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Abstract 

 This paper presents the critical values for the testing of unit roots in 

heterogeneous panels. The paper develops an algorithm to generate the critical values 

through Monte Carlo simulations which will be computationally efficient as opposed to 

the traditional simulation techniques used in the earlier panel unit root studies. The results 

from the simulation experiments are used to construct the response surface regressions in 

which the critical values depend on both cross-sectional and time units. The predictability 

of the response surface regressions are evaluated through reported IPS critical values. 
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1. Introduction 

The use of panel unit root tests has become very popular among applied 

econometricians since the development of panel unit root test procedures by Levin and 

Lin (1992, 1993).1 One of the advantages of this procedure is that the power of the test 

increases with an increase in the number of panel series compared to the well-known low 

power of the standard ADF unit root test against near unit root alternatives.2 Increasingly, 

recent empirical studies use the test procedure introduced by Im, Pesaran and Shin (2003) 

(hereafter, IPS) which can test the null hypothesis of non-stationarity in the presence of 

heterogeneity across the panel. Most of the empirical literature uses either the critical 

values reported by IPS which are close to their sample sizes or Monte Carlo experiments 

for their particular sample sizes.3 On the other hand, other researchers use standardized t-

bar test statistics (see section 2) to verify the panel unit root properties of the data.4   

The inferences based on IPS critical values could be misleading when the sample 

size is approximated to the reported values. In this paper, we propose an algorithm to 

obtain the critical values for non-standardized t-bar statistic without conducting an 

extensive simulation for the individual cross-sections. The critical values obtained from 

                                                 
1 The Augmented Dickey-Fuller (ADF) test for stationarity has been extended to panel tests for stationarity 
under models with various degrees of heterogeneity by, for example Levin and Lin (1992,1993), Quah 
(1994) and Im, Pesaran and Shin (2003) (hereafter, IPS). The main difference between the panel unit test 
procedures proposed by Quah (1994), Levin and Lin (1992) and IPS is that while the former construct the 
test statistic under the alternative hypothesis that all component series in the panel are stationary, the latter 
(IPS) test the alternative that at least one of the individual series is stationary. 
2These panel unit root tests have been employed in various studies to verify the validity of the various 
hypotheses and the economic theories. To cite a few, for example Purchasing Power Parity hypotheses (see, 
MacDonald (1996), Oh (1996), Wu (1996), Frankel and Ross (1996), Coakley and Fuertes (1997, 2000) 
Papel (1997) and Fleissig and Strauss (2000)), panel unit root properties of inflation rate (see Culver and 
Papel (1997), Lee and Wu (2001) and Holmes(2002)), unit roots in health care expenditure and GDP (see, 
McCoskey and Selden (1998)), Investment-Saving correlation (see, Ho (2002)), Mean reversion of interest 
rates (see, Wu and Chen (2001)), Gibrat’s Law of Proportinate effects (see,Goddard, Wilson, Blandon 
(2002)). 
3 See Ho (2002), Holmes (2002), Wu and Chen (2001), Goddard, Wilson and Blandon (2002),Cushman, 
MacDonald and Samborsky (2001), Chou and Chao (2001), Holmes (2001) and Strauss (2000). 
4 See, for example, Fleissing and Strauss (2000), Strazicich, Co and Lee (2001) and Wu (2000) 
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these experiments are summarized by means of response surface regressions in which the 

critical values depend on the sample size (see MacKinnon (1991)). The predictability of 

the response surface regressions are evaluated by comparing the predicted critical values 

with reported IPS critical values. Both in-sample and out-of-sample predictability of the 

regressions are evaluated through the errormetrics such as root mean squared error 

(RMSE), mean absolute error (MSE) and mean absolute percentage error (MAPE). 

Finally, the paper reports the critical values based on the estimated response surface 

regression for the IPS sample. 

 

2. IPS Panel Unit Root Test 

 The heterogeneous panel data model proposed by IPS is given by 

   iti
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The null and alternative hypotheses are 0:,0: 10 <∃= ii stiHH ββ . Each equation 

is estimated separately by OLS due to heterogeneity and the test statistics are obtained as 

(studentized) averages of the test statistics for each equation.  

The t-bar statistic proposed by IPS is defined as the average of the individual Dickey-

Fuller τ  statistics: ,1
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IPS report the critical values for the t-bar statistics described by (2) for the various 

combinations of N and T.   

