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Anti-pheromone as a Tool for Better
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Abstract. Many animals use chemical substances known as pheromones
to induce behavioural changes in other members of the same species. The
use of pheromones by ants in particular has lead to the development of
a number of computational analogues of ant colony behaviour includ-
ing Ant Colony Optimisation. Although many animals use a range of
pheromones in their communication, ant algorithms have typically fo-
cused on the use of just one, a substance that encourages succeeding
generations of (artificial) ants to follow the same path as previous gen-
erations. Ant algorithms for multi-objective optimisation and those em-
ploying multiple colonies have made use of more than one pheromone, but
the interactions between these different pheromones are largely simple
extensions of single criterion, single colony ant algorithms. This paper
investigates an alternative form of interaction between normal phero-
mone and anti-pheromone. Three variations of Ant Colony System that
apply the anti-pheromone concept in different ways are described and
tested against benchmark travelling salesman problems. The results in-
dicate that the use of anti-pheromone can lead to improved performance.
However, if anti-pheromone is allowed too great an influence on ants’ de-
cisions, poorer performance may result.

Keywords: Ant colony optimisation, travelling salesman problem.

1 Introduction

Many animal species, and insects in particular, use chemical substances called
pheromones to influence the behaviour of other animals of the same type. Phero-
mones can carry many different types of information and influence behaviour in
varied ways [1]. Many species of ants are known to use pheromones to commu-
nicate to coordinate activities like the location and collection of food [2]. The
success of this kind of indirect communication has lead researchers to develop a
number of simulations of ant behaviour, including optimisation heuristics such
as Ant Colony Optimisation (ACO). Based on the foraging behaviour of ant
colonies, ACO has generally used a single kind of pheromone to communicate
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between its (artificial) ants, as this is what biological ants do when foraging.
However, natural pheromonal communication often consists of a more complex
interaction of a number of different pheromones [1]. Furthermore, ACO’s reliance
on positive feedback alone may make it difficult for it to successfully escape local
optima [3,4]. Schoonderwoerd et al. [5] were some of the first to suggest that the
use of an “anti-pheromone”, the effect of which would be opposite to that of nor-
mal pheromone, could be a useful technique in ant algorithms for optimisation.
This paper investigates ways in which the concept of an anti-pheromone can be
applied to the Travelling Salesman Problem (TSP). Three variations of an Ant
Colony System (ACS) that use anti-pheromone in some form are described and
compared with a typical implementation of ACS.

An anti-pheromone, or any other variant of the pheromone typically used in
ant algorithms, is simply a substance with a different effect to that of “normal”
pheromone. Hence, a brief summary of those ant algorithms that have used more
than one kind of pheromone is presented here, contrasting these ant algorithms
with an approach that uses anti-pheromone. Much of the work in ant algorithms
that has used more than one kind of pheromone relates to multiple colony ant
systems (e.g. [3,4,6,7,8]). In most of these applications, the interaction between
colonies has been relatively simple, the transfer of the best solution from one
colony to update the pheromone of another colony [6,7,8].

More complex interaction has been investigated by Kawamura, Yamamoto
and Ohuchi, and Kawamura et al. [3,4]. Their Multiple Ant Colony System
(MACS) is highly flexible and enables pheromone from one colony to have both
positive and negative effects on the behaviour of other colonies. A “negative
pheromone effect” is where higher amounts of pheromone on an element actually
discourage ants from choosing that element. While the MACS approach is highly
flexible, it requires considerable memory and computing resources to maintain
the multiple colonies, each with its own pheromone matrix, as well as to calculate
the influences between colonies. The anti-pheromone ant algorithms described in
this paper are simpler and require less memory and computational resources than
MACS, yet can still utilise negative pheromone effects to diversify the search.

The other area in which multiple types of pheromone have been used is
in multiple objective optimisation. Mariano and Morales [6] propose an Ant-
Q algorithm for solving a multi-objective irrigation problem. Their algorithm,
MOAQ, maintains a number of “families,” one for each optimisation criterion,
which communicate with each other by exchanging the best solution found by
each. This is the same kind of information exchange used in multiple colony ant
algorithms for single objective optimisation.

