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Abstract—The use of water resources for agricultural purposes,
particularly in arid and semi-arid regions, is a matter of
increasing concern across the world. Optimisation techniques can
play an important role in improving the allocation of land to
different crops, based on a utility function (such as net revenue)
and the water resources needed to support these. Recent work
proposed a model formulation for an agricultural region in the
Murrumbidgee Irrigation Area of the Murray-Darling River
basin in Australia, and found that the well-known NSGA-II
technique could produce sensible crop mixes while preserving
ground and surface water for environmental purposes. In the
present study we apply Differential Evolution using two different
solution representations, one of which explores the restricted
space in which no land is left fallow. The results improve on
those of the prior NSGA-II and demonstrate that a combination
of solution representations allows Differential Evolution to more
thoroughly explore the multiobjective space of profit versus
environment.

Index Terms—water resource management, crop planning,
differential evolution, NSGA-II

I. INTRODUCTION

Crop planning, particularly in arid and semi-arid regions
(such as Australia) is an ongoing issue due to climate change
and increasing populations with specific food consumption
patterns [1]. Given that there are limited resources such as
arable land and water, the problem of determining which crops
to plant, and when, naturally becomes a decision making and
optimisation one. As such, there have been some attempts
to formulate appropriate mathematical models and develop
algorithms to determine optimal planting strategies. While
these could focus exclusively on trying to maximise the profit
(referred to as net revenue), a competing but equally important

∗This research was principally conducted while Andrew Fitzgerald was a
Masters of Information Technology and Systems student at the University of
Tasmania. The Tasmanian Government is not affiliated with the present work.

objective is to satisfy demands of environmental sustainability.
This is particularly in terms of the amount of water that is
drawn from underground aquifers and the surface (i.e., river
systems).

This multiobjective problem has been studied by Xevi and
Khan [2] and further refined by the work of Lewis and Ran-
dall [3]. The latter used the tool known as the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [4]. To better un-
derstand and explore the search space of this problem we
apply an alternative algorithm, Differential Evolution (DE) [5],
[6]. Specifically, we investigate how such a continuous solver
may be applied to this discrete problem using two alternative
solution representations, and the potential advantages that may
be gained. The purpose of the present study is not to identify
the single ‘best’ algorithm for this problem—as the problem
definition is still an active area of investigation this would be
premature—but to investigate how a continuous solver such
as DE can be applied. The application of a broader range of
standard evolutionary algorithms will be the subject of future
work.

The remainder of this paper is organised as follows. Sec-
tion II describes the previous work done by Xevi and Khan [2]
and Lewis and Randall [3] on the development of the model
and the optimisation algorithms for this problem. Section III
explores how DE can be adapted to suit this problem in terms
of the representation schemes that it can use. Section IV
analyses the performance of DE with respect to the previous
solutions generated by NSGA-II [3]. We also describe how
these new solutions relate to the crop planning context and
examine the new insights they reveal. Section V discusses the
overall implications of this work and also looks forward to the
projects and lines of enquiry that it opens up.



II. WATER MANAGEMENT AND PREVIOUS
COMPUTATIONAL APPROACHES

The problem considered in this work is based on a common
agricultural scenario: for the upcoming year, a variety of
crops are to be allocated space within a farming area and
are to be supplied with water from natural rainfall, pumped
groundwater, and water pumped from one or more adjacent
waterways. The original model of this problem was given by
Xevi and Khan [2] and later refined by Lewis and Randall [3].
The latter model is the one used herein, and for convenience
is reproduced in Equations 1–7. Extensive explanation of it
may be found in that paper.

