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Multiple Local Neighbourhood Search for Extremal
Optimisation

Marcus Randall1

Department of Informatics, Bond University
Queensland, Australia, mrandall@bond.edu.au

Abstract

Extremal optimisation (EO) uses a somewhat unusual mechanism to transform one solution into
another. This consists of computing a probabilistic worst solution component value, and chang-
ing it to a random value. While simple and avoiding problems with premature convergence, it is
mostly incompatible with combinatorial problems, particularly those requiring permutations as so-
lution structures. This paper demonstrates that standard local search operators (e.g., 1-opt, 2-opt
and 3-opt – used singly or from a neighbourhood) can be readily integrated into the canonical EO
framework, without compromising the integrity of the original algorithm. The idea, in some senses
may be viewed as a quasi-memetic algorithm. In particular, the primary purpose of this paper is
the application and analysis of multiple local search operator neighbourhoods. Issues of solution
component ranking techniques and methods for generating local transition operator endpoints are
also examined. The difficult and under used asymmetric travelling salesman problem is employed to
test these concepts. Results indicate that the simultaneous use of local search operators provides for
improved performance over operators used individually.

1 Introduction

Extremal Optimisation (EO) [3, 4] is a relatively under-exploited meta-heuristic that has many desirable
properties. One such is lack of convergence – preventing the problem of premature convergence that is
a common trait of other techniques [14]. However, this and other characteristics, including ease of im-
plementation and computational simplicity, come at a cost. A non-standard transition operator, in which
a probabilistic worst solution component at each iteration is changed to a random value, is its way of
traversing state space. Unfortunately, this approach is incompatible with well-known and effective local
search operators such as 1-opt, 2-opt and 3-opt. These operators, however, are commonly used as part
of many powerful search techniques. Used in the way proposed in this paper, the revised EO algorithm
approaches the concept of memetic algorithms [12] which often combine local search heuristics in the
one implementation. The purpose of this paper, therefore, is to demonstrate that local search transitions
can be sensibly incorporated into the EO framework with minimal change to the standard algorithm.
Moreover, multiple local search operator neighbourhoods are investigated to determine if a performance
advantage can be leveraged. In addition to this, operator endpoint generation and solution component
ranking techniques are examined. The more difficult version of the standard travelling salesman problem
(TSP), the asymmetric travelling salesman problem (ATSP) [5], is used to test these ideas.

The remainder of the paper is organised as follows. Section 2 gives a brief description of the mechan-
ics of EO as well as reviewing two EO implementations solving travelling salesman problems. Section 3
describes how local search transition operators can be seamlessly integrated into the EO framework us-
ing a probabilistic selection model for multiple neighbourhoods. Related issues of ranking strategies and
transition endpoint generation are also discussed. Experimental work is carried out on these aspects in
Section 4. Importantly, an investigation and analysis of the effect of transition operators is given using
a method labelled as hierarchical parameter tuning. The final computational results indicate operators
used in combination often produce better quality solutions than operators used by themselves for the test
problem. Finally, conclusions and ideas for further investigation are given in Section 5.
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2 EO and the Travelling Salesman

While this paper deals with a significant variation to the standard algorithm, it is important to have a base
understanding of its mechanics. More in-depth descriptions may be found in Boettcher and Percus [3, 4]
and Randall, Hendtlass and Lewis [15].

Extremal optimisation is an evolutionary meta-heuristic algorithm, that in its canonical form, manip-
ulates a single solution vector. EO alters its solution iteratively, and as such, requires an initial solution.
At each iteration, EO will select one of the worst elements1 of the vector to have its value changed
to a random value. To make this selection, the elements are first ranked from worst (rank 1) to best
(rank n, where n is the length of the vector), and probabilities assigned, according to the distribution
Pi ∝ i−τ , 1 ≤ i ≤ n, where i is the rank. Values of τ close to, or equal to, zero produce an undirected
random search strategy. Conversely, allowing τ = ∞ ensures the worst element is chosen each time.
Algorithm 1 shows the pseudocode for a single iteration of the EO algorithm.