Iredi, Merkle and Middendorf [9] propose a different multi colony approach
for solving bi-criterion optimisation problems. Every colony maintains two phero-
mone matrices, tailored to one of the optimisation criteria. Ants within a colony
differ in their preference for each pheromone, so that they search different regions
of the Pareto-optimal front. The idea of using different pheromones to direct the
search in different areas has some merit and is a strong influence on the second
anti-pheromone application we describe (see Section 3.2).



This paper is organised as follows. Section 2 has a brief overview of ACS
and its governing equations. Section 3 further explains the rationale for us-
ing two kinds of pheromone and describes how we adapt ACS to make use of
anti-pheromone. Section 4 shows the results of using anti-pheromone on some
benchmark TSPs while Section 5 gives the conclusions of this work.

2 ACS

ACO is an umbrella term for a number of similar metaheuristics [10] including the
Ant Colony System (ACS) metaheuristic [11]. A brief summary of the equations
governing ACS when applied to the Travelling Salesman Problem (TSP) is pro-
vided here as it forms the basis for our anti-pheromone modifications described
in the next section. The reader is referred to Dorigo and Gambardella [12] and
Dorigo, Di Caro and Gambardella [10] for a more in-depth treatment of ACO.

The aim of the TSP is to find the shortest path that traverses all cities in
the problem exactly once, returning to the starting city. In a TSP with N cities,
the distance between each pair of cities i and j is represented by d(i, j). In ACS,
m ants are scattered randomly on these cities (m ≤ N). In discrete time steps,
all ants select their next city then simultaneously move to their next city. Ants
deposit pheromone on each edge they visit to indicate the utility (goodness) of
these edges. The accumulated strength of pheromone on edge (i, j) is denoted
by τ(i, j).

Ant k located at city r chooses its next city s by applying Equations 1
and 2. Equation 1 is a greedy selection technique favouring links with the best
combination of short distance and large pheromone levels. Equation 2 balances
this by allowing a probabilistic selection of the next city.

s =
{

arg maxu∈Jk(r)
{
τ(r, u)[d(r, u)]β

}
if q ≤ q0

Equation 2 otherwise (1)

pk(r, s) =

{
τ(r,s)[d(r,s)]β∑

u∈Jk(r) τ(r,u)[d(r,u)]β
if s ∈ Jk(r)

0 otherwise
(2)

Where:

q ∈ [0, 1] is a uniform random number.
q0 is the proportion of occasions when the greedy selection technique is used.
Jk(r) is the set of cities yet to be visited by ant k.

The pheromone level on the selected edge (r, s) is updated according to the
local updating rule in Equation 3.

τ(r, s)← (1− ρ) · τ(r, s) + ρ · τ0 (3)

Where:

ρ is the local pheromone decay parameter, 0 < ρ < 1.



τ0 is the initial amount of pheromone deposited on each of the edges.

Upon conclusion of an iteration (i.e. once all ants have constructed a tour),
global updating of the pheromone takes place. Edges that compose the best
solution (over all iterations) are rewarded with a relatively large increase in
their pheromone level. This is expressed in Equation 4.

τ(r, s)← (1− γ) · τ(r, s) + γ ·∆τ(r, s) (4)

∆τ(r, s) =
{
Q
L if (r, s) ∈ globally best tour
0 otherwise.

(5)

Where:

∆τ(r, s) is used to reinforce the pheromone on the edges of the global best
solution (see Equation 5).
L is the length of the best (shortest) tour to date while Q is a problem
dependent parameter [11].
γ is the global pheromone decay parameter, 0 < γ < 1.

3 Anti-Pheromone Applications

As ants construct solutions they gain knowledge of which elements have high
utility and which elements may, although desirable in the short-term, lead to
poorer solutions in the long term. Randall and Montgomery [13] make use of
this in their Accumulated Experience Ant Colony (AEAC) by weighting elements
based on their long term effects on solution quality. Anti-pheromone, a substance
generally laid down on the elements of poorer solutions, can have a similar effect,
making known the accumulated bad experiences of ants that are otherwise lost.
This is the approach taken by the first two anti-pheromone algorithms. The third
algorithm takes a different approach by making normal pheromone repellent to a
small number of ants, rather than depositing anti-pheromone on poorer solutions.
It is included here as for those ants that see pheromone as a repellent substance,
it represents an anti-pheromone.

