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Abstract: In applied econometric literature, the causal inferences are often made based on temporally
aggregated or systematically sampled data. A number of studies document that temporal aggregation
has distorting effects on causal inference and systematic sampling of stationary variables preserves the
direction of causality. Contrary to the stationary case, this paper shows for the bivariate VAR(1) system
that systematic sampling induces spurious bi-directional Granger causality among the variables if the
uni-directional causality runs from a non-stationary series to either a stationary or a non-stationary
series. An empirical exercise illustrates the relative usefulness of the results further.

Keywords: systematic sampling; granger causality; cross covariance; high frequency financial data

JEL Classification: C15; C32; C43

1. Introduction

The use of highly temporally aggregated and systematically sampled data for causal inference is
quite common in the applied econometric literature. The issue of applying regular interval sampling
techniques is often encountered when dealing with high frequency data in the field of finance. Sampling
at regular frequencies when trades arrive non-synchronously and at high frequency can distort
correlation measures (Epps 1979; Hayashi and Yoshida 2005; Scholes and Williams 1977). However,
many studies of cross-correlations between equity market instruments and their derivatives still rely on
regularly spaced data, sampled at 1 min, 5 min, or 10 min intervals as discussed in Bollen et al. (2016).
These issues are becoming more important as the availability of equity market derivative products
increases and the frequency of trading intensifies.

There is substantial literature addressing the issue of the effect of temporal aggregation
and systematic sampling in various aspects such as the univariate ARIMA structure
(see Stram and Wei (1986); Wei (1990) and citation therein), unit roots (Rossana and Seater 1992, 1995),
cointegration, exogenity, measures of persistence, impulse response functions and forecasting,
(see Lütkepohl (1987); Marcellino (1999); Weiss (1984) and references therein). Studies that have
analysed the dynamic relationship between variables include Zellner and Montmarquette (1971);
Sims (1971); Taio and Wei (1976); Wei (1978); Wei and Mehta (1980) and the citation therein. Wei and
Mehta (1980) examine the information loss due to aggregation in parameter estimation of distributed
lag models. They also investigated the relative efficiencies of several parameters for the underlying
parameters through simulation. They have shown that, in terms of parameter estimation, there
is a substantial loss in information due to aggregation, especially if the input series is negatively
autocorrelated. Breitung and Swanson (2002); Ericsson et al. (2001); and Rajaguru (2004a) show
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that the information loss due to aggregation concentrates on contemporaneous correlations between
the variables. Breitung and Swanson (2002) examine how the spurious instantaneous relations are
induced from Granger causal relationships due to temporal aggregation and systematic sampling
in a VAR framework. They derive the condition under which the temporal and aggregation and
systematic sampling preserves the instantaneous relations. Ericsson et al. (2001) draw attention to
misspecifications involved in cross-country regressions that result from heavy temporal aggregations.
They have derived the probability limits of the contemporaneous regression coefficient from
a bi-directional causal bivariate VAR(1) system. Based on two period averages, the probability limits
of the estimated contemporaneous regression coefficients are found to be positive, negative, or zero,
even if the original unaveraged variables are contemporaneously uncorrelated. Both Breitung and
Swanson (2002) and Ericsson et al. (2001) concentrate on how instantaneous relations are created due
to temporal aggregation and systematic sampling from Granger causal systems. However, they fail
to address the creation of a spurious Granger causal relationship from a non-causal relation due to
temporal aggregation and systematic sampling.

There is a sizeable theoretical literature that analyses the impact of temporal aggregation
and systematic sampling on Granger causality, weak and strong exogeneity. Sims (1971) warns
that aggregation could result in a spurious causal relationship. Marcellino (1999) also shows that
Granger non-causality is generally not invariant to temporal aggregation. As a result, strict and
strong exogeneity is also not invariant. Triacca (2017) shows the absence of causal relationship
when two causal variables are included simultaneously. Wei (1982) using Geweke (1982) linear
decomposition demonstrates for the stationary variables that temporal aggregation can change
a true one-sided Granger Causal relationship into a two-sided causal system. On the other hand,
it shows that the systematic sampling preserves the one-sided causal relationship between the
variables and the unidirectional causal system becomes weaker when they are systematically sampled
further. Cunningham and Vilasuso (1995) have found through Monte Carlo simulation that temporal
aggregation is between two and ten times more likely to fail to detect a true causal relationship than
is systematic sampling. Cunningham and Vilasuso (1997) have examined the influence of temporal
aggregation and systematic sampling on money-output relationship. Their results demonstrate that
the use of systematic sampling in forming time aggregates rather than temporal aggregation.

Most of the literature has examined the effect of temporal aggregation and systematic sampling
on causal inferences for the stationary case and find that systematic sampling preserves the direction
of causality. When the series are non-stationary, in practice, we take appropriate differencing
and conduct Granger causality test to determine the direction of causation. Mamingi (1996) using
Monte Carlo simulations shows that systematic sampling of integrated process produces misleading
causal inferences. Rajaguru (2004b) has derived the relationship between the cross-covariances of
systematically sampled and disaggregated process and find that systematic sampling of integrated
process convert uni-directional system into bidirectional. Both studies arrive at the general conclusion
that systematic sampling of integrated processes induces spurious causal processes. It assumes that
all variables in the system are non-stationary. However, they fail to address the scenario where one
of the series is non-stationary while the other variables are stationary. In such cases, the causality
in the underlying data generating process could run from stationary variable to non-stationary and
vice versa. It is essential to analyse the nature of causal distortion due to systematic sampling in such
scenarios. Moreover, the causal distortion in the presence of unit roots due to systematic sampling
based on cross-covariance analysis (Rajaguru 2004b) could be misleading in the presence of lagged
dependent variables when it is used in a VAR framework. This paper derives the relationship between
the cross-covariances of aggregated and disaggregated process for the general integrated process of
order d. The main contribution of the paper is it derives the condition for the order of integration
in a VAR framework by incorporating lagged dependent variables for which the one-sided causal
relationship tends to show two-sided causal relationship due to systematic sampling.
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In the next section, we derive the relationship between the theoretical cross covariance of
aggregated and disaggregated processes. This result plays a fundamental role in our exercise and is
applicable to both stationary and integrated processes. In Section 3, we then derive the limiting values
of least squares estimates and the corresponding t-ratios of a VAR(1) process under different levels of
systematic sampling. In Section 4, we test each of our theoretical findings empirically using equity
market indices and associated derivatives. In the concluding section we highlight some important
issues involved in Granger causality testing with systematically sampled data.

2. Relationship between Cross Covariances of Disaggregated and Systematically Sampled Series

In this section, we extend the derivation of Rajaguru (2004b) to derive the relationship between
the cross-covariances of the underlying data generating process and systematically sampled series.
Let zt = (z1t, z2t, ..., znt), (t = 1, 2, ..., T) be an equally spaced basic disaggregated series. Systematic
sampling means the construction of the series Zτ = zmt(τ = 1, 2, ..., N and T = mN) by sampling
from zt at every mth interval (m is a positive integer). Let wt = (w1t, w2t, ..., wnt), wjt = (1− L)dj zjt,
be a weakly stationary process with mean zero and variance covariance matrix, where L is a backward
shift operator.

Γw(k) = E(wtwt−k) = [γij(k)], i, j = 1, 2, ..., n

where γw
ii (k) is the autocovariance of the i-th component, wit, at lag k, and γw

ij (k) is the cross covariance
between i-th and j-th components. Further γw

ii (0) is the variance of the i-th series and γw
ij (0) represents

the contemporaneous cross covariance between the series.
Notice that the order of integration dj of the j-th component, wjt, of wt need not be the same

for all j. Allowing for different orders of integration of the individual components will be useful
in examining how Granger causality distortions depend not only on systematic sampling but also
on dj. As we shall see in the subsequent sections, the order of integration dj plays an important role
in inducing spurious causal relationships between the aggregated series. Let L′ be the backward
shift operator on the sampling unit τ. Thus, (1− L′)Zτ = Zτ − Zτ−1 = zmτ − zm(τ−1) = (1− Lm)zmτ .
Since the unit root property is invariant upon systematic sampling, we let Wτ = (W1τ , W2τ , ..., Wnτ),
Wjτ = (1 − L′)dj Zjτ = (1 − Lm)dj zjmτ = (1 + L + ... + Lm−1)dj wjmτ . The dj-th difference of the
systematically sampled series (j-th component) is simply the weighted sum of the dj-th difference of
the basic series. The following proposition shows the relationship between the cross-covariances of the
systematically sampled series and the basic series (see Rajaguru (2004b) for the bivariate case).

