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Abstract

This paper explores the use of the meta-heuristic search algorithm

Simulated Annealing for solving a minimum cost network synthesis

problem. This problem is a common one in the design of telecommuni-

cation networks. The formulation we use models a number of practical

problems with hop-limit, degree and capacity constraints. Emphasis

is placed on a new approach that uses a knapsack polytope to select

amongst a number of pre-computed tra�c routes in order to synthesise

the network. The advantage of this approach is that a subset of the

best routes can be used instead of the whole set, thereby making the

process of designing large networks practicable. Using simulated ann-

ealing, we solve moderately large networks (up to 30 nodes) e�ciently.

1 Introduction

Increasingly, the most valuable commodity that societies possess is

information. As such there is great interest in the e�cient storage

and transference of this information. Of great importance therefore

is the design of e�cient telecommunications networks. This paper

investigates the network synthesis problem.

The aim of the design problem is to satisfy all tra�c requirements

at minimum cost between a set of nodes. For the network synthesis

problem involving n nodes, there are nn�2 possible topologies, e.g. one

1



billion possibilities for a network as small as 10 nodes. The information

required to formulate the problem is the tra�c demand between each

origin and destination (O-D) pairs, and the cost function for carrying

tra�c on each (possible) link between nodes i and j.

Recent interest in the problem has been in the application of Ge-

netic Algorithms (GAs). Work by Berry, Murtagh, Sugden and McMa-

hon (1995, 1997) has demonstrated this approach in which a GA is used

to synthesise the network while a Linear Program (LP) is used to al-

locate the tra�c amongst the routes of the network. However, this

approach has the potential to be ine�cient due to the typically large

LP component (though no empirical investigation was undertaken in

Berry et al. (1995, 1997)). Other solution techniques have been de-

scribed in Balakrishnan, Magnanti, Shulman and Wong (1991), Gavish

(1985), Kershenbaum and Peng (1986), Minoux (1989) and Sharma,

Mistra and Bhattacharji (1991).

2 Formulations

There are numerous ways that the network synthesis problem can be

formulated mathematically. We �rst discuss a traditional linear pro-

gramming approach that has been used in the literature (Berry et al.

1995, 1997). From this, a model is developed that uses a knapsack

polytope to select amongst a number of pre-computed routes between

nodes in the network.

Let G be the set of all undirected graphs on n nodes with G a

member of this set. We represent G by its upper triangular node-

node adjacency matrix B with elements bij . The problem is to �nd a

member G� which minimises the cost of transporting required origin-

destination (O-D) 
ows subject to speci�ed link, node capacity, node

degree and chain hop-limit constraints. The total bandwidth (
ow)

requirement on virtual path connections between O-D pair p � q is

given by F pq (without loss of generality represented as an element

of an upper triangular matrix). The partial 
ow along the rth route

between node p and node q is denoted by hpqr and Cpq
r is the cost per

unit 
ow on this route.

Minimise

G�G
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Where:

N is the number of nodes.

F pq is the total bandwidth (
ow) requirement between O-D pair

p� q.

a
pq
ij;r is 1 if the link p� q exists on route r between nodes i; j, 0

otherwise.

fmax
ij is the upperbound on the available capacity (total 
ow) on

the link (i; j).

umax
i is the upperbound on total 
ow at node i. This 
ow com-

prises tra�c originating at, terminating at and traversing node

i.

Hmax is the upperbound imposed on the number of links in a

route (the hop limit).

hpqr is the amount of tra�c routed between p and q on route r.

Equations 1 to 7 represent the model of the network synthesis problem.

Equation 1 is the objective function in which the tra�c costs along

the routes is minimised. Equation 2 is used to calculate the total 
ow

on each link. Constraint 3 ensures that the bandwidth is distributed

among the appropriate routes. Constraint 4 ensures that the node

capacities are not exceeded while 5 ensures that the link capacities are

not exceeded. The hop-limit is preserved in 6 and ensures that the

nodes meet the node degree constraints are modeled in 7.