3.1 Subtractive Anti-Pheromone (SAP)

As ants construct solutions, they often identify relatively poor solutions as well
as good solutions. In this version of the ACS algorithm, particular attention
is paid to those poorer solutions, with pheromone being removed from those
elements that make up the worst solution in each iteration. Thus, subsequent
generations of ants are discouraged from using elements that have formed part
of poorer solutions in the past. This constitutes the simplest way to implement
anti-pheromone where the deposition of a repellent pheromone is simulated by
a reduction in existing pheromone levels, as suggested by Schoonderwoerd et



al. [5] in their conclusions. We refer to this application of anti-pheromone as
Subtractive Anti-Pheromone.

The SAP algorithm is identical to ACS except for the addition of a second
part to the global pheromone update, in which pheromone is removed from links
that compose the worst solution in that iteration. This is described in Equation 6.

τ(r, s)← τ(r, s) · γ′ ∀(r, s) ∈ vw (6)

Where:

γ′ is the pheromone removal rate due to anti-pheromone.
vw is the iteration worst solution.

The rate at which pheromone is removed from the elements of the iteration
worst solution is controlled by the parameter γ′. The value of γ′ used in the
experiments is 0.5, which was found to yield the best results.

3.2 Preferential Anti-Pheromone (PAP)

Iredi et al. [9] propose an ant system for solving bi-criterion optimisation prob-
lems that uses two types of pheromone, one for each criterion. Their use of a
different pheromone for each optimisation criterion allows for knowledge concern-
ing both criteria to be improved as the algorithm progresses. The second anti-
pheromone application we propose, called Preferential Anti-Pheromone, takes a
similar approach by explicitly using two types of pheromone, one for good solu-
tions and one for poorer solutions. Ants in this version of the algorithm differ in
their preference for normal pheromone versus anti-pheromone (denoted by τ ′)
with respect to a parameter λ. The value of λ for ant k, k = [1,m], is given
by k−1

m−1 , as in Iredi et al. [9]. Hence, instead of optimising across two objective
functions, PAP allows some ants to explore apparently poorer areas of the search
space while other ants focus on the solution space near the current global best
solution.

Equations 1 and 2 are modified for this variant to incorporate anti-pheromone
information, yielding Equations 7 and 8 respectively.

s =
{

arg maxu∈Jk(r)
{

[λτ(r, u) + (1− λ)τ ′(r, u)] · [d(r, u)]β
}

if q ≤ q0
Equation 8 otherwise (7)

pk(r, s) =

{
[λτ(r,s)+(1−λ)τ ′(r,s)]·[d(r,s)]β∑

u∈Jk(r)[λτ(r,u)+(1−λ)τ ′(r,u)]·[d(r,u)]β
if s ∈ Jk(r)

0 otherwise
(8)

Pheromone and anti-pheromone are updated equally by ants traversing links
during an iteration as local updating ignores the cost of solutions produced.
Thus, in addition to Equation 3 being applied, the anti-pheromone on a selected
edge is updated by Equation 9.

τ ′(r, s)← (1− ρ) · τ ′(r, s) + ρ · τ0 (9)



Upon conclusion of an iteration the global update rule in (4) is applied with-
out modification. In addition, the global update rule for anti-pheromone given
in Equation 10 is applied.

τ ′(r, s)← (1− γ) · τ ′(r, s) + γ ·∆τ ′(r, s) (10)

∆τ ′(r, s) =
{

Q
Lw

if (r, s) ∈ iteration worst tour
0 otherwise.

(11)

Where:

∆τ ′(r, s) is used to reinforce the pheromone on the edges of the iteration
worst solution (see Equation 11).
Lw is the length of the worst tour from the iteration just ended.