Algorithm 1 A single EO iteration.
Rank the solution components in x from worst to best according to their adverse effect on the objective function
f(x)
i = Select a component from x using roulette wheel selection on P
Assign xi a random (legal) value
c = Evaluate f(x)
if c is better than Best then
Best = c

end if
end

Boettcher and Percus’ [3] solve the standard TSP using a “frustration” measure to determine the
rank of each city. This is described in detail in Section 3.2 and forms an integral part of this study.
Essentially, however, the ranking reflects how far away a city is from its (ideal) two closest neighbours.
Highly frustrated cities are likely to be chosen to be changed. This change is essentially an elaborate
2-opt operation. After the first city is chosen (call this c1), the edge of greatest distance between it and
its two neighbours, is removed. Refer to the affected city as c2. c1 is then reconnected to a city, c3, that
is closest to it. However, in so doing, a sub-tour is created, therefore one of the edges from c3 is uniquely
removed. Denote the other city to this edge as c4. c4 is then reconnected to c2 in order to generate a
valid Hamiltonian circuit. It is evident that all that occurs is a 2-opt between c2 and c3. As these authors
only deal with the symmetric version of the problem, very few links are effectively broken. However, if
applied to the ATSP the change from one solution to another could be very large. Using relatively small
test instances, their results showed plenty of room for potential improvement to the technique.

Chen, Zhu, Yang and Lu [8] build on the work of Chen, Lu and Chen [7] who solve the standard TSP,
by applying EO to the ATSP. Their “Improved Extremal Optimisation” (IEO) consists of two main steps;
extremal dynamics (i.e., the EO algorithm) and co-operative optimisation. The latter, it is claimed, leads
to the named improvement. The authors assert that for problems having encoding constraints (such as a
permutation for travelling salesmen problems), by making a local transition, the state of other decision
variables are necessarily affected. For example, for a permutation problem, a 1-opt transition will affect
the positions of proceeding values in the structure. In this case, “co-operative optimisation” can be seen
as more of a necessity to ensure feasible solutions. Furthermore, the authors map the ATSP onto a multi-
entity physical system. This largely affects their ranking strategy, which is discussed in Section 3.2 of
this paper. The local search operator used in their paper is 3-opt. At each iteration, a “bad” city with high
energy is chosen. From this, the operator considers all possible 3-opt transitions from this point alone.
If the best of these produces a new solution that is the best found to date, the transition is performed.

1This assumes that the problem is separable, and as such, the cost of each element can be readily calculated.
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Should that not be the case, with a certain probability, a random transition from the neighbourhood is
performed. Other than this, a greedy/descent search strategy, that locates the local optimum, is used
instead.

3 Neighbours, Rankings and Transitions

As previously mentioned, EO’s mechanics do not lend themselves easily to permutation problems, such
as the ATSP. By augmenting the canonical algorithm with some generalisable heuristics, this can be
alleviated. This section therefore outlines techniques for managing the use, and taking advantage of, se-
lecting local search operators; generating primary and secondary endpoints; and local search refinement.

3.1 Local Transition Operators and their Selection

At each iteration of the search, canonical EO will choose a probabilistically weak solution component,
and change its value to a random value. This mirrors certain aspects of nature where non-adaptive or unfit
species are replaced, within an environment, by new species [1]. For highly structured problems, such as
those requiring permutations as solutions, the canonical strategy requires modification. For permutation
problems, at least two “endpoints” are required so that the resultant solution is feasible. For example,
swapping the positions of two cities in the travelling salesman problem ensures this. At the very least,
a single point, chosen by EO’s mechanics is required. This is referred to as the primary endpoint, while
the other point(s) is/are the secondary endpoint(s)2.

Given that a primary and a secondary endpoint(s) have been chosen (as discussed in the next two
subsections), there are a variety of local transition operators that may be applied to permute solutions.
The work in this study is based on the use of the following four operators. While they are described in
terms of the application problem, they are each appropriate for other permutation problems.

• 1-opt – A city is moved from its current position in the tour to another. For the ATSP, only three
edges are removed and three other edges are added in this operation.

• 2-opt – A 2-opt removes two edges. Each edge is replaced by a new one that connects to the node
of the other removed edge. There is a unique way of doing this without creating two sub-tours. In
essence, 2-opt corresponds to an inversion operation. As potentially a large number of links are
inverted, this type of operation can lead to a large overall change for the ATSP, whereas, it will be
relatively small for the symmetric TSP.

• Swap – Two cities in the tour change position. This breaks/removes four existing links and creates
four replacements.

• 3-opt – Three edges are removed, and are replaced by another three edges. If no intermediate edges
are to be inverted, there is a unique way to do this. Unlike the 2-opt, however, no intermediate
edges are inverted.

