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Abstract

This article proposes a hybrid information approach to predict corporate credit risk. In

contrast to the previous literature that debates which credit risk model is the best, we pool

information from a diverse set of structural and reduced-form models to produce a model

combination based credit risk prediction. Compared with each single model, the pooled

strategies yield consistently lower average risk prediction errors over time. We also find

that while the reduced-form models contribute more in the pooled strategies for speculative

grade names and longer maturities, the structural models have higher weights for shorter

maturities and investment grade names.
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1 Introduction

The valuation and prediction of corporate credit risk is an important topic in both empirical

and theoretical research. The structural and reduced-form models are two competing paradigms

in this research field, and the literature (Jarrow and Protter, 2004) differentiates between the

two modeling frameworks from the information perspective. In structural models, the model-

ers, as the firms’ managers, are assumed to have complete knowledge of the firms’ assets and

liabilities. The corporate default, therefore, occurs when the firm’s value hits a default barri-

er. In contrast, the reduced-form models show that the modelers have incomplete knowledge

of the firm’s conditions as normal market participants, in which the firm’s default time is not

accessible and can be simply specified by a hazard rate process. While early studies debate

which modeling framework between the two better captures credit risk and conclude that all the

credit risk models consistently underpredict corporate bond spreads (e.g., Eom, Helwege, and

Huang, 2004, Collin-Dufresne and Goldstein, 2001), in this paper, we marry the two modeling

frameworks together and propose a model combination approach to improve corporate credit

risk prediction.

From the modeling framework, we choose two classic representatives to form the model pool.

The first structural model we consider is the Merton model (Merton, 1974), which serves as the

cornerstone for all the other structural models. The Merton model regards corporate liabilities

as contingent claims on the assets of firms and applies option theory to derive the value of a

firm’s liabilities in the presence of default. In doing so, the firm’s equity value can be viewed

as a call option on the value of the firm’s assets, and default will occur if the firm’s asset

value is not enough to cover the firm’s liabilities. Despite the Merton model building up the

theoretical foundation for the structural models, most assumptions in the model are not held

in reality. Therefore, we consider the second structural model, the Black-Cox model (Black

and Cox, 1976), in which the default occurs before the end of the debt maturity. Additionally,

instead of considering only a single type of debt, the model allows for a tranche structure in the

senior and subordinated bonds. The formulations of the two structural models are consistent

with the manager’s perspective that the firm’s condition is observable and that default is an

accessible stopping time.

The two classic reduced-form models we considered here include the Jarrow and Turnbull

model (Jarrow and Turnbull, 1995) and the Duffie and Singleton model (Duffie and Singleton,
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1999). The two reduced-form models treat the default as an unpredicted event given by a

hazard process; hence, the firm will default when the exogenous random variable changes its

level over a certain time interval. As a result, the default event is not dependent on the value

of the firm’s asset. Specifically, the Jarrow and Turnbull (JT) model assumes that the recovery

rate is exogenous and that recovery can only be received at the time of maturity if the default

occurs prior to maturity. The Duffie-Singleton (DS) model extends the JT model by allowing

the recovery payment to be made at any time. Therefore, constructing reduced-form models

presumes that the market does not have the same information set as the firm’s management. The

imperfect knowledge of the market is due to the fact that accounting reports and/or management

press releases either purposefully or inadvertently add extraneous information that obscures the

knowledge of the firm’s asset value (Cetin, Jarrow, Protter, and Yildirim, 2004), leading to an

inaccessible default time.

Given the distinct information foundation of these models, we propose combining the afore-

mentioned four credit risk model representatives to construct a hybrid information-based forecast

for corporate credit spread. Model combination has been widely used in econometric forecasting

since the pioneer work by Bates and Granger (1969). The model combination method was later

extended by Granger and Ramanathan (1984) and has spawned much literature. Some excellent

reviews include Clemen (1989), Diebold and Lopez (1996), Clements, Hendry, and College (2002)

and Timmermann (2006). Recently, forecast combinations have received renewed attention in

the macroeconomic forecasting literature (e.g., Stock and Watson, 2003) and increasing attention

in finance (e.g., Rapach, Strauss, and Zhou, 2010, O’Doherty, Savin, and Tiwari, 2012, Durham

and Geweke, 2014). Because the underlying market condition changes over time, the firm asset

returns and default events are generated from different data-generating processes (DGPs) over

distinct economic states. Thus, there is no single model dominating all others in all the market

conditions or economic states. The combination of different models with dynamically updated

weights would allow for this model uncertainty. In addition, previous empirical studies (e.g.,

Gündüz and Homburg, 2014) suggest that the reduced-form approach outperforms the structural

models for investment-grade names and longer maturities, and the structural approach performs

better for shorter maturities and sub-investment grade names. Given the cross-sectional dis-

persion of the model performance in different types of corporate debts, the model combination

would result in better performance on average across a wide range of corporate debts. To ac-

commodate the above arguments, we implement a bias-variance trade-off framework to achieve
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the combination. We first decompose the forecast errors of each individual model into bias and

variance components. Then, we determine the optimal weights for individual models by achiev-

ing global minimum variance. Last, we correct the bias by assuming the prediction bias this

period is the same as that of the last period. The pooled model, therefore, has the minimum

variance and negligible bias.