3.3 Explorer Ants

The third anti-pheromone variant takes a different approach to the first two
in that it does not associate anti-pheromone with poorer solutions. Instead, a
small number of ants are chosen to behave differently from other ants by being
attracted to areas with little pheromone. These explorer ants influence their
environment by depositing pheromone in the same way as normal ants, only
their preference for existing pheromone is reversed. Hence, an explorer ant finds
its own pheromone undesirable. Equations 12 and 13 express how an explorer
ant located at city r chooses the next city to go to s.

s =
{

arg maxu∈Jk(r)
{

[τmax − τ(r, u)] · [d(r, u)]β
}

if q ≤ q0
Equation 13 otherwise (12)

pk(r, s) =

{
[τmax−τ(r,s)]·[d(r,s)]β∑

u∈Jk(r)[τmax−τ(r,u)]·[d(r,u)]β
if s ∈ Jk(r)

0 otherwise
(13)

Where:

τmax is the highest current level of pheromone in the system.

The explorer ants algorithm divides the population of ants into two groups,
with a higher proportion of normal ants than explorers. We found that two
explorer ants produced good results when m = 10. While this approach appears
similar to the MACS of Kawamura et al. [4], there are some important differences.
Although ants are divided into two groups they do not represent separate colonies
as they share the same pheromone. Furthermore, this algorithm allows for a small
number of explorer ants to be used and saves on memory requirements by using
only a single pheromone matrix.



Table 1. TSP instances used in this study

Instance Description Optimal Cost

gr24 24 cities 1272
eil51 51 cities 426
eil76 76 cities 538
kroA100 100 cities 21282
d198 198 cities 15780
lin318 318 cities 42029
pcb442 442 cities 50778

4 Computational Experience

A control strategy (normal ACS) and the three alternative implementations were
run in order to evaluate their relative performance. Table 1 describes the TSP
instances [14] with which the alternative pheromone representations are tested.

The computing platform used to perform the experiments is a 550 MHz Linux
machine. The computer programs are written in the C language. Each problem
instance is run across 10 random seeds consisting of 3000 iterations. The ACS
parameter settings used are: β = −2, γ = 0.1, ρ = 0.1, m = 10, q0 = 0.9.

4.1 Results

The results are given in Table 2. The minimum (“Min”), median (“Med”), max-
imum (“Max”) and inter-quartile range (“IQR”) are used to summarise the
results as they are non-normally distributed. As the results for CPU time are
highly consistent for each combination of algorithm and problem, only the me-
dian CPU time (in seconds) is presented in the table.

The results for CPU time are highly consistent with the three anti-pheromone
algorithms’ times within 3% of those for the control. Explorer ants runs slightly
slower than the others due to the increased computational overhead associated
with evaluating the combined value of two pheromones.

To allow for statistical analysis of cost results across problems, the costs of
solutions were normalised according to c−copt

copt
, where c is the cost of the solution

and copt is the optimal cost for its corresponding problem. As the data are non-
normally distributed, the Mann-Whitney test was used to compare results.

SAP performs well on problems with less than 100 cities, producing results
that are better than the control. This result is statistically significant, p < 0.05.
On problem gr24, it found the optimal solution on every run. SAP also produces
better results on eil51, and equivalent results on eil76, kroA100 and d198.
However, the control performs better on problems with more than 200 cities.
Across all problems there is no statistically significant difference between the
two algorithms. Although in general γ′ = 0.5 yields the best results for SAP on
the problem instances tested, other values were investigated. It was found that



Table 2. Results for ACS control and anti-pheromone variants

Problem Algorithm Cost CPU
Instance Min Med Max IQR Time

gr24 Control 1272 1278 1278 6 18
SAP 1272 1272 1272 0 18
PAP 1272 1272 1278 0 20
Explorer 1272 1272 1278 5 17

eil51 Control 426 430 441 7 80
SAP 426 428 430 1 79
PAP 426 430 436 3 83
Explorer 426 430 439 4 78

eil76 Control 540 545 554 8 177
SAP 539 550 558 9 176
PAP 539 552 562 7 182
Explorer 539 552 561 11 172

kroA100 Control 21296 21479 22178 371 307
SAP 21319 21552 22060 382 304
PAP 21292 21753 22754 411 315
Explorer 21305 21515 22318 426 298

d198 Control 15948 16116 16451 151 1181
SAP 15988 16156 16454 337 1183
PAP 16449 16769 17182 311 1216
Explorer 16058 16205 16425 169 1161

lin318 Control 45514 46793 47422 1031 3018
SAP 48375 49099 50608 1026 3050
PAP 46793 49434 50223 954 3136
Explorer 45031 46314 48114 908 3027

pcb442 Control 60525 62420 65014 1610 5988
SAP 62753 64596 66332 1941 5932
PAP 61623 64156 64753 1133 6097
Explorer 61709 63657 66663 2219 5883



increasing γ′ to 0.75 improves SAP’s performance on problems with more than
200 cities, bringing them closer to those achieved by the control. However, there
is still a statistically significant difference between SAP with γ = 0.75 and the
control on problems with more than 200 cities, p < 0.05.

