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Abstract

The ant colony optimisation class of meta-heuristics simulate the ability of ant colonies to determine

shortest paths to food. In this paper, we investigate strategies for achieving a balance between

intensi�cation and diversi�cation search phases apart from that implicit in the algorithm itself. This

is achieved by continually varying the sensitivity with which ants(agents) perceive pheromone trails.

This has the e�ect of allowing the ants to both re�ne the search in promising regions and to escape

explored areas of the search space. We examine four strategies using the well-known travelling

salesman problem. The results indicate that while the explicit intensi�cation/diversi�cation

schemes occasionally outperform the standard ant colony optimisation, the algorithm's inherent

intensi�cation/diversi�cation characteristics are often suÆcient to �nd good quality solutions.

Keywords: Ant colony optimisation, Ant colony system, combinatorial optimisation, meta-heuristic,

travelling salesman problem.

1 Introduction

Ant Colony Optimisation (ACO) [7] is a relatively new class of meta-heuristic search techniques. The

meta-heuristics simulate the ability of ant colonies to determine shortest paths to food and is based

on research into natural ants [13]. Although individual ants (also known as agents) possess few capa-

bilities, their operation as a colony is capable of complex behaviour. ACO techniques expand upon

existing paradigms which simulate natural behaviour such as neural networks, simulated annealing

(SA) and genetic algorithms (GAs). In this paper we concentrate on one of the ACOmethods, namely

Ant Colony System (ACS) [9].

Various ACO techniques have been applied to a wide variety of optimisation problems including

vehicle routing, graph colouring and network routing [8]. Extensive benchmarking of ant systems has

utilised the travelling salesman problem (TSP). In this paper, we augment the ACS meta-heuristic

with various intensi�cation and diversi�cation strategies to complement its own search techniques.

Intensi�cation and diversi�cation strategies have been successfully implemented in the Tabu Search

(TS) meta-heuristic. According to Glover and Laguna [11], TS becomes a much stronger and more

robust technique when strategies such as intensi�cation and diversi�cation are applied.

The remainder of this paper is organised as follows. Section 2 describes the workings of ACS while

Section 3 explains the intensi�cation and diversi�cation strategies that we use. Section 4 describes

our computational experiments on a range of standard TSP instances. Finally, Section 5 summarises

the results and outlines our future work.

2 ACS

ACS can best be described with the TSP metaphor. Consider a set of cities, with known distances

between each pair of cities. The aim of the TSP is to �nd the shortest path to traverse all cities

exactly once and return to the starting city. The ACS paradigm is applied to this problem in the

following way. Consider a TSP with N cities. Cities i and j are separated by distance d(i; j). Scatter

m virtual ants randomly on these cities (m � N). In discrete time steps, all ants select their next

city then simultaneously move to their next city. Ants deposit a substance known as `pheromone'

to communicate with the colony about the utility (goodness) of the edges. Denote the accumulated

strength of pheromone on edge (i; j) by �(i; j).

At the commencement of each time step, Equations 1 and 2 are used to select the next city s for

ant k currently at city r. Note that q 2 [0; 1] is a uniform random number and q0 is a parameter.

To maintain the restriction of unique visitation, ant k is prohibited from selecting a city which it has

already visited. The cities which have not yet been visited by ant k are indexed by Jk(r).

s =

(
argmaxu2Jk(r)

n
�(r; s) � [d(r; s)]�

o
if q � q0

Equation 2 otherwise
(1)
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pk(r; s) =

(
�(r;s)[d(r;s)]�

P
u2J

k
(r)

�(r;u)[d(r;u)]�
if s 2 Jk(r)

0 otherwise
(2)

It is typical that the parameter � is negative so that shorter edges are favoured. Linear dependence

on �(r; s) ensures preference is given to links that are well traversed (i.e. have a high pheromone level).

Equation 1 is a highly greedy selection technique favouring cities which possess the best combination

of short distance and large pheromone levels. Equation 2 balances this by allowing a probabilistic

selection of the next city.

The pheromone level on the selected edge is updated according to the local updating rule in

Equation 3.