We next gauge the empirical performance of our combined models in corporate bond spread

prediction. Our dataset consists of 279,826 monthly corporate bond yield spreads to the swap

rate of non-callable bonds issued by industrial firms over the period 1992-2016. We first explore

the ability of both the combined model and all the individual models to explain the cross-

sectional variation of bond spreads across different maturity ranges and credit ratings. We find

that the performance of the combined model is constantly superior to other four individual

models with 99% confidence level for all maturity/rating buckets in terms of root mean square

error (RMSE). When looking at the performance of the individual models, we find that the

reduced-form approaches outperform the structural for speculative-grade credit bonds and longer

maturities, while the structural models do better for investment-grade credit and shorter term

bond spreads. Structural models assume complete knowledge of a very detailed information set,

akin to that held by the firm’s managers, while reduced-form models assume knowledge of a

less detailed information set, akin to that observed by the market (Jarrow and Protter, 2004).

Taking this insight, we can interpret the results from information perspective by saying that the

lower the credit rating and longer the term of the bonds are, the harder it is for bond holders to

access the complete knowledge of the bond’s condition. Therefore, the assumption of reduced-

form models is more realistic than that of structural models, resulting in a better empirical

performance for speculative grade and longer term bonds. Similar results for individual models

are also reported by Gündüz and Homburg (2014). Second, using time-series regression, we

test for whether the combined model can also better capture the time variations in corporate

bond spread than the individual models and find that the combined model also significantly

outperforms in both stable and volatile periods.

Our work makes three contributions to the corporate credit risk literature. First, it improves

the performance of credit risk models for corporate credit spread forecasts by combining the two

well-known competing model classes. As a barometer of financial health of corporations and

sovereign entities, an accurate forecast for corporate credit spread is useful for corporate and

government decision-making. The better risk prediction from our combined models improves the
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pricing of credit derivatives for private traders; the measurement of corporate risk for regulatory

agencies; and the assessment of systemic credit risk for macroeconomic policymakers. Second,

model combination is an intuitive and easy-to-implement approach to integrate different sources

of information, and our work is one of the few studies in the credit risk area to propose a model

pooling approach, which acknowledges the advantage of utilizing hybrid corporate default-related

information in credit risk prediction. Third, we contribute to the literature by examining the

time-varying and cross-sectional performance of the individual popular credit risk models and

investigate the economic rationale of pooling the models as well as an application of the pooled

model in a real investment practice.

The remainder of this paper is organized as follows. Section 2 presents the two structural and

reduced-form models and interprets their difference from the information perspective. Section

3 describes the procedure to construct the combined corporate bond spread forecasts from the

three models. Section 4 provides an empirical analysis of the performance of combined model

prediction using 2,436 corporate bonds, and Section 5 concludes.

2 Credit risk models and model calibration

In this section, we consider four classic credit risk models, including two structural models

(Merton, 1974, Black and Cox, 1976), and two reduced form models (Jarrow and Turnbull,

1995, Duffie and Singleton, 1999). We describe each of the model’s set-up and the methods we

used to calibrate the model parameters.

2.1 Structural models

The Merton model: Merton (1974) laid the foundation on the structural approach to credit

risk modeling. In this model, the asset value of a firm at time t, St, is assumed to follow a

geometric Brownian motion, which is governed by the drift and volatility rate parameters µ and

σ as follows:

logSt = logSt−τ + (µ− 1

2
σ2)τ + σ

√
τdWS

t , (1)

where both the drift µ and the volatility µ are constant.

Given that the firm has two types of outstanding claims, they are an equity and a zero-

coupon debt maturing at time T with face value F , the following accounting identity holds for
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every time t as

St = Et +Dt, (2)

where Et and Dt are, respectively, the market value of equity and debt at time t. When debt

matures, the default occurs in the event that the firm’s assets are less than the face value of the

debt, i.e., ST < F . Otherwise, equity holders repay the debt and keep the balance. Therefore,

the payout to the debt holders at the maturity time T is

DT = min(ST , F ), (3)

and the equity holders, on the other hand, receive at time T

ET = max(ST − F, 0). (4)

Therefore, the firm’s equity can be regarded as if it is a call option on the total asset value S of

the firm with the strike price of F and the maturity date T . Assuming the risk-free interest rate

is r, the equity claim in (4) can be priced at time t < T by the standard Black-Scholes option

pricing model to yield the following solution:

Et = E(St;σ
2
t , F, r, T − t) = SΦ(dt)− Fe−r(T−t)Φ(dt − σ

√
T − t), (5)

where

dt =
ln(St

F ) + (r + σ2

2 )(T − t)
σ
√
T − t

(6)

and Φ is the standard normal distribution function. Note that the equity pricing formula is not

a function of the drift term µ and is invertible with respect to the asset value.

Once the parameter estimates are obtained from the Merton model, we can first generically

compute the distance to default as the number of standard deviations between the expected

asset value at maturity T and the face value of the debt:

DD =
−logL+ (µ− σ2/2)T

σsqrtT
, (7)

where L = ( FS0
) is the firm leverage ratio. Second, the cumulative default probability of the
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Merton model at time T can be calculated as:

πP (T,Merton) = 1−N(DD), (8)

where N(DD) is the cumulative distribution function of DD, and πP is the cumulative proba-

bility that the asset value falls below the face value of the debt at the end of the time horizon

T . Third, the credit spread of a risky corporate bond is defined as the premium required to

compensate for the expected loss in the event of default, that is, st = yt−r, where yt is the yield

of the risky corporate bond, and r is the risk-free interest rate. According to the payoff corpo-

rate debt holders receive, the risky debt can be priced by the difference between a default-free

debt and a put option on the total asset value St of the firm with the strike price of F and the

maturity date T . Therefore, we have

Bt = Fe−r(T−t) − Pt, (9)

where F is the face value of the zero coupon debt at the maturity time, and Pt is the price of

a put option on the asset value St with the strike price F and the maturity date T . Then, the

yield yt of the risky corporate bond can be derived from

e−yt(T−t)F = Bt, (10)

and the credit spread st can be computed as

st = y − r = − 1

T
ln[1− (1−R)πQ(T,Merton)], (11)

where R is the recovery rate, T is the bond maturity and πQ(T,Merton) is the risk-neutral

default probability, which is obtained by replacing µ with r in πP (T ).