2.1 Pre-Computed Routes Approach

In this paper, we propose the idea that a set of routes can be pre-

computed before the application of an optimisation technique. A route

is a sequence of nodes between an origin and destination node and has

a length less that or equal to the hop-limit. For instance, a route

between O-D pair (1,5) might be (1,2,4,5). The set of possible routes

can be large for moderately size problems, therefore we have developed

techniques for reducing the size of the set. These are discussed in

Section 4.

The pre-computed routes approach has several distinct advantages

which are: hop limits are automatically satis�ed and routes are feasible

(i.e. there are no circuits or repeated nodes in the routes). The problem

becomes one of selection of routes in much the same way as items

are selected for a knapsack in the knapsack problem (Petersen 1967).

The selected routes then form the telecommunications network (the

synthesis part of the problem). The only potential disadvantage is that

it can be memory intensive if a large set of routes is used (especially

if the routes have a high hop-limit). The subset approach discussed in

Section 4 does lessen this problem.

Using this approach, we can apply common local search operators

within simulated annealing (SA) (Osman and Kelly 1996) to locate

feasible solution states. Another part of the problem is to allocate

tra�c amongst the selected routes. Both these topics are discussed

below.

2.1.1 Appropriate Transition Operators

The most appropriate local search transition operators for the net-

work synthesis problem are add, drop and change. These operators are

expressed graphically in Figure 1 and are described as:

Add : A route is added to the network.

Drop: A route is removed from the network.

Change: A route in the network is changed to another route.

This is equivalent to adding a route and dropping another route.

Desired location of Figure 1



Multiple transition operator neighbourhoods can be explored in

the course of solving a particular problem. In our SA implementation,

add, drop and change are assigned an equal probability of being

selected at each iteration of the algorithm. This is like the weighted

probability wheel used in GA roulette wheel selection by Goldberg

(1989).

2.1.2 Allocating Tra�c Amongst Routes

The SA algorithm is used to synthesise a suitable network topology.

As there may be more than one route per O-D pair, a subproblem is

to determine an appropriate allocation of tra�c for each route. There

are two broad methods of achieving this: exactly - the optimal alloca-

tion of tra�c to routes is determined; and heuristically - the allocation

is determined by a special-purpose algorithm. The �rst approach has

been used in Berry et al. (1995, 1997), however it can be time con-

suming for medium to large size problems. In contrast, the heuristic

approach does not seek the optimal allocation, but one that satis�es

Equation 3. We have adopted the latter approach in order to produce

good solutions within a reasonable amount of computer time.

Our heuristic is very simple yet very e�cient in terms of the

computational time required to perform it. In essence, for each

O-D pair and its set of routes (those in the current solution), the

algorithm proportionally loads tra�c on each route according to

its cost. Cheaper routes will therefore be given a greater amount

of tra�c than more expensive routes. Further study could ex-

amine the relationship between the complexity of the heuristic and

the a�ect on the objective function. The algorithm is given in Figure 2.

Desired location of Figure 2

3 Simulated Annealing

Simulated annealing (SA) is a general purpose meta-heuristic method

that has been applied successfully to a number of combinatorial op-

timisation problems (Collins, Eglese and Golden 1988; Eglese 1990;

Koulamas, Antony and Jansen 1994; van Laarhoven and Aarts (1987).



Figure 1: The transition operators add, drop and change. The diagrams

demonstrate the e�ect of each operator on the original network.



Figure 2: A heuristic algorithm to allocate tra�c to each route between

every O-D pair.

For each O-D pair (i; j)

sc = 0;

For(n � routes in current solution between (i; j))

sc = sc+ rc(n);

End for;

If(number of routes in the solution between (i; j)>1)

sca = 0;

For(n � routes in current solution between (i; j))

sca = sca+ rc(n);

End for;

For(n � routes in current solution between (i; j))

h(i; j; n) = d(i; j) � (sc� rc(n))� sca;

End for;

Else

n =number of the single route between (i; j);

h(i; j; n) = d(i; j);

End if;

End for;

End.