�(r; s) (1� �) � �(r; s) + � � �0 (3)

Where:

� is the local pheromone decay parameter, 0 < � < 1.

�0 is the initial small amount of pheromone deposited on each of the edges. According to [9],

a good initial pheromone is �0 = (NLnn)
�1 where Lnn is the cost produced by the nearest

neighbour heuristic.

Upon conclusion of an iteration (i.e. all ants have constructed a tour), global updating of the

pheromone takes place. The edges that compose the best solution to date1 are rewarded with an

increase in their pheromone level. This is expressed in Equation 4.

�(r; s) (1� ) � �(r; s) +  ���(r; s) (4)

Where:

��(r; s) is used to enforce the pheromone on the edges of the solution (see Equation 5). L is

the length of the best (shortest) tour to date while Q is a constant that is set to 100 [10].

��(r; s) =

�
Q

L
if (r; s) 2 globally best tour

0 otherwise.
(5)

 is the global pheromone decay parameter, 0 <  < 1.

When the problem size becomes large, ACS can require signi�cant computational time to process

each iteration. At each step, the list of feasible cities is large. In order to reduce this time, Dorigo

and Gambardella [9] suggest the use of candidate sets. A candidate set stores a list of the cl closest

cities to each city in the problem (typically cl� N). The ants use this set to select the next city to

visit, signi�cantly reducing the overall computation time. Only if the elements of this set lead to an

infeasible solution will the ant consider the remainder of the cities.

The basic operation of ACS is described by the pseudocode in Figure 1.

Initialise pheromone on all edges;

While (stopping criterion is not met)

Deposit each ant on a random city such that no two

ants are placed on the same city;

For(the number of cities)

For(each ant)

Choose the next city to visit according to

Equation 1;
End For;

For(each ant)

Update the pheromone on each edge according

to Equation 3;
End For;

End For;

If the best tour from this iteration is better than the

globally best tour Then set this as the globally best

tour;

Reinforce the pheromone of the edges belonging to the

globally best tour according to Equation 4;
End While;

Output the globally best tour and cost;

Figure 1: Pseudocode of ACS applied to the TSP.

1This is known as the global-best [9] scheme. An iteration-best scheme, where the edges of the best solution in the current

colony of ants is used, is also possible.
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3 Achieving Intensi�cation and Diversi�cation

Many advanced search processes such as TS and GRASP [11] implement di�erent search phases in

order to achieve good quality solutions. One such approach involves the use of intensi�cation and

diversi�cation strategies. Intensi�cation aims to identify solution attributes that are common to good

solutions and to encourage the search process to seek solutions with those attributes. Diversi�cation

is complementary to this, as it allows the search process to enter unexplored regions of the state

space.

Intensi�cation and diversi�cation techniques are present to an extent in the existing ACS algo-

rithm. Diversi�cation is achieved by the application of the local pheromone update rule (Equation 3)

as pheromone evaporates from the visited edges, thus encouraging the system to incorporate less-

used edges in subsequent iterations. Simultaneously, the pheromone on the edges of the globally best

solution is reinforced by Equation 4. However, if many ants choose to incorporate an edge having a

high pheromone level, once again the local pheromone decay e�ect will ensure that its future use is

discouraged.

Our aim in this paper is to provide ACS with explicit intensi�cation and diversi�cation strategies

that are beyond those already present in the algorithm. To do this we reintroduce the � parameter

from the original ant system [10] into Equations 1 and 2. This parameter governs the relative

importance of the collective pheromone trails in the selection of the next city. Equations 6 and 7 are

the modi�ed forms of Equations 1 and 2 respectively.

s =

(
argmaxu2Jk(r)

n
[�(r; s)]� � [d(r; s)]�

o
if q � q0

Equation 7 otherwise
(6)

pk(r; s) =

(
[�(r;s)]�[d(r;s)]�

P
u2J

k
(r)

[�(r;u)]�[d(r;u)]�
if s 2 Jk(r)

0 otherwise
(7)

In Equations 6 and 7, small values of � imply that the inuence of the deposited pheromone is

small. For � < 0, the system will actively discourage the use of edges with large amounts of deposited

pheromone. This corresponds to diversi�cation, as edges that have been used heavily in the past will

have a relatively small chance of being chosen, thus encouraging the use of other edges. Conversely

for � � 1, the level of pheromone is considerably more important and as such, edges that have

been frequently incorporated into ant tours will be favoured. This corresponds to an intensi�cation

strategy.