The standardized t-bar statistic proposed by IPS under the assumption that the cross-

sections are independent is given by  
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The means )0|( =iiE βτ  and the variances )0|var( =ii βτ  are obtained by Monte Carlo 

simulations and are tabulated in IPS. IPS conjecture that the standardized t-bar statistic 

iΓ  converges weakly to a standard normal distribution as N and ∞→T .  

3. Simulation Experiments 

The underlying data generating process (DGP) considered by IPS 

is ititit yy ε+= −1 , )1,0(~ Nitε , Tt ,...,2,1= ; ,,...,2,1 Ni =  with 00 =iy . They estimate t-

bar statistics based on (1). The critical values reported by IPS are computed via stochastic 

simulation of 50,000 replications for the models with 1) a constant and 2) a constant and 

a trend. In this paper, we estimate the response surface function to approximate the 

lower-tail critical values of 1 percent, 5 percent and 10 percent for the models with 1) a 

constant and no trend and 2) a constant and a trend. The simulation technique introduced 

in this paper is different from the usual Monte Carlo experiments adopted by IPS. Instead 

of simulating the underlying DGP and re-estimating the model (1) for the various 

combinations of N across the T, this paper randomizes the t-statistic across the 

replications obtained from a model with a single cross-section for a fixed sample size, T. 

We use M=100,000 replications for this purpose. On the other hand the simulation 

experiment is conducted for the sample of N=1 with T observations only.  

3.1 Algorithm 

 The underlying data generating process in the simulations is given by 

ttt yy ε+= −1 , )1,0(~ Ntε , t = 1, 2,…,T. In the first stage, the underlying DGP is 

generated and the ADF regression is fitted for the simulated data of size T over M 
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replications. It should be noted that the underlying DGP is not generated for the panel of 

size N as in the traditional approaches. The t-statistic to test the null hypothesis of 0=β  

in (1) is computed for a single cross-section of size T over M replications.  

Let Mttt 11211 ,...,,  be the corresponding estimated t-statistic for the first cross-

section over M replications. Secondly, the t-statistics over M replications for the 

remaining N-1 cross-sections can be obtained by simply randomizing the first M t- 

statistics obtained from the cross-section of size 1 (i.e., Mttt 11211 ,...,, ). That is, the t-

statistics ijt , Ni ,...3,2= ; Mj ,...,2,1=  are constructed by ][1 kij tt = , where the replication 

index k is randomly drawn from a uniform distribution by a simple random sampling with 

replacement5 (i.e. ],1[~ MUk ). Here [k] refers to the integer part of the given argument 

k. The cumulative averages over the N cross-sections, ∑
=

n

i
mit

n 1

1 ; Nn ,...,2,1= , constitute 

the t-bar statistics for the m-th replication. Finally, the critical values are obtained by 

extracting the 1st, 5th and 10th quintiles from the simulated numerical distribution.6 It is 

observed that during the simulations the proposed algorithm presents the same critical 

values as the traditional Monte Carlo simulation technique. The proposed simulation 

mechanism is tabulated in Appendix 1. 

Using this algorithm, one can obtain the critical values for Nn ,...2,1=  for the 

fixed sample size T through cumulative averages. However, the traditional simulation 

approaches are able to provide the critical values for fixed N and T. For a fixed T, only M 
                                                 
5 The results obtained from simple random sampling with replacement (SRSWR) are consistent with the 
simple random sampling without replacement (SRSWOR) as the number of replications M=100,000 are 
sufficiently large. 
6 In this exercise, we develop the response surface regression for non-standardized test statistics as the 
standardized test statistics involves larger number of parameters that has to be estimated by stochastic 
simulations. Therefore, the sampling error of estimating non-standardized test statistics will be smaller than 
that of standardized ones.  
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experiments need to be conducted using the proposed algorithm as opposed to the 

traditional approaches that require NM experiments to obtain the desired critical values.  

The cost of computing the remaining (N-1)M relevant test statistics by randomization is 

significantly less than that of the traditional one. The computational time for the 

traditional approaches increases significantly as T increases. It is expected the new 

algorithm will provide new insights for  panel regression studies because it is 

computationally efficient. 

4. Response Surface Analysis 

 In order to generalize the estimators of the critical values for any combination of 

cross-sectional unit N and the sample size T at a given level of significance, we use the 

response surface regression techniques proposed by MacKinnon (1991, 1996). Suppose 

that we are interested in ),( NTqt
α , i.e., α   quantile of the distribution, where α  = 1%, 

5% and 10%. Response surfaces are estimated for two different tests7: 1) t-bar statistic 

with a constant 2) t-bar statistic with a constant and a trend. In each case, three response 

surfaces are estimated based on the 1st, 5th and 10th quantiles. Hence, a total of six 

response surface regressions are estimated. We consider all combinations of 

∈N {1,2,…,100} and T∈ {5,6,7,…,100}. The number of observations used in each 

response surface regression is 9600.  