The question becomes how to select a transition operator at each iteration. While it is possible to
do this any number of ways, one way that is commonly used for stochastic choices in meta-heuristic
algorithms is roulette wheel selection. Selecting the associated probabilities of the transition operators
becomes part of the experimental framework and is hence described in the next section.

3.2 Primary Endpoint Selection

To select the primary endpoint at each iteration, one of the key aspects of the EO algorithm, ranking of
the solution components, is used. An intuitive, and perhaps somewhat naı̈ve approach to ordering the set

2If an operation such as 3-opt is used, there will be more than one secondary endpoint.
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of cities is to simply consider the distance metric. However, this does not take into consideration relative
differences in edge size and an individual city’s need to be connected to its nearest neighbour. Therefore
both Boettcher and Percus [3, 4] and Chen et al. [8] propose measures, albeit in slightly different ways, to
address these issues. Boettcher and Percus’ “frustration measure” ranks cities on the degree to which they
are separated from their two ideal neighbour cities. The greater the number of links in the sequence/tour
that a city is removed from its ideal neighbours, the more likely it is to be selected to change by EO. The
ranking is based on the frustration measure given in Equation 1.

λi =
3

pi + qi
(1)

Where: λi is the frustration measure of the ith city in the sequence, pi is the ranked order (in terms of
the list of closest cities to the city in the ith position) of the proceeding city in the tour sequence and qi
is similar to pi except that it is for the city that precedes i.

Ideally, λi = 1, ∀i which means that every city is connected to its closest city. However, optimal
TSP solutions will rarely obey this property.

Chen at al. [8] however, model the TSP as a physical system in which the energy ground state
corresponds to an idealised solution in which each city is connected to its closest neighbour. This is
given by Equation 2.

ei = pi −min
j 6=i

(dij) (2)

Where: ei is the energy associated with the ith city in the tour, pi is the length of the forward edge from
the ith city in the tour and dij is the distance between city ith and jth cities in the tour.

Both of these techniques are implemented and tested in the next section of the paper.

3.3 Secondary Endpoint Selection

The previous subsection described how the primary endpoint is chosen using the canonical EO selection
mechanism. There are two distinct ways in which the secondary endpoint or endpoints (in the case of
3-opt) can be selected. For ease of discussion, the singular “endpoint” will be used even when referring
to 3-opt’s two endpoints.

The first way is very simple. A random city is chosen as the secondary endpoint. Of course this
needs to be different from the primary endpoint, otherwise no transition will take place.

The second way is more complex and is referred to as the neighbourhood approach. Rather than
choosing another city/location at random, each city/location is evaluated and the best one is chosen. The
procedure outlined in Algorithm 2 is employed and is applicable to all four operators.

Algorithm 2 The generic algorithm for performing a neighbourhood search. This assumes that the
objective is to be minimised.

Set best cost to a large value
for all possible neighbours of this operator using the primary endpoint do

Perform the neighbour operation and record the change to the objective function as cost
if cost < best cost then

Record the secondary endpoint(s) of this operation
best cost = cost

end if
Restore the original solution by reversing the operator

end for
return the secondary endpoint(s) of the best neighbourhood operation and its cost
end
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Name N Best Known Cost
ftv55 56 1608
ftv64 65 1839
ft70 71 38673
kro124p 100 36230
ftv170 171 2755
rbg323 323 1326
rbg358 358 1163
rbg403 403 2465
rbg443 443 2720

Table 1: The ATSP instances used in this work.

In this paper, operators that use neighbourhoods are designated using the prefix n. For example,
n1-opt is the neighbourhood version of 1-opt.

3.4 Local Search

Like all meta-heuristics, EO requires a subordinate refinement algorithm to move its solution to local
optimality. Consistent with other works around the travelling salesman problem (such as Iorache [10],
Merz and Freisleben [11] and Stützle, Grün, Linke and Rüttger [16]), a greedy neighbourhood 3-opt
local search strategy is used. The procedure is run at each iteration of EO, and terminated once a local
optimum has been found. Initial experimentation showed the efficiency of 3-opt with EO over other
operators (such as 2-opt).