Where:

rc(n) is the cost of route n.

h(i; j; n) is the allocation of tra�c of route n between (i; j).

d(i; j) is the demand between nodes i and j.



The theory of SA is derived from the physics of annealing substances.

Simulated annealing seeks to minimise an energy function, which in

combinatorial optimisation is the objective function. At the beginning

of the annealing run there is a high likelihood of accepting any tran-

sition made in the search space (whether it improves the solution or

not) rather than later in the run. Each transition consists of choosing a

variable at random and giving it another value (also at random). This

process is done in accordance with an exponential acceptance function

based on a parameter called temperature. The temperature is decre-

mented until it is quite small and hence very few uphill moves (where a

worse solution may replace the current solution) are accepted. As SA

can make these uphill moves, settling into a local optima is potentially

avoided. The way the temperature is controlled is referred to as the

cooling schedule.

4 Implementation

4.1 Route Subsets

The full set of routes for a practical size problem can be extremely

large. Therefore our software allows the user to specify the percentage

of routes that form the pre-computed route set. These routes are

chosen according to their cost (i.e. the cost of including the route if

it was fully loaded). For instance, if 10% is speci�ed, only 10% of the

best routes for each O-D pair would be included in the route set.

4.2 SA Algorithm

The SA search engine implements Connolly's (Connolly 1990) Q8-7

cooling schedule as it has been shown to be quite successful (Abramson

and Randall 1999; Connolly 1990). The cooling schedule is based on

reheating the temperature a number of times throughout the search

(shown in Figure 3). Both the number of times that this reheating

occurs as well as the interval between reheats can be altered.

Desired location of Figure 3



4.3 Generating Initial Feasible Solutions

As the problem is highly constrained, it can be di�cult to form an ini-

tial feasible solution. However, the approach we have adopted consists

of two phases. In the �rst phase, an initial solution is constructed so

that at least one route per O-D pair (with non-zero demand require-

ments) is present.

The second phase attempts to modify the solution so that it be-

comes feasible. This is achieved by using SA in order to minimise the

amount of constraint violation. When this becomes 0, a feasible solu-

tion has been found. The degree of violation is calculated according

to the relational operator of each constraint. For instance, if the sign

of the constraint is � and the left hand side is larger than the right

hand side, the net di�erence is the amount of constraint violation.

The constraint violation of the other signs are calculated in a similar

manner.

5 Computational Experience

A set of problem instances have been generated with which to test

the SA solver (see Table 1). We have generated these instances

with demand matrices that are 90% dense. This means that

90% of the O-D pairs have non-zero tra�c requirements. Subse-

quently this should make it di�cult for SA to solve these problems.

These problems (as well as a problem generator) are available at

http:\\tide.it.bond.edu.au\mrandall\tele.exe.

Desired location of Table 1

The size of the pre-computed route set for each problem is also var-

ied in order to determine whether this factor has an e�ect on solution

quality and runtime e�ciency. We use route subsets of 10%, 50% and

100% of the total number of routes available for each problem instance.

The hop limit has been set to 3.

The computer on which these tests are run is a Sun Ultra Sparc 1

Workstation. Each problem instance is run across 10 random seeds.

The results are given in Table 2. Each run for the 5, 10, 20 node

problems is terminated after 600 seconds of CPU time has elapsed.

The 30 node problems require a greater amount of time and as such



each run is terminated after 1800 seconds of CPU time has elapsed.

As the data are highly non-normally distributed, non-parametric

descriptive statistics are used. The results table is divided into

two sections, Cost and Runtime. For each section, the minimum

(denoted Min), median (denoted Med), maximum (denoted Max)

and inter-quartile range (denoted IQR) are used. The Runtime

section records the amount of CPU time required to reach the best

solution for that particular run.

