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Abstract  
 
Objectives: Evaluate how often the European Medicines Agency (EMA) has authorized 

drugs based on non-randomized studies and whether there is an association between 

treatment effects and EMA preference for further testing in RCTs.   

Study Design and Setting:  We reviewed all initial marketing authorizations in the EMA 

database on human medicines between 1995 and 2015 and included authorizations 

granted without randomized data. We extracted data on treatment effects and EMA 

preference for further testing in RCTs.  

Results: Of 723 drugs, 51 were authorized based on non-randomized data. These 51 

drugs were licensed for 71 indications. In the 51 drug-indication pairs with no preference 

for further RCT testing, effect estimates were large [OR 12.0 (95% CI: 8.1 to 17.9)] 

compared to effect estimates in the 20 drug-indication pairs for which future RCTs were 

preferred [OR 4.3 (95%CI 2.8 to 6.6)], with a significant difference between effects 

(p=0.0005).  

Conclusions:  Non-randomized data were used for 7% of EMA drug approvals. Larger 

effect sizes were associated with greater likelihood of approval based on non-

randomized data alone. We did not find a clear treatment effect threshold for drug 

approval without RCT evidence. 

 

Key words : dramatic effects- randomized trials- non-randomized studies-drug approval-
quality of evidence-regulatory agencies 

Running title : Drug approval based on non-randomized evidence  
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What is new? 
 

• 7% of EMA drugs approved are based on data from non-randomized studies 
alone 

 

• For authorizations that were granted on non-randomized data alone, larger 
estimated effect size is associated with a greater likelihood that authorization will 
be granted without EMA stating a preference for further testing in RCTs 
 

• Depending on the theoretical framework used, between 2 to 4% of EMA 
approvals based on non-randomized data alone exhibited ‘dramatic effects’  
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1. Introduction 

Random allocation to treatment comparison groups is used to generate estimates of 

treatment effects free of distortion from allocation bias. Sufficiently large randomized 

clinical trials (RCTs) are typically required by drug regulatory agencies for deciding 

whether drugs should be licensed for use in clinical practice [1]. However, requiring 

RCTs is ethically questionable if there is insufficient uncertainty about the effects of 

treatments [2]. For example, uncertainty about effects of treatment is reduced when 

estimates of treatment effects are large (“dramatic effect”). Under these circumstances 

the effects of biases and the play of chance can be confidently ruled out without 

requiring testing in RCTs (e.g. insulin for treating diabetes or chest tube placement for 

treating pneumothorax).  

What size of treatment effect is sufficiently dramatic to convince most people that the 

treatment differences observed are real and that the effects of bias and random error 

can be ruled out? Based on theoretical considerations, Glasziou and colleagues 

suggested that estimated risk ratios (RR) greater than 10 in comparison to no treatment 

or alternative treatments were needed to justify confident inferences about treatment 

effects based on non-randomized data [3]. The influential GRADE group also includes 

effect size as one of the criteria for upgrading the quality of observational evidence and 

suggests an RR of 5 as providing convincing evidence of an effect size[4, 5]. 

Retrospective analyses have indicated that between 0.05% and 2% of randomized trials 

have yielded effect sizes regarded as “dramatic” [6, 7]; however, they are rarely seen 

and validated in large trials [8]. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

A pragmatic way of assessing how large an estimated treatment effect must be to be 

regarded as sufficiently “dramatic” is to analyze the decisions of drug licensing 

authorities. The regulatory agencies have accepted that large treatment effects can 

sometimes obviate the need for data from RCTs. In 2012, the US Food and Drug 

Administration (FDA) introduced the “Breakthrough Therapy Designation” [9]; and in 

March and August 2016 the European Medicines Agency (EMA) launched the PRIME 

(Priority Medicines) and Adaptive Pathways programs to support approval of drugs 

demonstrating substantial improvement over existing therapies. In 2016, Hatswell and 

colleagues [10] reported the first systematic attempt to identify drugs approved without 

evidence from RCTs. They reviewed all drugs approved by the EMA and the FDA 

between January 1999 and May 2014, but did not include data on their effect sizes. In a 

small study examining FDA decisions to license nine cancer drugs (of which 6 were 

based on non-randomized comparisons) that had received Breakthrough Therapy 

Designation Kern concluded that the FDA would approve drugs under Breakthrough 

Therapy Designation if there was a doubling of treatment benefit compared to historical 

control groups [11].  