The Black-Cox model: Black and Cox (1976) extend the original Merton model by re-

moving some unrealistic assumptions. First, while the Merton model allows for the firm to

default only at the end of the maturity, Black and Cox (1976) add safety covenants that entitle

debt holders to force the firm to reorganize when its value falls below a threshold and receive a

discounted value of the debt’s principal amount. Second, the original Merton model assumes the

firm has only single-type debt, but the corporate debt has a tranche structure that causes the
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subordinated bonds to receive no payments until all payments for the senior bonds have been

made. Therefore, the tranche structure should be allowed in the firms’ debt, and the Black-Cox

model incorporates this debt characteristic.

Again, Black and Cox (1976) assume that a firm’s asset value follows a geometric Brownian

motion but allow for the payout rate to debt:

logSt = logSt−τ + (µ− 1

2
σ2 − δ)τ + σ

√
τdWS

t , (12)

where δ is the payout rate to debt and equity holders. Different from the Merton model, the firm

defaults the first time the asset value is below some faction d of the face value of debt, rather

than the end of the maturity period. The cumulative default probability of the Black-Cox model

at time T is:

πP (T,B − C) = N(−(
−log(dL) + (µ− δ − σ2

2 )T

σ
√
T

)) (13)

+ exp(
2log(dL)(µ− δ − σ2

2 )

σ2
)N(

log(dL) + (µ− δ − σ2

2 )T

σ
√
T

), (14)

where L = F
S0

is the leverage ratio. Once we obtain πP (T,B − C), the firm credit spread again

can be calculated using equation 11.

2.2 Reduced-form models

The Jarrow and Turnbull model: the reduced-form models were originally introduced by

Jarrow and Turnbull (1995). In contrast with structural models where the default time is

endogenously determined and corresponds to the hitting time of the default barrier, both default

timing and recovery rate are exogenously specified in the reduced-form model. The default

time is a stopping time generated by a Cox process Nt = 1τ<=t with an intensity process λt

depending on the vector of state variables Xt (often assumed to follow a diffusion process). In

this formulation, the stopping time is totally inaccessible and not predictable. The probability

of default prior to time T is therefore given by

Q(τ ≤ T ) = EQ(e−
∫ T
0 λsds). (15)
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To complete this formulation, Jarrow and Turnbull (1995) also give the payoff to the firm’s debt

in the event of default, called the recovery rate. This is usually given by a stochastic process δt.

To be consistent with the structural model in the previous section, the recovery rate δτ is paid

at time T .

The value of the firm’s debt is therefore given by

Bt = E([1τ<=tδτ + 1τ>t1]e−
∫ t
0 rsds). (16)

For example, if the recovery rate (δ) and intensity processes (λ) are constants, then this expres-

sion can be evaluated explicitly, generating the model in Jarrow and Turnbull (1995) where the

debt’s value is given by

Bt = Pt(Q(τ ≤ T )δ + (1−Q(τ ≤ T ))eλT ), (17)

where Pt = EQ(e−
∫ t
0 rsds).

The Duffie-Singleton model: similar to Jarrow and Turnbull (1995), Duffie and Singleton

(1999) also assumes a Poisson process for defaults. Unlike the Jarrow-Turnbull model, the Duffie-

Singleton model assumes that recovery is paid immediately upon default and equals a fraction

of what the bond is worth immediately prior to default. In our formulation, it means:

w(t) = qBt, (18)

where q is the constant recovery ratio on the value of the bond prior to default. Substituting

this result back into equation 15, we obtain

Q∗(τ ≤ T ) = EQ(e−(1−q)
∫ T
0 sds) = Q(τ ≤ T )1−q. (19)

It is clear that in the Duffie-Singleton model, recovery is blended into survival probabilities. In

other words, recovery in the Duffie-Singleton model contains survival probabilities. Therefore,

the debt’s value is given by

Bt = Pt(Q
∗(τ ≤ T )δ + (1−Q∗(τ ≤ T ))eλT ). (20)
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2.3 Model calibration

We calibrate the two structural model parameters using a recent approach by Feldhütter and

Stephen (2017). First, we estimate the default boundary (that is L in the Merton model and dL

in the Black-Cox model) by matching the model-implied default probability with the Moody’s

reported default frequency. Different from previous studies (see Chen, Collin, and Goldstein

(2009) for example) that estimate the default boundary separately for each maturity and rating,

conditional on the other parameters, Feldhütter and Stephen (2017) assume that all the firms

have the same default boundary and use a wide cross-section of default rates at different maturi-

ties and ratings to estimate the default boundary. Specifically, given the estimates of the issuing

firms’ asset return (µ), asset volatility (σ), and payout ratio (δ) (the estimation procedure for

these parameters is standard, in which we refer to Feldhütter and Stephen (2017) regarding the

details). This approach fits the historical rates on all available ratings and maturities and esti-

mates the default boundary by minimizing the sum of absolute deviations between annualized

model-implied and historical default rates:

mind

C∑
a=AAA

20∑
T=1

1

T
|πP (T,Merton)− π̂PaT |, (21)

where π̂PaT is the historical cumulative default rate for rating a and maturity T . Second, we

calculate the credit spread using equation ( 11) above by obtaining πQ(T, .) from πP (T, .) and

set the recovery rate to R = 37.8%, which is Moody’s average recovery.