Maximise NR =

C∑
c=1

TCI(c)×X(c)− Cw

×
M∑

m=1

((
C∑

c=1

WREQ(c,m)×X(c)

)

− P (m)

)
− Cp ×

M∑
m=1

P (m)

−
C∑

c=1

V cost(c)×X(c)

(1)

Minimise EN =

M∑
m=1

(Tenv f(m)− Env f(m))

× [Env f(m) < Tenv f(m)]

(2)

s.t.,

M∑
m=1

P (m) ≤ 50 GL (3)

C∑
c=1

X(c) ≤ Tarea (4)

X(c) ≤ Y (c) 1 ≤ c ≤ C (5)

Allocation(m) = Inflow(m)− Env f(m) (6)

P (m) =

(
C∑

c=1

WREQ(c,m)×X(c)

)
−Allocation(m)

(7)
Where:
NR is the net revenue,
C is the number of crops,
M is the number of months, i.e., 12,
TCI(c) is the total crop income for crop c,
X(c) is a decision variable for the area of crop c (hectares),
WREQ(c,m) is the water required by crop c in month m
(ML),

Cw is total cost of water per unit volume ($/ML),
Cp is the cost of groundwater pumping and delivery ($/ML),
V cost(c) are all other costs associated with crop c,
TArea is the total cropping area available,
Env f(m) is a decision variable for the environmental flow
in month m,
EN is the deficit in environmental flow,
Tenv f(m) is the target environmental flow in month m,
P (m) is the groundwater pumped in month m,
Y (c) is the maximum allowable area for crop c,
Inflow(m) is the total surface (river) water available in
month m, and
Allocation(m) is the amount of surface water available for
irrigation of crops in month m.
A solution to the problem comprises the integer-valued area

(in hectares) to be allocated to each crop (zero if that crop
is not to be planted) and the amount of incoming water to
be left to flow downstream each month. Allowing greater
environmental flows may require that crop needs are met with
more expensive pumped water. The problem can be posed as
multiobjective, with the goals of maximising the (estimated)
net revenue (NR) from the crops planted while minimising the
deficit between the target environmental flow in downstream
waterways (required to maintain river health) and the actual
environmental flow, referred to hereafter as the environmental
flow deficit (EN ). The model’s chief simplification of planning
for a single year will be addressed in later research.

Different problem instances are derived from three com-
ponents: the alternative crops (and their anticipated profits,
costs and water needs throughout the year); details of the
agricultural area, such as its size and the local costs of
pumping groundwater; and forecasts for rainfall (which also
modifies the amount of water needed by crops and costs for
pumping groundwater). A common application would fix the
crop options and region, and derive alternative instances for
different rainfall forecasts, which is the approach taken here.

The particular region considered here has an area of
121,808 ha and is located in the the Murrumbidgee Irriga-
tion Area (MIA), a 660,000 ha area in New South Wales,
Australia [2], [7]. The model incorporates a constraint reflect-
ing changes in the administration of the MIA since 2005.
On 1 October 2006, the Water Sharing Plan for the Lower
Murrumbidgee Groundwater Services (the Plan) commenced,
meaning that groundwater was then managed under the Water
Management Act 2000 [3]. These regulations set a limit on
the annual extraction of groundwater of 270 GL in the MIA,
where the research is modelled [3], [8].

Three problem instances are considered, described in detail
by Lewis and Randall [3], which model 16 alternative crops
and three different rainfall scenarios of ‘dry’, ‘average’ and
‘wet’. Five of the crops have constraints on their maximum
cropping area as they are highly lucrative (making them
attractive to an optimisation algorithm), yet the market would
not be able to accept the maximum volumes that could be
generated by this region. For example, one solution without
these bounds yielded 7.5 million tonnes of winter vegetables,



which is over three times the annual consumption in Australia.
One must also bear in mind that the MIA is a relatively small
growing region.

An important crop that the authors introduced into their
revised model was cotton. It was found that across dry, average
and wet scenarios this crop dramatically increased net revenue,
but at the expense of large water usage. Their revised model
also produced comparable solutions (in terms of net revenue)
to the previous work of Xevi and Khan [2], but with minimal
expensive groundwater usage. Taking this idea further, they
also allowed for seasonal variation in the monthly water tar-
gets. Overall, it was shown that their multiobjective approach
could produce a family of useful solutions for farmers and
regional planners for average and dry conditions. However,
under wet conditions only one non-dominated solution was
found consisting of a large area of cotton, less of rice, some
canola, fruit and vegetables yielding a large net revenue of
$223 million.

