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The RISC complex utilises the mature miRNA for direct target recognition using base 

pairing interactions with the 3’UTR of mRNA transcripts (110). As previously 

mentioned, miRNA-mRNA complementarity is partial and downstream regulatory 

mechanisms are influenced by the extent of this complementarity. A perfect match 

triggers degradation of the mRNA catalysed by Ago2 protein (111) whereas 

translational repression is the result of mismatches. In animals, the most prevalent 

mechanism of miRNA action is translational repression though the exact process of 

repression is not fully understood. A review by Tang et al. (112) outlined proposals of 

RISC-directed repression including: relocation or sequestration of target mRNA to 

processing bodies or stress granules, translational repression at initiation or post-

initiation stages, mRNA decay through rapid deadenylation and protein degradation 

immediately following translation. 

Dysregulation of miRNA levels plays a key role in disease by causing altered cell 

growth, apoptosis and irregular tissue differentiation. In MS, it is not clear whether 

miRNA dysregulation contributes to disease onset/progression or if it is a reflection of 

the affected cell’s response to disease; it is likely both. The mechanisms that cause 

this dysregulation are varied (113) and include genomic sequence mutations, DNA 

methylation, transcription factor dysregulation, and changes in the expression of 

miRNA biogenesis molecules, Drosha, DGCR8 and Dicer. Expression changes in 

miRNA biogenesis molecules have been investigated in MS (114, 115), though their 

correlation with overall miRNA expression has not been fully ascertained. Magner et 

al. have observed that changes in Dicer expression were not correlated with miRNA 

expression (115), though no miRNA expression correlation analyses have been 

performed for Drosha or DGCR8. 
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MicroRNAs and Multiple Sclerosis 

Analysis of miRNA expression has been conducted in many tissues in MS (Tables 

1.1 and 1.2), predominantly in RRMS. As an autoimmune disease targeting the CNS, 

miRNA profiles in the immune system and CNS are of particular interest, and studies 

have been conducted on cellular tissues, including PBMCs, whole blood, T cells, B 

cells, and white matter (116).  

Samples that are routinely acquired and processed, such as whole blood and non-

cellular circulating fluids (plasma, serum and CSF), are excellent for establishing 

biomarkers. miRNA species are remarkably stable molecules due to their short length 

and minimal recognition sites for nucleases (117), and their aberrant expression may 

be used for diagnosis, predicting treatment response, and differentiating MS 

subtypes.  

However, identifying the effect of dysregulation on cell activity is impossible in 

heterogeneous cell samples. Insight into the functional consequences of miRNA 

dysregulation in MS can only be resolved from analyses of individual cell subtypes, 

such as T and B-cells, microglia and oligodendrocytes. miRNA targets have only 

been experimentally validated in a few studies. Identifying the effect of dysregulated 

miRNAs in specific cells will provide key insight into the mechanisms of disease and 

guidance for the design of future MS therapies.  



  

 

Table 1.1: MicroRNA observed as dysregulated in more than one MS study or with experimentally validated functional 
consequences. See Table 1.2 for details on sample size, miRNAs analysed and methodologies. MiRNAs dysregulated in CD4+ T-
cells and NAWM have been highlighted using f and q respectively. 

MicroRNA Tissue Direction of change in MS Disease stage Validated Target Functional result 

miR-15af CD4+CD25+high T-cells 
(118) 

Up RRMS   

 CD4+ T-cells (119) Down RRMS BCL2 Decreased apoptosis. 

miR-15b Serum (120-122) Down RR & PPMS (120) 
RR, SP & PPMS 
(121) 

  

  Up after 6-months FIN-therapy RRMS (122)   

 Whole blood (123) Down compared to NMOSD RRMS/CIS   

miR-16f CD4+ T-cells (119) Down RRMS BCL2 Decreased apoptosis. 

 CD4+ and CD8+ T-cells 
(124) 

Up & normalised after AHSCT RR, SP & PPMS   

miR-17-5pf CD4+ T-cells (125) Up RRMS PTEN & PI3KR1  

 CD4+ T-cells (126) Down after NTZ-therapy & up 
during relapse 

RRMS PTEN, BIM & 
TGFBR2 

Reduced miR-17 
decreases cell 
proliferation.  

 Whole blood (127) Down RR, SP & PPMS   

miR-19bf CD4+CD25+high T-cells 
(118) 

Up RRMS   

 B-cells (69) Down & normalised in NTZ-
treated 

RRMS   

miR-20a-5p Whole blood (127, 128) Down RR, SP & PPMS 
(127) RRMS & CIS 
(128) 
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MicroRNA Tissue Direction of change in MS Disease stage Val. Target Functional result 
miR-21-5p Whole blood (123) Down compared to NMOSD RRMS/CIS   
 PBMCs (129) Up RRMS   

miR-22-3pf CD4+CD25+high T-cells (118) Up RRMS   

 Plasma (130) Up MS (unspecified)   

miR-26a-5p PBMCs (131) Up in relapse compared to 
remitting 

RRMS – relapse 
and remitting states 

  

 PBMCs (132) Up after 3 months IFN-β 
therapy in responders 

RRMS - IFN-β 
responders and 
non-responders 

DLG4  

 PBMCs (133) Down after 6 months NTZ-
therapy 

RRMS   

miR-27af CD4+ T-cells (134) Up in relapse vs. remitting & 
HC 

RRMS – relapse 
and remitting states 

  

 Serum (135) Up in RRMS vs. SPMS RR & SPMS   

miR-27bf Naïve CD4+ T-cells (136, 
137) 

Up RR, SP & PPMS BMI1 (136) 

TGFb 
signalling 
components 
(137) 

Inhibits Th2 differentiation. 
Inhibits differentiation of naïve 
CD4+ T-cells into T-reg. 

miR-29a-3pf CD4+CD25+high T-cells (118) Up RRMS   

 PBMCs (138) Down after 1 month IFN-β 
therapy 

RRMS & CIS   

miR-29b-3pf CD4+CD45RO+ T-cells (139) Up  RR, SP & PPMS IFN-g Feedback loop – IFN-g induces 
miR-29b-3p expression. 

  

17 



  

 

MicroRNA Tissue Direction of change in MS Disease stage Validated Target Functional result 

miR-29c-3pfq CD4+CD25+high T-cells 
(118) 

Up RRMS   

 PBMCs (138) Down after 1month IFN-β 
therapy 

RRMS & CIS   

 NAWM (140) Down MS (unspecified)   

miR-34a Active & inactive WM lesion 
(141) 

Up in active lesions MS (unspecified) CD47 Promotes phagocytosis 
of myelin by 
macrophages. 

miR-93f CD4+CD25+high T-cells 
(118) 

Up RRMS   

 PBMCs (142) Up RRMS   

miR-106bf CD4+CD25+high T-cells 
(118) 

Up RRMS   

 B-cells (69) Down & normalised in NTZ-
treated 

RRMS   

 CD4+ T-cells (126) Up in NTZ-treated RRMS TGFBR2  

miR-124 Hippocampus (143) Up in demyelinated  MS (unspecified) AMPA receptor Reduced memory 
performance. 

miR-125a-5p BEC (144) Down MS (unspecified) ICAM-1 Increased monocyte 
migration through BBB. 

 PBMCs (145) Up RRMS   

 Whole blood (146) Down after NTZ-therapy RRMS & PML   

miR-125a-3p  CSF (147) Up & active-MS vs. RRMS RR & SPMS MBP, FYN, NRG1, 
MAP1B 

Blocks maturation in 
OPCs impairing 
remyelination. 
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MicroRNA Tissue Direction of change in MS Disease stage Validated Target Functional result 

miR-126f CD4+ T-cells (125) Up RRMS   

 CD4+ T-cells (148) Down in NTZ-treated RRMS POU2AFI  Regulates expression of 
transcription factor Spi-B. 

 PBMCs (149) Down in NTZ-treated, up in PML RRMS   

miR-128f Naïve CD4+ T-cells 
(136, 137) 

Up RR, SP & PPMS BMI1 (136) 

TGFb signalling 
components (137) 

Inhibits Th2 differentiation. 
Inhibits differentiation of naïve 
CD4+ T-cells into T-reg. 

miR-132 B-cells (150) Up RRMS SIRT1 Increases expression of 
proinflammatory cytokines 
(TNFα and LT). 

 PBMCs (133) Up RRMS   

miR-140-5pf CD4+ T-cells (151) Down RRMS STAT1 Increased encephalitogenic 
Th1 differentiation. 

miR-142-3pf CD4+ and CD8+ T-
cells (124) 

Up & normalised after AHSCT RR, SP & PPMS   

 PBMCs (152) Up & normalised in GA-treated RRMS   

miR-145 Whole blood (153) Up RRMS   

 PBMCs (142) Up  RRMS   

 Plasma (142, 154) Up & RRMS vs. SPMS RR & SPMS   

 Serum (142) Up RRMS   

miR-146a PBMCs (129) Up RR, SP & PPMS   

 PBMCs (152) Up & normalised in GA-treated RRMS   

 BEC (155) Up MS (unspecified) IRAK1, TRAF6, 
NFAT5, RhoA 

Inhibits NF-kB to negatively 
modulate leukocyte adhesion. 
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MicroRNA Tissue Direction of change in MS Disease stage Validated Target Functional result 
miR-150 CSF (156) Up in CIS-converters CIS & MS   

miR-155fq  Active & inactive WM 
lesion (141) 

Up in active lesions MS (unspecified) CD47 Promotes phagocytosis of 
myelin by macrophages.  

 BEC (active lesions 
and NAWM) (157) 

Up in active lesions RR, SP & PPMS CLDN-2, 
ANXA-2, 
DOCK-1, 
SDCBP 

Cell-cell complex molecules and 
focal adhesion molecules 
targeted resulting in BBB 
permeability. 

 CD4+ and CD8+ T-
cells (124) 

Up & normalised after AHSCT RR, SP & PPMS   

 NAWM (158) Up RR, SP & PPMS AKR1C1 & 
AKR1C2 

Reduced neurosteroid synthesis 
(including allopregnanolone). 

 PBMCs (133, 152, 159) Up & down after NTZ-therapy RRMS   

miR-181a Hippocampus (143) Down in demyelinated MS (unspecified)   

 B-cells (69) Down  RRMS   

miR-181c Hippocampus (143) Down in demyelinated MS (unspecified)   

 CSF (160) Up RR, SP & PPMS   

miR-191q NAWM (140) Down MS (unspecified) SOX4, FZD5, 
BDNF, WSB1 

SOX4 over-expression in 
oligodendrocytes prevents 
myelination. 

 B-cells (69) Down & normalised after 6-
months NTZ-therapy 

RRMS   

miR-221f CD4+CD25+high T-cells 
(118) 

Up RRMS   

 Plasma (154) Up in RRMS vs. ALS RRMS & SPMS   
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MicroRNA Tissue Direction of change in MS Disease stage Validated Target Functional result 

miR-223fq Whole blood (153) Up RRMS   

 CD4+CD25+high T-
cells (118) 

Up RRMS  

 CD4+ T-cells (161) Up in relapse, down in 
remission vs. HC 

RRMS  

 PBMCs (120) Up  RRMS  

 Serum (120-122) Down RR & PPMS (120), RR, SP  
& PPMS (121), RRMS (122) 

miR-223  NAWM (140) Up MS (unspecified)   

miR-326f  Active & inactive 
WM lesion (141) 

Up in active lesions MS (unspecified) CD47 Promotes phagocytosis of 
myelin by macrophages. 

 CD4+ T-cells (162) Up RRMS Ets-1 Promotes Th-17 differentiation. 

 PBMCs (152) Up RRMS   

 PBMCs (131) Up in relapse compared to 
remitting 

RRMS – relapse and 
remitting states 

  

miR-338-
5pfq 

NAWM (158) Up RR, SP & PPMS AKR1C1 & 
AKR1C2 

Reduced neurosteroid synthesis 
(including allopregnanolone). 

 CD4+CD25+high T-
cells (118) 

Down RRMS   

miR-340f Resting memory 
CD4+ CD45RO+ T-
cells (136) 

Up RR, SP & PPMS BMI1 & IL-4 Inhibits Th2 differentiation and 
contributes to proinflammatory 
Th1 response. 

miR-422a Whole blood (153) Up RRMS   

 Plasma (130) Up MS (unspecified)   

 B-cells (125) Down RRMS   
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MicroRNA Tissue Direction of change in MS Disease stage Validated Target Functional result 

miR-497f CD4 + T-cells (125) Up RRMS   

 CD8+ T-cells (125) Down RRMS   

 B cells (125) Up RRMS   

miR-629-5p CD8+ T-cells (125) Up RRMS   

 Whole blood (128) Up RRMS & CIS   

 Whole blood (146) Down in PML onset (NTZ-
therapy) 

RRMS & PML   

let-7c Plasma (154) Up in RRMS vs. SPMS RR & SPMS   

 Whole blood (146) Down after NTZ- therapy RRMS & PML   

 Serum (135) Up RR, SP & PPMS   

let-7d Plasma (154) Up in RRMS vs. HC & RRMS 
vs. ALS 

RR & SPMS   

 PBMCs (142) Up RRMS   

let-7g Hippocampus (143) Up in demyelinated MS (unspecified)   

 PBMCs (163) Down RR, SP & PPMS   

 

Abbreviations: AHSCT = autologous haematopoietic stem cell transplant; BEC = brain endothelial cells; CSF = cerebrospinal fluid; 
FIN = fingolimod; GA = glatiramer acetate; HC = healthy controls; IFN-β = interferon-beta; IFN-g = interferon-gamma; NMOSD = 
neuromyelitis optica spectrum disorder; NTZ = natalizumab; OPC = oligodendrocyte precursor cell; PBMC = peripheral blood 
mononuclear cell; PML = progressive multifocal leukoencephalopathy; PPMS = primary progressive MS; RRMS = relapsing-remitting 
multiple sclerosis; SPMS = secondary progressive MS; Th = T-helper cells; T-reg = T regulatory cells; WM = white matter.  
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Table 1.2: Experimental details of studies recorded in Table 1.1.  

Paper Sample size and type Methodology 
Number of 

miRNA 
analysed 

De Santis (118) DC: 12 RRMS, 14 HC. VC: 10 RRMS, 10 HC Microarray 723 

Lorenzi (119) DC: 15 RRMS, 15 HC. VC: 5 RRMS, 5 HC qPCR 2 

Ridolfi (120) 15 MS (11 remitting RRMS, 4 PPMS), 12 HC qPCR 3 

Fenoglio (121) Italian pop – DC: 3 RRMS, 4 PPMS, 3 HC. VC: 8 RRMS, 
5 PPMS, 11 HC 
USA pop – 15 RRMS, 13 PPMS, 30 HC 

qPCR 88 

Lindberg (125) DC: 8 RRMS, 10 HC. VC: 15 RRMS, 10 HC qPCR (TLDA) 365 

Meira (126) 14 NTZ-treated RRMS, 14 untreated RRMS, 14 HC qPCR 2 

Cox (127) 59 MS (24 RRMS, 17 SPMS, 18 PPMS), 37 HC Microarray 733 

Sievers (69) DC: 10 untreated RRMS, 10 NTZ-treated RRMS, 10 HC. 
VC: 30 RRMS, 7 HC 

Microarray & qPCR 1059 

Keller (128) 25 RRMS, 25 CIS, 25 HC NGS, microarray & qPCR All 

Siegel (130) 4 MS, 4 HC Microarray >900 

Honardoost (131) 20 relapsing RRMS (treatment naïve), 20 remitting 
RRMS (IFN-β treated), 20 HC 

qPCR 2 

De Felice (132) DC: 20 IFN-β treated RRMS, 10 non-responder RRMS 3 
time points (0,3,6 months). VC: 20 IFN-β treated RRMS. 
3 time points (0,3,6 months) 

Cloning based sequencing & qPCR All 

Guerau-de-Arellano 
(136) 

22 MS (12 RRMS, 5 SPMS, 5 PPMS), 16 HC qPCR (TLDA) 667 

  

23 



  

 

Paper Sample size and type Methodology 
Number of 

miRNA 
analysed 

Hecker (138) DC: 4 RRMS, 2 CIS. VC: 8 RRMS, 4 CIS. 4 time points 
(before 1st, 2nd & 3rd IFN-β injection & 1 month after 
treatment) 

qPCR (TLDA) & microarray 651 

Junker (141) 20 MS, 10 HC qPCR 365 

Søndergaard (142) PBMC – DC: 20 RRMS, 21 HC. VC: 12 RRMS, 20 HC 
Plasma – 22 RRMS, 15 HC 
Serum – 40 RRMS, 40 HC 

Microarray (PBMCs only) & qPCR 847 

Dutta (143) 18 MS (9 myelinated, 9 demyelinated hippocampus), 9 HC qPCR Unknown 

Reijerkerk (144) 8 MS, 4 HC Microarray & qPCR 939 

Yang (145) DC: 10 RRMS, 10 HC. VC: 40 RRMS, 40 HC. (Chinese 
pop) 

Microarray & qPCR 754 

Munoz-Culla (146) 19 RRMS (NTZ-treated) 3 time points (0,6,12 months) qPCR (TLDA) 754 

Meira (148) 12 untreated RRMS, 24 NTZ-treated RRMS, 12 HC qPCR 1 

Miyazaki (150) 19 RRMS, 19 HC qPCR 102 

Keller (153) 20 RRMS, 19 HC Microarray 866 

Gandhi (154) DC: 10 RRMS, 9 SPMS, 9 HC. VC: 50 RRMS, 51 SPMS, 
32 HC 

qPCR 368 

Fenoglio (129) 29 MS (16 remitting MS, 6 SPMS, 7 PPMS), 19 HC qPCR 5 
Waschbisch (152) 36 RRMS, 20 GA-treated RRMA, 18 IFN-β treated RRMS, 

32HC 
qPCR 5 

Lopez-Ramirez (157) 6 MS (4 SPMS, 1 PPMS, 1 SP/RRMS), 6 HC qPCR 1 

Noorbakhsh (158) 16 MS (3 RRMS, 10 SPMS, 3 PPMS), 10 HC Microarray & qPCR 847 

    

24 



  

 

 

Paper Sample size and type Methodology 
Number of 

miRNA 
analysed 

Paraboschi (159) 10 RRMS, 10 HC Microbead-based technology 22 

Haghikia (160) 53 MS (17 RRMS, 30 SPMS, 6 PPMS), 39 OND qPCR 760 

Du (162) 43 RRMS, 42 HC, 11 NMOSD qPCR 8 

Martinelli-Boneschi (163) DC: 19 MS (7 RRMS, 6 SPMS, 6 PPMS), 14 HC  
VC: 10 MS (5 RRMS, 2 SPMS, 3 PPMS), 10 HC 

Microarray 1145 

Guerau-de-Arellano 
(140) 

15 MS, 5 HC, mRNA qPCR on 10 samples NanoString nCounter 800 

Guan (151) 22 RRMS (4 relapse, 18 remitting), 22 HC Affymetrix miRNA array v4 & qPCR 2578 

Lecca (147) 30 MS (28 RRMS, 2 SPMS), 13 HC qPCR 1 

Fenoglio (122) 30 RRMS (FIN treated) 5 time points (0,3,6,9,12 months), 
11 HC  

qPCR 3 

Regev (135) DC: 26 MS (7 RRMS, 9 SPMS, 10 PPMS), 20 HC 
VC: 58 MS (29 RRMS, 19 SPMS, 10 PPMS), 30 HC, 74 
other diseases 

qPCR 652 

Ahmadian-Elmi (134) 40 RRMS (20 relapse, 20 remitting) qPCR 2 

Mameli (133) 24 RRMS (NTZ treated) 2 time points (0 & 6 months), 24 
HC 

qPCR 4 

Meira (149) 65 RRMS (21 untreated, 21 NTZ treated <24 months, 23 
NTZ treated >24 months), 20 NTZ treated who 
developed PML 

qPCR (TLDA) 377 

Munoz-Culla (164) 24 RRMS (2 samples/patient – relapse vs remission), 24 
HC 

Affymetrix miRNA array v1.0 & qPCR 847 

25 



  

 

Abbreviations: AHSCT = autologous haematopoietic stem cell transplant; CIS = clinically isolated system; DC = discovery cohort; 
FIN = fingolimod; GA = glatiramer acetate; HC = healthy controls; IFN-β = interferon-beta; NGS = next generation sequencing; 
NMOSD = neuromyelitis optica spectrum disorder; NTZ = natalizumab; OND = other neurological diseases; PML = progressive 
multifocal leukoencephalopathy; pop = population; PPMS = primary progressive MS; qPCR = quantitative polymerase chain 
reaction; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary progressive MS; TLDA = TaqMan Low Density Array; 
VC = validation cohort.  

Paper Sample size and type Methodology 
Number of 

miRNA 
analysed 

Hosseini (161) 40 RRMS (20 relapse, 20 remitting), 12 HC qPCR 1 

Keller (123) DC: 60 CIS/RRMS, 11 NMOSD, 43 HC 
VC: 19 CIS/RRMS, 18 NMOSD 

NGS & qPCR All 

Arruda (124) 24 MS (5 RRMS, 18 SPMS, 1 PPMS) 3 time points 
(0,6, 12,24 months after AHSCT treatment), 9 HC 

qPCR 3 

Smith (139) 19 MS (11 RRMS, 4 SPMS, 4 PPMS), 17 HC NanoString nCounter 1 

Wu (155) 6 MS, 6 HC qPCR 1 

Bergman (156) DC: 15 CIS, 15 MS, 27 OND 
VC1: 34 CIS, 43 MS, 65 OND 
VC2: 96 CIS, 120 MS, 214 OND 

qPCR (TLDA) 754 

26 
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Here, miRNA dysregulation across published tissue types will be discussed, including 

effects on cellular function, the regulatory role of DMTs on miRNA expression, and 

potential biomarker candidates for diagnosing MS, predicting treatment responses, 

and differentiating disease subtypes.  

 

MicroRNA in Central Nervous System 

Limited research has been conducted on miRNA expression in tissues of the CNS, 

primarily because of difficulties obtaining post-mortem brain tissue samples. A study 

by Junker et al. (141) reported the analysis of the expression of 365 mature miRNAs 

in both MS lesions and control white matter. A total of 167 miRNAs were detected in 

all groups with data demonstrating that active and inactive MS lesions have distinct 

miRNA profiles. miR-155, miR-34a and miR-326 were particularly found to be up-

regulated in active lesions, and CD47 was a common target for these three miRNAs. 

CD47 is a cell-surface protein responsible for inhibiting phagocytosis by 

macrophages. The consequence of the miRNAs up-regulation is reduced production 

of CD47, providing a permissible environment for macrophage activation and the 

phagocytosis of myelin. The scope of this study was limited as it looked at only a 

fraction of the >1800 miRNAs in the genome, and a broader analysis could highlight 

further candidate miRNAs involved in MS pathology. However, the identification of 

miR-155-5p as up-regulated in MS CNS tissue has been seen repeatedly in many 

studies since Junker’s.   

The expression of miR-155-5p appears to be highest in active lesions and reduces 

through chronic lesions and NAWM to a baseline low in control white matter (141, 

157, 158). Furthermore, silencing of miR-155 ameliorates EAE in mice (165). miR-

155 has been shown to affect the BBB to an extent that immune cells may then 

infiltrate the CNS. Up-regulation of miR-155 in brain endothelial cells (BEC) mediates 

reduced expression of cell-cell complex and focal adhesion molecules (144), making 

the BBB more permeable. Also, the observed up-regulation of miR-155 in the CNS of 

MS patients can be inducted by proinflammatory cytokines, IFN-g and TNFa (144), 

further underscoring the link in MS between the central nervous and immune 

systems.  
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Other miRNAs have also been shown to exacerbate BBB breakdown. Down-

regulation of miR-125a-5p in BEC results in increased expression of intercellular 

adhesion molecule 1 (ICAM-1), necessary for leukocyte adhesion, and permits their 

migration through the BBB (144). ICAM-1 expression is further enhanced by the 

targeting of its negative regulators by miR-155, along with VCAM-1, a similar cell 

adhesion molecule (166). In contrast, miR-146a over-expression in BEC negatively 

modulates T cell adhesion to the BBB by indirectly inhibiting VCAM1- and CCL2 

(155). Interestingly, while miR-146a and miR-155 have opposite actions, anti-

inflammatory and proinflammatory respectively, the expression of both is induced by 

proinflammatory cytokines (144, 155). In terms of exacerbating disease activity, 

induction of miR-155 is logical. In contrast, cytokine-mediated over-expression of 

miR-146a in BEC may signal a self-mediated decline in inflammation in the BBB at 

the conclusion of relapse. 

A recent study of miRNA expression in NAWM identified a number of dysregulated 

miRNAs, demonstrating underlying dysregulation in the CNS of MS individuals (140). 

Unfortunately, details on the subtype of MS from which the samples were derived are 

not available, and a mix of MS subtypes make exposing stage-specific dysregulation 

of NAWM problematic. Nonetheless, their finding of miR-191 down-regulation and 

subsequent over-expression of SOX4 and BDNF (table 1.1) is very interesting. SOX4 

negatively regulates myelination by oligodendrocytes (167), whereas BDNF and 

other genes targeted by miR-191 have known neuroprotective effects (168). Guerau-

de-Arellano et al. thus came to the intriguing conclusion that NAWM is enriched in 

neuroprotective mechanisms, though is prone to inflammation and has reduced 

repair mechanisms (140). This complements the observation previously stated by 

Melief et al., that NAWM is alert but in an immunosuppressed state (41).  

miR-125-3p is a miRNA that is enriched in the human CNS, specifically neurons and 

oligodendrocytes. However, its over-expression in vitro impairs myelination by 

blockading oligodendrocyte maturation (147). In the CSF of MS patients with 

radiologically active disease, miR-125a-3p is up-regulated, and the cellular origin of 

this is likely to be either neurons or oligodendrocytes undergoing damage in active 

MS (147). This miRNA is of particular interest as it is the opposing arm (-3p vs. -5p) 

of the mature miRNA duplex, miR-125a, that is down-regulated in BEC (144). Both 

arms of the miRNA duplex are dysregulated in MS, however in different directions. 
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Nonetheless, the dysregulation of both contributes to disease exacerbation; miR-125-

3p by inhibiting oligodendrocyte maturation, and miR-125-5p by increasing leukocyte 

adhesion to the BBB (144, 147). 

Dutta et al. (143) analysed post-mortem MS brains to investigate if the loss of myelin 

in the hippocampus has an effect on neural miRNA expression. Hippocampal 

demyelination reduces neural gene expression and is likely linked to memory loss in 

MS patients. Most significantly, the neuronal miRNA, miR-124, was found to be up-

regulated in the neurons of demyelinated samples. miR-124 has target binding sites 

on 3’UTRs of 26 neural mRNAs. The study also analysed a mouse model of 

demyelinated hippocampus and found that an increase in miR-124 resulted in 

reduced expression of AMPA receptors and decreased memory performance; 

remyelination of the hippocampus reversed this effect on memory (143). 

Contrastingly, increased levels of miR-124 in microglia have been associated with 

microglial quiescence and suppression of EAE in mice (169). This highlights the 

diverse effects miRNAs can have on cell populations. It would appear that miR-124 

expression is beneficial for MS prognosis in microglia, but detrimental when 

expressed more broadly in the hippocampus. It is essential therefore, that individual 

cell types be studied to understand the impact miRNA dysregulation has on disease 

aetiology and pathology. 

 

MicroRNA in the immune system 

The majority of studies on miRNAs in MS have been performed on blood derived 

samples as these are much more easily acquired than CNS tissue, and may be 

collected longitudinally. A recent study of the TGF-β-signalling pathway and miRNA 

expression in naïve CD4+ T-cells suggests that miRNA dysregulation is not a result 

of inflammation, but an inherent susceptibility factor of MS (137). However, miRNA 

profiles in RRMS and SPMS individuals are distinct (135, 154), indicating that while 

miRNA dysregulation may be a risk factor for MS, it also dynamic and shifts with 

changes in disease. miRNA dysregulation should therefore be considered as both 

contributing to disease onset and progression, and a reflection of affected tissue’s 

response to disease.  
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In 2016, Munoz-Culla et al. described the “mirror pattern” of miRNA expression in 

relapse vs. remission of RRMS patient PBMCs (164). When observing expression of 

short non-coding RNAs (sncRNA including miRNA and small nucleolar RNA 

(snoRNA)), they found 10 sncRNAs that were dysregulated in both relapse and 

remission compared to HC, but in opposite directions. Of further interest, the miRNA 

expression profiles of each disease state were enriched for mRNA targets in different 

gene pathways. Relapse-miRNAs strongly target genes involved in general leukocyte 

metabolism, whereas miRNAs dysregulated during MS remission regulate genes 

involved in innate immunity (164). The aforementioned mirror effect in relapsing vs. 

remitting has also been observed in CD4+ T-cells. miR-233 is significantly up-

regulated during relapse compared to HC, whereas it is down-regulated (not 

significant, p=0.07) in remission (161). miR-223 is up-regulated in many tissues: 

whole blood, CD4+ T-cells (relapse), PBMCs and NAWM (118, 120, 140, 153, 161); 

and down-regulated in serum (120-122). Furthermore, the frequency of a T/T 

genotype at rs1044165, a SNP in miR-223’s genomic sequence, is significantly 

reduced in MS patients, suggesting the polymorphism acts as a protective factor 

(120). 

In 2009, Otaegui et al. reported differential miRNA expression in PBMCs for MS 

patients in relapse status, remitting status and HC. Up-regulation of miR-18b and 

miR-599 was indicative of relapse status, whereas up-regulation of miR-96 

significantly indicated the MS patients were in remission (35). RRMS may also be 

distinguished from HC via miRNA expression patterns of T-regs. Specifically, miR-

106b and miR-25 were down-regulated in RRMS compared to HC, and target 

prediction indicates genes in the TGF-β-signalling pathway may be affected by these 

miRNA, ultimately having an effect on T-reg differentiation and maturation (118). This 

is supported by the findings of Severin et al. (137). 

Another study comparing relapse and remission miRNA profiles identified miR-27a 

(up-regulated) and miR-214 (down-regulated) as miRNAs able to distinguish relapse 

from remission in CD4+ T-cells (134). Up-regulation of miR-27a in serum has also 

been shown to differentiate RRMS from SPMS (135).  

Also, miR-140 expression changes in relapsing and remitting stages of disease, 

negatively correlating with disease severity in PBMCs. This occurs specifically in 

CD4+ T-cells and non-T cells, whereas its expression remained stable in CD8+ T-
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cells (151). mRNA and protein expression analyses confirmed STAT1 as a target of 

miR-140, and demonstrated that miRNA-associated over-expression of this gene 

caused increased levels of T-helper (Th)-1 differentiation (151), leading to disease 

exacerbation. The excessive presence of Th-1 cells is characteristic of active MS 

disease, and miR-29b is a key part of a feedback loop that controls the balance of 

Th-1 cells. miR-29b is up-regulated in CD4+ T-cells of MS patients, which represses 

T-bet and IFN-γ, dysregulating Th-1 bias. However, its initial up-regulation is the 

result of high IFN-γ (139). Persistent up-regulation of both miR-29b and IFN-γ in MS 

is indicative chronic inflammation. 

miRNA dysregulation also has effects on other Th cells. As in Junker et al.’s study on 

lesions in the CNS (141), miR-326 has also been identified as being up-regulated in 

PBMCs of MS patients in relapse (162). Here, it targets Ets-1, a negative regulator of 

Th-17 cells, thus the up-regulation of miR-326 (predominantly in CD4+ T-cells) 

promotes differentiation of Th-17 cells. This finding was followed up with a functional 

study in the EAE murine model and found inhibition of miR-326 coincided with milder 

pathology (162). 

In a study on peripheral whole blood, miR-17 and miR-20a were consistently under-

expressed in RRMS, SPMS and PPMS individuals. Knock-in and knock-down 

experiments on these miRNAs in Jurkat cells (partially differentiated T-cell line 

derived from a T-cell lymphoma patient) revealed that these miRNAs targeted genes 

involved in translation regulation, immune response, activin A signalling regulation 

and vitamin B7 metabolism pathways (127). miR-17 was also identified as being 

dysregulated in CD4+ T-cells of RRMS patients by Lindberg et al. (125) though it was 

found to be up-regulated in this case. This could be due to a number of reasons: (1) 

small sample number, (2) analysis of different disease courses (RRMS vs. all MS 

subtypes) or (3) dysregulation in CD4+ T-cells may be masked in PBMCs by the 

expression profiles of other cell types. It is likely a combination of these three factors 

that resulted in contradictory findings between the studies. However, it should be 

noted that Lindberg et al. reported miR-497 to be over-expressed in CD4+ T-cells 

and B-cells whilst under-expressed in CD8+ T-cells of the same individuals 

compared to healthy controls (HC) (125), highlighting the critical need to focus on 

single cell subsets.  
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This is further emphasised by Søndergaard et al. (142), who analysed miRNAs in 

blood, plasma and serum for the purpose of identifying diagnostic biomarkers for MS. 

miRNA expression in PBMCs was compared between treatment naïve MS patients in 

clinical remission and HC. Analysis of isolated PBMC subpopulations identified 

antigen presenting cells and natural killer cells as the primary source of miRNA 

dysregulation in MS patients, though this varied between miRNAs. miR-145 was up-

regulated (three-fold) in MS patients and the highest expression was seen in CD8+ 

T-cells, monocytes and natural killer cells. Furthermore, miR-145 expression in 

plasma is negatively correlated with EDSS (154). Of the 16 miRNAs analysed in 

plasma, only miR-145 and miR-939 were similarly dysregulated as in PBMCs (142). 

This suggested either that: (1) cells other than PBMCs are also releasing miRNAs, 

(2) PBMC cell subsets have contrasting miRNA dysregulation which is masked when 

looking at PBMCs as a whole, or (3) specific miRNAs are more prone to release from 

cells than others. 

Using miRNAs as biomarkers for diagnoses of any disease is only effective if similar 

diseases do not exhibit dysregulation in the same miRNAs; in the case of MS, 

miRNAs will need to be excluded from other neurological diseases (OND) to be 

effective. A study compared miRNAs differentially expressed in MS whole blood to 

dysregulated miRNAs reported in other diseases. Of 165 miRNAs that were identified 

to be dysregulated by Keller et al. (153), 43 had been associated with a variety of 

other diseases; thus 122 are thought to be exclusively linked with MS and warrant 

further exploration as potential diagnostic biomarkers. 

In 2014, Keller et al. (128) produced the first study in MS using next generation 

sequencing (NGS) for miRNA profiling in whole blood. The study employed a 

stringent experimental design whereby miRNAs had to be identified as dysregulated 

by both NGS and microarray before being further assessed with quantitative 

polymerase chain reaction (qPCR). Eight miRNAs were identified and three were 

confirmed significantly dysregulated by qPCR (miR-16-2-3p, miR-7-1-3p and miR-

20a-5p). Using various methods and patient cohorts, the down-regulation of miR-

20a-5p in whole blood of MS patients has been confirmed (127, 128, 153). Prediction 

algorithms suggest that miR-20a-5p regulates approximately 500 genes, 19 of which 

have been experimentally validated and many are involved in T cell regulation. This 

study was followed up a year later using NGS in serum and whole blood to identify 
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miRNAs that may be used as biomarkers to distinguish CIS/RRMS from 

neuromyelitis optica spectrum disorder (NMOSD). No miRNAs were significantly 

different between the disease groups or HC in serum, however 178 miRNAs in whole 

blood showed differential expression in pairwise comparisons of CIS/RRMS, NMOSD 

and HC (123), and should be researched further to validate them as biomarkers for 

differential diagnosis of NMOSD. 