In reduced-form models, we need three pieces of information to complete the calibration:

risk free zero yield curve, a set of risky bond prices, and a recovery assumption. In both the

Jarrow-Turnbull and Duffie-Singleton models, we again assume a recovery rate of 37.8%. Given

the price, face value and coupon collected for each specific firm bond, the default probability

can be estimated by

λ̂t = argmin
∑

[Bobs
i (t)−Bi(t)]2. (22)

The firm credit spread can be calculated accordingly based on the model-implied bond price Bt

and the risk-free rate.
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3 Model combination framework

Using the corporate bond spreads obtained from the above four models, we can form the com-

bined forecast for corporate bond spread in the following way:

ŝt|t−1 = α0 +

3∑
i

ωi,tŝi,t|t−1, (23)

where ŝt|t−1 is the weighted combination of the predicted bond spreads from the considered

individual credit risk models; α0 is the estimated bias correction term; and ŝi,t|t−1 and ωi,t are

the predicted bond spreads from each single model and the corresponding weights of the model

in the model combination. Obviously, the key input in (23) is the model combination weights

ωi,t. Several weighting schemes have been proposed in the literature, and here, we adopt the

optimal weighting scheme, which obtains the model weights throughout, minimizing the mean

squared forecast errors (MSFE).

It is well known that the MSFE loss function can be decomposed into forecasting bias and

forecasting variance as follows:

E(ŝ− s0)2 = E[(s0 − E(ŝ)) + (E(ŝ)− ŝ)]2, (24)

where ŝ is the bond spread forecast, and s0 is the true bond spread. Assuming that biases are

not correlated with random errors, we can rearrange the above expression as

E(ŝ− s0)2 = E[s0 − E(ŝ)]2︸ ︷︷ ︸
Bias2

+ E(E(ŝ)− ŝ)2︸ ︷︷ ︸
V ariance

, (25)

which provides an explicit interpretation on how the MSFE loss is determined by both the

forecasting bias and variance.

Due to the trade-off relationship between the bias and variance (Geman, Bienenstock, and

Doursat, 1992), that is, the lower variance (bias) is necessarily associated with the greater bias

(variance), we propose a bias-corrected optimal weighting scheme for the model combination,

which obtains the model weights by minimizing the forecast variance at a given bias level that

takes the value of forecasting bias in the last time period and subsequently corrects for the

biases by simply removing it from the achieved combined forecasts. The resulting bias-corrected

combined forecast will therefore have the smallest possible variance but also exhibit negligibly
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small bias. Intuitively, the trade-off relationship between the model forecast bias and variance is

analogous to the mean-variance (return-risk) trade-off in modern portfolio theory. We therefore

rely on the global-minimum-variance (GMV) portfolio theory to find the model combination

weights, which achieves the minimum forecasting variance at first. The corresponding model

combination weights and the combined forecast bias are calculated as follows:

ω =
Σ−11

1′Σ−11
(26)

and

S =
s′Σ−11

1′Σ−11
(27)

In equations (26) and (27), the parameter to be estimated is the inverse variance-covariance

matrix of forecasting errors from single models and is critical for the overall performance of the

combined forecast. One of the most direct ways is to use the sample covariance estimator. The

bias is removed accordingly to further reduce MSFE.

We further illustrate the rationality of the bias-corrected optimal weighting scheme in Fig-

ure 1, in which forecast bias (on the y-axis) is plotted against forecast variance (on the x-axis).

The scattered internal dots represent the status of diverse individual forecasts that exhibit var-

ious levels of bias and variance. Building on the trade-off approach, we generate a hypothetical

“estimation frontier". Point G represents a combination of single forecast that produces mini-

mum variance, and point U represents an unbiased combination of single forecast. The consensus

bond spreads forecast should feature negligible bias and minimum variance, which is represent-

ed by point O in Figure 1. Point O indicates the ideal situation of an unbiased forecast with

minimum variance. This ideal condition cannot be feasibly achieved by any single individual

forecast. In essence, our strategy for achieving outcome O is to use a global minimum variance

weighting scheme to create an optimal combination of individual bias-corrected estimators.

[Insert Figure 1 here]

4 Data

Our bond data are extracted from REUTERS and supplemented by the Merrill Lynch corpo-

rate bond index database, which is also used in Schaefer and Strebulaev (2008) and Feldhütter

and Stephen (2017). The data covers the period from December 1992 to March 2016. Follow-

13



ing previous studies, the data sample covers senior unsecured bonds issued by corporate firms

without the following bond characteristics: floating rate coupons, issued by banks, government

guaranteed, and with special clauses, and financial or government related firms and bonds with

embedded options, such as convertible or callable bonds. Additionally, we use only bonds issued

by industrial firms and ones with a maturity of less than 20 years, which is consistent with the

maturities of the default rates used in Feldhütter and Stephen (2017). Applying these refine-

ments, this paper obtains a sample of 2,436 corporate bonds, which leads to 279,826 monthly

bond observations. The bond characteristics in the dataset contain yield spreads, issued amount,

coupon rate, and issue date.

Moody’s credit rating and SWAP rates are collected from REUTERS, and the SWAP rates

are used as the proxy of interest rates and to estimate the bond yield spreads. The firm char-

acteristic variables, equity return volatility and leverage ratio, are obtained from the Center for

Research in Security Prices (CRSPs) database, and the corporate financial statement informa-

tion is collected from the COMPUSTAT database.