Proposition 1. The cross covariance between i-th and j-th components of the systematically sampled series
Wiτ and Wjτ−k can be expressed in terms of cross covariances of the i-th and j-th components of the basic
disaggregated series wit and wjt, that is,

γW
ij (k) = Cov(Wiτ , Wjτ−k) = (1 + L + L2 + ... + Lm−1)di+dj γW

ij (mk + dj(m− 1)) (1)

γW
ji (k) = Cov(Wjτ , Wiτ−k) = (1 + L + L2 + ... + Lm−1)di+dj γW

ji (mk + di(m− 1)) (2)

where L operates on the index of γw
ij (k) such that Lγw

ij (k) = γw
ij (k− l) and γw

ij (k) = γw
ji (−k)

In particular,

γW
ii (k) = Cov(Wiτ , Wiτ−k = (1 + L + L2 + ... + Lm−1)2di γw

ii (mk + di(m− 1))

Further, the matrix representation of the above is given by

ΓW(k) = E(WτWτ−k) = [γW
ij (k)], i, j = 1, 2, ..., n
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Corollary 1. If d1 = d2 = ... = dn = d (that is all the components of the vector process are integrated of the
same order d), then

γW
ij (k) = Cov(Wiτ , Wjτ−k) = (1 + L + L2 + ... + Lm−1)2dγw

ij (mk + d(m− 1))

and
ΓW(k) = E(WτWτ−k) = [γW

ij (k)], i, j = 1, 2, ..., n

= (1 + L + L2 + ... + Lm−1)2dΓw(mk + d(m− 1))

where L operates on each element of the matrix Γw(k).

The above proposition reveals that the cross covariances between systematically sampled series is
simply the weighted sum of the cross covariances of the basic series. The most striking observation in
both Equations (1) and (2) is the cross-covariance function is independent of the cause variable and is
influenced by the effect variable.

3. Estimates of VAR(p) Process Based on Systematically Sampled Data

Consider the basic vector process zt and let wt = (w1t, w2t, ..., wnt), wjt = (1− L)dj zjt be a weakly
stationary process with mean zero and variance covariance matrix

Γw(k) = E(wtwt−k) = [γw
ij (k)], i, j = 1, 2, ..., n (3)

and Γw(−k) = [Γw(k)]′ ∀k
Suppose the covariance stationary process wt has the following VAR(p) representation

wt = Φ1wt−1 + Φ2wt−2 + ... + Φpwt−p + et (4)

with et N

0,


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . σ2
n


.

The variance covariance matrix of et is set to be diagonal to make sure that there are no
contemporaneous relationships among the variables in the basic form. The system of normal equations
(Yule-Walker equations) for the above process is given by

Γw(k) = E(wtwt−k) = Φ1E(wt−1wt−k) + Φ2E(wt−2wt−k) + ... + ΦpE(wt−pwt−k) + E(wtwt−k)∀k
= Φ1Γw(k− 1) + Φ2Γw(k− 2) + ... + ΦpΓw(k− p)

(5)

Given Φi’s and using the fact that Γw(−k) = (Γw(k))′, we can solve for the theoretical cross
covariances Γw(k) ∀k from the system of simultaneous equations in (5).

Let Zτ be the m-period non-overlapping aggregate (systematic sampling) of zt. Let Wτ =

(W1τ , W2τ , ..., Wnτ) such that Wjτ = (1− L′)dj Zjτ . We now consider estimating the following n-variate
VAR(p) model with systematically sampled series:

Wt = Φ∗1Wτ−1 + Φ∗2Wτ−2 + ... + Φ∗pWτ−p + Eτ (6)

where Eiτ (i = 1, 2, ..., n) represent the error process of the aggregated model. The probability estimates
Φ̂∗i , i.e, plimΦ̂∗i (denoted by Φ̃∗i ) can be obtained by solving the system of normal equations

ΓW(k) = E(WτWτ−k) = Φ̃∗1ΓW(k− 1) + Φ̃∗2ΓW(k− 2) + ... + Φ̃∗pΓW(k− p) + E(EτWτ−k) (7)
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for k = 1, 2, ..., p.
It is clear from the construction that E(EτWτ−k) = 0 for k = 1, 2, ..., p. Thus, (7) reduces to

ΓW(k) = E(WτWt−τ) = Φ̃∗1ΓW(k− 1) + Φ̃∗2ΓW(k− 2) + ... + Φ̃∗pΓW(k− p) (8)

Equivalently,
(
ΓW(k)

)′
=
(
ΓW(k− 1)

)′ Φ̃∗′1 +
(
ΓW(k− 2)

)′ Φ̃∗′2 + ... +
(
ΓW(k− p)

)′ Φ̃∗′p . This can
be rewritten as


(
ΓW(1)

)′(
ΓW(2)

)′
...(

ΓW(p)
)′

 =


ΓW(0) ΓW(1) . . . ΓW(p− 1)

ΓW(−1) ΓW(0) . . . ΓW(p− 2)
...

...
. . .

...
ΓW(−p + 1) ΓW(−p + 2) . . . ΓW(0)


′


Φ̃∗
′

1

Φ̃∗
′

2
...

Φ̃∗
′

p

 (9)

Φ̃∗
′
= Γ−1

[
ΓW(1) ΓW(2) .... ΓW(p)

]′
(10)

where Γ =


ΓW(0) ΓW(1) . . . ΓW(p− 1)

ΓW(−1) ΓW(0) . . . ΓW(p− 2)
...

...
. . .

...
ΓW(−p + 1) ΓW(−p + 2) . . . ΓW(0)


′

and Φ̃∗
′
=


Φ̃∗
′

1

Φ̃∗
′

2
...

Φ̃∗
′

p

 (11)

Note from (10) that the probability limit of the estimates of the model based on systematically
sampled data is a function of the cross covariances of the aggregated process and further can
be expressed as the cross covariances of the basic disaggregated process. Furthermore, from (5),
the cross-covariances of the basic process are a function of the coefficients of the VAR(p) of the
disaggregated process. Thus, the estimated parameters of the aggregated VAR(p) is the weighted sum
of the cross-covariances of the basic process with the weights being the coefficients of the VAR(p) of the
disaggregated process. Since our objective is to assess the effects of systematic sampling on Granger
causality and to simplify computations we specialize the analysis to a bivariate VAR(1) process.

3.1. Aggregated VAR(1) Process

In order to examine the effect of systematic sampling on Granger causality, we consider the
following bivariate VAR(1) system1 with z1t I(d1) and z2t I(d2) such that wit = (1− L)di zit for i = 1, 2:[

w1t
w2t

]
=

[
ϕ11 ϕ12

ϕ21 ϕ22

] [
w1t−1

w2t−1

]
+

[
e1t
e2t

]
,

[
e1t
e2t

]
∼ N

([
0
0

]
,

[
σ2

1 0
0 σ2

2

])
(12)

i.e., wt = Φ1wt−1 + et, where wt =

[
w1t
w2t

]
and Φ1 =

[
ϕ11 ϕ12

ϕ21 ϕ22

]
.

In this system the coefficients ϕ12 and ϕ21 measure the causal relationships between w1t and w2t,
with ϕ12 6= 0 implying Granger causality from w2 to w1 and ϕ21 6= 0 implying Granger causality
from w1 to w2. In this exercise, the contemporaneous correlation between the errors are set to zero
(i.e., cov(e1t, e2t) = 0) in order to assess the effect of systematic sampling on this correlation.2 As in

1 The results in general are applicable to multivariate VAR(p) process.
2 If the contemporaneous correlation between the two error processes is non-zero, then one could argue that the causal

distortion comes from these non-zero correlations instead of systematic sampling. This also allows us to isolate the effects of
sampling on the contemporaneous correlation between the variables.
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Rajaguru and Abeysinghe (2010) the variances, autocovariances and cross-covariances of system (12)
are given by

γw
11(0) = σ2

w1
= E(w1tw1t) = ϕ2

11σ2
w1

+ ϕ2
12σ2

w2
+ 2ϕ11 ϕ12γw

12(0) + σ2
1 (13)

γw
22(0) = σ2

w2
= E(w2tw2t) = ϕ2

21σ2
w1

+ ϕ2
22σ2

w2
+ 2ϕ21 ϕ22γw

12(0) + σ2
2 (14)

γw
12(0) = γw

21(0) = E(w1tw2t) = ϕ11 ϕ21σ2
w1

+ ϕ12 ϕ22σ2
w2

+ (ϕ11 ϕ22 + ϕ12 ϕ22)γ
w
12(0) (15)