III. APPLYING DIFFERENTIAL EVOLUTION

As solutions to this problem are pseudo-continuous it
may be approached using continuous solvers (working with
integer-valued solution vectors) such as Differential Evolution
(DE) [9] and Particle Swarm Optimisation (PSO) [10]. The
present work uses DE as an exemplar continuous solver.
The two alternative solution representations described in Sec-
tion III-A likely impact the solutions generated far more than
the solution generation mechanism employed.

A multiobjective DE algorithm is derived using a similar
approach to Montgomery, Randall and Lewis in their DE
for RFID antenna design [11]: a DE/rand/1/bin algorithm is
used to generate new solutions from the current population,
then the next generation is selected by applying the non-
dominated sorting algorithm from NSGA-II to the union of
these solution sets. In the present work, feasible solutions are
compared using standard Pareto-dominance rules, any feasible
solution dominates any infeasible solution, while infeasible
solutions are compared based on the amount they violate the
pumped water constraint to provide some selection pressure
toward feasible space.1 The population size—hence, solution
archive size—is 100, and the algorithm is executed for 2000
iterations (200,000 function evaluations). Appropriate values
of difference vector scale F and crossover probability Cr are
considered as part of this work.

A. Solution Representations

Two alternative solution representations were examined, one
that gives access to the entire search space and another than
restricts the search to those solutions in which the entire area
is allocated to crops, with no fallow land.2

1This rule, which ignores over-planting, was determined after an initial
investigation of the causes of infeasibility in solutions.

2It is acknowledged that, since the cultivation of annual crops (as opposed
to perennials) will not occupy farmland for the entire year, reservation of an
area for such a crop will imply the land lies fallow for some part of the year.
This is an issue to be considered in future work.

Original DE solution: 0.2 0.6 0.8 0.7 0.3

Normalised solution: 0.125 0.375 0.5 1 0

Allocate bounded crops: ? ? ? 10 0 90 ha remains

Allocate other crops: 11 34 45 10 0 0 ha remains

Fig. 1. Illustration of decoding the proportional representation for a 100 ha
area; the last two crops are bounded at 10 ha.

The most straightforward way to encode a solution to this
problem is as a vector of C+12 integer values (i.e., 28 in the
current problem) corresponding to the areas allocated to the C
crops and environmental flows for each month of the year. The
ranges of ‘unbounded’ crops are 0 to the size of the farming
land (121,808 ha), while bounded crops are restricted to 0
to their nominated maximum. Environmental flow variables
range between 0 and the target environmental flow. We refer
to this solution encoding as the naive representation.3

In this constrained space it is clear that infeasible solutions
are a risk. Considering crop area alone, approximately 90%
of the solution space represents infeasible solutions in which
more area is allocated than is available. As a means of
eliminating this particular cause of infeasibilty, an alternative
representation (referred to as the proportional representation
hereafter), was also devised in which crop areas are encoded
as real numbers in the range [0, 1]. The representation encodes
environmental flows for each month in the same way as the
naive. Such a solution is decoded to produce a crop allocation
in hectares as follows:

• Bounded crops are treated as binary variables: if their
solution value is ≥ 0.5 then they are allocated their
maximum, otherwise they are not planted.

• Unbounded crops are then allocated space from the
remaining unallocated area in direct proportion to their
normalised solution value.

Figure 1 illustrates this process for a fictitious problem with
100 ha available space and five crops, the last two of which are
bounded at 10 ha each. As the fourth (bounded) crop’s value
is above 0.5 it is allocated its maximum area of 10 ha, while
the fifth (bounded) crop is allocated nothing. Finally crops 1–
3 are allocated space from the remaining 90 ha in proportion
to their relative magnitude.

B. Initial Solution Generation

Initial solutions for the naive representation are created by
the following steps:

1) Generate C uniform random values rc in [0, 1].
2) Allocate each bounded crop c with rc ≥ 0.5 its maximum

area.
3) Normalise the rc values for all remaining crops with rc ≥

0.5, then allocate those crops space from the remaining
area in proportion to their normalised rc values.