Table 1 reports the summary statistics of bonds spreads in basis points, denoted bps. As

expected, the mean and standard deviation of bond spreads are greater for bonds with greater

default risk. The monthly mean spread on AAA-rated bonds is 18 bps with a standard deviation

of 33 bps, and for C bonds, the mean and standard deviation are, respectively, 1,217 bps and

1,864 bps. For some of our analysis, we rely on groupings into investment-grade (IG, BBB-rated

and above) and speculative-grade (SG, below BBB-rated) bonds. For this grouping, we find

that the IG and SG bonds spreads are, respectively, 68 and 452 bps, and the respective standard

deviations are 87 and 759 bps.

[Insert Table 1 here]

5 Model performance evaluation

To assess the empirical performance, we compare the combined model with the four single models

in terms of both forecasting bias and root mean square error (RMSE) of corporate bond spreads.

The forecasting bias and RMSE are defined as E(s− ŝ) and E(s− ŝ)2, respectively, where ŝ is

the model predicted bond spread and s is the actually observed bond spread. We further employ

the Diebold and Mariano (1995) (DM) test to investigate whether the bond spreads prediction

improvements from the combined model are statistically significant and use ∗, ∗∗ and ∗ ∗ ∗ to
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indicate the significant superiority at 10%, 5% and 1% significance levels in the empirical results.

More details of the DM test are provided in the Appendix.

5.1 Cross-sectional performance

First, we investigate the empirical performance of the model combination across different groups

of bonds by classifying the bonds based on their term to maturity and credit rating.

5.1.1 Term structure of bond spreads

To understand the dependence of model performance on bond maturity, we follow Feldhütter

and Stephen (2017) to classify the corporate bonds based on their term to maturity into three

segments: 3-7 years, 7-13 years and 13-20 years, and compare the forecasting performance of

the model combination with the four individual models for all the bonds and each segment of

bonds.

Table 2 shows the bias and RMSE of bond spread forecasts from each model scheme, and

Table 3 reports the model weights in the model combinations. There are several noteworthy

findings summarized as follows. First, it is clear that although the structural and reduced-

form models perform quite similarly when we focus on all the sample of bonds, the structural

models outperform the reduced-form models for the bonds with maturities below 13 years,

and the reduced-form models perform better than the structural models for bonds with longer

maturities (13-20 years). Taking the view of Jarrow and Protter (2004), we can interpret the

results from information perspective by saying that the longer the investors hold the bonds, the

harder it is for them to access the complete knowledge of the firm’s condition. In this case, the

assumption of reduced-form models is more realistic than that of structural models, resulting

in a better empirical performance. Second, the combined model outperforms all the individual

models for all maturity ranges by providing smaller RMSE, and the DM test results confirm

that the superiority is significant.

[Insert Table 2 here]

In addition, looking at Table 3 for the model optimal weights, we can see that more weights

are given to the two structural models due to their superior performance for bond maturity

ranging from 3-7 years, and the reduced-form models take higher weights for longer term maturity

bonds. These observations further collaborate our previous arguments that the structural models

outperform (underperform) the reduced-form models in forecasting the spread of bonds with
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shorter (longer) maturity. The model pool outperforms each single model across all the ranges

of bonds.

[Insert Table 3 here]

5.1.2 Model prediction breakdown to ratings

Next, we test the impact of credit rating on model performance by further dividing the bond

sample based on credit rating. Due to the small number of bonds in AAA and B rating categories,

we combine AAA and AA into one rating group and BB and B into one rating group to form

AAA/AA and BB/B rating categories, which brings our total groups to five: AAA, AA/A,

BBB, BB/B, and C. Table 4 reports the performance of all models in terms of bias and RMSE

of bond spread forecasting for different credit rating categories, and Table 5 reports the model

weights in the model combinations.

[Insert Table 4 here]

First, focusing on individual model performance, we find that the RMSE of bond spread

forecasts from both the structural and reduced-form models increase as the credit rating worsens.

In the bond group with longer terms to maturity, we observe that the reduced-form models

outperform the structural models for speculative grade bonds (B and C rated). While turning

to the bond group with short terms to maturity, the structural models perform better in pricing

investment grade bonds (BBB rated and above). These findings are consistent with the results

found in the section term structure above. Furthermore, the predicted spreads from the combined

model track the actual bond spreads in all categories more precisely than the counterparts from

each of the individual models, and the DM test shows that the superior performance is significant.

Last, the bias-variance trade-off framework efficiently corrects the bias and successfully achieves

the minimum variance in the model combination.

[Insert Table 5 here]

5.2 Time-series performance

The above sections examine the cross-sectional performance of the model combination across

different groups of bonds, and in this section, we investigate the time-series performance of the

model combination.
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5.2.1 Time variation of bond spreads

We first employ a time-series regression to investigate whether the combined model also better

captures time variations of bond spreads than the individual models. In each day, we calculate

the average actual yield spread for a given rating along with the corresponding model-implied

average spread and investigate the daily time series.

To reveal whether the above-documented prediction improvements are statistically signifi-

cant, we regress the predicted bond spreads ŝi,t from each model on the actual bond spreads si,t

for bonds in different rating categories:

si,t = β0 + β1ŝi,t + εi,t, i = 1, ..., 20 (28)

where si,t is the actual bond i spread at time t, and ŝi,t is the model predicted spread of bond i

at time t.

Both β1 and R2 of the regressions for different credit ratings are presented in Table 6. We

report R2 instead of the sum-of-squared errors of the fitted regression, as the two measures

convey the same information, but the former better shows how much time variation of the

actual spreads has been explained by the model’s predicted ones. The results shown in Table 6

are consistent with what we find in the sections above that the ability of all the credit risk

models to explain the time-series variation of bond spreads declines when moving from high

rating category to the low rating category, as can be observed by the lower R2 in speculative

grade categories.