On a per problem basis, PAP produces worse results than the control on all
problems except gr24 and eil51. Analysis across all problems combined reveals
a statistically significant difference between the results of the control and those
of PAP, p < 0.10. It is possible that this poor performance is due to the local
update rule in which all ants, regardless of their preference for normal pheromone
versus anti-pheromone, update both pheromones by the same amount. Hence,
ants with a strong preference for anti-pheromone may distract the search too
much and prevent ants with a stronger preference for normal pheromone from
searching near the current global best solution. A modified version of PAP was
implemented in which ants locally update pheromone in proportion to their value
of λ (and anti-pheromone in proportion to (1− λ)) producing equivocal results.

Compared across all problems, no statistically significant difference exists
between explorer ants and the control. Only on d198 is there sufficient evidence
that the control performs better. Explorer ants performed slightly better than
the control gr24 and eil51.

In general, SAP produces better solutions than PAP. Although PAP performs
better than SAP on problems lin318 and pcb442, there is no statistically sig-
nificant difference. On problems with less than 100 cities, SAP produces better
results than explorer ants. However, on problems with more than 200 cities, ex-
plorer ants performs better. Explorer ants also performs better than PAP across
all problems.

5 Conclusions

Although animals in nature generally use a number of pheromones in their com-
munication, typical ant algorithms have used only one. The majority of ant
algorithms that have used more than one pheromone are simple extensions of
single-pheromone ant algorithms, maintaining multiple colonies and using the
best solution from one colony to update the pheromone of others. More complex
pheromone interactions have been used by Kawamura et al. [3,4], but these re-
quire fairly considerable computational resources to store and process multiple
types of pheromone.

We have proposed three variations of the Ant Colony System that employ
anti-pheromone in some form. The first, subtractive anti-pheromone, simulates
anti-pheromone by reducing the amount of pheromone on elements of the it-
eration worst solution. It works well on problems with less than 200 cities. It
also has a distinct advantage over multiple colony ant systems in that it stores
only one kind of pheromone and is no slower than normal ACS. The second al-
gorithm, preferential anti-pheromone, is less successful, producing better results
than the control on only the two smallest problems. It is possible this is because
ants with a strong preference for anti-pheromone distract ants with a preference



for normal pheromone, or that the linear equation for deciding ants’ preferences
results in too few ants with a strong preference for normal pheromone. Explorer
ants, the third anti-pheromone algorithm, changes the response to pheromone of
a small number of ants, making these ants seek elements with lower pheromone
levels. It can produce better solutions than the control on small problems, but
produces largely equivalent results on all other problems.

Middendorf, Reischle and Schmeck [8] suggest that in multiple colony ant
algorithms the amount and frequency of pheromone information exchange should
be kept small. Hence, we plan to extend these algorithms so that the effects of
anti-pheromone on normal pheromone are kept to a minimum. For instance,
PAP could be improved by having a larger proportion of ants with a strong
preference for normal pheromone as well as changing the local update rule so
that ants update each kind of pheromone in proportion to their preference for
that pheromone. SAP may also yield improved results if pheromone is removed
from elements of poor solutions less frequently.

We have given plausible explanations for how each of the three algorithms
helps to explore different areas of the search space and why this may prove
beneficial. An important extension to this work is to analyse this exploration
behaviour more objectively. This will involve measuring the differences in explo-
ration between algorithms as well as the utility of this exploration.

This work is part of a wider strategy that is looking at ways of producing
generic strategies to enhance ant based metaheuristics [13,15,16]. In addition
to the improvements suggested above, future work will involve the extension of
these anti-pheromone applications to other problems.
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