3The label ‘naive’ is not intended to be pejorative, merely to indicate
that this representation only applies the grossest level of constraints, without
considering the impact of one crop’s land usage on another’s.



4) Generate 12 randomised integer values in the range
[0, T env f ] to set the solution’s environmental flows.

Initial solutions for the proportional representation are gen-
erated using steps 1 and 4 only.

C. Sensitivity Analysis

The DE/rand/1/bin was executed on the three problem
instances with both solution representations using combina-
tions of the DE control parameters Cr ∈ {0.1, 0.5, 0.9}
and F ∈ {0.3, 0.8}. Each combination was run for 2,000
iterations (200,000 function evaluations) with 21 randomised
trials performed. Performance was measured by the number of
feasible solutions generated and the hypervolume (HV) [12] of
the final solution set produced. Hypervolume was calculated
within the region bounded by [0, 2.88 × 108] in the NR
objective—the upper bound being a little above the highest
observed—and [0, 1.2× 106] in the EN objective (the upper
bound represents no environmental flow and hence a maximum
flow deficit). Values of the EN objective were scaled by 300
so that the spread of values, and hence their contribution
to HV, was of a similar magnitude to those in the NR
objective. Reported values are expressed as a percentage of
the rectangular region defined by those bounds.

Figure 2 presents box plots of the proportion of feasible
solutions produced for each instance–representation–parameter
combination, showing results for the naive representation in
the first row and proportional in the second. Mann-Whitney
tests show that most of the observed differences are statisti-
cally significant at the 1% level. For high Cr, naive shows
a clear downward trend with increasing F , suggesting that
the larger moves in solution space are more likely to produce
infeasible children. The proportional representation tends to
produce fewer feasible solutions, but performs best in this
regard for either high or low Cr, with lower F also improving
the number of feasible solutions.

Figure 3 presents box plots of the HV achieved by each
experimental combination. The outcomes of two-tailed Mann-
Whitney tests are mixed, with many of the observed differ-
ences statistically significant, but not all. Results for the naive
representation suggest a slight benefit from higher Cr values
and the higher value of F . In terms of median performance,
Cr = 0.9, F = 0.3 and Cr = 0.5, F = 0.8 tend to produce
the best outcomes (on dry and average).

HV results for the proportional representation show a
clearer trend of increasing performance as Cr increases, with
the best results produced when Cr = 0.9, F = 0.3. On the dry
and average instances, the proportional representation’s HV
tends to be markedly lower than that achieved using the naive
representation, which is due to the shape of the Pareto front
that can be achieved when the algorithm is required to allocate
all available space. Figure 4, presented in the discussion in
Section IV, illustrates the difference.

Subsequent analyses consider a single Cr, F combination
for each representation. With the naive representation both
(0.9, 0.3) and (0.5, 0.8) produce good HV results and the dry
and average instances, with (0.5, 0.8) typically better on dry

(statistically significant at the 5% level), while the slightly
better performance of (0.9, 0.3) on the average instance is
not statistically significant (p = .14). Consequently, despite
the lower number of feasible solutions produced by (0.5, 0.8)
under dry and average conditions, it is used in later analyses
of the naive representation. Using the proportional representa-
tion, the combination (0.9, 0.3) outperforms all others in HV
performance (statistically significant at the 1% level) and is
one of the best for feasible solutions, so is selected for later
analysis. In the analyses that follow, data was collected about
the child and archive populations at iteration 1 and for every
50th iteration.

D. Causes of Infeasibility

For the naive representation with Cr = 0.5, F = 0.8, ap-
proximately 59% of solutions produced for the dry and average
instances are infeasible. The principle cause of infeasibility
(more than 98% of cases) on these instances is overpumping,
which occurs when the allocation of crops (and hence their
water needs) and environmental flows have been selected such
that too much water needs to be extracted from groundwater
sources. While the degree of constraint violation varied, it was
frequently more than 88 GL.