	
Non-cellular circulating miRNAs 

The acquisition of samples peripheral to the CNS is much more common and less 

distressing for patients, and thus a more realistic approach for biomarker profiling. 

Identification of dysregulated miRNAs in PBMC subsets is critical to determine the 

mechanisms occurring in the immune system during MS pathogenesis. The impact of 

non-cellular circulating miRNAs on system processes is difficult to infer, as their 

action on specific cell types cannot be established. However, they are excellent 

sources for biomarker analyses. Plasma, serum and CSF samples are more easily 

handled in the laboratory than cell subsets, and are therefore more likely to be used 

in clinical practice for identifying and utilising disease biomarkers. It should be noted 

that longitudinal studies would exclude CSF as it is not feasible to repeatedly perform 

lumbar puncture to longitudinally monitor miRNA changes. 

In 2013, Gandhi et al. (154) measured and compared the expression of 368 miRNAs 

in plasma of RRMS, SPMS and HC samples with the goal of identifying diagnostic 

biomarkers. A number of miRNAs were identified that distinguished RRMS vs. HC, 

SPMS vs. HC and RRMS vs. SPMS (Table 1). The differential expression of two 

miRNAs (miR-92 and let-7) distinguished RRMS from SPMS and also RRMS from 

ALS patients, but not SPMS from ALS; suggesting similar pathology in the 

neurodegenerative stage of MS (SPMS) and ALS. Differential expression of miR-92 

was found in the largest number of comparisons (RRMS vs. SPMS, RRMS vs. HC 

and RRMS vs. ALS) and was also shown to be associated with EDSS score and 

disease duration. miR-92 targets CD40 pathways involved in cell cycle regulation and 

cell signalling and the cluster to which it belongs (miR-17-92) is involved in regulating 

proliferation and activation of CD4+ T-cells. Another differentially expressed miRNA is 

miR-145 involved in down-regulation of CTLA-4 in CD4+ T-cells; a receptor that 

inhibits T cell response and when mutated has been associated with autoimmune 
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disease. This finding is corroborated by Keller et al.’s 2014 study in whole blood 

(153) and by Søndergaard et al. in PBMCs (142).  

A more recent study from Gandhi’s group focused on identifying biomarker miRNAs 

in serum to differentiate between MS, HC, OND (AD and ALS) and inflammatory 

diseases (rheumatoid arthritis and asthma) (135). Four miRNAs distinguished 

between MS and OND, and a further two between MS and inflammatory diseases. 

An interesting outcome of this paper was the establishment of a clear definition 

between plasma and serum miRNA expression profiles. In plasma, miR-145 

correlated strongly with EDSS (154), whereas it showed no correlation in serum 

where miR-199a-5p had the strongest correlation (135).  

Circulating miRNAs in plasma have been analysed in a few studies. In one, authors 

identified 6 up-regulated and 1 down-regulated miRNAs in MS individuals (130). 

Microarray analysis of over 900 miRNA transcripts demonstrates a good proportion of 

known miRNAs however, the sample size of 4 MS patients and 4 HC was a small 

power study and no variation in disease stage was investigated. Two of the identified 

miRNAs had been identified in previous studies; miR-22 expression is increased in T-

reg cells of MS patients (118) and miR-422a was found to be differential to RRMS 

patients compared to HC in whole blood (153). Notably miR-648 was over-expressed 

in MS patient plasma; as this miRNA targets the myelin-associated oligodendrocyte 

basic protein mRNA, reduction of protein level reduces the stability of the CNS 

myelin sheath (130).  

To establish potential diagnostic biomarkers in CSF, Haghikia et al. (160) compared 

the expression profiles of miRNAs in the CSF of patients with MS, and patients with 

ONDs. Of the 760 miRNAs included in the panel, 50 were detectable in CSF and 3 of 

those (miR-922, miR-181c and miR-633) have diagnostic potential. The combined 

dysregulation of miR-181c and miR-633 feasibly differentiated between patients with 

RRMS and SPMS. All three of the miRNAs were dysregulated in MS compared to 

OND. Some of the ONDs were neuroinflammatory diseases that may have similar 

presentations to MS, supporting the potential of these miRNAs to be used as 

diagnostic biomarkers for MS (160). However, the sample size for OND patients was 

low (n=39) and diverse. A study by Bergman et al. (156) used a much larger cohort, 

though the OND cohorts were still not well-defined. However, 88 miRNAs were 
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detected in the CSF; a marked improvement on Haghikia’s earlier study. miR-150 in 

particular stands out as its expression was able to discriminate between CIS 

converters and non-converters, as well as showing positive correlation with 

oligoclonal bands in the CSF (156). 

How miRNAs end up in non-cellular fluids may be due to a number of reasons, such 

as apoptotic release from cells. However, extracellular vesicles, particularly 

exosomes, should be analysed. Exosomes are non-toxic, naturally occurring 

nanovesicles that are produced by a number of MS-related tissues actively produce 

exosomes including T- and B-cells, oligodendrocytes and astrocytes (in-depth review 

by Jagot and Davoust (170)). Interestingly, miRNA are often actively incorporated into 

exosomes by these cells, and are sufficiently small enough that they can easily cross 

the BBB. Future therapies may utilise exosomes for miRNA delivery to the CNS to 

treat MS. One study has started to explore such an option; IFN-γ-stimulated 

exosomes produced by dendritic cells are enriched with miR-219 and in vivo 

application of these exosomes in brain slide culture was sufficient to stimulate 

oligodendrocyte differentiation into myelinating cells (171).  

 

MicroRNA and MS treatments 

Aberrant expression of miRNAs contributes to MS pathology and thus the effect of 

DMTs on miRNA expression has been the key focus of numerous studies. DMTs 

utilise various pathways to ameliorate the progression of disease. Glatiramer acetate 

(GA) is a random polymer of glutamic acid, lysine, alanine, and tyrosine; it has a 

similar structure to myelin basic protein and is thought to act as a decoy for the 

immune system. Waschbisch and colleagues (152) compared the expression levels 

of 5 miRNAs identified in previous studies as being dysregulated in MS. The 

expression of the miRNAs was analysed in the PBMCs of treatment naïve RRMS 

subjects, GA treated RRMS, IFN-β treated RRMS, and HC. miR-142-3p and miR-

146a were significantly up-regulated in the treatment naïve and IFN-β treated RRMS 

subjects. However, in the GA treatment group, expression of these two miRNAs was 

reduced to a level resembling the HC group. These miRNAs were previously 

identified by as being dysregulated in active white matter lesions (141) and the 
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reduced expression of these miRNAs in GA treated RRMS subjects warrants further 

research. 

Interferon-beta’s (IFN-β) mechanisms of action are vast and not fully understood, 

though it appears to inhibit trafficking of immune cells across the BBB, decreases 

production of proinflammatory cytokines (IL-17 and osteopontin) and increases the 

production of anti-inflammatory agents (IL-10) (172). A recent longitudinal study on 

the impact of IFN-β treatment on miRNA expression in PBMCs found that miRNA-

mediated regulation plays an important role in the mechanisms of action of IFN-β in 

RRMS and CIS cases (138). During time-points ranging from two days to one month, 

Hecker et al. observed the simultaneous up-regulation of IFN-β-responsive genes 

and the down-regulation of miRNAs associated with apoptosis and IFN feedback 

loops. The miRNAs identified as being dysregulated were observed in a small 

discovery cohort (n=6) and validated in a moderately larger cohort (n=12). MiRNA 

expression screening of a larger number of cases could possibly have yielded other 

miRNAs also affected by IFN-β’s mechanism of action. The expression of a number 

of miRNAs was affected by IFN-β. Interestingly, miR-193a was down-regulated 

following treatment, a previous study found this miRNA to be up-regulated in RRMS 

versus healthy HC (125) and it has also been implicated with the remission phase of 

RRMS (173); this supports evidence that IFN-β therapy reduces relapse rates (174). 

This study also supports the findings by Waschbisch et al., who found several 

miRNAs normalised following GA treatment (152) but were not affected by IFN-β 

treatment in both studies. 

Natalizumab (NTZ) is an anti-α4β1	 integrin	 antibody	 that	 restricts	 lymphocyte	migration 

into the CNS, decreasing formation of lesions (175). A cross-sectional investigation 

into miRNA expression dynamics compared a broad panel of miRNAs in the B-cells 

of untreated and NTZ treated RRMS patients and HC (69). 49 miRNAs were 

identified as down-regulated in untreated RRMS compared to HC however, no 

miRNAs were found to be significantly up-regulated. When compared to untreated 

RRMS, 10 miRNAs were up-regulated in NTZ-treated cases six months after 

initiation of treatment. Of these 10, five miRNAs overlapped the miRNAs found to be 

dysregulated in untreated RRMS vs. HC, indicating that NTZ has a normalising effect 

on some miRNA expression. This effect has also been observed in CD4+ T-cells 

(176). MiRNA-mRNA interaction analysis identified key affected pathways as B cell 
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receptor, phosphatidyl-inositol-3-kinase (PI3K) and phosphatase and tensin 

homology (PTEN) signalling; PI3K and PTEN were also found to be targets of miR-

17 by Lindberg et al. (125). Interestingly, 3 viral miRNAs from EBV were found to be 

down-regulated in RRMS compared to HC and two were up-regulated in NTZ treated 

vs. untreated RRMS (69). The implications of this finding on pathogenesis is not 

understood, though the high incidence of EBV-seropositivity in MS indicates that 

EBV-miRNAs likely play a significant role in the disease pathophysiology. 

A potential side effect of NTZ treatment is the development of progressive multifocal 

leukoencephalopathy (PML), a virus mediated inflammation of the brain that is fatal in 

some cases (177). miR-10b is very lowly expressed in patients being treated with 

NTZ, however those that develop PML have undetectable levels of miR-10b in their 

PBMCs (149). This absence of expression may be used as a biomarker for 

monitoring patients on NTZ. Likewise, 3 miRNAs have been shown to be differentially 

expressed in whole blood of PML patients after 12 months on NTZ, compared to 

those unaffected (146). They are also candidates for monitoring PML development in 

patients treated with NTZ. 

Fingolimod (FIN) is a modulator of sphingosine 1 phosphate (S1P) receptor (178). 

FIN induces down-regulation of S1P1 which is highly expressed on T- and B-cells, 

causing these cells to be sequestered in the lymph nodes, thus preventing migration 

into the CNS (179). After six months of treatment, the expression of three miRNAs in 

serum (miR-15b, miR-23a and miR-223) increased to levels similar to HC, and 

remained stable up the 12 months (the length of the study) (122). Expression of miR-

150 in plasma decreases after 12 months fingolimod treatment, though it is not clear 

if this normalisation as a HC comparison was not performed (156). As with the 

aforementioned DMTs, fingolimod has a normalising effect (miR-150 not confirmed), 

though it would more informative to observe its effect in immune cells rather than 

serum and plasma. 

An alternative to traditional immunosuppressive DMTs utilises a patient’s own stem 

cells to reduce relapse and improve disability in patients with active disease (180). 

Autologous haematopoietic stem cell transplantation (AHSCT) is a risky procedure 

involving chemotherapy to eradicate the patient’s white blood cells, and the re-

introduction of haematopoietic stem cells to reset the immune system. A recent study 

analysed the effect of AHSCT on the expression of three miRNAs. miR-16, miR-142 
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and miR-155 were all initially up-regulated in MS CD4+ and CD8+ T-cells. Their 

expression normalised in both cell types 6 months after AHSCT and remained stable 

throughout the study’s 24-month duration (124). While this finding is exciting and 

promising for the future of AHSCT, it should be noted that the sample cohort was a 

mixture of RRMS and SPMS, with active and inactive disease, and this may have 

skewed their baseline miRNA expression readings. An earlier study on untreated 

RRMS CD4+ T-cells identified miR-16 down-regulation compared to HC (119), a 

direct contradiction to the AHSCT study baseline.  

It has been clearly demonstrated that DMTs have an effect on miRNA expression 

patterns. Because of this, it is important that studies aimed at elucidating the role of 

miRNAs in disease pathology use only samples from patients who are treatment 

naïve or have been free from treatment for over six months. 

 

MicroRNA biogenesis and MS 

While miRNA dysregulation is important in understanding MS and developing reliable 

biomarkers for diagnosis and disease activity, the mechanism of miRNA 

dysregulation should not be overlooked. As mentioned earlier, miRNA expression can 

be affected by DNA methylation. Furthermore, the molecules in the biogenesis 

pathway (figure 1.3) may also exhibit aberrant expression, with a knock-on effect to 

general miRNA expression. In RRMS Dicer is down-regulated in B-cells (181), 

whereas in PBMCs, Drosha, DGCR8 and Dicer are all up-regulated (114). A 

contradicting study in PBMCs found Dicer mRNA to be stable in RRMS, though 

protein was down-regulated. However, Dicer was observed to increase expression in 

IFN-β responders (115). As with most miRNA studies in MS, these were all carried 

out in RRMS patients or mixed MS subtypes, with no specific focus on SPMS.  
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Summary 

Multiple sclerosis is a complex autoimmune disease caused by multifocal 

inflammatory attacks on the CNS resulting in lesional demyelination and axonal 

damage. Symptoms vary between patients and as disease progresses disability 

accumulates. Whilst there are genetic loci that confer risk of developing MS, 

environment also plays a crucial role. Epigenetic factors are partially heritable but 

also highly sensitive to environment and many studies have highlighted these factors 

as contributory to MS pathology.  

MicroRNAs are of key interest and have the potential to play many roles in MS and 

its treatment. There are over 1800 miRNAs in the human genome and they are highly 

stable molecules, which makes them great candidates as biomarkers for diagnosing 

and monitoring disease progression. More importantly, they are regulators of gene 

expression and changes in their expression pattern have great impact on cellular 

pathways crucial to the pathophysiology of MS. The expression of miRNAs 

themselves may be affected or affecting other epigenetic mechanisms such as DNA 

methylation, which also has demonstrated differential presentation in MS patients. 

The vast majority of studies on miRNAs in the immune system have focused on 

heterogeneous cell populations; analyses of miRNA expression in specific cell types 

(particularly CD4+ T-cells which are highly involved in disease), are essential to 

understand the effect of miRNA dysregulation in MS. Furthermore, SPMS has largely 

been ignored and either left out of studies, or analysed in conjunction with RRMS and 

PPMS samples. To better understand the role of the immune system in SPMS, 

miRNA studies need to be performed. Additionally, as SPMS patients are not treated 

with DMTs, expression changes key to understanding cell pathology will not be 

hidden by the normalising effect of most DMTs. 

As with SPMS, normal appearing white matter has not been exhaustively 

investigated in miRNA studies, but has been shown to display pathology linked to 

symptomatic lesions. MiRNAs could be playing a pivotal pathological role in the 

NAWM and the identification, location and functional analysis of dysregulated 

miRNAs could yield information on MS pathology and new therapeutic strategies. 

Correlating these miRNAs in the NAWM to circulating body fluids will identify 
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potential biomarkers for monitoring disease course, as well as informing the interplay 

of CNS and immune system in SPMS. 

 

Research Question and Aims 

The studies included in this thesis were designed to provide answers for the following 

research questions: 

1. Which microRNAs are dysregulated in the CD4+ T-cells of SPMS patients, 

and how does this affect the role of CD4+ T-cells in SPMS? 

2. Are DNA methylation profiles of CD4+ T-cells different between in RRMS and 

SPMS, and are changes in microRNA expression caused by DNA 

methylation? 

3. Are microRNA biogenesis molecules differentially expressed in SPMS CD4+ 

T-cells, and does this have an effect on microRNA expression? 

4. Is DNA methylation affected by changes in microRNA expression, specifically 

miRNA-29b?  

5. Is there differential microRNA expression in SPMS normal appearing white 

matter compared to controls, and how does this compare to microRNA 

expression patterns seen in CD4+ T-cells? 

The study aims of this project are to: 

1. Identify miRNAs dysregulated in SPMS CD4+ T-cells using next generation 

sequencing; these will be confirmed using RT-qPCR. And determine if 

common gene targets demonstrate associated expression changes. 

2. Determine DNA methylation signature of CD4+ T-cells in SPMS and associate 

these with miRNA dysregulation. 

3. Determine whether changes in expression of miRNA biogenesis molecules 

correlate with miRNA expression trends in SPMS, and compare this to a 

RRMS cohort. 

4. Determine if levels of DNA methyltransferase enzymes correlate with miRNA-

29b levels, and how this affects DNA methylation levels in CD4+ T-cells. 

5. Investigate the dysregulation of microRNAs in SPMS NAWM on a series of 

post-mortem brain samples from control and SPMS subjects.  
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CHAPTER TWO – microRNA expression profile of SPMS CD4+ T-cells 

 

Next-generation sequencing reveals broad down-regulation of microRNAs in 

secondary progressive multiple sclerosis CD4+ T-cells 

 

Published in Clinical Epigenetics (IF 4.327) 27 August 2016. See appendix 1. 

 

This chapter addresses my first research question – Is there dysregulation of miRNA 

expression in the CD4+ T-cells of secondary progressive MS patients? 
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Abstract 

Background: The immune system has a diminished role in secondary progressive 

MS (SPMS) compared to the relapsing-remitting disease stage. MicroRNA (miRNA) 

can regulate gene expression; determining their impact on immune-related cell 

functions, especially CD4+ T-cells, during disease progression will advance our 

understanding of MS pathophysiology. This study aimed to compare miRNA profiles 

of CD4+ T-cells from SPMS patients to healthy controls (HC) using whole miRNA 

transcriptome next generation sequencing (NGS).  

Methods: Total RNA was extracted from CD4+ T-cells of 24 SPMS and 22 HC. 

miRNA expression patterns were analysed using Illumina-based small-RNA NGS in 

12 SPMS and 12 HC and confirmed in all samples by qPCR.   

Results: The ten most dysregulated miRNAs identified by NGS were selected for 

qPCR confirmation; five (miR-21-5p, miR-26b-5p, miR-29b-3p, miR-142-3p and miR-

155-5p) were confirmed to be down-regulated in SPMS (p<0.05). SOCS6 is targeted 

by eight of these ten miRNAs. Consistent with this, SOCS6 expression is up-

regulated in SPMS CD4+ T-cells (p<0.05). Previously, SOCS6 has been shown to act 

as a negative regulator of T-cell activation.  

Conclusions: 97% of miRNA candidates identified by NGS were down-regulated in 

SPMS. The down-regulation of miRNAs, and increased expression of SOCS6 in 

SPMS CD4+ T-cells may contribute to reduced immune system activity in 

progressive MS.  
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Introduction 

Multiple Sclerosis (MS) is an autoimmune disease characterized by multifocal 

inflammatory attacks in the central nervous system (CNS) (36). In the relapsing-

remitting (RRMS) stage of the disease, CD4+ T-cells are amongst the primary 

infiltrators moving from the periphery, through the blood-brain barrier, and into the 

CNS (18). These cells then initiate an immune response that results in localized 

demyelination and corresponding symptoms. The later stage of MS, secondary 

progressive (SPMS), is characterized by compounding neurodegeneration and 

sustained disability; however the relevance of inflammation is unclear (32). As key 

regulators of gene expression, microRNA may be affecting the immune-related 

functions of CD4+ T-cells in SPMS and may help to elucidate their actions in SPMS. 

MicroRNAs (miRNAs) are short, non-coding RNA molecules (~22bp) that regulate 

gene expression at the post-transcriptional stage by targeting the 3’ untranslated 

region of target genes. Their small size and stable structure make them ideal 

biomarkers. miRNA expression patterns in MS have been the focus of numerous 

studies in recent years, many of which have concentrated on using miRNAs as 

biomarkers for diagnosis and prognosis (182). These studies predominantly use 

easily acquired (and often highly heterogeneous) samples such as whole blood, 

peripheral blood mononuclear cells (PBMCs), serum and plasma. Numerous 

dysregulated miRNAs have been identified, however which cell types are actually 

responsible for differing miRNA profiles and the consequences of altered miRNA 

expression is not clear in many studies. Furthermore, it is likely that these 

heterogeneous samples are masking the signal of differentially expressed miRNA in 

specific cell subtypes. To overcome this, we have focused on CD4+ T-cells in this 

study. 

Next generation sequencing (NGS) allows for stringent examination of cell specific 

miRNA expression profiles as well as discovery of previously uncharacterized 

miRNAs. Here, we have used small-RNA NGS of CD4+ T-cells from SPMS patients 

and healthy controls (HC). The total coverage approach of NGS generates 

expression information on all small RNA species including all known and novel 

miRNAs, as well as other small RNA species (isomiRs, and snoRNAs); a clear 

advantage over microarray and candidate approach assays. Three previous studies 

in MS have used NGS to effectively identify miRNA expression profiles in the whole 
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blood (123, 128), serum (123) and peripheral blood mononuclear cells (PBMCs) 

(132) of RRMS patients. However, NGS techniques have not been used for specific 

cell types or in SPMS samples.  

The miRNA expression profile of CD4+ T-cells, either as instigating molecules or by-

products of erroneous molecular mechanisms, will provide insight into the function of 

these cells in SPMS. Here, we used NGS to provide a comprehensive analysis of the 

miRNA expression profiles of CD4+ T-cells from SPMS patients and healthy controls 

(HC), and confirmed these results using targeted assays. 

 

Patients and Methods 

Sample collection 

Whole blood was collected at a single study centre from an initial cohort of 12 SPMS 

patients and 12 HC, and a replication cohort of 12 SPMS and 10 HC. All patients 

were diagnosed with SPMS according to the McDonald criteria (183) and 

demonstrated EDSS progression without evidence of relapse (8).  Controls were age 

(±5 years) and gender matched (Table 2.1). The SPMS patient group was free of MS 

specific treatments for a minimum period of 6 months prior to collection. 

 

Ethics Statement 

Samples were collected at the John Hunter Hospital, and laboratory work conducted 

at the University of Newcastle. The Hunter New England Health Research Ethics 

Committee and University of Newcastle Ethics committee approved this study 

(05/04/13.09 and H-505-0607 respectively), and methods were carried out in 

accordance with institutional guidelines on human subject experiments. Written and 

informed consent was obtained from all patient and control subjects. 
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Table 2.1: Details of SPMS and healthy control individuals. 

 Next-generation 

sequencing 
Replication cohort 

SPMS HC SPMS HC 

Number 12 12 12 10 

Female 9  9  8  5  

Age in yrs  

(mean ±SD) 

60.2 ±8.3 61.3 ±9.5 61.4.0 ±6.5 60.1 ±5.9 

EDSS (mean 

±SD) 

6.9 ±0.9 NA 5.9 ±1.0 NA 

Active SPMS 3 NA 4 NA 

Disease duration 

in yrs (mean 
±SD) 

25.6 ±11.1 NA 18.3 ±6.5 NA 

Progression 

duration (mean 

±SD) 

10.8 ±8.1 NA 8.9 ±6.2 NA 

EDSS = expanded disability status scale, SD = standard deviation, NA = not applicable. 

 

Blood sample processing  

PBMCs were isolated from 45mL of heparinised whole blood by density gradient 

centrifugation on lymphoprep (Axis-Shield PoC AS, Norway). CD4+ T-cells were 

enriched from the PBMCs using EasySep magnetic negative selection according to 

manufacturer’s protocol (StemCell Technologies, Canada). The purity of the CD4+ 

selection was assessed by flow cytometry using a FITC conjugated anti-CD4 

antibody (anti-human CD4 antibody, clone OTK4, FITC, catalogue# 60016FI, 

StemCell Technologies, Canada) on a BD FACSCanto II flow cytometer, then 

analysed using FACSDiva software (BD Biosciences, USA) at the Analytical 
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Biomolecular Research Facility of the University of Newcastle. All samples met a 

minimum purity threshold of >90%.  

 

RNA isolation 

Total RNA was isolated from the CD4+ T-cells using the miRNeasy Mini kit (Qiagen, 

USA) following the manufacturer’s instructions. The quality of the RNA was assessed 

using the RNA 6000 Nano kit on a 2100 Bioanalyzer (Agilent Technologies, USA); a 

RNA integrity number (RIN) greater than 8 was deemed suitable for sequencing and 

RT-qPCR. Purity was measured on an Epoch spectrophotometer (BioTek, USA) and 

concentration was measured using the high sensitivity RNA kit on Qubit 2.0 

Fluorometer (Life Technologies, Thermo Fisher Scientific, USA).  

 

miRNA sequencing and analysis 

A cohort of 12 SPMS and 12 HC samples was run through NGS at the Diamantina 

Institute, University of Queensland, Brisbane, Australia. Samples were individually 

barcoded and then sequenced in two multiplexed pools each containing 12 samples. 

The sequencing libraries were prepared from 1μg total RNA, using the TruSeq Small 

RNA preparation kit (Illumina, USA), and sequenced using the 50bp fragment 

protocol on the HiSeq 2500 platform. The sequencing generated 4-9 million reads 

per sample, more than sufficient for expression and discovery applications. The 

sample sequencing reads were demultiplexed using the CASAVA 1.8 software 

package (Illumina, USA). The Illumina adapter sequences were trimmed from the 

fastq files using Trimmomatic (184). All reads were aligned and counted against 

miRBase 21 (104).  

 

RT-qPCR 

Mature miRNA TaqMan assays (Applied Biosystems, Thermo Fisher Scientific, USA) 

were used for reverse transcription qPCR (RT-qPCR) to determine expression of the 

ten most differentially expressed miRNAs in the initial NGS cohort as well as a 

replication cohort of 12 SPMS and 10 HC (assay IDs in miRNA numerical order: 

000397, 000399, 000407, 000408, 000409, 000413, 002223, 000464, 002623, 



  

 47 

000524). The small RNA RNU44 (ref: 001094) was used as an endogenous control. 

RNU44 has previously been demonstrated to be a stable control in CD4+ T –cells 

(125) and its stability has been shown in our 47 samples (mean ±standard deviation 

Ct value of 23.58 ±0.63). RNU44 was used for normalization using the ΔCt method. 

The relative expression (2-ΔCt) of all samples (24 SPMS and 22 HC) was calculated. 

 

Statistical analysis 

The two-sample Kolmogorov-Smirnov test (K-S test) was used to test whether 

differences in expression level was statistically significant between the case and 

control group as implemented in R. The K-S test was chosen (over the F test 

comparison of means) because of the non-normality of the expression level 

distributions among miRNAs. Our statistical significance threshold allowing for 

multiple testing correction was determined using the False Discovery Rate (FDR) 

procedure of Benjamini-Hochberg (185).  Based on the number of miRNA elements, 

this threshold was set at 1.2´10-4. We also considered a relaxed (or nominal) 

significance threshold of 0.05.  In addition to using statistical significance thresholds 

for miRNA selection we also included a count threshold of >800 to exclude miRNAs 

that were very lowly expressed and unlikely to be replicated with the less-sensitive 

RT-qPCR (see appendix 2). The K-S test was also used to determine significant 

differential miRNA and SOCS6 expression from the RT-qPCR relative expression 

data. 

 

Correlation to patient characteristics 

The Pearson correlation coefficient was calculated using RT-qPCR data for MS 

samples (n=24) and patient characteristics: EDSS, age, disease duration and 

progression duration. A correlation coefficient (r value) >±0.5 was considered strong, 

±-0.3-0.49 moderate, and <±0.29 weak. 

 

Gene target prediction 

miRSystem integrates seven different target gene prediction algorithms and contains 

experimentally validated data on miRNA:mRNA interactions (106). This integration 
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system was used to identify genes that may be targeted by more than one of our 

identified dysregulated miRNAs. 

 

Analysis of SOCS6 expression 

500ng of total RNA was reverse transcribed using high-capacity cDNA reverse 

transcription kits (Applied Biosystems, Thermo Fisher Scientific, USA) in 21 SPMS 

and 21 HC samples. qPCR was performed using an exon-spanning TaqMan probe 

for SOCS6 (ref: Hs00377781_m1). Expression of SOCS6 was determined as relative 

expression to the housekeeping genes GAPDH (ref: 4326317E) and β-actin (ref: 

4326215E) using a ViiA 7 (Applied Biosystems, Thermo Fisher Scientific, USA).  

 

Results 

We used NGS to establish miRNA expression profiles in CD4+ T-cells from a cohort 

of 12 SPMS and 12 HC samples. RT-qPCR was then employed to validate 

differences in miRNA expression in the NGS cohort as well as a second cohort of 12 

SPMS and 10 HC samples (total 24 SPMS and 22 HC).  

 

NGS 

Whilst we did not observe any statistically significant miRNAs at the FDR correct 

threshold, which probably reflects the modest sample size, we did observe 42 

miRNAs at the nominal significance threshold (97% of these were down-regulated).  

Of these 42 miRNAs, only 10 met our secondary criteria of having a read count >800: 

miR-21-5p (p=0.031), miR-23a-3p (p=0.007), miR-26b-5p (p=0.031), miR-27a-3p 

(p=0.031), miR-27b-3p (p=0.031), miR-29b-3p (p=0.007), miR-30e-5p (p=0.031), 

miR-142-3p (p=0.031), miR-155-5p (p=0.031) and miR-221-3p (p=0.031). Each of 

these miRNAs were found to be down-regulated in SPMS as summarized in Figure 

2.1, and were forwarded for replication testing in an independent cohort.  
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Figure 2.1: Tukey boxplot demonstrating the ten most significantly dysregulated 

microRNA identified using NGS. Data is presented as log10 of the read count and 

clearly exhibits the down-regulation of miRNAs in SPMS (purple) compared to HC 

(grey). Whiskers represent data within 1.5 interquartile range (IQR) of the upper and 

lower quartile. Data points outside of the 1.5 IQR are represented by black dots. * 

p<0.05, ** p<0.01. 

 

RT-qPCR  

To confirm our NGS findings, the top ten most dysregulated miRNAs were selected 

for further analysis in 24 SPMS and 22 HC samples using RT-qPCR (including the 12 

SPMS and 12 HC samples that underwent NGS analysis). Of these ten miRNAs, RT-

qPCR confirmed significant down-regulation of miR-21-5p (p=0.0048), miR-26b-5p 

(p=0.007) miR-29b-3p (p=0.00001), miR-142-3p (p=0.05) and miR-155-5p (p=0.001) 

in SPMS CD4+ T-cells (figure 2.2). These five miRNAs were confirmed in the original 

NGS cohort, the replication cohort, and the combined cohort. This provides 

statistically significant evidence of replication indicating these five miRNAs are very 

unlikely to be false positives. A trend of down-regulation of miRNA in SPMS samples 

was still observed across all ten miRNAs. 
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Figure 2.2: Tukey boxplot of top ten miRNAs expression (relative to RNU44) using 

RT-qPCR. Significant down-regulation of miR-21-5p, miR-29b-3p, miR-142-3p and 

miR-155-5p in SPMS was confirmed. Whiskers represent data within 1.5 interquartile 

range (IQR) of the upper and lower quartile. Data points outside of the 1.5 IQR are 

represented by black dots.  * p<0.05, ** p<0.01, *** p<0.001.  

 

Comparison of methods 

Concordance of differential expression can vary between quantitation methods (186). 

To determine the magnitude of fold-change in SPMS vs. HC we compared qPCR and 

NGS results and found no change in the degree of decreased expression between 

NGS and RT-qPCR methods in the miRNAs confirmed by RT-qPCR (figure 2.3).   

 

Correlation to patient characteristics 

No strong correlations between miRNA expression and patient characteristics were 

identified (table 2.2). However, moderate positive correlation between EDSS, and 

miR-21-5p, miR-26b-5p and miR-29b-3p was seen. Further positive correlation was 

also found between disease duration and miR-21-5p and miR-155-5p. All miRNAs 

demonstrated weak correlation to patient age and progression duration.  
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Figure 2.3: Comparison of miRNA fold-change between NGS and RT-qPCR. 

Magnitude of change is consistent between NGS and RT-qPCR methods. 

 

Table 2.2: Correlation coefficients calculated from RT-qPCR data against patient 

characteristics.  

 miR-21-5p miR-26b-5p miR-29b-3p miR-142-3p miR-155-5p 

EDSS 0.34 0.42 0.41 0.28 0.26 

Age (HC) 0.22 0.17 0.31 0.21 -0.08 

Age (SPMS) -0.07 -0.17 -0.17 -0.30 -0.01 

Disease duration 0.49 0.15 0.23 -0.08 0.49 

Progression 

duration 
0.12 0.12 0.11 -0.07 0.17 

Correlation of miRNA expression and age of HC has also been calculated as a reference 
point for age of patients. Moderate correlations are in bold text. 

 

Target prediction 

miRNA fold change was <2 in all miRNAs. It is therefore unlikely that any one 

particular miRNA is causing a great effect on gene expression. It is more likely to be 

a combination of multiple miRNAs targeting a few specific genes. Furthermore, as 

RT-qPCR is a less sensitive methodology than NGS, and the trend of down-
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regulation is still seen (though not significant) in the other miRNAs, all ten miRNAs 

were cross-analysed potential gene targets.  miRSystem was used to identify genes 

that have multiple target genes in common, both in the five confirmed miRNAs and all 

ten miRNAs identified by NGS.  One gene, bromodomain and WD repeat domain 

containing 1 (BRWD1), is targeted by all five confirmed miRNAs. No genes are 

targeted by all ten miRNAs however; eight genes are targeted by eight of the 

miRNAs (table 2.3).  

 

Table 2.3: Genes identified by miRSystem targeted by eight of the ten microRNAs. 

Verified targeting miRNAs are identified with a “V”. 

 miR-
21-5p 

miR-
23a-3p 

miR-
26b-
5p 

miR-
27a-
3p 

miR-
27b-3p 

miR-
29b-3p 

miR-
30e-
5p 

miR-
142-
3p 

miR-
155-
5p 

miR-
221-3p 

ACVR2B V V V V V V   V V 

ZBTB41 V V  V V V V V V  

BRWD1 V V V   V V V V V 

CAMTA1 V V  V V V V  V V 

CFL2 V V  V V V V V V  

SOCS6 V V V V V  V V V  

MIER3  V V V V V V  V V 

KLF12 V V V V V V V   V 

 

These genes are involved in transmembrane ligand binding, regulation of actin 

filaments, or are transcription factors.  However, only one gene is specifically linked 

to immune cell functioning, SOCS6 (suppressor of cytokine signalling 6). This gene 

has previously been reported to negatively regulate T-cell activation by promoting 

ubiquitin-dependent proteolysis (187) and was thus selected for further investigated. 

 

SOCS6 expression 

Gene expression analysis using RT-qPCR was conducted to determine whether 

SOCS6 is up-regulated in SPMS CD4+ T-cells in direct negative correlation to the 

miRNA expression (Figure 2.4). Both the preliminary and validation cohorts were 
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analysed and SOCS6 expression is increased in SPMS compared to HC. 

Normalisation against GAPDH and β-actin generated the same results (data for β-

actin not shown). 

 

Figure 2.4: Expression of SOCS6 relative to GAPDH. Up-regulation of SOCS6 in 

SPMS is significant though widely distributed (* p=0.042). 

 

Discussion 

This is the first study in MS to utilize NGS for miRNA expression profiling in the CD4+ 

T-cells of SPMS patients. We found 42 miRNAs that are dysregulated in the CD4+ T-

cells of SPMS patients as compared to controls; 97% of which were down-regulated. 