4 Computational Experiments, Results and Analysis

The purpose of this section is twofold. As there are effectively eight local search operators (single and
neighbourhood) with associated probabilities and a choice of two ranking methods, a large number of
parameter combinations are possible. Section 4.2 presents a hierarchical parameter tuning regime that is
designed to examine the effects of various parameter choices to produce good parameter combinations.
Section 4.3 gives the results of the final parameter sets on the same test suite of problems as used by
Chen et al [8].

4.1 Test Environment

Table 1 lists the characteristics of the ATSP instances used for these experiments. Each problem instance
will be run across ten random seeds to give statistically valid results. A run is terminated if it reaches the
best known solution cost for a problem instance or a maximum number of iterations has been reached.
Results are reported as relative percentage deviations (RPDs) from the best known solution cost for each
problem instance. Formally this is given a−b

b ×100% where a is the obtained cost and b is the best known
cost. A value of 1.4 is used for EO’s τ parameter, as it has been found to be a good value for similar
problems [14, 15].

4.2 Hierarchical Parameter Tuning

Having a large number of parameters, some of which have an infinite number of settings, can result in
an extensive and unproductive search of its own. Hence, an iterative, hierarchical scheme is used to
systematically look at the effects of various parameter settings.

A subset of the problem instances, namely ftv55, ft70 and kro124p will be used for this exploratory
phase. This approach of using a subset of the test problems to determine suitable parameter values is
due to the potentially large amount of time taken by parameter tuning [2]. A relatively small number of
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Problem 1-opt swap 2-opt 3-opt n1-opt nswap n2-opt n3-opt
ftv55 C Min 0 0.31 20.4 1.93 4.48 4.66 1.93 1.93

Med 0 7.03 24.75 15.11 7.65 8.02 10.82 13.9
Max 3.92 11.82 29.42 21.08 11.32 13.12 39.68 20.52

B Min 0 3.17 18.41 10.07 1.55 5.22 2.18 3.36
Med 0 8.96 24.41 16.17 7.8 6.69 7.87 14.61
Max 1.31 10.32 27.86 22.57 12.31 11.82 18.1 20.27

ft70 C Min 0.44 3.68 12.1 1.01 1.77 1.11 1.96 1.63
Med 0.88 4.59 13.15 2.97 2.14 2.98 3.51 3.22
Max 1.08 4.96 14.68 5.79 4.18 3.68 9.18 6.22

B Min 0.6 3.35 11.32 1.91 1.43 2.06 2.17 2.45
Med 0.84 4.26 13.71 4.45 2.16 2.69 3.24 4.18
Max 1.13 5.08 14.8 5.56 3.29 6.24 10.21 5.15

kro124p C Min 0.55 16.45 14.46 6 3.11 3.16 3.02 5.79
Med 2.91 21.15 18.15 13.22 6.92 8.67 9.36 13.57
Max 5.79 22.45 19.93 17.8 11.36 11.47 15.05 17.8

B Min 0.18 16.2 12.98 8.49 5.35 5.06 5.14 8.5
Med 3.48 20.87 18.2 11.62 6.11 8.75 9.36 12.61
Max 5.8 23.09 21.25 19.48 10.75 14.26 15.14 18.39

Table 2: Results for ftv55, ft70 and kro124p. Note that “Min”, “Med” and “Max” refer to minimum,
median and maximum respectively. Results are recorded as RPDs.

iterations are used to gauge the performance of each setting. In this case, the number of iterations is set
to 10000. In the first instance, the effects of the following need to be ascertained:

1. The effect of each of the eight transition operators used in isolation.

2. The effect of each ranking scheme.

Table 2 shows the results collectively for the three problem instances. Each table has all four combi-
nations of ranking scheme and endpoint type for each type of operator. Note that ‘C’ refers to Chen et
al. [8] ranking and ‘B’ for Boettcher and Percus [3] ranking. As the data are non-normally distributed,
the Kruskal-Wallis technique is used to detect if there are any significant differences detected because of
any of these attributes. At the α = 0.05 level the following was observed:

• No significant differences occurred the ranking method. In terms of the Kruskal-Wallis ranks, the
C setting produced the overall lowest RPD values.

• A significant difference was present due to the operator. Using the Kruskal-Wallis ranks revealed
the following order: 1-opt ≺ n1-opt ≺ nswap ≺ n2-opt ≺ 3-opt ≺ swap ≺ n3-opt ≺ 2-opt.

Given that an order of goodness has been derived for the eight transition operators, it is now possible
to try various combinations of these operators to determine if better results can be obtained than those
given in Table 2. There are actually two questions here:

1. Do combinations of good operators give good solutions, and conversely, do combinations of poor
operators give poor solutions?