Here, we report an analysis of all the authorized drugs listed in the database of the 

EMA, from its inception on January 26, 1995 to December 8, 2015 

[www.ema.europa.eu]. We studied the nature of the comparison groups and the size of 

estimated treatment effects in drugs granted licenses based on data derived from non-

randomized comparisons. We hypothesized that the estimated effect sizes of drugs for 

which EMA had not required evidence from RCTs would be larger than those for which 

EMA mentioned its request for subsequent confirmation in RCTs of estimates of effects. 
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We also wanted to assess whether there was any evidence of a threshold effect size 

beyond which testing in RCTs appeared to be deemed unnecessary. 

2. Methods 

2.1 Study selection 

On December 8, 2015 we downloaded all information on medicines for humans from the 

EMA website which the agency received since its inception on January 26, 1995. Initial 

marketing authorization documents were reviewed by two investigators (FK, TR). All 

applications referring to EMA initial marketing authorizations  for one or more indications 

based on non-randomized data were deemed eligible for inclusion (see Figure 1) [12]. 

2.2 Data Extraction  

Data were extracted independently by two investigators (FK, TR) using a standardized 

form. Any disagreements were resolved by a third researcher (RM). The lead author 

(BD) verified a 20% sample of the data extractions. No major discrepancy in data 

extraction was found. Data were collected on study designs, disease characteristics, 

interventions, comparators (as described in section 2.3), and primary outcomes. 

We extracted data on single events (outcomes) per patient from the EMA reports. In 

four instances, the EMA had calculated treatment effects based on repeated health 

outcomes measured in the same patients enrolled in the eligible studies. For example, 

drugs for treating hemophilia were typically tested in the same patients to assess the 

effects on repeated outcomes (bleeds). This violated the independence assumption 

underlying the statistical analyses, but probably biased our analyses against the 

experimental treatments, as people with repeated events could be expected to have 
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poorer responses to treatments. All analyses were based on the aggregate data 

reported in the EMA reports and none were based on individual-participant data. 

2.3 Selection of comparators  

When explicit descriptions of comparators were provided [e.g. events of interest (n) over 

the number of patients in experimental and control groups (N)], we used them in our 

analysis. In some cases, the EMA’s authorization was based on predicted outcomes, as 

if the drug had been tested against placebo, no therapy, or obsolete standard treatment. 

For example, tyrosine kinase inhibitors developed after imatinib were not (originally) 

tested against imatinib but were compared against the previous standard treatments 

used to approve imatinib.  

2.4 Effect size estimation 

We used primary outcomes (as defined by the EMA) to calculate effect sizes (i.e. 

treatment effects). In some cases, only a proportion was provided as an effect estimate 

for the control arm (e.g. 15% response rate with standard treatment), without 

referencing total number of patients (N). Here we used the denominator (N) from the 

experimental arm as the denominator (N) in the control arm. 

Where the EMA documents reported a minimum efficacy threshold for calculating a 

sample size, we used it to derive a hypothetical control, like that described above. For 

example, the EMA document refers to a FDA guideline stating that the statistical 

demonstration of a serious infection rate per person-year of less than 0.5 to 1.0 

provides evidence of efficacy of the use of immunoglobulins for primary 

immunodeficiency disease (see Table S1).  
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Where the EMA documents neither provided nor cited data on the effects in 

comparators, we used terms from a patients-intervention-comparator-outcome (PICO) 

framework to search the literature and attempted to match experimental arms with 

control arms [13].  