TaqMan assays confirmed five of these miRNAs (miR-21-5p, miR-26b-5p, miR-29b-

3p, miR-142-3p and miR-155-5p) to be down-regulated in SPMS. Each of these 

miRNAs (excluding miR-26b) has been reported on previously in MS though not 

necessarily in SPMS or CD4+ T-cells. Lindberg et al. (125) identified seven miRNAs 

dysregulated in the CD4+ T-cells from RRMS patients, but did not identify 

dysregulation in any of the five miRNA in this study.  Thus, down-regulation of these 

miRNAs may be exclusive to SPMS.  

Here, we report a decrease in miR-155-5p expression in MS; this is the first study to 

identify this. miR-155-5p has a major proinflammatory role in MS and has been 

shown to be up-regulated in a number of tissues. Studies of post-mortem brain tissue 
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find a gradient of miR-155-5p expression that peaks in active lesions (141) and 

associated neurovascular units (157), and decreases through chronic lesions and 

normal appearing white matter to a low baseline in healthy control white matter (157, 

158). This increased expression of miR-155 has been associated with suppression 

of: CD47 in active lesions that creates a permissive environment for myelin 

phagocytosis (141); focal adhesion and cell-cell complex molecules in the blood brain 

barrier, thus increasing permeability (157) and; AKR1C1 and AKR1C2, essential for 

biosynthesis of allopregnanolone (a neuroprotective steroid) (158).  

Interestingly, a study of miR-155 in the EAE mouse model found that miR-155 

expression in CD4+ T-cells increases during EAE and that miR-155-/- mice had an 

attenuation of EAE (165). Specifically, Th17 cells lacking miR-155-5p are unable to 

cause EAE (188). miR-155-5p is required for normal immune function (189) and 

together, these studies confirm the significant role that miR-155-5p over-expression 

plays in the inflammatory process of MS. In contrast, our finding of miR-155-5p 

down-regulation may be exclusive to SPMS patients and/or CD4+ T-cells, and is 

consistent with SPMS as a non-inflammatory mediated disease.   

In PBMCs, miR-155-5p is up-regulated in RRMS (152, 159). Waschbisch et al. 

compared miR-155 expression in PBMCs of 74 RRMS patients against 32 controls 

and identified at baseline up-regulation of miR-155-5p and miR-142-3p. Glatiramer 

acetate (GA) treatment resulted in normalized expression of miR-142-3p. However, in 

our study, all patients had been treatment free for >6 months prior to collection and 

thus GA cannot be attributed as the cause of miR-142-3p down-regulation in our 

patient cohort.  

A recent study on autologous haematopoietic stem cell transplant (AHSCT) also 

found co-dysregulation of miR-155-5p and miR-142-3p (124). Contrary to our results, 

Arruda et al. found these miRNAs to be up-regulated in MS patient CD4+ T-cells 

before treatment (cohort was 75% SPMS). However, we reason that there are 

differences in the immune activity of the patient cohorts. AHSCT is most effective in 

active MS disease and the European Bone Marrow Transplant Register 

recommended that only SPMS patients with some inflammatory activity and 

gadolinium-enhancing (Gd+) lesions be considered for AHSCT (190). Six of the 19 

SPMS patients enrolled in the Arruda et al. study presented with gadolinium-

enhancing lesions in the year approaching the treatment indicating inflammatory 
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activity. Further, the average disease duration in the Arruda et al. study was 8.1 

years, as opposed to 25.6 (primary cohort) or 18.6 (replication cohort) years in our 

study.  While the AHSCT study also utilized TaqMan microRNA assays, our data is 

corroborated further by NGS expression analysis, which is a more sensitive measure 

of expression changes. 

In a study of potential biomarkers in Alzheimer’s disease (AD), miR-26b-5p was 

shown to be down-regulated in the serum and CSF of AD patients when compared to 

patients with inflammatory neurological diseases (191) supporting the predominantly 

neurodegenerative pathology of SPMS. 

Previously, miR-29b-3p is reported as being up-regulated in memory CD4+ T-cells in 

all MS subtypes however, the SPMS sample group was very small (n=4) (139) 

compared to our cohort (n=24). This study also identified a feedback loop where miR-

29b-3p targets IFN-γ which induces miR-29b-3p expression (139). The noted 

reduction of IFN- γ in peripheral blood of SPMS patients compared to RRMS (192) 

may contribute to our observed reduction of miR-29b-3p in SPMS patients. 

Over-expression of miR-29b in systemic lupus erythematosus (SLE) has been linked 

to hypomethylation of DNA in CD4+ T-cells (193). While there are currently no 

studies on DNA methylation in SPMS, it would be interesting to see if the down-

regulation of miR-29b that we have identified here in CD4+ T-cells is associated with 

genome-wide hypermethylation in SPMS. 

Increased miR-21-5p promotes differentiation of Th17 cells in the EAE mouse model 

and miR-21-5p knock-out mice have a defective Th17 differentiation pathway, 

resulting in resistance to EAE (194). Fenoglio et al. found increased miR-21-5p 

expression in RRMS (active relapse phase) PMBCs compared to controls, though no 

difference in SPMS. Again, this may be contributed to the relatively small sample size 

(n=6) (129). As with our other significantly dysregulated miRNAs, miR-21-5p has a 

demonstrated mechanism of increasing T-cell activity.  

Also of interest, we previously reported miR-20a-5p down-regulation in the whole 

blood of all MS subtypes (195).  This miRNA was one of the 42 dysregulated miRNAs 

identified by NGS and is significantly down-regulated in SPMS compared to HC. 

However, it narrowly missed the 800 read cut-off for qPCR confirmation. miR-20a-5p 

is also predicted to target SOCS6. 
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All ten miRNAs showed down-regulation in RT-qPCR, however the difference was 

statistically significant in only five. Recently, molecules responsible for microRNA 

biogenesis (Drosha, Dicer and DGCR8) were found to be over-expressed in the 

PBMCs of RRMS compared to healthy controls (114). It would be interesting to see if 

this is still the case in SPMS or if a down-regulation of the machinery may be the 

cause of the observed reduction of miRNA expression observed in this study.  

Eight of the top ten dysregulated miRNA were predicted to target SOCS6 by 

MirSystem.  Consistent with this, increased expression of SOCS6 in the SPMS 

cohort is in direct negative correlation with the miRNA expression profiles, strongly 

indicating a mRNA:miRNA relationship. To our knowledge, this is the first study to 

identify SOCS6 as a gene of interest in MS. It is a highly conserved gene with very 

low expression levels in healthy thymus and brain tissues and is down-regulated in 

gastric, colorectal and pancreatic cancers (196-199). In colorectal cancer, 

methylation changes have been ruled out as the mechanism of down-regulation 

(198), therefore this down-regulation may be due to altered miRNA expression. MiR-

424-5p is responsible for the down-regulation of SOCS6 in pancreatic cancer (199) 

however we found no differences in miR-424-5p expression between SPMS and HC 

in this study. 

The function of SOCS6 as a negative regulator of T-cell activation (187) and its 

observed over-expression in SPMS CD4+ T-cells, supports the notion of reduced 

immune activity in SPMS. Very little is known about SOCS6 and mores studies are 

required to determine if it may be a novel therapeutic target. 

This is the first study to use NGS miRNA profiling to assess miRNA expression in the 

CD4+ T-cells of SPMS patients. Future studies should focus on using the same 

technique in treatment naïve RRMS patients to determine if this is a SPMS exclusive 

trend and remove the confounding factor of treatment effects. Furthermore, miRNA 

expression profiles of other cell subtypes should be investigated, as whole blood 

analysis is likely masking significant changes in individual cell subsets. Ideally, all of 

our patients would have had inactive SPMS, however as SPMS is a difficult disease 

stage to define and collect we have included some active SPMS patients in this 

study. In this study, we chose to focus on CD4+ T-cells as they are traditionally 

thought to be the main cell infiltrates. Our previous studies also show that CD4+ T-

cells exhibit significant changes in methylation profiles in RRMS (98, 99). 
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Conclusions 

Here we have shown a general down-regulation of miRNAs in CD4+ T-cells 

compared to HC, with five miRNAs confirmed as significant in two independent 

assays. This indicates that miRNA expression may be over-normalising in SPMS 

CD4+ T-cells. SOCS6 is a predicted target of the majority of these miRNAs and, 

consistent with this, we found SOCS6 to be up-regulated in this cohort. These are 

novel findings that point towards a diminished role for CD4+ T-cells in SPMS, and 

adds further evidence of SPMS as a neurodegenerative disease stage, not an 

inflammation-driven one.  
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CHAPTER THREE – DNA methylation profile of SPMS CD4+ T-cells 

 

Methylation at the MHC locus is associated with MS progression independently  

of HLA-DRB1 

 

This chapter addresses my second research question: Are DNA methylation profiles 

of CD4+ T-cells different between in RRMS and SPMS, and are changes in 

microRNA expression caused by DNA methylation? 

 

Abstract 

Background: Multiple sclerosis (MS) is characterised by inflammatory attacks of the 

central nervous system that initially are followed by recovery.  In the secondary 

progressive stage the periods of recovery cease, leading to relentless accumulation 

of disability due to ongoing demyelination and neurodegeneration. DNA methylation 

is an epigenetic modification that is involved in gene expression.  In a previous study, 

we found that there are DNA methylation changes at HLA-DRB1 in relapsing-

remitting MS (RRMS) patients compared to controls in CD4+ but not CD8+ T-cells.  

This study aimed to confirm these findings in an MS cohort free of any treatment and 

to compare the global DNA methylation profiles of CD4+ T-cells in secondary 

progressive (SPMS) and RRMS patients.   

Methods: Total DNA was extracted from the CD4+ T-cells of 27 female RRMS and 25 

matched healthy controls and 23 female SPMS and 19 matched healthy control 

subjects. DNA was bisulfite converted and hybridised to Illumina 450K arrays. Beta 

values were analysed using a multi-CpG penalised regression approach (GLMNet) to 

identify MS-associated CpGs. 

Results: We were able to confirm our previous data that demonstrated a differentially 

methylated region at the HLA-DRB1 locus in RRMS patients. In addition, we 

identified a striking differential signal at RNF39 in RRMS patients, a gene previously 

reported to be associated with MS. Surprisingly, we found the majority of associated 

sites are unique to their respective patient subgroup, with only 16 overlapping 

differentially methylated sites in RRMS and SPMS. Also surprisingly, the majority of 
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these sites were contained within the RNF39 DMR and not the HLA-DRB1 DMR.  

Globally, we find RRMS patients to have equal hypo- and hypermethylation 

compared to healthy controls compared to a striking global hypermethylation in 

SPMS patients (75%) compared to healthy controls. 

Conclusions: Our findings provide the first global comparison of DNA methylation 

profiles in RRMS and SPMS patients. We find a substantial difference between the 

two disease subgroups in CD4+ T-cells, and larger studies are warranted to further 

understand how this contributes to MS pathophysiology. 

 

Introduction 

 MS is an autoimmune disease characterized by lymphocyte mediated inflammation 

causing demyelination and axonal degeneration.  In the RRMS phase of disease, 

lymphocytes move from the periphery into the CNS, where they initiate an immune 

response that results in demyelination and corresponding symptoms (relapse). This 

is followed by a phase of recovery and repair (remission). Approximately 60% of 

patients will progress from RRMS to SPMS (32), which is characterised by increasing 

disability (measured by EDSS) in the absence of relapses (8).  This stage is thought 

to be more neurodegenerative in nature and the role of inflammation is less clear. 

MS aetiology is assumed to be a combination of genetic predisposition and 

environmental exposures.  Despite several large genome-wide association studies 

(GWAS), there remains a large proportion of unexplained heritability in terms of MS 

risk (80, 200).  Epigenetics can influence the genome in the absence of DNA 

sequence changes.  Environmental exposures such as smoking and sunlight 

exposure have been demonstrated to modify epigenetic mechanisms, providing a 

plausible link between environmental factors and disease (49, 201).  One such 

epigenetic mechanism is DNA methylation, which is the addition of a methyl group to 

CpG dinucleotides.  We, and others, have used genome-wide DNA methylation 

technologies to assess differentially methylated regions (DMRs) of CD4+ and CD8+ 

T-cells in RRMS patients compared to healthy controls (94, 98, 99, 101).  We found a 

striking methylation signal located on chromosome 6p21 with a peak signal at HLA-

DRB1, in relapsing-remitting patients compared to healthy controls, that was only 
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present in CD4+ T-cells (98). There are no studies to date that provide a comparison 

between the methylation profiles of RRMS and SPMS patients. 

Furthermore, DNA methylation is capable of regulating other epigenetic mechanisms. 

In diseases other than MS, microRNA (miRNA) expression is affected by DNA 

methylation in miRNA promoter regions (113). Previously, we reported broad down-

regulation of miRNA in CD4+ T-cells (202) but the mechanism behind this remains 

unclear. DNA hypermethylation in promotor regions may be a contributing factor to 

this miRNA dysregulation. 

 

In this study, we performed a genome-wide DNA methylation study of CD4+ T-cells 

from RRMS, SPMS patients and healthy controls to (1) replicate our initial results in 

RRMS in a group of patients who were not on any immunomodulatory therapy, (2) 

determine if the methylation signal we found in CD4+ T-cells is unique to RRMS 

patients, or ubiquitous across all MS patients, and (3) determine if there are unique 

methylation changes specific to SPMS, and whether these may affect expression of 

miRNAs. Identification of epigenetic loci associated with the different stages of 

disease could provide potential targets for new therapies and help explain the 

transition from RRMS to SPMS. 

 

Patients and Methods 

Sample collection 

Whole blood was collected from 25 female RRMS patients and 27 age-matched 

female healthy donors, and 23 female SPMS patients and 19 age-matched female 

controls (Table 3.1).  All patients were diagnosed with MS according to the McDonald 

criteria (183).  SPMS patients were defined as those who demonstrated EDSS 

progression without evidence of relapse in the 24 months prior to collection (8).  

RRMS patients were treatment naïve (18 patients) or had not taken 

immunomodulatory or steroid treatment for a minimum of 3 months (9 patients). 

SPMS patients had not taken immunomodulatory or steroid treatment for a minimum 

of 6 months.  Healthy control samples were collected from volunteers off the Hunter 

Medical Research Institute Register. 
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Table 3.1: Characteristics of patients and controls 

 RRMS HC RRMS SPMS HC SPMS 

Total 27 25 19 23 

Age in yrs (mean ±SD) 38.2 ± 11.1 38.6 ± 12.7 57.6 ± 12.1 58.4 ± 9.4 

EDSS (mean ±SD) n/a 2.1 ± 1.5 n/a 6.6 ± 1.3 

Disease duration in yrs 

(mean ±SD) 

n/a 7.6 ± 11.4 n/a 25 ± 11.0 

EDSS = Expanded Disability Status Score 

 

Ethics statement 

The Hunter New England Health Research Ethics Committee and the University of 

Newcastle Ethics committee approved this study (05/04/13.09 and H-505-0607 

respectively), and methods were carried out in accordance with institutional 

guidelines on human subject experiments. Written and informed consent was 

obtained from all patient and control subjects. 

 

Blood sample processing and DNA methylation arrays 

PBMCs were isolated from whole blood by density gradient centrifugation using 

Lymphoprep (Axis-Shield PoC AS, Norway) following standard laboratory 

procedures.  Total CD4+ T-cells were extracted from the PBMC population using 

EasySep negative magnetic separation according to the manufacturers’ instructions 

(StemCell Technologies, Canada).  After isolation, cell purity was assessed by flow 

cytometry.  Cells were stained with a FITC-conjugated CD4 antibody (60016F1 

StemCell Technologies) and collected on a BD FACSCanto II flow cytometer, then 

analysed using FACSDiva software (BD Biosciences).  All samples met the minimum 

purity cut-off of 90%. DNA was extracted with the Qiagen microDNA extraction kit 

(Qiagen, USA) and bisulfite converted using the MethylEasy Xceed kit according to 

the manufacturers’ instructions.  Converted DNA was then applied to the Illumina 

Infinium Human450K Beadchip arrays (service provided by Diamantina, 

Queensland).  
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Data analysis  

Data was analysed as previously described.  An in-house data analysis pipeline that 

used a combination of R/Bioconductor and custom scripts was designed.  Illumina 

450k raw intensity data (idat files) were parsed into the Bioconductor MINFI package 

(203).  Methylation data was background-corrected and control-normalised according 

to MINFI routines (204).  Data was cleaned by removing (failed) CpG probes for 

which the intensity of both the methylated and unmethylated probes was <1000 units 

across all samples.  A threshold of 1000 units was selected based on the profile of 

the available negative control probes.  Y chromosome probes were filtered out.  All 

probe sequences were mapped to the human genome (buildHg19) using BOWTIE 

(205) to identify potential hybridisation anomalies.  In total 33457 CpG probes were 

identified to align to the human genome multiple times and were filtered out of 

subsequent analysis. 

Measures of methylation level (β values) were produced for each probe and ranged 

from 0 [completely unmethylated] to 1 [completely methylated].  Data was corrected 

for HLA-DRB1 genotype, and as differential methylation has been seen in CD4+ T-

cells and not in CD8 or CD19 (unpublished data), it can be said that HLA is not 

influencing results. Likewise, differences in RRMS vs. SPMS are not due to HLA 

genotype as the same distribution is seen in both groups. To identify DMRs 

associated with MS subtypes in this female cohort a penalised ridge-regression 

mixed with lasso in an elastic-net framework was used as implemented via the R 

package glmnet (206). Briefly, glmnet fits a generalized linear model via penalized 

maximum likelihood. The regularization path is computed for the lasso or elastic-net 

penalty at a grid of values for the regularization parameter lambda λ. The elastic-net 

penalty is controlled by α, and bridges the gap between lasso (α=1, the default) and 

ridge α=0. The tuning parameter (α=1) controls the overall strength of the penalty. 

The ridge penalty shrinks the coefficients of correlated predictors towards each other 

while the lasso tends to pick one of them and discard the others. The elastic-net 

penalty mixes these two; if predictors are correlated in groups, an α=0 tends to select 

the groups in or out together. In our testing, cross-validation suggested that a λ of 

425 was appropriate, so this was used to fit the final model for identification of DMRs.  

In order to 'rank' the sites we defined the absolute range for each CpG site, that is 
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the absolute value of the largest observed beta minus the smallest observed beta for 

a given CpG site. 

 

Statistical analyses 

Given the relatively modest sample size, this study was underpowered to detect 

significant differentially methylated positions (DMP) at the methylome-wide level and 

thus we used a series of prioritisation steps to identify the most robust loci. 

Specifically, a DMP was defined as containing CpGs i) that yielded a p<0.05 ie. 

nominally associated with MS and ii) that yielded a ∆meth of ±10% ie. a relatively 

large differential methylation. Subsequently, a DMR was defined as a DMP iii) that 

had ≥2 adjacent CpGs within 1000 bp physical distance and iv) whereby adjacent 

CpGs yielded a ∆meth in the same direction ie. all 3 CpGs in the DMR were 

consistently hypo- or hyper- methylated. 

 

Results 

We recruited 25 RRMS patients and 27 age-matched healthy donors, and 23 female 

SPMS patients and 19 age-matched female controls. Clinical characteristics are 

shown in Table 3.1.  

 

Methylation profiles in RRMS  

The methylation profiles of RRMS patient CD4+ T-cells were analysed using Illumina 

Infinium Human450K Beadchip arrays, and compared against controls. CD4+ T-cells 

from RRMS patients have 275 significantly deregulated CpGs across 153 genes and 

80 locations with no gene association compared to age-matched controls. Of the 275 

CpGs, 49% (n=134) were hypermethylated and 51% (n=141) were hypomethylated 

(Figure 3.1). Table 3.2 shows the top 10% (27 total) of CpGs which are differentially 

methylated, (for full list see Appendix 3, table A3.1).   Within the 275 sites, 14% are 

located within the MHC region.  Nine of these CpG sites that were identified in our 

previous work and five of these are located in the HLA-DRB1 gene (98). The percent 

change at the HLA-DRB1 locations is slightly lower for each CpG site in this study 

than our previous study; however, they all are dysregulated in the same direction 
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(primary hypomethylation).  In addition to the previously identified sites, we also 

identified 3 new CpGs within the HLA-DRB1 cluster. All except one are located within 

the same 400bp region. We also observed hypermethylated regions at HLA-DRB5 

and HLA-DQB1 that were identified in our previous study (table A3.1) (98).  At the 

HLA-DRB5 region we identified one previously identified probe plus an additional 2 

sites. We did not see any change in methylation at the CpG sites in HLA-DRB6 

previously identified, but did find two new hypermethylated sites (Table 3.2 and Table 

A3.1).  

In addition to the cluster of HLA associated CpGs, there was another cluster within 

the MHC locus at RNF39 (Ring Finger Protein 39). We observed 11 hypermethylated 

CpGs in the top-ranked differentially methylated probes, which map to RNF39 and 

are tightly clustered within a 312bp region. This region spans the boundary between 

intron 3 and exon 4, and spreads into exon 4.  Also within the MHC region, there is a 

smaller cluster of 3 CpGs within a 45bp span at the transcription start site (TSS) of 

HCG4P6 (table A3.2). 

To identify additional regions of potential interest that were not within the MHC locus, 

we considered DMRs as regions where genes had 2 or more differentially methylated 

CpG sites that were less than 500bp apart. Using this criterion, we identified 3 

additional DMRs (table A3.3).  C21orf56 has 4 hypomethylated CpG sites within 

153bp, ERICH1 has 4 CpGs in a 122bp region, and PM20D1 has 6 CpGs in 163bp 

(table A3.3).  One of the probes within C21orf56 was identified in our previous cohort; 

however, the other two DMRs are unique to this study. 

None of the other major MS genes outside the HLA identified in the GWAS by the 

IMSGC (80) (i.e. CD58, THADA, EOMES, MLANA, IL2RA, STAT3) revealed any 

significantly CpG site changes as judged by the assay used for this study. 
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Figure 3.1: A genome-wide differential methylation plot of RRMS CD4+ T-cells. Data 

points outside the circle (red) represent increased methylation in RRMS patients 

compared to healthy controls (i.e. Δmeth), whereas Data points inside the circle (blue) 

represent decreased methylation in the RRMS group. 
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Table 3.2: Top 10% of differentially methylated CpGs in RRMS patient CD4+ T-cells. 

Probe ID Chr Position Gene Median  
(case) 

Median  
(control) 

Δmeth Adj p  
value 

p FDR Feature 

cg23403836 7 1616229 KIAA1908 0.750865 0.435553 0.315312 1.60E-05 0.00284 Body 

cg20536971 13 100989375 PCCA 0.639244 0.345777 0.293467 0.00178 0.01576 Body 

cg22071943 5 1225434 SLC6A18 0.368136 0.643653 -0.27552 0.002769 0.01755 TSS200 

cg15602423 6 32552095 HLA-DRB1 0.387082 0.658822 -0.27174 0.00434 0.01844 Body 

cg03398919 2 173118470 

 

0.474625 0.73943 -0.26481 0.004671 0.01844 

 cg07844442 10 129144269 DOCK1 0.465688 0.728887 -0.2632 0.013719 0.02760 Body 

cg08822897 11 64258103 

 

0.284157 0.533063 -0.24891 0.000367 0.01349 

 cg20374173 10 14227415 FRMD4A 0.339618 0.587672 -0.24805 0.001926 0.01576 Body 

cg08912652 11 130779479 SNX19 0.851534 0.6036 0.247934 0.003191 0.01755 Body 

cg10415021 11 110890228 

 

0.486528 0.731505 -0.24498 0.00319 0.01755 

 
cg05248234 17 79495519 FSCN2 0.261872 0.492531 -0.23066 0.015893 0.02909 

1stExon; 
5'UTR 

cg16706502 14 31927974 C14orf126 0.597671 0.367749 0.229923 0.008531 0.02385 TSS1500 

cg22802014 1 31732891 SNRNP40 0.675691 0.902554 -0.22686 0.000434 0.01349 3'UTR 

cg19774683 6 32522400 HLA-DRB6 0.576704 0.355419 0.221285 0.039277 0.04526 Body 

cg06052372 16 83967808 

 

0.550688 0.766873 -0.21619 0.012049 0.02733 

 cg16999994 11 1001560 AP2A2 0.453497 0.238958 0.214539 0.015443 0.02909 Body 

cg13232075 1 204556835 

 

0.42867 0.215897 0.212773 0.016589 0.02925 

 cg08136432 16 88902276 GALNS 0.645258 0.857102 -0.21184 0.015855 0.02909 Body 

cg03706056 21 37437565 SETD4 0.531861 0.32023 0.211631 0.014348 0.02808 TSS1500 

cg07909498 4 79627477 

 

0.486084 0.280086 0.205998 0.001949 0.01576 

 cg13423887 6 32632694 HLA-DQB1 0.294241 0.49987 -0.20563 0.004161 0.01844 Body 

cg01341801 6 32489203 HLA-DRB5 0.454757 0.249419 0.205338 0.040802 0.04535 Body 

cg14645244 6 32552205 HLA-DRB1 0.317864 0.521037 -0.20317 0.017405 0.02991 Body 

cg23128510 2 175922785 

 

0.860042 0.657146 0.202896 0.001749 0.01576 

 cg02100397 19 646890 

 

0.446869 0.648013 -0.20114 0.009409 0.02385 

 cg05875700 8 638208 ERICH1 0.120484 0.319176 -0.19869 0.004548 0.01844 Body 

cg18662228 2 236867804 AGAP1 0.422887 0.621416 -0.19853 0.035895 0.04330 Body 

Bold font indicates common probes between this study and our previous work (98). 

 

Methylation profiles in SPMS patients 

The methylation profiles of SPMS patient CD4+ T-cells were analysed using Illumina 

Infinium Human450K Beadchip arrays, and compared against controls. CD4+ T-cells 

from SPMS patients had 243 significantly deregulated CpGs spanning 145 genes, 

and 77 probes that map to locations without gene association (Figure 3.2). Of the 

243 CpGs, 75% (183) were hypermethylated and 25% (60) were hypomethylated.  
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Table 3.3 shows the top 10% of differentially methylation sites, the full list of 

differentially methylated sites that met a significance threshold of p<0.05 is shown in 

Appendix 3, table A3.4.  Surprisingly, none of the HLA regions identified in RRMS 

patients were also identified in SPMS patients. However, there were 2 single CpG 

sites within the top ranked probes that map to HLA genes – a unique site at HLA-

DRB1 (cg15820961), and one at HLA-DQA1 (cg24969496). There were no probes 

located within any of the non-MHC variants identified in the GWAS studies by the 

IMSGC (80). 

When filtered for DMRs that contained at least 2 probes within 500bp of each other, 

there were 7 DMRs (Table A3.5). Intriguingly, the largest DMR maps to the MHC 

locus at RNF39. At RNF39 in SPMS patients, we find 8 CpGs within a 72bp span, 7 

of which are shared sites between SPMS and RRMS patients.  However, all of these 

sites are hypomethylated, as opposed to the hypermethylation seen in the RRMS 

cohort.  We also find a smaller DMR at the transcriptional start site of DUSP22 that 

contains 3 probes within a 420bp region.  There are 5 additional small DMRs outside 

the MHC locus at POU6F2, PARD6G, SLC17A9 and APOL2. Similar to RRMS 

patients, none of the other major MS genes outside the MHC identified in the GWAS 

by the IMSGC (80) revealed any significantly CpG site changes as judged by the 

assay used for this study. 

As DNA methylation can affect the expression of miRNAs, as well as mRNAs, 

differentially methylated CpGs were cross-examined for their potential effect on 

miRNA TSS. Using miRStart (207), a database of miRNA transcriptional start sites, 

the location of differentially methylated CpGs in SPMS CD4+ T-cells (tables 3.2 and 

A3.4) were cross compared with known miRNA TSS. There was no overlap in 

genomic location of CpGs identified in table 3.3 and miRNA TSS. 
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Figure 3.2: A genome-wide differential methylation plot of SPMS CD4+ T-cells. Data 

points outside the circle (red) represent increased methylation in SPMS patients 

compared to healthy controls (i.e. Δmeth), whereas data points inside the circle (blue) 

represent decreased methylation in the RRMS group. 

	

  

1

2

3

4
5

6

7

8
910

11

12

13

14
15

16
17

18
19

20
21

22
X



  

 70 

Table 3.3: Top 10% of differentially methylated CpGs in SPMS patient CD4+ T-cells. 

Probe ID Chr Position Gene 
Median 
(case) 

Median 
(control
) Δmeth 

Adj P 
value P FDR Feature 

cg17666981 6 28878192 TRIM27 0.91827 0.80185 0.116422 0.00013 0.01258 Body 

cg04913265 11 133939627 JAM3 0.64597 0.51509 0.130878 0.00015 0.01258 Body 

cg21901928 7 55139847 EGFR 0.80165 0.66480 0.136848 0.00016 0.01258 Body 

cg04579183 15 88119834 
NCRNA0
0052 0.81117 0.46961 0.341567 0.00020 0.01258 TSS1500 

cg11553311 5 66541588 

 

0.55113 0.38735 0.163781 0.00041 0.01579 

 cg06182923 1 33985406 CSMD2 0.72875 0.61344 0.115305 0.00051 0.01579 Body 

cg16706502 14 31927974 
C14orf12
6 0.48565 0.10314 0.382514 0.00063 0.01579 TSS1500 

cg04750100 2 136595281 LCT 0.34751 0.44905 -0.10153 0.00066 0.01579 TSS1500 

cg10543947 22 36635882 APOL2 0.07416 0.20949 -0.13532 0.00068 0.01579 
TSS200; 
1stExon; 
5'UTR 

cg16121206 22 36636055 APOL2 0.39490 0.51881 -0.12399 0.00074 0.01579 
TSS200; 
TSS1500 

cg20802616 1 211590292 C1orf97 0.53618 0.42629 0.10989 0.00081 0.01579 Body 

cg05792312 11 61781116 

 

0.62427 0.30122 0.323044 0.00082 0.01579 

 cg14170201 7 155191709 

 

0.89102 0.65896 0.23206 0.00084 0.01579 

 cg07733481 3 122694286 SEMA5B 0.09248 0.20363 -0.11114 0.00091 0.01579 5'UTR 

cg25377865 4 72669944 

 

0.74934 0.64726 0.102076 0.00107 0.01711 

 cg24867279 6 28853021 

 

0.55999 0.44089 0.119097 0.00119 0.01711 

 cg23596425 2 1494263 TPO 0.84194 0.71555 0.126387 0.00123 0.01711 Body 

cg24305906 2 241352106 

 

0.85492 0.71616 0.138752 0.00126 0.01711 

 cg08610773 2 184896169 

 

0.88075 0.77837 0.102381 0.00149 0.01818 

 cg04245305 3 195940754 

 

0.95732 0.7168 0.240529 0.00161 0.01818 

 cg01406776 4 8386748 ACOX3 0.86822 0.65601 0.212212 0.00163 0.01818 Body 

cg09756125 7 158250978 PTPRN2 0.51451 0.74159 -0.22708 0.00171 0.01818 Body 

cg07093060 3 174092757 

 

0.47112 0.68013 -0.20901 0.00172 0.01818 

  

Comparison between MS subtypes 

To determine which CpGs sites were common to MS patients versus those which are 

unique to each of the MS subtypes, we did a pairwise comparison of the full list of 

deregulated probes (275 RRMS and 243 SPMS CpG probes).  Surprisingly, there are 

only 16 probes that are shared between the two patient subgroups, only 4 of which 

show change in the same direction (Table A3.4). Interestingly, 7 of these are the 

RNF39 CpG sites; however, they are dysregulated in opposite directions.   
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Discussion 

Our study is the first to compare the genome-wide methylation levels in CD4+ T-cells 

of RRMS and SPMS patients.  Our most striking result is the lack of shared CpGs 

between RRMS and SPMS patients.  When comparing the two patient subgroups, 

we found RRMS patients show equal hypo- and hyper methylation (51% and 49% 

respectively) compared to a tendency towards hypermethylation (75%) in SPMS 

patients.  This translated to only 16 overlapping CpGs between RRMS and SPMS 

patients, suggesting that RRMS and SPMS patients have unique CD4+ T-cell 

methylation profiles.  Surprisingly, although we confirmed 5 of the CpGs in HLA-

DRB1, from our previous study (98) in RRMS patients, we saw only one CpG at this 

site in SPMS patients. This was not one of the sites identified in either of our studies.  

In addition, we have identified a new DMR in the MS associated gene, RNF39 in both 

RRMS and SPMS patients.  Interestingly, while this DMR is hypermethylated in 

RRMS patients, it is hypomethylated in SPMS patients.  Taken together, our data 

suggest that DNA methylation is dynamic and may change with disease course. 

One consideration for the lack of shared CpGs between RRMS and SPMS could be 

confounding effects due to treatment over time. The effects of immunomodulatory 

therapy on methylation in MS patients is unknown, although there is some evidence 

that immunomodulatory therapy used for other diseases, such as multiple myeloma, 

can alter the expression of DNA methyltransferases (208). Given that the majority of 

SPMS patients would have been given treatment at some stage during their disease, 

it is possible this could cause lasting methylation changes.  Future studies would 

benefit from following patients longitudinally during various treatments to determine 

the effect over time on epigenetic profiles.  DNA methylation changes with 

chronological age (91) although we find it unlikely that this is a confounding factor in 

our results as each cohort was compared to a separate age- and gender-matched 

cohort to correct for effects of aging. It is therefore possible that hypermethylation is a 

hallmark of disease progression; however, larger scales studies will be required to 

confirm this. At present, the underlying cause of this hypermethylation in SPMS is 

unknown. In CD4+ T-cells of systemic lupus erythematosus (SLE) patients, the up-

regulation of miR-29b results in under-expression of its target genes (DNMT3a and 

DNMT3b), causing global hypomethylation in these cells (193). As miR-29b was one 

of our previously reported down-regulated miRNAs in SPMS CD4+ T-cells (202), it 
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will be worth analysing expression of these DNA methyltransferase genes to 

determine if the hypermethylation observed here is a consequence of miRNA 

expression changes. There were no differentially methylated CpGs in miRNA 

promoters, indicating that DNA methylation does not affect miRNA expression in 

CD4+ T-cells; further analysis will indicate whether miRNA expression instead affects 

DNA methylation.  

In our previous study, we found a tight cluster of 8 hypomethylated CpGs in HLA-

DRB1 (98).  In the current study, we were able to confirm 5 of these CpG sites, plus 

an additional 3 CpG sites clustered within the same 358bp region.  These sites were 

only present in RRMS, although a single site in a distant region of HLA-DRB1 was 

identified in SPMS patients.  Although there is a lower effect size in the new study, 

the dysregulation is occurring in the same direction (primarily hypomethylation). This 

is a region heavily populated by SNPs, though the absence of this signal in the 

SPMS cohort provides support for its independence from the HLA-DRB1*1501 

genotype. The frequency of the HLA-DRB1*1501 allele does not change between the 

RRMS and SPMS cohorts (data not shown), but the methylation signal at this 

location does. Additionally, we assessed the global methylation levels in CD8+ T-

cells, in the cohort from the Graves et al. (9) study and found no change in HLA-

DRB1 methylation signal in this cell type. This is further support for the SNP-

independent nature of this signal. 

This is the first evidence of differential methylation in RNF39 being associated with 

MS, and the hypermethylation of this locus in early stage of disease may represent a 

major effect epigenetics locus for MS.  However, its use as a biomarker would be 

impractical due to the time-consuming nature of analysing a single DMR in an 

isolated cell subtype. The biological relevance of this locus can only be speculated at 

this point; however, it resides within the gene body and spans an intron/exon 

boundary so it is plausible that hypermethylation is involved in aberrant expression of 

alternately spliced transcripts or a regulatory element for nearby genes. Interestingly, 

one of the sites identified in the RRMS cohort (cg10568066) was also identified in a 

recent study which investigated the role methylation of CpG sites and ageing (209).  