Overplanting was a moderate cause, with approximately
22% of infeasible solutions (13% of all solutions) for the dry
instance and 31% (18% overall) for the average instance due
to allocating more crop area than available. This would, in
turn, lead to high water needs that can lead to overpumping.
In the wet instance, where water is abundant, overplanting is
the main cause of infeasibility, but tends to represent only 6%
of generated solutions.

Significantly, this indicates that overplanting, an obvious
risk with the naive representation, was not as significant a
problem as crop selection, with the algorithm able to find
feasible space with regard to this constraint. Indeed, across the
final population (which represents differing trade-offs of profit
versus environmental benefit) the typical amount of fallow land
was approximately 28% in the dry instance and 15% in the
average instance (0% in the more tractable wet instance).

The sole cause of infeasible solutions when using the pro-
portional representation is overpumping, as it cannot encode a
solution with more or less than the total amount of space allo-
cated. Using this representation and with Cr = 0.9, F = 0.3,
the algorithm tended to produce 65%, 54% and 0% infeasible
solutions for the dry, average and wet instances, respectively.
The typical amount of overpumping was approximately 30 GL,
which is lower than the constraint violation when using naive,
suggesting that this more constrained search space allows the
algorithm to better deal with (the remaining) constraints.

IV. COMPARING DE WITH PRIOR APPROACHES

Figure 4 presents the median and best attainment surfaces
in terms of HV produced by DE with the selected parameter
settings (Cr = 0.5, F = 0.8 for naive Cr = 0.9, F = 0.3 for
proportional) as well as the attainment surface produced by
Lewis and Randall’s [3] NSGA-II. Considering the DE results
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Fig. 2. Proportion of feasible solutions produced for different parameter settings and solution representation, by instance. Plot ranges differ by instance and
representation to allow detail to be seen

0.1
,0.

3

0.5
,0.

3

0.9
,0.

3

0.1
,0.

8

0.5
,0.

8

0.9
,0.

8

Cr,F

55

60

65

70

75

H
yp

er
vo

lu
m

e 
(%

)

Dry, naive DE

0.1
,0.

3

0.5
,0.

3

0.9
,0.

3

0.1
,0.

8

0.5
,0.

8

0.9
,0.

8

Cr,F

65

70

75

80

85
Average, naive DE

0.1
,0.

3

0.5
,0.

3

0.9
,0.

3

0.1
,0.

8

0.5
,0.

8

0.9
,0.

8

Cr,F

80

85

90

95

100
Wet, naive DE

0.1
,0.

3

0.5
,0.

3

0.9
,0.

3

0.1
,0.

8

0.5
,0.

8

0.9
,0.

8

Cr,F

55

60

65

70

75

H
yp

er
vo

lu
m

e 
(%

)

Dry, proportional DE

0.1
,0.

3

0.5
,0.

3

0.9
,0.

3

0.1
,0.

8

0.5
,0.

8

0.9
,0.

8

Cr,F

65

70

75

80

85
Average, proportional DE

0.1
,0.

3

0.5
,0.

3

0.9
,0.

3

0.1
,0.

8

0.5
,0.

8

0.9
,0.

8

Cr,F

80

85

90

95

100
Wet, proportional DE

Fig. 3. HV of solution sets produced by different parameter settings and solution representation, by instance. Plot ranges differ by instance to allow detail
to be seen



1.0 1.2 1.4 1.6 1.8 2.0 2.2
Net revenue ($) 1e8

0

100

200

300

400

500

600

En
vi

ro
nm

en
ta

l f
lo

w
 d

ef
ic

it 
(G

L)
Median attainment surfaces on dry instance

DE, naive
DE, proportional
NSGA-II

1.00 1.25 1.50 1.75 2.00 2.25 2.50
Net revenue ($) 1e8

0

100

200

300

400

500

600

En
vi

ro
nm

en
ta

l f
lo

w
 d

ef
ic

it 
(G

L)

Median attainment surfaces on average instance

DE, naive
DE, proportional
NSGA-II

1.0 1.5 2.0 2.5
Net revenue ($) 1e8

0

100

200

300

400

500

600

En
vi

ro
nm

en
ta

l f
lo

w
 d

ef
ic

it 
(G

L)