Sometimes the effects of the comparators were larger than in experimental arms, 

resulting in effect sizes favoring comparators (see Table S1). In these instances, EMA 

approvals appear to have been driven by considering secondary outcomes, or what was 

believed to be compelling biological rationale. For example, hematological remission 

was the primary outcome for comparing imatinib (and other similar tyrosine kinase 

inhibitors) with standard chemotherapy for chronic myeloid leukemia in blast crisis. Even 

though standard chemotherapy was superior to imatinib in terms of remission rates, the 

EMA authorized imatinib for this indication because it could induce cytogenetic and 

molecular remission (secondary outcomes), which almost never occurs with standard 

chemotherapy. Such secondary outcomes were used for 10 drugs: nine for assessment 

of the effect of tyrosine kinase inhibitors in chronic myeloid leukemia; and one for 

evaluating the effect of recombinant factor XIII for treatment of congenital FXIII 

deficiency. 

2.5 Preference for subsequent RCT  

We recorded any EMA mention of whether subsequent RCTs would be needed or 

desirable (even if this seemed unlikely to happen). 

2.6 Study Appraisal 

We appraised all included non-randomized studies using the Down and Black quality 

assessment instrument [14] after comparing it with the more recently developed 
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Cochrane tool [15] and finding that they generated similar results. Our assessment was 

based on publications when these were available, supplemented with information from 

the EMA documents. 

2.7 Statistical Analysis 

We used the Shapiro-Wilk test to assess whether the treatment effect sizes were 

normally distributed. When they were, we used t-tests to assess differences in effect 

sizes in drugs for which the EMA required further testing in RCTs and others. Otherwise 

we used non-parametric Kruskal-Wallis (K-W) tests. We also meta-analyzed data to 

compare the average effect size for the group of studies for which the EMA had 

indicated a wish for further testing in RCTs with other studies. Within each subgroup 

(RCTs requested, RCTs not requested), we summarized data under random-effects and 

tested for the differences in effect sizes between the two subgroups. Odds ratio (OR) 

was our metric of choice for the main analysis because, when control group success 

rates are already modestly high, RRs cannot reach very large values whereas OR 

values are unbounded to infinity. Since the most-widely used definition of ‘dramatic’ 

effects in the literature was based on RR [3, 4, 16], we calculated RR as well as 

absolute risk differences. 

Because signal detection theory (Weber-Fechner law) suggests that people’s 

perception of a difference is a function of the ratio of the signals (here the treatment 

versus control responses), we hypothesized that fewer approvals would mention the 

need for subsequent RCTs as treatment effect [i.e. ln(OR)] increased [17, 18]. To 

assess this postulated relationship, we used logistic regression, where the effect size 

expressed as the ln(OR) was used to predict the probability of not requiring an RCT. 
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To determine whether EMA decisions have reflected ‘dramatic effects’, our analysis 

used three definitions of the latter: (i) empirically-derived definition of ‘dramatic effects’ 

based on the results of this analysis (equal to OR ≥12- see section 3.5); (ii) an effect 

size with RR ≥ 5 (the GRADE criterion [4, 16]); or (iii) a RR ≥ 10 (as proposed by 

Glasziou et. Al [3]). We assessed how often drugs were authorized without requiring 

further RCTs under each of these criteria. 

Finally, we performed sensitivity analyses to assess the robustness of our findings 

according to type of comparator (active vs. no active treatment), category of disease 

(cancer vs. chronic diseases vs. rare diseases vs. other), primary outcome (disease-

oriented outcome, such as response rate vs. patient-oriented outcome, such as 

survival), and unit of analysis (patient or event). All analyses were performed using 

STATA, version 14 [19]. RevMan software was used to generate forest plots [20]. 

3. Results 

3.1 Study selection and data sources 

We reviewed all 4,109 initial marketing authorizations related to 3,351 unique active 

substances. Figure 1 shows the data selection process and reasons for exclusion. A 

major reason for exclusion was availability of RCT data (985 applications). Additionally, 

five applications were authorized based on a published case series only, rendering it 

impossible to ascertain if only “positive” outcomes had been reported. We excluded 

these authorizations because it was not possible to calculate effect sizes. 

Overall, we identified 51 medicines that were authorized for 71 indications without 

evidence from RCTs (10 medicines were authorized for multiple indications). Table S1 

presents the data included in our analyses. Briefly, published manuscripts were 
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available for 58 drug/indication pairs, conference abstracts for 2, and only the EMA 

initial marketing authorization documents for the remaining 11. 