RNF39 is a poorly characterized gene. In rats, RNF39 encodes a protein that plays a 

role in the early phase of synaptic plasticity (210). In humans, SNP rs9393989 has 

been previously associated with MS (211).  However, this SNP is located greater than 
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30kb upstream of the DMR in intron 3 so it is unlikely that it is contributing to the 

differential methylation signal.   

RNF39 is also associated with other autoimmune conditions, such as Bechet’s 

disease, a chronic relapsing inflammatory disease (212). This study found a SNP 

near RNF39 associated with the disease, although the functional consequences of 

this are not yet unknown.  In addition, hypermethylation of 11 CpGs sites within 

RNF39 was seen in the naïve CD4+ T-cells of patients with SLE who had a history of 

discoid rash (213). Interestingly, 8 of these sites are the same sites we have 

identified in this study (cg10568066, cg12633154, cg13401893, cg10930308, 

cg03343571, cg13185413, cg09279736, cg00947782) and have similar ΔMETH values 

to our RRMS cohort (meanRRMS = 0.13; meanSLE = 0.16) (213). Future studies on 

RNF39 in MS should investigate differential gene expression within MS disease 

stages and then potentially explore the function of this gene within MS 

pathophysiology. 

It is also interesting to note that although there is an overrepresentation of probes 

located within the MHC region in the top ranked probes in RRMS patients, this is not 

the case in SPMS patients. This may be reflective of the diminishing role of systemic 

inflammation in the progressive stages of disease (32). The largest DMR found in 

SPMS patients is also RNF39, but in SPMS patients this locus is hypomethylated 

rather than hypermethylated.  

This is the first study to compare genome-wide differences in the methylation profiles 

of CD4+ T-cells of RRMS and SPMS patients. Our findings confirm our previous 

results at the MS risk locus HLA-DRB1 but suggest that changes in methylation at 

this locus are specific to the early stages of disease. We also demonstrated 

dysregulation of methylation in a new MHC locus, RNF39. In RRMS patients we find 

this to be hypermethylated, but hypomethylated in SPMS patients. Taken together 

our results underline the fact that methylation is a dynamic process and highlight the 

importance of the MHC locus in MS.  
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CHAPTER FOUR – microRNA biogenesis, miR-29b, and DNA 

methylation 

 

Interplay of microRNA biogenesis, miR-29b and DNA methylation in MS CD4+ T-cells 

 

This chapter addresses my third and fourth research questions – Are microRNA 

biogenesis molecules differentially expressed in SPMS CD4+ T-cells, and does this 

have an effect on microRNA expression? And, is DNA methylation affected by 

changes in microRNA expression, specifically miRNA-29b?  

 

Abstract 

Background: The production of microRNAs (miRNA) involves processing by a 

number of molecules including the RNase III enzymes, Drosha and Dicer, plus 

Drosha’s regulatory subunit, DGCR8. In secondary progressive multiple sclerosis 

(SPMS), miRNAs are broadly down-regulated in CD4+ T-cells. This study aims to 

determine whether changes in expression of miRNA biogenesis molecules could be 

contributing to the wide scale down-regulation of miRNAs in SPMS, whether this is 

the same in relapsing-remitting MS (RRMS), and if this may result in DNA 

hypermethylation by miRNA-mediated differential expression of DNA 

methyltransferases. 

Methods: Total RNA was extracted from 22 RRMS and 21 SPMS patients and 22 and 

21 healthy controls (HC) age and gender-matched to the RRMS and SPMS cohorts 

respectively. RT-qPCR was used to measure expression of DROSHA, DGCR8, 

DICER and Drosha’s transcription factor, C-MYC. 

Results: DROSHA and DGCR8 were down-regulated in both RRMS and SPMS 

CD4+ T-cells. Down-regulation was greater in the SPMS cohort. There were no 

changes in expression of DICER or C-MYC.  

Conclusions: The change in expression of miRNA biogenesis molecules correlates 

with the broad down-regulation of miRNAs in SPMS CD4+ T-cells including miR-29b. 
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This may facilitate increased expression of DNMT3b, resulting in previously reported 

hypermethylation in these cells. The impact in RRMS remains unclear. 

 

Introduction 

Multiple Sclerosis (MS) is a neuroinflammatory disease of the central nervous system 

(CNS) characterized by lymphocyte-mediated attack causing demyelination and 

axonal degeneration.  The underlying cause of MS remains unclear, but risk of 

developing MS is influenced by a combination of genetic and environmental factors.  

Epigenetic mechanisms can impact gene expression without changes to the DNA 

sequences. Importantly, these differences can be modified by environmental factors.  

Epigenetics is emerging as an important concept in MS susceptibility and disease 

progression.   

One epigenetic mechanism of regulation is microRNA (miRNA) mediated 

transcriptional silencing. miRNA are small non-coding RNAs that regulate gene 

expression by binding to the 3’untranslated region of mRNAs. Canonically (Figure 

1.3), their production pathway commences in the cell nucleus, where miRNA genes 

are transcribed by RNA polymerase II, producing a primary miRNA (pri-miRNA) 

structure (107). The pri-miRNA is cleaved by Drosha, bound by its regulatory subunit 

DGCR8 (DiGeorge critical region 8), to stem-loop structure (pre-miRNA), 

approximately 60-70nt long (214). A 2nt overhang is produced by Drosha’s RNase III 

activity and marks the pre-miRNA for export to the cytoplasm performed by Exportin 

5 associated with Ran cofactor coupled to GTP. Once in the cytoplasm, Exportin 5 

releases the pre-miRNA when GTP is replaced by GDP. Dicer (another RNase) then 

cleaves the pre-miRNA to produce a miRNA duplex approximately 22nt (108). The 

duplex then associates with Argonaute (Ago) proteins where it is unwound; one strain 

is retained as the mature miRNA and forms an RNA-induced silencing complex 

(RISC) and is then capable of mRNA regulation. 

miRNA expression patterns in MS have been the focus of numerous studies in recent 

years (182) but few studies have focused on the molecules responsible for miRNA 

biogenesis: Drosha, DGCR8, and Dicer. Last year, Jafari et al. (114) found that these 

three molecules were up-regulated in RRMS patients’ peripheral blood mononuclear 

cells compared to healthy controls. Furthermore, levels of DICER inversely correlate 
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with disability (expanded disability status scale, EDSS), and expression increases 

with treatment with interferon β, demonstrating a positive effect (lower EDSS) from 

treatment (115). 

Previously, we have shown that 97% of dysregulated miRNA in SPMS CD4+ T-cells 

are down-regulated (202). In that study, miR-29b was significantly down-regulated in 

the SPMS samples. This miRNA targets the mRNAs of DNA methyltransferases; 

DNMT3a and DNMT3b directly, and DNMT1 via SP1 (215-217). DNA 

methyltransferases catalyse the addition of a methylation group to CpG 

dinucleotides. We, and others, have previously assessed the DNA methylation levels 

in CD4+ and CD8+ T-cells and CD19+ B-cells in relapsing-remitting MS patients 

(RRMS) and found the most significant changes in the methylation profiles of CD4+ 

T-cells (94, 98, 99, 101) (Graves et al, unpublished).  In a follow-up study, we 

compared methylation in the CD4+ T-cells of RRMS and SPMS patients and found 

distinct differences between the two disease stages (Chapter Three).  Most notably, 

we notice slight overall hypomethylation in RRMS patients (51%) but overall 

hypermethylation in SPMS patients (75%). 

This study aims to determine whether down-regulation of miRNA biogenesis 

molecules in CD4+ T-cells is the underlying cause of miRNA down-regulation in 

SPMS, and compare this to RRMS. We also sought to determine if levels of DNA 

methyltransferase enzymes correlated with miRNA-29b levels, and if this may be the 

underlying cause of hypermethylation observed in Chapter Three.  

Dysregulation of miRNA levels plays a key role in disease by causing altered cell 

growth and activity, apoptosis and irregular tissue differentiation (detailed review 

(218)). In MS, it is not clear whether miRNA dysregulation contributes to disease 

onset/progression or if it is a reflection of the affected cell’s response to disease; it is 

likely both. Identifying the underlying cause of miRNA dysregulation will further our 

understanding of MS. 
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Patients and methods 

Sample collection 

Whole blood was collected at the John Hunter Hospital from 22 RRMS and 21 SPMS 

female patients, plus 22 healthy controls (HC) age and gender-matched to the RRMS 

cohort, and 21 HC matched to the SPMS cohort (Table 4.1). All patients were 

diagnosed with MS according to the McDonald criteria (183), and SPMS when they 

had demonstrated EDSS progression without evidence of relapse. The RRMS cohort 

was treatment naïve and the SPMS cohort was free of MS specific treatments for a 

minimum period of 6 months prior to collection. We also sought to determine if levels 

of DNA methyltransferase enzymes correlated with miRNA-29b levels. 

 

Table 4.1: Details of RRMS and SPMS patients and their matched healthy control 

cohorts. 

 RRMS HC (RRMS 
matched) 

SPMS HC (SPMS 
matched 

Number 22 22 21 21 

Age in yrs (mean ±SD) 38.8 ±10.7 38.2 ±10.5 59.6 ±10.6 58.8 ±10.1 

EDSS (mean ±SD) 2.4 ±1.4 NA 6.8 ±1.0 NA 

Disease duration in yrs (mean 

±SD) 

5.2 ±6.1 NA 27.8 ±14.7 NA 

Progression duration  

(mean ±SD) 

NA NA 9.4 ±4.6 NA 

EDSS = expanded disability status scale, SD = standard deviation, NA = not 

applicable. 

 

Ethics statement 

The Hunter New England Health Research Ethics Committee, University of 

Newcastle Ethics committee and Bond University Human Research Ethics 

Committee approved this study (05/04/13.09, H-505-0607 and RO1382 respectively), 
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and methods were carried out in accordance with institutional guidelines on human 

subject experiments. Written and informed consent was obtained from all patient and 

control subjects. 

 

Blood sample processing  

PBMCs were isolated from 45mL of heparinised whole blood by density gradient 

centrifugation on lymphoprep (Axis-Shield PoC AS, Norway). CD4+ T-cells were 

enriched from the PBMCs using EasySep magnetic negative selection according to 

manufacturer’s protocol (StemCell Technologies, Canada). The purity of the CD4+ 

selection was assessed by flow cytometry using a FITC conjugated anti-CD4 

antibody (anti-human CD4 antibody, clone OTK4, FITC, catalogue# 60016FI, 

StemCell Technologies, Canada) on a BD FACSCanto II flow cytometer, then 

analysed using FACSDiva software (BD Biosciences, USA) at the Analytical 

Biomolecular Research Facility of the University of Newcastle. All samples met a 

minimum purity threshold of >90%.  

 

RNA isolation 

Total RNA was isolated from the CD4+ T-cells using the miRNeasy Mini kit (Qiagen, 

USA) following the manufacturer’s instructions. The quality of the RNA was assessed 

using the RNA 6000 Nano kit on a 2100 Bioanalyzer (Agilent Technologies, USA); all 

samples had a minimum RNA integrity number (RIN) greater than 8. Purity was 

measured on an Epoch spectrophotometer (BioTek, USA) and concentration was 

measured using the high sensitivity RNA kit on Qubit 2.0 Fluorometer (Life 

Technologies, Thermo Fisher Scientific, USA).  

 

RT-qPCR 

500ng of total RNA was reverse transcribed using high-capacity cDNA reverse 

transcription kits (Applied Biosystems, Thermo Fisher Scientific, USA). Initially qPCR 

was performed using previously published primer sets (114) (Table 4.2) and SYBR 

green (KAPA SYBR FAST qPCR kit, KAPA Biosystems, USA). However, the DGCR8 

primer set produced more than one product therefore an exon-spanning TaqMan 
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probe (ref: Hs00256062) was used intead. Exon-spanning TaqMan probes for C-

MYC (ref: Hs00153408) DNMT1 (ref: Hs0094875), DNMT3a (ref: Hs01027166), 

DNMT3b (ref: Hs00171876) and SP1 (ref: Hs00916521) were also used. Expression 

of these genes was determined relative to the housekeeping genes GAPDH (ref: 

4326317E) and β-actin (ref: 4326215E) using a ViiA 7 Real-Time PCR system 

(Applied Biosystems, Thermo Fisher Scientific, USA).  

 

miR-29b RT-qPCR 

10ng total RNA was reverse transcribed using the TaqMan MicroRNA Reverse 

Transcription Kit (Applied Biosystems, Thermo Fisher Scientific, USA). A mature 

miRNA TaqMan assay (Applied Biosystems, Thermo Fisher Scientific, USA) was 

used to determine expression of miR-29b (assay ID: 000413) with RNU44 (ref: 

001094) as an endogenous control.  

 

Table 4.2: Primers used by Jafari et al. (2015) for qPCR. The DROSHA and DICER 

primers were used in this study; DGCR8 was excluded as it had multiple products. 

Target Sequence Amplicon size (bp) 

DROSHA F 5’-CATGTCACAGAATGTCGTTCCA-3’ 115 

DROSHA R 5’-GGGTGAAGCAGCCTCAGATTT-3’ 115 

DICER F 5’-
TTAACCTTTTGGTGTTTGATGAGTGT-3’ 

94 

DICER R 5’-GGACATGATGGACAATTTTCACA-3’ 94 

DGCR8 F 5’-GCAAGATGCACCCACAAAGA-3’ 93 

DGCR8 R 5’-TTGAGGACACGCTGCATGTAC-3’ 93 
bp = base pairs, F = forward primer, R = reverse primer. 

 

Statistical analysis 

The two-sample Kolmogorov-Smirnov test (K-S test) was used to test whether 

differences in relative expression was statistically significant between the RRMS and 

SPMS groups and the respective control groups. 
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Results 

miRNA biogenesis machinery 

We recruited 22 RRMS patients and 22 age matched controls and 21 SPMS patients 

and 21 age matched controls. Due to the substantial age difference between the two 

patient groups (see table 4.1), we assessed each patient subgroup to a separate 

control cohort to control for age effects. To determine if down-regulation of miRNA 

biogenesis machinery could be the cause of overall down regulation of miRNA in MS 

patients seen in our previous study (202) we measured the levels of the miRNA 

processing machinery (DROSHA, DGCR8 and DICER).  We initially performed RT-

qPCR using previously published primers from Jafari et al 2015 and found that 

DROSHA was significantly down-regulated in RRMS and SPMS (figure 1 A-B) 

compared to HC (pRRMS=0.010 and pSPMS=0.018). There was no significant change in 

expression of either or DGCR8 or DICER in either patient group (Dicer: pRRMS=0.53; 

pSPMS=0.20) (data not shown and figure 4.1). However, upon assessment of the PCR 

products, we found that the primers designed for DGCR8 amplification resulted in 

two products 200 bp apart (data not shown).  To determine if this was confounding 

the results, we used Taqman probes which span exon boundaries to DGCR8.  Using 

this new primer/probe set, we found DGCR8 to be significantly down-regulated in 

both patient groups (pRRMS=0.028; pSPMS=0.028) (figure 4.1 E-F).  

 

miRNA-29b 

We have previously reported down-regulation of miR-29b in SPMS CD4+ T-cells 

(202). To confirm these results in this cohort, we used RT-qPCR to assess changes 

in miR-29b (Figure 4.2).  We find in this cohort that miR-29b is significantly 

downregulated in SPMS patients compared to controls (p=0.034), however, we do 

not observe any change in miR-29b expression in RRMS compared to controls 

(p=0.85).  
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Figure 4.1: Tukey boxplots of expression relative to GAPDH of DROSHA, DGCR8, 

and DICER in HC (blue) compared to RRMS (pink) (A,C,E), and HC (green) 

compared to SPMS (grey) (B,D,F). Whiskers represent data within 1.5 interquartile 

range (IQR) of the upper and lower quartile. Data points outside of the 1.5 IQR are 

represented by black dots.  ** p<0.01. 
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Figure 4.2: Tukey boxplot of miR-29b-3p expression relative to RNU44 in (A) HC 

(blue) and RRMS (pink), and (B) HC (green) and SPMS (grey).  Whiskers represent 

data within 1.5 IQR of the upper and lower quartile. Data points outside of the 1.5 

IQR are represented by black dots.  *p<0.05. 

 

DNA methyltransferase enzymes 

miR-29b has been shown to directly target DNMT3a and DNMT3b and indirectly 

target DNMT1 in acute myeloid leukaemia and lung cancer (215, 216).  The aberrant 

expression of miR-29b in these two cancers resulted in global changes in DNA 

methylation. To assess whether miR-29b could be responsible for the 75% 

hypomethylation we have previously seen in SPMS patients, but not RRMS, we 

investigated the relative expression levels of the three DNA methyltransferases 

DNMT1, DNMT3a and DNMT3b. 

As shown in Figure 4.3, DNMT1 is downregulated in RRMS patients compared to HC 

(p=0.028), but there is no change in SPMS patients (p=0.18). Previously published 

data demonstrated that DNMT1 is targeted indirectly by miR-29b through the 

transcription factor SP1 (216). Therefore, we investigated the levels of SP1 in both 

RRMS and SPMS patients. Consistent with the downregulation of DNMT1 in RRMS 

patients, we find SP1 to be significantly downregulated in RRMS patients compared 

to healthy controls (p=0.028).  Interestingly, we also find significant downregulation of 

SP1 in SPMS patients compared to healthy controls. 
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Figure 4.3: Tukey boxplot of expression relative to GAPDH of DNMT1 in (A) HC 

(blue) and RRMS (pink), and (B) HC (green) and SPMS (grey); and SP1 (C) HC 

(blue) and RRMS (pink), and (D) HC (green) and SPMS (grey). Whiskers represent 

data within 1.5 IQR of the upper and lower quartile. Data points outside of the 1.5 

IQR are represented by black dots.  *p<0.05, **p<0.01. 

 

To investigate the expression of DNMT3a and DNMT3b (figure 4.4), we used RT-

qPCR to assess levels of these transcripts. We find no change in DNMT3a in SPMS 

compared to their respective control groups (p=0.86) but a slight downregulation of 

DNMT3a in RRMS (p=0.03).  There was no change in relative expression of 

DNMT3b in RRMS patients (p=0.79) but a significant upregulation of DNMT3b in 

SPMS patients (p=0.0024). 
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Figure 4.4: Tukey boxplot of DNMT3a expression relative to GAPDH in (A) HC (blue) 

and RRMS (pink), and (B) HC (green) and SPMS (grey); and DNMT3b (C) HC (blue) 

and RRMS (pink), and (D) HC (green) and SPMS (grey). Whiskers represent data 

within 1.5 IQR of the upper and lower quartile. Data points outside of the 1.5 IQR are 

represented by black dots.  **p<0.01. 

 

Discussion 

In this study, we characterized the expression of the miRNA biogenesis machinery 

and DNA methyltransferases in MS patients and healthy controls.  Our data show 

that DROSHA and DGCR8 are significantly down regulated in both RRMS and 

SPMS patients compared to healthy controls, but DICER is not affected. This is 

consistent with our published data on SPMS patients, where we demonstrated an 

overall decrease in miRNA expression.  One of the most significantly down regulated 

miRNA in that study was miR-29b, which targets the DNA methyltransferases 

DNMT1, DNMT3a and DNMT3b.  Consistent with this, we were able to show a 

subsequent increase in DNMT3b expression in SPMS patients. This is the first study 
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to compare the levels of miRNA biogenesis machinery in different disease states of 

MS. 

A recent study by Jafari and colleagues evaluated the expression miRNA biogenesis 

machinery and found DROSHA, DICER and DGCR8 all to be upregulated in RRMS 

patients (114).  We initially used the primers from this study in our study, however, we 

found that the DGCR8 primers were sub-optimal; therefore, we chose to use TaqMan 

probes.  Additionally, Jafari et al. used RPL38 as a housekeeping gene, as opposed 

to our study, which used GAPDH or β-actin. RPL38 expression is decreased in some 

MS patients and is therefore an unreliable housekeeping gene (219). Finally, we 

used CD4+ T-cells in our study compared to PBMCs which were used in the Jafari 

study.  It is possible that the miRNA biogenesis machinery is significantly upregulated 

in one of the other cell types compared to CD4+ T-cells, which would mask the subtle 

differences we find in our study. In fact, a study of CD19+ B-cells in MS patients 

demonstrated that DICER transcript and protein levels are decreased in patients 

compared to controls (181). This correlated with increased expression of the co-

stimulatory molecules CD80 and CD86 (181). 

The initial stage in post-transcriptional processing, is pri-miRNA cleavage by Drosha, 

bound by its regulatory subunit DGCR8, (called the microprocessor complex) to the 

stem-loop structure (pre-miRNA) (214).  Consistent with this, we see decrease of 

both of these transcripts in both disease stages.  After export to the cytoplasm the 

RNase, Dicer, cleaves the pre-miRNA to produce the mature miRNA duplex 

approximately 22nt (108). We did not find any change in DICER in either disease 

stage, however, there are several factors that contribute to DICER expression (220), 

so it is likely regulated in a different manner than DROSHA and DGCR8. 

Based on our findings, we propose that in SPMS patients, decreased biogenesis 

molecules (specifically the microprocessor complex) results in a global decrease in 

miRNA, including miR-29b, resulting in increased DNMT3b, and overall 

hypermethylation in SPMS patients (Figure 4.5).  At this time, we can only speculate 

as to how this process starts, however, the transcription factor c-myc is known to 

modulate miRNA processing via regulation of Drosha (221). Additionally, C-MYC 

expression was affected in a squamous cell carcinoma cell line by vitamin D 

exposure (205), a known environmental risk factor of MS (52). We investigated C-

MYC in our patient groups, but found no significant changes in expression (Appendix 
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4).  It is possible that other undetermined factors, such as DNA methylation, may 

affect DROSHA and DGCR8. 

In RRMS patients, the results are less clear. While DROSHA and DGCR8 expression 

are both decreased in these patients, the levels of miR-29b are unchanged.  

DNMT3a and DNMT3b remain unchanged but levels of DNMT1 and its transcription 

factor, SP1, decrease. While this may explain the slight decrease in global 

methylation we have seen in RRMS patients, it suggests that the DNA 

methyltransferase enzymes are regulated by mechanisms other than or in additional 

to miRNA. 

This is the first study to investigate the levels of miRNA biogenesis machinery in the 

CD4+ T-cells of RRMS and SPMS patients. We propose a mechanism where the 

miRNA microprocessor complex (Drosha-DGCR8) is downregulated by an unknown 

mechanism. This potentially leads to a cascade of events, resulting in global 

hypermethylation in SPMS patients. Future studies should focus on elucidating the 

mechanism by which Drosha and DGCR8 are downregulated in progressive patients, 

and confirming differential expression at the protein level. 
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Figure 4.5: Schematic representation of miRNA biogenesis (specific to miR-29b) in 

(A) controls and (B) SPMS patients. 
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CHAPTER FIVE – microRNA expression profile of SPMS NAWM 

 

microRNA expression profile of SPMS normal appearing white matter 

 

This chapter addresses my fifth research question – is there differential microRNA 

expression in SPMS normal appearing white matter compared to controls, and how 

does this compare to microRNA expression patterns seen in CD4+ T-cells? 

 

Abstract 

Background: In MS, the normal appearing white matter (NAWM) is the site of 

pathology initiation. Previous studies have identified differences between NAWM in 

MS patients and control WM indicating NAWM is in an alerted, though 

immunosuppressed state. Previous studies have analysed miRNA expression in 

NAWM across MS disease subtypes; this is the first study to analyse miRNA 

expression in solely secondary progressive MS (SPMS) NAWM. 

Methods: Using NanoString nCounter technology, the expression of 800 miRNAs 

was analysed in formalin-fixed, paraffin-embedded (FFPE) brain tissue samples (10 

SPMS NAWM and 10 control white matter). Differential expression was confirmed 

using RT-qPCR with mature miRNA TaqMan probes in 13 SPMS and 10 control 

samples.  

Results: Three miRNAs were confirmed to be down-regulated in SPMS NAWM 

compared to controls, miR-29b-3p, miR-219-5p and miR-451a. miR-29b-3p has also 

been confirmed down-regulated in SPMS CD4+ T-cells. There is no other overlap in 

miRNA dysregulation between NAWM and peripheral CD4+ T-cells. 

Conclusions: These three miRNAs target genes in focal adhesion and adherens 

junction pathways, crucial to blood-brain barrier functioning. As well as playing a 

crucial role in oligodendrocyte maturation. Their dysregulation in NAWM likely 

contributes to priming the region for development of MS pathology.  
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Introduction 

The normal appearing white matter (NAWM) in MS is the site where pathology 

initiates prior to development of symptomatic lesions. Light microscopic analysis 

shows its morphology is no different to healthy brains. However, diffusion tensor 

imaging (43) and molecular analyses, including gene expression (222) and DNA 

methylation (100) studies, demonstrate that there are differences that likely 

contribute to future development of lesions. In particular, Melief et al. (41) found that 

microglia in the NAWM region of the MS brain are in an alerted though 

immunosuppressed state. 

The role of miRNAs in regulating gene expression makes them key molecules of 

interest in tissues associated with disease. The majority of studies on miRNA in the 

MS brain have focused on lesions, where differentially expressed miRNAs have been 

associated with phagocytosis promotion, Th17 differentiation, impaired neurosteroid 

synthesis and decreased memory performance (141, 143, 158, 162). Recently, a 

study on miRNA expression in periventricular NAWM was conducted (140), however 

the subtypes of MS from which the samples were derived are not disclosed.  

As in previous chapters, samples from SPMS donors have been used here. This 

allows comparison of miRNA expression profiles with those of CD4+ T-cells of 

patients with the same disease subtype. The brain tissue samples used in this study 

are from archived banks, and some have been stored for up to 12 years. mRNA and 

DNA are susceptible to significant degradation over such a period of time, and 

amplification of gene transcripts is highly heterogeneous amongst samples (223). 

However, miRNA integrity is remarkably robust over many years of storage (224) and 

is comparable with frozen tissue for sensitivity, with only minor reductions in 

amplification (223). As such, this study focuses on results of miRNA expression only, 

and will hypothesise on the effects on gene expression using target prediction and 

pathway analysis software. 

In this study, miRNA expression profiles of NAWM from SPMS patients are compared 

to controls. NanoString nCounter technology profiles the expression of 800 miRNAs 

using unique fluorescent-coded probes which can be counted in a sample using 

microscopy; thus removing the need to amplify the sample. Advantages of this 

methodology include highly accurate quantification of miRNA species and low total 
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RNA input (225); both essential features when working with valuable samples such 

as post-mortem FFPE brain tissue. The results of this investigation will reveal 

whether NAWM of SPMS patients differs in miRNA expression from normal control 

brain, and how this compares both to similar studies and CD4+ T-cells from the same 

MS subtype. 

 

Materials and Methods 

Samples 

Post-mortem FFPE brain tissue sections were obtained from the UK Multiple 

Sclerosis Tissue Bank (MS and control samples) and the Multiple Sclerosis Research 

Australia brain bank (MS samples only). Each section was pre-cut by the respective 

tissue banks to a thickness of 5µm. The majority of MS samples came from SPMS 

donors, and control samples from individuals who passed from non-inflammatory and 

non-neurodegenerative illnesses. Due to the limited availability of tissues, the sample 

characteristics (table 5.1) are quite varied between SPMS and control samples. 

Among the control samples, the gender ratio was 1:4 female to male, which is not 

representative of MS epidemiology (1). Furthermore, we received three primary 

progressive MS (PPMS) samples; these were included in the experiments, however 

all analysis presented here is from SPMS samples only. Any cases where 

significance was rescinded by addition of the PPMS samples is noted. 

 

Ethics Statement 

Prior to death, patients gave their consent for using their brain tissues for research 

purposes according to local ethical guidelines. MS was diagnosed according to the 

McDonald criteria (183). Cases were excluded if the post-mortem interval exceeded 

48 hours, and if gender and type of MS was unknown. Ethics approval was also 

obtained from Hunter New England Health (HNE 09/04/15/5.13), the University of 

Newcastle, Australia (UoN H-2009-0365), and Bond University (RO1382). 
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Table 5.1: Details of the SPMS and control brain tissue samples. 

 SPMS Controls 

 NanoString 
nCounter qPCR nCounter & qPCR 

Number 10 13 (9 same as 
nCounter) 

10 

Age in years 
(mean ±SD) 63.0 ±9.4 63.2 ±7.8 74.1 ±16.5 

Female 7 8 2 

PMI in hours 
(mean ±SD) 18.2 ±6.8 22.1 ±17.3 20.0 ±14.1 

Brain region PFC (n=3), TEMP 
(n=5), other (n=2) 

PFC (n=4), TEMP 
(n=5), other (n=4) 

PFC (n=6), TEMP 
(n=2), other (n=2) 

Abbreviations: PMI – post-mortem interval, SD – standard deviation, PFC – prefrontal 

cortex, TEMP – temporal lobe, other brain regions – parietal, superior frontal gyrus, 

Brodmann areas 9 and 11. 

 

Histology 

One section from each SPMS sample was stained with Luxol Fast Blue - Periodic 

Acid-Schiff (LFB-PAS). LFB is a myelin-specific stain, and PAS was used to identify 

myelin by-products. The protocol for LFB-PAS staining and the criteria for identifying 

pathological regions can be found in Appendix 5. In the LFB-PAS stained MS 

sections, 27 regions of NAWM, 74 chronic lesions, 58 remyelinated areas and 1 

active lesion were identified. Due to the constraints of RNA yield outlined below, 

sample acquisition was limited to NAWM regions (figure 5.1 A-B), specifically 

samples with clearly defined NAWM with an area >25mm2. 

 

Trouble-shooting tissue dissection 

Laser capture microdissection: miRNA extraction was attempted from areas of 

NAWM, chronic lesions and remyelinated areas. Due to the small size of these areas, 

laser capture microdissection (LCM) using a PALM MicroBeam (Carl Zeiss 

Microscopy) was utilised. LCM uses a navigated laser to dissect around an area of 
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tissue to be collected, and with a series of defocused ultraviolet (UV) laser bursts, 

catapults pieces of tissue into a microfuge tube cap containing 10µl of buffer. The 

surface tension of the buffer provides an adherent surface to collect the sample.  

LCM is very time consuming, 1 sample per day. Furthermore, as it is a UV laser, long 

exposure to the radiation may degrade the miRNA as it is captured. Samples 

collected using purely LCM continually produced low RNA yields (<50ng). 

Collection buffer: Two collection buffers were trialled with LCM to identify which 

captured the most material and was most compatible with miRNA extraction. Xylene 

(100%) and PKD buffer (Qiagen, USA) produced comparable RNA yields. PKD buffer 

was selected over xylene to streamline the collection process; PKD buffer is used in 

the first step of the miRNeasy FFPE tissue extraction kit (Qiagen, USA) protocol. In 

contrast, tissue collected with xylene must be extricated from the xylene using 

centrifugation and evaporation prior to RNA extraction. 

miRNA extraction kits: Initially, total RNA was extracted using Qiagen’s miRNeasy 

FFPE tissue kit, and RNA yields from LCM were very low. To determine if this low 

yield was a consequence of the extraction kit, six samples were extracted using 

Quick-RNA MiniPrep (Zymo Research, USA). No significant difference in RNA yield 

was detected between the extraction methods and thus experiments were continued 

with the Qiagen kits and its proprietary PKD buffer. 

Region of collection: Areas of NAWM, chronic lesions and remyelinated lesions 

were collected with LCM, and RNA extracted. This was done to determine whether it 

was feasible to compare miRNAs in NAWM and pathological areas of the tissue 

sections. Areas of pathology yielded very low RNA quantities (<50ng). LFB-PAS 

staining shows few cells in chronic lesions, and remyelinated regions have reduced 

populations of oligodendrocytes compared to NAWM. This reduced cellularity in 

pathological regions is the likely cause of low RNA yields. Thus, NAWM remained the 

sole focus of this study. 

To overcome these issues, the method of tissue dissection and RNA extraction was 

adjusted to that described below. 
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NAWM acquisition 

Sections for RNA extraction were deparaffinised using sequential absolute ethanol 

and xylene washes. Areas of NAWM were delineated using navigated laser 

microdissection (PALM MicroBeam, Carl Zeiss Microscopy) (226) and the tissue 

areas removed (figure 5.1 C-D) using the MesoDissection system (AvanSci Bio, 

USA) or scalpel. PKD buffer (Qiagen, USA) from the RNA extraction kit was used as 

the lifting agent. 3-5 consecutive sections were pooled for RNA extraction. The 

number of sections used depended on the size of the NAWM area.  

 

Figure 5.1: Images showing sample staining, characterisation and tissue extraction. 

(A) Macroscopic view of section stained with LFB-PAS. The NAWM can be easily 

identified by its consistent blue colour in the centre of the slide. It is surrounded by 

purple-stained grey matter. (B) 200x magnification of NAWM in the same section. 

The myelin is consistent and densely packed; the defining feature of NAWM. (C) 

Unstained, consecutive section. The NAWM outline has been scored using laser 

microdissection. (D) The same section following NAWM sample removal using the 

MesoDissection system. 
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RNA extraction and concentration 

MicroRNA was extracted from the tissue using miRNeasy FFPE tissue extraction kit 

(Qiagen, USA). The concentration and purity of the extracted RNA was measured on 

a Qubit 2.0 Fluorometer (Life Technologies, USA) and an Epoch Micro-Volume 

Spectrophotometer System (BioTek, USA) respectively. A value of  >1.8 on the 

optical density 260/280 ratio was considered suitable purity for downstream gene 

expression experiments (227). Further quality control (QC) of the RNA’s integrity 

would normally be tested on a Bioanalyzer (Agilent, USA), however determination of 

the RNA integrity number depends on 18S and 28S ribosomal RNA subunit ratio 

which is not indicative of miRNA quality, thus Bioanalyzer QC was not deemed 

appropriate for these samples and down-stream experiments. 

Total RNA for downstream nCounter (NanoString, USA) analysis was concentrated to 

33ng/µl using RNAstable tube kit (Biomatrica, USA) and vacuum centrifugation at 

ambient temperature. 

 

NanoString nCounter 

The expression of 800 miRNAs was analysed using nCounter Human v2 miRNA 

expression assay (NanoString, USA) following manufacturer’s guidelines. Briefly, 

100ng of purified total RNA was added to the sample preparation reaction in 3µl. 

miRNAs were annealed to a bridging code and ligated with a miRNA specific tag 

sequence. Un-ligated tags were removed with enzymatic purification. Samples were 

hybridised overnight at 65°C to probe pairs. These pairs include a capture probe with 

3’ biotin molecule for attachment to the nCounter cartridge, and a reporter probe 

comprising four fluorescent colours in six positions at its 5’ end. The sequence of 

colours on the reporter probe allows the identity of specific miRNAs to be resolved 

during data collection.  

After 24 hours, sample reactions were loaded onto the nCounter Prep Station for 

automated, post-hybridisation removal of excess probes and immobilisation to the 

cartridge. The cartridge was then loaded onto the Digital Analyzer where reporter 

probe counts were tabulated into a CSV file. All samples passed QC against six 

positive and six negative miRNA assay controls, and were normalised against the 

geometric mean of the top 100 miRNA counts. 
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The nCounter’s limit of detection is ~10 copies/cell, and has a reproducibility rate 

greater than RT-qPCR (225, 228). Therefore, as with my NGS study in Chapter Two, 

selection criteria were established to determine which of the miRNAs the nCounter 

identified as differentially expressed, would be selected for confirmation with RT-

qPCR. These criteria comprised: miRNA exhibits >1.8-fold difference between SPMS 

and control samples, >100 copies of the miRNA must have been detected in at least 

one of the sample cohorts, and a mature miRNA TaqMan probe (Applied Biosystems, 

USA) must be commercially available. 