In previous works [3, 9, 10], � is held constant. However, in this study we will vary � throughout

the search process in order to achieve intensi�cation and diversi�cation phases. Some traditional

ant system techniques [3, 4, 6] have been documented to su�er failure due to stagnation behaviour

(especially if certain parameter settings are used) [10]. When a balance is not achieved between

exploring new sections of the search space and reinforcing existing solutions, high concentrations of

pheromone appear on a single path. Further iterations simply force ants to follow the same path,

produce identical tours and thus the method stagnates. This is similar to premature convergence in

GAs [12]. Varying � provides a systematic approach to deal with possible stagnation of solutions,

and to e�ectively sample a broader region of solution space. Colorni, Dorigo, MaÆoli, Maniezzo,

Righini and Trubian [4] have attempted to overcome stagnation by trail modi�cation and genetic

modi�cation of � and � (on a trial by trial basis) with moderate success.

We consider three approaches for the systematic variation of � and a control strategy. Index the

iteration by x and consider � as a function of x, where 0 � x � 2500 (the maximum number of

iterations) and �0:5 � � � 1:5.

� S0: � = 1 for the duration of the search. This corresponds to traditional ACS and represents

the control strategy.

� S1: As the algorithm progresses, the magnitude of � is slowly increased from -0.5 to 1.5. This

proposal is motivated by the SA philosophy [15]. In early stages of SA, the temperature is high

and solutions experience considerable variation (corresponding to small values of �). As the

temperature cools, solutions are less likely to deviate and a process of re�nement takes over

(corresponding to large values of �). This is expressed by Equation 8.

�S1(x) =
x

1250
� 0:5 (8)

� S2: A reheating-like approach commonly used in SA [1, 5] is applied to �. This method

periodically decreases the level of � if no improvement in the overall best cost has been detected

within a given period. If this is the case, � is reset to a level half-way between the last reheating

point and the current value for �. Between these resets, � follows Equation 8 from method S1.

The number of iterations between reheats (denoted rh) is a parameter of the process.

� S3: The strategic oscillation approach from TS [11] is applied to �. By oscillating between

intensi�cation and diversi�cation phases, the method is expected to sample the solution space.

This is expressed by Equation 9.

�S3(x) = sin
�
1 +

x

50

�
+ 0:5 (9)

Graphical representations of � for schemes S0, S1 and S3 are shown in Figure 2(a). Figure 2(b)

shows an example of S2.
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Figure 2: (a) The variation of � for the S0, S1 and S3 schemes over 2500 iterations. (b) Example of a
typical run of S2 displaying the variation of � over 2500 iterations.

Table 1: Problem instances used in this study.

Name Size (cities) Best-Known Cost

gr24 24 1272
hk48 48 11461
eil51 51 426
st70 70 675
eil76 76 538

kroA100 100 21282

ch130 130 6110
d198 198 15780

kroA200 200 29368
lin318 318 42029
pcb442 442 50778
rat575 575 6773
d657 657 48912

4 Computational Experience

We have selected a number of TSP problem instances with which to test the ACS engine. These

problems are from TSPLIB [14] and are given in Table 1. In this paper, we divide these problems

into two groups: the small TSPs (gr24 - kroA100) and the large TSPs (ch130 - d657). For the large

problems, we implement the candidate set technique in order to reduce the amount of computational

time per run.

These problems are run using the set of parameters given in Table 2 as these have been found to

give good performance in [9, 10]. rh was chosen after some initial experimentation. The computer

platform used to perform the experiments is an IBM SP2 consisting of 22 RS6000 model 590 processors

with a peak performance of 266 MFLOPS per node. Each problem is run using 10 random seeds.

