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Feasibility Restoration for Meta-heuristic Search
Algorithms

Marcus Randall!

School of Information Technology
Bond University, QLD 4229

Abstract. Many combinatorial optimisation problems have constraints
that are difficult for meta-heuristic search algorithms to process. One
approach is that of feasibility restoration. This technique allows the fea-
sibility of the constraints of a problem to be violated and then brought
back to a feasible state. The advantage of this is that the search can pro-
ceed over infeasible regions, thus potentially exploring difficult to reach
parts of the state space. In this paper, a generic feasibility restoration
scheme is proposed for use with neighbourhood search algorithms. In
addition, some comments are made on incorporating this technique into
agent based meta-heuristics such as ant colony optimisation.

Keywords: Heuristic Search, Feasibility Restoration, Autonomous Agents.

1 Introduction

Iterative meta-heuristic search algorithms such as simulated annealing (SA) and
tabu search (TS) are often implemented to solve combinatorial optimisation
problems (COPs) using simple neighbourhood operators such as 2-opt, move
and inversion [9]. In many cases, infeasible space is ignored and only transitions
that maintain feasibility are used. However, traversing this space could lead
to other regions in which higher quality solutions reside. One way to traverse
this space is by the process of feasibility restoration. This technique allows the
feasibility of the constraints of a problem to be violated and then brought back
to a feasible state, thus overcoming infeasible regions.

Feasibility restoration algorithms have typically been designed for specific
problems [1,3-5,7,8]. A few examples will be detailed here. Chu and Beasley [4]
use a heuristic to repair solutions generated by a genetic algorithm to solve gen-
eralised assignment problems (GAPs). It simply reassigns jobs from overloaded
agents to agents that have some spare capacity. Kdmpke [8] uses a similar ap-
proach in solving bin packing problems. After two items from different bins have
been swapped, the capacity restriction of either of the bins may be violated.
Therefore, another function is used to assign the largest item in the overfilled
bin to the bin with the most spare capacity. Hertz, Laporte and Mittaz [7] use
augmented local search operators on a variant of the vehicle routing problem



(VRP) known as the capacitated arc routing problem. They employ the PASTE
operator which merges various vehicle routes. Often the feasibility (in the form of
vehicle capacity) of the solution is violated so as such a new heuristic operator,
known as SHORTEN, replaces portions of the route with shorter paths while
still maintaining the required edge set.

Abramson, Dang and Krishnamoorthy [1] use an entirely different approach
to any of the above. They use the general 0-1 integer linear programme (ILP)
feasibility restoration method of Connolly [6] (explained in Sect. 2), but tailor
it to suit the set partitioning problem.

The characterisation of the aforementioned feasibility restoration schemes is
that they are all tailored to solve specific optimisation problems. As such, if a
problem definition changes or a new problem is required to be solved, new fea-
sibility restoration algorithms would need to be developed. This paper presents
the opposite approach by investigating a new generic feasibility restoration al-
gorithm and is organised as follows. Sect. 2 describes how feasibility restoration
can be achieved in a generic manner. This is given in the context of a general rep-
resentation system for COPs based on linked lists. Sect. 3 describes the further
research using the developed feasibility restoration model.

2 Generic Feasibility Restoration

One of the first attempts at generic feasibility restoration was by Connolly [6] in
a programme called GPSIMAN. GPSIMAN is a general purpose SA solver that
accepts 0-1 ILPs. It incorporates a general mechanism for restoring feasibility of
the system after each transition.

The feasibility restoration technique flips variables (other than the original
variable changed by the SA process, called the primary transition) in order to
obtain a new feasible solution. The scheme employed by Connolly [6] is a heuris-
tic technique whereby a score is computed for each of the variables based on
how helpful a change in the variable value would be for feasibility restoration.
The most helpful variable (the one with the highest score) is flipped and the
resulting feasibility /infeasibility is recalculated. If feasibility has been restored,
the procedure is terminated. However, in many instances, particularly for 0-1
problems which have many related constraints, this is not the case. The algo-
rithm proceeds to calculate the next most helpful variable. This progresses as a
depth wise tree search, in which the algorithm can backtrack, should it find that
the current sequence of flips cannot restore feasibility. This procedure is only
useful if feasibility is relatively easy to restore, else the search for feasibility can
quickly degenerate. If the process cannot restore feasibility after a fixed number
of searches, then the primary transition is rejected.