The system of equations described in (5) can be written as

Γw(k) = Φ1Γw(k− 1)⇒
[

γw
11(k) γw

12(k)
γw

21(k) γw
22(k)

]
=

[
ϕ11 ϕ12

ϕ21 ϕ22

] [
γw

11(k− 1) γw
12(k− 1)

γw
21(k− 1) γw

22(k− 1)

]

That is,
γw

11(k) = E(w1tw1t−k) = ϕ11γw
11(k− 1) + ϕ12γw

21(k− 1) (16)

γw
22(k) = E(w2tw2t−k) = ϕ21γw

12(k− 1) + ϕ22γw
22(k− 1) (17)

γw
12(k) = E(w1tw2t−k) = ϕ11γw

12(k− 1) + ϕ12γw
22(k− 1) (18)

γw
21(k) = E(w2tw1t−k) = ϕ21γw

11(k− 1) + ϕ22γw
21(k− 1) (19)

Solve (13)–(15), we get

σ2
w1

=
c3[σ

2
1 (b2c3 − b3c2)− σ2

2 (b1c3 − b3c1)]

[a1c3 − a3c1][b2c3 − b3c2]− [a2c3 − a3c2][b1c3 − b3c1]
(20)

σ2
w1

=
c3[σ

2
1 (a2c3 − a3c2)− σ2

2 (a1c3 − a3c1)]

[b1c3 − b3c1][a2c3 − a3c2]− [b2c3 − b3c2][a1c3 − a3c1]
(21)

γw
12(0) =

−[a3σ2
w1

+ b3σ2
w2
]

c3
(22)

where a1 = 1 − ϕ2
11, b1 = −ϕ2

12, c1 = −2ϕ11 ϕ12, a2 = −ϕ2
21, b2 = 1 − ϕ2

22, c2 = −2ϕ21 ϕ22,
a3 = −ϕ11 ϕ21, b3 = −ϕ12 ϕ22 and c3 = 1 − [ϕ11 ϕ22 + ϕ12 ϕ21]. Let Z1τ and Z2τ be the
m-period non-overlapping aggregates of z1t and z2t respectively. Let W1τ = (1 − L′)d1 Z1τ and
W2τ = (1− L′)d2 Z2τ . Since systematic sampling of a VAR(1) process produces a VARMA(1,h; h ≤ 1)
process at low levels of aggregation (Marcellino 1999), we first carried out a Monte Carlo experiment
by fitting VAR(p), p = 1, 2, 3 models to W1τ and W2τ derived from (5) for m = 3. Based on T = 10,000
replications we observe that the coefficient estimates of the systematically sampled VAR(1) model
remain largely unaffected by the VAR order. The AIC and BIC criteria also lead to the selection of
a VAR(1) process for the systematically sampled series. We, therefore, proceeded to obtain analytical
results from the following bivariate VAR(1) process:[

W1τ

W2τ

]
=

[
ϕ∗11 ϕ∗12
ϕ∗21 ϕ∗22

] [
W1τ−1

W2τ−1

]
+

[
E1τ

E2τ

]
(23)

i.e., Wτ = Φ∗1Wτ−1 + Eτ
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where Eiτ (i = 1, 2) as defined earlier represents the error process of the aggregated model,

Wτ =

[
W1τ

W2τ

]
and Φ∗1 =

[
ϕ∗11 ϕ∗12
ϕ∗21 ϕ∗22

]
. The p lim of OLS estimates ϕ̂∗ij and p lim ϕ̂∗ij are given by:

Φ̃∗
′
= Φ̃∗

′

1 = Γ−1 (Γw(1)) = (Γw(0))
′−1 (Γw(1))

′
=

[
γW

11(0) γW
12(0)

γW
21(0) γW

22(0)

]′−1 [
γW

11(1) γW
12(1)

γW
21(1) γW

22(1)

]′

Φ̃∗
′

1 =

[
p lim ϕ̂∗11 p lim ϕ̂∗21
p lim ϕ̂∗12 p lim ϕ̂∗22

]
=

1
γW

11(0)γ
W
22(0)− (γW

12(0))
2

[
γW

22(0) −γW
21(0)

−γW
12(0) γW

11(0)

] [
γW

11(1) γW
21(1)

γW
12(1) γW

22(1)

]
That is,

ϕ̂∗11 =
(∑ W1τW1τ−1)(∑ W2

2τ−1)− (∑ W1τW2τ−1)(∑ W1τ−1W2τ−1)

(∑ W2
1τ−1)(∑ W2

2τ−1)− (∑ W1τ−1W2τ−1)

p lim ϕ̂∗11 =
γW

11(1)γ
W
22(0)− γW

12(1)γ
W
12(0)

γW
11(0)γ

W
22(0)− (γW

12(0))
2

(24)

and similarly

p lim ϕ̂∗12 =
γW

12(1)γ
W
11(0)− γW

11(1)γ
W
12(0)

γW
11(0)γ

W
22(0)− (γW

12(0))
2

(25)

p lim ϕ̂∗21 =
γW

21(1)γ
W
22(0)− γW

22(1)γ
W
12(0)

γW
11(0)γ

W
22(0)− (γW

12(0))
2

(26)

p lim ϕ̂∗22 =
γW

22(1)γ
W
11(0)− γW

21(1)γ
W
12(0)

γW
11(0)γ

W
22(0)− (γW

12(0))
2

(27)

For t statistics
t(ϕ̂∗ij) = ϕ̂∗ij/se(ϕ̂∗ij), (28)

we get

Var(ϕ̂∗11) =
γW

22(0)σ̂
∗2
1

(T − 1)
(
γW

11(0)γ
W
22(0)− (γW

12(0))
2
)

Var(ϕ̂∗12) =
γW

11(0)σ̂
∗2
1

(T − 1)
(
γW

11(0)γ
W
22(0)− (γW

12(0))
2
)

Var(ϕ̂∗21) =
γW

22(0)σ̂
∗2
2

(T − 1)
(
γW

11(0)γ
W
22(0)− (γW

12(0))
2
)

Var(ϕ̂∗22) =
γW

11(0)σ̂
∗2
2

(T − 1)
(
γW

11(0)γ
W
22(0)− (γW

12(0))
2
)

σ̂∗21 = 1
T−2 ∑ (Y1τ − ϕ̂∗11Y1τ−1 − ϕ̂∗12Y2τ−1)

2

=
(

T−1
T−2

) (
(1 + ϕ̂∗211)γ

W
11(0) + ϕ̂∗212γW

22(0)− 2ϕ̂∗11γW
11(1)− 2ϕ̂∗12γW

12(1) + 2ϕ̂∗11 ϕ̂∗12γW
12(0)

)
and

σ̂∗22 =

(
T − 1
T − 2

)(
(1 + ϕ̂∗222)γ

W
22(0) + ϕ̂∗221γW

11(0)− 2ϕ̂∗21γW
21(1)− 2ϕ̂∗22γW

22(1) + 2ϕ̂∗21 ϕ̂∗22γW
12(0)

)
.

where T is the effective sample size after aggregation. For the case of systematic sampling
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γW
12(k) = (1 + L + ... + Lm−1)d1+d2 γw

12(mk + d2(m− 1))

γW
21(k) = (1 + L + ... + Lm−1)d1+d2 γw

21(mk + d1(m− 1))

and
γW

ii (k) = (1 + L + ... + Lm−1)2dγw
ii (mk + di(m− 1))

An important well-known problem of temporal aggregation or systematic sampling is the creation
of contemporaneous correlation even when such a correlation is absent. Using the VAR(1) system
in (12) with ϕ11 = 0 and ϕ22 = 0, Breitung and Swanson (2002) and Ericsson et al. (2001) examined
the effect of temporal aggregation on contemporaneous regression coefficient for m = 2 and observed
that this coefficient could be positive, negative, or zero. Here we generalize their result for the case of
systematic sampling for any m. From the contemporaneous regression relationship W2τ = cW1τ + uτ

with systematically sampled data we get

ĉ = ∑ W1τW2τ

∑ W2
1τ

, and p lim ĉ =
γW

12(0)
γW

11(0)
(29)

and the corresponding tests statistics is given by

t(ĉ) = ĉ/se(ĉ) (30)

we get Var(ĉ) = γW
22(0)+ĉ2γW

11(0)−2ĉγW
12(0)

(T−1)γW
11(0)

, where

γW
12(0) = (1 + L + ... + Lm−1)d1+d2 γw

12(d2(m− 1))

and
γW

ii (0) = (1 + L + ... + Lm−1)2di γw
ii (di(m− 1))

It can be shown that, the above parameters, described in (25)–(30), of the systematically sampled
process can be expressed in terms of the moments of the disaggregated process and these in turn can
be expressed in terms of the parameters of the original basic disaggregated process using (13)–(22).
In order to examine the effect of systematic sampling on Granger Causality, we consider three cases
where (i) no Granger Causality between with variables in the disaggregated form; (ii) causality between
the variables in the disaggregated form is one-sided and (iii) causality between the variables in the
disaggregated form is bi-directional.