Next, we observe that the optimal forecast hypothesis (that is, β1 = 1) is rejected in all

the model predicted spreads, but β1 is closer to one for the combined model in all five bond

spreads categories. These findings provide supportive evidence that the biased and inefficient

spread predictions are improved by the forecast combination. This is further corroborated by the

increase of R2 of the combined model across the individual models in all the cases. In general,

the regression-based model comparison results suggest that in all the cases the combined model

is able to better capture bond spreads’ time-series variation than all the individual models.

These findings are further illustrated in Figures 2 and 3, which plot real daily average in-

vestment grade bond spreads and speculative bond spreads in conjunction with model estimated

spreads for maturity from 3-20 years. The figures show that the estimated spreads for all models

track the investment-grade bond spreads better than speculative-grade bond spreads and that
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the combined model is able to better capture the spreads variation.

[Insert Table 6 here]

5.3 Model performance in different financial market conditions

We further investigate the model performance across different market conditions. We split the

sample into two sub-periods. The period from March 1992 to March 2001 is defined as a stable

period. We define the period from April 2001 to August 2009 as a volatile period, since it

experiences both the dot-com bubble collapse and the Global Financial Crisis (GFC), in which

the volatility of both stock return and bond spreads is relatively high. We then test the impact

of credit rating on model performance by dividing the sample into both investment grade and

speculative grade categories. We analyze the patterns of bond spread predictions from different

models during both volatile and stable periods for different credit rating categories.

In Table 7, the DM tests show that the combined model significantly outperforms all the

individual models in both stable and volatile periods for both investment and speculative grade

categories with only one exception. The exception occurs only with the reduced-form model in

volatile periods for the speculative grade category where the combined model does not signifi-

cantly outperform the reduced form models. Table 7 also shows that using the bias and RMSE

criteria, the Merton model performs the best among all individual models yielding the best re-

sults with RMSE of 4.17 bps for investment-grade bond spreads category in stable period. For

the speculative-grade bond spreads category, the DS model outperforms other individual models

in volatile period with RMSE of 82.29 bps.

[Insert Table 7 here]

In Table 8, we can see that the highest weight 33% is placed on the Merton model in

the combined model during stable period for the investment grade category due to its superior

performance, while during the volatile periods from 4/2001 to 08/2016, the reduced-form models

outperform the structural models’ speculative-grade categories. In the volatile period, more

weight is given to the two reduced models.

[Insert Table 8 here]

[Insert Figure 2 here]

[Insert Figure 3 here]
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6 Conclusion

This paper proposes a model combination approach to improve the corporate credit risk predic-

tion from the conventional structural and reduced-form models. We implement the bias-variance

trade-off framework to combine the forecasts from two structural and two reduced-form models,

and we study the properties of the bond spread forecasts from the model combination via a set

of empirical analyses. The empirical results verify the superior out-of-sample forecasting perfor-

mance of the model combination compared with each individual model and provide empirical

guidance about how to combine the structural and reduced-form models for different types of

corporate bonds and under different economic scenarios.
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7 Appendix

The null hypothesis of the DM test is that the RMSE of two forecasting models is equivalent.

In our empirical analysis, we are particularly interested in whether the combined model is able

to significantly outperform the individual models in terms of RMSE.

Here, each single-model forecast is an obvious benchmark. To highlight the role of combi-

nation, the combined forecasts will be compared to each single-model forecast. To achieve this,

the pairwise test for equal predictive accuracy (EPA) of Diebold and Mariano (1995) (DM) is

employed. Let L(fat ) and L(f bt ) represent a generic loss function defined on two competing bond

spread forecasts fat and f bt ; then, the relevant null and alternative hypotheses are

H0 : E[L(Ha
t )] = E[L(Hb

t )] (29)

HA : E[L(Ha
t )] 6= E[L(Hb

t )].

The null hypothesis of the test is that the predictive ability of the two forecasting models is

equivalent.

The test is based on the computation of

DMT =
dT√

v̂ar[dT ]
, dT =

1

T

T∑
t=1

dt , dt = L(fat )− L(f bt ) , (30)

where v̂ar[dT ] is an estimate of the asymptotic variance of the average loss differential, dT .

To begin, forecast performance will be compared using the simple root mean squared forecast

error of the i− th forecast, defined as

RMSEi =

√
1

T
(st − f it )2, (31)

where T is the total number of forecast periods, f it is the forecast from the i − th model and

st is the target. To implement the DM test, given the i− th forecast, the MSE loss function is

chosen to represent L(),

MSEit = (st − f it )2. (32)
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Table 1: Bond Spread Summary Statistics

Number of bonds Average spread Standard Deviation Amount outstanding
AAA 42 18 33 2107
AA 239 29 52 1164
A 698 71 103 1398
BBB 769 105 176 1429
BB 262 319 571 1587
B 72 589 893 1079
C 23 1217 1864 1570
IG 1748 68 87 1079
SG 357 452 759 1570

Note: Table 1 provides summary statistics on bond spreads by credit rating classes (in basis points).
IG stands for bonds rated BBB and above. SG stands for bonds rated BB and below. "Average spread"
is the average actual spread to the swap rate. The average spread is calculated by first calculating the
average spread of bonds in a given month and then calculating the average of these spreads over months.
The bond yield spreads are from the period from December 1996 to December 2016
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Table 2: Model performance sorted according to term to maturity
Merton Model Black Cox Model JT Model DS Model Combined Model