According to Abramson and Randall [2], this algorithm is very slow and only
effective for very small problems (such as a 5 city travelling salesman problem).
In fact, they report that typically the restoration part of the algorithm takes
30% of the runtime. As such, in order for feasibility restoration to be usable, a
new approach needs to be developed. The rest of this section outlines possible



algorithms based on the linked list representation system (explained next) and
local neighbourhood search operators.

2.1 List Representation System

In order to develop a generic feasibility restoration scheme, it is helpful to express
COPs in a uniform representation language. Randall and Abramson [9]! use a
language based on dynamic lists has been used to represent COPs for iterative
meta-heuristics. The language directly represents a solution to a COP by using
lists and sub-lists. As most COPs require an arrangement or grouping of elements
to form a solution, different sub-lists can be used to represent different groups.
Consider the GAP [4] for instance. Each sub-list can represent a particular agent
and contain a collection of jobs for that agent to perform. As the solution changes
(transitions are made), the lists shrink and grow accordingly. Therefore, problems
represented by lists require two sets of constraints:

— List Constraints describe the list structure of the problem. E.g., for the GAP,
the number of sub-lists (agents) must remain static and each sub-list must
have a variable size with one being the lower limit (i.e. each agent must
perform at least one job).

— Problem Constraints define the feasible space of the problem. E.g., for the
GAP, the problem constraints represent the resource capacity of each agent.

The system has the advantage that common local search operators can be di-
rectly applied to the solution list. For instance, the move operator shifts one
element from one sub-list to another.

2.2 Generic Feasibility Restoration Algorithm

As discussed in Sect. 1, the aim of feasibility restoration is to traverse infeasible
space in order to find another feasible pocket of solutions that may be inaccessible
otherwise. It is possible to apply feasibility restoration techniques to both the
list constraints and problem constraints. In the version described in this paper,
only the operation regarding the latter type is discussed.

The process of feasibility restoration consists of first breaking and then re-
pairing feasibility. A transition is made that potentially violates some or all of the
problem constraints. A series of feasibility maintaining/preserving transitions is
subsequently undertaken in order to return to a feasible state.

As noted in Sect. 2, Connolly’s [6] algorithm uses a feasibility restoration
scheme based on backtracking. The central idea in backtracking approaches is
that the primary transition must remain after the restoration process has been
completed. If feasibility cannot be restored, then the primary transition is un-
done. The generic backtracking feasibility restoration algorithm that is applica-
ble for local search transition operators is given in Fig. 1. Note, the amount of
feasibility is calculated by comparing the left-hand side to the right-hand side of
each constraint and considering the relational operator [9].

! The reader is referred to this reference for a complete description of the list repre-
sentation system.



Fig. 1. A generic feasibility restoration algorithm.

X =X;

Status = success;

Perform the primary transition(X');
Co = Calculate infeasibility (X');

if (Co > 0)
Status = Restore_feasibility(X,Co,0);
End if;
if (Status == success) X = X';
End.

Function Restore_feasibility(X’, Co, level)
Perform a transition that does not disturb the elements affected by
the primary transition(X');
C:1 = Calculate infeasibility (X');
If (C1 > Co)
Repeal the transition(X’);
Disallow this transition at this level;
If (there are no more transitions at this level)
level = level — 1;
If (level == 0) return failed;
End if;
Return Restore feasibility(X’, Ci, level);

Else
If (C1 ==0)
Return success;
Else
Return Restore_feasibility(X’, C1, level + 1);
End if;
End if;

End Resore_feasibility;

‘Where:
X is the solution.