Case 1: No Granger causality between the variables in the disaggregated form

Proposition 2. If there does not exist Granger causality between the basic series then the Granger causality
between the systematically sampled series is also absent.

Proof of Proposition 2. In this case ϕ12 = ϕ21 with cov(e1t, e2t) = 0. Therefore, from (18), (19) and (22)
γw

ij (k) = 0 for all k and i 6= j (i, j = 1, 2). Further we can see that γW
ij (k) = 0 for all k and i 6= j.

Thus, if the cross-covariances between the basic series are zero then the cross-covariances between
systematically sampled series will also be zero. And from (25) and (26) we can see that p lim ϕ̂∗12 =

p lim ϕ̂∗21 = 0. Thus, if there is no Granger causality between the basic series then the Granger causality
between the systematically sampled series will also be absent.

The general result described by Proposition 2 does not depend on di’s. In particular,
the systematically sampled two independent random walk processes will remain causally unrelated
when they are estimated in the differenced form. It can also be inferred that p lim ĉ = 0, suggesting
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that the systematic sampling does not create any contemporaneous correlation among the variables
when there does not exist Granger causality between the variables in the disaggregated form is absent.

Case 2: Causality between the disaggregated series is one-sided

Let ϕ12 = 0 such that w2t does not Granger cause w1t and there exists uni-directional causality
from w1t to w2t. It can be shown that

γw
11(0) = σ2

w1
and γw

11(k) = ϕ11γw
11(k− 1) = ϕk

11σ2
w1

(31)

γw
12(0) =

ϕ11 ϕ21σ2
w1

1− ϕ11 ϕ22
⇒ γw

12(k) = ϕ11γw
12(k− 1) = ϕk

11

(
ϕ11 ϕ21σ2

w1

1− ϕ11 ϕ22

)
∀k > 0 (32)

γw
22(k) = ϕ21γw

12(k− 1) + ϕ22γw
22(k− 1) = ϕ21 ϕk−1

11

(
ϕ11 ϕ21σ2

w1

1− ϕ11 ϕ22

)
+ ϕ22γw

22(k− 1) (33)

γw
21(k) = ϕ21γw

11(k− 1) + ϕ22γw
21(k− 1) = ϕk−1

11 ϕ21σ2
w1

+ ϕ22γw
21(k− 1)∀k > 0 (34)

It has been well established in the earlier literature (Mamingi (1996) and Rajaguru (2004b)) that,
for the stationary case, systematic sampling preserves the direction of Granger causality. In this section,
we establish the condition under which the unidirectional causal system turns into a feedback system
due to systematic sampling. Thus we have the following theorem.

Theorem 1. In a bivariate VAR(1) framework, systematic sampling induces spurious bi-directional Granger
causality among the variables if the uni-directional causality runs from a non-stationary series to either
a stationary or a non-stationary series.

Equivalently, systematic sampling induces spurious bi-directional Granger causality among the variables
if d1 > 0.

Proof of Theorem 1. See Appendix A.

It can also be shown that the expression for P lim ϕ̂∗12 when ϕ12 = 0 in the basic form for the case
of systematic sampling when d1 = d2 = 1 is the same as the case of temporal aggregation (see Rajaguru
and Abeysinghe 2010) when d1 = d2 = 0.

That is, the systematic sampling induces spurious Granger causality when d1 = d2 = 1 and it can
be expressed as

p lim ϕ̂∗12 =
ϕ11(1 + ϕ11 + ϕ2

11 + ...ϕm−1
11 )2σ2

w1

[
γW

11(0)
(

ϕ11 ϕ21
1−ϕ11 ϕ22

)
− γW

12(0)
]

γW
11(0)γ

W
22(0)− (γW

12(0))
2

It can also be shown that if the one-sided causality runs from a white noise series (in differences)
to a differenced stationary series in the basic disaggregated form then systematic sampling will not
produce a spurious feedback relationship even if d1 = 1. However, this may not hold when d1 > 1.
In general, as m increases VAR(1) tends to become VAR(0). However, when ϕ11 reaches unity, we get
a near co-integrated specification in the I(2) space and as a result VAR(1) remains VAR(1) as m increases.
The conversion from VAR(1) to VAR(0) for the higher order of systematic sampling confirms that the
converse of the Proposition 2 need not be true. In turn, we can conclude that not finding causality
among the variables with systematically sampled data doesn’t necessarily mean that the variables are

not related in the disaggregated form. It can be also shown that p lim ĉ = γW
12(0)

γW
11(0)

6= 0 as m increases and

all causal information concentrate in the contemporaneous relationship among the variables due to
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systematic sampling of integrated process. Moreover, the spurious contemporaneous relationships do
not disappear even if the sampling interval becomes larger.

Case 3: Granger causality between the original series is bi-directional

In this case both ϕ12 and ϕ21 are non-zero. The required aggregated parameters
(p lim ϕ̂∗12, p lim ϕ̂∗21 ) are given in (25) and (26). To make computations easier, without loss of generality,
we set ϕ11 = 0 and ϕ22 = 0. When both ϕ11 = 0 and ϕ22 = 0 the underlying VAR(1) process is
stationary if and only if |ϕ12 ϕ21| < 1.

γw
12(0) = 0 (35)

γw
11(1) = 0 and γw

11(k) = ϕ12γw
21(k− 1) (36)

γw
22(1) = 0 and γw

21(k) = ϕ21γw
12(k− 1) (37)

γw
12(1) = ϕ12σ2

w2
and γw

12(k) = ϕ12γw
22(k− 1) (38)

γw
21(1) = ϕ21σ2

w1
and γw

21(k) = ϕ21γw
11(k− 1) (39)

Through recursive substitution, we also get

γw
11(2k− 1) = 0, γw

11(2k) = (ϕ12 ϕ21)
kσ2

w1
∀k = 1, 2, ... (40)

γw
22(2k− 1) = 0, γw

22(2k) = (ϕ12 ϕ21)
kσ2

w2
∀k = 1, 2, ... (41)

γw
12(2k− 1) = ϕ12(ϕ12 ϕ21)

k−1σ2
w2

, γw
12(2k) = 0 ∀k = 1, 2, ... (42)

γw
21(2k− 1) = ϕ21(ϕ12 ϕ21)

k−1σ2
w1

, γw
21(2k) = 0 ∀k = 1, 2, ... (43)

and σ2
w2

=
1 + ϕ2

21
1− ϕ2

12 ϕ2
21

, σ2
w1

=
1 + ϕ2

12
1− ϕ2

12 ϕ2
21

(44)

where γW
ij (0) = γw

ij (0) and γW
ij (1) = γw

ij (m) if d1 = d2 = 0

γW
ij (0) = (1 + L + ... + Lm−1)2γw

ij ((m − 1)) and γW
ij (1) = (1 + L + ... + Lm−1)2γw

ij (2m − 1) if
d1 = d2 = 1∀ i, j = 1, 2.

Scenario 1: Stationary processes: d1 = d2 = 0

If d1 = d2 = 0 then γW
ij (0) = γw

ij (0) and γW
ij (1) = γw

ij (m). Now, the causal parameters of the

model based on aggregated data takes the form p lim ϕ̂∗12 =
γW

12(1)γ
W
11(0)−γW

11(1)γ
W
12(0)

γW
11(0)γ

W
22(0)−(γW

12(0))
2 and

p lim ϕ̂∗21 =
γW

21(1)γ
W
22(0)− γW

22(1)γ
W
21(0)

γW
11(0)γ

W
22(0)− (γW

12(0))
2

.