Table 3 shows the results of running the S0, S1, S2 and S3 schemes on the small TSPs. The

results table is divided into two sections, Cost and Runtime. For each section, the minimum

(Min), average (�), maximum (Max) and standard deviation (�) are used. The Runtime column

records the number of CPU seconds to achieve the best cost for a particular run.

It is evident from Table 3 that S0 consistently obtains better solution costs than the other schemes.

However, it only marginally outperforms S2. S3 performs poorly against the other schemes on the

Table 2: Parameter settings used in this study.

Parameter Value

� 1 (for S0)

� -2

 0.1

� 0.1

m 10

q0 0.9

rh 300

cl 15 (for large problems)

iterations 2500
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Table 3: Results of ACS for the small TSPs.
Scheme Problem Best Cost Runtime (seconds)

Known Cost Min � Max � Min � Max �

S0 gr24 1272 1272 1276.2 1278 2.9 0.04 7.38 35.82 11.25

hk48 11461 11461 11493.6 11578 46.39 54.7 105.74 232.4 60.46

eil51 426 426 430.5 436 3.69 6.27 134.53 254.91 81.03

st70 675 677 686.9 701 7.28 70.03 299.72 570.1 185.88

eil76 538 538 547.5 558 7.74 184.87 384.67 583.24 164.36

kroA100 21282 21319 21660 22443 353.83 268.54 690.96 1241.91 336.87

S1 gr24 1272 1272 1276.2 1278 2.9 14.56 21.45 45.01 10.2

hk48 11461 11461 11468.2 11470 3.79 87.8 111.75 152 22.03

eil51 426 428 430 434 1.89 130.26 198.27 250.32 42.2

st70 675 678 685 699 6.57 376.08 442.81 468.15 27.14

eil76 538 542 547.7 556 4.64 453.14 530.29 576.57 37.09

kroA100 21282 21373 21849.2 22722 494.64 777.2 1030.14 1226.37 137.53

S2 gr24 1272 1272 1275.6 1278 3.1 18 33.32 53.53 11.5

hk48 11461 11461 11475.6 11553 27.52 105.8 182.64 225.9 40.67

eil51 426 426 430.3 438 3.74 144.26 213.02 262.75 47.23

st70 675 677 690.8 702 7.89 360.93 418.7 468.15 39.24

eil76 538 543 548.9 553 3.45 391.7 576.02 686.1 111.35

kroA100 21282 21389 21629.78 21915 193.03 867.79 1144.72 1325.53 139.22

S3 gr24 1272 1272 1275 1278 3.16 0.07 15.5 49.06 19.68

hk48 11461 11470 11487.9 11566 36.01 4.7 52.84 218.2 66.45

eil51 426 427 432 443 5.56 2.69 93.53 213.7 70.96

st70 675 691 708.2 725 11.89 76.46 306.17 521.42 160.13

eil76 538 544 557.4 569 7.68 16.12 311.08 631.89 198.2

kroA100 21282 21512 21900.1 22265 223.38 65.39 378.77 876.9 285.04

small TSPs.

Table 4 shows the results of running the schemes on the large problem set. The schemes varying

� perform better than S0 on the larger problems than on the smaller problems. Each scheme provides

better solutions than S0 for pcb442 and d657.

Table 4: Results of ACS for the large TSPs.
Scheme Problem Best Cost Runtime (seconds)