Median attainment surfaces on wet instance

DE, naive
DE, proportional
NSGA-II

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Net revenue ($) 1e8

0

100

200

300

400

500

600

En
vi

ro
nm

en
ta

l f
lo

w
 d

ef
ic

it 
(G

L)

Best attainment surfaces on dry instance

DE, naive
DE, proportional
NSGA-II

1.00 1.25 1.50 1.75 2.00 2.25 2.50
Net revenue ($) 1e8

0

100

200

300

400

500

600

En
vi

ro
nm

en
ta

l f
lo

w
 d

ef
ic

it 
(G

L)

Best attainment surfaces on average instance

DE, naive
DE, proportional
NSGA-II

1.0 1.5 2.0 2.5
Net revenue ($) 1e8

0

100

200

300

400

500

600

En
vi

ro
nm

en
ta

l f
lo

w
 d

ef
ic

it 
(G

L)

Best attainment surfaces on wet instance

DE, naive
DE, proportional
NSGA-II
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on the dry and average instances, it is clear that the two repre-
sentations lead the algorithm to explore quite different regions
of the search space, with the proportional representation able
to produce solutions with higher net revenue at the expense
of poorer environmental flows. Its attainment surfaces exhibit
an obvious knee point at which its solutions (which must
allocate the entire area) cannot compete with those of the naive
representation in terms of environmental flow. This suggests
that there may be some benefit in solving the problem using
both representations and then selecting a single attainment
surface from the two sets.

It is also evident that the DE results tend to be better than
those produced by the NSGA-II approach. Given the relatively
smooth surfaces produced by DE compared to the irregular
surfaces produced by the NSGA-II, it is plausible that the
NSGA-II would benefit from longer runs to continue to evolve
solutions towards the Pareto front. This is also the case on the
wet instance, where all three approaches eventually locate a
single, globally dominant solution (within those result sets)
with EN = 0. With this instance the DE settled on a different
mix of crops to the NSGA-II. NSGA-II retains some residual
area given to rice, and a few other, vestigial allocations. This
solution can be seen to be dominated by that found by DE,
in which the total area has been devoted to cotton, resulting
in a higher net revenue (although of very similar magnitude,
$279.4M versus $287.6M).

Figure 5 plots the attainment surfaces of the best trials
for the dry and average instances and marks both extreme
solutions and notable inflection points (in the case of DE
proportional). The crop areas and proportion of fallow land
for marked solutions are shown in Table I. Environmental flow
details are not presented due to space limitations. However,
water usage patterns by solutions with high net revenue are
similar across algorithms, with lower environmental flow dur-
ing the drier growing months of September through January,
and the target flow generally met otherwise.

NSGA-II solutions appear to show greater diversity of crop
mixes than those produced by DE, which tends to specialise
more. This may be one cause of the NSGA-II’s poorer NR
performance, particularly evident on the selected wet instance
solution and DE naive’s solution A versus NSGA-II’s solution
F on the dry instance (in the second case, DE achieves a
higher profit despite planting only 38% of the available space,
compared to 58% by NSGA-II).

For DE proportional, the knee point appears to occur as
it transitions from planting predominantly cotton to predomi-
nantly canola (consider solutions D and E on dry and M and
N and average). Other key inflection points (solutions K and L
on average) in dominated space where the algorithm is forced,
due to the solution representation, to plant the entire area, are
accompanied by greater crop diversity as it attempts to balance
water requirements and constraints.

V. CONCLUSION

The use of limited water supplies in order to grow a variety
crops while respecting environmental needs is a problem

faced all around the world. High performance planning (i.e.,
optimisation) techniques are therefore necessary. In this paper
we demonstrated that DE is able to find novel solutions to a
multiobjective crop planning and water management problem,
in a relatively modest number of solution evaluations. The
two alternative solution representations allow the algorithm to
produce differing solution sets, which demonstrate that:

• restricting the search space to those solutions that plant
the entire area allows highly profitable (but less environ-
mentally friendly) solutions to be discovered; but

• some land must be left fallow if environmental targets
are to be approached while still maximising achievable
profit.