⇒ p lim ϕ̂∗12 =
γw

12(m)γw
11(0)− γw

11(m)γw
12(0)

γw
11(0)γ

w
22(0)− (γw

12(0))
2 and p lim ϕ̂∗21 =

γw
21(m)γw

22(0)−γw
22(m)γw

21(0)
γw

11(0)γ
w
22(0)−(γw

12(0))
2

⇒ p lim ϕ̂∗12 =
γw

12(m)σ2
w1
− 0

σ2
w1

σ2
w2
− 0

and p lim ϕ̂∗21 =
γw

21(m)σ2
w2
− 0

σ2
w1

σ2
w2
− 0

⇒ p lim ϕ̂∗12 =
γw

12(m)

σ2
w2

and p lim ϕ̂∗21 =
γw

21(m)

σ2
w1

⇒ p lim ϕ̂∗12 =

ϕ12(ϕ12 ϕ21)
(m−1)

2 , if m is odd

0 , if m is even
(45)



Econometrics 2018, 6, 31 11 of 24

and

p lim ϕ̂∗21 =

ϕ21(ϕ12 ϕ21)
(m−1)

2 , if m is odd

0 , if m is even
(46)

The interesting feature of the above derivation is that systematic sampling preserves the feedback
causal relation among the variables when the order of systematic sampling is odd at lower levels
of aggregation. Since by construction |ϕ12 ϕ21| < 1, from (45) and (46) we can conclude that VAR(1)
becomes VAR(0) as m increases even if m is odd. On the other hand, when the order of aggregation
is even one may not observe any causal relationship among the variables even at lower levels
of aggregation when the causality between them is bi-directional. We can also observe from the
systematically sampled data that the estimated p lim ϕ̂∗11 6= 0 and p lim ϕ̂∗22 6= 0 when the order
of systematic sampling m is even. However, we may not observe these patterns when ϕ11 6= 0 or
ϕ22 6= 0. If either ϕ11 6= 0 or ϕ22 6= 0 then we observe that γw

12(0) 6= 0. In turn, we get p lim ϕ̂∗12 6= 0
and p lim ϕ̂∗21 6= 0 even if the the order of aggregation is even. The causal inferences based on
the systematically sampled data could be misleading when m is significantly high as the causal
parameter may become insignificant. Another key conclusion from this exercise is the converse of
the Proposition 2 need not be true, i.e., not finding Granger causality among the variables based
on systematically sampled data does not imply the absence of Granger causality in the basic form.
The above results also suggest the misspecification involved in dynamic relationships among the
variables in the aggregated form.

Contemporaneous Correlations:

Based on the contemporaneous regression equation for systematic sampling when d1 = d2 = 0
we get

p lim ĉ =
γW

12(0)
γW

11(0)
=

γw
12(0)

γw
11(0)

= 0

Thus, when both ϕ11 = ϕ22 = 0 and d1 = d2 = 0 the systematic sampling does not induce any
contemporaneous relations among the variables of interest. However, as in Breitung and Swanson (2002),
if ϕij’s i, j = 1, 2 are all non-zero then γw

12(0) 6= 0 and hence we observe the contemporaneous
correlations between the variables.

Scenario 2: Integrated Process: d1 = d2 = 1

Now, the causal parameters of the model based on systematically sampled data take the form

p lim ϕ̂∗12 =
γW

12(1)γ
W
11(0)−γW

11(1)γ
W
12(0)

γW
11(0)γ

W
22(0)−(γW

12(0))
2 and p lim ϕ̂∗21 =

γW
21(1)γ

W
22(0)−γW

22(1)γ
W
21(0)

γW
11(0)γ

W
22(0)−(γW

12(0))
2 , where γW

ij (0) = (1 + L +

... + Lm−1)2γw
ij ((m− 1)) and γW

ij (1) = (1 + L + ... + Lm−1)2γw
ij (2m− 1). Notice that the expression

described above for the case of systematic sampling when both d1 = d2 = 1 is same as that for the
case of temporal aggregation when d1 = d2 = 0 (see Rajaguru and Abeysinghe (2010) for temporal
aggregation). And thus all the inferences made for the case of temporal aggregation of stationary
process is applicable to the case of systematic sampling of I(1) processes.

The key findings are summarized below:

1. Just as in the one-way causal system the VAR(1) in the feedback system tends to become VAR(0)
as m increases.

2. What is more disturbing though is that a positive ϕ12 may become negative p lim ϕ̂∗12. Furthermore,
the magnitudes of p lim ϕ̂∗12 are such that in practice it is quite possible to conclude that causality
is one-way though it is bi-directional.
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Contemporaneous Correlation:

Again, consider estimating the contemporaneous regression equation given by (29), and the
cross-covariances in this expression take the form

γW
ij (0) = (1 + L + ... + Lm−1)2γw

ij ((m− 1))andγW
ij (1) = (1 + L + ... + Lm−1)2γw

ij (2m− 1).

Notice that the cross covariances for the case of systematic sampling when d1 = d2 = 1 is same as
for the case of temporal aggregation when d1 = d2 = 0. And again all the inferences made for the case
of temporal aggregation of stationary process is applicable for the case of systematic sampling of I(1)
processes. The results are consistent with Breitung and Swanson (2002).

4. Monte Carlo Simulation

We find for the bivariate VAR(1) case that systematic sampling induces spurious bi-directional
Granger causality among the variables if the uni-directional causality runs from a non-stationary series
to either a stationary or a non-stationary series. However, the results may not be true for the higher
order and higher dimensional VAR processes. In this section, we consider an extensive Monte Carlo
simulation to examine the validity of Theorem 1 for the cases where the system has (i) more than one lag
and (ii) more than two variables. We consider the following four scenarios to analyse the consequences
of systematic sampling on Granger causality: (1) bivariate VAR(1) process; (2) bivariate VAR(2) process;
(3) trivariate VAR(1) and (4) bivariate VAR(1) with a non-synchronous data generating process. For the
first three cases, we assume that the data is generated from equally spaced discrete time series process.
However, the financial time series data are available at random frequency. It is important to analyse
the validity of the Theorem 1 for the more realistic situation where the data is available at a random
frequency and the Granger causality tests are conducted in equally spaced observations sampled
from non-synchronous data. We use scenario four to analyse this realistic behavior on the bivariate
VAR(1) process.

Scenario 1:

Consider the following data generating process (DGP) where the observations are drawn from
an equally spaced bivariate VAR(1) model:[

w1t
w2t

]
=

[
ϕ11 ϕ12

ϕ21 ϕ22

] [
w1t−1

w2t−1

]
+

[
e1t
e2t

]
,

[
e1t
e2t

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
(47)

where z1t ∼ I(d1) and z2t ∼ I(d2) such that wit = (1− L)di zit for i = 1, 2.
In order to identify the source of causal distortion we consider the combinations of situations

where (i) both d1 ∼ I(0) and d2 ∼ I(0); (ii) d1 ∼ I(0) and d2 ∼ I(1); (iii) d1 ∼ I(1) and d2 ∼ I(0) and
(iv) both d1 ∼ I(1) and d2 ∼ I(1).

We assume that the unidirectional causality runs from z1 to z2 in the basic disaggregated form
by setting the parameter φ12 = 0. The remaining parameters are randomly drawn from uniform
distribution U(−10, 10) such that the roots of the VAR(1) polynomial lie outside the unit circle. We have
randomly generated 100,000 such models to examine the validity of our theoretical results. For each
model, we considered the Monte Carlo simulation with 100,000 replications. For each model at each
replication, we randomly generated 1200 observations (representing 100 years of monthly data).
This represents the case where the order of aggregation m = 0. We subsequently used the sampling
frequency of m = 3 (400 quarterly observations from the sample of 1200) and m = 12 (100 annual
observations). The percentage of rejection frequencies of φ̂∗12 and φ̂∗21 at the 5% level of significance
are observed across all 100,000 models over 100,000 replications at each levels of aggregation (m =

0, m = 3 and m = 12). The results are reported in Panel A of Table 1. The results reconfirm
the validity of theorem and show that if the causality runs from a stationary variable to either a
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stationary or a non-stationary variable then the direction of unidirectional causality is preserved at
the lower level of aggregation (sampling interval m = 3). The systematic sampling induces spurious
bidirectional Granger causality in about 35% of the cases where the unidirectional causality runs from
a non-stationary variable to either a stationary or a non-stationary variable in the basic disaggregated
form. Moreover the VAR(1) converges to VAR(0) at the higher level of aggregation (sampling interval
m = 12).

Scenario 2:

Consider the following data generating process (DGP) where the observations are drawn from an
equally spaced bivariate VAR(2) model:[

w1t
w2t

]
=

[
ϕ1,11 ϕ1,12

ϕ1,21 ϕ1,22

] [
w1t−1

w2t−1

]
+

[
ϕ2,11 ϕ2,12

ϕ2,21 ϕ2,22

] [
w1t−2

w2t−2

]
+

[
e1t
e2t

]
,

[
e1t
e2t

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
(48)

where z1t ∼ I(d1) and z2t ∼ I(d2) such that wit = (1− L)di zit, di ∈ {0, 1} for i = 1, 2.
We set φ1,12 = φ2,12 = 0 indicating the unidirectional causality runs from z1 to z2 in the basic

disaggregated form. As in scenario 1, all other parameters are drawn from a uniform distribution across
all 100,000 models with 100,000 replications. The rejection frequencies (in percentage) of φ̂∗1,12, φ̂∗2,12,
φ̂∗2,21 and φ̂∗1,12 at the 5% level of significance are reported in panel B of Table 1. It is clear from the results
reported in panel B of Table 1 that the systematic sampling induces spurious bidirectional Granger
causality when the underlying data generating process is VAR(2) regardless of order of integration.