 

RT-qPCR 

Differential expression of the seven miRNAs identified using the nCounter system 

were validated using RT-qPCR (224). 10ng of total RNA per miRNA target was 

reverse transcribed using TaqMan MicroRNA Reverse Transcription Kit (Applied 

Biosystems, Thermo Fisher Scientific, USA). Mature miRNA TaqMan assays were 

used to determine expression of hsa-let-7c (ref: 000379), hsa-miR-29b-3p (ref: 

000413), hsa-miR-219-5p (ref: 000522), hsa-miR-320e (ref: 243005), miR-451a (ref: 

001141), hsa-miR-630 (ref: 001563), hsa-miR-664-3p (ref: 002897) with hsa-miR-26b 

(ref: 000407) as an endogenous control, using a ViiA 7 Real-Time PCR system 

(Applied Biosystems, Thermo Fisher Scientific, USA). RNU6B (ref: 001093) was 

considered as an alternative endogenous control, however it failed to amplify in some 

samples. This was likely because of its larger amplicon size compared to miR-26b 

(42bp vs. 21bp respectively) being inherently incompatible with the degraded nature 

of the FFPE samples.  

 

Comparison with CD4+ T-cells of differentially expressed miRNA  

The overall aim of this thesis is to compare the miRNA profiles of blood and brain 

tissue in MS patients. The miRNAs identified as significantly different in CD4+ T-cells 

were analysed in the MS NAWM tissue. However, due to substantial limitations on 

RNA quantity, a reduced number of samples were analysed. Mature miRNA TaqMan 

assays were used to determine expression of hsa-miR-21-5p (ref: 000397) (9 SPMS, 

9 control), hsa-miR-142-3p (ref: 000464) (9 SPMS, 7 control) and hsa-miR-155-5p 

(ref: 002623) (3 SPMS, 3 control) with hsa-miR-26b as an endogenous control. 
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Statistical analysis 

A t-test was initially performed on the nCounter data using NanoString’s software, 

nSolver. However, due to the wide distribution of the data sets between SPMS and 

HC groups, a non-parametric, two-sample Kolmogorov-Smirnov test (K-S test) was 

used to compare cumulative distributions, and determine significant differences in 

expression of each miRNA for both nCounter and RT-qPCR data. Our statistical 

significance threshold allowing for multiple testing correction was determined using 

the FDR procedure of Benjamini-Hochberg (185). The significance threshold was set 

at p<0.05. 

 

Gene target prediction and pathway analysis 

miRSystem integrates seven different target gene prediction algorithms and contains 

experimentally validated data on miRNA:mRNA interactions (106). This integration 

system was used to identify genes that may be targeted by more than one of our 

identified dysregulated miRNAs. 

miRPath v3 from DNA Intelligent Analysis (DIANA) (230) combines gene targets from 

TarBase v7 (231) to determine KEGG pathways that may be affected by miRNA 

expression changes.  Using this software, pathways with targets of more than one of 

the key miRNAs were identified. 

 

Results 

NanoString nCounter 

miRNA from the white matter of 10 SPMS and 10 control subjects was profiled using 

the NanoString nCounter system. Of the 800 miRNAs examined, 57 showed 

significantly different expression, and seven met the cut-off criteria (see methods 

section) to be further analysed with RT-qPCR. Let-7c (p=0.003), miR-320e 

(p=0.003), and miR-630 (p=0.015) were up-regulated in SPMS NAWM compared to 

controls, whereas miR-29b-3p (p=0.05), miR-219-5p (p=0.015), miR-451a (p=0.003) 

and miR-664-3p (p=0.015) are down-regulated in SPMS NAWM tissue (figure 5.2). 
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Figure 5.2: Tukey box plot of the top 7 differentially expressed miRNAs in SPMS 

NAWM identified using NanoString nCounter system. Whiskers represent data within 

1.5 interquartile range (IQR) of the upper and lower quartile. Data points outside of 

the 1.5 IQR are represented by black dots. * p<0.05, ** p<0.01. 

 

Despite miR-26b being differentially expressed in SPMS CD4+ T-cells (Chapter Two), 

it demonstrated consistent expression within SPMS and control white matter samples 

in the NanoString dataset (p=0.84) adding assurance to its use as an endogenous 

control for RT-qPCR. 

 

RT-qPCR  

The expression of the seven miRNAs identified using NanoString nCounter were re-

analysed with RT-qPCR in the same 20 samples, plus a further three SPMS samples 

(10 control and 13 SPMS). All seven of the miRNAs demonstrated differences in 

expression in the same direction indicated by the nCounter data, however only three 

reached statistical significance (figure 5.3). miR-29b-3p (p=0.017), miR-219-5p 

(p=0.009) and miR-451a (p=0.002) were confirmed as down-regulated in SPMS 

NAWM compared to controls. 

 

let
-7

c

m
iR

-2
9b

-3
p

m
iR

-2
19

-5
p

m
iR

-3
20

e

m
iR

-4
51

a

m
iR

-6
30

m
iR

-6
64

-3
p

0.1

1

10

100

1000

10000

N
or

m
al

is
ed

 c
ou

nt
 (l

og
10

) HC

SPMS
**

** *** * * *



  

 99 

 

Figure 5.3: Tukey box plot demonstrating RT-qPCR data of the top 7 differentially 

expressed miRNAs in SPMS NAWM. miR-29b-3p, miR-219-5p and miR-451a were 

confirmed to be significantly down-regulated in SPMS NAWM compared to control 

white matter. Whiskers represent data within 1.5 IQR of the upper and lower quartile. 

Data points outside of the 1.5 IQR are represented by black dots. * p<0.05, ** 

p<0.01. 

 

Gene targets and pathway analysis 

miRSystem identified no common gene target of the three miRNAs confirmed with 

RT-qPCR, however 59 genes are targeted by combinations of two out of the three 

miRNAs. When looking at gene targets for all seven miRNAs identified by nCounter, 

Ataxin-1 (ATXN1) is targeted by four, however, the direction of change amongst 

these miRNAs is inconsistent (two up-regulated and two down-regulated, with similar 

fold-changes) indicating that collectively these miRNAs probably are not having an 

effect on expression of ATXN1.  

KEGG pathway analysis using DIANA identified a number of pathways targeted by 

both miR-29b-3p and miR-451a (table 5.2). Many are related to cancer, however 

focal adhesion (both miRNAs target AKT1 and BCL2) and adherens junction are 

particularly interesting due to their strong links with blood-brain barrier (BBB) 

function. No targets for miR-219-5p were identified with TarBase v7. 
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Table 5.2: KEGG pathways containing genes targeted by both miR-29b-3p and miR-

451a. Significance threshold set at p<0.0001. 

KEGG pathway p value No. of genes 

Colorectal cancer (hsa05210) 2.702e-08 22 

Viral carcinogenesis (hsa05203) 1.529e-07 32 

Endometrial cancer (hsa05213) 5.116e-06 17 

Amoebiasis (hsa05146) 6.517e-06 22 

Hepatitis B (hsa05161) 5.293e-05 29 

Focal adhesion (hsa04510) 8.590e-05 42 

Adherens junction (hsa04520) 8.733e-05 15 

Glioma (hsa05214) 8.733e-05 16 

Pathways in cancer (hsa05200) 9.768e-05 60 

 

Comparison with CD4+ T-cell miRNA  

In Chapter Two, five miRNAs were confirmed to be dysregulated in the CD4+ T-cells 

of SPMS patients: miR-21-5p, miR-26b-5p miR-29b-3p, miR-142-3p and miR-155-5p. 

Of these five miRNAs, miR-29b-3p was the only one to be confirmed as down-

regulated in both SPMS NAWM and CD4+ T-cells (Figures 2.2 and 4.3). In this study, 

miR-26b-5p has been selected as the endogenous control based on advice from 

TaqMan application notes (229). Interestingly, miR-155-5p failed to be detected by 

nCounter and RT-qPCR, and neither miR-21-5p (p=0.36) nor miR-142-3p (p=0.23) 

showed significant expression changes in SPMS NAWM (figure 5.4). 
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Figure 5.4: Comparison of miR-21-5p and miR-142-3p expression profiles in NAWM 

(A,B) and CD4+ T-cells (C,D) of SPMS individuals using RT-qPCR. Whiskers 

represent data within 1.5 IQR of the upper and lower quartile. Data points outside of 

the 1.5 IQR are represented by black dots. * p<0.05, ** p<0.01. 

 

Discussion 

Here we have performed a comprehensive analysis of miRNA expression in the 

NAWM of SPMS individuals using NanoString nCounter technology. Three miRNAs 

(miR-29b-3p, miR-219-5p and miR-451a) were found to be significantly down-

regulated in SPMS samples compared to controls. Comparisons to other studies in 

NAWM, and possible implications of dysregulation of these miRNAs will be discussed 

here. However, studies on NAWM in the experimental autoimmune encephalomyelitis 

(EAE) model will not be discussed, as chemical induction of disease likely cannot 

provide an accurate representation of NAWM. 

Two previous studies have profiled miRNA expression in MS NAWM. Guerau-de-

Arellano (140) used NanoString nCounter to compare undefined-MS subtype, 

periventricular NAWM with half the number of control samples (n=5) that we have 
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used here. It is unclear whether their samples were fresh-frozen or FFPE, and how it 

was established that the regions analysed were pathology free. While there is no 

overlap in identified miRNAs with this study, another member of the mature miR-29 

family (miR-29c) was significantly down-regulated in their MS samples, and 

miRSystem found miR-29b-3p and miR-29c-3p to have ~95% of their targets in 

common with each other. In Noorbakhsh et al.’s (158) study, they found up-regulation 

of miR-219-5p in MS NAWM; directly contradicting our finding of miR-219-5p down-

regulation. However, both of these previous studies were limited by low sample 

numbers and using undefined MS samples. Without knowing more details about the 

types of samples used, it is unreasonable to directly compare our findings. 

miR-29b-3p and its role in methylation has been previously established in CD4+ T-

cells in Chapter Three and by Qin et al. (193). Here, it is down-regulated in SPMS 

NAWM, just as we have seen in SPMS CD4+ T-cells. If miR-29b’s effect on 

methylation is replicated in the brain as we saw in CD4+ T-cells, it can be expected 

that differentially methylated regions in NAWM will preferentially demonstrate 

hypermethylation. A recent study on methylation patterns in MS NAWM showed that 

of 539 DMRs, 59% were hypermethylated (100), indicating that miR-29b may be 

affecting methylation in NAWM, but not to the extent that it does in CD4+ T-cells.  

Previously, miR-451a was identified as differentially expressed in SPMS CD4+ T-

cells, though this could not be confirmed with RT-qPCR (Appendix 2). Here, common 

target and pathway analysis identified two genes in the focal adhesion pathway 

targeted by both miR-451a and miR-29b-3p. These were serine/threonine kinase 

(AKT1), a mediator of neuronal survival via oligodendrocytes (232), and apoptosis 

regulator BCL2 (BCL2). 15 genes in the adherens junction pathway are also targeted 

by either miR-29b-3p or miR-451a. Proper functioning of both of these pathways is 

essential to normal BBB function, and disruption of protein expression in these 

pathways has been linked to BBB disruption in MS (157, 233). miRNA-mediated 

changes may be affecting the efficacy of these pathways in NAWM, either priming 

the region for macrophage infiltration, or mounting a defence against autoimmune 

attack. Without miRNA interaction and gene expression studies however, we are 

unable to hypothesise which of these scenarios may be reality. 

The role of miR-219-5p in oligodendrocyte differentiation and precursor cell (OPC) 

maturation is particularly interesting. miR-219 is enriched in normal white matter, 
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particularly in oligodendrocytes (234). A study on topographical cues and gene 

silencing with miRNAs, found that electrospun microfibres incorporated with miR-219 

were effective in driving OPC differentiation and oligodendrocyte maturation, and 

then remyelination (235). In this study, we identified down-regulation of miR-219-5p 

in SPMS NAWM, indicating a diminished influence on oligodendrocyte remyelination 

activity. This is supported by Juncker et al.’s (141) study which found miR-219-5p 

down-regulated in inactive MS lesions compared to normal brain. It would appear 

that regions of the MS brain with inactive disease (NAWM and inactive lesions) have 

reduced miR-219-5p expression, which in turn reduces oligodendrocyte presence or 

activity, ultimately perpetuating pathology. 

Of the miRNAs dysregulated in this study only one, miR-29b-3p, has overlapping 

results with SPMS CD4+ T-cells. Both miR-21-5p and miR-142-3p were analysed to 

determine if they too were down-regulated in NAWM, however we find that they show 

a trend of up-regulation, though not significantly. A limitation of this study was the 

small quantity of RNA available for RT-qPCR, and the sample number for these 

miRNAs was reduced. This may have resulted in lost significance, however as these 

miRNAs were up-regulated in NAWM, it is unlikely that a few more samples would 

have changed the expression pattern to that seen in CD4+ T-cells.  

Another limitation was the absence of miR-155-5p expression data. In many studies, 

miR-155-5p has been of key interest and is up-regulated in MS samples. Its 

expression appears to be highest in active lesions and reduces through chronic 

lesions and NAWM to a baseline low in control white matter (141, 157, 158). Using 

both NanoString nCounter and RT-qPCR, miR-155-5p was undetected in our 

samples. The reason for this is unknown; it may be that it is not present in these 

samples, our samples may reflect severely “burned out” MS, or that both methods 

independently failed to amplify it.  

This is the first study to profile miRNA expression in SPMS NAWM. Three miRNAs 

were identified to be down-regulated compared to control white matter. These 

miRNAs play crucial roles in maintaining BBB integrity, oligodendrocyte function and 

methylation. Future studies will work on identifying the specific cell types in which this 

dysregulation occurs using in situ hybridisation to further our understanding of the 

impact this dysregulation has in the SPMS brain. 
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CHAPTER SIX – DISCUSSION 

 

This project has explored microRNA (miRNA) expression and the cause of 

dysregulation in CD4+ T-cells of secondary progressive (SPMS) patients, and used 

this information to guide an exploratory miRNA-profiling study in the normal 

appearing white matter (NAWM) of SPMS brain tissue donors. 

 

miRNA expression in CD4+ T-cells 

A key initial finding that inspired following chapters was the observation of broad 

down-regulation of miRNAs in CD4+ T-cells of SPMS patients. The literature review 

of miRNA dysregulation in MS (Chapter One), demonstrated the dynamic up- and 

down-regulation of miRNAs seen in MS-associated tissues. The study in Chapter 

Two bucked that trend, and showed that 97% of all miRNAs that demonstrated 

dysregulation were under-expressed compared to controls (202). NGS was used for 

initial expression profiling, which has the advantage over other methodologies in that 

all miRNAs present in a sample are identified, as such, the statement of “broad 

down-regulation” is valid. However, the cause of this down-regulation had to be 

established, and changes in DNA methylation and expression of miRNA biogenesis 

molecules was explored. 

While DNA methylation was predominantly hypermethylated in SPMS CD4+ T-cells 

compared to controls, none of the differentially methylated CpGs were within miRNA 

transcription start sites (TSS). Therefore, it is unlikely that this is the underlying cause 

for miRNA down-regulation in SPMS. However, following the lead of Jafari et al. 

(114), expression of miRNA biogenesis molecules was analysed, and significant 

down-regulation of DROSHA and DGCR8, the nuclear molecules responsible for 

cleaving the pri-miRNA structure from the pre-miRNA, was found. In the absence of 

this RNase and its cofactor, miRNAs cannot be manufactured; the down-regulation 

these two molecules is thus a significant contributor to broad miRNA down-regulation 

seen in SPMS CD4+ T-cells. The instigator of DROSHA and DGCR8 down-

regulation however remains unclear; there were no differentially methylated regions 
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near their TSSs, and so a mechanism other than methylation must be affecting their 

expression.  

One hypothesis for this was that an external factor, such as vitamin D, might target 

C-MYC, the transcription factor of DROSHA, resulting in a decrease in DROSHA’s 

expression. This theory was attractive because of the strong relationship between C-

MYC expression and vitamin D (205), a well-studied environmental MS risk factor 

(52). C-MYC’s expression in SPMS was found to be stable (appendix 4), however 

without measuring vitamin D serum levels of study participants, it cannot be 

concluded that C-MYC is causing down-regulation of DROSHA or if there is another 

cause independent of its transcription factor. This warrants further investigation.  

 

Methylation and miRNAs 

While DNA methylation changes aren’t in miRNA TSSs and have thus been ruled out 

as the cause for miRNA down-regulation here, there was still a very interesting 

finding; RRMS and SPMS DNA methylation profiles in CD4+ T-cells are distinct. 

RRMS CD4+ T-cells demonstrated nearly equal proportions of hypo- and 

hypermethylation (51% and 49% respectively). In contrast, SPMS strongly geared 

towards hypermethylation; 75% of differentially methylated CpGs were 

hypermethylated compared to age and gender matched controls.  

In a study of DNA methylation in SLE CD4+ T-cells, over-expression of miR-29b was 

found to cause hypomethylation (193). miR-29b directly targets the 3’ UTR of 

DNMT3a and DNMT3b, DNA methyltransferases responsible for producing de novo 

methylation sites. In Chapter Two, miR-29b is found to be significantly down-

regulated in CD4+ T-cells. To determine its possible effect on DNA methylation, the 

expression of miR-29b and the DNMTs were analysed in a female-only cohort 

(Chapter Four) with significant sample crossover with the DNA methylation SPMS 

cohort (Chapter Three). miR-29b was re-confirmed to be down-regulated in SPMS 

CD4+ T-cells, and associated up-regulation of DNMT3b was observed.  

A chain of events leading to DNA hypermethylation in SPMS CD4+ T-cells thus 

presents itself. miRNA biogenesis molecules, DROSHA and DGCR8 are down-

regulated (mechanism unknown), causing broad down-regulation of miRNAs. One of 
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these miRNAs (miR-29b) is significantly reduced, and its target (DNMT3b) becomes 

over-expressed. This leads to de novo methylation, ultimately manifesting as DNA 

hypermethylation in these cells. A result of this would be transcriptional silencing, 

reducing the activity of CD4+ T-cells in SPMS. 

 

Reduced CD4+ T-cell activity 

The role of the immune system in SPMS is poorly understood, though it is 

predominantly thought that this disease stage is driven by neurodegeneration, rather 

than inflammation. The findings presented within this thesis support that postulation 

by demonstrating a series of changes within CD4+ T-cells that hinder their activity. 

Eight of the ten most dysregulated miRNAs identified using NGS have a common 

target, suppressor of cytokine signalling 6 (SOCS6). The expression of SOCS6 is 

negatively correlated to the expression of these miRNAs, i.e. SOCS6 is up-regulated 

in SPMS CD4+T-cells (Chapter Two). SOCS6 is a negatively regulator of T cell 

activation (187); thus, its up-regulation seen here indicates that it will act to prevent T 

cell activation, reducing immune system activity in SPMS. 

Another consequence of broad miRNA down-regulation was the reduction in miR-29b 

leading to DNA hypermethylation and transcriptional silencing. The dominance of 

hypermethylated regions in SPMS compared to the inflammatory-driven RRMS 

disease stage, indicates that there is a genome-wide push towards reducing cell 

activity in SPMS. 

Furthermore, one of the most highly expressed miRNAs in MS studies, miR-155, was 

down-regulated in these cells. miR-155 can be classed as an inflammatory miRNA as 

its expression may be activated by proinflammatory cytokines and it acts to disrupt 

the BBB (144). Also, its absence in EAE ameliorates disease (165). Its down-

regulation in SPMS may have the effect of reducing its inflammatory activity with 

respect to the BBB and CD4+ T-cell disruption and migration across the barrier. 

Each of these changes is a cause or consequence of disease progression. The effect 

of ageing can be excluded as a contributing factor in these changes as all 

parameters were compared to age- and gender-matched controls. Altogether, these 

factors limit the activity of CD4+ T-cells in the SPMS disease stage, and supports the 
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hypothesis that disability accumulation in SPMS is caused more by 

neurodegeneration than systemic inflammation.  

 

NAWM in SPMS 

Unlike SPMS CD4+ T-cells, the miRNA expression profiles of NAWM tissue exhibited 

both up- and down-regulation of miRNA. This analysis was performed using the 

NanoString nCounter system, a non-amplification based method of detecting 

expression nuances. Using RT-qPCR, three miRNAs were confirmed to be down-

regulated in these SPMS NAWM samples compared to controls. The predicted role 

of these miRNAs includes maintenance of BBB integrity, and oligodendrocyte 

maturation and activity. Potential alterations to the activity of these pathways 

corroborates other works on miRNA in the CNS, specifically lesions and BECs (141, 

157, 234), and demonstrates a common thread between classically disease-active 

tissues and NAWM, which is normal in appearance only. 

Of the three dysregulated miRNAs, only one (miR-29b) overlapped with our findings 

in CD4+ T-cells. Methylation profiling of NAWM was not performed in this study, 

however previous works by Huynh et al. (100) found a moderate lean (59%) towards 

hypermethylated DMRs in NAWM tissue. This indicates that miR-29b might also be 

having an effect on methylation in NAWM, but it cannot be ascertained without 

performing simultaneous methylation and miR-29b expression profiling in a larger 

sample cohort. 

Correlation of miRNA expression between CD4+ T-cells and NAWM in SPMS 

samples was investigated. Comparison of the three NAWM miRNAs (miR-29b, miR-

219 and miR-451a) to CD4+ T-cell NGS data established significant down-regulation 

of miR-29b was common between both data sets, and was able to be corroborated 

with RT-qPCR in both instances. Further, NGS showed miR-451a was up-regulated 

in CD4+ T-cells; the only miRNA in these samples to demonstrate change in that 

direction. However, expression of this miRNA was very low (<45 copies/sample), and 

attempts to confirm this dysregulation with RT-qPCR failed; even demonstrating 

significant down-regulation in the replication cohort. The third candidate, miR-219, 

was stably expressed in CD4+ T-cells. 
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Using RT-qPCR, the other miRNAs dysregulated in CD4+ T-cells (Chapter One) 

were analysed in NAWM. miR-26b was stably expressed, and miR-21 and miR-142 

demonstrated slight up-regulation, though this was not significant. miR-155-5p was 

not detected in NAWM by either NanoString nCounter or RT-qPCR indicating that 

this miRNA may be severely down-regulated/not expressed in these samples, 

however methodological or sample error cannot be excluded. 

The common down-regulation of miR-29b in NAWM and CD4+ T-cells in SPMS is 

interesting and the cause remains unknown. Up-regulation of a specific miRNA in a 

tissue may be the result of unrelated cells over-expressing it, and then either 

apoptosing or releasing exosomes containing that miRNA into a circulating body fluid 

where they may present as over-expression in another tissue (236). However, down-

regulation of miRNAs is not transmissible in this way, and cannot account for the 

decreased expression of miR-29b. It may also be coincidence that miR-29b is 

dysregulated in the same direction in these tissues. 

 

Limitations and future directions 

The priority of future investigation should be to establish causal relationships 

between DROSHA, DGCR8, microRNAs (both general and miR-29b), and DNMT3b 

within CD4+ T-cells. Following this, functional characterisation should be performed 

to determine the effect that these factors have on CD4+ T-cells and how that 

contributes to progressive MS; with the aim of exploiting these differences for 

therapeutic gain. 

MiRNAs are regulators of gene expression though there are molecules that add a 

further level of regulation by regulating expression of miRNAs themselves. Circular 

miRNA sponges were reported in Nature in February 2013 (237) and the existence of 

numerous circular RNAs (circRNAs) has been demonstrated, including a circRNA 

sponge for miR-7 with over 70 binding sites for the single miRNA (237). This has 

obvious implications for the clarification of miRNA dysregulation. For miRNAs found 

to be under-expressed, miRNA expression may be normal but the expression of as-

of-yet unidentified circRNAs is dysregulated. miRNA has a demonstrated impact on 

MS pathophysiology, and circRNAs may be a further confounding factor in 

understanding this disease. Unfortunately, due to the relatively recent observation of 
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circRNA sponges, it was not possible to detect their presence in the study samples, 

though this would be an exceptional addition to future miRNA-profiling projects. 

Indeed, if they can be incorporated into exosomes, then they could be cause for 

simultaneous down-regulation of miR-29b in NAWM and CD4+ T-cells observed 

here. 

Considering Munoz-Culla’s paper on sex-differences in miRNA expression in RRMS 

(164), it would be beneficial to repeat experiments from Chapters Two and Five in 

larger cohorts with female and male samples analysed separately. Their study 

highlighted the existence of a mirror pattern of miRNA expression in relapse and 

remission disease state, however only 80% of miRNAs dysregulated in a mixed-

gender cohort were also confirmed in female-only analyses. Thus, differences in 

miRNA expression seen in CD4+ T-cells and NAWM here, may not be representative 

of male or female patients in isolation. 

Differential gene expression data reported within this thesis was not established at 

the protein level, and therefore caution must be exercised when interpreting the 

functional consequences of differential gene expression within MS. A clear future 

research direction from this thesis’ findings would be to investigate the protein 

expression levels of these same genes, and following confirmation/refutation of 

differences, proceed with functional studies.  

The quantity and quality of RNA and DNA within our NAWM samples severely limited 

the molecular parameters that could be examined. Fragmentation of these molecules 

prevented profiling of large fragments including mRNA and DNA. Indeed, the short 

non-coding RNA RNU6B was unreliable as an endogenous control despite its short, 

42bp length. Thus, miRNA expression profiling was the only metric measured in this 

study. However, the absence of gene expression examination does not greatly hinder 

the conclusions reached regarding affected pathways, as analysis of differentially 

expressed miRNAs has been found to be more informative than differentially 

expressed genes regarding the identification of affected pathways (238). This is 

because multiple miRNAs often target groups of genes within a pathway together, 

whereas analysis of gene expression is more likely to be confounded by genes 

exhibiting spurious or random dysregulation. 
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Future studies of miRNA in NAWM would benefit from including DNA methylation 

profiling to explore the relationship of miR-29b and differential methylation. 

Furthermore, as has been clearly demonstrated here and in other literature, the 

profile of individual cell subsets can be masked, and often contradicted, when 

observed amongst a heterogeneous cell population such as whole blood, or in this 

case NAWM. Unfortunately, in the samples used here, the quantity of material 

required to consider oligodendrocytes, astrocytes, etc. in isolation was not available. 

However, future studies should endeavour to isolate these cell types and profile them 

independently to provide a clearer picture of miRNA expression dynamics in the 

SPMS CNS. 

 

Conclusion 

This thesis demonstrates the convergence of several factors, led by changes in 

miRNA expression, to reduce activity of CD4+ T-cells in SPMS. Broad down-

regulation of miRNAs was identified in these cells, a novel observation in MS miRNA 

studies, caused by decreased expression of miRNA biogenesis molecules. This 

resulted in: up-regulation of SOCS6, negatively regulating T cell activation; and de 

novo hypermethylation driven by miR-29b-associated up-regulation of DNMT3b. 

Each of these findings points towards CD4+ T-cells having a diminished role in 

SPMS disease activity, and therefore are less responsive to current approved 

therapies. Additionally, analysis of miRNA expression in NAWM further demonstrates 

that this tissue is only “normal” in its appearance, and dysregulated miRNAs here 

may act to prevent oligodendrocyte maturation and thus hinder remyelination efforts. 

This suggests that neurodegenerative mechanisms are fully operational in NAWM 

during SPMS. In conclusion, we are closer to understanding the mechanisms of 

disease progression in MS; miRNA down-regulation prompts CD4+ T-cells to take a 

backseat in this disease stage, and neurodegeneration assisted by miRNA 

dysregulation, is primed to occur in normal appearing brain tissue. Consequently, 

future research on treatments should move away from immunosuppression, and 

focus more on remyelination in this stage of disease. 
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APPENDIX ONE 

 

The main text of Chapter Two was published in Clinical Epigenetics, in 2016 (DOI 

10.1186/s13148-016-0253-y). Clinical Epigenetics is an open access journal and all 

articles are distributed under the terms of the Creative Commons Attribution 4.0 

International License. (CC BY 4.0) This license permits unrestricted use, distribution 

and reproduction provided appropriate credit is attributed to authors. Full details of 

the licence can be found at http://creativecommons.org/licenses/by/4.0.  

The following pages contain the published format of the article, Next-generation 

sequencing reveals broad down-regulation of microRNAs in secondary progressive 

multiple sclerosis CD4+ T-cells.    
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  Background

Multiple sclerosis (MS) is an autoimmune disease char-
acterized by multifocal inflammatory attacks in the CNS
[1]. In the relapsing-remitting (RRMS) stage of the dis-
ease, CD4+ T cells are among the primary infiltrators
moving from the periphery, through the blood-brain
barrier, and into the CNS [2]. These cells then initiate an
immune response that results in localized demyelination
and corresponding symptoms. The later stage of MS,
secondary progressive (SPMS), is characterized by com-
pounding neurodegeneration and increasing disability;
however, the relevance of inflammation is unclear [3].
As key regulators of gene expression, microRNAs (miR-
NAs) may be affecting the immune-related functions of
CD4+ T cells in SPMS and may help to elucidate the ac-
tions of these cells in SPMS.
MiRNAs are short, non-coding RNA molecules

(~22 bp) that regulate gene expression at the posttran-
scriptional stage by targeting the 3′ untranslated region
of target genes. Their small size and stable structure
make them ideal biomarkers. In recent years, miRNA
expression patterns in MS have been the focus of nu-
merous studies, many of which have concentrated on
using miRNAs as biomarkers for diagnosis and progno-
sis [4]. These studies predominantly use easily acquired
(and often highly heterogeneous) samples such as whole
blood, peripheral blood mononuclear cells (PBMCs),
serum, and plasma. Numerous dysregulated miRNAs
have been identified, however which cell types are actu-
ally responsible for differing miRNA profiles, and the
consequences of altered miRNA expression is not clear
in many studies. Furthermore, it is likely that these het-
erogeneous samples are masking the signal of differen-
tially expressed miRNA in specific cell subtypes. To
overcome this, we have focused on CD4+ T cells in this
study on SPMS.
Next-generation sequencing (NGS) allows for stringent

examination of cell-specific miRNA expression profiles
as well as discovery of previously uncharacterized miR-
NAs. Here, we have used small-RNA NGS analysis of
CD4+ T cells from SPMS patients and healthy controls

(HC). The total coverage approach of NGS generates ex-
pression information on all small RNA species including
all known and novel miRNAs, as well as other small
RNA species (isomiRs and snoRNAs)—a clear advantage
over microarray and candidate approach assays. Three
previous studies in MS have used NGS to effectively
identify miRNA expression profiles in the whole blood
[5, 6], serum [6], and PBMCs [7] from RRMS patients.
However, NGS techniques have not been used for spe-
cific cell types or in SPMS samples.
The miRNA expression profile of CD4+ T cells, either

as instigating molecules or by-products of erroneous
molecular mechanisms, will provide insight into the
function of these cells in SPMS. Here, we used NGS to
provide a comprehensive analysis of the miRNA expres-
sion profiles of CD4+ T cells from SPMS patients and
healthy controls (HC) and confirmed these results using
targeted expression assays.

Methods
Sample collection
Whole blood was collected at a single study center from
an initial cohort of 12 SPMS patients and 12 HC and a
replication cohort of 12 SPMS and 10 HC. All patients
were diagnosed with SPMS according to the McDonald
criteria [8] and demonstrated EDSS progression without
evidence of relapse in the 24 months prior to collection.
Controls were age (±5 years) and gender matched
(Table 1). The SPMS patient group was free of MS-
specific treatments for a minimum period of 6 months
prior to collection. Samples were collected at the John
Hunter Hospital, and laboratory work was conducted at
the Hunter Medical Research Institute, Newcastle.

Blood sample processing
PBMCs were isolated from 45 mL of heparinized whole
blood by density gradient centrifugation on lymphoprep
(Axis-Shield PoC AS, Norway). CD4+ T cells were
enriched from the PBMCs using EasySep magnetic nega-
tive selection according to the manufacturer’s protocol
(StemCell Technologies, Canada). The purity of the CD4

Table 1 Details of SPMS and healthy control individuals
Next generation sequencing Replication cohort

SPMS HC SPMS HC

Number 12 12 12 10

Female 9 9 8 5

Age in years (mean ± SD) 60.2 ± 8.3 61.3 ± 9.5 61.4.0 ± 6.5 60.1 ± 5.9

EDSS (mean ± SD) 6.9 ± 0.9 NA 5.9 ± 1.0 NA

Active SPMS 3 NA 4 NA

Disease duration in years (mean ± SD) 25.6 ± 11.1 NA 18.3 ± 6.5 NA

Progression duration (mean ± SD) 10.8 ± 8.1 NA 8.9 ± 6.2 NA

EDSS expanded disability status scale, SD standard deviation, NA not applicable
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+ selection was assessed by flow cytometry using a
FITC-conjugated anti-CD4 antibody (anti-human CD4
antibody, clone OTK4, FITC, catalog# 60016FI, StemCell
Technologies, Canada) on a BD FACSCanto II flow cyt-
ometer and then analyzed using FACSDiva software (BD
Biosciences, USA) at the Analytical Biomolecular Re-
search Facility of the University of Newcastle. All sam-
ples met a minimum purity threshold of >90 %.

RNA isolation
Total RNA was isolated from the CD4+ T cells using the
miRNeasy Mini kit (Qiagen, USA) following the manu-
facturer’s instructions. The quality of the RNA was
assessed using the RNA 6000 Nano kit on a 2100 Bioa-
nalyzer (Agilent Technologies, USA); a RNA integrity
number greater than 8 was deemed suitable for sequen-
cing and reverse transcription quantitative polymerase
chain reaction (RT-qPCR). Purity was measured on an
Epoch spectrophotometer (BioTek, USA), and concen-
tration was measured using the high-sensitivity RNA kit
on Qubit 2.0 Fluorometer (Life Technologies, Thermo
Fisher Scientific, USA).

miRNA sequencing and analysis
A cohort of 12 SPMS and 12 HC samples was run
through NGS at the Diamantina Institute, University of
Queensland, Brisbane, Australia. Samples were individu-
ally barcoded and then sequenced in two multiplexed
pools each containing 12 samples. The sequencing li-
braries were prepared from 1-μg total RNA, using the
TruSeq small RNA preparation kit (Illumina, USA) and
sequenced using the 50-bp fragment protocol on the
HiSeq 2500 platform. The sequencing generated four to
nine million reads per sample, more than sufficient for
expression and discovery applications. The sample se-
quencing reads were demultiplexed using the CASAVA
1.8 software package (Illumina, USA). The Illumina
adapter sequences were trimmed from the fastq files
using Trimmomatic [9]. All reads were aligned and
counted against miRBase 21 [10].

RT-qPCR
Mature miRNA TaqMan assays (Applied Biosystems,
Thermo Fisher Scientific, USA) were used to determine
expression of the ten most differentially expressed miR-
NAs in the initial NGS cohort as well as a replication
cohort of 12 SPMS and 10 HC (assay IDs in miRNA nu-
merical order: 000397, 000399, 000407, 000408, 000409,
000413, 002223, 000464, 002623, 000524). The small
RNA RNU44 (ref: 001094) was used as an endogenous
control. RNU44 has previously been demonstrated to be
a stable control in CD4+ T cells [11], and its stability has
been shown in our 47 samples (mean ± standard devi-
ation Ct value of 23.58 ± 0.63). RNU44 was used for

normalization using the ΔCt method. The relative ex-
pression (2−ΔCt) of all samples (24 SPMS and 22 HC)
was calculated.