Time to Maturity Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Full sample period −14.52 35.62*** −16.87 37.59*** 15.35 38.26*** 14.28 36.35*** 8.26 25.31
3-7 Year −11.38 27.41** −10.13 27.09** 14.45 36.16*** 15.27 34.42*** 7.49 19.51
7-13 Year −16.25 38.07*** −14.51 34.46*** −17.78 39.42*** −18.47 42.98*** 11.76 25.82
13-20 Year −17.12 42.46*** −18.69 44.05*** −15.26 34.73* −14.89 36.07** 12.74 28.49

Note: Table 2 shows the bias and root mean square errors (RMSEs) of bond spreads predictions from each model for different time to maturity ranges:
3-7 year, 7-13 years and 13-20 years. The bias and RMSE of the model predicted spread are defined as E(s − ŝ) and E(s − ŝ)2, where ŝ is the model
predicted bond spread and s is the actual observed bond spread. Diebold and Mariano (1995)(DM) test is employed to reveal whether the bond spread-
s prediction improvements from the combined model are statistically significant against all the individual models in terms of RMSE. "*" implies that
the combined model RMSE is significantly different from the individual model RMSE with 10% level, "**" at the 5% level and "***" at the 1% level.
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Table 3: Optimal weights of each individual model for different maturity ranges
Credit Rating Merton Model Black Cox Model JT Model DS Model
Whole sample period 28% 24% 23% 25%
3-7 year 31% 33% 17% 19%
7-13 year 25% 28% 23% 21%
13-20 year 16% 14% 36% 34%

Note:This table reports the weights of each individual model in the combined model for different time
to maturity ranges: 3-7 year, 7-13 years and 13-20 years. The weights are obtained through minimizing
the root mean square errors (RMSEs) of the combined model predicted spread. The RMSE of the model
predicted spread is defined as E(s− ŝ)2, where ŝ is the model predicted bond spread and s is the actual
observed bond spread.
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Table 4: Model performance sorted according to both credit rating and term to maturity
Merton Model Black Cox Model JT Model DS Model Combined Model

Time to Maturity Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Full sample period
AAA 0 96 2 74 0 75 2 65 −1 67 5 12*** −1 35 4 84*** 0 62 1 92
A 3 19 9 62* 2 81 8 62* −4 73 13 15*** −4 53 12 81*** −2 42 6 51
BBB 12 56 34 02*** 13 28 36 29*** −15 72 44 14*** 14 97 41 12*** 8 45 26 93
B −29 51 62 59*** −27 29 62 62*** 21 95 65 39*** −23 91 58 85* −15 37 50 52
C −43 37 110 35*** 45 81 113 25*** 35 52 92 53** −36 43 95 26*** −21 61 68 72

3-7 Years
AAA 0 56 1 64 0 65 1 82 −1 27 3 62 −1 75 3 84 0 42 1 43
A −1 28 4 15* −2 03 4 81* 3 19 8 62 3 31 7 42 −2 02 5 51
BBB 8 72 26 02** 8 28 28 29*** −9 72 29 14*** 9 97 31 12*** 6 05 21 93
B 23 31 62 39*** −23 91 63 85*** −20 51 55 59*** −21 29 58 62*** −17 51 49 57
C 23 19 59 53*** −24 43 56 26** −16 36 49 35*** 17 81 48 25*** −12 61 37 72

7-13 Years
AAA −1 23 4 29 −2 07 5 61* 0 91 4 02 1 16 4 29* −0 72 3 06
A −5 24 12 91*** 6 43 14 42*** 4 38 10 35* 4 75 11 12* −3 16 7 72
BBB 9 62 29 45*** 9 08 27 68** 11 45 27 52*** 12 94 28 93*** 6 17 22 27
B 19 31 59 14*** −17 92 57 72*** −24 41 68 93*** 26 48 −72 45*** −15 25 40 81
C −48 76 127 58*** −43 91 121 75*** −72 81 182 79*** −81 52 214 39*** 33 24 98 51

13-20 Years
AAA −2 46 6 74* −2 23 5 29 −4 42 11 87** 5 93 12 84** −1 58 4 25
A −7 85 16 39*** −7 41 18 76*** −4 49 12 46* −4 83 12 13* −3 73 9 52
BBB −18 74 44 53*** 19 82 46 04*** 18 53 45 78*** 17 93 46 87*** −11 86 33 43
B −36 36 87 92*** −41 97 90 03*** 28 37 73 97** 29 61 74 42*** 14 83 49 36
C 40 83 107 39*** −46 36 116 41*** 32 92 79 53** −34 79 81 64*** 22 24 56 89

Note: This table reports bias and RMSEs of bond spreads predictions from each model. Bias and RMSE are grouped according to both remaining
bond maturity and credit rating. The bias and RMSE of the model predicted spread are defined as E(s − ŝ) and E(s − ŝ)2, where ŝ is the mod-
el predicted bond spread and s is the actual observed bond spread. Diebold and Mariano (1995) (DM) test is employed to reveal whether the bond
spread prediction improvements from the combined model are statistically significant against all the individual models in terms of RMSE. "*" implies that
the combined model RMSE is significantly different from the individual model RMSE with 10% level, "**" at the 5% level and "***" at the 1% level.
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Table 5: Optimal weights of individual models for different credit ratings

Credit Rating Merton Model Black Cox Model JT Model DS Model
AAA 32% 34% 16% 18%
A 30% 31% 18% 21%
BBB 28% 27% 21% 24%
B 26% 28% 22% 24%
C 18% 17% 31% 34%