Scenario 3:

Consider the following data generating process (DGP) where the observations are drawn from
equally spaced trivariate VAR(1) model:w1t

w2t
w3t

 =

ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33


w1t−1

w2t−1

w3t−1

+

e1t
e2t
e3t

 ,

e1t
e2t
e3t

 ∼ N


0

0
0

 ,

1 0 0
0 1 0
0 0 1


 (49)

where z1t ∼ I(d1), z2t ∼ I(d2) and z3t ∼ I(d3) such that wit = (1− L)di zit , di ∈ {0, 1} for i = 1, 2, 3.
We set φ12 = 0 indicating the unidirectional causality runs from z1 to z2 in the basic disaggregated

form. As in scenario 1, all other parameters are drawn from a uniform distribution across all 100,000
models with 100,000 replications. The rejection frequencies (in percentage) of φ̂∗12 and φ̂∗21 at the 5%
level of significance at all levels of aggregation are reported in panel C of Table 1. In a multivariate
framework, the results show that the only case where the direction of Granger causality is preserved is
when all variables are stationary. As in bivariate case, VAR(1) converges to VAR(0) at the higher level
of aggregation.

Scenario 4:

In order to analyse the effects of systematic sampling on Granger causality in a more realistic
framework of non-synchronous data, we consider the following data generating process:

w1t = ϕ11w1s + ϕ12w2v + e1t (50)

w2t′ = ϕ21w1s′ + ϕ21w2v′ + e2t′ (51)

where t and t′ are randomly chosen sequentially available non-synchronous time periods. w1s and w2v
are previously available information at time t and w1s′ and w2v′ are previously available information
at time t′. We first generate observations using the DGP above across 1200 grids assuming that not
all grids are having the same number of observations. We systematically sample the last observation
from each grid to represent the case where m = 0. We subsequently systematically sample 400 and
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100 observations to represent m = 3 and m = 12 respectively. For the DGP with I(1) variable, the drift
term is introduced and is expected to vary across each grid. As in scenario 1, the percentage of rejection
frequencies of φ̂∗12 and φ̂∗21 at the 5% level of significance are observed across all 100,000 models
over 100,000 replications. The results reported in Panel D of Table 1 show that the results based on
non-synchronous DGP is similar to that of equally spaced DGP. However, the rate at which VAR(1)
converges to VAR(0) is much faster for the case of equally spaced DGP than non-synchronous DGP.

Table 1. Monte carlo simulation results.

Panel A: Bivariate VAR(1)

ϕ∗12 ϕ∗21

z1 z2 m = 0 m = 3 m = 12 m = 0 m = 3 m = 12

I(0) I(0) 5% 5% 5% 98% 79% 18%

I(0) I(1) 5% 5% 5% 97% 60% 29%

I(1) I(0) 5% 33% 19% 95% 72% 9%

I(1) I(1) 5% 37% 14% 95% 93% 34%

Panel B: Bivariate VAR(2)

ϕ∗1,12 ϕ∗2,12 ϕ∗1,21 ϕ∗2,21

z1 z2 m = 0 m = 3 m = 12 m = 0 m = 3 m = 12 m = 0 m = 3 m = 12 m = 0 m = 3 m = 12

I(0) I(0) 5% 37% 14% 5% 20% 6% 97% 88% 34% 97% 59% 10%

I(0) I(1) 5% 26% 9% 5% 16% 6% 95% 79% 28% 95% 52% 9%

I(1) I(0) 5% 61% 25% 5% 37% 10% 98% 83% 19% 98% 57% 8%

I(1) I(1) 5% 48% 22% 5% 28% 10% 97% 89% 53% 98% 72% 20%

Panel C: Trivariate VAR(1)

ϕ∗12 ϕ∗21

z1 z2 z3 m = 0 m = 3 m = 12 m = 0 m = 3 m = 12

I(0) I(0) I(0) 5% 5% 5% 97% 59% 28%

I(0) I(0) I(1) 5% 64% 22% 98% 80% 26%

I(0) I(1) I(0) 5% 48% 9% 98% 16% 10%

I(1) I(0) I(0) 5% 70% 43% 98% 67% 11%

I(0) I(1) I(1) 5% 61% 15% 98% 74% 11%

I(1) I(0) I(1) 5% 68% 39% 98% 74% 16%

I(1) I(1) I(0) 5% 65% 23% 98% 83% 32%

I(1) I(1) I(1) 5% 69% 27% 98% 84% 36%

Panel D: Bivariate VAR(1) - Non-synchronous DGP

ϕ∗12 ϕ∗21

z1 z2 m = 0 m = 3 m = 12 m = 0 m = 3 m = 12

I(0) I(0) 5% 5% 5% 95% 75% 14%

I(0) I(1) 5% 5% 5% 94% 57% 23%

I(1) I(0) 5% 31% 18% 94% 70% 9%

I(1) I(1) 5% 33% 11% 94% 91% 31%

5. Empirical Applications

5.1. Example 1—VIX vs. SPVXSTR I(0)/I(1)

The CBOE Volatility Index (VIX) is calculated from price quotes on the nearest and second nearest
S&P 500 index options as described on the CBOE’s website at http://www.cboe.com/micro/vix/
vixwhite.pdf. It represents a market estimate of expected 30 day stock market volatility, and is often
described as the “investor fear gauge”. Standard and Poor’s also calculates a constant maturity VIX
futures index called the S&P 500 VIX short-term total return index (SPVXSTR). The index has 30 days

http://www.cboe.com/micro/vix/vixwhite.pdf
http://www.cboe.com/micro/vix/vixwhite.pdf
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to expiration, and tracks a portfolio comprising positions in the nearest and second nearest futures
with average maturity of 1 month at the close of trading each day, as described on Standard and Poor’s
website (www.us.spindices.com).

These two series have been the focus of recent academic work which assessed bidirectional
causality in high frequency data. Frijns et al. (2015) finds evidence for bi-directional Granger causality
between the VIX and VIX futures, while Bollen et al. (2016) analyse the lead-lag relations between the
SPVXSTR and the VIX finding that the VIX futures price lagged the VIX cash index in the first few
years after it was launched, but the VIX futures now leads the VIX. This research suggests that these
two series would be an important empirical application.

We test case 3 using intraday data for the SPVXSTR and VIX available from Thompson Reuters
using the SIRCA portal from January 2010 to December 2014. Causality is analysed with sampling at
15 s, 1 min, 5 min, and 10 min intervals for each day. VIX is observed to be stationary in levels, while
SPVXSTR is non-stationary in levels3. The summary results are reported in Appendix B, Table A1. The
first of column represents the underlying Granger Causality at low-level of systematic sampling (15 s).
Subsequently, the data are sampled at 1 min, 5 min, and 10 min intervals. The Granger Causality at the
higher level of systematic sampling are reported in panels 1 min, 5 min and 10 min. The results are
consistent with the theoretical literature that bi-directional causality remains bi-directional at the lower
level of sampling intervals. For example, 566 out of 1029 days are bi-directional when the sampling
intervals increased from 15 s to 1 min. The empirical results also reconfirm the theoretical findings that
bi-directional Granger Causality could be incorrectly interpreted as uni-directional Granger causality.
For example, 440 days are misinterpreted as uni-directional causality from either VIX to VST or VST to
VIX at the lower level of systematic sampling. At the higher sampling intervals, bi-directional causal
relationships could be misinterpreted as no-causal links between the variables of interest. The number
of cases at 5 min and 10 min intervals are 486 and 646 respectively. What is left at the higher sampling
interval is the contemporaneous correlations between VIX and VST. Importantly, as in theoretical
results, the no-causal relationship remains the same at all levels of sampling intervals.