Statistical analysis
The two-sample Kolmogorov-Smirnov test (K-S test)
was used to test whether differences in expression levels
were statistically significant between the case and con-
trol groups as implemented in R. The K-S test was
chosen (over the F test comparison of means) because of
the non-normality of the expression level distributions
among miRNAs. Our statistical significance threshold
allowing for multiple testing correction was determined
using the False Discovery Rate (FDR) procedure of
Benjamini-Hochberg [12]. Based on the number of
miRNA elements, this threshold was set at 1.2 × 10−4.
We also considered a relaxed (or nominal) significance
threshold of 0.05. In addition to using statistical signifi-
cance thresholds for miRNA selection, we also included
a count threshold of >800 to exclude miRNAs that had
very low expression levels and were unlikely to be repli-
cated with the less-sensitive RT-qPCR. The K-S test was
also used to determine significant differential miRNA
and SOCS6 expression from the RT-qPCR relative ex-
pression data.

Correlation to patient characteristics
The Pearson correlation coefficient was calculated
using RT-qPCR data for MS samples (n = 24) and pa-
tient characteristics: EDSS, age, disease duration, and
progression duration. A correlation coefficient (r value)
>±0.5 was considered strong, ±0.3–0.49 moderate, and
<±0.29 weak.

Gene target prediction
miRSystem integrates seven different target gene predic-
tion algorithms and contains experimentally validated
data on miRNA:mRNA interactions [13]. This integra-
tion system was used to identify genes that may be tar-
geted by more than one of our identified dysregulated
miRNAs.

Analysis of SOCS6 expression
Five hundred nanograms of total RNA was reverse tran-
scribed using high-capacity cDNA reverse transcription
kits (Applied Biosystems, Thermo Fisher Scientific,
USA) in 21 SPMS and 21 HC samples. qPCR was per-
formed using an exon-spanning TaqMan probe for
SOCS6 (ref: Hs00377781_m1). Expression of SOCS6 was
determined as relative expression to the housekeeping
genes GAPDH (ref: 4326317E) and β-actin (ref:
4326215E) using a ViiA 7 (Applied Biosystems, Thermo
Fisher Scientific, USA).
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Results
We used NGS to establish miRNA expression profiles in
CD4+ T cells from a cohort of 12 SPMS and 12 HC
samples. RT-qPCR was then employed to validate differ-
ences in miRNA expression in the NGS cohort as well
as a replication cohort of 12 SPMS and 10 HC samples
(total 24 SPMS and 22 HC).

NGS
We observed three statistically significant miRNAs
(miR-451a, miR-1246, and miR-144-5p) at the FDR-
corrected threshold (Additional file 1: Figure S1), which
probably reflects the modest sample size. These miRNAs
were very lowly expressed (<100 reads per sample), and
we were unable to confirm this dysregulation with RT-
qPCR. We also observed 42 miRNAs at the nominal
significance threshold (97 % of these were down-
regulated). Of these 42 miRNAs, only 10 met our sec-
ondary criteria of having a read count >800: miR-21-5p
(p = 0.031), miR-23a-3p (p = 0.007), miR-26b-5p (p =
0.031), miR-27a-3p (p = 0.031), miR-27b-3p (p = 0.031),
miR-29b-3p (p = 0.007), miR-30e-5p (p = 0.031), miR-
142-3p (p = 0.031), miR-155-5p (p = 0.031), and miR-
221-3p (p = 0.031). Each of these miRNAs was found to
be down-regulated in SPMS as summarized in Fig. 1 and
was forwarded for replication testing in an independent
cohort.

RT-qPCR
To confirm our NGS findings, the top ten most dysregu-
lated miRNAs were selected for further analysis in 24
SPMS and 22 HC samples using RT-qPCR (including
the 12 SPMS and 12 HC samples that underwent NGS
analysis). Of these ten miRNAs, RT-qPCR confirmed
significant down-regulation of miR-21-5p (p = 0.0048),
miR-26b-5p (p = 0.007) miR-29b-3p (p = 0.00001), miR-
142-3p (p = 0.05), and miR-155-5p (p = 0.001) in SPMS
CD4+ T cells (Fig. 2). These five miRNAs were

confirmed in the original NGS cohort, the replication
cohort, and the combined cohort. This provides statisti-
cally significant evidence of replication, indicating that
these five miRNAs are very unlikely to be false positives.
A trend of down-regulation of miRNA in SPMS samples
was still observed across all ten miRNAs.

Comparison of methods
Concordance of differential expression can vary between
quantitation methods [14]. To determine the magnitude
of fold-change in SPMS vs. HC, we compared RT-qPCR
and NGS results and found no change in the degree of
decreased expression between NGS and RT-qPCR
methods in the miRNAs confirmed by RT-qPCR (Fig. 3).

Correlation to patient characteristics
No strong correlations between miRNA expression and
patient characteristics were identified (Table 2). How-
ever, moderate positive correlation between EDSS and
miR-21-5p, miR-26b-5p, and miR-29b-3p was seen. Fur-
ther positive correlation was also found between disease
duration and miR-21-5p and miR-155-5p. All miRNAs
demonstrated weak correlation to patient age and pro-
gression duration.
Correlation of miRNA expression and age of HC has

also been calculated as a reference point for age of pa-
tients. Moderate correlations are in bold text.

Target prediction
miRNA fold-change was <2 for all miRNAs. It is there-
fore unlikely that any one particular miRNA is causing a
significant effect on gene expression alone. It is more
likely to be a combination of multiple miRNAs targeting
a few specific genes. Furthermore, as RT-qPCR is a less-
sensitive methodology than NGS, and the trend of
down-regulation is still observed (though not significant)
in the other miRNAs, all ten miRNAs were cross-
analyzed for potential gene targets. miRSystem was used

Fig. 1 Tukey boxplot demonstrating the ten most significantly dysregulated microRNAs identified using NGS. Data is presented as log10 of the
read count and clearly exhibits the down-regulation of miRNAs in SPMS (purple) compared to HC (gray). Whiskers represent data within 1.5
interquartile range (IQR) of the upper and lower quartile. Data points outside of the 1.5 IQR are represented by black dots. *p < 0.05, **p < 0.01
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to identify genes that have multiple target genes in com-
mon, both in the five confirmed miRNAs and all ten
miRNAs identified by NGS. One gene, bromodomain
and WD repeat domain containing 1 (BRWD1), is tar-
geted by all five confirmed miRNAs. No genes are tar-
geted by all ten miRNAs; however, eight genes are
targeted by eight of the miRNAs (Table 3).
These genes are involved in transmembrane ligand

binding, regulation of actin filaments, or are transcrip-
tion factors. However, only one gene is specifically linked
to immune cell function, SOCS6 (suppressor of cytokine
signaling 6). This gene has previously been reported to
negatively regulate T cell activation by promoting
ubiquitin-dependent proteolysis [15] and was conse-
quently selected for further investigated.

SOCS6 expression
Gene expression analysis using RT-qPCR was conducted
to determine whether SOCS6 is up-regulated in SPMS
CD4+ T cells in direct negative correlation to the
miRNA expression (Fig. 4). Both the preliminary and
validation cohorts were analyzed, and SOCS6 expression

is increased in SPMS compared to HC. Normalization
against GAPDH and β-actin generated the same results
(data for β-actin not shown).

Discussion
This is the first study in MS to utilize NGS for miRNA
expression profiling in the CD4+ T cells of SPMS pa-
tients. We found 42 miRNAs that are dysregulated in
the CD4+ T cells of SPMS patients as compared to con-
trols: 97 % of which were down-regulated. TaqMan as-
says confirmed five of these miRNAs (miR-21-5p, miR-
26b-5p, miR-29b-3p, miR-142-3p, and miR-155-5p) to
be down-regulated in SPMS. Each of these miRNAs (ex-
cluding miR-26b) has been reported on previously in
MS though not necessarily in SPMS or CD4+ T cells.
Lindberg et al. [11] identified seven miRNAs dysregu-
lated in CD4+ T cells from RRMS patients but did not
identify dysregulation in any of the five miRNA in this
study. Thus, down-regulation of these miRNAs may be
exclusive to SPMS.
Here, we report a decrease in miR-155-5p expression

in MS. miR-155-5p has a pro-inflammatory role in MS
and is up-regulated in a number of tissues. Studies of
postmortem brain tissue find a gradient of miR-155-5p
expression that peaks in active lesions [16] and associ-
ated neurovascular units [17] and decreases through
chronic lesions and normal appearing white matter to a
low baseline in healthy control (non-MS) white matter
[17, 18]. This increased expression of miR-155 has been
associated with the suppression of CD47 in active lesions
that creates a permissive environment for myelin phago-
cytosis [16]; focal adhesion and cell-cell complex mole-
cules in the blood-brain barrier, thus increasing
permeability [17] and; AKR1C1 and AKR1C2, essential
for biosynthesis of allopregnanolone (a neuroprotective
steroid) [18].
Interestingly, a study of miR-155 in the EAE mouse

model found that miR-155 expression in CD4+ T cells

Fig. 2 Tukey boxplot of top ten miRNAs expression (relative to RNU44) using RT-qPCR. Significant down-regulation of miR-21-5p, miR-26b-3p,
miR-29b-3p, miR-142-3p, and miR-155-5p in SPMS was confirmed. Whiskers represent data within 1.5 interquartile range (IQR) of the upper and
lower quartile. Data points outside of the 1.5 IQR are represented by black dots. p < 0.05, **p < 0.01, ***p < 0.001

Fig. 3 Comparison of miRNA fold-change between NGS and RT-qPCR.
Magnitude of change is consistent between NGS and RT-qPCR
methods
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increases during EAE and that miR-155−/− mice had an
attenuation of EAE [19]. Specifically, Th17 cells lacking
miR-155-5p are unable to cause EAE [20]. miR-155-5p is
required for normal immune function [21], and together,
these studies confirm that the significant role miR-155-
5p over-expression plays in the inflammatory process of
MS. In contrast, our finding of miR-155-5p down-
regulation may be exclusive to SPMS patients and/or
CD4+ T cells and is consistent with SPMS as a non-
inflammatory mediated disease.
miR-155-5p and miR-142-3p have been identified as

dysregulated in RRMS PBMCs [22], and a recent study
on autologous hematopoietic stem cell transplant
(AHSCT) also found co-dysregulation of miR-155-5p
and miR-142-3p [23]. Contrary to our results, Arruda
et al. found these miRNAs to be up-regulated in MS pa-
tient CD4+ T cells before treatment (cohort was 75 %
SPMS). However, AHSCT is most effective in active MS
disease, and six of the 19 SPMS patients enrolled in the
Arruda et al. study presented with gadolinium-
enhancing lesions in the year approaching the treatment
indicating inflammatory activity. Further, the average
disease duration in the Arruda et al. study was 8.1 years,
as opposed to 25.6 (primary cohort) or 18.6 (replication
cohort) years in our study. Our data is corroborated fur-
ther by NGS expression analysis, which is a more sensi-
tive measure of expression changes.
In a study of potential biomarkers in Alzheimer’s

disease (AD), miR-26b-5p was shown to be down-
regulated in the serum and CSF of AD patients when

compared to patients with inflammatory neurological dis-
eases [24], supporting the predominantly neurodegenera-
tive pathology of SPMS. Over-expression of miR-29b
insystemic lupus erythematosus (SLE) has been linked
to hypomethylation of DNA in CD4+ T cells [25].
While there are currently no studies on DNA methyla-
tion in SPMS, it would be interesting to see if the
down-regulation of miR-29b that we have identified
here in CD4+ T cells is associated with genome-wide
hypermethylation in SPMS.
Increased miR-21-5p promotes differentiation of Th17

cells in the EAE mouse model, and miR-21-5p knock-
out mice are resistant to EAE [26]. Fenoglio et al. found
increased miR-21-5p expression in RRMS (active relapse
phase) PMBCs compared to controls, though no differ-
ence in SPMS. Again, this may be attributed to the rela-
tively small sample size (n = 6) [27].
Also of interest, we previously reported miR-20a-5p

down-regulation in the whole blood of all MS sub-
types [28]. This miRNA was one of the 42 dysregu-
lated miRNAs identified by NGS and is significantly
down-regulated in SPMS compared to HC. However,
it narrowly missed the 800 read cut-off for qPCR
confirmation. miR-20a-5p is also predicted to target
SOCS6.
Eight of the top ten dysregulated miRNAs were pre-

dicted to target SOCS6 using MirSystem. Consistent
with this, increased expression of SOCS6 in the SPMS
cohort is in direct negative correlation with the miRNA
expression profiles, strongly indicating a mRNA:miRNA

Table 2 Correlation coefficients calculated from RT-qPCR data against patient characteristics
miR-21-5p miR-26b-5p miR-29b-3p miR-142-3p miR-155-5p

EDSS 0.34 0.42 0.41 0.28 0.26

Age (HC) 0.22 0.17 0.31 0.21 −0.08

Age (SPMS) −0.07 −0.17 −0.17 −0.30 −0.01

Disease duration 0.49 0.15 0.23 −0.08 0.49

Progression duration 0.12 0.12 0.11 −0.07 0.17

Table 3 Genes identified by miRSystem targeted by eight of the ten microRNAs
miR-21-5p miR-23a-3p miR-26b-5p miR-27a-3p miR-27b-3p miR-29b-3p miR-30e-5p miR-142-3p miR-155-5p miR-221-3p

ACVR2B V V V V V V V V

ZBTB41 V V V V V V V V

BRWD1 V V V V V V V V

CAMTA1 V V V V V V V V

CFL2 V V V V V V V V

SOCS6 V V V V V V V V

MIER3 V V V V V V V V

KLF12 V V V V V V V V

Verified targeting miRNAs are identified with a “V”
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relationship. To our knowledge, this is the first study to
identify SOCS6 as a gene of interest in MS. It is a highly
conserved gene with very low expression levels in
healthy thymus and brain tissues and is down-regulated
in gastric, colorectal, and pancreatic cancers [29–32]. In
colorectal cancer, methylation changes have been ruled
out as the mechanism of down-regulation [31]; there-
fore, down-regulation may be due to altered miRNA
expression. MiR-424-5p is responsible for the down-
regulation of SOCS6 in pancreatic cancer [32]; however,
we found no differences in miR-424-5p expression be-
tween SPMS and HC in this study.
The function of SOCS6 as a negative regulator of T

cell activation [15] and its observed over-expression in
SPMS CD4+ T cells supports the notion of reduced im-
mune activity in SPMS. Very little is known about
SOCS6, and more studies are required to determine if it
may be a novel therapeutic target.
This is the first study to use NGS miRNA profiling to

assess miRNA expression in the CD4+ T cells of SPMS
patients. Future studies should focus on using the same
technique in treatment naïve RRMS patients to deter-
mine if this is a SPMS exclusive trend and remove the
confounding factor of treatment effects. Furthermore,
miRNA expression profiles of other cell subtypes should
be investigated, as whole blood analysis is likely masking
significant changes in individual cell subsets. Ideally, all
of our patients would have had inactive SPMS; however,
as SPMS is a difficult disease stage to define and collect,
we have included some active SPMS patients in this study.
In this study, we chose to focus on CD4+ T cells as they
are thought to be the main cell infiltrates. Our previous
studies also show that CD4+ T cells exhibit significant
changes in methylation profiles in RRMS [33, 34].

Conclusions
Here, we have shown a general down-regulation of miR-
NAs in CD4+ T cells compared to HC, with five miR-
NAs confirmed as significant in two independent assays.
This indicates that miRNA expression may be over-

normalizing in SPMS CD4+ T cells. SOCS6 is a pre-
dicted target of the majority of these miRNAs and, con-
sistent with this, we found SOCS6 to be up-regulated in
this cohort. These are novel findings that point towards
a diminished role for CD4+ T cells in SPMS and add fur-
ther evidence for SPMS being a neurodegenerative dis-
ease stage, not an inflammation-driven one.

Additional file

Additional file 1: Figure S1. Volcano plot of differentially expressed
miRNAs identified with NGS. The FDR-corrected significance threshold is
demarked with a green line at p < 1.2 × 10−4. Three miRNAs were identified
at the threshold. Mean read counts were low in all three miRNAs: miR-451a
(SPMS mean = 76.3, HC mean = 18.9), miR-1246 (SPMS mean = 94.9, HC
mean = 51.9), and miR-144-5p (SPMS mean = 15.1, HC mean = 5.5).
Differential expression could not be replicated with RT-qPCR. (PNG 57 kb)
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APPENDIX TWO 

 

In Chapter Two, the decision was made to validate miRNAs that had a NGS read 

count of >800 with RT-qPCR. In this appendix, I will present the initial data that was 

used to set this threshold. 

 

Identification of differentially expressed miRNAs with NGS 

The statistical significance threshold allowing for multiple testing correction was 

determined using the False Discovery Rate (FDR) procedure of Benjamini-Hochberg 

(185).  Based on the number of miRNA elements, this threshold was set at 1.2´10-4. 

As can be seen in Figure A2.1, only three miRNAs were found to meet this threshold. 

Therefore, a relaxed significance threshold of 0.05 was also considered.  

  

Figure A2.1: Volcano plot of differentially expressed miRNAs identified with NGS. The 

significance threshold is demarked with a green line at p<1.2x10-4. 
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The top five identified by NGS (Figure A2.2) were selected for validation with RT-

qPCR. 

 

Figure A2.2: Five most dysregulated miRNAs identified in SPMS by NGS (with 

standard error bars). Box plot showing the distribution of read counts across the 

miRNAs. The outlier at miR-182-5p is 746 reads. * p<0.05, ** p<0.01, *** p<0.001. 

 

RT-qPCR validation 

At the time of validation, there was no TaqMan probe for miR-1246 on the market. 

The two remaining miRNAs below the threshold, miR-451a and miR-144-5p, were 

validated with RT-qPCR, as well as a further three miRNAs with significant (Table 

A2.1).  
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Table A2.1: Significantly different miRNAs, mean NGS read count, and TaqMan ID. 

miRNA P value SPMS mean HC mean Assay ID 

miR-451a 1.19E-07	 76.3 18.9 001141 

miR-144-5p 0.00011	 15.1 5.5 002148 

miR-222-5p 0.00033	 9.7 3.2 002097 

miR-3609 0.00111	 73.0 59.1 466233_mat 

miR-182-5p 0.00143	 190.6 103.1 002334 
 

Each miRNA was analysed with RT-qPCR in 11 SPMS and 12 HC samples (the RNA 

from one of the SPMS samples was exhausted by NGS analysis). miR-451a was the 

only miRNA to replicate the significant difference observed by NGS (Figure A2.3).  

 

 

Figure A2.3: RT-qPCR results of the five most dysregulated miRNAs identified by 

NGS. Expression relative to RNU44. Only miR-451a is significantly different. ** 

p<0.01. 

 

A further cohort of 12 SPMS and 10 HC was collected to determine if the results of 

miR-451a dysregulation in the CD4+ T-cells of SPMS could be replicated. The 

outcome was p=0.002, however, the direction of change was reversed (data not 
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shown). When both cohorts were combined, SPMS was still shown to be up-

regulated, however without significance. 

This result highlights the volatility of differential expression in targets that are 

expressed at low quantities. NGS is a more sensitive technique than RT-qPCR, 

however to confirm results, expression of miRNAs must be high enough for accurate 

detection by RT-qPCR (186). In this study (Chapter Two), we set a read count 

threshold of >800 reads to increase the likelihood of confirming dysregulated 

miRNAs; half of our selected miRNAs were verified subsequently verifed. This is a 

substantial improvement on our initial miRNA selection shown in this appendix.  
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APPENDIX THREE 

 

Additional data tables for Chapter Three, listing all sites of differential methylation in 

RRMS and SPMS samples.



 

Table A3.1: All differentially methylated RRMS probes 

Probe	ID	 Chr	 Position	 Gene	 Median	(case)	 Median	
(control)	

Δmeth	 Adj	P	value	 P	FDR	 Feature	

cg22802014	 1	 31732891	 SNRNP40	 0.675691	 0.9025544	 0.226863	 0.00043379	 0.01349928	 3'UTR	
cg13232075	 1	 204556835	 	 0.42867	 0.2158971	 0.212773	 0.016589302	 0.02925311	 	
cg26354017	 1	 205819088	 PM20D1	 0.598945	 0.410684	 0.188261	 0.01409406	 0.02788393	 1stExon	
cg17178900	 1	 205818956	 PM20D1	 0.646248	 0.4698254	 0.176423	 0.013796407	 0.0276007	 Body	
cg14159672	 1	 205819179	 PM20D1	 0.616326	 0.4436191	 0.172707	 0.017227167	 0.02991532	 1stExon	
cg14893161	 1	 205819251	 PM20D1	 0.497891	 0.3284282	 0.169463	 0.008958083	 0.02385308	 5'UTR;1stExon	
cg10759817	 1	 92101219	 HSP90B3P	 0.746079	 0.5770942	 0.168985	 0.000691305	 0.01349928	 Body	
cg11965913	 1	 205819406	 PM20D1	 0.466796	 0.3025438	 0.164252	 0.024620965	 0.03518624	 TSS200	
cg24503407	 1	 205819492	 PM20D1	 0.560205	 0.4035858	 0.156619	 0.014934774	 0.02888959	 TSS1500	
cg15600437	 1	 17309539	 MFAP2	 0.584121	 0.7395363	 0.155416	 0.049651594	 0.0498328	 TSS1500	
cg03526459	 1	 146549940	 	 0.334275	 0.488696	 0.154421	 0.029448057	 0.03893373	 	
cg11733135	 1	 81878937	 	 0.691877	 0.8432839	 0.151407	 0.034438784	 0.04266066	 	
cg26824678	 1	 19777949	 CAPZB	 0.723739	 0.5762676	 0.147471	 0.042979316	 0.04616919	 Body	
cg24853868	 1	 146555624	 	 0.33628	 0.4827652	 0.146485	 0.012223783	 0.02733567	 	
cg16060930	 1	 117487269	 PTGFRN	 0.794897	 0.6562882	 0.138609	 0.021352909	 0.03299767	 Body	
cg02487331	 1	 146550467	 	 0.337817	 0.4739996	 0.136182	 0.04962751	 0.0498328	 	
cg09226051	 1	 247611502	 NLRP3	 0.513351	 0.6480892	 0.134739	 0.000627387	 0.01349928	 Body	
cg09476440	 1	 109693377	 KIAA1324	 0.723577	 0.5908203	 0.132757	 0.045201623	 0.04762623	 Body	
cg26034147	 1	 40359924	 	 0.907444	 0.7772675	 0.130177	 0.021506643	 0.03304093	 	
cg13064658	 1	 212003989	 LPGAT1	 0.146288	 0.2734523	 0.127164	 0.047417682	 0.0486562	 5'UTR;1stExon	
ch.1.230734885R	 1	 232668262	 	 0.229938	 0.1045985	 0.125339	 0.004810853	 0.0184486	 	
cg03954786	 1	 156218113	 PAQR6	 0.623975	 0.5069909	 0.116984	 0.029728269	 0.03911614	 TSS1500	
cg11680857	 1	 152635200	 LCE2D	 0.678225	 0.7931205	 0.114896	 0.030685671	 0.03966728	 TSS1500	
cg01533966	 1	 90363165	 LRRC8D	 0.617605	 0.7303915	 0.112787	 0.016187833	 0.02909578	 5'UTR	
cg23961843	 1	 183623675	 RGL1;APOBEC4	 0.555658	 0.6674704	 0.111813	 0.005133492	 0.0184486	 5'UTR;TSS1500	

128 



  

 