Desired location of Table 2

6 Conclusions

We have shown that simulated annealing is capable of solving a com-

plex network synthesis problem with di�cult constraints. This prob-

lem has applications in the domain of telecommunication network de-

sign.

The problem is modeled in a novel manner using an approach that

uses a set of suitable pre-computed routes between each O-D pair. The

problem then becomes one of selecting an appropriate subset of routes

in order to synthesise the network topology. A specialised heuristic is

used to allocate the tra�c for each of the routes between every O-D

pair. This heuristic is a greedy method that works by allocating greater

amounts of tra�c to cheaper routes. However, it is very e�cient (in

terms of runtime) compared with the LP method used in Berry et al.

(1995, 1997).

The experimental results indicate that using larger size route sets

generally produce superior results to smaller sizes. In the case of the

small problems (5 and 10 nodes), the use of subsets of routes (10% and

50%) means that initial feasible solutions can not be formed. This is

because suitable combinations of routes (from the subsets) that sat-

is�ed all the constraints could not be found. In contrast, for the 20

and 30 node problems, it is impractical to use large route sets, as

the performance of the algorithm is substantially degraded. For the

large problems, it was better to use route set densities of 10% or 50%.

Therefore, for very large network design, this method is very appropri-

ate as only a small subset need be used in order to produce an e�cient



Figure 3: SA re-heating schedule.

Table 1: Problem instances used in this study.

Name Size(Nodes)

tele5-1 5

tele5-2 5

tele10-1 10

tele10-2 10

tele20-1 20

tele20-2 20

tele30-1 30

tele30-2 30



Table 2: Results of running the SA code on the test problems. CNS (Could

Not Solve) indicates that a feasible solution could not be obtained.

Problem Route Cost Runtime

Size Min Med Max IQR Min Med Max IQR

tele5-1 10% CNS

50% CNS

100% 1082 1101 1101 19 0.13 4.06 4.47 1.3

tele5-2 10% 902 902 902 0 0.06 0.11 0.25 0.02

50% 902 902 902 0 0.18 0.26 0.39 0.03

100% 656 656 656 0 0.08 0.095 0.13 0.03

tele10-1 10% CNS

50% 3991 4175.5 4272 188.5 150.45 292.54 528.14 182.63

100% 2982 3040 3130 79.85 78.23 381.69 573.98 344.26

tele10-2 10% CNS

50% 1898 2038 2285 58.5 89.71 279.83 597.85 243.21

100% 1712 1817 2026 57.25 82.16 236.94 397.55 110.3

tele20-1 10% 13647 13647 13647 0 0.1 0.16 0.43 0.04

50% 7254 7633.5 7777 432.25 236.11 582 599.9 50.5

100% 7921 8395.5 9286 787.75 347.25 565.8 598.67 71.78

tele20-2 10% 16535 16535 16535 0 0.13 0.24 0.67 0.06

50% 7913 8099.5 8810 211.5 407.24 555.97 598.69 53.18

100% 8094 8970 9785 773 529.57 557.98 589.22 45.8

tele30-1 10% 8729 8745.5 8762 12.5 1133.1 1300.6 1742.38 332.02

50% 7069 7342 7617 219.5 1475.36 1499.75 1517.23 12.65

100% 7968 8309 8648 160.5 1547.32 1586.32 1591.23 17.06

tele30-2 10% 10196 10196 10196 0 1257.21 1258.32 1477.51 110.15

50% 9188 9330 9665 127.5 1498.32 1524.32 1554.39 28.04

100% 9633 9807 10232 201 1569.25 1578.36 1578.42 4.6



network with a short amount of computational time.

The next stage of our research will focus on developing a repre-

sentation method in which routes are dynamically built rather than

being statically selected. In addition, we wish to develop a tabu search

implementation to solve this problem. We are also investigating al-

ternative methods for allocating tra�c to routes as this may provide

improvements to overall solution quality.
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