5.2. Example 2—SPX vs. VIX I(0)/I(0)

The S&P 500 index (SPX) is the most widely used gauge for US equities, and its calculation is
described on Standard and Poor’s website (www.us.spindices.com). The behavior of the S&P 500
versus the VIX is well documented in finance literature (Whaley 2009). Like the VIX, the S&P 500 index
is stationary in levels. We use intraday data for the VIX and SPX, again available from Thompson
Reuters using the SIRCA portal from January 2010 to December 2014. Causality is analysed with
sampling at 15 s, 1 min, 5 min and 10 min intervals. The summary results are reported in Appendix B,
Table A2. We observe at 15 s intervals that SPX leads VIX in 781 cases. The uni-directionality remains
uni-directional in 649 cases at a 1 min interval. The spurious causality from VIX to SPX is observed for
only 14 cases. This is consistent with our theoretical finding that the uni-directional causality does
not induce spurious reverse causality for the stationary variables. At the higher sampling intervals,
uni-directional causal relationships could be misinterpreted as no-causal links between the variables
of interest. Again, the no-causal relationship remains the same at all levels of sampling intervals.

5.3. Example 3—ES1 vs. SPVXSTR I(1)/I(1)

The E-Mini futures contract is based on the S&P 500 index (ES), and the SC1 Index tracks the
closest to maturity E-mini contract, rolling close to maturity. Due to the availability of the data, index
data was collected from Bloomberg at 1 min intervals (SC1/ES1). Like SPVXSTR, ES1 is non-stationary
in levels. Causality is analysed with sampling at 1 min, 5 min and 10 min intervals. The summary
results are reported in Appendix B, Table A3. The results are consistent with the theoretical findings

3 Unit Root test results can be made available from authors upon request.

www.us.spindices.com
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that bi-directional causality between non-stationary variables turns into uni-directional causality at
the lower level of sampling intervals. For the same case, the uni-directional causality from ES1 to
VST (383 episodes at 5 min interval) turns into reverse causality from VST to ES1 at 10 min interval.
This is consistent with our theoretical findings that causality between the non-stationary variables lead
to spurious Granger Causality when they are estimated in differenced form. At the higher sampling
intervals, bi-directional causal relationships could be misinterpreted as no-causal links between the
variables of interest even if the non-stationary variables are estimated in differenced form.

5.4. Example 4—SPX, VIX and RV

Monte Carlo results discussed in section 4 show that Granger causality between three variables are
preserved as long as all three variables are stationary and are estimated in a VAR(1) framework. In this
example, we evaluate the causal relationship between SPX, VIX and the realized volatility of SPX (RV).
The realized volatility for 15 s frequency is constructed by estimating heterogenous autoregressive
realized volatility (HAR-RV) model (see Corsi (2009); Wang et al. (2017) and the citation therein)4.
We further use these realized volatility measures to examine the causal relationship between SPX, VIX
and RV within VAR framework by sampling at 15 s, 1 min, 5 min and 10 min intervals. In particular,
it helps to compare and contrast the effect of alternative volatility measures (VIX and RV) on SPX and
vice versa. The summary results are reported in Appendix B, Table A4.

We observe at 15 s intervals that SPX leads VIX in 742 cases and SPX leads RV in 811 cases.
The uni-directionality remains uni-directional at the lower sampling intervals. This is consistent with
our simulation results for the three variable case that the uni-directional causality does not induce
spurious reverse causality for the stationary variables. At the higher sampling intervals, uni-directional
causal relationships could be misinterpreted as no-causal links between the variables of interest.
The results are consistent with different volatility measures (VIX and RV). It also show the strong
bidirectional causality between the volatility measures of VIX and RV.

6. Conclusions

Economists often have to use systematically sampled data in Granger causality testing.
It was known in the theoretical literature that temporal aggregation may distort the causal links
between variables while systematic sampling preserves the causal directions. Our exercise provides
a quantitative assessment analytically and assesses the nature of the distortions created by systematic
sampling. The following observations emerge from this exercise: (1) If the one-sided causality runs
from a white noise series (in differences) to a differenced stationary series in the basic disaggregated
form then systematic sampling will not produce a spurious feedback relationship even if d1 = 1.
However, this may not hold when d1 > 1; this may be similar to the case of temporal aggregation
of nonstationary variables; (2) As m increases VAR(1) tends to become VAR(0). However, when ϕ11

reaches unity, we get a near co-integrated specification in the I(2) space and as a result VAR(1) remains
VAR(1) as m increases; (3) It can also be observed from the contemporaneous regressions that all
causal information concentrates in the contemporaneous relationship among the variables due to
systematic sampling of integrated processes. Moreover, the spurious contemporaneous relationships
do not disappear even if the order of aggregation is larger.

The empirical results based on the stationary variables (SPX vs. VIX) show that a uni-directional
causal relationship remains uni-directional at lower sampling intervals. This is consistent with our
theoretical finding that the uni-directional causality does not induce spurious reverse causality for the
stationary variables. At the higher sampling intervals, uni-directional causal relationships could be
misinterpreted as no-causal links between the variables of interest. On the other hand, the causality
between the non-stationary variables (ES1 vs. SPVXSTR) induces spurious causal relationships

4 In our HAR model, the ln(RV) at time t is expected to depend on ln(RV) at t− 1, one minute and ten minutes.
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when they are estimated in differenced form. This is consistent with our theoretical findings that
systematic sampling induces spurious causality when the non-stationary variables are estimated in
differenced form.
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Appendix A. Proof of Theorem 1

For the completeness of the proof of this theorem, we need to consider the following four scenarios:
(1) d1 = d2 = 0 (2) d1 = 0 but d2 > 0 (3) d1 > 0 but d2 = 0 and (4) d1 > 0 and d2 > 0.

Without loss of generality, assume5 that ϕ11 6= 0, ϕ21 6= 0 and ϕ22 6= 0.

Scenario 1: Suppose that both d1 = d2 = 0. Then the variance, autocovariances and cross covariances of
the systematically sampled series take the form γW

ij (k) = γw
ij (mk) ∀i, j = 1, 2. Now (33) takes the form

p lim ϕ̂∗12 =
γW

12(1)γ
W
11(0)− γW

11(1)γ
W
12(0)

γW
11(0)γ

W
22(0)− (γW

12(0))
2

=
γw

12(m)γw
11(0)− γw

11(m)γw
12(0)

γw
11(0)γ

w
22(0)− (γw

12(0))
2

=

(
φm

11

(
φ11φ21σ2

w1

1− φ11φ22

))
(σ2

w1
)− (φm

11σ2
w1
)

(
φ11φ21σ2

w1

1− φ11φ22

)
γw

11(0)γ
w
22(0)− (γw

12(0))
2

= 0

Thus, if d1 = d2 = 0 and ϕ12 = 0 then p lim ϕ̂∗12 = 0, suggesting that if the Granger causality
between the stationary series are uni-directional then systematic sampling preserves the direction of
causality. This is another proof of the results in Wei (1982) and Cunningham and Vilasuso (1995)
(the later based on Monte Carlo simulations). Based on this result we strongly recommend to
practitioners who study for example, the relationship between short and long term interest rates should
not use time averages of the interest rates, if the rates are I(0) series. They should use systematically
sampled values such as the end of period rates.

Scenario 2: d1 = 0 but d2 > 0

Here VAR is constructed for z1t and ∆d2 z2t. In this case, by construction, unidirectional Granger
causality runs from a stationary series to a non-stationary series in the disaggregated form. Then the
variance, autocovariances and cross covariances of the systematically sampled series take the form

γW
ij (k) = (1 + L + L2 + ... + Lm−1)d2 γw

ij (mk + d2(m− 1)) and

γW
ji (k) = (1 + L + L2 + ... + Lm−1)d2 γw

ji (mk) ∀i, j = 1, 2.

5 This is to ensure that the preservation of uni-directionality does not occur due to the zero values of the parameters ϕ11, ϕ21
and ϕ22.
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Let ci be the coefficient of Li in the expression (1+ L + L2 + ...+ Lm−1)d2 . Now (33) takes the form

p lim ϕ̂∗12 =
γW

12(1)γ
W
11(0)− γW

11(1)γ
W
12(0)

γW
11(0)γ

W
22(0)− (γW

12(0))
2

where γW
12(1) = (1 + L + L2 + ... + Lm−1)d2 γw

12(m + d2(m− 1))

γW
12(0) = (1 + L + L2 + ... + Lm−1)d2 γw

12(d2(m− 1))

γW
11(1) = (1 + L + L2 + ... + Lm−1)0γw

11(m) = γw
11(m) = ϕm

11σ2
w1

and

γW
11(0) = (1 + L + L2 + ... + Lm−1)0γw

11(0) = γw
11(0) = σ2

w1
.