cg05750824	 1	 64786354	 	 0.625354	 0.5136841	 0.11167	 0.003900629	 0.0184486	 	
cg11734019	 1	 156258991	 TMEM79	 0.827758	 0.9369172	 0.109159	 0.005435173	 0.0184486	 Body	
cg03847896	 1	 112154295	 	 0.725538	 0.8346475	 0.109109	 0.002473373	 0.01729845	 	
cg03737629	 1	 78343253	 FAM73A	 0.70336	 0.8081955	 0.104835	 0.019325419	 0.03126171	 3'UTR	
cg13111532	 1	 1886543	 KIAA1751	 0.700034	 0.5955732	 0.104461	 0.005148969	 0.0184486	 3'UTR	
cg00124902	 1	 34645109	 C1orf94	 0.307761	 0.4121305	 0.10437	 0.009282805	 0.02385308	 Body;5'UTR	
cg24928141	 1	 92154087	 TGFBR3	 0.822321	 0.9265897	 0.104268	 0.026602678	 0.03657868	 Body	
cg22729008	 1	 245581518	 KIF26B	 0.608356	 0.7122467	 0.103891	 0.001076896	 0.01349928	 Body	
cg15602298	 1	 157670825	 FCRL3	 0.688728	 0.7905508	 0.101822	 0.02415317	 0.03495854	 TSS200	
cg07844442	 10	 129144269	 DOCK1	 0.465688	 0.728887	 0.263199	 0.013719484	 0.0276007	 Body	
cg20374173	 10	 14227415	 FRMD4A	 0.339618	 0.5876724	 0.248054	 0.00192587	 0.01576607	 Body	
cg14368220	 10	 88024553	 MIR346;GRID1	 0.523063	 0.3444181	 0.178645	 0.012888037	 0.0276007	 TSS200;Body	
cg05818501	 10	 1451648	 ADARB2	 0.624073	 0.4863054	 0.137767	 0.013779848	 0.0276007	 Body	
cg07506153	 10	 131665884	 EBF3	 0.849761	 0.7262866	 0.123475	 0.045389875	 0.04764205	 Body	
cg17686260	 10	 131412764	 MGMT	 0.736152	 0.8591174	 0.122965	 0.045677968	 0.04776213	 Body	
cg16871435	 10	 65682643	 	 0.571437	 0.4509912	 0.120446	 0.048720828	 0.0495028	 	
ch.10.6667087F	 10	 6627081	 	 0.201843	 0.0856604	 0.116183	 0.016102692	 0.02909578	 	
cg11963436	 10	 93567261	 TNKS2	 0.421508	 0.5361234	 0.114615	 0.023574769	 0.03448437	 Body	
cg06749524	 10	 111152929	 	 0.636387	 0.5255409	 0.110846	 0.039532404	 0.04526519	 	
cg16255663	 10	 131350999	 MGMT	 0.786541	 0.8955565	 0.109016	 0.031567164	 0.04027247	 Body	
cg08822897	 11	 64258103	 	 0.284157	 0.5330633	 0.248906	 0.000366993	 0.01349928	 	
cg08912652	 11	 130779479	 SNX19	 0.851534	 0.6035999	 0.247934	 0.003191097	 0.01755103	 Body	
cg10415021	 11	 110890228	 	 0.486528	 0.7315048	 0.244976	 0.003190267	 0.01755103	 	
cg16999994	 11	 1001560	 AP2A2	 0.453497	 0.2389582	 0.214539	 0.015443339	 0.02909578	 Body	
cg27049594	 11	 124439146	 OR8A1	 0.702716	 0.5144453	 0.18827	 0.00888529	 0.02385308	 TSS1500	
cg10528424	 11	 1858572	 SYT8	 0.515347	 0.683099	 0.167752	 0.037348548	 0.04427091	 Body	
cg08849813	 11	 17825098	 SERGEF	 0.818926	 0.6647311	 0.154195	 0.040697202	 0.04535861	 Body	
cg26155681	 11	 20384377	 HTATIP2	 0.204587	 0.076961	 0.127626	 0.011812851	 0.02730792	 TSS1500	
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cg11820026	 11	 117696743	 FXYD2	 0.466212	 0.5827476	 0.116535	 0.033705763	 0.0421322	 Body;TSS1500	
cg10470368	 11	 64146517	 	 0.713807	 0.8274771	 0.11367	 0.047249041	 0.0486562	 	
cg09233619	 11	 23421870	 	 0.79124	 0.6833519	 0.107888	 0.04818827	 0.0492631	 	
ch.11.96117892F	 11	 96612684	 	 0.171835	 0.0690581	 0.102777	 0.009319399	 0.02385308	 	
cg05279513	 11	 9880619	 SBF2	 0.368282	 0.2664416	 0.101841	 0.013784607	 0.0276007	 Body	
cg23432430	 12	 125538377	 	 0.688214	 0.885203	 0.196989	 0.003950116	 0.0184486	 	
cg08922148	 12	 120156140	 CIT	 0.946986	 0.7632092	 0.183777	 0.005242721	 0.0184486	 Body	
cg19353052	 12	 113516445	 DTX1	 0.717358	 0.5367952	 0.180563	 0.016056516	 0.02909578	 Body	
cg05929129	 12	 132698423	 GALNT9	 0.637537	 0.8180473	 0.18051	 0.040151024	 0.04535861	 Body	
cg22543924	 12	 9065171	 	 0.748225	 0.567864	 0.180361	 0.039662413	 0.04526519	 	
cg16749614	 12	 43203955	 	 0.363636	 0.5267235	 0.163087	 0.005081544	 0.0184486	 	
cg26864661	 12	 76661181	 	 0.329825	 0.1789349	 0.15089	 0.024519194	 0.03518624	 	
cg18675623	 12	 108165306	 	 0.774635	 0.9189088	 0.144274	 0.007974389	 0.02317632	 	
cg12050434	 12	 43030949	 	 0.478141	 0.5882205	 0.11008	 0.025451687	 0.03571028	 	
cg15876417	 12	 40014132	 ABCD2	 0.311083	 0.2104378	 0.100646	 0.006819605	 0.02155622	 TSS1500	
cg20536971	 13	 100989375	 PCCA	 0.639244	 0.3457767	 0.293467	 0.00178004	 0.01576607	 Body	
cg12195446	 13	 110424497	 IRS2	 0.602628	 0.7640382	 0.16141	 0.044592222	 0.04730496	 Body	
cg16151959	 13	 42704154	 DGKH	 0.597791	 0.7570254	 0.159234	 0.031941558	 0.04047893	 Body	
cg23209353	 13	 21728944	 SKA3	 0.748578	 0.9055555	 0.156977	 0.007335443	 0.02216755	 3'UTR	
cg00587941	 13	 114741241	 	 0.775566	 0.9197742	 0.144208	 0.042582922	 0.04616919	 	
cg05918715	 13	 26622819	 SHISA2	 0.624138	 0.4839725	 0.140166	 0.036421154	 0.04335852	 Body	
cg21117559	 13	 33750464	 STARD13	 0.598822	 0.7271982	 0.128377	 0.001312928	 0.01349928	 5'UTR;Body	
cg08861434	 13	 112062652	 	 0.811541	 0.6949501	 0.116591	 0.038072259	 0.04475967	 	
cg17602481	 13	 114890515	 RASA3	 0.425003	 0.5350984	 0.110095	 0.022587514	 0.03357603	 Body	
cg24492140	 13	 34392781	 RFC3	 0.347627	 0.2429989	 0.104628	 0.013036336	 0.0276007	 Body	
ch.13.80513820F	 13	 81615819	 	 0.231031	 0.1267289	 0.104302	 0.00708215	 0.02173612	 	
ch.13.721274R	 13	 51955414	 INTS6	 0.183218	 0.083083	 0.100135	 0.005568123	 0.0184486	 Body	
cg16706502	 14	 31927974	 C14orf126	 0.597671	 0.3677487	 0.229923	 0.008531065	 0.02385308	 TSS1500	
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cg23489384	 14	 21199099	 	 0.431048	 0.6273493	 0.196302	 0.027078348	 0.03704749	 	
cg19555075	 14	 96038687	 	 0.486176	 0.646259	 0.160083	 0.035452879	 0.04313957	 	
cg09849871	 14	 90794949	 C14orf102	 0.590174	 0.7229734	 0.1328	 0.044724688	 0.04730496	 5'UTR;Body	
cg05057827	 14	 98670848	 	 0.535752	 0.6684415	 0.132689	 0.01828521	 0.03029176	 	
cg21123519	 14	 69095679	 	 0.528684	 0.3981703	 0.130513	 0.001257521	 0.01349928	 	
cg26419287	 14	 52482697	 NID2	 0.81378	 0.6968667	 0.116913	 0.028720062	 0.03852691	 Body	
cg02299497	 14	 69095570	 	 0.512602	 0.3987508	 0.113851	 0.002516138	 0.01729845	 	
cg15874048	 14	 45369753	 C14orf28	 0.776834	 0.8838401	 0.107007	 0.008090642	 0.02317632	 Body	
cg10193711	 14	 22917797	 	 0.286659	 0.1811468	 0.105512	 0.041879099	 0.04606701	 	
cg22688471	 15	 79788143	 	 0.434047	 0.6017523	 0.167706	 0.000441644	 0.01349928	 	
cg26261358	 15	 24043142	 	 0.439735	 0.303435	 0.1363	 0.042666802	 0.04616919	 	
cg18258571	 15	 31589348	 	 0.796013	 0.6773533	 0.11866	 0.007679102	 0.02270702	 	
cg16580742	 15	 81491460	 IL16	 0.660663	 0.7639649	 0.103302	 0.015903548	 0.02909578	 5'UTR	
cg22724998	 15	 60288082	 	 0.730351	 0.628135	 0.102216	 0.006922507	 0.02163283	 	
cg27370471	 15	 101932559	 PCSK6	 0.341079	 0.2390524	 0.102027	 0.0122265	 0.02733567	 Body	
cg06052372	 16	 83967808	 	 0.550688	 0.7668728	 0.216185	 0.012048532	 0.02733567	 	
cg08136432	 16	 88902276	 GALNS	 0.645258	 0.857102	 0.211844	 0.015854896	 0.02909578	 Body	
cg06520095	 16	 66458043	 	 0.461162	 0.6356145	 0.174452	 0.013384386	 0.0276007	 	
cg03940883	 16	 14380714	 	 0.522861	 0.3633758	 0.159485	 0.027537276	 0.03730419	 	
cg04963199	 16	 87868947	 SLC7A5	 0.76144	 0.6093043	 0.152135	 0.044041231	 0.04711273	 Body	
cg09351263	 16	 85864047	 	 0.358325	 0.20894	 0.149385	 0.030472362	 0.03966728	 	
cg08072101	 16	 7855274	 	 0.577858	 0.699078	 0.12122	 0.013091957	 0.0276007	 	
cg03444934	 16	 83171314	 CDH13	 0.637991	 0.5213834	 0.116607	 0.021667375	 0.03310293	 Body	
cg26764761	 16	 87682142	 JPH3	 0.822179	 0.7076038	 0.114575	 0.039668768	 0.04526519	 Body	
cg05248234	 17	 79495519	 FSCN2	 0.261872	 0.4925312	 0.230659	 0.015892741	 0.02909578	 1stExon;5'UTR	
cg26536949	 17	 57053	 	 0.599729	 0.7673243	 0.167595	 0.022438678	 0.03353607	 	
cg17225604	 17	 22193895	 	 0.626322	 0.7815582	 0.155236	 0.04718926	 0.0486562	 	
cg15189015	 17	 72707255	 RAB37;CD300LF	 0.311868	 0.190029	 0.121839	 0.00644531	 0.02061	 Body	
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cg01978703	 17	 973713	 ABR	 0.639712	 0.7612032	 0.121491	 0.035058278	 0.0430403	 Body	
cg07073561	 17	 79615824	 	 0.419376	 0.304418	 0.114958	 0.030724114	 0.03966728	 	
cg21997403	 17	 80436296	 NARF	 0.794696	 0.9057571	 0.111061	 0.018113968	 0.03018995	 Body	
cg00348031	 18	 77236278	 NFATC1	 0.575922	 0.7665373	 0.190615	 0.031487177	 0.04027247	 Body	
cg21848624	 18	 77219388	 NFATC1	 0.700386	 0.8837675	 0.183382	 0.011916185	 0.02730792	 Body	
cg02100397	 19	 646890	 	 0.446869	 0.6480127	 0.201144	 0.009409183	 0.02385308	 	
cg06688803	 19	 45457306	 CLPTM1	 0.595637	 0.7879626	 0.192326	 0.025131932	 0.03544247	 TSS1500	
cg18624102	 19	 39523840	 FBXO27	 0.594034	 0.4025173	 0.191516	 0.013778059	 0.0276007	 TSS1500	
cg02872767	 19	 1525453	 PLK5P	 0.67122	 0.8520397	 0.18082	 0.018108722	 0.03018995	 Body	
cg06684911	 19	 1792217	 ATP8B3	 0.804177	 0.647139	 0.157038	 0.01736245	 0.02991532	 Body	
cg06417478	 19	 12876846	 HOOK2	 0.299338	 0.4543382	 0.155	 0.047326404	 0.0486562	 Body	
cg15793258	 19	 4638503	 TNFAIP8L1	 0.695698	 0.8382843	 0.142586	 0.016382074	 0.02925311	 TSS1500	
cg04515524	 19	 17489148	 PLVAP	 0.048768	 0.1661439	 0.117376	 0.023245425	 0.03432775	 TSS1500	
cg03159252	 19	 639161	 FGF22	 0.698331	 0.8120778	 0.113746	 0.00355935	 0.01812632	 TSS1500	
cg15765251	 19	 888814	 MED16	 0.83004	 0.7199737	 0.110066	 0.003341693	 0.01801893	 Body	
cg17713488	 19	 10077935	 COL5A3	 0.64599	 0.5361738	 0.109816	 0.040905216	 0.04535861	 Body	
cg03162251	 19	 6230240	 MLLT1	 0.91844	 0.8179302	 0.100509	 0.041335932	 0.04565213	 Body	
cg03398919	 2	 173118470	 	 0.474625	 0.7394302	 0.264806	 0.004671297	 0.0184486	 	
cg23128510	 2	 175922785	 	 0.860042	 0.6571458	 0.202896	 0.001749153	 0.01576607	 	
cg18662228	 2	 236867804	 AGAP1	 0.422887	 0.6214159	 0.198528	 0.035894928	 0.04330606	 Body;Body	
cg18109430	 2	 26700908	 OTOF	 0.455952	 0.6410422	 0.18509	 0.013250986	 0.0276007	 5'UTR;1stExon	
cg17600943	 2	 207803547	 CPO	 0.530004	 0.6897406	 0.159736	 0.038411938	 0.04475967	 TSS1500	
cg15176306	 2	 224813276	 	 0.825838	 0.6763457	 0.149492	 0.042928436	 0.04616919	 	
cg07227024	 2	 202163482	 ALS2CR12	 0.131089	 0.278768	 0.147679	 0.000475902	 0.01349928	 Body	
cg06292076	 2	 105464104	 	 0.36969	 0.2521428	 0.117547	 0.008409699	 0.02384193	 	
cg19052272	 2	 3704530	 ALLC	 0.739728	 0.8551447	 0.115416	 0.00133052	 0.01349928	 TSS1500	
cg04021592	 2	 145280784	 	 0.471238	 0.3596413	 0.111597	 0.002902851	 0.01755103	 	
cg17375248	 2	 66811157	 	 0.347265	 0.2406005	 0.106665	 0.004949084	 0.0184486	 	
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cg16781264	 2	 101087575	 NMS	 0.170287	 0.2740618	 0.103775	 0.011871476	 0.02730792	 Body	
cg10481584	 2	 104708897	 	 0.652542	 0.7535819	 0.10104	 0.003726548	 0.0184486	 	
cg18757817	 2	 208572165	 	 0.778124	 0.6778044	 0.10032	 0.004511609	 0.0184486	 	
cg00704664	 20	 60500578	 CDH4	 0.345943	 0.5201933	 0.17425	 0.025603849	 0.03574141	 Body	
cg11979743	 20	 814510	 FAM110A	 0.056549	 0.2171236	 0.160575	 0.049933172	 0.04993317	 1stExon;5'UTR	
cg16310958	 20	 25281332	 ABHD12	 0.881089	 0.734672	 0.146418	 0.029395652	 0.03893373	 Body;3'UTR	
cg22181382	 20	 16559406	 	 0.737036	 0.8609042	 0.123868	 0.03228775	 0.04072996	 	
cg13877999	 20	 42194607	 SGK2	 0.832059	 0.7171075	 0.114952	 0.00545094	 0.0184486	 5'UTR;TSS200	
cg25155022	 20	 42285962	 	 0.141135	 0.2439266	 0.102792	 0.00873656	 0.02385308	 	
cg10463299	 20	 54987330	 CASS4	 0.246572	 0.144518	 0.102054	 0.005117605	 0.0184486	 5'UTR;1stExon	
cg07135405	 20	 62573077	 UCKL1;MIR1914	 0.669006	 0.5670104	 0.101996	 0.017805707	 0.03016535	 Body;TSS200	
cg03706056	 21	 37437565	 SETD4	 0.531861	 0.3202301	 0.211631	 0.014347968	 0.02808617	 TSS1500	
cg05200811	 21	 47581042	 	 0.60568	 0.7461273	 0.140447	 0.001374472	 0.01349928	 	
cg11766577	 21	 47581405	 C21orf56	 0.658041	 0.7862002	 0.128159	 0.001007457	 0.01349928	 Body	
cg10296238	 21	 47605174	 C21orf56	 0.426374	 0.3058234	 0.120551	 0.005318879	 0.0184486	 TSS1500	
cg07747299	 21	 47604052	 C21orf56	 0.293361	 0.1868764	 0.106484	 0.003174026	 0.01755103	 5'UTR	
cg13126279	 21	 47581558	 C21orf56	 0.684086	 0.7874304	 0.103344	 0.002959042	 0.01755103	 Body	
cg13306870	 22	 39527583	 CBX7	 0.480372	 0.2822077	 0.198164	 0.009185058	 0.02385308	 3'UTR	
cg11942221	 22	 29686496	 EWSR1	 0.789882	 0.8933278	 0.103446	 0.008822572	 0.02385308	 3'UTR;Body	
cg08977311	 3	 168308798	 C3orf50	 0.301847	 0.4850454	 0.183199	 0.009869976	 0.02401985	 Body	
cg20979384	 3	 22422855	 	 0.752234	 0.5764904	 0.175744	 0.009810956	 0.02401985	 	
cg25692928	 3	 139724110	 CLSTN2	 0.416727	 0.2501755	 0.166552	 0.003989108	 0.0184486	 Body	
cg22542451	 3	 182883005	 	 0.708108	 0.8613532	 0.153246	 0.010537683	 0.02541985	 	
cg26845082	 3	 13555664	 	 0.14589	 0.289814	 0.143924	 0.03163219	 0.04027247	 	
cg19996396	 3	 121946297	 CASR	 0.83526	 0.7166261	 0.118634	 0.023998369	 0.03491826	 5'UTR	
cg15116298	 3	 176070137	 	 0.714921	 0.8239822	 0.109061	 0.013040165	 0.0276007	 	
cg03865648	 3	 173113856	 	 0.365423	 0.2594162	 0.106007	 0.003008476	 0.01755103	 	
cg13143743	 3	 177570694	 	 0.557152	 0.6626737	 0.105521	 0.030109502	 0.03942911	 	
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cg06821582	 3	 133115942	 TMEM108	 0.642777	 0.7465181	 0.103741	 0.00919548	 0.02385308	 3'UTR	
cg07909498	 4	 79627477	 	 0.486084	 0.2800855	 0.205998	 0.001949259	 0.01576607	 	
cg08669168	 4	 53757661	 SCFD2	 0.835372	 0.6463968	 0.188975	 0.008062758	 0.02317632	 Body	
cg04277055	 4	 185749877	 	 0.77836	 0.937318	 0.158958	 0.015022586	 0.02888959	 	
cg07952421	 4	 69435601	 UGT2B15	 0.702727	 0.8546197	 0.151893	 0.016130477	 0.02909578	 TSS1500	
cg08395784	 4	 708242	 PCGF3	 0.886842	 0.7529529	 0.133889	 0.040320094	 0.04535861	 5'UTR	
cg26398228	 4	 33062845	 	 0.700324	 0.5668501	 0.133474	 0.017376575	 0.02991532	 	
cg12486486	 4	 69179905	 YTHDC1	 0.649333	 0.7736884	 0.124356	 0.006065826	 0.01962473	 Body	
cg17858192	 4	 16077807	 PROM1	 0.119375	 0.2420208	 0.122646	 0.013286271	 0.0276007	 5'UTR;TSS200	
cg08343347	 4	 36076000	 ARAP2	 0.674576	 0.7965573	 0.121981	 0.009490741	 0.02385308	 Body	
cg20419181	 4	 38063874	 TBC1D1	 0.226535	 0.1087169	 0.117818	 0.004324672	 0.0184486	 Body	
cg01218619	 4	 25090298	 	 0.131097	 0.2462354	 0.115139	 0.000880088	 0.01349928	 	
cg23057687	 4	 91760659	 TMSL3;FAM190A	 0.775173	 0.8900736	 0.1149	 0.00226485	 0.01639036	 TSS1500;Body	
cg11459852	 4	 176983371	 	 0.611287	 0.7149338	 0.103646	 0.027445628	 0.03730419	 	
cg09976051	 4	 178362394	 AGA	 0.516853	 0.6201499	 0.103296	 0.014400547	 0.02808617	 Body	
cg20311846	 4	 77356250	 SHROOM3	 0.504259	 0.40202	 0.102239	 0.003549557	 0.01812632	 TSS200	
cg05791544	 4	 129697855	 	 0.680316	 0.7817073	 0.101391	 0.023342866	 0.03432775	 	
ch.4.3427878R	 4	 186088653	 KIAA1430	 0.5876	 0.4872309	 0.100369	 0.004810046	 0.0184486	 Body	
cg22071943	 5	 1225434	 SLC6A18	 0.368136	 0.6436527	 0.275517	 0.002768542	 0.01755103	 TSS200	
cg13972557	 5	 116075820	 	 0.41291	 0.5923241	 0.179414	 0.035368203	 0.04313957	 	
cg20381404	 5	 34008215	 AMACR	 0.270747	 0.1127238	 0.158023	 0.034135756	 0.04247662	 5'UTR;1stExon	
cg09101062	 5	 43487508	 C5orf34	 0.629164	 0.7841494	 0.154986	 0.046098005	 0.04801876	 Body	
cg06611487	 5	 115284110	 	 0.428588	 0.5766908	 0.148103	 0.02135849	 0.03299767	 	
cg07021532	 5	 178322737	 ZFP2	 0.51678	 0.3795244	 0.137256	 0.019769955	 0.03166502	 TSS200	
cg00631759	 5	 178549790	 ADAMTS2	 0.693457	 0.823285	 0.129828	 0.013850533	 0.0276007	 Body	
cg17386240	 5	 135384080	 TGFBI	 0.750006	 0.6253156	 0.124691	 0.04233129	 0.04616919	 Body	
cg24861747	 5	 1228214	 SLC6A18	 0.38044	 0.498622	 0.118182	 0.034955787	 0.0430403	 Body	
cg23404351	 5	 21751337	 CDH12	 0.618356	 0.727346	 0.10899	 0.002190382	 0.01639036	 3'UTR	
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cg23208285	 5	 131879579	 IL5	 0.463846	 0.5711815	 0.107335	 0.00113185	 0.01349928	 TSS1500	
cg16362014	 5	 118321556	 DTWD2	 0.831087	 0.9335787	 0.102492	 0.020127963	 0.03183873	 Body	
cg15602423	 6	 32552095	 HLA-DRB1	 0.387082	 0.658822	 0.27174	 0.004339504	 0.0184486	 Body	
cg19774683	 6	 32522400	 HLA-DRB6	 0.576704	 0.355419	 0.221285	 0.039276661	 0.04526519	 Body	
cg13423887	 6	 32632694	 HLA-DQB1	 0.294241	 0.4998702	 0.205629	 0.004160722	 0.0184486	 Body	
cg01341801	 6	 32489203	 HLA-DRB5	 0.454757	 0.2494189	 0.205338	 0.040802068	 0.04535861	 Body	
cg14645244	 6	 32552205	 HLA-DRB1	 0.317864	 0.5210373	 0.203174	 0.017405278	 0.02991532	 Body	
cg15982117	 6	 32552106	 HLA-DRB1	 0.491871	 0.6840959	 0.192224	 0.01980503	 0.03166502	 Body	
cg09949906	 6	 32552350	 HLA-DRB1	 0.50703	 0.6988308	 0.191801	 0.028860633	 0.03852754	 Body	
cg10568066	 6	 30039442	 RNF39	 0.559707	 0.3719741	 0.187733	 2.07E-05	 0.00284003	 Body;Body	
cg09139047	 6	 32552042	 HLA-DRB1	 0.575764	 0.7543663	 0.178602	 0.02807999	 0.03785293	 Body	
cg12633154	 6	 30039435	 RNF39	 0.476967	 0.3096604	 0.167306	 7.72E-05	 0.00531071	 Body	
cg08578320	 6	 32552039	 HLA-DRB1	 0.588386	 0.7542884	 0.165903	 0.013641217	 0.0276007	 Body	
cg25644740	 6	 29894152	 HCG4P6	 0.612309	 0.4482485	 0.16406	 0.018615396	 0.0306541	 TSS1500	
cg13401893	 6	 30039432	 RNF39	 0.508331	 0.3499875	 0.158344	 5.96E-05	 0.00531071	 Body	
cg26566189	 6	 31096127	 PSORS1C1	 0.26758	 0.1107795	 0.156801	 0.007113638	 0.02173612	 5'UTR	
cg11082635	 6	 166856074	 RPS6KA2	 0.559012	 0.7146204	 0.155608	 0.044200307	 0.04711273	 Body	
cg01502466	 6	 29898751	 	 0.619984	 0.7718625	 0.151879	 0.048782754	 0.0495028	 	
cg04520169	 6	 29894195	 HCG4P6	 0.524282	 0.3766725	 0.14761	 0.009649986	 0.02390762	 TSS1500	
cg17129519	 6	 30618299	 C6orf136	 0.944813	 0.7976128	 0.1472	 0.002252759	 0.01639036	 Body	
cg10632894	 6	 32552453	 HLA-DRB1	 0.680863	 0.8247369	 0.143874	 0.038349852	 0.04475967	 Body	
cg07382347	 6	 30039408	 RNF39	 0.294639	 0.1527094	 0.141929	 0.000675493	 0.01349928	 Body	
ch.6.2893423F	 6	 150056792	 NUP43	 0.346538	 0.2055566	 0.140981	 0.002749507	 0.01755103	 Body	
cg00101728	 6	 2953027	 SERPINB6	 0.683052	 0.5434986	 0.139553	 0.013641541	 0.0276007	 Body	
cg26981746	 6	 32490012	 HLA-DRB5	 0.632837	 0.5007592	 0.132078	 0.03619832	 0.04330606	 Body	
cg05082466	 6	 2953123	 SERPINB6	 0.748285	 0.617495	 0.13079	 0.005338464	 0.0184486	 Body	
cg12015991	 6	 32490043	 HLA-DRB5	 0.777577	 0.6491037	 0.128473	 0.022145049	 0.03346093	 Body	
cg00689685	 6	 32139812	 AGPAT1	 0.855609	 0.729527	 0.126082	 0.033262206	 0.04176761	 5'UTR	
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cg10930308	 6	 30039476	 RNF39	 0.317058	 0.1925099	 0.124548	 0.000844306	 0.01349928	 Body	
cg03343571	 6	 30039175	 RNF39	 0.333766	 0.212244	 0.121522	 0.000565339	 0.01349928	 Body	
cg00807871	 6	 37617124	 MDGA1	 0.530052	 0.4092444	 0.120808	 0.020145232	 0.03183873	 Body	
cg13185413	 6	 30039202	 RNF39	 0.325802	 0.2064434	 0.119358	 0.001239273	 0.01349928	 Body	
cg17416722	 6	 32554385	 HLA-DRB1	 0.27086	 0.1522284	 0.118632	 0.035962454	 0.04330606	 Body	
cg23237314	 6	 29894197	 HCG4P6	 0.491808	 0.3743178	 0.11749	 0.011159773	 0.02668642	 TSS1500	
cg14494781	 6	 2615341	 	 0.747282	 0.8646492	 0.117367	 0.019087815	 0.0311596	 	
cg09279736	 6	 30039403	 RNF39	 0.403957	 0.2868337	 0.117124	 0.000450969	 0.01349928	 Body	
cg13838276	 6	 118158769	 	 0.350411	 0.4638685	 0.113458	 0.004597123	 0.0184486	 	
cg19178509	 6	 30850581	 DDR1	 0.447425	 0.3385171	 0.108908	 0.026587704	 0.03657868	 TSS1500	
cg00947782	 6	 30039142	 RNF39	 0.209929	 0.1017924	 0.108137	 0.000978311	 0.01349928	 Body	
cg06764333	 6	 133564466	 EYA4	 0.189686	 0.0821493	 0.107537	 0.004498488	 0.0184486	 5'UTR	
cg16078649	 6	 30039466	 RNF39	 0.450735	 0.3456927	 0.105042	 0.000632921	 0.01349928	 Body	
cg01360627	 6	 31544931	 TNF	 0.360477	 0.4640847	 0.103608	 0.002891433	 0.01755103	 Body	
cg08491487	 6	 30039130	 RNF39	 0.180668	 0.077568	 0.1031	 0.002686581	 0.01755103	 Body	
cg09637172	 6	 31545252	 TNF	 0.555132	 0.6581686	 0.103036	 0.007638552	 0.02270702	 Body	
cg04627110	 6	 29635507	 MOG	 0.784873	 0.6833891	 0.101484	 0.040490044	 0.04535861	 3'UTR;Body	
cg19383211	 6	 32527588	 HLA-DRB6	 0.823525	 0.7226065	 0.100918	 0.009541233	 0.02385308	 Body	
cg23403836	 7	 1616229	 KIAA1908	 0.750865	 0.4355525	 0.315312	 1.60E-05	 0.00284003	 Body	
cg13211008	 7	 158541253	 ESYT2	 0.197682	 0.3921768	 0.194495	 0.017879828	 0.03016535	 Body	
cg07846874	 7	 11568529	 THSD7A	 0.589262	 0.776991	 0.187729	 0.015589787	 0.02909578	 Body	
cg22953237	 7	 31425682	 	 0.697235	 0.5135543	 0.183681	 0.016594491	 0.02925311	 	
cg09281805	 7	 4751840	 FOXK1	 0.722338	 0.5407225	 0.181615	 0.024694342	 0.03518624	 Body	
cg27468880	 7	 965995	 ADAP1	 0.75221	 0.9269222	 0.174712	 0.038245078	 0.04475967	 Body	
cg13279926	 7	 157464161	 PTPRN2	 0.688199	 0.8381708	 0.149972	 0.000908014	 0.01349928	 Body	
cg07249765	 7	 4244643	 SDK1	 0.737384	 0.8765873	 0.139203	 0.049487898	 0.0498328	 Body	
cg05917273	 7	 116200522	 CAV1	 0.591951	 0.7247149	 0.132764	 0.024869568	 0.03525325	 3'UTR	
cg21823080	 7	 148096241	 CNTNAP2	 0.497508	 0.3699064	 0.127601	 0.036219616	 0.04330606	 Body	
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cg08355157	 7	 158809128	 LOC154822	 0.476048	 0.6012454	 0.125197	 0.020692036	 0.03251606	 Body	
cg19665696	 7	 949154	 ADAP1	 0.252647	 0.3680813	 0.115434	 0.011829421	 0.02730792	 Body	
cg06096382	 7	 43151725	 HECW1	 0.611506	 0.7252477	 0.113742	 0.038769732	 0.04498598	 TSS1500	
cg04130408	 7	 73703236	 CLIP2	 0.499443	 0.6114619	 0.112019	 0.011679302	 0.02730792	 TSS1500	
cg25612754	 7	 948567	 ADAP1	 0.241761	 0.3479876	 0.106227	 0.00132084	 0.01349928	 Body	
cg23144994	 7	 141431499	 FLJ40852	 0.655606	 0.7597921	 0.104187	 0.004297515	 0.0184486	 Body	
cg09506675	 7	 112727914	 GPR85	 0.603872	 0.5003716	 0.103501	 0.040284083	 0.04535861	 TSS1500;TSS200	
cg00981661	 7	 130984525	 MKLN1	 0.610023	 0.7134876	 0.103465	 0.004487339	 0.0184486	 Body	
cg19590115	 7	 157632890	 PTPRN2	 0.811536	 0.9149834	 0.103447	 0.005563624	 0.0184486	 Body	
cg03453431	 7	 157225567	 	 0.327601	 0.2248833	 0.102718	 0.001869502	 0.01576607	 	
cg12581298	 7	 1080836	 C7orf50	 0.856163	 0.7534656	 0.102698	 0.020991344	 0.03279897	 Body	
cg01827933	 7	 93960063	 	 0.401166	 0.2986182	 0.102547	 0.001616886	 0.01533254	 	
cg05875700	 8	 638208	 ERICH1	 0.120484	 0.3191762	 0.198692	 0.004547501	 0.0184486	 Body	
cg01053087	 8	 637909	 ERICH1	 0.163553	 0.3298633	 0.16631	 0.002127504	 0.01639036	 Body	
cg22029879	 8	 1790861	 ARHGEF10	 0.811315	 0.6783574	 0.132957	 0.04291427	 0.04616919	 5'UTR	
cg20601736	 8	 652315	 ERICH1	 0.885785	 0.7551862	 0.130599	 0.016011637	 0.02909578	 Body	
cg12641240	 8	 638330	 ERICH1	 0.068507	 0.1937307	 0.125224	 0.017514624	 0.02991628	 Body	
cg08682625	 8	 128470793	 LOC727677	 0.443527	 0.3212344	 0.122293	 0.000960086	 0.01349928	 Body	
cg04554929	 8	 105342491	 	 0.321258	 0.440364	 0.119106	 0.022002308	 0.03342892	 	
cg04687040	 8	 142427117	 	 0.565232	 0.6839672	 0.118735	 0.019148992	 0.0311596	 	
cg19128026	 8	 1792615	 ARHGEF10	 0.750262	 0.8583527	 0.108091	 0.008858247	 0.02385308	 Body	
cg05023707	 8	 39845127	 IDO2	 0.911901	 0.8059079	 0.105993	 0.003481524	 0.01812632	 Body	
cg21234082	 9	 124363848	 DAB2IP	 0.718972	 0.5899272	 0.129045	 0.022310569	 0.03352681	 Body	
cg10384133	 9	 45733081	 	 0.509316	 0.636885	 0.127569	 0.026563786	 0.03657868	 	
ch.9.25704165R	 9	 25714165	 	 0.207643	 0.0999138	 0.10773	 0.006062024	 0.01962473	 	
cg13990129	 9	 108311111	 FSD1L	 0.751863	 0.854377	 0.102514	 0.005248116	 0.0184486	 3'UTR	

Bold	font	indicates	probes	which	are	common	between	this	study	and	our	previous	work	(98).	
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Table	A3.2:	RRMS	DMRs	within	the	MHC	locus	

Probe ID Chr Position Gene Median 
(case) 

Median 
(control) 

Δmeth Adj. p 
value 

p FDR Feature 

cg00101728	 6	 2953027	 SERPINB6	 0.543499	 0.683052	 0.139553	 0.013642	 0.027601	 Body	
cg05082466	 6	 2953123	 SERPINB6	 0.617495	 0.748285	 0.13079	 0.005338	 0.018449	 Body	
cg25644740	 6	 29894152	 HCG4P6	 0.448248	 0.612309	 0.16406	 0.018615	 0.030654	 TSS1500	
cg04520169	 6	 29894195	 HCG4P6	 0.376672	 0.524282	 0.14761	 0.00965	 0.023908	 TSS1500	
cg23237314	 6	 29894197	 HCG4P6	 0.374318	 0.491808	 0.11749	 0.01116	 0.026686	 TSS1500	
cg15602423	 6	 32552095	 HLA-DRB1	 0.658822	 0.387082	 -0.27174	 0.00434	 0.018449	 Body	
cg14645244	 6	 32552205	 HLA-DRB1	 0.521037	 0.317864	 -0.20317	 0.017405	 0.029915	 Body	
cg15982117	 6	 32552106	 HLA-DRB1	 0.684096	 0.491871	 -0.19222	 0.019805	 0.031665	 Body	
cg09949906	 6	 32552350	 HLA-DRB1	 0.698831	 0.50703	 -0.1918	 0.028861	 0.038528	 Body	
cg09139047	 6	 32552042	 HLA-DRB1	 0.754366	 0.575764	 -0.1786	 0.02808	 0.037853	 Body	
cg08578320	 6	 32552039	 HLA-DRB1	 0.754288	 0.588386	 -0.1659	 0.013641	 0.027601	 Body	
cg10632894	 6	 32552453	 HLA-DRB1	 0.824737	 0.680863	 -0.14387	 0.03835	 0.04476	 Body	
cg17416722	 6	 32554385	 HLA-DRB1	 0.152228	 0.27086	 0.118632	 0.035962	 0.043306	 Body	
cg01341801	 6	 32489203	 HLA-DRB5	 0.249419	 0.454757	 0.205338	 0.040802	 0.045359	 Body	
cg26981746	 6	 32490012	 HLA-DRB5	 0.500759	 0.632837	 0.132078	 0.036198	 0.043306	 Body	
cg12015991	 6	 32490043	 HLA-DRB5	 0.649104	 0.777577	 0.128473	 0.022145	 0.033461	 Body	
cg19774683	 6	 32522400	 HLA-DRB6	 0.355419	 0.576704	 0.221285	 0.039277	 0.045265	 Body	
cg19383211	 6	 32527588	 HLA-DRB6	 0.722607	 0.823525	 0.100918	 0.009541	 0.023853	 Body	
cg10568066	 6	 30039442	 RNF39	 0.371974	 0.559707	 0.187733	 2.07E-05	 0.00284	 Body	
cg12633154	 6	 30039435	 RNF39	 0.30966	 0.476967	 0.167306	 7.72E-05	 0.005311	 Body	
cg13401893	 6	 30039432	 RNF39	 0.349987	 0.508331	 0.158344	 5.96E-05	 0.005311	 Body	
cg07382347	 6	 30039408	 RNF39	 0.152709	 0.294639	 0.141929	 0.000675	 0.013499	 Body	
cg10930308	 6	 30039476	 RNF39	 0.19251	 0.317058	 0.124548	 0.000844	 0.013499	 Body	
cg03343571	 6	 30039175	 RNF39	 0.212244	 0.333766	 0.121522	 0.000565	 0.013499	 Body	
cg13185413	 6	 30039202	 RNF39	 0.206443	 0.325802	 0.119358	 0.001239	 0.013499	 Body	
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cg09279736	 6	 30039403	 RNF39	 0.286834	 0.403957	 0.117124	 0.000451	 0.013499	 Body	
cg00947782	 6	 30039142	 RNF39	 0.101792	 0.209929	 0.108137	 0.000978	 0.013499	 Body	
cg16078649	 6	 30039466	 RNF39	 0.345693	 0.450735	 0.105042	 0.000633	 0.013499	 Body	
cg08491487	 6	 30039130	 RNF39	 0.077568	 0.180668	 0.1031	 0.002687	 0.017551	 Body	

Bold	font	indicates	probes	which	are	common	between	this	study	and	our	previous	work	(98).	
	
	
Table	A3.3:	RRMS	DMRs	outside	the	MHC	locus	

Probe ID Chr Position Gene Median 
(case) 

Median 
(control) 

Δmeth Adj. p 
value 

p FDR Feature 

cg11766577	 21	 47581405	 C21orf56	 0.7862	 0.658041	 -0.12816	 0.001007	 0.013499	 Body	
cg10296238	 21	 47605174	 C21orf56	 0.305823	 0.426374	 0.120551	 0.005319	 0.018449	 TSS1500	
cg07747299	 21	 47604052	 C21orf56	 0.186876	 0.293361	 0.106484	 0.003174	 0.017551	 5'UTR	
cg13126279	 21	 47581558	 C21orf56	 0.78743	 0.684086	 -0.10334	 0.002959	 0.017551	 Body	
cg05875700	 8	 638208	 ERICH1	 0.319176	 0.120484	 -0.19869	 0.004548	 0.018449	 Body	
cg01053087	 8	 637909	 ERICH1	 0.329863	 0.163553	 -0.16631	 0.002128	 0.01639	 Body	
cg20601736	 8	 652315	 ERICH1	 0.755186	 0.885785	 0.130599	 0.016012	 0.029096	 Body	
cg12641240	 8	 638330	 ERICH1	 0.193731	 0.068507	 -0.12522	 0.017515	 0.029916	 Body	
cg26354017	 1	 2.06E+08	 PM20D1	 0.410684	 0.598945	 0.188261	 0.014094	 0.027884	 1stExon	
cg17178900	 1	 2.06E+08	 PM20D1	 0.469825	 0.646248	 0.176423	 0.013796	 0.027601	 Body	
cg14159672	 1	 2.06E+08	 PM20D1	 0.443619	 0.616326	 0.172707	 0.017227	 0.029915	 1stExon	
cg11965913	 1	 2.06E+08	 PM20D1	 0.302544	 0.466796	 0.164252	 0.024621	 0.035186	 TSS200	
cg24503407	 1	 2.06E+08	 PM20D1	 0.403586	 0.560205	 0.156619	 0.014935	 0.02889	 TSS1500	
cg14893161	 1	 2.06E+08	 PM20D1	 0.328428	 0.497891	 0.169463	 0.008958	 0.023853	 5'UTR;1stExon	
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Table A3.4: All differentially methylated SPMS probes 
Probe	ID	 Chr	 Position	 Gene	 Median	

(case)	
Median	
(control)	