2. Does the mere use of more than just one operator help to improve solution quality?

To answer these questions, the following scheme is devised. Three groups of three operators, la-
belled, “best”, “middle” and “worst” are used with various probability settings. The groups are (1-opt,
n1-opt, n2-opt), (nswap, n2-opt, 3-opt) and (swap, 3-opt, 2-opt) respectively. The probability settings
are (0.8, 0.1, 0.1), (0.6, 0.2, 0.2), (0.5, 0.25, 0.25) and (0.4, 0.3, 0.3).
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Problem Metric Transition Set
(0.8,0.1,0.1) (0.6,0.2,0.2) (0.5,0.25,0.25) (0.4,0.3,0.3)

ftv55 Min 0 0 0 0
Med 0 0 0 0
Max 0 0 0 0

ft70 Min 0.31 0.01 0.02 0.02
Med 0.47 0.36 0.12 0.23
Max 0.54 0.49 0.32 0.35

kro124p Min 0.03 0.03 0.03 0.03
Med 0.5 0.09 0.99 0.03
Max 3.5 2.22 2.91 3.27

Table 3: Results for the best group (1-opt, n1-opt, n2-opt).

Problem Metric Transition Set
(0.8,0.1,0.1) (0.6,0.2,0.2) (0.5,0.25,0.25) (0.4,0.3,0.3)

ftv55 Min 1.24 1.18 3.48 4.54
Med 5.66 6.59 6.06 8.33
Max 17.16 11.13 18.1 14.37

ft70 Min 0.74 0.63 0.74 0.48
Med 1.68 2.33 1.65 2.81
Max 3.15 3.82 4.25 5.27

kro124p Min 2.29 4.39 5.74 3.89
Med 8.07 7.47 7.55 5.62
Max 10.5 17.17 9.57 10.56

Table 4: Results for the middle group (nswap, n2-opt, 3-opt).

From the results presented in Tables 3, 4 and 5, the following statements can be made. If good
operators are combined, better results are achieved, whereas, if poor operators are used in conjunction,
typically even worse results are produced. Therefore, question one is answered in the affirmative for the
problem instances tested here.

Of the most interest is the best group, as it is able to help to answer the second question. Applying
Kruskal-Wallis reveals that the transition set (0.4, 0.3, 0.3) outperforms the others. This is an interesting
finding as it demonstrates a mixture of operators, even with a de-emphasis on the best operator, is good
for this problem. To investigate this further, two more sets were applied. These are (0.34, 0.33, 0.33) and
(0.2, 0.4, 0.4). These results are given in Table 6. Both of these were slightly better on some instances
than transition set (0.4, 0.3, 0.3). As a final answer to question two, for this problem and these problem
instances at least, the answer appears to be yes. This will be tested even more in the next group of

Problem Metric Transition Set
(0.8,0.1,0.1) (0.6,0.2,0.2) (0.5,0.25,0.25) (0.4,0.3,0.3)

ftv55 Min 8.15 2.86 8.21 9.08
Med 13.03 14.27 12.19 12.66
Max 16.73 15.3 15.05 15.24

ft70 Min 4.81 5.57 6.23 4.44
Med 6.64 7.36 7.46 6.99
Max 8.09 8.69 8.21 7.97

kro124p Min 17.37 15.82 11.12 9.53
Med 20.06 18.08 16.39 14.19
Max 25.07 19.69 18.62 17.96

Table 5: Results for the worst group (swap, 3-opt, 2-opt).
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Problem Metric Transition Set
(0.34,0.33,0.33) (0.2,0.4,0.4)

ftv55 Min 0 0
Med 0 0
Max 0 0.62

ft70 Min 0 0
Med 0.2 0.18
Max 0.3 0.28

kro124p Min 0.03 0
Med 0.03 2.08
Max 3.55 2.63

Table 6: Extended results for the best group.

experiments.

4.3 Final Results

From the preliminary results, it is evident, for this problem at least, that the use of multiple transition
operators is effective. The aim of this part is to determine the effect of the three best transition sets on
the entire ATSP test suite, with an extended number of iterations (50000). Additionally, for purposes of
comparison, one other test will be performed. This is to use pure 1-opt as it was identified to be the best
amongst the single use operators (denoted as (1,0,0)). This will serve as a control. Table 7 presents the
entire set of results.