Note:This table reports the weights of each individual model in the combined model for different cred-
it ratings. The weights are obtained through minimizing the root mean square errors (RMSEs) of the
combined model predicted spread. The RMSE of the model predicted spread is defined as E(s − ŝ)2,
where ŝ is the model predicted bond spread and s is the actual observed bond spread.
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Table 6: Regression-based forecasting comparison

Merton Model Black Cox Model JT Model DS Model Combined Model

β1 R2 β1 R2 β1 R2 β1 R2 β1 R2

AAA 0.78* 0.72 0.74* 0.71 0.95*** 0.87 0.92*** 0.85 0.92*** 0.88
A 1.23 0.83 1.48 0.81 0.87*** 0.85 0.86*** 0.82 0.93*** 0.91
BBB 0.86*** 0.71 0.94*** 0.73 1.31* 0.62 0.76* 0.68 0.89*** 0.84
B 0.63* 0.23 0.71* 0.29 0.48 0.18 0.54 0.22 1.22** 0.42
C 0.56** 0.11 0.51** 0.09 0.42* 0.07 0.48* 0.08 0.62** 0.26

Note:For a given rating and maturity group, we calculate a monthly average spread by computing the average yield spread for bonds with the
corresponding rating and maturity observed in that month. We do this for both model predicted spreads and actual bond spreads (to the
swap rate) resulting in a time series of monthly actual spreads for each bond s1, s2,..., st and model predicted spreads from each model ŝ1,
ŝ2,..., ŝt. The table shows the regression coefficient and R2 in the regression of the actual bond spread on the model predicted spread si,t =

β0 + β1ŝi,t + εi,t. "*" implies that β1 is significantly different from one at the 10% level, "**" at the 5% level and "***" at the 1% level.
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Table 7: Model performance in different sample periods
Merton Model Black Cox Model JT Model DS Model Combined Model

Time to Maturity Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Full sample period
Investment grade 7.06 21.52*** 6.75 20.65* −10.17 29.12*** −10.85 30.84*** 5.35 15.52
Speculative grade 33.62 79.62*** 32.81 78.62*** −26.73 71.15*** −27.53 73.81*** 18.47 52.81

Stable period
Investment grade 4.17 13.15*** 4.63 14.81*** 8.09 23.61* 9.39 24.14 −2.52 8.51
Speculative grade 23.25 61.62*** 24.21 63.29*** 21.72 56.14*** 20.91 54.11*** 14.02 42.56

Volatile period
Investment grade −14.28 32.73*** −12.51 36.81*** 12.21 35.62*** 13.36 36.42*** 7.21 20.31
Speculative grade −39.37 96.28*** 41.78 103.25*** 30.81 81.02*** 32.28 82.29*** 22.52 59.93

Note: This table shows bias and RMSEs of bond spreads predictions from each model. Bias and RMSE are grouped according to both sub-
sample period and credit rating. The full sample is split into two sub-periods. The period from December 1993 to March 2001 is defined as a sta-
ble period. We define the period from April 2001 to August 2009 as a volatile period during which the volatility of both the stock return and
bond spreads is relatively high. We divide credit rating into investment-grade (BBB-rated and above) and speculative-grade (below BBB-rated) bonds.
The bias and RMSE of the model predicted spread are defined as E(s − ŝ) and E(s − ŝ)2, where ŝ is the model predicted bond spread and s is
the actual observed bond spread. Diebold and Mariano (1995) (DM) test is employed to reveal whether the bond spread prediction improvements
from the combined model are statistically significant against all the individual models in terms of RMSE. "*" implies that the combined model RMSE
is significantly different from the individual model RMSE with 90% confidence, "**" at the 95% confidence and "***" at the 99% confidence.
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Table 8: Optimal weights of individual models in different sample periods

Credit Rating Merton Model Black Cox Model JT Model DS Model
Whole sample period

Investment grade 29% 28% 21% 22%
Speculative grade 21% 23% 29% 27%

Stable period
Investment grade 33% 31% 17% 19%
Speculative grade 24% 25% 26% 25%

Volatile period
Investment grade 22% 25% 28% 25%
Speculative grade 19% 17% 31% 33%

Note:This table reports the weights of each individual model in the combined model for both Investmen-
t grade (BBB-rated and above) and speculative-grade (below BBB-rated) and different sample periods.
The full sample is split into two sub-periods. The period from December 1993 to March 2001 is defined
as a stable period. We define the period from April 2001 to August 2009 as a volatile period during
which the volatility of both stock return and bond spreads is relatively high. The weights are obtained
through minimizing the root mean square errors (RMSEs) of the combined model predicted spread. The
RMSE of the model predicted spread is defined as E(s− ŝ)2, where ŝ is the model predicted bond spread
and s is the actual observed bond spread.

Figure 1: Bias/Variance Trade-off Framework
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Figure 2: Time-series variation in investment grade spreads. This graph shows the time
series of actual and model-implied speculative-grade corporate bond spreads. Each month, all
yield observations in bonds with an investment grade rating and with a maturity between 3-30
years are collected and the average actual spread (to the swap rate) and the average model-
implied spread in the combined model, the Jarrow and Turnbull model (JT model), the Duffie-
Singleton model (DS model), the the Merton model and the Black-Cox model are computed.
The graph shows the time series of monthly spreads
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Figure 3: Time-series variation in speculative grade spreads. This graph shows the time
series of actual and model-implied speculative-grade corporate bond spreads. Each month, all
yield observations in bonds with an investment grade rating and with a maturity between 3-30
years are collected, and the average actual spread (to the swap rate) and the average model-
implied spread in the combined model, the Jarrow and Turnbull model (JT model), the Duffie-
Singleton model (DS model), the the Merton model and the Black-Cox model are computed.
The graph shows the time series of monthly spreads.
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