Consider the example in Fig. 2 that uses the swap operator as an application
of the algorithm in Fig. 1. The example does not refer to a particular problem,
though it could represent a single truck tour in a VRP under a tour length
constraint.

Modified Algorithm The algorithm in Fig. 1, like its Connolly [6] counter-
part, will potentially require much computational effort. Hence, a more efficient
modified algorithm is presented in Fig. 3. The move operator will be used to
demonstrate this approach (though it is applicable to other local search opera-
tors). In the context of this operator, the algorithm is useful for problems such



Fig. 2. Example of a backtracking feasibility restoration algorithm using the swap
operator.

[(1[2]3]4[5]6]

4

[1[5][3[4]2]6]

Elements 2 and 5 are swapped. The resulting infeasibility is 10.

Swap | Infeasibility | Comment

(1,3) | 7 Accept, as it improves feasibility.

3,4) |9 Reject as it is now more infeasible.

(3,6) | 4 Accept.

(1,4) |0 Stop, a feasible solution has been reached.

The resulting solution is:

[615]4]1]2]3]

as the GAP and VRP in which elements can be moved between sub-lists. In
this algorithm, a combination of elements is either removed from the sub-list
or added to the sub-list from other sub-lists in order to make the constraints
associated with the original sub-list feasible. For practical purposes, the number
of elements that constitute the combination is bounded by a constant value.
The search for a combination terminates when one that satisfies the problem
constraints associated with the sub-list is found.

3 Further Research

This paper described the use of generic feasibility restoration techniques for
meta-heuristic search algorithms such as SA and TS. At the present time, code
is being developed and refined to perform generic feasibility restoration with the
move local search operator. The next step in this development is to produce
restoration techniques for all operators that follow the algorithm in Fig. 3.

Some preliminary investigation shows that optimal and near optimal solu-
tions are gained using this feasibility restoration technique. However, a cursory
comparison on runtimes with Randall and Abramson [9] reveals that this al-
gorithm is slower at the moment. There is no question though that it is an
improvement on Connolly’s GPSIMAN. Work needs to be done in order to in-
crease the efficiency of the restoration algorithm. One way would be to employ
feasibility restoration operations less frequently. For instance, it could be used
only to escape local optima.

The algorithms described in this paper each utilise one local search transition
operator at a time. It may be possible to use a variety of operators and calculate
which one is likely to restore feasibility the fastest. In addition, more research



Fig. 3. A modified feasibility restoration algorithm for the move operator.

Move an element to another sub-list;
Check the constraints associated with the old sub-list;
If (these constraints are violated)
Attempt to add a combination of elements on this sub-list;
If (this fails) try to do the same thing except remove the
elements off the old sub-list;
If (the old sub-list is now feasible) perform
feasibility maintenance with the displaced elements;
If (this fails) abort the restoration, reinstate the
original solution and exit;
End if;
Check the constraints associated with the new sub-list;
If (these constraints are violated)
Attempt to add a combination of elements from this list;
if (the new sub-list is now feasible) perform
feasibility maintenance with the displaced elements;
If (this fails) try to add to this sub-list a combination of
elements;
If (this fails) abort the restoration, reinstate the
original solution;
End If;
End.

needs to be undertaken to establish a cost/benefit comparison against feasibility
maintaining operations. This needs to be carried out across a range of problems.

Incorporating feasibility restoration operators into constructive meta-
heuristics, such as those that belong to ant colony optimisation (ACO), presents
some challenges. According to Randall and Tonkes [10], constraints for construc-
tive heuristics fall into two categories: those that can be satisfied throughout the
search process and those that can only be satisfied with a complete solution.
A feasibility restoration operator would potentially violate the former group of
constraints. There are two possible ways to deal with this:

1. use a modified form of the algorithm in Fig. 3 that can cope with a partial
solution or

2. remove elements from the solution (apart from the primary element) that
now violate the constraints and allow the constructive technique to add back
feasible elements. This is a form of backtracking that has not yet been investi-
gated in the context ACO (i.e. ants have only been studied in a unidirectional
sense).
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