Δmeth	 Adj	p	
value	

P	FDR	 Feature	

cg06182923	 1	 33985406	 CSMD2	 0.613448	 0.728753	 0.115305	 0.000512	 0.015791	 Body	
cg20802616	 1	 211590292	 C1orf97	 0.426296	 0.536186	 0.10989	 0.000818	 0.015791	 Body	
cg07584620	 1	 2265881	 MORN1	 0.579576	 0.82636	 0.246784	 0.003764	 0.022817	 Body	
cg04798314	 1	 246668601	 SMYD3	 0.760551	 0.492173	 -0.26838	 0.00745	 0.027175	 Body	
cg15385476	 1	 196112818	 	 0.681472	 0.802111	 0.120639	 0.01076	 0.03144	 	
cg05392448	 1	 2266933	 MORN1	 0.668357	 0.809182	 0.140825	 0.015164	 0.034438	 Body	
cg14669863	 1	 155247706	 HCN3	 0.168098	 0.048754	 -0.11934	 0.021975	 0.039487	 Body	
cg05376227	 1	 171111193	 FMO6P	 0.610546	 0.720282	 0.109736	 0.023138	 0.040449	 Body	
cg16675581	 1	 19637256	 AKR7A2;PQLC2	 0.64618	 0.791704	 0.145524	 0.026244	 0.042515	 Body;TSS1500	
cg03961283	 1	 223566761	 C1orf65	 0.217803	 0.318535	 0.100732	 0.027373	 0.042902	 5'UTR;1stExon	
cg25771854	 1	 247420421	 VN1R5	 0.836948	 0.725852	 -0.1111	 0.029601	 0.04386	 1stExon	
cg13928473	 1	 6063654	 	 0.321326	 0.512242	 0.190916	 0.035688	 0.046343	 	
cg17753661	 1	 26441637	 PDIK1L	 0.812072	 0.916511	 0.10444	 0.04249	 0.048096	 Body	
cg20821187	 1	 200452917	 	 0.53509	 0.646455	 0.111365	 0.048929	 0.049693	 	
cg04750100	 2	 136595281	 LCT	 0.449045	 0.347519	 -0.10153	 0.000668	 0.015791	 TSS1500	
cg23596425	 2	 1494263	 TPO	 0.715555	 0.841943	 0.126387	 0.001234	 0.017112	 Body	
cg24305906	 2	 241352106	 	 0.716169	 0.854922	 0.138752	 0.001268	 0.017112	 	
cg08610773	 2	 184896169	 	 0.778373	 0.880754	 0.102381	 0.001495	 0.018181	 	
cg17455348	 2	 213406960	 	 0.390888	 0.596972	 0.206084	 0.00225	 0.019771	 	
cg20325573	 2	 236234204	 	 0.653175	 0.757113	 0.103938	 0.002563	 0.020762	 	
cg20862283	 2	 156838956	 	 0.564822	 0.666258	 0.101436	 0.002656	 0.020816	 	
cg05373263	 2	 3063115	 	 0.723954	 0.833038	 0.109084	 0.004048	 0.022817	 	
cg03489016	 2	 230124603	 PID1	 0.709549	 0.833569	 0.12402	 0.004874	 0.0252	 Body	
cg15837943	 2	 231734413	 ITM2C	 0.411754	 0.669383	 0.257629	 0.005362	 0.025548	 Body	
cg03028786	 2	 224897425	 SERPINE2	 0.638894	 0.785711	 0.146818	 0.006365	 0.026666	 5'UTR;TSS1500;Body	
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cg18663897	 2	 240900096	 NDUFA10	 0.585099	 0.795998	 0.210899	 0.01179	 0.03144	 3'UTR	
cg01290856	 2	 134324896	 NCKAP5	 0.718362	 0.873496	 0.155134	 0.023336	 0.040505	 5'UTR	
cg22836174	 2	 228231970	 TM4SF20	 0.608463	 0.814805	 0.206342	 0.027691	 0.042902	 Body	
cg10224537	 2	 168673805	 B3GALT1	 0.678081	 0.817123	 0.139043	 0.03421	 0.046044	 TSS1500	
cg14448393	 2	 164471195	 FIGN	 0.699979	 0.593757	 -0.10622	 0.035243	 0.046044	 Body	
cg18757817	 2	 208572165	 	 0.613568	 0.721836	 0.108268	 0.040246	 0.047246	 	
cg14973360	 2	 9800511	 	 0.847607	 0.953549	 0.105942	 0.042563	 0.048096	 	
cg18662228	 2	 236867804	 AGAP1	 0.310465	 0.55812	 0.247655	 0.045914	 0.049368	 Body	
cg07733481	 3	 122694286	 SEMA5B	 0.203631	 0.092489	 -0.11114	 0.00091	 0.015791	 5'UTR	
cg04245305	 3	 195940754	 	 0.7168	 0.957329	 0.240529	 0.001616	 0.018181	 	
cg07093060	 3	 174092757	 	 0.680138	 0.471123	 -0.20901	 0.001721	 0.018181	 	
cg27423959	 3	 126945870	 	 0.287779	 0.456109	 0.16833	 0.002074	 0.01938	 	
cg15001930	 3	 124306820	 KALRN	 0.578064	 0.769411	 0.191348	 0.003052	 0.022817	 Body	
cg05674046	 3	 64211994	 PRICKLE2	 0.803021	 0.909884	 0.106862	 0.003421	 0.022817	 TSS1500	
cg04814784	 3	 10182561	 VHL	 0.582548	 0.286998	 -0.29555	 0.003486	 0.022817	 TSS1500	
cg24524379	 3	 46600244	 LRRC2	 0.234935	 0.338452	 0.103517	 0.007604	 0.027175	 5'UTR	
cg06051312	 3	 73045440	 PPP4R2	 0.824415	 0.935549	 0.111135	 0.007899	 0.027818	 TSS1500	
cg04156077	 3	 149421196	 WWTR1	 0.557934	 0.745576	 0.187642	 0.014555	 0.034195	 TSS200	
cg11108991	 3	 178984910	 KCNMB3	 0.570648	 0.677315	 0.106668	 0.014777	 0.034199	 TSS200	
cg05126514	 3	 49697458	 BSN	 0.394914	 0.520379	 0.125465	 0.015634	 0.034566	 Body	
cg10666341	 3	 119348585	 PLA1A	 0.856089	 0.660493	 -0.1956	 0.021421	 0.039487	 3'UTR	
cg20187719	 3	 13691967	 LOC285375	 0.143143	 0.366947	 0.223804	 0.02786	 0.042902	 TSS1500	
cg19726630	 3	 32400704	 CMTM8	 0.166092	 0.050292	 -0.1158	 0.043851	 0.048598	 Body	
cg25377865	 4	 72669944	 	 0.647265	 0.749341	 0.102076	 0.001077	 0.017112	 	
cg01406776	 4	 8386748	 ACOX3	 0.656012	 0.868224	 0.212212	 0.001633	 0.018181	 Body	
cg03271827	 4	 726053	 PCGF3	 0.437336	 0.628997	 0.191662	 0.006236	 0.026666	 5'UTR	
cg01503299	 4	 2963264	 NOP14	 0.588444	 0.692817	 0.104373	 0.01625	 0.035256	 Body	
cg03640465	 4	 10042842	 SLC2A9	 0.438843	 0.688466	 0.249623	 0.028802	 0.043203	 TSS1500	
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cg24794857	 4	 187113578	 CYP4V2	 0.228094	 0.33663	 0.108536	 0.03058	 0.044754	 Body	
cg16301894	 4	 129389744	 	 0.584892	 0.703459	 0.118567	 0.031364	 0.044833	 	
cg27251155	 4	 8155589	 ABLIM2	 0.820801	 0.922974	 0.102173	 0.034918	 0.046044	 Body	
cg04118610	 4	 62707027	 LPHN3	 0.561343	 0.67866	 0.117316	 0.041099	 0.047479	 Body	
cg04277055	 4	 185749877	 	 0.806784	 0.940016	 0.133232	 0.042915	 0.048096	 	
cg11553311	 5	 66541588	 	 0.387355	 0.551136	 0.163781	 0.000411	 0.015791	 	
cg11791078	 5	 36273196	 RANBP3L	 0.516162	 0.749421	 0.233259	 0.006939	 0.027047	 Body	
cg09819502	 5	 36242508	 C5orf33	 0.076951	 0.33556	 0.258609	 0.007012	 0.027047	 TSS1500	
cg00268547	 5	 2179563	 	 0.643432	 0.748968	 0.105536	 0.011371	 0.03144	 	
cg01231141	 5	 178692691	 ADAMTS2	 0.453387	 0.557818	 0.104431	 0.01223	 0.03144	 Body	
cg09146088	 5	 145305089	 	 0.536783	 0.792077	 0.255295	 0.012237	 0.03144	 	
cg24844518	 5	 156811669	 CYFIP2	 0.822607	 0.55309	 -0.26952	 0.018005	 0.037033	 Body	
cg07601741	 5	 153160425	 GRIA1	 0.570811	 0.680244	 0.109433	 0.018329	 0.037033	 Body	
cg06422277	 5	 63458646	 	 0.699619	 0.841201	 0.141582	 0.020188	 0.038994	 	
cg18236584	 5	 151476553	 	 0.627348	 0.760146	 0.132798	 0.021834	 0.039487	 	
cg25673075	 5	 111963982	 	 0.46002	 0.664048	 0.204028	 0.021997	 0.039487	 	
cg13653328	 5	 148520669	 ABLIM3	 0.72607	 0.494983	 -0.23109	 0.022751	 0.040062	 TSS1500	
cg17534070	 5	 168195355	 SLIT3;MIR218-2	 0.652943	 0.779386	 0.126443	 0.024362	 0.041424	 Body;TSS200	
cg04480106	 5	 72934606	 RGNEF	 0.701768	 0.81463	 0.112861	 0.024889	 0.041424	 5'UTR	
cg00546757	 5	 170845058	 	 0.547751	 0.742788	 0.195037	 0.027243	 0.042902	 	
cg18803147	 5	 2743124	 	 0.617812	 0.505722	 -0.11209	 0.028445	 0.043009	 	
cg12562822	 5	 1219873	 SLC6A19	 0.244169	 0.40093	 0.156761	 0.034624	 0.046044	 Body	
cg09434603	 5	 499552	 SLC9A3	 0.708705	 0.819674	 0.110969	 0.039592	 0.047225	 Body	
cg13913990	 5	 172970	 PLEKHG4B	 0.774701	 0.577771	 -0.19693	 0.043999	 0.048598	 Body	
cg24805360	 5	 77930038	 LHFPL2	 0.38465	 0.546793	 0.162143	 0.048235	 0.049457	 5'UTR	
cg17666981	 6	 28878192	 TRIM27	 0.80185	 0.918272	 0.116422	 0.000132	 0.012583	 Body	
cg24867279	 6	 28853021	 	 0.440899	 0.559996	 0.119097	 0.00119	 0.017112	 	
cg13872627	 6	 31238036	 HLA-C	 0.467414	 0.619214	 0.1518	 0.003559	 0.022817	 Body	
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cg03115532	 6	 28185726	 LOC222699	 0.653625	 0.822196	 0.168571	 0.009168	 0.028934	 Body	
cg23069046	 6	 6543402	 LOC285780	 0.684474	 0.789554	 0.10508	 0.009168	 0.028934	 Body	
cg25716013	 6	 75954053	 COX7A2	 0.603378	 0.707249	 0.103871	 0.009335	 0.029081	 TSS1500	
cg13185413	 6	 30039202	 RNF39	 0.406628	 0.277418	 -0.12921	 0.011261	 0.03144	 Body	
cg13604933	 6	 40145993	 	 0.850344	 0.651854	 -0.19849	 0.01739	 0.036478	 	
cg20866694	 6	 27181670	 	 0.414254	 0.292546	 -0.12171	 0.017875	 0.037033	 	
cg24969496	 6	 32606845	 HLA-DQA1	 0.522875	 0.738345	 0.21547	 0.02038	 0.038994	 Body	
cg06249604	 6	 30039206	 RNF39	 0.266341	 0.160964	 -0.10538	 0.026962	 0.042877	 Body	
cg00947782	 6	 30039142	 RNF39	 0.255623	 0.148406	 -0.10722	 0.030244	 0.044541	 Body	
cg10930308	 6	 30039476	 RNF39	 0.373728	 0.263968	 -0.10976	 0.032706	 0.04594	 Body	
cg14782559	 6	 33131893	 COL11A2	 0.587449	 0.758851	 0.171401	 0.034454	 0.046044	 Body	
cg14926196	 6	 37616482	 MDGA1	 0.374123	 0.502335	 0.128212	 0.03798	 0.047033	 Body	
cg03343571	 6	 30039175	 RNF39	 0.37883	 0.277639	 -0.10119	 0.038325	 0.047033	 Body	
cg15383120	 6	 291909	 DUSP22	 0.355595	 0.485997	 0.130402	 0.038696	 0.047033	 TSS200	
cg12633154	 6	 30039435	 RNF39	 0.550688	 0.435403	 -0.11529	 0.041129	 0.047479	 Body	
cg15820961	 6	 32558459	 HLA-DRB1	 0.741706	 0.863241	 0.121535	 0.04313	 0.048096	 TSS1500	
cg11235426	 6	 292522	 DUSP22	 0.323171	 0.432058	 0.108887	 0.044658	 0.048663	 1stExon;5'UTR	
cg02379549	 6	 36887307	 C6orf89	 0.896679	 0.777463	 -0.11922	 0.045231	 0.049067	 Body	
cg07365741	 6	 170478434	 	 0.613454	 0.456203	 -0.15725	 0.04713	 0.049385	 	
cg13401893	 6	 30039432	 RNF39	 0.577691	 0.469281	 -0.10841	 0.047292	 0.049385	 Body	
cg08491487	 6	 30039130	 RNF39	 0.225518	 0.124175	 -0.10134	 0.047621	 0.049385	 Body	
cg18110333	 6	 292329	 DUSP22	 0.336236	 0.480119	 0.143883	 0.047942	 0.049385	 1stExon;5'UTR	
cg15744124	 6	 32306089	 C6orf10	 0.695888	 0.828451	 0.132563	 0.049399	 0.049693	 Body	
cg21901928	 7	 55139847	 EGFR	 0.664807	 0.801655	 0.136848	 0.000164	 0.012583	 Body	
cg14170201	 7	 155191709	 	 0.658967	 0.891026	 0.23206	 0.000847	 0.015791	 	
cg09756125	 7	 158250978	 PTPRN2	 0.741593	 0.514513	 -0.22708	 0.001714	 0.018181	 Body	
cg18850127	 7	 39170497	 POU6F2	 0.679178	 0.501934	 -0.17724	 0.003236	 0.022817	 Body	
cg20302533	 7	 39170763	 POU6F2	 0.684205	 0.531256	 -0.15295	 0.004059	 0.022817	 Body	
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cg00859877	 7	 158246263	 PTPRN2	 0.592679	 0.85617	 0.263491	 0.006854	 0.027047	 Body	
cg15212455	 7	 39170539	 POU6F2	 0.778134	 0.66443	 -0.1137	 0.008333	 0.028434	 Body	
cg19195077	 7	 47778880	 	 0.456591	 0.620059	 0.163468	 0.017125	 0.036478	 	
cg05541356	 7	 150903922	 	 0.326318	 0.479816	 0.153498	 0.020339	 0.038994	 	
cg23549902	 7	 5184155	 	 0.37424	 0.478793	 0.104553	 0.024727	 0.041424	 	
cg22109827	 7	 30727326	 	 0.735974	 0.466243	 -0.26973	 0.027936	 0.042902	 	
cg25709790	 7	 24742552	 DFNA5	 0.599622	 0.780914	 0.181292	 0.030771	 0.044754	 Body	
cg09281805	 7	 4751840	 FOXK1	 0.533396	 0.751872	 0.218476	 0.031125	 0.044754	 Body	
cg00867835	 7	 149484985	 SSPO	 0.653832	 0.533157	 -0.12067	 0.035159	 0.046044	 Body	
cg19389973	 7	 36692197	 AOAH	 0.482959	 0.690356	 0.207397	 0.037756	 0.047033	 Body	
cg16618979	 7	 143108841	 	 0.917679	 0.724636	 -0.19304	 0.038731	 0.047033	 	
cg16576544	 7	 129410227	 MIR182	 0.757646	 0.85802	 0.100374	 0.038778	 0.047033	 Body	
cg09546755	 7	 132424008	 	 0.648499	 0.762903	 0.114404	 0.039678	 0.047225	 	
cg20026367	 7	 130875551	 MKLN1	 0.762934	 0.872693	 0.109759	 0.040034	 0.047225	 Body	
cg10900271	 7	 156157852	 	 0.819961	 0.56028	 -0.25968	 0.044336	 0.048663	 	
cg22535849	 7	 4118583	 SDK1	 0.792579	 0.609142	 -0.18344	 0.045817	 0.049368	 Body	
cg01760090	 8	 1365659	 	 0.45751	 0.586951	 0.129442	 0.004064	 0.022817	 	
cg04123498	 8	 142283564	 	 0.8625	 0.545042	 -0.31746	 0.004106	 0.022817	 	
cg13070650	 8	 99490901	 STK3	 0.85201	 0.749864	 -0.10215	 0.007584	 0.027175	 Body	
cg19128026	 8	 1792615	 ARHGEF10	 0.752932	 0.855117	 0.102184	 0.012027	 0.03144	 Body	
cg02490460	 8	 1365502	 	 0.593412	 0.702811	 0.109399	 0.014333	 0.034147	 	
cg19787013	 8	 145737513	 RECQL4	 0.456545	 0.692351	 0.235805	 0.021576	 0.039487	 Body	
cg21512324	 8	 89718417	 	 0.675024	 0.794211	 0.119187	 0.024498	 0.041424	 	
cg09019154	 8	 19616280	 	 0.507047	 0.310656	 -0.19639	 0.037667	 0.047033	 	
cg26077133	 8	 10049871	 MSRA	 0.644693	 0.430444	 -0.21425	 0.043147	 0.048096	 Body	
cg17531142	 8	 128940078	 PVT1	 0.646113	 0.768895	 0.122782	 0.049693	 0.049693	 Body	
cg13876960	 9	 9998791	 PTPRD	 0.488714	 0.603157	 0.114443	 0.002375	 0.019901	 5'UTR	
cg13890969	 9	 113804367	 	 0.616747	 0.732108	 0.115361	 0.01384	 0.03397	 	
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cg14451627	 9	 115987035	 SLC31A1	 0.813929	 0.923608	 0.109678	 0.024693	 0.041424	 5'UTR	
cg21177183	 9	 129281647	 	 0.759673	 0.882018	 0.122345	 0.043091	 0.048096	 	
cg14117219	 9	 94476689	 	 0.073225	 0.182177	 0.108952	 0.049571	 0.049693	 	
cg08751451	 10	 53287690	 PRKG1	 0.585886	 0.706745	 0.120859	 0.005619	 0.026257	 Body	
cg15393936	 10	 15354631	 FAM171A1	 0.689283	 0.843025	 0.153742	 0.006213	 0.026666	 Body	
cg13754569	 10	 134956778	 	 0.718748	 0.908916	 0.190168	 0.007598	 0.027175	 	
cg24668570	 10	 134973778	 KNDC1	 0.292176	 0.109391	 -0.18278	 0.00889	 0.028934	 TSS200	
cg14609104	 10	 111989324	 MXI1	 0.73054	 0.911835	 0.181295	 0.008992	 0.028934	 Body	
cg19301501	 10	 22768167	 	 0.770547	 0.87322	 0.102673	 0.012372	 0.03144	 	
cg11005552	 10	 105648138	 OBFC1	 0.340865	 0.442656	 0.101791	 0.012421	 0.03144	 Body	
cg23479191	 10	 54338992	 	 0.594593	 0.701234	 0.10664	 0.013518	 0.03352	 	
cg20245361	 10	 71725755	 	 0.725305	 0.860217	 0.134912	 0.028072	 0.042902	 	
cg01512466	 10	 125624685	 CPXM2	 0.724984	 0.855813	 0.130829	 0.028496	 0.043009	 Body	
cg14964115	 10	 116634877	 FAM160B1	 0.451246	 0.602083	 0.150837	 0.032999	 0.046044	 Body	
cg23698271	 10	 121346762	 TIAL1	 0.599016	 0.783631	 0.184615	 0.033739	 0.046044	 Body	
cg18621672	 10	 82112873	 DYDC1	 0.278917	 0.45743	 0.178513	 0.037615	 0.047033	 5'UTR	
cg00817464	 10	 111662876	 XPNPEP1	 0.516173	 0.726959	 0.210786	 0.039688	 0.047225	 Body	
cg24051234	 10	 111912029	 	 0.71876	 0.865647	 0.146887	 0.041227	 0.047479	 	
cg27057480	 10	 49659559	 ARHGAP22	 0.228219	 0.358829	 0.13061	 0.047562	 0.049385	 Body	
cg04913265	 11	 133939627	 JAM3	 0.515099	 0.645977	 0.130878	 0.00015	 0.012583	 Body	
cg05792312	 11	 61781116	 	 0.301228	 0.624272	 0.323044	 0.000822	 0.015791	 	
cg06394820	 11	 60608291	 CCDC86	 0.565686	 0.776733	 0.211047	 0.006273	 0.026666	 TSS1500	
cg08912652	 11	 130779479	 SNX19	 0.701171	 0.87019	 0.169019	 0.022262	 0.039487	 Body	
cg10662047	 11	 123472546	 GRAMD1B	 0.527266	 0.791022	 0.263756	 0.025832	 0.042413	 Body	
cg14512156	 11	 660597	 DEAF1	 0.712934	 0.859028	 0.146094	 0.031615	 0.044927	 Body	
cg26864826	 11	 33760479	 	 0.491878	 0.245368	 -0.24651	 0.03384	 0.046044	 	
cg19680693	 11	 94111807	 GPR83	 0.495187	 0.320769	 -0.17442	 0.038505	 0.047033	 3'UTR	
cg19471911	 11	 102079985	 YAP1	 0.396051	 0.613639	 0.217588	 0.039951	 0.047225	 Body	
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cg17187785	 11	 132107476	 NTM	 0.914946	 0.743543	 -0.1714	 0.047884	 0.049385	 Body	
cg10578777	 12	 7781093	 	 0.728872	 0.905711	 0.17684	 0.003724	 0.022817	 	
cg11748730	 12	 99815844	 ANKS1B	 0.384339	 0.484957	 0.100618	 0.006528	 0.026887	 Body	
cg14906510	 12	 7781169	 	 0.805048	 0.910312	 0.105263	 0.007351	 0.027175	 	
cg25828445	 12	 7781288	 	 0.75044	 0.892315	 0.141876	 0.010161	 0.030863	 	
cg05565442	 12	 58011856	 	 0.300373	 0.556137	 0.255764	 0.011112	 0.03144	 	

cg08762603	 12	 2031417	 	 0.651426	 0.755396	 0.103971	 0.011647	 0.03144	 	
cg25198316	 12	 48598048	 OR10AD1	 0.753209	 0.91442	 0.161211	 0.015647	 0.034566	 TSS1500	
cg08693745	 12	 132286231	 	 0.576389	 0.719436	 0.143047	 0.029051	 0.043309	 	
cg14912045	 12	 117184799	 RNFT2	 0.734524	 0.841404	 0.106879	 0.038098	 0.047033	 Body	
cg18446441	 13	 32480222	 EEF1DP3	 0.760913	 0.874419	 0.113506	 0.026134	 0.042515	 Body	

cg24702069	 13	 109352806	 MYO16	 0.150338	 0.270571	 0.120233	 0.046485	 0.049385	 Body	
cg26813483	 13	 111980537	 C13orf16	 0.181445	 0.314982	 0.133537	 0.047721	 0.049385	 Body	
cg23881368	 13	 47472343	 HTR2A	 0.681471	 0.560657	 -0.12081	 0.047759	 0.049385	 TSS1500	
cg24320398	 13	 47472158	 HTR2A	 0.786896	 0.627135	 -0.15976	 0.049284	 0.049693	 TSS1500	
cg16706502	 14	 31927974	 C14orf126	 0.10314	 0.485653	 0.382514	 0.000633	 0.015791	 TSS1500	
cg05122082	 14	 20710905	 OR11H4	 0.724618	 0.840612	 0.115994	 0.002072	 0.01938	 TSS200	
cg22824376	 14	 77648248	 TMEM63C	 0.240042	 0.119732	 -0.12031	 0.003903	 0.022817	 5'UTR	
cg14293999	 14	 101840368	 	 0.461624	 0.77028	 0.308656	 0.004815	 0.0252	 	
cg16147201	 14	 105041159	 	 0.534088	 0.750436	 0.216347	 0.00841	 0.028434	 	
cg13528570	 14	 105708343	 BRF1	 0.698573	 0.878507	 0.179933	 0.008912	 0.028934	 Body;5'UTR	
cg11186706	 14	 54815745	 	 0.67984	 0.86824	 0.1884	 0.013491	 0.03352	 	
cg24976563	 14	 24587638	 DCAF11	 0.704412	 0.934959	 0.230547	 0.01495	 0.034273	 Body	
cg14218851	 14	 103018726	 	 0.610948	 0.460758	 -0.15019	 0.0209	 0.039487	 	
cg21193926	 14	 76443578	 TGFB3	 0.195675	 0.418231	 0.222556	 0.02204	 0.039487	 Body	
cg23022053	 14	 52733243	 PTGDR	 0.893364	 0.699746	 -0.19362	 0.041012	 0.047479	 TSS1500	
cg04579183	 15	 88119834	 NCRNA00052	 0.469611	 0.811179	 0.341567	 0.000207	 0.012583	 TSS1500	
cg21557108	 15	 50410962	 ATP8B4	 0.237793	 0.35237	 0.114577	 0.018359	 0.037033	 5'UTR	
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cg23009094	 15	 101862689	 PCSK6	 0.768406	 0.892074	 0.123668	 0.022203	 0.039487	 Body	
cg21829038	 15	 101593831	 LRRK1	 0.742025	 0.925927	 0.183902	 0.033253	 0.046044	 Body	
cg27018984	 15	 90796557	 TTLL13	 0.755236	 0.896252	 0.141017	 0.034676	 0.046044	 Body	
cg03478313	 15	 93655850	 	 0.744629	 0.893277	 0.148648	 0.035854	 0.046343	 	
cg27634195	 16	 1440421	 	 0.637084	 0.509941	 -0.12714	 0.004754	 0.0252	 	
cg06394109	 16	 1152511	 	 0.550503	 0.774634	 0.224131	 0.009752	 0.029997	 	
cg04004158	 16	 1152474	 	 0.724891	 0.826409	 0.101518	 0.012162	 0.03144	 	
cg05185784	 16	 90016020	 DEF8	 0.572342	 0.688635	 0.116293	 0.012321	 0.03144	 5'UTR;Body	
cg07869343	 16	 1797050	 MAPK8IP3	 0.793063	 0.91519	 0.122128	 0.038904	 0.047033	 Body	
cg00645020	 16	 84693148	 KLHL36	 0.666618	 0.535202	 -0.13142	 0.047963	 0.049385	 Body	
cg01401135	 17	 76522783	 DNAH17	 0.83475	 0.954378	 0.119628	 0.014011	 0.034046	 Body	
cg07973125	 17	 54858770	 	 0.928315	 0.6821	 -0.24622	 0.017413	 0.036478	 	
cg02159489	 17	 79459563	 	 0.678078	 0.85289	 0.174812	 0.018593	 0.037033	 	
cg14957731	 17	 39165697	 KRTAP3-1	 0.614446	 0.732681	 0.118235	 0.019068	 0.03767	 TSS1500	
cg20663042	 17	 6734940	 TEKT1	 0.144001	 0.247326	 0.103325	 0.02454	 0.041424	 5'UTR	
cg00901687	 17	 48585270	 MYCBPAP	 0.621566	 0.741851	 0.120286	 0.025301	 0.041824	 TSS1500	
cg25988106	 17	 7258481	 TMEM95	 0.499592	 0.722502	 0.222911	 0.026996	 0.042877	 TSS200	
cg08102564	 17	 19620263	 SLC47A2	 0.563148	 0.446589	 -0.11656	 0.035135	 0.046044	 TSS1500	
cg23633026	 17	 34067305	 RASL10B	 0.594436	 0.735079	 0.140643	 0.042865	 0.048096	 Body	
cg13590055	 18	 77917647	 LOC100130522;PARD6G	 0.273641	 0.377314	 0.103673	 0.011909	 0.03144	 Body;3'UTR	
cg20094343	 18	 34917603	 BRUNOL4	 0.263903	 0.438243	 0.17434	 0.011962	 0.03144	 Body	
cg19815565	 18	 77917615	 LOC100130522;PARD6G	 0.250322	 0.353988	 0.103665	 0.014232	 0.034147	 Body;3'UTR	
cg07258983	 18	 42255459	 	 0.69047	 0.848518	 0.158048	 0.030974	 0.044754	 	
cg05900567	 19	 37466940	 	 0.442992	 0.676886	 0.233893	 0.005067	 0.025265	 	
cg10771931	 19	 34972145	 WTIP	 0.718033	 0.89071	 0.172677	 0.008425	 0.028434	 TSS1500	
cg16253115	 19	 33781998	 	 0.831872	 0.941227	 0.109354	 0.011671	 0.03144	 	
cg18437039	 19	 1444202	 	 0.458154	 0.582318	 0.124164	 0.015896	 0.034799	 	
cg08835041	 19	 37461278	 	 0.755358	 0.876124	 0.120767	 0.016656	 0.035818	 	
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cg26562263	 19	 21863715	 	 0.229641	 0.345673	 0.116031	 0.034378	 0.046044	 	
cg04515524	 19	 17489148	 PLVAP	 0.048071	 0.178275	 0.130204	 0.044595	 0.048663	 TSS1500	
cg11495604	 20	 62053198	 KCNQ2	 0.79919	 0.98268	 0.18349	 0.002278	 0.019771	 Body	
cg17811452	 20	 44007674	 TP53TG5;SYS1-DBNDD2	 0.52683	 0.294003	 -0.23283	 0.004131	 0.022817	 TSS1500;Body	
cg12099423	 20	 61590751	 SLC17A9	 0.259185	 0.375558	 0.116373	 0.005095	 0.025265	 Body	
cg17221813	 20	 61590823	 SLC17A9	 0.388501	 0.524941	 0.136441	 0.005229	 0.025412	 Body	
cg09595245	 20	 44649233	 SLC12A5	 0.830374	 0.930548	 0.100174	 0.005821	 0.026666	 TSS1500	
cg19223824	 20	 44682963	 SLC12A5	 0.635471	 0.871532	 0.236061	 0.006051	 0.026666	 Body	
cg19142181	 20	 61591066	 SLC17A9	 0.366628	 0.538726	 0.172098	 0.006707	 0.027047	 Body	
cg12751644	 20	 60527061	 	 0.64485	 0.529829	 -0.11502	 0.014635	 0.034195	 	
cg00704664	 20	 60500578	 CDH4	 0.268554	 0.483874	 0.215321	 0.032512	 0.045933	 Body	
cg18819889	 20	 60119597	 CDH4	 0.728146	 0.874762	 0.146617	 0.048598	 0.049619	 Body	
cg04985582	 21	 15645988	 ABCC13	 0.437947	 0.555831	 0.117885	 0.020097	 0.038994	 TSS200	
cg00607912	 21	 43240355	 PRDM15	 0.846525	 0.965583	 0.119058	 0.026566	 0.042751	 Body	
cg10543947	 22	 36635882	 APOL2	 0.209491	 0.074167	 -0.13532	 0.000684	 0.015791	 TSS200;1stExon;5'UTR	
cg16121206	 22	 36636055	 APOL2	 0.518891	 0.394903	 -0.12399	 0.000745	 0.015791	 TSS200;TSS1500	
cg02018040	 22	 27152963	 	 0.761077	 0.547243	 -0.21383	 0.018497	 0.037033	 	
cg01234546	 22	 50723473	 PLXNB2	 0.806808	 0.565704	 -0.2411	 0.022203	 0.039487	 Body	
cg19470385	 22	 46446562	 C22orf26	 0.753671	 0.856455	 0.102784	 0.037526	 0.047033	 3'UTR	
cg09219182	 22	 37255542	 NCF4	 0.535842	 0.754528	 0.218686	 0.037891	 0.047033	 TSS1500	
cg23887839	 NA	 NA	 NA	 0.655725	 0.360589	 -0.29514	 0.001886	 0.019093	 NA	
cg24139837	 X	 3730151	 	 0.261992	 0.080879	 -0.18111	 0.015309	 0.034445	 	
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Table	A3.5:	SPMS	DMRs	within	the	MHC	
Probe	ID	 Chr	 Position	 Gene	 Median	

(case)	
Median	
(control)	

Δmeth	 Adj.	p	value	 P	FDR	 Feature	

cg13185413	 6	 30039202	 RNF39	 0.40662837	 0.2774177	 -0.12921067	 0.011260733	 0.031440175	 Body	
cg06249604	 6	 30039206	 RNF39	 0.266340697	 0.160964176	 -0.105376521	 0.026962202	 0.042876543	 Body	
cg00947782	 6	 30039142	 RNF39	 0.255622964	 0.148405783	 -0.107217181	 0.030243898	 0.044541014	 Body	
cg10930308	 6	 30039476	 RNF39	 0.373728199	 0.263967562	 -0.109760637	 0.03270644	 0.045940259	 Body	
cg03343571	 6	 30039175	 RNF39	 0.378829882	 0.277638722	 -0.10119116	 0.038325094	 0.047033022	 Body	
cg12633154	 6	 30039435	 RNF39	 0.550688103	 0.435403086	 -0.115285017	 0.041129289	 0.047479204	 Body	
cg13401893	 6	 30039432	 RNF39	 0.577691457	 0.469281157	 -0.1084103	 0.047291604	 0.049385389	 Body	
cg08491487	 6	 30039130	 RNF39	 0.225517557	 0.124174938	 -0.101342619	 0.04762052	 0.049385389	 Body	
cg15383120	 6	 291909	 DUSP22	 0.35559474	 0.485996596	 0.130401856	 0.038696026	 0.047033022	 TSS200	
cg11235426	 6	 292522	 DUSP22	 0.323171335	 0.432058198	 0.108886863	 0.044657615	 0.048662783	 1stExon;5'UTR	
cg18110333	 6	 292329	 DUSP22	 0.336235687	 0.480119023	 0.143883336	 0.047941744	 0.049385389	 1stExon;5'UTR	
cg18850127	 7	 39170497	 POU6F2	 0.679178294	 0.501934444	 -0.17724385	 0.003236295	 0.022816897	 Body	
cg20302533	 7	 39170763	 POU6F2	 0.684204571	 0.531256436	 -0.152948135	 0.004058751	 0.022816897	 Body	
cg15212455	 7	 39170539	 POU6F2	 0.778133703	 0.664430196	 -0.113703507	 0.008332628	 0.028433856	 Body	
cg23881368	 13	 47472343	 HTR2A	 0.681470902	 0.560657426	 -0.120813476	 0.047759105	 0.049385389	 TSS1500	
cg24320398	 13	 47472158	 HTR2A	 0.786896069	 0.627134741	 -0.159761328	 0.049283649	 0.049692891	 TSS1500	
cg13590055	 18	 77917647	 LOC100130522;PAR

D6G	
0.273640951	 0.377314174	 0.103673223	 0.011909407	 0.031440175	 Body;3'UTR	

cg19815565	 18	 77917615	 LOC100130522;PAR
D6G	

0.250322353	 0.353987748	 0.103665395	 0.014231871	 0.034147073	 Body;3'UTR	

cg12099423	 20	 61590751	 SLC17A9	 0.259185276	 0.37555796	 0.116372684	 0.005094544	 0.025264782	 Body	
cg17221813	 20	 61590823	 SLC17A9	 0.388500876	 0.524941381	 0.136440505	 0.005228754	 0.025411747	 Body	
cg19142181	 20	 61591066	 SLC17A9	 0.366627625	 0.538725837	 0.172098212	 0.006707346	 0.027047422	 Body	
cg10543947	 22	 36635882	 APOL2	 0.209491257	 0.074166907	 -0.13532435	 0.000684484	 0.015791453	 TSS200;1stExon;5'UTR	
cg16121206	 22	 36636055	 APOL2	 0.5188908	 0.394902851	 -0.123987949	 0.000745084	 0.015791453	 TSS200;TSS1500	
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APPENDIX FOUR 

  

C-MYC is DROSHA’s transcription factor, and we therefore performed RT-qPCR to 

determine whether it is a contributing factor in the down-regulation of DROSHA that 

we reported. Figure A4.1 demonstrates that there was no significant difference in 

expression of C-MYC between MS patients and their respective HCs. 

 

 

Figure A4.1 Tukey boxplot of expression relative to GAPDH of C-MYC in (A) HC 

(blue) and RRMS (pink), and (B) HC (green) and SPMS (grey). Whiskers represent 

data within 1.5 interquartile range (IQR) of the upper and lower quartile. Data points 

outside of the 1.5 IQR are represented by black dots.   
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APPENDIX FIVE 
 

Luxol Fast Blue - Periodic Acid-Schiff staining and Pathology Criteria	

	

Equipment  
Plate at 58°C 

Oven at 60°C 

Cover slips 

 

 

 

 

 

 

 

 

 

 

Reagents 

Acetic acid (10%) 

Acid alcohol 

Scott blue solution 

dH2O 

DPX (mounting fluid) 

EtOH (70, 95 and 100%) 

Haematoxylin 

Lithium carbonate 

Luxol fast blue 

Periodic acid 

Schiff’s reagent 

Xylene 

Preparation of stains  

1% Periodic Acid – Store at 4°C 

Periodic acid (Sigma P7578-25G) 1g 

dH2O      100ml 

 

0.1% Luxol Fast Blue – Store at room temperature for 12 months (re-usable) 

Luxol Fast Blue    0.1g 

95% EtOH     100ml 

10% Acetic acid    0.5ml 

 

Saturated Lithium Carbonate 

Lithium carbonate    1g 

dH2O      100ml 
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Protocol 

Provided	by	Brain	and	Mind	Research	Institute,	Sydney	

Approximate	time	to	complete	–	5	hours	

	

1. Bring	Schiff’s	reagent	to	room	temperature.	
2. De-wax	sections	at	58°C	for	20	min.	
3. Deparaffinise	sections:	

a. 2x	Xylene	5	min	
b. 2x	100%	EtOH	5	min	
c. 95%	EtoH	5	min	
d. 70%	EtOH	5	min	
e. 2x	dH2O	5	min	

4. Place	sections	in	1%	periodic	acid	solution	for	10	min.	
5. Wash	sections	in:		

a. Running	tap	water	for	4	min	
b. dH2O	for	1	min	

6. Pipette	Schiff’s	reagent	onto	sections	and	sit	for	30	min.	
7. Wash	sections	in	running	tap	water	for	10	min.	
8. Set	oven	to	60°C.	
9. Wash	sections	in:	

a. 70%	EtOH	for	1	min	
b. 95%	EtOH	for	1	min	

10. Stain	sections	with	0.1%	LFB	at	60°C	for	2	hours.	
11. Cool	slides	in	tap	water	for	5	min.	
12. Differentiate	sections	in	lithium	carbonate	(1/3	tap	water	and	2/3	saturated	solution	

of	lithium	carbonate)	(2-3	dips).	
13. Place	sections	in	tap	water	for	5	min.	
14. Counter	stain	with	Haematoxylin:	

a. Place	slides	in	haematoxylin	for	30	secs	
b. Wash	in	running	tap	water	for	1	min	
c. Dip	2	times	in	acid	alcohol	
d. Wash	in	running	tap	water	for	1	min	
e. Scott	blue	solution	2	min	

	
15. Dehydrate	sections:	

a. 70%	EtOH	3	min	
b. 95%	EtOH	3	min	
c. 2x	100%	EtOH	5	min	
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d. Xylene	6	min	
e. Xylene	3	min	

16. Mount	coverslip	(DPX	or	appropriate	substitute)	

	

Criteria for identifying MS related pathology 

Normal	 appearing	 white	 matter:	 Consistent	 myelin	 coverage	 (LFB	 positive)	 with	
oligodendrocytes	exhibiting	normal	pathology,	parallel	to	the	axons.	

Active	 Lesion:	 LFB	 positive	 material	 (i.e.	 phagocytosed	 myelin)	 seen	 clustered	 within	
macrophages.		

Recently	active	lesion:	Presence	of	macrophages	containing	PAS	positive	material.	Indicative	
of	myelin	phagocytosed	a	while	ago;	 the	macrophages	are	no	 longer	actively	attacking	 the	
myelin.	

Chronic	lesion:	Absence	of	LFB	positive	material.	Astrocytes	can	be	clearly	seen.	

Remyelinated	 lesion:	 Patchy	 areas	 of	 myelin	 and	 few	 oligodendrocytes.	 No	 evidence	 of	
macrophage	activity.	
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