 In contrast to response surface regressions based on pure time series studies, in 

which the regression equation is a function of sample size T, we construct the response 

surfaces equation which is a function of T and N and the response surface equation for the 

t-bar test statistic: 

                                                 
7 See MacKinnon (1996), MacKinnon, Haug and Michelis (1999) for more details about response surface 
regression techniques. 
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In the response surface equations, the regressors are chosen to minimize the root 

mean squared error of the regression. The regressors kT − ’s and kN − ’s capture the 

individual time and cross-sectional effects respectively. It is observed that for a fixed T, 

the critical value ),( TNqt
α is an increasing function of N and vice versa. The regressors 

kN −  and kT −  do not explain such effects completely. In order to capture such 

monotonicity and to ensure the convergence of the response surface regressions for large 

N and T, we introduce 
k

N
N









+1
 and 

k

T
T









+1
as additional explanatory variables. It is 

found during the experiments that the response surface equation with these factors 

outperforms the models without these factors. Furthermore, the response surface equation 

is improved by multiplying these factors by kN −  and kT − . These multiplicative terms 

then incorporate the effects from the interaction of N and T. It is also observed that the 

critical values are more sensitive to T when N is small than when it is large. These effects 

are also captured through the interaction of  kN −  and kT −  with the factors 







+1N
N  and 
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+1T
T . It is also observed that the inclusion of such interaction factors for the higher 

degree, for example
2

1








+T
T , does not improve the results.  

   

============= 

Tables 1 and 2 

============== 

 

 The performance of the response surface regressions are evaluated by both 

within-sample and out-of-sample predictability of the critical values. The response 

surface regressions are chosen to minimize the root mean squared error (RMSE) of the 

regressions. For the out-of-sample predictions, we conduct Monte Carlo experiments for 

the combinations of },...,3,2,1{ NN ∈  and T∈{200, 300, 400, 500}. This constitutes 400 

samples for each case.  This helps to evaluate the accuracy of the response surfaces for 

large T. Three measurements - root mean squared errors (RMSE), mean absolute errors 

(MAE), mean absolute percentage errors (MAPE) are used to evaluate the performance 

of the estimated response surface regressions for t-bar test statistics. The results are 

reported in Table 3. The predictability of the estimated response surface equation is also 

compared with reported critical values from the IPS study. It is also observed for the 

models with a constant and a trend that the reported critical values for T=5 in the IPS 

paper for 50,000 replications are quite different from the critical values generated (by 

Monte Carlo simulation) in this paper based on 100,000 replications. These discrepancies 

could be due to the significant difference in the number of replications. It is necessary to 
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have a large number of replications for the case of T=5 because individual Dickey Fuller 

regression suffer from a lack of degrees of freedom for the models with the constant and 

the trend because three parameters with a sample of 5 are estimated.  We have also 

verified the accuracy of our critical values by adopting 200,000 replications and the 

critical values are same as for 100,000 replications. The error-metrics for the IPS sample 

by excluding T=5 are also reported in Table 3. Finally, the critical values for the IPS 

sample based on estimated response surface functions are reported in Table 4. The 

estimated response surface regressions are portrayed in appendix 2. 

================= 

Table 3 and 4 

================= 

 

It is observed from table 3 that the response surface regressions provide smooth 

and accurate critical values at 3 decimal places and the average predictive error of these 

regressions are less than half a percent in most of the cases. The performance of the 

response surface regression for the 10 percent critical values is notably better than that of 

the response surface regressions for the 5 percent and 1 percent critical values. The 

performance of the models for the 5 percent critical value is superior to the models with 

the 1 percent critical values.  In general, the estimated models reported in Tables 1 and 2 

outperform the other competitive models based on three criteria: RMSE, MAE and 



 10 

MAPE.8 For the sake of brevity, the response surface regression results for the other 

competitive models are not reported.   