Now

γW
12(1)γ

W
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11(1)γ
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12(0) =

(
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12(m + d2(m− 1))
)

σ2
w1
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(φm
11σ2

w1
)
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12(d2(m− 1))
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12(m)
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(σ2
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(ϕm
11σ2

w1
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12(d2(m− 1)− 1) + ... + cd2(m−1)γ
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12(0)

)
=
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m+d2(m−1)
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φ11φ21σ2
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φ11φ21σ2
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(φm
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w1
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(
c0φ
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1− φ11φ22

)
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0
11

(
φ11φ21σ2

w1

1− φ11φ22
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= 0

Thus, if d1 = 0 but d2 > 0 and ϕ12 = 0 then p lim ϕ̂∗12 = 0, implies that if the unidirectional
Granger causality runs from stationary series to a non-stationary series in the disaggregated form
then one will not find spurious feedback relationship between them due to systematic sampling.
As in the previous case, to exploit this result the practitioners must make sure to use systematically
sampled series in their studies. For example, if one is studying the effect of an exogenously determined
stationary interest rate (as in the case of Singapore) on the rate of change (log difference) of money
demand then both the interest rate and money demand series should be systematically sampled,
for example, take the end of period values.

Scenario 3: d1 > 0 but d2 = 0

In this case, by construction, unidirectional Granger causality runs from a non-stationary series
to a stationary series in the basic disaggregated form.6 Then the variance, autocovariances and cross
covariances of the systematically sampled series take the form

γW
ij (k) = (1 + L + L2 + ... + Lm−1)d1 γw

ij (mk) and

γW
ji (k) = (1 + L + L2 + ... + Lm−1)d1 γw

ji (mk + d1(m− 1)) ∀i, j = 1, 2.

Let ei be the coefficient of Li in the expression (1+ L + L2 + ...+ Lm−1)d1 . Now (33) takes the form

p lim ϕ̂∗12 =
γW

12(1)γ
W
11(0)− γW

11(1)γ
W
12(0)

γW
11(0)γ

W
22(0)− (γW

12(0))
2

6 For example, if the interest rate is endogenously determined and stationary, one may want to study the effect of changes in
money supply on the interest rate.
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where γW
12(1) = (1 + L + L2 + ... + Lm−1)d1 γw

12(m)

γW
12(0) = (1 + L + L2 + ... + Lm−1)d1 γw

12(0)

γW
11(1) = (1 + L + L2 + ... + Lm−1)2d1 γw

11(m + d1(m− 1)) and

γW
11(0) = (1 + L + L2 + ... + Lm−1)2d1 γw

11(d1(m− 1))

Let ei and fi be the coefficients of Li in the expressions (1 + L + L2 + ... + Lm−1)d1 and (1 + L +

L2 + ... + Lm−1)2d1 respectively.
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γW
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6= 0.

Because, in the above expression, only the term γw
12(m)− ϕm

11γw
12(0) = 0 and the other arguments

are non-zero as ϕ11 6= 0, ϕ21 6= 0 and ϕ22 6= 0.
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Thus, if the uni-directional Granger causality runs from a non-stationary series to a stationary
series then one could observe bi-directional spurious feedback relationship between them if the
variables are systematically sampled.

Scenario 4: d1 > 0 and d2 > 0

In this case, by construction, the uni-directional Granger causality runs from a non-stationary
series to a non-stationary series. Then the variance, autocovariances and cross covariances of the
systematically sampled series take the form

γW
ij (k) = (1 + L + L2 + ... + Lm−1)d1+d2 γw

ij (mk + d2(m− 1)) and

γW
ji (k) = (1 + L + L2 + ... + Lm−1)d1+d2 γw

ji (mk + d1(m− 1)) ∀i, j = 1, 2.

Now (17) takes the form
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(
g0γw

12(d2(m− 1)) + g1γw
12(d2(m− 1)− 1) + ...

+ g(d1+d2)(m−1)γ
w
12(d2(m− 1)− d1(m− 1))

)}
+...+

f2d1(m−1)

{
γw

11(−d1(m− 1))
(

g0γw
12(m + d2(m− 1)) + g1γw

12(m + d2(m− 1)− 1) + ...

+ g(d1+d2)(m−1)γ
w
12(m + d2(m− 1)− d1(m− 1))

)
−

γw
11(m− d1(m− 1))

(
g0γw

12(d2(m− 1)) + g1γw
12(d2(m− 1)− 1) + ...

+ g(d1+d2)(m−1)γ
w
12(d2(m− 1)− d1(m− 1))

)}

=
(

f0γw
11(d1(m− 1)) + f1γw

11(d1(m− 1)− 1) + ... + fd1(m−1)γ
w
11(0)

)
{

g0

(
γw

12(m + d2(m− 1))− ϕm
11γw

12(d2(m− 1))
)
+

g1

(
γw

12(m + d2(m− 1)− 1)− ϕm
11γw

12(d2(m− 1)− 1)
)

+ ...+

gd1(m−1)

(
γw

12(m + d2(m− 1)− d1(m− 1))− ϕm
11γw

12(d2(m− 1)− d1(m− 1))
)}

+ fd1(m−1)+1

{
γw

11(−1)
(

g0γw
12(m + d2(m− 1)) + g1γw

12(m + d2(m− 1)− 1) + ...

+ g(d1+d2)(m−1)γ
w
12(m + d2(m− 1)− d1(m− 1))

)
−

γw
11(m− 1)

(
g0γw

12(d2(m− 1)) + g1γw
12(d2(m− 1)− 1) + ...

+ g(d1+d2)(m−1)γ
w
12(d2(m− 1)− d1(m− 1))

)}
+ ...+

f2d1(m−1)

{
γw

11(−d1(m− 1))
(

g0γw
12(m + d2(m− 1)) + g1γw

12(m + d2(m− 1)− 1) + ...

+ g(d1+d2)(m−1)γ
w
12(m + d2(m− 1)− d1(m− 1))

)
−

γw
11(m− d1(m− 1))

(
g0γw

12(d2(m− 1)) + g1γw
12(d2(m− 1)− 1) + ...

+ g(d1+d2)(m−1)γ
w
12(d2(m− 1)− d1(m− 1))

)}

In the above expression,

γw
12(m + d2(m− 1)− i)− ϕm

11γw
12(d2(m− 1)− i)

{
= 0 if 0 ≤ i ≤ d2(m− 1)

6= 0 if i > d2(m− 1)
.
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Thus, γW
12(1)γ

W
11(0)− γW

11(1)γ
W
12(0) 6= 0 since ϕ11 6= 0, ϕ21 6= 0 and ϕ 6= 0.

If the uni-directional Granger causality runs from a non-stationary series to a non-stationary series
then one could observe bi-directional spurious feedback relationship between them in systematically
sample form.

Thus, in summary, as long as the causal variable is non-stationary (i.e., d1 > 0) regardless whether
the output series is stationary or not, one may observe spurious feedback relationships among the
variables with systematically sampled data when the causality between them is uni-directional in the
basic disaggregated form Q.E.D.

Appendix B. Multivariate Granger Causality Tests

Table A1. Granger Causality between VIX and VST.

1 min 5 min 10 min
Both VIX VST None Both VIX VST None Both VIX VST None

15 s

Both 566 118 322 23 32 176 335 486 14 226 143 646
VIX 2 57 1 2 0 49 0 13 0 35 0 27
VST 9 21 7 2 4 23 4 8 1 17 2 19
None 1 3 2 16 0 2 0 20 0 1 0 21

Table A2. Granger Causality between SPX and VIX.

1 min 5 min 10 min
Both SPX VIX None Both SPX VIX None Both SPX VIX None

15 s

Both 63 38 20 3 42 33 16 33 26 12 4 82
SPX 81 590 14 96 40 388 8 345 22 107 0 652
VIX 11 12 59 15 5 5 34 53 0 1 9 87

None 7 19 21 200 2 11 10 224 0 3 4 240

Table A3. Granger Causality between ES1 and VST.

5 min 10 min
Both ES1 VST NONE Both ES1 VST NONE

1 min

Both 219 383 237 147 63 176 198 549
ES1 8 54 6 26 5 21 7 61
VST 7 6 19 14 1 2 11 32

NONE 1 0 5 20 0 0 1 25

Table A4. Granger Causality between SPX, VIX and RV.

15 s 1 min 5 min 10 min

SPX –>VIX 742 492 420 196
VIX –>SPX 108 69 58 23

SPX <–>VIX 168 173 101 66
None 231 515 670 964

SPX –>RV 811 427 384 173
RV –>SPX 95 71 67 47

SPX <–>RV 142 174 99 40
None 201 577 699 989

VIX–>RV 17 122 76 19
RV –>VIX 29 163 128 76

VIX <–>RV 912 650 512 345
None 291 314 533 809
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