3.2 Use of non-randomized studies for authorization s 

In all, 723 newly developed drugs were granted marketing authorization (672 drugs 

were authorized based on RCTs and 51 on non-randomized studies). Thus, 7% 

[51/723] of drugs were authorized based on non-randomized data. 

3.3 Characteristics of included studies 

Of the 71 drug-indication pairs authorized based on non-randomized data, 58% (41/71) 

were for treating cancer, particularly leukemias and lymphomas (Table S1). Another 

27% (19/71) were for rare diseases, 8% (6/71) for chronic diseases, and 7% (5/71) for 

other health problems. The health problems leading to drug approvals were relatively 

rare, occurring in <1% of the general population. 

Data on 42% (30/71) of comparators were extracted directly from the initial marketing 

authorization documents, 13% (9/71) from published manuscripts, and 45% (32/71) 

from a literature search using PICO. Comparators consisted of active treatment in 76% 

(54/71) of studies and no active treatment in 24% (17/71) of studies. Pre-defined 

response criteria (e.g. overall response, cytogenetic response, objective response, etc.) 

was the most commonly used primary outcome in 61% (43/71) of studies. Survival was 

the primary outcome in 6% (4/71) of studies. Two studies used continuous data for the 

primary outcome while the remainder used dichotomous data.The median number of 

patients in experimental arms was 80 (range 12 to 1710; the latter consisted of four 

single-arm studies combined). Data from prospective studies were used in 96% (68/71) 

of approvals and from retrospective studies in 4% (3/71). 76% (54/71) were single-arm 
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studies with no mention of controls; 7% (5/71) were single-arm studies with historic 

controls; and 17% (12/71) were multi-arm non-comparative studies. 

3.4 Effect size and preference for subsequent RCT 

Following drug-indication authorization, the EMA expressed a desire for subsequent 

RCT data in 28% (20/71) of cases. There was no statistically significant difference 

between number of patients in the experimental arms of studies for which the EMA 

wished to see treatment effects confirmed in RCTs compared with those for which no 

such desire was expressed (median: 78 vs.113; p=0.37 by K-W test). 

The distribution of effect sizes ranged from OR of 1.06 to 2563 (Figure S1). Using raw 

data, the effect size was larger among drugs authorized without requiring confirmation 

of effects in RCTs [mean ln(OR): 2.88 +/- 1.70; (OR: 17.81 +/- 5.47)] compared with 

those for which the EMA would have liked confirmation in RCTs [mean ln(OR): 1.92 +/- 

1.5 (OR: 6.82 +/- 4.48)], with a significant difference between effects (p=0.028) (Figure 

2a). Similarly, using meta-analysis, the effect size was larger among drugs with no 

preference for RCT data [OR: 12.02 (95% CI: 8.08 to 17.89)] versus those that EMA 

stated a preference for an RCT [OR: 4.29 (95% CI: 2.80 to 6.58)]; with a significant 

difference between effects (p=0.0005) (Figure 2b). Figure S2 displays the subgroup 

analysis for all included indications.  

3.5 Agreement with definition of dramatic effects 

Figure 3 shows a flow-chart depicting the EMA preference for subsequent RCTs, as 

empirically determined from the data set, and based on the previously proposed criteria 

of “dramatic effects”.  ORs ≥12 were observed in 31/51 (60.7%) of the indications for 

which the EMA did not require subsequent RCTs, compared with 6/20 (30%) (p=0.0195) 
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for which subsequent RCTs were deemed necessary. RRs ≥5 were noted in 20/50 

(40%) indications for which EMA did not mention a preference for RCTs vs. 5/20 (25%) 

for which they did. RRs ≥10 were seen in 16/50 (32%) of studies for which the EMA did 

not desire a subsequent RCT as compared to 4/20 (20%) for which they did desire a 

subsequent RCT. Thus, the probability that the EMA will approve a drug based on 

‘dramatic effects’ without requiring further RCTs was (i) 4.3% (31/723), (ii) 2.8% 

(20/723), and (iii) 2.2% (16/723) according to the three different ‘dramatic effect’ criteria.   