 

5. Conclusion 

The response surface regressions for the IPS critical values should prove to be useful for 

applied econometricians testing unit roots in heterogeneous panels. The proposed 

algorithm to generate the critical values provides a new dimension to panel studies 

because it is computationally efficient and powerful.  The response surface regressions 

were developed based on the critical values obtained from simulation experiments and 

are functions of the number of cross-sections and sample sizes. The performance of these 

regressions was compared with reported IPS critical values. The critical values for the 

panel unit roots of any combination of cross sections and sample sizes can be calculated 

in a spreadsheet by substituting the panel dimensions in the response surface regressions 

without conducting an extensive simulation. 
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Table 1: Response Surface Regressions for the t-bar statistics: Constant but no Trend 

 1 percent 5 percent 10 percent 
 Coefficient S.E Coefficient S.E Coefficient S.E 

0β  1733.20 38.43 1203.59 18.29 922.475 15.75 

1β  3570.36 1120.00 -607.08 5.28 -711.909 29.42 

2β  9914.04 4166.00 291.32 2.66 228.53 2.249 

3β  -13483.40 3194.00 -72.85 0.71 -57.2637 0.59 

4β  -626.47 69.05 -405.65 45.41 -335.719 15.07 

5β  2597.66 819.90 1343.80 593.60 180.797 13.7 

6β  -16488.00 2962.00 -9696.18 2146.00 -163.203 9.926 

7β  -1829.31 14.91 -1295.45 10.80 -1013.18 9.25 

8β  490.09 3.83 347.14 2.78 271.171 2.38 

9β  -395.63 36.80 -256.90 16.43 -182.064 14.17 

10β        

11β  -4216.04 1120.00 136.067 41.42 380.094 29.12 

12β  2276.60 1348.00 -1036.25 580.4 -217.614 22.61 

13β  11370.00 3002.00 8903.58 2099   

14β  -9649.61 4161.00 -101.755 32.97 -107.817 4.293 

15β  10700.70 4082.00 783.968 462 -45.8504 21.12 

16β  -17256.20 3727.00 -6610.15 1671 474.218 76.31 

17β  13423.30 3190.00 36.8017 12.74 39.0583 1.935 

18β  -13519.60 3101.00 -290.383 178.6 32.9965 16.24 

19β  13244.20 2415.00 2390.17 645.7 -310.413 58.69 

20β  -4427.81 1120.00   236.467 29.07 

21β  -9502.65 4166.00     

22β  13380.60 3194.00     

23β  230.98 58.48 148.901 42.36 153.816 5.169 

24β  -2207.43 819.40 -1090.07 593.6   

25β  16159.30 2963.00 9477.73 2146   
R2 0.999541 0.999442 0.99929 
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Table 2: Response Surface Regressions for the t-bar statistics: Constant and Trend 
 1 percent 5 percent 10 percent 
 Coefficient S.E Coefficient S.E Coefficient S.E 

0β  395236.0 3409.0 155673.0 1855.0 105500.0 1475.0 

1β  114570.0 1737.0 29797.9 945.1 10340.0 509.4 

2β  -214057.0 6464.0 -67269.1 3517.0 -33584.3 1730.0 

3β  124791.0 4956.0 39446.8 2696.0 21526.0 1349.0 

4β  -287267.0 2460.0 -113168.0 1338.0 -76648.5 1064.0 

5β  203071.0 1974.0 81189.0 1074.0 53570.5 780.6 

6β  -211064.0 4636.0 -90158.2 2522.0 -54056.5 1578.0 

7β  -1812.1 23.1 -1258.9 12.6 -971.6 10.0 

8β  480.5 5.9 334.9 3.2 259.0 2.6 

9β  -501959.0 4360.0 -197021.0 2372.0 -133329.0 1886.0 

10β  108053.0 951.2 42270.4 517.5 28539.5 411.5 

11β  -114010.0 1737.0 -29716.8 945.2 -10410.8 486.3 

12β  88855.2 2091.0 19161.0 1138.0 4901.1 276.2 

13β  43462.6 4658.0 35409.5 2534.0 24581.2 1238.0 

14β  213289.0 6456.0 67004.0 3513.0 33487.7 1707.0 

15β  -191164.0 6334.0 -57847.6 3446.0 -28594.9 1347.0 

16β  61147.8 5782.0 5953.6 3146.0   

17β  -124424.0 4950.0 -39303.4 2693.0 -21455.9 1339.0 

18β  115172.0 4812.0 35556.6 2618.0 19396.7 1182.0 

19β  -56571.8 3747.0 -13030.0 2038.0 -6641.3 503.9 

20β  -115429.0 1737.0 -30392.4 945.1 -10797.8 509.7 

21β  214475.0 6464.0 67557.1 3517.0 33805.5 1730.0 

22β  -124898.0 4956.0 -39519.8 2696.0 -21581.8 1349.0 

23β  1406.9 90.7 684.9 49.4 397.4 32.6 

24β  -25011.1 1271.0 -10885.1 691.7 -5800.5 436.8 

25β  136655.0 4597.0 60508.7 2501.0 33786.1 1564.0 
R2 0.999399 0.999421 0.999303 
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Table 3: Predictability of Response Surface Regressions: t-bar test statistic 