As mentioned above, the model presented here only con-
siders one year of planting (i.e., land is reserved for crops
at the start of the year and not changed). However, farmers
need to plan for extended timeframes: multiple years and
sometimes decades. This necessitates changing crops and land
allocations over time. Therefore, the next step of our research
is to extend the present model with a temporal component.
Finally, given changing climate conditions, this problem is a
suitable candidate for robust optimisation techniques that solve
for a variety of future rainfall scenarios, rather than treating
these as independent problem instances.
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Fig. 5. Sample solutions whose crop areas are shown in Table I

TABLE I
SELECTED SOLUTIONS FROM ALGORITHMS’ ATTAINMENT SURFACES

ID Alg. R W B M Ca O S WP SP L Co V WV SV Ci SF fallow

Dry instance
A DE naive — 703 99 — 9.9k 224 8 76 — 67 30.5k — 2.3k 1.3k 1.5k 177 62%
B DE naive — 371 143 — 63.4k 544 — 144 — 17 51.0k 73 2.3k 1.4k 1.5k 685 0%
C DE prop. — 29.7k 60 28.6k 6 28.7k — 13.4k 1.2k — — 15.0k 2.3k 1.4k 1.5k — 0%
D DE prop. 452 17 1 7 83.6k — — — — 27 32.5k — 2.3k 1.4k 1.5k — 0%
E DE prop. — — — — 62.3k — 4 — — — 54.3k — 2.3k 1.4k 1.5k — 0%
F NSGA-II 5.5k 17.0k 716 6.7k 10.4k 1.2k 5.4k 274 637 — 6.9k 11.8k 2.1k 1.3k 1.1k 36 42%
G NSGA-II 11.0k 26.6k 427 23 13.7k 10.3k — 465 1.4k — 51.7k — 2.2k 1.3k 1.4k 61 1%

Average instance
H DE naive — 4.6k — 85 18.8k — 72 — — — 39.8k — 2.3k 1.4k 1.4k — 44%
I DE naive — — 80 56 37.6k 2 — — — — 77.9k — 2.3k 1.4k 1.4k 844 0%
J DE prop. — 15.5k 316 590 7.5k 44.5k 33.0k — — 93 202 15.0k 2.3k 1.4k 1.5k — 0%
K DE prop. 1.1k 12 28 47 69.4k 86 1 34 129 — 29.8k 15.0k 2.3k 1.4k 1.5k 1000 0%
L DE prop. 617 1.9k 372 1.6k 57.4k 15.6k 4.1k 30 764 231 34.0k — 2.3k 1.4k 1.5k — 0%
M DE prop. 1 16 — 24 76.3k — — 1 17 — 40.3k — 2.3k 1.4k 1.5k — 0%
N DE prop. — 2 1 10 35.1k — — — 8 — 81.5k — 2.3k 1.4k 1.5k — 0%
O NSGA-II 5.6k 760 1.7k 1.6k 16.1k 9.6k 2.9k 4.4k 593 821 19.9k — 2.2k 1.3k — 2 45%
P NSGA-II 5.1k 4.4k 14.1k — 23.2k 6.2k — — — — 63.3k — 2.2k 1.1k 1.5k 434 0%

Wet instance
DE naive — — — — — — — — — — 116.7k — 2.3k 1.4k 1.5k — 0%
DE prop. — — — — — — — — — — 116.7k — 2.3k 1.4k 1.5k — 0%
NSGA-II 13.2k 169 4 — — — 1 — 15 6 103.4k 6 2.2k 1.4k 1.4k — 0%

Crops are (R)ice, (W)heat, (B)arley, (M)aize, (Ca)nola, (O)ats, (S)oybean, winter pasture (WP), summer pasture (SP), (L)ucerne, (Co)tton, (V)ines, winter
vegetables (WV), summer vegetables (SV), (Ci)trus and stone fruit (SF)