Figure 4 shows the cumulative distribution of the effect size as defined by OR, RR and 

absolute risk difference. As shown in Figure 4, ORs ≥12 were seen in 52% of the 

studies (4a); RRs ≥5 in 36%, and RRs ≥10 in 29% (4b). As also shown in Figure 4c, the 

absolute risk difference ranged from near 0% to almost 100%, with almost all values 

within that range having an equal probability of occurring. 

We observed a statistically significant association between the log of effect size [ln 

(OR)] and the increase in the proportion of drugs authorized without requirement for 

evidence from RCTs [OR: 1.45; 95% CI: 1.02 to 2.07; p=0.037] (Figure S3). We also 

observed significantly larger effect sizes when the comparators were not active 

treatments [median: ln (OR): 3.78 (OR: 44.1) vs. ln (OR): 2.33 (OR: 10.3); p=0.038 by 

K-W test)]. No statistically significant associations were observed in the analysis of 

other subgroups [type of outcome (disease vs. patient-oriented), unit of analysis (event 

vs. patient), or type of disease category]. 

3.6 Quality assessment 

Table S2 shows our quality assessments. The external validity for all studies included in 

our analysis was very low (judged to be zero out of maximum score 3). In addition, the 
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quality of studies which the EMA would have preferred to be followed by RCTs was 

lower for the reporting dimension than for studies where such consideration was not 

apparent from the EMA documents [median: 7 (range: 4 to 11) vs. 9 (range: 6 to 11); 

p=0.041 by K-W test]. Although the drugs were licensed for use in specified conditions, 

in none of the cases were we able to discern how patients had been selected from the 

source population, the proportion of patients who agreed to participate in the studies, 

and whether the studied patients were representative of patients seen in typical 

practice. 

4. Discussion 

We found that about 7% of drug approvals by the EMA have been granted without 

evidence from RCTs. Only 2 to 4% (depending on the definition of dramatic effect) of 

the drug approvals had shown dramatic effects in non-randomized data. On average, 

effect sizes were larger among studies for which the EMA did not require further testing 

in RCTs, an observation that is in accordance with the Weber-Fechner law (Figure S3) 

[17, 18]. However, we found no clear evidence of a specific ‘dramatic effect’ threshold 

(Figure 3).  

Our findings are in line with the only other empirical study on this topic: after examining 

FDA approvals of 9 drugs (6 based on non-RCT comparison) for 10 indications, Kern 

(2016) concluded that medications had been approved under Breakthrough Therapy 

Designation if they resulted in a doubling of improvement compared with outcomes 

observed using historical controls [11].  
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Several other considerations apart from the presence of dramatic effects seem likely to 

be operating in these licensing decisions, but the EMA does not provide an explicit 

rationale for approving new drugs without comparison studies.In principle, the 

trustworthiness of EMA decisions could be assessed by seeing whether estimates of 

the effects of drugs authorized based on non-randomized studies is supported by 

estimates derived from subsequent RCTs. We found only one such example (an RCT of 

imatinib confirmed the effect seen in a non-randomized phase II trial in the treatment of 

chronic myeloid leukemia) [21]. Several other drugs (for example, ofatumumab for 

refractory chronic lymphocytic leukemia, and tyrosine kinase inhibitors for treatment of 

chronic myeloid leukemia) were subsequently tested in RCTs, but not against the 

comparator that had been used in the non-randomized studies used to support 

authorization [22]. 

In the absence of empirical evidence, EMA decision-making needs to be judged against 

accepted best methodological practices. For example, the International Conference on 

Harmonization E10 states: (E 10, 2001) [23]  

“The inability to control bias restricts use of the external control design to 

situations in which the effect of treatment is dramatic  and the usual course of the 

disease highly predictable. In addition, use of external controls should be limited 

to cases in which the endpoints are objective and the impact of baseline and 

treatment variables on the endpoints is well characterized.” 

For some of the conditions listed in Table S1, these requirements do not seem to have 

been fulfilled. Without having data with clear delineation of numerators and 

denominators (n/N) in experimental and control arms, it is impossible to estimate 
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treatment effects reliably. In only 24% (17/71) of indications did the EMA provide data 

on numerators and denominators for control arms, relying instead on implicit 

comparisons.  For example: 

“Given the non-comparator design of the study, efficacy outcomes cannot be 

compared with response in a placebo or active arm. Furthermore, comparison of 

efficacy results with published data is considered to be inappropriate as there 

does not appear to be any published data from comparable studies. 