  Constant but no trend Constant and trend 
  1% 5% 10% 1% 5% 10% 
Within 
Sample 

RMSE 0.006 0.004 0.004 0.009 0.005 0.004 
MAE 0.004 0.003 0.003 0.006 0.004 0.003 
MAPE 0.24% 0.19% 0.17% 0.22% 0.15% 0.13% 

Out 
sample 

RMSE 0.005 0.004 0.003 0.02 0.01 0.008 
MAE 0.004 0.003 0.003 0.02 0.01 0.009 
MAPE 0.22% 0.18% 0.17% 0.97% 0.44% 0.34% 

IPS 
Reported 
values 

RMSE 0.01 0.006 0.005 0.07 0.01 0.009 
MAE 0.006 0.004 0.004 0.02 0.007 0.005 
MAPE 0.31% 0.24% 0.24% 0.63% 0.26% 0.20% 

IPS* 
Reported 
values 

RMSE    0.008 0.004 0.004 
MAE    0.006 0.003 0.003 
MAPE    0.23% 0.15% 0.15% 

* Comparison with IPS critical values by excluding T=5 case 
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Table 4 Critical Values of the t-bar statistic based on Response Surface Regressions 

N\T 5 10 15 20 25 30 40 50 60 70 100 
Panel A: DF regressions containing only constants 
1 percent 
5 -3.82 -2.66 -2.53 -2.48 -2.46 -2.44 -2.42 -2.41 -2.40 -2.40 -2.39 
7 -3.45 -2.48 -2.38 -2.34 -2.32 -2.31 -2.29 -2.28 -2.28 -2.27 -2.27 
10 -3.11 -2.32 -2.24 -2.21 -2.20 -2.19 -2.18 -2.17 -2.16 -2.16 -2.16 
15 -2.79 -2.16 -2.11 -2.08 -2.07 -2.07 -2.06 -2.05 -2.05 -2.05 -2.04 
20 -2.60 -2.07 -2.02 -2.00 -2.00 -1.99 -1.98 -1.98 -1.98 -1.98 -1.97 
25 -2.47 -2.00 -1.96 -1.95 -1.94 -1.94 -1.93 -1.93 -1.93 -1.93 -1.92 
50 -2.18 -1.85 -1.83 -1.82 -1.82 -1.81 -1.81 -1.81 -1.81 -1.81 -1.80 
100 -2.01 -1.76 -1.75 -1.74 -1.74 -1.74 -1.74 -1.74 -1.74 -1.73 -1.73 
5 percent 
5 -2.75 -2.28 -2.21 -2.19 -2.18 -2.17 -2.16 -2.15 -2.15 -2.14 -2.14 
7 -2.59 -2.16 -2.11 -2.09 -2.08 -2.07 -2.07 -2.06 -2.06 -2.06 -2.05 
10 -2.44 -2.06 -2.02 -2.00 -2.00 -1.99 -1.98 -1.98 -1.98 -1.98 -1.97 
15 -2.28 -1.96 -1.93 -1.92 -1.91 -1.91 -1.90 -1.90 -1.90 -1.90 -1.89 
20 -2.18 -1.90 -1.87 -1.86 -1.86 -1.85 -1.85 -1.85 -1.85 -1.85 -1.84 
25 -2.11 -1.85 -1.83 -1.82 -1.82 -1.82 -1.81 -1.81 -1.81 -1.81 -1.81 
50 -1.95 -1.75 -1.74 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.72 
100 -1.85 -1.69 -1.68 -1.68 -1.68 -1.68 -1.67 -1.67 -1.67 -1.67 -1.67 
10 percent 
5 -2.39 -2.09 -2.05 -2.04 -2.03 -2.02 -2.02 -2.01 -2.01 -2.01 -2.01 
7 -2.28 -2.01 -1.98 -1.96 -1.96 -1.95 -1.95 -1.94 -1.94 -1.94 -1.94 
10 -2.18 -1.93 -1.91 -1.90 -1.89 -1.89 -1.88 -1.88 -1.88 -1.88 -1.88 
15 -2.07 -1.86 -1.84 -1.83 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 -1.81 
20 -2.00 -1.81 -1.79 -1.79 -1.78 -1.78 -1.78 -1.78 -1.78 -1.78 -1.77 
25 -1.95 -1.77 -1.76 -1.76 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 
50 -1.84 -1.69 -1.69 -1.68 -1.68 -1.68 -1.68 -1.68 -1.68 -1.68 -1.68 