Known Cost Min � Max � Min � Max �

S0 ch130 6110 6251 6315.6 6418 49.12 172.52 316.72 379.24 66.83

d198 15780 16040 16418.2 16929 259.83 624.72 785.84 899.46 106.08

kroA200 29368 29572 29983.9 30648 375.28 422.14 743.68 966.51 179.87

lin318 42029 43690 44246.9 44770 345.7 1372.42 1798.12 1883.14 155.29

pcb442 50778 56193 57815.7 60209 1436.85 1161.6 3741.5 4705.92 1178.04

rat575 6773 7034 7191.2 7308 88.42 4692.7 4874.42 4999.92 117.3

d657 48912 56276 57548.5 59116 947.4 4737.6 9385.44 11716.8 2508.58

S1 ch130 6110 6191 6286.7 6374 62.62 183.31 293.19 379.7 76.5

d198 15780 16240 16560.4 16927 243.95 629.66 740.13 849.3 68.42

kroA200 29368 29612 29991.6 30927 374.68 703.44 765.02 819.07 34.49

lin318 42029 44051 44964.7 45965 627.35 1357.82 1454.98 1598.21 77.9

pcb442 50778 54549 56339.1 58174 1053.29 3166.08 3403.78 3569.28 143.17

rat575 6773 7243 7462.8 7826 182.57 4046.12 4258.97 4473.82 140.87

d657 48912 53775 56479 58147 1226.75 5961.6 8006.88 8884.8 774.13

S2 ch130 6110 6216 6300.2 6387 49.09 252.32 333.79 374.22 42.96

d198 15780 16186 16456.3 16716 160.59 838.66 907.82 948.48 39.86

kroA200 29368 29652 30278.1 31142 545.18 759.32 865.2 948.66 69.79

lin318 42029 43797 44840.7 45800 705.82 1675.78 1774.16 1909.25 75.72

pcb442 50778 55529 56644.7 57729 750.37 3273.6 4495.49 4798.08 471.58

rat575 6773 7260 7441 7818 223.57 4582.26 4861.97 5001.93 134.86

d657 48912 54357 56536 59384 1356.8 10272 11333.76 11995.2 706.66

S3 ch130 6110 6507 6587.7 6659 57.22 11.86 150.53 373 125

d198 15780 16229 16484.9 16953 287.09 111.72 378.9 948.1 288.53

kroA200 29368 29627 29897.8 30907 373.23 97.78 694.44 1266.82 332.23

lin318 42029 43796 45284.1 46455 925.56 817.92 1306.37 1744.9 341.7

pcb442 50778 54530 55014.9 55631 358.32 1689.6 3282.43 4723.2 1157.64

rat575 6773 7156 7515.1 7697 166.82 658.62 2704.78 4923.62 1607.69

d657 48912 55749 56489 57186 494.54 345.6 7355.04 11865.6 4586.19

Figures 3 and 4 show graphically the best and average performance of the ACS schemes respec-

tively. The deviation from the best known solution cost is expressed as the Relative Percentage

Deviation (RPD) de�ned by Equation 10.

RPD =
cost� opt

opt
(10)

Where cost is the solution cost and opt is the optimal cost.

5 Conclusions

This paper has documented the application of sinusoidal, linear and restarting/reheating variations

in � as iterations progress. These techniques are applicable across a range of ACO meta-heuristics.

However, of all the schemes tested, the one in which � is held constant provides the most consistent

performance. This scheme corresponds to the ACS outlined in Dorigo and Gambardella [9]. Only

occasionally do the schemes varying � perform better in terms of the best and average costs achieved.

As pointed out in Section 3, ACS has some implicit intensi�cation and diversi�cation characteristics

within the algorithm. Given the results of this study, these appear suÆcient on their own to produce

good quality solutions. Clearly though, a much wider range of functions could be investigated and

these may improve upon traditional ACS. Another possible way to induce intensi�cation and diver-

si�cation is to vary the � parameter (by itself or in conjunction with �). The authors are in the

process of developing more intelligent reheating schemes to complement this work and that done by

Colorni et al. [4]. In particular, we wish to investigate schemes that are able to sense the degree of

intensi�cation or diversi�cation required during phases of the search process. It is believed that this

will yield improved performance of the algorithm.

As future work, a further possibility is that exploration factors in the algorithm can be enhanced

by endowing several of the agents in the system with a more random transition probability function
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Figure 3: A comparison of the best costs of the schemes on each TSP.

Figure 4: A comparison of the average costs of the schemes on each TSP.

pk(r; s) and/or changing the local pheromone updating rule (Equation 3). Little attention has been

paid to the possibility that agents possess nonuniform properties.
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