…Consequently, efficacy has been assessed on the basis of response  rates 

in comparison to what would be expected by expert c linical evaluation and 

by comparison with previous experience in this type  of patient”  (our 

emphasis). 

 
Without evidence, how can experts know what they claim to know? [24-26]  The EMA 

documents often indicated that a current treatment was not considered effective, but 

reference to systematic reviews of existing evidence, formal surveys of experts, and 

analyses of registry data were rare [27].  

Given the imputations that we were forced to use in estimating treatment effects, 

especially for control groups, some of our treatment effect estimates are inevitably 

approximations. That is, in our attempts to translate the EMA judgments into the effect 

sizes, we frequently understood that the EMA assumed very low (often equal to zero) 

event rates such as response rate or survival in the control arm (Table S1). This seems 

likely to be reason that we observed some improbably high effect sizes. The quality of 

the studies considered by the EMA and critical assessment of surrogate outcomes [28] 

and other features was unsatisfactory (Table S2) raising further questions about 
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reliability of the EMA judgments. The situation can be improved if the regulatory 

agencies such as the EMA and the FDA adopt a more formal system, such as GRADE, 

in their evaluation of approval based on non-RCTs. To upgrade the quality of 

observational evidence at the level of RCTs, GRADE takes into account not only the 

effect size but also pays attention to dose-response gradient and requests explanation 

for plausible residual confounding.[4, 5] 

It is important to note, however, that the lack of rigor in choosing comparators results is 

a problem for further drug development. Once a drug has been authorized by regulatory 

agencies it tends to be regarded as the appropriate comparator for testing new drugs, 

reinforcing the preceding unsatisfactory comparison [22, 29].  

 5. Conclusion 

Licensing drugs for use in clinical practice must strike a balance between failing to 

approve effective drugs and approving ineffective or dangerous drugs [30]. Because 

values and risk tolerance differ among people, a perfect technical solution to this 

challenge is unlikely. Even so, more explicit guidelines regarding the circumstances in 

which regulatory agencies are likely to approve drugs based on non-randomized data 

would help investigators, practitioners and public to take more informed decisions about 

assessing the effects of drugs. Regulatory agencies such as the EMA could facilitate 

this process through greater transparency about the basis for choosing comparators 

[28, 31-33]; providing references to the systematic reviews of historical comparisons 

that should underpin its methods; and being more explicit about the basis for its choices 

of decision thresholds.   
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Legends 
 
Figure 1 PRISMA diagram of study selection process. 
 
Figure 2.  Distribution of the effect sizes as a function of the EMA’s preference to have 
results confirmed in RCTs. The effect size was significantly larger among drugs 
authorized without confirmation in RCTs compared with those for which the EMA would 
have liked confirmation in further RCTs; a) raw data b) meta-analytic aggregate 
 
Figure 3. The EMA preference for RCTs according to three different criteria of ‘dramatic 
effects’: a) empirically determined; b) an effect size with RR (risk ratio) ≥ 5 (the GRADE 
criterion[4, 16]); or c) a RR ≥ 10 (as proposed by Glasziou et al.[3]). (Denominator of 
n=70 in calculation of effect size is because in one study primary outcome was based 
on continuous data, thus preventing calculation of RR) 
 
Figure 4. Cumulative distribution of the effect size as defined by OR, RR (risk ratio) and 
absolute risk difference. “Dramatic effects” were defined as: a) empirically derived[ORs 
≥12, which was seen in 52% of the studies]; b) according to GRADE criterion [RRs ≥5 
seen in 36% of studies], and  according to Glasziou and colleagues [3][RRs ≥10 seen in 
29% studies] (see also Fig 3). 
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Figure 1. PRISMA diagram 
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Figure 4 Cumulative distribution of the effect size 

as defined by a) odds ratio, b) risk ratio and c) 

absolute risk difference. 

b) 

ln(OR)=2.48 [OR=12]-->very large ("dramatic") effects
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