100 -1.78 -1.65 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 
Panel A: DF regressions containing constants and linear trends 
1 percent 
5 -7.93 -3.41 -3.22 -3.13 -3.08 -3.05 -3.02 -3.00 -2.99 -2.99 -2.98 
7 -7.16 -3.20 -3.05 -2.98 -2.94 -2.92 -2.89 -2.88 -2.87 -2.87 -2.86 
10 -6.39 -3.02 -2.90 -2.85 -2.82 -2.80 -2.78 -2.77 -2.77 -2.76 -2.75 
15 -5.62 -2.86 -2.76 -2.72 -2.70 -2.69 -2.67 -2.67 -2.66 -2.66 -2.65 
20 -5.15 -2.76 -2.67 -2.64 -2.62 -2.61 -2.60 -2.60 -2.59 -2.59 -2.58 
25 -4.84 -2.69 -2.61 -2.58 -2.57 -2.56 -2.56 -2.55 -2.55 -2.54 -2.53 
50 -4.15 -2.53 -2.47 -2.45 -2.45 -2.44 -2.44 -2.44 -2.44 -2.43 -2.42 
100 -3.76 -2.44 -2.39 -2.38 -2.37 -2.37 -2.37 -2.37 -2.37 -2.37 -2.36 
5 percent 
5 -4.62 -2.97 -2.87 -2.82 -2.79 -2.78 -2.76 -2.75 -2.75 -2.74 -2.74 
7 -4.39 -2.85 -2.76 -2.72 -2.70 -2.69 -2.68 -2.67 -2.66 -2.66 -2.65 
10 -4.13 -2.74 -2.67 -2.64 -2.62 -2.61 -2.60 -2.60 -2.59 -2.59 -2.58 
15 -3.85 -2.63 -2.57 -2.55 -2.54 -2.53 -2.53 -2.52 -2.52 -2.51 -2.51 
20 -3.66 -2.57 -2.51 -2.50 -2.49 -2.48 -2.48 -2.47 -2.47 -2.47 -2.46 
25 -3.54 -2.52 -2.47 -2.46 -2.45 -2.45 -2.44 -2.44 -2.44 -2.43 -2.43 
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50 -3.25 -2.41 -2.38 -2.37 -2.37 -2.36 -2.36 -2.36 -2.36 -2.36 -2.35 
100 -3.08 -2.35 -2.32 -2.32 -2.31 -2.31 -2.31 -2.31 -2.31 -2.31 -2.31 
10 percent 
5 -3.72 -2.77 -2.70 -2.67 -2.65 -2.64 -2.63 -2.62 -2.62 -2.62 -2.61 
7 -3.61 -2.68 -2.62 -2.59 -2.58 -2.57 -2.56 -2.56 -2.56 -2.55 -2.55 
10 -3.48 -2.60 -2.55 -2.53 -2.52 -2.51 -2.51 -2.50 -2.50 -2.50 -2.49 
15 -3.32 -2.52 -2.48 -2.46 -2.46 -2.45 -2.45 -2.44 -2.44 -2.44 -2.44 
20 -3.22 -2.47 -2.43 -2.42 -2.42 -2.41 -2.41 -2.41 -2.40 -2.40 -2.40 
25 -3.15 -2.44 -2.40 -2.39 -2.39 -2.39 -2.38 -2.38 -2.38 -2.38 -2.37 
50 -2.98 -2.36 -2.33 -2.33 -2.32 -2.32 -2.32 -2.32 -2.32 -2.32 -2.31 
100 -2.88 -2.31 -2.29 -2.28 -2.28 -2.28 -2.28 -2.28 -2.28 -2.28 -2.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 1: Simulation Mechanism for Panel Unit Root Test  
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Simulation Note: 

(1) T is fixed. 
(2) Column 2 (for cross-section 1) is obtained by stochastic simulation of M replications based on equation (1). 
(3) Values in Columns 3 through N+1  (i.e., cross-sections 2 through N)are obtained by randomly drawing the values from column 

2 with replacement.  
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Appendix 2: Response surface function 
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