In terms of the four variants in Table 7, it is noted that the three that use the combination of transition
operators are able to produce the best known solution for each problem instance. The variant that uses
1-opt alone does so for 4/10 instances. Given the increased number of available iterations (over the initial
10000) confirms that EO is capable of continual exploration and does not get trapped in local optima. A
Kruskal-Wallis analysis reveals that a significant difference in performance does exist between the four
variants, with the 1-opt variant receiving the highest (worst) rank. The order becomes (0.34,0.33,0.33)≺
(0.4,0.3,0.3) ≺ (0.2,0.4,0.4) ≺ (1,0,0). This suggests for this problem and these instances, combinations
of local search transition operators provides a performance advantage. The instances for which the best
known solution is consistently found (such as rbg443), typically do so within a few hundred iterations.
This consumes only a few seconds of computational time on a standard PC.

In comparison to the work of Chen at al. [8] it can be seen that both sets of approaches are able
to generate the best known solution to these test problem instances. In four of its instances, it is more
consistent in receiving the best known solution, while the solver presented here is more consistent than it
on rbg403. It would be interesting to combine aspects of their work, particularly their “cooperative opti-
mization” (specifically step 3 of their algorithm in Section 3.2, p. 4462) with the multiple neighbourhood
concept as outlined here.

5 Conclusions

The choice of local search transition operators plays a critical part of the optimisation process for meta-
heuristic algorithms. In many works, a single operator is used, its choice often being determined by the
state of the literature, while other parts of the meta-heuristic search algorithm are explored or modified.
In contrast, this paper has made an examination of operators, and importantly, the use of multiple oper-
ators for a difficult combinatorial problem, the asymmetric travelling salesman problem. The interesting
finding was that a combination of local transition operators produced better overall results, than a single
good operator. This was achieved by using a simple probabilistic selection method with probabilities
derived by a small set of investigations. In addition to this, it was shown that the choice of transition
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(0.34,0.33,0.33) (0.4,0.3,0.3) (0.2,0.4,0.4) (1,0,0)
ftv55 Min 0 0 0 0

Med 0 0 0 0
Max 0 0 0 0

ftv64 Min 0 0 0 0
Med 0.49 0.16 0.54 0.54
Max 0.6 0.6 0.6 1.03

ft70 Min 0 0 0 0.14
Med 0 0.01 0.01 0.49
Max 0.15 0.2 0.03 0.82

ftv70 Min 0 0 0 0.36
Med 0.36 0.46 0.51 0.56
Max 0.56 0.46 0.56 0.92

kro124p Min 0 0 0 0.14
Med 0 0.02 0 1.38
Max 0.34 1.92 0.03 3.82

ftv170 Min 0 0.22 0 1.52
Med 0.91 0.78 0.58 4.01
Max 4.32 4.14 5.05 6.72

rbg323 Min 0 0 0 0.36
Med 0 0 0 0.56
Max 0 0 0 0.92

rbg358 Min 0 0 0 0
Med 0 0 0 0
Max 0 0 0 0

rbg403 Min 0 0 0 0
Med 0 0 0 0
Max 0 0 0 0

rbg443 Min 0 0 0 0
Med 0 0 0 0
Max 0 0 0 0

Table 7: The final results for the selected variants using 1-opt, n1-opt, n2-opt.

operators led to greater improvements in locating good solutions than component ranking schemes or
how operator endpoints were generated.

There are a number of directions in which this work leads. Firstly, a number of different combi-
natorial problems need to be re-examined in terms of their local search operator choice. It may very
well be the case that the introduction of multiple neighbourhoods may lead to increased performances
and a deeper understanding of why certain operators work well with particular problems. One important
aspect that needs examination is the transition selection mechanism. In this paper, a simple probabilis-
tic model was used. However, more sophisticated choices based on the concepts of landscape fitness
analysis [9] and self-adaptation [13] need to be investigated. Also, as identified in the previous section,
a hybridisation of the Chen et al. [8] cooperative optimisation and multiple neighbourhoods may lead
to further performance improvements for ATSP, and possibly a greater range of problems as well. Fi-
nally, to progress the approach outlined in this paper to being a full memetic algorithm requires a) the
examination of local search heuristics to achieve fine grain search, and b) the implementation of an EO
population model (such as Chen et al. [6] and Randall et al. [15]).
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